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Preface

In this book, the authors have endeavored to present the underlying

'theory of microwave systems, starting with concepts which are basic to

all electromagnetic phenomena. The material included in the text logi-

cally falls into three general categories: (1) fundamental electionic con-

cepts and their application in the analysis of microwave tubes, (2) trans-

mission lines and transmission-line networks, and (3) electromagnetic field

equations and their use in the analysis of wave propagation, reflection phe-

nomena, wave guides, and radiating systems. Throughout the book the

engineering point of view has been stressed and, wherever possible, the

analytical results have been expressed in a form convenient for engineer-

ing use.

In recent years, there has been a growing trend toward the development
of new and unorthodox types of vacuum tubes, many of which have been

designed for operation at microwave frequencies. This trend has empha-
sized the need for enlarging upon and clarifying our fundamental elec-

tronic concepts, particularly those dealing with space-charge behavior in

time-varying fields. The groundwork in this subject has been admirably

treated by Benham, Llewellyn, North, Jen, Gabor, and others. However,
the mathematical complexities involved in a rigorous treatment of the

subject are such as to discourage all those who are not endowed with an

abundance of mathematical fortitude. In this text, the authors have at-

tempted to present some of the fundamental electronic concepts in simpli-

fied form. Wherever necessary, rigor has been sacrificed in the interests

of clarity and conciseness. There follow several chapters dealing with the

theory and description of microwave tubes, including the triode, klystron,

reflex klystron, resnatron, and magnetron.

The theory of transmission lines and the use of impedance diagrams in

the solution of transmission-line problems are given in Chaps. 8 and 9.

Emphasis has been placed upon the use of P. H. Smith's polar impedance

diagram, since this has proved most useful in engineering practice. A slight

modification of this impedance diagram has been made in order to facilitate

the solution of transmission-line problems in which the linejs have losses.

The following chapter on transmission-line networks is reasonably com-
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plete and includes certain aspects of microwave networks which heretofore

have not been published in textbook form.

A broad survey of typical microwave systems is given in Chaps. 11 and
12. No attempt has been made to treat these systems exhaustively. The

greatest emphasis has been placed upon the microwave portions of the

systems, since there are a number of excellent radio textbooks which ade-

quately cover the aspects dealing with radio-circuit theory.

Maxwell's equations are introduced in Chap. 13 and are followed by a

chapter on wave propagation and reflection. The solution of the wave

equation in various coordinate systems is treated in Chap. 15. Subsequent

chapters deal with the analysis of wave guides, resonators, horns, and
antenna systems.

Rationalized mks units have been used throughout the text.

This book is an outgrowth of courses taught to senior and first-year

graduate students in electrical engineering at Northwestern University for

the past six years. Several factors influenced the arrangement of the mate-

rial. The chapters dealing with fundamental electronic concepts and micro-

wave tubes have been placed at the beginning of the book in order to

facilitate, an early start in the laboratory work. It has also been found

that this arrangement provides a convenient review of field concepts

before taking up Maxwell's equations.

In teaching senior courses, selected portions of the text may be used.

One arrangement might include Chaps. 1 to 3, 6 to 10, 13, 15, 16, 18, and

19. These chapters have been written in somewhat simplified form for

this purpose. For those who prefer to concentrate their efforts on field

theory, Chaps. 1 and 2, together with the last half of the book starting

with Chap. 13, are recommended. In general, a knowledge of radio-circuit

theory and mathematics through calculus will be required for an under-

standing of the analytical portions of the text.

The authors have drawn freely from the published works of many sci-

entists and engineers who have contributed to the present-day knowledge
of this subject. They wish to express their grateful appreciation for the

assistance received from these sources. Special appreciation is extended

to Dean 0. W. Eshbach and to Dr. J. F. Calvert for their helpful encour-

agement and to Northwestern University for its liberal policy which made

this work possible. Generous assistance was also received from the Radi-

ation Laboratory of the Massachusetts Institute of Technology, Sperry

Gyroscope Co., Bell Telephone Laboratories, General Electric Co., and

others. Mr. P. H. Smith kindly permitted the use of his polar impedance

diagram. The authors are indebted to Nirmal Mondol for his assistance

in preparing the illustrations. Finally, but by no means least, they wish

to express their grateful appreciation to Hope Beam and Virginia Bronwell
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for their constant encouragement in the preparation of the manuscript and

for their generous assistance in reading the proof.

AHTHUH B. BRONWELL
ROBERT E. BEAM

Evanston, 111.,

August, 1947.
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CHAPTER 1

INTRODUCTION

The history of the exploration and utilization of new and untried areas

of science follows a strangely uniform evolutionary pattern. The funda-

mental physical laws are first discovered by theoretical and experimental
scientists who piece together the fragmentary evidence into a coherent and

integrated theory which opens the door to further development. This is

often followed by years of slow and painstaking progress devoted to the

discovery and refinement of new experimental techniques and analytical

methods. Once the commercial possibilities of the new science become

generally recognized, there follows a period of intensive engineering re-

search and development, during which the mysteries of the science are

transformed into everyday engineering principles. Such has been the pat-

tern of research and development of microwaves.

1.01. Historical Developments. In 1864, Maxwell laid the foundation

of our modern concepts of electromagnetic theory, a theory which he used

to explain the phenomenon of light-wave propagation. Scarcely 25 years

later, Hertz, experimenting with a spark transmitter, generated and re-

ceived electromagnetic waves having wavelengths of the order of 60 centi-

meters. These experiments were performed in order to confirm the exist-

ence of the electromagnetic waves predicted by Maxwell. Within a dec-

ade, wavelengths as short as 0.4 centimeter had been realized by other

experimenters using similar, methods.

The vastly superior characteristics of the conventional vacuum tube, at

longer wavelengths, ushered in an era of rapid scientific, engineering, and

commercial development of radio. However, serious difficulties were soon

encountered in attempting to extend the range of operation of the vacuum
tube to the shorter wavelengths. As the wavelength approached the order

of magnitude of the physical dimensions of the tube, such mystifying

properties as electron transit time, interelectrode capacitance and conduc-

tance, and lead inductance appeared to impose definite lower limits to the

wavelengths which could be generated in the conventional types of tubes.

It became apparent that a new approach was necessary. The pioneering
work of Barkhausen on the positive-grid oscillator, Hull and others on the

magnetron, and later the Varian brothers on the klystron, broke away from

traditional ideas to develop fundamentally new types of vacuum tubes for

the generation of microwaves.

1
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While some experimenters were moving in the direction of ever shorter

wavelengths in the microwave spectrum, others were finding methods of

generating longer infrared wavelengths. Eventually the union occurred

and, at present, wavelengths in the infrared spectrum have been generated
in electron tubes.

In the "development of microwave networks, it became necessary to

abandon the conventional lumped inductances and capacitances and turn

to distributed parameter systems such as transmission lines, wave guides,

and hollow metallic resonators. The theory of electromagnetic wave propa-

gation through hollow conducting tubes (wave guides) was first presented

by Rayleigh in 1897 but lay relatively dormant for over 30 years, pending
the development of microwave generators. The relatively recent theo-

retical and experimental work of Southworth, Barrow, and others demon-

strated not only the physical readability of wave propagation through
wave guides, but also that, under certain conditions, such systems may be

actually superior to the two-conductor transmission line for the transmission

of microwave energy.

1.02. Generation of Light Waves and Radio Waves. Electromagnetic

waves are generated by electric charges moving through retarding electro-

magnetic fields. The charge is decelerated by the field, thereby giving up
part of its energy to the field. Under the proper circumstances, the

energy released by the charge can appear as an electromagnetic wave in

space.

Let us briefly compare the generation of light waves and radio waves.

According to the Bohr theory, the atom consists of a positively charged
nucleus and negatively charged electrons which rotate about the nucleus

in elliptical orbits, each orbit corresponding to a definite energy level.

Owing to atomic collisions or other causes, an electron may momentarily
be displaced to an unstable higher energy level. In returning to a lower

energy level, the electron is retarded by the electric field of the atom,

thereby releasing a discrete amount of energy which appears in the form

of electromagnetic radiation. The amount of energy released determines

the wavelength of the radiation. Each electron transition is the source

of an electromagnetic wavelet; hence the generation of light waves is a

random phenomenon.
In contrast with the random oscillations of light waves, radio-frequency

oscillations can be generated by an orderly, controlled stream of electrons

moving in the electric field of a vacuum tube. The electrons are acceler-

ated by a d-c electric field and take energy from the potential source which

produces this field. They pass through an alternating field in such a phase
as to be retarded by this field and, hence, give up a portion of their energy
to the alternating field. The source of the alternating field usually con-

sists of some form of oscillatory circuit which receives the cumulative
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energy given up by a large number of electrons and sets up the necessary

alternating field in the vacuum tube.

The electromagnetic energy may then pass through an elaborate system
of electric circuits before it is ultimately radiated into space or dissipated.

Many of these circuits do not have their counterpart in the light spectrum.
For example, in the generation of light waves, there is no known means
of causing a large number of electrons in different atoms to oscillate in

exact synchronism in a manner similar to that obtained in certain types
of vacuum tubes or in oscillating electric circuits. On the other hand,
both radio waves and light waves possess similar properties of reflection,

refraction, diffraction, polarization, and interference. Thus it is possible

to construct the microwave counterparts of optical filters, lenses, reflectors,

diffraction gratings, spectrographs, and interferometers.

As the microwave developments enter the region bordering on the infra-

red spectrum, we should expect the techniques of generation, control, and

utilization of microwaves to take on the common aspects of both fields.

Experience gained in either field will inevitably aid in a better under-

standing of the other.

1.03. Engineering Considerations. In this text we are primarily con-

cerned with the theoretical and practical aspects of vacuum tubes, systems,

and radiation phenomena in the frequency range from 300 to 300,000

megacycles, corresponding to a wavelength range of 1 meter to 1* milli-

meter. Since it is helpful to have an over-all term to describe this portion

of the radiation spectrum, these frequencies will arbitrarily be referred to as

microwave frequencies.

From an engineering point of view, the commercial development of

microwave systems opens up enormous new areas for radio broadcasting,

television, radar, radio relaying, navigational systems, and special serv-

ices. A unique feature of microwave systems is the ease of obtaining highly

directional radiation. Because of the short wavelengths, antennas are

physically small so that parabolic reflectors or multielement directional

arrays can be used conveniently. For this reason, the microwave por-

tion of the frequency spectrum is especially well suited to radar, navi-

gational systems, point-to-point communication, and radio relaying

systems.

Microwaves are seldom, if ever, reflected from the ionosphere layers.

Consequently the maximum useful range of transmission is limited to

horizon distances. For land-based systems, this distance is of the order

of 25 to 200 miles, depending upon the height of the transmitting and receiv-

ing antennas. Longer ranges can be obtained with air-borne systems.

Experiments have shown that, when certain exceptional atmospheric con-

ditions prevail, microwave reflections can occur from the troposphere,

which is the portion of the earth's atmosphere below the ionosphere
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These reflections make it possible, occasionally, to transmit and receive

signals beyond horizon distances.

Basically, the communication systems for microwave frequencies con-

tain the same functional components as those operating at ordinary radio

frequencies. Thus, the transmitting system may consist of a modulated

oscillator and some form of radiating system. Superheterodyne receivers

are often used in microwave communication systems. A typical receiving

system would contain the receiving antenna, a local oscillator and converter,

several stages of intermediate-frequency amplification, a detector, and one

or more stages of audio or video amplification.

Although the basic systems are the same as those used at radio fre-

quencies, the vacuum tubes and circuit elements of microwave systems
are quite different. At microwave frequencies, we are likely to find klys-

trons, magnetrons, resnatrons, or other types of tubes designed specifically

for operation at these frequencies. The networks are comprised of trans-

mission-line elements, wave guides, cavity resonators, and other compo-
nents which are quite foreign to conventional radio-frequency systems.

1.04. Theoretical Aspects. In our analysis of microwave tubes and

circuits, we shall find it necessary to abandon some of the physical and

analytical concepts which have served quite satisfactorily as approxima-
tions at lower frequencies but which in some cases are not sufficiently

fundamental to account correctly for the microwave phenomena. For

example, in the analysis of vacuum-tube circuits it has become customary
to represent the tube by an equivalent circuit, thereby reducing an elec-

tronic problem to the status of an electric-circuit problem. While this

expedient greatly simplifies the analysis, it also serves to conceal the funda-

mental physical phenomena taking place inside the tube.

A more fundamental approach is to start with the equations of motion

of electrons in electric and magnetic fields and use them to determine the

behavior of the electrons in the tube as well as their external electrical

effects. Although this is a fundamental method of analysis which is valid

for all types of tubes, regardless of the operating frequency, it often in-

volves serious mathematical complications which restrict its use. In this

text, the fundamental method of analysis is presented as a means of ob-

taining a better understanding of the true physical processes at work. The

analysis is applied to systems of relatively simple geometry, although the

physical concepts are valid for all possible systems.

We shall find a close resemblance between electromagnetic-wave propa-

gation along transmission lines, in wave guides, and in free space. In

studying wave propagation along transmission lines and in wave guides, it

becomes increasingly important to adopt a field viewpoint based upon
Maxwell's equations rather than the conventional circuit viewpoint. The

dielectric surrounding the transmission line or inside the wave guide is
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considered to be the locale of energy storage and energy flow. The con-

ductors merely serve to guide the energy flow in the dielectric while, at

the same time, exacting their toll in the form of I2R loss due to currents

in the conductors.

Transmission lines may be analyzed either by using the circuit method

based upon Kirchhoffs laws for voltages and currents or by solving Max-
well's field equations subject to the given boundary conditions. The former

method of analysis involves a one-dimensional problem and hence is con-

siderably easier than the three-dimensional solution of the field equations.

However, the Kirchhoff-law solution fails to show the existence of impor-
tant "higher modes" which are likely to occur at microwave frequencies.

These higher modes have an entirely different field distribution in space

from that existing at lower frequencies. The circuit method of analysis

will be considered first in this text, since it offers the simplest solution for

most engineering problems, including those at microwave frequencies. The

higher order modes will be discussed in the chapter on wave guides.



CHAPTER 2

CHARGES IN ELECTRIC FIELDS

Basically, all vacuum tubes employ the effects of electrons moving under

the influence of electric and magnetic fields. The principles of electron

dynamics therefore represent the foundation upon which we can safely

build our physical and analytical concepts. We shall find that there is an

intimate relationship between the dy-
namical behavior of the electrons and

the electrical quantities.

In this chapter we shall consider

the laws governing the electric field

distribution in space as well as the

equations of motion of charged parti-

cles in static and time-varying elec-

tric fields. Later chapters deal with

the relationships between the dynami-
cal behavior of the electrons and the

electrical quantities.

2.01. Vector Manipulation.
1 ' 2

Since electromagnetic theory deals

with fields in three-dimensional space,
vector analysis is a logical system of mathematical expression. Let us,

therefore, briefly consider some properties of vector and scalar quantities.

A vector is a quantity which has both direction and magnitude. A scalar

quantity has only magnitude. Thus force, distance, electric intensity, and

flux density are vector quantities. On the other hand, power, energy,

potential, and total flux are scalar quantities.

Any vector may be represented as the sum of three mutually orthogonal

component vectors. In rectangular coordinates, a vector A, shown in

Fig. 1, is represented as

A=Axl + A yj+A zk (1)

where Ax ,
A y ,

and A z are the scalar magnitudes of the components of A
along the .r, y, and z axes, respectively, and |, /, and k are unit vectors in

these respective directions. A unit vector serves to assign a direction to

1
PHILLIPS, H. B., "Vector Analysis," John Wiley & Sons, Inc., New York, 1933.

2
COFFIN, J. G., "Vector Analysis," John Wiley & Sons, Inc., New York, 1938.

6

FIG. 1. Representation of vector quanti-
ties in rectangular coordinates.
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the quantity by which it is multiplied. The scalar magnitude of vector

A is _
A = VA 2

X + A2
y + A\

, (2)

Consider the two vectors A and B, where :

A = Axi + Ay2 + A 2k

B = Bxi + By]+B 2k (3)

These vectors may be added or subtracted by adding or subtracting their

components as follows:

A + B = (Ax + Bx)l + (A y + By); + (A z + B z)k

A-B = (AX
- Bx)l + (A y

- By)J + (A, - B z)k (4)

There are two types of vector multiplication. These are known as the

dot product (or scalar product) and the cross product (or vector product).

The dot product of two vectors A -B is defined by

A-B = AB cos 6AB (5)

where A and B are the scalar magnitudes of vectors A and fi, and QAB is

the angle between them. The dot product of two vectors is a scalar

quantity.

Since the unit vectors \, 3, and k all have unit length, Eq. (5) shows

that the dot product of two unit vectors in the same direction is unity,

while the dot product of two unit vectors which are perpendicular is zero.

The dot product of vectors A and B in Eq. (3) may be obtained by taking

the dot product of each component of A with every component of B. This

yields the scalar quantity

A-B = AXBX + A yBy + A ZBZ (6)

The cross product of two vectors designated A X B is defined by the

relation

A X B = AB sin ABn (7)

where A and B are again the scalar magnitudes and OAB is the smaller of

the two angles between the vectors. The cross product yields a vector

which is perpendicular to both A and 5, this being the direction of the

unit vector n in Eq. (7).

The direction of the vector representing the cross product may be deter-

mined by the right-hand rule. If we point the fingers of the right hand
in the direction of vector A, and close the fingers in the direction from

vector A to vector 5 through the angle OAB> the extended thumb points in

the direction of the vector representing A X B. This direction is the same
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as the direction of advance of a right-handed screw when turned in the direc-

tion from A to B. It is apparent from this rule that A X B = S X A,

i.e., the commutative law of multiplication does not apply to the cross

product.

If Eq. (7) is applied to the unit vectors, we find that the cross product
of two unit vectors pointed in the same direction is zero. The cross prod-

uct of two unit vectors which are mutually perpendicular gives the third

unit vector, its sign being determined by the right-hand rule. The sign of

the cross product of two unit vectors

can be obtained by writing the unit

vectors in the triangular form

AxB

B

Taking the vectors in the order in

which they appear in the cross product,

a positive sign is used for clockwise

rotation in the above diagram and

a negative sign for counterclockwise

PIG. 2.-Cro*&-product multiplication.
Dotation. Thus, I X ]

=
fc whereas

i x i
= -k.

The term-by-term cross product of the two vectors A and B yields

1x5= (AyB,
- A 2By)l + (A ZBX

- A xB 2)j + (A xBy
-

This result is also given by the expansion of the determinant

AXB
B

(8)

(9)

Vector quantities may be expressed in cylindrical and spherical coordi-

nates as well as in rectangular coordinates. In cylindrical coordinates, the

coordinates of a point are p, <, and 2, as shown in Fig. 3, and the vector A
is represented by

A = A
p + A$ + A zk (10)

where p, $, and k are unit vectors in the directions of increase of p, <, and

z, respectively. The differential volume dr in cylindrical coordinates is

dr = p dp d<t> dz.

In spherical coordinates a vector is represented by r, 0, and <t> compo-
nents as shown in Fig. 4, thus

A rr + Aej (ID



SEC. 2.02] COULOMB'S LAW, ELECTRIC INTENSITY

where r, 0, and $ are unit vectors. The differential volume is dr =

r
2
sin dr dd d<t>. Equations for the conversion from cylindrical and spher-

ical coordinates to rectangular coordinates are given in Appendix III.

2.02. Coulomb's Law, Electric Intensity, and Potential in Electrostatic

Fields. Coulomb's law states that the force of attraction between two

point charges is directly proportional to the product of the charges and

FIG. 3. Cylindrical coordinates. FIG. 4. t'pherirul coordinates.

inversely proportional to the square of the distance between them. Thus,
two charges qi and q2 which are separated by a distance r experience a force

(1)

where e is the permittivity of the medium, k is a proportionality constant,
and f is a unit vector in the direction of the force.

In this text we shall use a rationalized mks (meter-kilogram-second)

system of units. 1 In rationalized units the term 4?r is included in the per-

mittivity and permeability M so that it does not appear in the principal

electromagnetic field equations with which we will be dealing. However,
in this system of units the 4w factor reappears in Coulomb's law and in

equations in which electric intensity and potential are expressed in terms

of the charges producing the field. Thus, in rationalized units Coulomb's

1 A discussion of systems of units is given in Appendix I.
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law becomes
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(2)

In mks units, force is in newtons, charge in coulombs, and distance in

meters.

The permittivity e may be expressed as the product of the permittivity
of free space eQ and a relative permittivity er ,

thus

e ^ cr crt (3)

In rationalized mks units we have c =
l/(4ir X 9 X 109) = 8.854 X 10""

12

farads per meter. The relative permittivity is the familiar dielectric con-

stant, values of which are found

in handbook tables.

Electric intensity is defined as

the force on a unit positive charge

placed in the field (assuming that

the unit charge does not disturb

the underlying field). Therefore

the electric intensity at a point

distant r from a point charge q

may be found by setting q2 equal
to unity in Eq. (2), yielding

# = ^ (4)
FIG. 5. Potential difference is the line integral 4?Tr

of electric intensity.

The mks unit of electric intensity

is the volt per meter. In general, the field at a particular point may be

due to a large number of charges distributed throughout space.

In an electrostatic field, the potential at a point in space is defined as

the work done in moving unit charge against the forces of the field from

a point of zero potential (sometimes assumed to be at infinity) to the point

in question. In practical problems, we are usually more concerned with

potential differences. Thus, in Fig. 5 the potential difference F& Va

between two points a and b is the work done in carrying unit charge from

point a to point b. Work may be expressed as the integral of the component

of force in the direction of travel times distance of travel, or w =
tf-dl.

The force required to overcome the field is / = J7, hence the potential

difference becomes

rb

Vb
- Va = -

J
E-dl (5)
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An integral such as that of Eq. (5) is known as a line integral. The

potential difference between two points, therefore, is the negative line inte-

gral of electric intensity along a path connecting the two points. Potential

is sometimes written as an indefinite integral, thus,

--/* dl (6)

The mks unit of electric potential is the volt.

The potential V at a point distant r from a point charge q may be ob-

tained by inserting Eq. (4) into (6). The integration constant is evaluated

by assuming that the potential is zero at r = oo
9 giving

V =
(7)

The potential at a point due to a number of discrete charges is the alge-

braic sum of the potentials resulting from the individual charges, or for n

charges, we have

2.03. Potential Gradient. Equation (2.02-5) expresses a relationship

between potential and electric intensity in integral form. We shall now
obtain a differential equation relating these quantities. The potential dif-

ference dV between two points an infinitesimal distance dl apart may bo

expressed as dV = E-dl, or, in scalar form, dV = Eidl, where E\
is the component of electric intensity in the direction dl. Dividing by dl

we obtain EI = dV/dl, that is, the component of electric intensity in the

direction dl is the negative space derivative of potential in this direction.

In a similar manner, we may obtain components of electric intensity in the

x, y, and z directions. Writing these as partial derivatives, we have

dV dV dV
EX -- Ey = -- EZ

= --
dx dy dz

Assigning the corresponding unit vectors and adding, we obtain the

electric intensity in vector form

/dV dV <9FA#= -( H-- } + k) (1)
\dx~ dy dz'/

The term in the brackets is known as the potential gradient, abbreviated

grad V.
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In vector analysis it is convenient to express mathematical relationships

in terms of a del operator, symbolized by V. In rectangular coordinates

this operator is defined by
d d d .

V =
! + / + - (2

dx dy dz

If we perform the operation indicated by VF or "del V" we obta

VF = (dV/dx)i + (dV/dy)J + (dV/dz)k, which is the same as the brae-

eted term in Eq. (1). Thus, VF is the same as grad F; hence we m;

express electric intensity in either one of the abbreviated forms

E = -
grad F = -VF (

While Eq. (1) is expressed in rectangular coordinates, Eq. (3) is mo 1

general in that it may represent the electric intensity in any coordina'

system. Appendix III gives the gradient in cylindrical and spheric;

coordinates.

A word of caution is necessary here. In a subsequent chapter,
1 we shall

find that the potential F is a function of the charge distribution through-
out space. Electric intensity, however, may be produced either by a dis-

tribution of charges in space or by a time-varying magnetic field. Equa-
tions (1), (3), and (2.02-5) do not take into consideration that portion of

the electric intensity produced by the time-varying magnetic- field; hence

these equations are valid, strictly speaking, only in electrostatic fields.

However, in most vacuum-tube applications, the currents involved are

quite small
;
therefore the magnetic fields which they produce are relatively

weak. Consequently, the electric intensity produced by the time varia-

tion of the magnetic field is negligible in comparison with the electric

intensity resulting from the applied potentials. For this reason, Eqs. (1),

(3), and (2.02-5) may be used in most vacuum-tube analyses even though
the fields are not electrostatic.

2.04. Gauss's Law and Electric Flux. Electric charges constitute a

source of electric intensity or electric flux. Electric flux is customarily

represented by lines starting on positive charges and terminating on nega-

tive charges. Gauss's law states that the net outward flux through any
closed surface is proportional to the charge enclosed.

If a small surface element is placed perpendicular to the flux lines, the

number of lines of flux per unit area is known as the flux density. Since

the amount of flux through the surface element is dependent upon its

orientation, flux density is a vector quantity which we shall designate bj
the symbol D. In vector analysis, a differential element of area is oftei

represented by a vector ds which is normal to the area element as showi

in Fig. 6. Designating electric flux by the symbol ^, the flux d\l/ througl

1 See Eqs. (15.02-3 and 11), Chap. 15.
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the differential area ds is d\[/
= D -ds. The net outward flux through the

closed surface is obtained by integrating d\l/ over the closed surface. In

rationalized units, the net outward flux is equal to the charge enclosed;

hence Gauss's law becomes

(1)

The symbol <p
denotes integration over a closed surface.

n
*

D

FIG. 6. An illustration of Gauss's law.

In an isotropic dielectric, electric flux density is related to electric in-

tensity by
D = eE (2)

The mks unit of electric flux density is the coulomb per square meter.

2.06. Divergence and Poisson's Equation. Gauss's law expresses a

fundamental electromagnetic field relationship in integral form. We shall

now derive an expression for this law in differential equation form by apply-

ing the integral form to a differential element of volume.

Consider the differential volume dr in Fig. 7, having sides dx
y dy, and

dz. The divergence of D (abbreviated div 25) will be defined as the net

outward flux d\l/ through the closed surface, divided by the volume dr or,

briefly, the net outward flux per unit volume. Mathematically, the diver-

gence of D becomes

div5 = ^
(1)

dr

Consider first the flux through surfaces a and b which are parallel to the

xz plane in Fig. 7. Let D = Dxi + Dvj + D zk be the flux density at the
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center of the differential volume. Denoting outward flux density as posi-

tive, the outward components of flux density at the surfaces a and 6, to

a linear order of approximation, are

-D - at surface a

at surface 6

Fin. 7. Illustration for divergence.

It is assumed that these represent the average flux densities over their

respective surfaces. By multiplying the flux densities by the differential

surface area dx dz and adding to obtain the net outward flux through a

and
fc,
we have

+
dy

dx dy dz (2)

Similar expressions may be obtained for the flux through the remaining
four faces. When these are added together, the net outward flux through
the closed surface is

dDX dDy dDZ\

dx dy dz /

To obtain the divergence of D
y
substitute Eq. (3) into (1). Since the

differential volume is dr = dx dy dz, the divergence becomes

divS
dDx

dx

dDy dD z

dy dz
(4)
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It is interesting to observe that the dot product of the del operator V,

given by Eq. (2.03-2), and the vector D also yields Eq. (4), that is

dDx dDy dDz
V-D = divD = - + - + -

(5)
dx dy dz

liquation (5) is a mathematical expression for the divergence of /). Now
let us relate this to the enclosed charge, using Gauss's law.

Let qr be the charge density. The charge enclosed in the differential

volume dr is qT dr = qT dx dy dz. According to Gauss's law, the net out-

ward flux d\l/, given by Eq. (3), must be equal to the charge enclosed in the

differential element. P]quating these and dividing by dr, we obtain

dDx dDy dD z

I

-
|

= qT

dx dy dz

or _
V-/> =

qr (6)

Let us briefly consider the physical interpretation of Gauss's law and

divergence. Gauss's law states that the net outward flux is equal to the

charge enclosed for any closed surface. If the charge enclosed is zero, the

amount of flux entering the closed surface equals the flux leaving it and

the net outward flux is zero. The divergence equation is essentially

Gauss's law reduced to a pcr-unit-volumo basis, since it states that the

net outward flux per unit volume is equal to the charge density. How-

ever, it should be noted that the divergence was derived for a differential

volume and is therefore a point function.

We now derive another useful relationship known as Poisson's equation.

First, however, let us express Eq. (6) in terms of electric intensity by
substituting E =

Z)/e, thus obtaining

v-E = -
(7)

6

Now substitute E = - VF from P]q. (2.03-3), to obtain

2

e
(8)

where V2 = V-V is the Laplacian operator. In rectangular coordinates

Eq. (8) becomes

82V d
2V d2V qr

v V " TT + TY + T7 = - - 0)
dx2 dy

2 dz2 6

Appendix III gives expressions for V-A and V2V in cylindrical and spherical

coordinates.
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Either the divergence equation or Poisson's equation may be used to

determine the field distribution throughout space. The practical applica-

tion of the divergence equation is limited to cases where the flux density
is a function of only one coordinate. Other cases can be handled more

readily by Poisson's equation. It should be noted that Gauss's law and

the divergence equation are valid for either static or dynamic fields,

whereas Poisson's equation is strictly valid only for electrostatic fields.

In order to illustrate the use of the foregoing relationships, consider the

following example:

Example: A space charge of density qr = cp'* is contained in a cylindrical shell having
an inside radius a and an outside radius b. Assume that the potential at radius a is

zero. Determine the electric intensity and potential distributions inside of the cylindri-

cal shell.

Two methods will be used, based upon Gauss's law and Poisson's equation. When
P < a, the electric intensity and potential are both zero. Consider the region in which

a < P < b.

A. Gauss's Law Method. A cylinder of radius p, where a < p < 6, and unit height

would contain an amount of charge given by

q =
\ qT2Kp dp = f
Ja Ja

Because of symmetry, the flux density is uniform over the cylindrical surface and normal

to this surface. Gauss's law may therefore be written in scalar form as follows:

D- d3 =
ZirpDp

= q

Inserting the expression for q and using Dp eEp ,
we obtain the electric intensity

The potential is found by applying Kq. (2.02-6) to obtain

The constant Ci is evaluated by setting V = when p = a. The potential then becomes

K.-^ny -<*)-.* In 2

5e L5 a

B. Poisson's Equation. From Appendix III, we obtain an expression for Poisson's

equation in cylindrical coordinates which, combined with Eq. (2.05-8), gives

11^+- + = -^
p dp \ dp ) p* d0

2
dz

2
f
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Since dV/d<f>
= dV/dz =

0, this reduces to

1
d_

/ dV\ _cpM
p dp \ dp / e

l*/Iultiplying by p dp and integrating, we obtain

This expression may be integrated a second time to obtain the potential. However, if

we recall that Ep
= dV/dp, and that Ep is zero when p =

a, we may evaluate the

integration constant arid obtain

This is in agreement with the electric intensity obtained by the Gauss's law method.

The potential may be evaluated by the method given in Part A.

The above methods can be used to evaluate the electric intensity and potential outside

of the cylinder b. However, in using Poisson's equation, it should be noted that the

space-charge density qr is zero in regions where p > b. These solutions yield one integra-

tion constant in the electric intensity equation and two in the potential equation. The
constants may be evaluated in terms of the previously determined values of electric

intensity and potential at radius b.

2.06. Motion of Charges in Electric Fields. Having considered the

laws determining the electric-field distribution in space, we now turn to a

consideration of the motion of charges in electric fields.

The force on a charge q in an electric field is given by

/ = qE (1)

If the charge is free to move in space, the acceleration of the charge is

given by Newton's second law of motion,

where m is the mass in kilograms and d2
l/dt

2
is the acceleration in meters

per second per second.

Equation (2) states that the acceleration is proportional to electric

intensity. This equation may be resolved into components in any coor-

dinate system. In rectangular coordinates this becomes

d2x _ qEx

df
2 m

d2
V <lEy
^ =- w

dt" m
d2z qEz
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The electric intensity may be determined as a function of space and

time coordinates using the previously derived relationships. Since these

are first-order differential equations in velocity and second-order equations
in displacement, the velocity equation contains one integration constant

and the displacement equation has two

integration constants. These constants

can be evaluated if the position and ve-

locity of the charge are known at any
instant of time.

The equations for the velocity and

energy of an electron may also be ex-

pressed in terms of potential. In Fig.

8, the work done by the field in moving
a charge q from point a to point 6 is

equal to the lino integral of force times

distance. The force is qE, hence the

work becomes w r_qE-dl Invoking

FIG. 8. Motion of a charge in an elec-

tric field.

the law of conservation of energy, wre

find that the work done by the field in

moving the charge from a to 6 is equal

to the increase in kinetic energy of the

charge. The kinetic energy of a particle is %mv2
,
where v is its velocity,

hence

]^m(v
2
b v'a) (4)

For electrostatic fields we may substitute Eq. (2.02-5) for the integral

on the left-hand side of Eq. (4). Equation (4) then becomes

Solving for

-q(Vb
-

we obtain

ra

If the potential and velocity are both zero at a, this reduces to

Vb = V""

(5)

(6)

(7)

The negative sign under the radical of Eq. (7) signifies that a positive

charge gains in velocity as it moves toward a negative potential.

Equations (5) to (7) are, strictly speaking, valid only for electrostatic

fields. They may, however, be used for dynamic fields provided that there
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is no appreciable time variation of the field during the flight of the elec-

tron.

In vacuum-tube analysis we are primarily concerned with electron mo*

tion, in which case we have

q = -e = -1.602 X 10~19 coulombs

m = 9.107 X 10~31
kilogram

c.

= 1.759 X 10
n coulombs per kilogramm

If an electron moves at a high velocity, its apparent mass is greater than

its stationary mass. The apparent mass is known as the relativistic mass

and is related to the stationary mass

as follows:

W
m =

K

It
'

In this equation v is the velocity of the

electron in meters per second, and vc

3 X 10
8 meters per second is the velocity

of light.

For a 1 per cent increase in mass the

velocity must equal 14 per cent of the

velocity of light. To attain this velocity

an electron must start from rest and be

accelerated through a potential difference

of 5,100 volts. Since most vacuum tubes

operate with potential differences which are less than 5,100 volts, the

relativistic correction can usually be ignored.

If the relativistic correction must be taken into account, the more funda-

mental force equation which states that force is equal to the time rate of

change of momentum, or

FIG. 9. Temperature-limited diode

with cl-c and a-c applied potentials.

dt

must be used in place of / = ma.

2.07. Electron Motion in Time-varying Fields. In tubes operating at

microwave frequencies, the time of transit of an electron between two

electrodes in the tube may be relatively large in comparison with the period
of electrical oscillation. It is interesting to study the motion of electrons

through the fields when large transit times are involved.

As an example, let us investigate the motion of electrons in the time-

varying field of a parallel-plane diode in which the current is temperature
limited. In the diode of Fig. 9, the instantaneous potential difference be-
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tween cathode and plate is assumed to have a direct component VQ and

an alternating component V\ sin co, thus

V = V + Vl sin o>* (1)

Since the space-charge density is negligible, the electric intensity in the

diode space is given by
1

E*= - ~(V + Vi tin at) (2)
d

Substituting the electron charge q
= e and Eq. (2) in the first of

(2.06-3), we have

d2x e

77
= (Fo+ Visinwfl (3)

dr md

Two successive integrations of Eq. (3) yield the electron velocity and dis-

placement as a function of time. Assuming that the electron leaves the

cathode (x 0) at time fo and with velocity r
,
we obtain

dx e [ Vi I
- = V (t -to) -- (cos <at

- cos fo) + VQ (4)
at ma I co J

-
*o)

2
Fi F!

VQ------
(sin cot sin cofo) H--- ( <o) cos

comd L 2 "

to) (5)

The time t ^ is the electron transit time, or the time required for the

electron to travel from the cathode to a point distant x from the cathode.

This electron transit time will be designated by T. The total transit time

TI represents the time required for the electron to travel the entire dis-

tance from cathode to anode. We now let </>
=

cofo be the phase angle of

alternating potential at the instant of electron departure from the cathode.

We therefore have

T = *
-

(o (6)

* =
cofo (7)

Now write Eq. (5) in terms of T and t
, using Eq. (6). Then substitute

Eq. (7) and divide both sides of the equation by a factor fc,
which is defined

below, to obtain

x (coT
7

)
2

Vi (coT)- = - ~ H-- [(coT
7 - sin coT) cos + (1

- cos coT
7

) sin 0] + vQ
--

(8)
k 2 VQ cck

= A+-B + C (9)
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where k = ^- = 1.76 X 1011~
(inks units)

u~md u*d

(a,T)
2

A =
2

B = (wT - sin o>T) cos <t> + (1
- cos uT) sin (10)

/~i ___ ..

The electron transit time in a pure d-c field with zero initial velocity is

obtained by sotting 1^=0 and v
()
= in Eq. (8) and solving for time.

Designating the total d-c transit time as TQ ,
we have

12m
,.

d
ro

= dV- = 3-37 X 10-6 -
7= (11)

The quantity coT is the transit angle, representing the number of radians

through which the alternating potential varies during the transit time T.

The quantity A in Eq. (9) represents the value which the displacement

parameter x/k would have if there were no alternating potential difference

and the initial electron velocity were zero. Thus, we may consider A as

being the d-c component of the displacement parameter x/k. Graphs of

A as a function of transit angle wT, as expressed in Eq. (10), are given in

Fig. lOa for small transit angles and in Fig. lOb for large angles.

The term (V\/V^)B in Eq. (9) is the component of x/k resulting from

the alternating field. Values of B are plotted in Figs, lla and lib as func-

tions of transit angle for various values of departing phase angle <. The
curves in Fig. 11 show that the a-c component of the field alternately ac-

celerates and retards the electron in its flight. For relatively large transit

angles, the a-c component of displacement is a maximum for
<f> degrees,

i.e., when the electron leaves the cathode just as the alternating potential is

changing from deceleration to acceleration.

The quantity C in Eq. (9) represents the component of x/k due to the

initial velocity of the electron. The value of C is zero if the initial velocity

is zero.

The electron displacement for a given transit angle may be readily ob-

tained by the use of Figs. 10 and 11, and Eq. (9). If the transit angle wT
and departing phase angle <t>

are given, the values of A and B may be

obtained directly from the curves. The value of C may be computed from

Eq. (10). Substitution of these values in Eq. (9) yields the value of x/k
and this may be used to determine the value of electron displacement x

during the time !T.
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(b)

FIG. 11. A-c component of x/k as a function of transit angle.
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The reverse process, i.e., finding the transit angle corresponding to a

given electron displacement, requires a trial-and-error procedure. The

value of x/k is first computed and the d-c transit angle corresponding to

this value of x/k is obtained from Fig. 10. This transit angle is used as a

first approximation, and the corresponding values of B and C are deter-

mined from Fig. 11 and Eq. (10). The value of x/k computed from Eq.

(9) using the first approximations for A, B, and C will, in general, not

agree with the correct value computed previously. It will therefore be

necessary to assume new values of coT in the vicinity of the first approxi-

mation until one is found which yields A, B, and C values satisfying Eq. (9).

Example. To illustrate the solution of a typical problem, let us determine the transit

angle and total transit time required for an electron to travel from cathode to anode in

a temperature-limited parallel-plane diode having the following values:

d = 0.5 cm 0=0
To = 1,000 volts io =

Vi = 800 volts / = 2 X 109
cycles per sec

First obtain the values

= 0.8 an,. * = - _ 2 .224 x 10-
I o u~d

The electron travels a distance x = d = 5 X 10~3 m. Thus, we have x/k = 22.45.

If we consider only the d-c potential, Fig. lOb shows that the transit angle correspond-

ing to A 22.45 is coT
7 = 380 degree's. This is the first approximation to the value of

uT. Figure lib shows that the value of B corresponding to this approximate transit

angle is B = 6.3, and thus (Vi/Vo)B = 5.04. It is apparent, therefore, that the value

of x/k using these values of A and B is too high by approximately the amount of (V\/ Vo)B.

As a second approximation, therefore, try A 22.45 5.04 = 17.41. Figure lOb

yields the second approximation co7
T = 345 and Fig. lib gives the corresponding value

B = 6.3, or (Vi/VQ)B = 5.04. Substituting these in Eq. (9) we obtain x/k = 22.45

which is the correct value. Thus, the transit angle is co7
T = 345 or 6.02 radians and

the total transit time is T = 6.02/w = 4.78 X 10~ 10
sec.

If the field has no d-c component, AVC have VQ 0. In order to evaluate

Eq. (8), it is first necessary to multiply both sides by VQ, yielding

x = Vik'B + vQT (12)

e 1.76 X 10
11

where k =--- (mks units)
co md u d

If the electron enters the a-c field with a high initial velocity, the transit

time in traveling a distance x may be approximated by T =
X/VQ. The

corresponding value of coT
7
is then computed and the value of B is obtained

from Fig. 11. The amount of error involved in the original assumption
can be obtained by inserting these values into Eq. (12). Other values of

T are then assumed until one is found which does satisfy Eq. (12).
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PROBLEMS

1. Two vectors X and E are given by

X =21 + 81 + 6

B = 21 + Ij
- 2k

(a) Compute the vectors represented by K + E and Z. E
(b) Compute the dot and cross products K E and Z. X E
(c) The angles between a vector and the x, y, and z axis, respectively, may be

obtained from the direction cosines. The direction cosines of the vector A are

I = cos Ox = A x/A, m =
cosOjj Ay/A, n cos Z A Z/A. Compute the

direction cosines for the vectors JT and B given above.

(d) Show that the cosine of the angle between two vectors is given by cos BAB
== l,\ln + niAfng + nA^n- Find the angle OAB for the vectors given above.

2. The vectors Z, 5 and P are given by

A = 37 - I/ + 2/3

E = II + 2JF
-

If

f? = 27 - 2J
- 2/c

Find the values of

(a) A-(E X )and
(6) I X (E X C).

3. Derive equations in rationalized mks units for the electric intensity and potential

distribution as functions of distance from

(a) A point charge

(b) A uniformly charged infinitely long line having a charge of qi coulombs per meter

of length

(c) An infinite plane having a charge density of qT coulombs per square meter.

Note: The variation of field intensity and potential with respect to distance for

point, line, and plane sources is the same for electric fields, magnetic fields, gravita-

tional fields, light fields, and many other types of fields.

4. An electrostatic field has an intensity distribution in the xy plane given by

E (C\/x)l + (Cz/y)J. Evaluate the line integral I E>dl over any path from

(x = 1, y = 2) to (x 3, y 3). Hint: The integration is simplified by taking a

path parallel to the x axis from (1, 2) to (3, 2), then parallel to the y axis from

(3, 2) to (3, 3).

6. (a) Derive an expression for the difference of potential between the conductors of a

coaxial transmission line. Assume that the inner conductor has a charge of qi

coulombs per meter of length and the outer conductor has a charge of qi

coulombs per meter of length.

(b) The capacitance per unit length is the charge per unit length divided by the

difference of potential between conductors. Obtain an expression for the ca-

pacitance per unit.

6. A point charge q is placed at the point (x = 2, y -f-2, 2 = 0).

(a) Write an expression for the electric intensity at any point in space.

(6) Evaluate the difference of potential between the points (0, 0, 0) and (2, 4, 0) by

integrating along the curve y = x2
.



26 CHARGES IN ELECTRIC FIELDS [CHAP. 2

7. A point charge is located at the origin of a rectangular coordinate system. Con-

sider a circular plane of unit radius which is oriented in a position normal to the

x axis, with center at (x =
1, y =

0, z = 0).

(a) Write the equation for the potential on the surface of the circular plane.

(6) Using the gradient relationships, determine the tangential and normal compo-
nents of electric intensity at the surface.

(c) Find the surface integral I D*d$ over the given area.

8. Derive the equations for grad V in cylindrical and spherical coordinates.

9. Derive the equation for V-D in cylindrical coordinates (see Appendix III).

10. An insulating cylinder of radius a jontains a uniform charge of density qT .

(a) Using Gauss's law, derive expressions for the electric intensity and potential ai

points (1) inside the cylinder and (2) outside the cylinder.

(6) Derive these relationships using either Poisson's equation or the relationship

V'D = qT in cylindrical coordinates.

11. In a spherical coordinate system the space-charge density is qT C(r)*
2

.

(a) Using Gauss's law, derive expressions for the electric intensity and potential as

functions of r.

(b) Repeat part (a) starting with either Poisson's equation or the relationship

V D qT expressed in spherical coordinates.

(c) 'Evaluate (DD-ds over the surface of a sphere of radius a with center at the origin.

(d) Compute I V D dr. Show that d>D ds = I V D dr. This is a theorem of vec-

tor analysis known as the divergence theorem.

12. A cylindrical diode has a potential difference of Vb volts between cathode and anode.

The radii of the cathode and anode are a and 6, respectively. Assuming negligible

space-charge density, derive equations for the acceleration, velocity, and displace-

ment of an electron which is traveling radially outward from the cathode.

Note: In this problem, an integral of the form I dx/(\n x)
l/* is encountered. To

evaluate this integral, substitute x = cy and integrate by series methods.

13. A parallel-plane diode with space-charge-limited emission has a space-charge density

given by qT = -C/(x)X.

(a) Derive expressions for the electric intensity and potential distribution in the

diode?.

(6) Derive equations for the acceleration, velocity, and displacement of an electron.

Compare the total electron transit time in the space-chargo-limited diode with

Eq. (2.07-11) for the diode with temperature-limited emission.

14. In a klystron oscillator, an electron starts from rest and is accelerated through a d-c

potential difference of 400 volts. It then passes through the region between two

parallel-plane grids in a direction normal to the grids. The grids are 0.2 cm apart
and have an a-c potential difference of 350 volts (peak value). The frequency is

3,000 megacycles per sec. It is assumed that there is no d-c field between the grids.

Determine the transit time and transit angle for an electron which enters the grid

region as the electric field is passing through zero, changing from acceleration to

deceleration.



CHAPTER 3

CURRENT, POWER, AND ENERGY RELATIONSHIPS

Vacuum-tube oscillators and amplifiers are essentially devices for con-

verting d-c energy into a-c energy. Such devices contain two functionally

different but interdependent parts: (1) the vacuum tube with its stream

of electrons moving under the influence of electric and magnetic fields and

(2) the external circuit containing, among other things, the sources of

potential and the load impedance.
A complete analysis of such a vacuum-tube system would require an

analysis of the vacuum tube from the point of view of electron dynamics
and an analysis of the external circuit from a circuit viewpoint. These

two solutions are interdependent since the electronic effects influence the

potentials in the external circuit and the potentials, in turn, determine the

fields in which the electrons move. Since a rigorous treatment of such a

system involves considerable mathematical difficulty, it is customary to

use either of two simplified methods of approach. In the conventional

method, the tube is represented by an equivalent generator and equivalent

internal impedances. This equivalent circuit is then joined to the external

circuit and the analysis proceeds as an electric-circuit problem. Although
this method greatly simplifies the analysis of vacuum-tube circuits, it loses

sight of the fundamental electronic phenomena taking place inside of the

vacuum tube.

The second method deals largely with the electronic phenomena within

the tube. In this method, certain arbitrary direct and alternating poten-

tials are assumed to exist at the tube terminals without inquiring as to

what external conditions are required to produce the assumed potentials.

The behavior of the electrons and their electrical effects are then expressed

in terms of the assumed potentials. An equivalent circuit for the vacuum
tube may also be obtained by this method of analysis. In general, how-

ever, this equivalent circuit will differ from the equivalent circuit of the

preceding method and will represent more accurately the conditions exist-

ing at frequencies where electron transit-time effects are significant.

In this chapter, we shall consider the concepts of current, power, and

energy from a fundamental electronic point of view, using the electronic

method of approach.
3.01. Convection and Conduction Current. The motion of electric

charges constitutes an electric current. Charges moving in space consti-

27
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tute a convection current, whereas the motion of charges in a conductor

constitutes a conduction current. In either case, the convection or conduc-

tion current density Jc is equal to the product of charge density times

velocity, or

Jc
= qTv (1)

where qT is the charge density and v is its velocity.

In a conducting medium the moving charges experience a frictional

resistance. In most conductors,
1 the average velocity of the charges is pro-

portional to the electric intensity E and Eq. (1) may therefore be written

Jc
= *E (2)

where a is a property of the medium known as the conductivity. In mks

units, J c is in amperes per square meter and a is in mhos per meter. Values

of 0- for various conducting me-

j^ J^_v
dining an* given in Appendix II.

Equation (2) is Ohm's law ex-

pressed in terms of current den-

sity and electric intensity. To

FIG. l.-Conduction current in a conductor. relate this equation to the more

familiar form of Ohm's law, con-

sider a direct current flowing in the homogeneous cylindrical conductor of

Fig. 1. Assume that the current density is uniform over the cross section

of the conductor. The total conduction current ic is then the product of

current density times area, or ic
= JCA. The electric intensity is uniform

throughout the conductor, hence the potential drop over a length of

conductor I is VR = El. Substituting Jc and E from these two relation-

ships into Eq. (2), written in scalar form, we obtain Ohm's law

*A VR

where R =
l/a-A is the electrical resistance of the given length of conductor.

3.02. Continuity of Current Displacement Current. Kirchhoff formu-

lated an important law of continuity of conduction current in closed cir-

cuits. This law states that in an electric circuit the current flowing to

a point is equal to the current flowing away from the point.

Maxwell introduced the concept of displacement current and thereby

generalized the law of continuity of current. Consider, for example, an

a-c circuit containing a condenser. If the condenser is charging or dis-

charging, a conduction current flows in the metallic circuit. Since the

GEORGE, "Theoretical Physics," p. 425, G. E. Stechert & Company, New
York, 1934.
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charges do not flow through the dielectric of the condenser, the conduction

current is discontinuous at the condenser plates. Hence, if we take the

restricted viewpoint that current consists only of the flow of charges, it

follows that current is not always continuous. Maxwell showed that if

the time variation of the electric field is treated as a displacement current,

then current is always continuous; i.e., current always flows in closed paths.

In the example cited above, the displacement current between the con-

denser plates resulting from the time

variation of the electric field is exactly

equal to the conduction current in the

external circuit. It was this reasoning
that made it possible for Maxwell to

predict the propagation of electromag-
netic; waves through space.

In order to obtain an expression for

the displacement current, consider the

condenser circuit of Fig. 2 during the

time that the condenser is discharging.
1

The positive plate of the condenser is

assumed to be totally enclosed by an

imaginary hemispherical shell. A posi-

tive sign will be used to denote current

flowing out of the hemispherical surface. The principle of conservation

of electricity states that the conduction current flowing out through the

hemispherical surface must equal the time rate of decrease of charge on

the condenser plate. Thus, if q is the charge on the positive plate, the

conduction current flowing in the external circuit is

Fio. 2. Continuity of current in a dis

charging condenser circuit.

dq

dt
(1)

Gauss's law relates the electric flux through the hemispherical surface

to the charge enclosed,

**8

D-ds (2.04-1)

By inserting q from this expression into Eq. (1) and interchanging the order

of differentiation and integration, we obtain

rdD
<f)

. ds =
J 8 dt

(2)

1

FRANK, N. H., "Introduction to Electricity and Optics," Chap. 8, McGraw-Hill

Book Company, Inc., New York, 1940.
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We may now express the conduction current as the surface integral of the

conduction-current density, thus, ic =<bJc -ds. Inserting this into Eq.

(2) and combining the terms under one integral, we obtain

ds = (3)

Equation (3) is a statement of the law of continuity of current. The

terms d) Jc ds and
<p (dD/dt) ds represent, respectively, the conduction and

displacement currents through the hemispherical surface. Equation (3)

states that the net current out through the hemispherical surface is equal

to zero or that the current entering this surface is equal to the current

leaving it. Designating the displacement current density by 7<j, we have

3D dE
Jd = =e (4)

dt dt

In Fig. 2, the conduction current is in the conductor while the displace-

ment current is a result of the time variation of the electric field between

the condenser plates. In the more general case, displacement current and

conduction (or convection) current may occur coincidentally. The current

density is then

7 = JC + C_ (5)
dt

In Sec. 2.05, the divergence of a vector was defined as the net outward

flux per unit volume. According to the law of continuity of current, the

net outward current through a closed surface is always zero; hence we have

V-J =
(6)

By inserting Eq. (5) into (6), with J<i = dD/dt, we obtain, after inter-

changing the order of differentiation, V-JC + d(V-D)/dt = 0. Further

substitution of V-D = qT from Eq. (2.05-6) gives

v-7. - -*
(7)

Equation (7) is the equation of continuity. It is similar to Eq. (1) except
that (7) is stated in differential equation form while Eq. (1) is in integral

form.

3.03. Current Resulting from the Motion of Charges. Consider the

current resulting from the motion of a single charge between the parallel

planes of the diode of Fig. 3. In Fig. 3a, the electron is passing through
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plane A; hence the current through this plane is a convection current at

the instant shown. In order to satisfy the principle of continuity of cur-

rent, there must be equal currents flowing simultaneously through all

planes parallel to plane A in the interelectrode space and in the external

circuit. The electron has an electric field associated

with it. Therefore, if the electron is in motion, there

will be a time-varying electric field at plane B (and at

all other planes parallel to plane A in the diode space).

This varying electric field constitutes a displacement

current. The displacement current through all planes

parallel to plane A, in Fig. 3a, is exactly equal to the

convection current through plane A.

Now consider the current flowing in the external

circuit. The motion of the electron in the diode space

tends to induce a potential difference between the

planes of the diode. Hence charges flow in the ex-

ternal circuit in such a manner as to tend to maintain

the diode planes at the same potential. This flow of

charges in the external circuit constitutes an induced

conduction current, or briefly an induced current.

Our complete picture of the current resulting from

the motion of the single electron in Fig. 3a therefore

includes a convection current through plane A, a dis-

placement current through all planes parallel to plane

A in the diode space, and an induced current in the

external circuit, all flowing simultaneously and satisfy-

ing the law of continuity of current.

The two planes of the diode form a condenser. If

an alternating potential difference is applied between

the planes, there will be an additional displacement

current in the diode space owing to the capacitance

between the planes, and an equal current flowing in

the external circuit. This current will be referred to as

the capacitive current. The capacitive current is independent of the flow

of charges in the diode space.

Before leaving the subject of current, let us make one further interesting

observation. We have thus far considered conduction and convection cur-

rents as being quite different from displacement current. The first two

were attributed to the motion of discrete charged particles, whereas dis-

placement current was assumed to result from a time variation of the

electric field. However, if we focus our attention entirely upon the field

of the charge and set aside our concept of the charge as being a small

particle, then we have a unified point of view in which all current becomes

FIG. 3. Current

resulting from tho

motion, of a single
electron.
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displacement current and we no longer need the separate concepts of con-

vection and conduction current. From this viewpoint, the charges consti-

tute the source of the electric field and the current is due entirely to the

time variation of the electric field rather than to the motion of the charged

particles per se. There is considerable justification for this point of view.

3.04. Power and Energy Relationships for a Single Electron. 1"3 Let us

briefly review the mechanics of a particle in motion. If a particle expe-

riences a vector force /, the work done on the particle in traveling a differ-

ential distance dl is

dw =f-dl (1)

or the total work done in traveling from a to & is

w=ff-dl (2)
/ a

If the particle experiences no other force, the work done on the particle

is equal to the gain in its kinetic energy. To show this, we write Newton's

second law of motion

/=^V^ <3 )

dt
2

where d?l/dt
2

is the acceleration of the particle. Now multiply the left-

hand side of Eq. (3) by dland the right-hand side by (dl/dt) dt and integrate,

yielding

d2
! dl

' 5 dt
dt

2
dt

This may be written 4

Assume that the particle moves from a to b arid that the velocities at these

two points are va and v b . The limits on the left-hand side of Eq. (4) are

1
JEN, C. K., On the Induced Current and Energy Balance in Electronics, I*roc. I.R.E.,

vol. 29, pp. 345-349; June, 1941.
2
JEN, C. K., On the Energy Equation in Electronics at Ultra-High Frequencies,

Proc. I.R.E., vol. 29, pp. 464-466; August, 1941.
8 GABOR, D., Energy Conversion in Electronic Devices, J.I.E.E., vol. 91, pp. 128-145;

September, 1944.
4 To prove this, write %d(dl/dt)

2 from the right-hand side of Eq. (4) in the form

~d [ )
= ^~ \~7

'

~r) dt- Differentiating the right-hand side of this expression as a
2 \dt/ 2 at \dt at/

1 /dl\
2 (PI dl

product, we obtain d ( y)
~
72

" T^' This is the substitution made in obtaining

Eq. (4).
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a and 6, while those on the right-hand side are va and v^. Hence, Eq. (4;

becomes

/ft/a (5)

This result shows that the work done on the particle is equal to its gain

in kinetic energy.

Now consider the power relationships. Power is the time rate of change
of energy. Returning to Eq. (1), if the work dw is done in time dt, the

power received by the particle is

dw _ dl

p = _=/.- (6)
dt dt

?.e., the power is equal to force times velocity.

Fir;. 4. Electron motion in a diode of arbitrary geometry.

The total work done on the; particle may also be expressed as the time

integral of power. Combining this with Eq. (2), we have

pdt (7)

where the particle is assumed to leave point a at time ti and arrive at b

at time t2 .

Let us now apply these relationships to the case of an electron moving
in the electric field of a diode of arbitraiy geometry. Assume that the

potential difference between the electrodes is V, where V is a function of

time. The resulting electric intensity E is a function of space coordinates

and time.



34 CURRENT POWER, AND ENERGY RELATIONSHIPS [CHAP. 3

An electron in the diode space experiences a force/ = eE. Substitu-

tion of this force into Eq. (6) gives the power transfer from the field to the

electron, p = eE-dl/dt. We have found that the moving electron in-

duces a current ic in the external circuit. The source of potential therefore

supplies an amount of power equal to p = icV to the field,
1 this being

exactly equal to the power transferred from the field to the electron.

Equating the two power expressions and writing the velocity as v, we obtain

p = -ev-E = icV (8)

The induced current obtained from this expression is

ev-E

V (9)

The increase in kinetic energy of the charge as it moves from a to b

is obtained by inserting/ = eE into Eq. (5), giving

w = lAm(vl -
tig)

= -e f E-dl (10)
Ja

The lino integral in Eq. (10) is similar to the expression for the potential

difference between a and b as given by Eq. (2.02-5) and we might be

tempted to make this substitution. However, we must bear in mind that

the potential and the electric intensity may both vary appreciably with

respect to time while the electron is in flight along the path from a to b.

Hence, the line integral in Eq. (10) is not the potential difference at any
instant of time arid we are not justified in considering it as a potential

difference unless the field is substantially constant during the time of

transit of the electron.

The fundamental concepts of power and energy transfer between the

potential source and a moving electron are embodied in Eqs. (8) and (10).

In this process, the electron is accelerated by the electric field; hence there

is a transfer of energy from the field to the electron. The motion of the

electron in the interelectrode space induces a current in the external circuit.

The induced current flowing in the external circuit transfers an equal

amount of energy from the source of potential to the field to make up for

the energy transfer from the field to the electron. Thus, in effect, energy
is transferred from the source of potential to the moving electron. A posi-

tive sign denotes energy transfer from the source of potential to the elecs

1 This is the power supplied to the field due to the motion of the electron in the field.

If the potential is varying with respect to time, the potential source may supply addi-

tional capacitive power to the system. However, we are primarily interested in the

power and energy transfer between the potential source and the electron and hence will

not consider the capacitive powei.
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iron, whereas a negative sign denotes energy transfer from the electron to

the source of potential.

One important concept must not be overlooked. The energy transfer

occurs while the electron is in flight. The moment that the electron collides

with an electrode, its remaining energy, as given by Eq. (10), is dissipated.

For the special case of a parallel-plane

diode, we have E = V/d and Eqs. (8)

and (9) become

evV
icV (11)

d

ev

(12)
-E-

-d

The velocity of the electron may be evalu-

ated by methods described in the preceding

chapter. It is significant to note that the

current is dependent not only upon the

charge and its velocity but also upon the

distance between the diode planes.

3.05. Single Electron in Superimposed
D-C and A-C Fields. In most vacuum-tube

applications, the electrode potentials have

d-c and a-c components; hence the electrons

move through combined d-c and a-c electric fields. Under proper condi-

tions, the electrons may take energy from the source of d-c potential and

transfer a portion of this to the source of a-c potential.

Consider the diode of Fig. 5, which is assumed to have negligible space

charge. The instantaneous potential difference between plate and cath-

ode is

V
t
sin cot

FIG. 5. Diode with d-c and a-c

applied potentials.

o + V l sin (D

where 7 is the d-c potential and V\ sin cot is the a-c potential. The elec-

tric intensity in the interelectrode space contains superimposed d-c and a-c

components which are represented by EQ and EI sin co, respectively, where

EQ and EI are functions of space coordinates only. The resultant electric

intensity is

E = EQ + EI sin wt (2)

By inserting the potential from Kq. (1) and the electric intensity from

(2) into (3.04-8), we obtain an expression for the instantaneous power

transfer,

p = -ev- (EQ + Ei sin orf)
= ic(V + Vi sin orf) (3)
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Since the d-c and a-c fields both exert a force upon the electron, there

will be power transfer from both potential sources to the electron. Let

Pdc and p(lc represent the instantaneous power transfer to the electron

from the sources of d-c and a-c potential, respectively. We may separate

the d-c and a-c power terms in Eq. (3) and write

pdc
= -ev-Eo = icVQ (4)

Pac
= -ev-Ki sinco^ = ic Vi sin wt (5)

p =
Pdc + pac (6)

The induced current may be obtained either from Eq. (4) or (5), yielding

V
_L ? _ el

l
%

(7\
,. v';

It should be noted that the electron velocity v is dependent upon both tho

d-c anil a-c fields.

In Eqs. (4) and (5) the terms containing the velocity and electric in-

tensity express the phenomena occurring within the tube, whereas the

terms containing voltage and current express the relationships in tho

external circuit.

In most vacuum-tube applications, a majority of the electrons move in

such a manner as to be accelerated by the d-c field but retarded by the

a-c field. Hence, these electrons take energy from the source of d-c poten-

tial and transfer a portion of this energy to the source of a-c potential.

The a-c potential usually results from an alternating current (induced

current plus capacitive current) flowing through the load impedance in the

external circuit, which produces an a-c potential drop across this imped-
ance. Hence, we shall refer to the load impedance as the source of n-c

potential. The electrons, therefore, serve as an intermediary, taking

energy from the source of d-c potential and transferring a portion of this,

in the form of a-c energy, to the load impedance.

It is of course necessary to control the flow of electrons so that a majority
of them flow through the alternating field during its retarding phase. The

grid in the ordinary triode tube serves this purpose. The d-c and a-c. com-

ponents of an electric field may be either superimposed as in the triode

and magnetron tubes, or they may exist in separate parts of the tube, as

in the klystron.

The gain in kinetic energy of a single electron may be obtained by insert-

ing E = EO + El sin wt in Eq. (3.04-10), thus

(vl
- t) = -elEQ -dl-ef

Ja Ja
Y2m(vl - vl)

= -el EQ -dl - e I (l?i sin wf) >dl (8)
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If points a and b are at the cathode and plate, respectively, then the first

integral in Eq. (8) is the d-c potential difference and this equation becomes

rb

Y2m(vl - J)
= eVQ

- e I (El sin orf) -dl (9)
Ja

The two terms on the right-hand side of Eq. (9) represent the contribu-

tions to the gain in kinetic energy of the electron due to the d-c and a-c

fields. A positive sign in either term (after it has been evaluated) signifies

energy transfer from the corresponding potential source to the electron,

whereas a negative sign denotes energy transfer in the reverse direction.

The conversion efficiency rj for the complete travel of a single electron

is the ratio of a-c energy output to d-c energy input, or

1 rb

rje
=

\

VQ Ja
(10)

The sign of the a-c energy has been reversed in Eq. (10) in order that power

output and power input both have positive signs, yielding a positive effi-

ciency.

if the electron transit angle is small, the field is practically stationary

during the flight of any one electron. For the purpose of evaluating the

integral term of Eq. (9), we may treat sin cut as a constant and replace

fb
_

(Ei sin otf) -dl = eVi sin cof, giving

Vl sin (11)

with a corresponding efficiency

Vi sin ut

He = - - -
(12)

Maximum power output and maximum efficiency occur when sin ut =
1,

i.e., when the a-c potential has its maximum retarding value.

In order to obtain 100 per cent conversion efficiency, the retarding a-c

field must have sufficient magnitude to just bring the electron to rest at

the end of its journey (point b). All of the energy taken from the d-c

source is then transferred to the a-c potential source (the load impedance),

and the terminal energy of the electron, as given by Eq. (9), is zero. How-

ever, this may present an anomalous situation since, if the superimposed
d-c and a-c fields exert equal and opposite forces on an electron (which is

assumed to have zero initial velocity), then the electron will never start

in motion. Consequently there is no power output, although the theo-

retical efficiency would be 100 per cent. In general, increasing the retard-
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ing a-c field has the effect of reducing the electron velocity and increasing

the electron transit tune.

The electron transit time (through the a-c field) can be greatly reduced

if the d-c and a-c fields are in separate parts of the tube (as in the klys-

tron). Electrons are then accelerated by the d-c field before entering the

a-c field. The electrons enter the retarding a-c field with a high velocity.

This results in a relatively large power output per electron and small transit

time.

When a charge moves through an electrostatic field, the sum of the kinetic

and potential energies of the charge remains constant. However, this princi-

ple is not always true in time-varying fields. If the field varies with respect

to time during the electron's flight, then the sum of the kinetic and potential

energies of an electron at any point in its flight is equal to the sum of the

kinetic and potential energies at the beginning of the flight plus an addi-

tional term representing the change in energy of the charge due to the time

variation of the field.

3.06. Power Transfer Resulting from Space-charge Flow. The con-

cepts of induced current and power transfer may now be extended so as

to include the effects of a large number of charges in motion. Consider a

diode of arbitrary geometry having an electric intensity E and a space-

charge density qT . Both E and q T are functions of space coordinates and

time. It is assumed that the space-charge density is small enough that

the field which it produces is negligible in comparison with the field result-

ing from the potentials on the tube electrodes. 1

The force experienced by a charge q T dr occupying a differential volume

dr is

df = EqT dr (1)

Inserting this force into Eq. (3.04-6), we obtain the power transfer from

the field to the differential space-charge element as dp = qrE-(dl/dt) dr.

Integration over the entire volume r of the diode yields the instantaneous

power transfer from the field to the space charge,

p = I q rv
-E dr = I Je -E dr

J T J T

(2)

where Jc
= qrv is the convection current density. The quantity JC -E in

the last term of Eq. (2) represents the power transfer per unit volume.

If the space charge consists of electrons, qr is negative.

The moving space charge induces a current ic in the external circuit.

If the potential difference between electrodes is V, the power transfer from

the source of potential to the field is p = icV. Equating this to the power

1 The effect of the field set up by the space charge is to cause mutual power transfet

between the charges themselves.
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received by the space charge, we obtain

= icV (3)

(4)

For the parallel-plane diode, we have E = V/d and dr = A dx.

Equations (3) and (4), in scalar form, then become

VA fd

p =
I Jc dx = icV (5)

d Jo

,

,
-- (6)

dJ$

Now assume that the potential difference is V = K + V\ sin ut and
let the electric intensity be represented by E = E$ + EI sin u>t where E
and EI are again functions of space coordinates. Inserting these into

Eq. (3) and separating the d-c and a-c power terms, as in Eqs. (3.05-4 and

5), we obtain

pdc = jC 'EQ dr = icV (7)

Pac
= tJc-Ei sin ut dr = icVi sin o> (8)

P =
Pdc + Pac (9)

The time-average d-c and a-c power may be obtained by integrating

Eqs. (7) and (8) over a complete cycle and dividing by 2?r. Applying this

procedure to the last terms in Eqs. (7) and (8), we obtain

1 f
2'

Pdc =
I icVo d(ut) (10)O_ I

47T t/Q

1 F**
Pac = I icVi sin ut d(ut) (11)

27T /o

The efficiency is then

f*
I icVi sin wt d(wt)

\P*c\_
17
=

I~P I

"dc
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In general, the current ic contains a d-c component, a fundamental a-c

component, and higher harmonic a-c components. Only the d-c compo-
nent of current contributes to the time-average d-c power, and only the

fundamental a-c component contributes to the a-c power output (since the

a-c voltage was assumed to have no higher harmonics). If we represent

the induced current by

ic
= 7 + I \ sin (co + i) + 7o sin (2co + #2) + (13)

then Eqs. (10), (11), and (12) become

Pdc = 7 F (14)

Pac = K/lTiCOSa! (15)

The conversion efficiency for the tube alone is

oos ot\

7T (16)

It should be noted that VQ and V\ are the potentials at the tube elec-

trodes. The d-c supply voltage V& is equal to the potential V at the tube

terminals plus the d-c voltage drop in the load resistance, i.e., Vi =
V + 7 /?L- Hence the total power supplied by the d-c source is Ptic

=
T
r

fe7 . The corresponding conversion efficiency (including the loss in RL)
is i;

= %ViIi cos ai/Vblo.

3.07. Example of Power and Energy Transfer. As an illustration of

the foregoing concepts, consider the power and energy transfer in the class

C oscillator of Fig. 6.

The potential difference between the cathode and plate contains a d-c

component and an a-c component. The a-c potential is developed across

the load impedance and is due to the a-c component of current flowing

through this impedance. The grid potential serves as an electron gate,

allowing electrons to flow into the grid-plate region during the retarding

phase of the alternating field only. Thus, in Fig. 6b, the plate current

(induced current in the external circuit) flows only when the alternating

potential is negative.

The principal energy transfer occurs in the grid-plate region of the tube,

since this is the region of high electric intensity and high electron velocity.

As the electrons travel from grid to plate, they arc accelerated by tho d-c

field and retarded by the a-c field
;
hence they take energy from the source

of d-c potential and transfer a portion of it, in the form of a-c energy, to

the load impedance. The difference between the energy gained by an elec-

tron from the d-c source and that transferred to the load impedance is its

residual kinetic energy. This is dissipated when the electron strikes the

plate. For maximum efficiency, the conduction angle of the current should
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be as small as possible arid the retarding a-c field should be as large as

possible, provided that it is not large enough to introduce appreciable

transit-time delay. This assures maximum retardation of the electrons

by the a-c field.

Fio. 6. Class C oscillator and characteristic curves.

It is entirely possible for electrons to transfer their energy to an external

circuit without themselves ever entering this circuit. Thus, referring to

Fig. 7, assume the purely hypothetical case of a space charge oscillating

back and forth between two parallel planes at a frequency equal to the

antiresonant frequency of the tuned circuit, The motion of the electrons

induces an alternating current in the L-C circuit which, in turn, produces
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an a-c potential difference between the diode planes. If the electrons

oscillate in such a phase that they are always retarded by the a-c field,

they will transfer part of their energy to the L-C circuit during each cycle

of oscillation even though the electrons may never enter this circuit. It

K P

V, cos cot

FIG. 7. Energy transfer resulting from the motion of an oscillating space charge,

would of course be necessary to find a means of supplying energy to the

space charge if it is to continue to oscillate. The mechanism of oscillation

described here is similar to that of the positive-grid oscillator.

PROBLEMS

1. Using the equation of continuity, show that the convection-current density is inde-

pendent of distance in a parallel-plane diode having a d-c applied potential. Show
that the space-charge density varies inversely with electron velocity.

2. A parallel-plane diode is operated with temperature-limited emission. The diode

planes each have an area of 5 sq cm and are 0.5 cm apart. A d-c potential difference

of ,500 volts produces a current of 20O ma.

(a) Obtain an expression for the electron velocity as a function of distance assuming
zero emission velocity.

(6) Compute the total charge enclosed between the diode planes, the convection-

current density, and the charge density (see Prob. 1).

(c) Compute the data arid plot curves of qri v, JCi and power transfer per unit volume

(/</) as functions of distance.



CHAPTER 4

THE PHYSICAL BASIS OF EQUIVALENT CIRCUITS

The analysis of vacuum-tube circuits is greatly simplified if an equiva-
lent circuit can be found to represent the tube. This equivalent circuit

must yield the same relationship between the applied voltages and currents

at its terminals as the tube which it represents.

There arc two important methods of deriving such equivalent circuits.

The simpler and more common method might be called the Taylor's series

or empirical method. Tt gives the conventional equivalent circuit which

is ordinarily used in the analysis of vacuum-tube circuits. In this method,

statically determined tube characteristics are represented in the region

about a reference or operating point by a Taylor's series. Then the varia-

tion in plate current from the operating point value is assumed to be reprc-

sentable by the linear term of the series. In this way the plate-current

variation is related to the variations in electrode voltages from their oper-

ating point values. Constant-voltage or constant-current equivalent gen-
erators can be used to represent the plate-current variations. Interelec-

trode capacitances are treated as parts of the circuits outside the tube. In

this method little attention is given to the electronic phenomena occurring

within the tube. Such equivalent circuits are satisfactory for solving prob-
lems for which the assumption of linearity between electrode voltage and
current variations is satisfactory and for which the frequencies of the

applied voltages are such that the transit time of the electrons is negligible

in comparison with the period of the voltage wave.

In the second method, however, the expressions for voltage and current

are derived from basic dynamical relationships which represent the be-

havior of the electrons within the tube. These relationships are then used

to obtain the equivalent circuits of diodes. The equivalent circuits for

triodes and other multielectrode tubes are synthesized from the equivalent

circuits for diodes. Since electron transit-time effects are taken into con-

sideration, these equivalent circuits may be used at microwave frequencies.

In general, the circuit elements in these equivalent circuits are functions

of electron transit time. This method of deriving equivalent circuits will

be called the electronic method.

In this chapter we will derive the conventional equivalent circuit of the

triode tube by the Taylor's series method. Then, using the electronic,

43
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method, the equivalent circuit for the temperature-limited diode will be

derived and the derivation of the equivalent circuit for the space-eharge-

limited diode will be outlined. The method of synthesizing the equivalent

circuits for triode and tetrode tubes from diodes will be indicated.

4.01. Conventional Equivalent Circuit of the Triode Tube. A triode

vacuum tube is one with three electrodes. However, tetrodes, pentodes,

and other mult iolectrode tubes may function essentially as triodes if only

two of their electrodes in addition to their cathodes have varying poten-

(a) <!>>

I'ld. 1. -Tiiocie amplifier and t'lmnirtoiNtios fm- clnvs A opeiation.

tials. For example, a pentode tube functions as a triode with special

characteristics if its screen and suppressor grids arc held at a constant

potential with respect to its cathode.

Let us briefly consider the conventional equivalent circuit for vacuum
tubes operating as triodes at frequencies for which transit-time effects are

negligible. In Fig. 1, let i^ ery and Cb represent the instantaneous values of

total plate current, grid voltage, and plate voltage, respectively.
1 The vary-

ing components of grid and plate voltages and plate current arc eg1 cp ,
and

IP, respectively. In Fig. Ib these varying components are shown for illus-

trative purposes with sinusoidal waveforms and with proper phase relation-

ships for a resistive load impedance.
The plate current consists of the quiescent or reference-point value /&o

plus the variational component ip ,
thus i\>

= 7&o + ip . The instantaneous

1 The bold-faced E in this chapter and in Chap. 5 is used to denote vacuum tube

voltages, with subscripts in conformity with I.R.E. standards.
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value of plate current may be expressed in terms of a Taylor's series as

follows:

d d\ 1/d d\
2

+ ep ]i b + -[et + fp-) ib +
dec deb/ 2! \ dcc dc b/

1/3 8 \"

;r :r + c'Ti '

M! \ dfc d<V
(1)

In this representation of the series, cp is the variational component of

plate voltage, e^ is the variational component of grid voltage, and the

partial-derivative operators operate only on i^ or its derivatives.

JP

(
/^j ]

+

(a) (b)

Fi(i. 2. -Equivalent plato circuits of a triotle.

We now define a t ranseondnetanc-e (/,, a plate resistance rp , and an

amplification factor ^ as follows:

(2)

If
JJL
can be considered constant, we can write Kq. (I) in the form

2! arc

Hence, /p can l)e repn^sented as a power series in terms of the voltage

[pg -f (cp/fj,)]. The second- and higher-order terms yield distortion com-

ponents of ip . By retaining only the linear term in Kq. (3) and substi-

tuting (for a resistive load)

we obtain

(4)

(5)
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For sinusoidally varying quantities, TCq. (5) can be expressed in terms of

the complex voltage Eg ,
current Ipy and load impedance ZL, yielding

Fio. 3. Equivalent circuit of a negative-

Krid triodc, including intcrclectiodc capaci-
tances and losses.

rp + ZL

Equation (6) may be represented by cither of the equivalent circuits

shown in Fig. 2. The circuit of Fig. 2a contains a series combination of a

constant-voltage generator whose

voltage is pEg ,
a plate resistance

rp ,
and a load impedance ZL.

Figure 2b contains the plate re-

sistance and load impedance in

parallel with a constant-current

generator whose current is gmEg .

If the intcrclectrode capacitances

and the losses in the cathode-grid

and grid-plate circuit are included,

the equivalent circuit takes the

form shown in Fig. 3. At high

frequencies the lead inductances

are important.
1

'
2 These may be

added in series with the cathode, grid, and plate leads to complete the

equivalent circuits for moderate!}' high frequencies.

4.02. Procedure in Solving the Temperature-limited Diode. The char-

acteristics of any vacuum tube are dependent upon the total effect of the

electrons moving in the interelectrode space. In the electronic method,
the voltages and currents at the tube electrodes are expressed in terms of

the equations for the motion of electrons within the tube. These expres-

sions may be used to determine the current flowing for given applied volt-

ages, or conversely, to determine the voltage required to produce a given

current. The relationships between the a-c components of voltage and

current determine the values of the impedance or admittance elements in

the equivalent circuits.

Consider the case of the parallel-plane diode of Fig. 4, which is assumed

to have temperature-limited current. In general, the induced plate current

ik in the external circuit resulting from the motion of electrons in the inter-

electrode space of the diode may be represented by a Fourier series of the

form

ib = IbQ + J\ sin (wt + i) + /2 sin (2co + 2 ) H---- In sin (nut + a ri ) (1)

1 LLKWKLLYN, F. B., Equivalent Networks of Negative-grid Vacuum Tubes at Ultra

High Frequencies, Bell System Tech. J., vol. 15, pp. 575-86; October, 193(5.

2
STRUTT, M. J. O., and A. VAN DEII ZIKL, The Causes for the Increase of the Admit-

tances of Modern High-frequency Amplifier Tubes on Short Waves, Proc. I.R.E., vol. 26,

pp. 1011-1032; August, 1938.
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-e

A question might arise as to how it is possible to have a-c components

of plate current if this current is temperature limited. Under temperature-

limited conditions, all of the emitted electrons are drawn to the plate and

low-frequency variations in applied voltage do not alter the rate at which

electrons arrive at the plate. However, at microwave frequencies, the

electron transit angle may be quite large and the electrons therefore remain

in the interelectrode space for an ap-

preciable portion of the a-c cycle. Elec-

trons which are emitted from the cathode

during the retarding phase of the a-c

voltage are slowed down, whereas those

omitted during the accelerating phase of

a-c voltage are speeded up. The faster

electrons tend [to overtake the slower

electrons which were emitted at an

earlier phase and there is consequently
a tendency toward bunching of the elec-

trons in the interelectrode space. This

bunching effect produces the alternating

components of plate current.

Throughout the following analysis,

small-amplitude operation will be as-

sumed, i.e., V\ <<C Vo. The harmonic

terms in Eq. (I) are then small in comparison with the fundamental com-

ponent. Tf we discard the harmonic components of current, leaving the

d-c and fundamental a-c components, we have

V, sin off

FIG. 4. Paiallol-plane diode with d-c

and a-c applied potentials.

= /

which can be written

sn cos (2)

where I\ is the fundamental component of current in phase with the a-c

voltage and l" is the quadrature component.
The d-c conductance (/ ,

a-c conductance g\, and a-c susceptance 61, are

then

= -- = b = - l
- ('*}

The values of the a-c conductance g\ and susceptance 61 are dependent upon
the electron transit angle and they may be either positive or negative.

In complex form, the a-c admittance is

(4)
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This is the expression for the admittance of a parallel combination of con-

ductance 0i and susceptanee 61. Since this admittance represents only the

electronic effects, another parallel branch representing the susceptance, 6C ,

due to the interelectrode capacitance, must be added to obtain the com-

plete equivalent circuit. The resulting equivalent circuit is shown in

Fig. 5. The susceptance fti may be either ca-

pacitive or inductive depending upon the elec-

tron transit angle.

In rrdor to evaluate the admittances in Kq.

(3), it is necessary to obtain expressions for 7
,

.
, /i, and /" in terms of the applied potentials.

FIG. 5. A-c equivalent / .

circuit of a temperature- 1 he general method of analysis presented here
limited diode. Values of r/i Wils developed by Bcnham, Llewellyn and
and i are given in lig. b. __,...

North. 1"'

4.03. Equivalent Circuit of the Temperature-limited Diode. In the

parallel-plane diode with temperature-limited current, let N be the num-

ber of electrons emitted from the cathode per second. The charge emitted

between time to and to + '#o i*s Nc dto. By substituting this charge in

Kq. (3.0 1-12) in place of r, we obtain the induced current <Ui,
= Ncv dto/d.

The total induced current at any instant of time t is due to electrons emitted

from the cathode between time to
= t

r

l\ (since T\ is the total transit

time these electrons are arriving at the plate at time /) and / = (these

electrons are leaving the cathode at time /) . The total induced current is,

therefore,

o-f ffev

-"rf/o
.
= t-T

{ a
-"rf/o 0)

.
= t-T

{ a

The electron velocity, given by Kq. (2.07-1), with v
(} 0, is now substi-

tuted into Kq. (1). The current is being evaluated at a given instant of

1 BENIIAM, W. E., Theory of the Internal Action of Thermionic- Systems at Moder-

ately High Frequencies, Phil. May., part I, vol. 5, pp. 041-002; March, 1928; part II,

vol. 7, pp. 457-515; February, 1931.

2 BKNHAM, VV. K., A Contribution, to Tube and Amplifier Theory, Proc. I.H.E., vol. 20.

pp. 1093-1170; September, 1938.
3 LLEWELLYN, F. B., Vacuum Tube Electronics at, Ultra-high Frequencies, Proc.

I.R.E., vol. 21, no. 11, pp. 1532-1572; November, 1933.

4 LLEWELLYN, F. R, Note, on Vacuum Tube Electronics at. Ultra-high Frequencies,
Proc. I.R.E., vol. 23, no. 2, pp. 112 127; February, 1935.

5 LLEWELLYN, F. B., "Electron Inertia Effects," Cambridge University Press, London.,

1941.
8 LLEWELLYN, F. R, and L. C. PETERSON, Vacuum Tube Networks, Proc. LR.E.>

vol. 32, no. 3, pp. 144-100; March, 1944.
7 NORTH, D. O., Analysis of the Effects of Space Charge on Grid Impcdance : Proc*

I.R.E.. vol. 24, no. 1, pp. 108-130; January, 1930.
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time 1} hence t is held constant in the integration of Eq. (1) and IQ is the

variable. Integrating arid forming the ratio ib/Ne, we obtain

*

/w = t r~ T/" "i

I Vo(t *o) (cos co* cos co* ) dto
Ne md" Jt Q =t- r

i\ L co J

c f roTr .. f / 1 - cos 0\ /sin e - 0\ 1 1

=
-;.,

-' l + V v Ti sin co*
( )

+ cos co*
- -

) (2)
7m/

2
I 2 L \ 2

/ V 2 /JJ

where is the electron transit angle and is given by

= rt (3)

We wish to separate the d-c and a-c components of current. The term

r<)7
T

i/2 in Eq. (2) contains both d-c and a-c components, since the total

transit time TI is a function of *. To separate the d-c and a-c components,
it is necessary to return to Eq. (2.07-5) which expresses the displacement
of the electron. Substituting .r = d, T = T l} t

()
= *

-
1\, and = co7\,

with ?'
=

0, in Eq. (2.07-5), we obtain

., f A'()s

71 sin cod-
L V

<' f T
r
,>Tr > f /cos 1 + sii

-i I
' L 1 i Tr m~ I ..:_ j I

2 e
2

/sin - 6 cos

Subtracting I^q. (4) from (2), we complete the separation process,

ib 'TiTT f . T 2^ ~ cos ^ - sin 0]= 1 -( sin co*

Ne md2
I L

3
J

^(1 + cos ^ , ,

Now assume that the total transit time is approximately equal to the

d-c transit time, ?'.<?., J\ ~ TQ. J^juation (2.07-11) gives the d-c transit

time

(2.07-1 1J

If 7
7

is substituted for TI in Eq. (5), the current ratio becomes

ib 2t
r

! f [2(1
-

cos0)
-

0sin0]~ - 1 + -
; {

sin ^
[ J

|~2sin0
-

0(1 + cos 0) "11

+ cos co*
I ST"*"" 1

1
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Comparing this expression with Eq. (4.02-2), we find that

Ne

1 ''

V'o L

2(1
- cos 0)

- sin

(7)

I', [2 n\n0- 6(1 + cos

/! = 2/|,o -;
'

ii

Fie;. 6. -A-r rondiiptaiifc and Mist-opt anrp of the tomporaturo-limited diode, as a function ol

traiiMt anglo. The biiM-optant-e is cnpacitivc for niall transit angles.

By .substituting those results in Kq. (4.02-3), we obtain the final cqua
tions for the admittance parameters,

^6^/50
Fo~ Fo

(/! _ F2(l
- cos 0)

- sin 01
__

2
T

2
1_ = 2

|

-
J

= ~
|

1 - +
J

2 sin -
0(1 + cos 0)1 30

2

(7o

00

Values of 0i/0o and &!/(7 are plotted in Fig. 6 as functions of the transit

angle 0. As the transit angle increases, the conductance is alternately posi-

tive and negative with a maximum near = ?r. Negative values of con-

ductance signify energy transfer from the electron stream to the source of
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alternating potential. Hence the temperature-limited diode can be used

as an oscillator at frequencies for which its a-c conductance is negative.

The susceptance &i is alternately capacitive and inductive as the transit

angle increases. By adding the susceptance &., due to the static capacitance
between the electrodes, to 61 we obtain the total susceptance. Since the

static capacitance is C = tA/d farads, the corresponding susceptance is

(9)
d

In this equation, A is the area of one of the plane electrodes.

The series form of the above equations is convenient for evaluating the

admittance for small transit angles. Substituting 6 = coTi, and taking the

first terms only in each of the above series expansions, we obtain, for small

transit angles,

01 ^ (27r/)
27*

<7o 6

\ (10)
bi = 27T/TQ ^
0<> 3 ^.

Hence, the conductarce is proportional to the square of frequency and
transit time, whereas the susceptance is proportional to the first power of

frequency and transit time. For small values of transit angle, the con-

ductance term is small in comparison with the susceptance and the admit-

tance is approximately oqual to the susceptance bi. These are the conclu-

sions obtained by Ferris, by a somewhat different method of analysis.
1

4.04. Relationships for the Space-charge-limited Diode. Consider a

parallel-plane diode with arbitrary applied potentials and appreciable space

charge between the diode planes. The current density at any point in the

interelectrode space is the sum of the convection-current density q Tv and

the displacement-current density *(dE/dt), as given by Eq. (3.02-5), thus 2

dE
J = q Tv+t (1)

dt

For the parallel-plane diode, the divergence equation (2.05-7) becomes

~ = -
(2)

dx

1

FERRIS, W. R., Input Resistance of Vacuum Tubes as Ultra-high-frequency Ampli-

fiers, Proc. I.R.E., vol. 24, pp. 82-107; January, 1936.
2 The displacement current density includes both the capacitive current and the dis-

placement current due to electron motion in the diode.
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By substituting q r from this equation and v = dx/dt into Eq. (1), written

in one-dimensional form, we obtain

x dx dEx\+ -) (3)
dt dt I

v
dx

The electric intensity is a function of x and t. According to the rules

of the partial differentiation of a function of two variables, Kq. (3) is

equivalent to

dExJ-.- W
Here we have an interesting relationship which states that the current

density is proportional to the time rate of increase of electric intensity a.s

experienced by the moving electron. In other words, from the point of view

of the moving electron, there can be only a displacement current. This is

in agreement with the discussion at the end of Sec. 3.03.

The acceleration of an electron in an electric field is given by the first

of Eq. (2.06-3)

d2x cKx
-T = ---

(2.06-3)
dl~ m

Substitution of the electric intensity from this equation into Eq. (4) 3
rields

d*x eJ._
(5)

at cm

This equation states that the current density is proportional to the time

rate of change of electron acceleration.

The potential may likewise be related to the equations of electron motion.

-A-^o
Starting with V =

|
E dx and substituting E from Kq. (2.06-3), we

obtain

m rd d2x
(6)

m r(l d2x-
I --dx

c J dt
2

The foregoing relationships are valid for a parallel-plane diode having

any degree of space charge.

4.05. Space-charge-limited Diode with D-C Potential. Now consider

the special case of a parallel-plane diode having a d-c potential difference,

and space-charge-limited current. Let J = JQ be the d-c current density.

Since the electrons flow in the positive x direction, J$ will be negative.

Substituting J = J into Eq. (4.04-5) and performing successive integra-

tions, we obtain the electron acceleration, velocity, and displacement enua-
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tions. Assume that a particular electron leaves the cathode (x = 0) at

time t = /o, with zero initial velocity. For complete space-charge-limited

current, the electric intensity at the cathode is zero. Integration of

Kq. (4.04-5), with the above substitutions, then yields

d2x eJn--- _
fo) (1)

dt" em

*=-~(t-tof (3)
bem

Let T = t /o be the time required for the electron to travel a distance

.r. The total electron transit time (cathode to plate) is found by setting

x = d and t to TO in Kq. (3), yielding

T
6e
""*Y

3
'

To ~ ~

The potential required to produce the assumed current density may be

obtained by inserting drx/dt~ from Kq. (1) and dx from Eq. (2) into (4.04-6).

However, we first write Kq. (2) in the form dx/dt = dx/dT = eJ T2
/2em

and then substitute <ls = ( cJ {)T
2
/2em) r/Tinto Kq. (4.04-6). Since poten-

tial is l)eing evaluated at a particular instant of time, t is constant and

(or T) is the variable. With the above substitutions, Kq. (4.04-6) gives

Several interesting aspects of the space-charge-limited diode are revealed

in Kqs. (4) and (5). Eliminating 7 from these two equations, we can

obtain the following expressions for the total transit time and transit angle:

= 3,/ \l~ = 5.
X 2cl

o

(6)

5.05 X 10" (i

^-- seconds

fi

o = 31.7 x 10~ --
--. radians

'

In these equations d is in meters and VQ in volts. Comparison of Eqs. (6)

and (2.07-11) shows that the total electron transit time in the space-

eharge-limited diode is three-halves of the transit time in the temperature-
limited diode.
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By substituting 7
7

from Eq. (6) into Eq. (5) and solving for /
,
we

obtain the familiar three-halves power Child 's law for space-charge-

limited current,

*.-*>< w- 7? m

The d-c resistance of the diode per unit area is given by

n, = v =
-429 x 10 -7= (8)

4.06. Space-charge-limited Diode with D-C and A-C Applied Poten-

tials. The procedure in solving the space-charge-limitod diode with com-

bined d-c and a-c applied potentials is similar to that of Sec. 4.05 except

that the assumed current density is of the form

J = JQ + Ji sin cot (1)

The solution is quite lengthy; therefore we shall merely state the end

results. The potential required to produce the assumed current is

f [2(1
-

cos0)
- sin 01

V = V + &/iro sin co*
-----

4
- -----

I

0(1 + cos 0)
- 2 sin 01

)---
iT-

.....

j

where r = V^/Jo is the d-c resistance of unit area of the diode, and
= uT(} is the total transit angle.

Equation (2) contains voltage components in phase with the current

(the sin wt terms) and quadrature components (the cos co terms). Tho

equivalent a-c circuit is therefore a series circuit containing resistance and

reactance. Dividing the a-c terms of Eq. (2) by /i, we obtain the resist-

ance and reactance, per unit area,

2(1 cos 6) sin 0~1 2r
[~

fl
2

4r F0(l + cos 9)
- 2 sin 01 _ 2 F30 s

"1

Xl
30~~

r

L 0* J 3.
r

LlO~84 "*J

(3)

(4)

A positive sign in the reactance term signifies inductive reactance, while

a negative sign signifies capacitive reactance. The term 4r /30 in Eq.

(4) is the capacitive reactance between the diode planes without space

charge. To show this, write r = Vo/A)- Substitute Eqs. (4.05-4 and 5)
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and rearrange to obtain r = 3T d/4e.

obtain

Multiplying this by 4/30, we

30 we coC
(5)

o VWVV
Xe

FKJ. 7. Equivalent circuit of the

*puce-(rharge-Iimited diode.

where C = /d is the capacitance of unit area

of diode planes. Letting xc
= l/co6

Y

repre-

sent the reactance due to the diode capaci-

tance and a-,, represent the reactance due to

space-charge and transit-time effects per unit area, we obtain for Eq. (4)

> xi = ~'jrc + x e (6)

The series form of Eq. (3) shows that the low-frequency a-c resistance

of the space-charge-limited diode is rp
= J^r^ i.e., two thirds of the d-c

resistance. Figure 7 shows the equivalent circuit for the space-charge-

limited diode. Values of ri/rp , Xi/rp ,
and xc/rp are plotted as functions

Fro. 8. Impedance of the space-charge-limited clioilcnis a function of transit angle.

of transit angle = wT i" Fig- 8. The resistance alternates between posi-

tive and negative values as the transit angle increases, with a maximum

positive value at zero transit angle and maximum negative value at ap-

proximately = 7.2 radians. Equation (4.05-6) can be used to compute
the approximate value of the transit angle, and the corresponding imped-
ances for the diode may then be obtained from Fig. 8.
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The admittance for the space-charge-limited diode is the reciprocal of

its impedance. Figure 9 is a plot of admittance values, showing the low-

frequency and high-frequency asymptotes of the susceptance curve. It is

interesting to note that the low-frequency capacitance in the equivalent

K

v 2

9 Y22

- vww- p
o

FIG. 9. Admittance of the space-charge-lirnited diode as a function of transit angle.

parallel circuit is three fifths of the capacitance without space charge.

This effect of space charge in reducing the effective capacitance is some-

times referred to as a reduction in the effective dielectric constant. It is

also interesting to observe the similarity between the equations for the

impedance of the space-charge-

limited diode as given by Eqs. (3)

and (4) and the admittance of the

temperature-limited diode in Kq.

(4.03-8).

4.07. Equivalent Circuit of the

Triode. 1 The triodemay be viewed

as two adjoining diode regions with

a space-charge-limited diode roprr-
FIG. 10. Equivalent circuit of the triode at ,. xl ,, i i i

microwave frequencies. sontmg the cathode-grid region and

a temperature-limited diode for the

grid-plate region. The impedance or admittance of the space-charge-

limited region may be obtained from Figs. 8 or 9, using the transit angle

computed from Eq. (4.05-6). The temperature-limited diode region rc-

1 LLEWELLYN, F. B., and L. C. PETERSON, Interpretation of Ultra-high Frequency
Tube Performance in Terms of Equivalent Networks, Electronic Industries, vol. 3

pp. 88-90; November, 1944.
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quires a little different treatment from that given in Sec. 4.03, since the

initial velocity of the electrons entering the grid-plate region is not zero.

Llewellyn has shown that the equivalent circuit shown in Fig. 10 may
be used to represent the triode at all frequencies including microwave fre-

quencies. The admittance elements are determined as follows:

1. Admittance YU is the admittance of the space-charge-limited diode

as obtained from Fig. 9 with the transit angle computed using Eq. (4.05-6).

ir ,

2K

C
o -

T5

JEio

-9

K
-4e

o 2 266 8 10 12 14 16 18 ZO 22

Transit angle in radians

Fia. 11. -Transadniittanoe of a triode as a function of cathode-grid transit angle.

2. Admittance Y22 is approximately equal to the susceptance of the grid-

plate capacitance, or Y22 = jwCgp .

3. Point J in Fig. 10 is assumed to be a point midway between grid

w; res in the grid plane. The capacitance Cg is given approximately by
CK

= HgCK/) ,
where /ng is the reciprocal of the screening factor of the tube.

Capacitance (\ represents the capacitance between the electron stream at

point A and the grid wire.

4. Admittance Y12 is given for various values of 61 in Fig. 11, where #1

is the cathode-grid transit angle. The magnitude of 1^2 is approximately

equal to the conventional t ransconductance gm although its phase angle
varies with the value of B\.

5. The potential difference between the cathode and grid plane is V\.

This is not the same as the potential difference between the cathode and
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grid wires. The grid-plane potential may be taken as the potential midway
between grid wires. The equivalent generator has a voltage Vi(Yi2/Y22).

Although the equivalent circuit derived here is valid for all frequencies,
numerical difficulties are encountered in attempting to evaluate the admit-

tance elements and equivalent-generator voltage at low frequencies since,
as the transit angle decreases, the values of some of the impedances ap-

proach the indeterminant form QO/OO. Consequently, the conventional

equivalent circuit of Fig. 3 is preferred where very small transit angles are

FIG. 12. Equivalent circuit of a tetrode at microwave frequencies.

involved. The external circuit may be attached to the terminals of the

equivalent circuit of Fig. 10, and the complete vacuum-tube circuit solved

by the usual methods of circuit analysis.

Equivalent circuits may also be derived for more complicated tube
structures using this method. Figure 12 shows the equivalent circuit of a
tetrode tube.

PROBLEMS

1. A parallel-plane diode has a sparc-charge-limited current. The diode planes have
an area of 2 sq cm and are separated by a distance of 0.1 cm. The potential differ-

ence between cathode and anode is V = 75 + 10 sin wt. The d-c current is 10 ma
and the frequency is 1,000 megacycles.

(a) Find the total electron transit time and transit angle (assuming that the a-c

potential has negligible effect upon the transit time).

(6) Determine the d-c plate resistance and the a-c plate resistance.

(c) Using the transit angle in part (a), evaluate the parameters of the equivalent a-c

circuit of the diode.

(d) At what frequency does the diode resistance have its maximum negative value?

What is the value of the resistance at this frequency?
2. A lighthouse tube has parallel-plane electrodes. The cathode-to-grid spacing is

0.014 cm and grid-to-plate spacing is 0.033 cm. The cathode and plate have effec-

tive areas of 0.7 sq cm each. The amplification factor and interelectrode capacitances;
are - 45

Ckg

gp

2.65 X 10~12 farad

1.70 X 10~12 farad

Ckp - 0.04 X 10~12 farad
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Assume that the tube is operated with space-charge-limited omission with a potential

difference between the cathode and the equivalent grid plane of 3 volts. The poten-
tial difference between the cathode and plate is 200 volts. The tube is operating
as an oscillator at a frequency of 2,500 megacycles with small-amplitude operation,

(a) Compute the cathode-to-grid transit angle.

(6) Determine the parameters for the equivalent a-c circuit assuming that /xg is

equal to the amplification factor of the tube.



CHAPTER 5

NEGATIVE-GRID TRIODE OSCILLATORS AND AMPLIFIERS

The conventional triode tube has proven to be an exceedingly versatile

tube and is the prototype of many other vacuum tubes in present-day use.

By careful design of the tube and the associated circuits, it has been pos-

sible to extend the useful range of the triode into the microwave portion

of the frequency spectrum. In this range the resonant circuits are usually

constructed of transmission-line elements or resonant cavities. The tubes

are often designed so that they can be made an integral part of the reso-

nant system.

5.01. Triode Tube Considerations. Optimum design of the triode tube

requires a minimum of

1. Interelectrode capacitance and lead inductance.

2. Electron transit time,

and a maximum of

1. Transconductance.

2. Cathode emission.

3. Plate heat dissipation area.

These are conflicting requirements which necessitate design compromises.
Interelectrode capacitance may be reduced by decreasing the physical size

of the electrodes and increasing the spacing. However, decreasing the

electrode dimensions reduces the maximum safe power dissipation, thereby

reducing the power rating of the tube, whereas increasing the interelectrode

spacing results in a detrimental increase in electron transit time. Electron

transit time may be reduced by the use of a high plate potential. How-

ever, the maximum allowable plate potential is determined by the safe

plate dissipation of the tube and the breakdown voltage. The lead induc-

tance can be minimized by the use of short thick leads, preferably arranged
so that they can become an integral part of the external circuit. Low-loss

dielectric seals are used to reduce the dielectric losses.

A useful principle of similitude * 2 states that if all linear dimensions of

a triode are changed by a fixed ratio and the electrode voltages are held

constant, the plate current, transconductance, and amplification factor will

1 LANGMUIR, I., and K. COMPTON, Electrical Discharges in Gases, Rev. Modern Phya.,
vol. 3, pp. 192-257; April, 1931.

2 THOMPSON, B. J., and G. M. ROSE, Vacuum Tubes of Small Dimensions for Use at

Extremely High Frequencies, Proc. I.R.E., vol. 21, pp. 1707-1721; December, 1933.

60
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remain constant. However, the interelectrode capacitances, electron

transit time, and lead inductance vary directly with the linear dimensions.

It is apparent, therefore, that some of the undesirable effects encountered

at microwave frequencies may be minimized by shrinking all of the linear

dimensions of the tube proportionately, although this remedy also reduces

the power rating of the tube.

The relatively high input admittance of triode tubes at microwave fre-

quencies imposes a serious limitation upon the operation of the tubes at

these frequencies. This is due, in part, to the electron transit-time effects.

Consider a triode tube with an alternating potential applied between

cathode and grid. If the tube is used as an oscillator or amplifier, most of

the electrons flow from cathode to plate during the positive half cycle of

grid potential. The electrons are accelerated by the field of the a-c grid

potential during their transit through the cathode-grid region and retarded

by this field during their transit through the grid-plate regionv If transit-

time effects are negligible, the electrons take energy from the a-c grid-

potential source as they approach the grid, but return an approximately

equal amount of energy to this source as they travel from grid to plate.

Conssquently, there is no net energy transfer from the a-c grid-potential

source to the electrons, and the input conductance due to this effect is zero.

^However, at microwave frequencies, the electron transit angle may be

relatively large. It is then possible for the a-c grid potential to reverse its

phase before the electrons reach the plate, so that the electrons are accel-

erated by the field of the a-c grid potential in both the cathode-grid region

and in the grid-plate region. Under these conditions, there is a net energy
transfer from the a-c grid-potential source to the electrons, resulting in an

increase in input conductance.

Ferris showed that magnitude of the input admittance Y and input con-

ductance g\ of a triode tube may be represented approximately by

Y - kigmfT (1)

9i
= k2gmf*T

2
(2)

where gm is the transconductance of the tube, / is the frequency, T is a

quantity which is proportional to the electron transit time, and fci and k%

are proportionality constants. Equations (1) and (2) are similar to

(4.03-10).

In the preceding discussion, we were concerned with energy transfer

from the a-c grid-potential source to the electrons. Let us now consider

the energy transfer with respect to the a-c plate potential. Ideally, the

electrons should flow through the grid-plate region during the retarding

phase of the a-c plate potential so that energy is transferred from the elec-

trons to the source of a-c plate potential,, i.e., the load impedance. How-
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ever, for large electron transit angles, the a-c plate potential may reverse

its phase before the electrons arrive at the plate. Energy is then trans-

ferred from the source of the a-c plate potential (the load impedance) to

the electrons during a portion of the cycle, thereby decreasing the power

output and efficiency.

ilVe therefore conclude that electron transit-time delay may (1) increase

the input conductance and (2) decrease the power output and efficiency

of the tube. ^
The cathode lead inductance and input capacitance have an important

bearing upon the input admittance of the tube. These form a series L-C

FIG. 1. W.E. 3G8A triodc. (Comlcsy of the Western Electric Company.)

circuit, the admittance of which increases as the frequency approaches the

resonant frequency. As a typical example, the 955 acorn tube has an input

capacitance of 1 micromicrofarad and lead inductance of approximately
0.015 microhenry. The resonant frequency of the input circuit, taken

alone, is approximately 1,330 megacycles. Obviously the other circuit

parameters influence the value of the resonant frequency; however, this

example serves to indicate one of the serious limitations in the operation
of conventional types of tubes at microwave frequencies. It can be shown
that the input conductance increases approximately as the square of the

frequency, hence its variation with frequency is similar to the transit-time

conductance of Eq. (5.01-2). In many types of tubes, the lead-inductance

effects offer a more serious limitation than transit-time effects.

Grounded-grid circuits are frequently used in amplifiers and oscillators

at frequencies above 100 megacycles. Grounding the grid serves to reduce
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the input conductance due to transit-time effects and lead inductance.

Further advantage is gained in amplifiers due to the fact that grounding
the grid tends to shield the input circuit

'
l !r '-

from the output circuit. This shielding is p~~
~j

similar to that resulting from the use of the

screen grid in the pentode. The shielding

reduces the tendency toward oscillation and

makes it possible to obtain increased gain.

5.02. Triode Tubes and Oscillator Cir-

cuits. Several triode tubes, designed for

operation at microwave frequencies, are

shown in Figs. 1, 2, and 3. The W.E.

368A tube of Fig. 1 has a cylindrical

cathode, grid, and anode. The triangular

carbon block attached to the anode in-

creases the heat-dissipation area. Leads

are brought out at both ends of the tube

to facilitate the use of two tuned circuits,

thereby dividing the interelectrode ca-

pacitance between the two tuned circuits.

This tube has an upper frequency limit of

approximately 1,700 megacycles and can

deliver a power output of 10 watts at 500

megacycles.

Figure 2 shows the G.E. 2C40 lighthouse triode in which the cathode,

grid, and anode form parallel planes. The cathode is indirectly heated and

FIG. 2. G.E. 2C40 lighthouse
tube. (Courtesy of the General Eleo
trie Company.)

FIG. 3. -Lighthouse tubes. (Courtesy of the General Electric Company.}
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has an activated oxide-emitting layer on the flat end of the cylinder. The

grid consists of a woven tungsten mesh which is brazed to an annular ring.

The plate is a single steel cylinder machined from solid stock and silver

plated. This tube is designed for use in coaxial resonators, such as those

shown in Fig. 6. The lighthouse tube may be used either as an amplifier

or as an oscillator at frequencies as high as 3,500 megacycles.

(b)

FIG. 4. Triode oscillator using resonant lines.

Figure 3 shows several modifications of lighthouse tubes including the

GL522 transmitter tube which has a power output rating of 25 watts at a

frequency of 500 megacycles with a plate voltage of 1,000 volts.

At frequencies above approximately 200 megacycles, the resonant sys-

tems used in oscillators and amplifiers are usually constructed of low-loss

short-circuited or open-circuited transmission lines, or of lines which are

terminated in pure reactances. The properties of such lines in the vicinity

of the antiresonant frequency are similar to those of a parallel L-C circuit.

However, it is possible to obtain much higher effective Q's and more stable
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performance using transmission lines as resonant circuits than is possible
with lumped circuits. The frequency of oscillation is approximately the

frequency at which the system is antiresonant. In Sec. 10.03 it is shown
that a line which is either open-circuited or short-circuited at the distant

end and which is shunted by a capacitance at the input terminals, i.e., the

interelectrode capacitance of the tube, will be antiresonant when

tan = short-circuited line (1)
vc

tan = Z coC open-circuited line (2)

where I and Z are the length and characteristic impedance of the line,

respectively, C is the shunt capacitance, co is the angular frequency, and

Tunedgrid*

.-Tunedp/ate

l/77fl

FIG. 5. Push-pull triocle oscillator using lighthouse tubes.

vc is the velocity of light. Equation (1) or (2) may be used to determine

the length of line required for a given frequency of oscillation.

Figure 4 shows an oscillator using a W.E. 316A "doorknob" tube. The
tuned circuit consists of an open-wire transmission line in the grid-plate

circuit which is tuned by means of a small condenser at the distant end

of the line. The d-c connections to the grid and plate are made at the

approximate radio-frequency voltage nodes on the grid-plate line. Chokes
are provided to prevent radio-frequency power loss at these junctions.

The filament circuit contains a pair of coaxial lines which are tuned by
means of short-circuiting pistons. The transmission lines serve as chokes

.to isolate the cathode from ground and also to have the d-c filament con-

nections at radio-frequency voltage nodal points on the line. This oscil-

lator will deliver 6 to 8 watts of power at an efficiency of 40 per cent at

frequencies up to 600 megacycles. The load is coupled to the grid-plate

line.

A push-pull oscillator is shown in Fig. 5. The tuned circuits consist of

short-circuited lines in the grid and plate circuits. Since the short-circuited

ends of the lines correspond to voltage nodes, the d-c connections are made
at these points.
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Two cavity oscillators using lighthouse tubes are shown in Fig, 6. The

cavity of Fig. 6a contains short-circuited coaxial lines in the cathode-grid

and grid-plate circuits. These are tuned by means of sliding pistons which

are provided with spring contact fingers to make electrical contact with

the cylindrical walls of the resonator. The cavity of Fig. 6a may be used

as an amplifier by feeding the input signal into the cathode-grid resonant

circuit by means of a coupling loop or probe. Power output is obtained

-Plate rod

D-c plate
connection

Output
resonator-]

-Tuning

plunger

Mica
'"insulator

sQuarter

wavelength
choke

'.ighthouse\

tube

Telescope
feedback
line

Grid

cylinder-

-Input
resonator

Tuning
plunger

Ond
i ^

connect/on '

[Jg

Condenser
in grid circuit

Lighthouse tube-'']

Output

(a) (b)

FIG. 6. Cavity oscillators using lighthouse tubes.

through a similar coupling loop or probe in the grid-plate line. When this

unit is used as an oscillator the coupling loops in the input and output

circuits are connected together to provide feedback.

The resonant cavity shown in Fig. 6b contains an open-ended grid cyl-

inder, a cylindrical plate rod, and a choke consisting of a quarter-wave-

length section of open-circuited line. The grid cylinder and plate rod form

the resonant line of the grid-plate circuit, whereas the grid cylinder and

outer shell of the cavity form the resonant line in the cathode-grid circuit.

Since the grid cylinder is open at one end, the input and output circuits

are coupled together, thereby forming a reentrant oscillator. The quarter-

wavelength choke prevents energy from escaping out of the back end of

the cavity. Tuning is accomplished by sliding the plate rod on the plate

cap of the lighthouse tube. The end of the plate rod has spring contact
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fingers which firmly grip the plate cap of the tube, at the same time per-

mitting a small amount of longitudinal motion of the plate rod. This

motion of the plate rod has the effect of changing the characteristic imped-
ance over a small portion of the grid-plate coaxial line (due to the differ-

ence in diameter of the plate rod and plate cap of the tube) and this, in

turn, alters the resonant frequency of the line. It is also necessary to

adjust the position of the choke as the cavity is tuned. This may be ac-

complished by means of separate adjustments of the plate rod and choke

or, with proper design, the choke may be attached to the plate rod so as

to provide a single-control tuning
mechanism.

With lighthouse-tube oscillators

of the type shown in Fig. 6, it is

possible to obtain continuous power

outputs of several watts at wave-

lengths as low as 8 centimeters or

frequencies as high as 3,800 mega-

cycles.

5.03. Criterion of Oscillation. A
negative-grid oscillator consists es-

sentially of an amplifier in which a

small fraction of the output voltage

is fed back into the input in order to sustain oscillation. In order for oscil-

lation to exist, certain requirements must be satisfied. The criterion of

oscillation enables us to determine the conditions of oscillation as well as

the oscillating frequency.

Consider the block diagram shown in Fig. 7. This represents an ampli-

fier having a voltage gain K, and a feedback circuit having a complex volt-

age ratio /?. In the following analysis class A operation is assumed.

Transit-time effects are assumed to be negligible.

Let Eg and Ep represent the input and output voltages of the amplifier,

respectively. The feedback voltage is 0EP ,
where the value of is deter-

mined by the feedback circuit. We then have

FIG. 7. Block diagram of an oscillator.

Also, the voltage gain is defined by

K =

(1)

(2)

Combining Eqs. (1) and (2), we obtain the criterion of oscillation

0K - 1 (3)
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Let us now apply this criterion to the general type of oscillator shown

in Fig. 8. This circuit may be used to represent any one of the oscillators

shown in Figs. 4 to 6. Thus, comparing Figs. 6a and 8, the impedance Z\
in Fig. 8 represents the resonant line in the cathode-grid circuit of Fig. 6a,

_L
AA/WvV-

FIG. 8. Block diagram representing the oscillators shown in Figs. 4 and 6.

Z3 represents the line in the grid-plate circuit, and Z2 is the cathode-plate

capacitance and the effect of the coupling loop.

From Fig. 8, we obtain

^ = ^ =^r (4)

The gain of the stage is

(5)
rp + ZL rp Yi, + 1

where ZL = I/YL is the load impedance. Again, from Fig. 8, we obtain

*

^- (6)

Inserting this expression for YL into Eq. (5) yields

M(#I + Z3)Z2
/v

rp(Zl + Z2 + Z3) Z8)

(7)

Substituting from Eq. (4) and K from Eq. (7) into (3), the criterion of

oscillation yields
<7 <7

(8)
Z3 ) + Z,(Z, + Z3 )
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Let us now assume that the impedances are pure reactances,
1

i.e.,

Zi = jXi, Z2 = JX2 ,
and Z3

= jX^. By making these substitutions in

Eq. (8), we obtain

-X2(X1 (1 + M) + Xs ] + jrp(Xl + X2 + X3 )
=

(9)

Equating imaginary terms to zero, we have

Xl + X2 + X3
=

(10)

Likewise, equating the real terms to zero and substituting Xi + X% =
X2 from Eq. (10), we obtain

(X1 + X.) X2

M = ---- =
(11)

AI AI

Equation (11) expresses a critical value of amplification factor which is

required for oscillation. In the actual performance of an oscillator, the

amplification factor of the tube is not constant but, rather, varies over a

relatively wide range of values. Consequently, Eq. (11) may be inter-

preted as representing somewhat of an average value of /A required for

oscillation. Equation (10) determines the frequency of oscillation. To
satisfy this relationship and also obtain a positive value of M in Eq. (11),

it is necessary that Xi and X2 be similar types of reactance, whereas X3

must be a reactance of the opposite type.

In the oscillator of Fig. 6a, the reactances Xi and X3 each consist of the

input reactance of a short-circuited line shunted by the interelectrode

capacitance of the tube. Since the expressions for these reactances are

quite long, a complete analysis will not be attempted. However, in order

to illustrate the method, let us assume that Xi and X2 are both capacitive

with effective capacitances C\ and C2 , respectively, and that X3 is inductive

with an effective inductance 3. Inserting these into Eq. (11), we obtain

the value of /i

Inserting the reactances into Eq. (10), we obtain the angular frequency of

oscillation.

1 1--- =

1 This assumption corresponds to assuming a lossless system. It will be shown latei

that the input impedance of a lossless short-circuited line is a pure reactance except at

the resonant and antiresonant frequencies where it has zero and infinite values,

respectively.
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6.04, Analysis of the Class C Oscillator. Let us briefly consider the

factors involved in class C oscillator performance, ignoring electron transit-

time effects.

For high-efficiency operation, the d-c grid-bias voltage should be app^ox-

imately one and one-half to three times the cutoff value. Oscillators are

usually self-biased, the bias voltage resulting from the rectified grid current

flowing through a resistance in the grid circuit. Cathode bias is also pro-

FIG. 9. Voltage and current relationships in a class C oscillator.

vided in some cases. In a well-designed oscillator, the maximum grid

voltage ec max is approximately equal to the minimum plate voltage eb mill ,

that is, ,..
(1)&c max ~ ^b min

The rms alternating plate voltage Ep \ is

'66 Vb minEPI (2)

where Ebb is the d-c plate-supply voltage.

Plate current flows only during a brief conduction angle as shown in

Fig. 9. The plate current pulses may be analyzed by Fourier series to

obtain the average value of plate current /bo and the rms fundamental

component /pl in terms of the maximum plate current ib max. Assume that

the plate current has the same waveform as the grid voltage during the

conduction portion of the cycle. If the total conduction angle as shown
in Fig. 9 is 0!, this analysis yields the relationships

1

cos 0i/2)

fy max

(sin 0,/2
-

0!/2 cos 0!/2)

- cos 0i/2)

(3)

(4)

r, W. L., "Communication Engineering," 2d ed., pp. 666-677, McGraw-
Hill Book Company, Inc., New York, 1937.
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Curves of Ib/hou* and Jpi/4max against 0i are shown in Fig. 10.

For high-efficiency operation, the total conduction angle is approxi-

mately BI
= 125 degrees to 150 degrees, yielding values of /&/4max =

0.2 to 0.24 and IPi/ibnax = 0.25 to 0.28.

Assume that the frequency of oscillation is equal to the antiresonant

frequency of the load impedance (taken from cathode to plate). The load

is then a pure resistive impedance which we represent by RL- The alter-

0.6,

^ 1

0.5

0.4

0.3

O.I

Ib

ibmax..

30 60 90 120 150 180 210 240

Plate current conduction angle (in degrees)

FIG. 10. Curves of and -~
l& max lb max

150 180

e (in degree

plotted against plate-current conduction angle 0.

nating voltage developed across RL is EP i
= IP\RL> Inserting Epl from

Eq. (2) into this relationship, we obtain

*-*_"
(5)

Let Pg be the grid driving power. The a-c power output Paf ,
d-c power

input Pb, plate dissipation Pp ,
and plate-circuit efficiency r;p are then

Pac = Epl/pi
- Pg (6)

Pb = E 66/ fro (7)

n-
poc

=
pb

~

(8)

Pg

From an electronic viewpoint Pb represents the power transferred from

the d-c plate potential source to the electron stream. The power Epi/Pi
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is the power transferred from the electron stream to the load impedance
as a result of retardation of the electrons by the a-c component of field

intensity. A portion Pg of this power output is returned to the grid circuit

to sustain oscillation. The grid driving power is given by the approximate

expression Pg
= Eg/go, where Eg is the maximum value of a-c grid volt-

age and /go is the d-c grid current.

The load impedance has an important bearing upon the power output

and efficiency of the oscillator, since it influences the values of Epl and

IP i. The desired value of load impedance may be computed from Eq. (5).

However, in practice, it is usually difficult to calculate the impedance of

resonant lines with coupled loads. Consequently the load impedance ia

usually adjusted experimentally by varying the coupling between the load

and the resonant line until maximum power output is obtained.

At microwave frequencies, the electron transit-time delay increases the

input conductance of the tube, thereby resulting in an increase in grid

driving power. Electron transit-time delay also introduces a phase shift

between the maximum plate current and the minimum plate voltage.

These factors, together with the increased losses at microwave frequencies,

result in reduced power output and lower efficiency.

5.05. Frequency Stability of Triode Oscillators. The conditions re-

quired for good frequency stability of oscillators are somewhat different

from those required for high power output. Good frequency stability

necessitates high-Q circuits which, in turn, implies low power output. The
feedback circuits and load circuits should be loosely coupled to the output
circuit of the oscillator in order to minimize the loading on this circuit.

For good frequency stability, the resonant circuit should present a rela-

tively high impedance to the tube at the frequency of oscillation. The
interelectrode capacitance of the tube has the effect of decreasing the

length of line required for a given frequency of oscillation and also of

reducing the antiresonant input impedance. In general, this effect is less

for coaxial lines than for open-wire lines because of the fact that coaxial

lines have a lower L/C ratio. Coaxial lines are therefore preferred in

microwave systems. Coaxial lines are also self-shielding, thereby tending
to minimize the radiation losses from the line.

Another important factor in the frequency stability of an oscillator is

the thermal expansion of the tube elements and the associated circuits,

with changes in temperature. For example, a resonant line constructed

of brass would have a temperature coefficient of expansion of 19 parts per

million per degree centigrade. Tests on an oscillator of the type shown in

Fig. 6b over a temperature range of 140 degrees centigrade have shown
an average frequency drift of 20 parts per million per degree centigrade.

This shows a striking correlation between the thermal expansion and the

frequency drift.
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Various temperature-compensating devices have been developed to com-

pensate for thermal expansion. One such device has a small air condenser

at one end of the line which is arranged so that expansion or contraction

of the line changes the spacing between the condenser plates in such a

manner as to maintain constant oscillator frequency.
1

According to the criterion of oscillation, it is possible for the frequency
to differ slightly from the antiresonant frequency of the output circuit.

This occurs when the phase shift in the feedback circuit is not exactly 180

degrees. If electron transit-time effects are negligible, maximum frequency

stability occurs when the phase shift in the feedback circuit is exactly 180

degrees. In microwave oscillators, the phase shift in the feedback circuit

should be slightly greater than 180 degrees in order to compensate for

transit-time delay.

With careful oscillator design, using high-Q circuits and a well-regulated

power supply, it is possible to achieve a frequency stability of the order of

10 to 20 parts per million, which is somewhat poorer than the frequency

stability attainable with crystal oscillators at lower frequencies.

5.06. Amplifiers Using Negative-grid Triodes. Most triode tubes

which are designed for use at microwave frequencies may be used either

as amplifiers or as oscillators. The lighthouse tube and cavity shown in

Fig. 6a may be used as an amplifier by disconnecting the feedback cable

and feeding the input signal into the cathode-grid region of the cavity.

The power output is taken from the grid-plate region of the cavity.

The power gain of amplifiers operating at microwave frequencies is rela-

tively low, being of the order of from 5 to 20. Since the bandwidth of tuned

circuits at these frequencies is relatively large, even for high-Q circuits, the

tuned circuits admit a relatively large amount of noise. This results in a

low signal-to-rioise ratio which imposes a serious limitation upon the use

of amplifiers in amplitude-modulated transmitters and receivers at micro-

wave frequencies. If frequency modulation is used, the noise may be

largely separated from the signal in the limiter stage at the receiver; hence

the presence of noise in the amplifier is not so serious a limitation in fre-

quency modulation as in amplitude modulation.

1 HANSELL, C. W., and P. S. CARTER, Frequency Control by Low Power Factor Line

Circuits, Proc. I.R.E. t
vol. 24, pp. 597-<U9; April, 1936.



CHAPTER 6

TRANSIT-TIME OSCILLATORS

Ic has been shown that detrimental effects are encountered in the nega-

tive-grid triode oscillator or amplifier if the electron transit time exceeds

a small fraction of the period of the alternating cycle. There are other

types of oscillators, however, in which operation is dependent upon a defi-

nite relationship between the electron transit time and the period of the

alternating cycle. These transit-time oscillators include positive-grid oscil-

lators, klystrons, resnatrons, traveling-wave tubes, and magnetrons.

POSITIVE-GRID OSCILLATOR

6.01. Operation of the Positive-grid Oscillator. The positive-grid os-

cillator consists of either a parallel-plane or a cylindrical-element triode

tube with the grid at a positive d-c potential with respect to its cathode

and plate as shown in Figs. 1 and 2. The tuned circuit may consist of either

a lumped Z/-C circuit or a distributed parameter system such as a short-

circuited line, an open-circuited line, or a resonant cavity. In the opera-

tion of the positive-grid oscillator, an electron space-charge cloud oscillates

back and forth about a mean position corresponding to the grid plane.

The period of electron oscillation is determined by the tube geometry and

the electrode potentials. The oscillating space charge induces an alter-

nating component of current in the external circuit and the resulting volt-

age drop across the load impedance produces an alternating field in the

interelectrode space of the tube. A majority of the electrons oscillate in

such a phase as to be retarded by the alternating field, and hence transfer

a portion of their energy to the resonant circuit during each cycle of

oscillation.

Let us assume, for the moment, that the grid of the tube shown in Fig. 1

has a positive d-c applied potential and that the load impedance is removed
from the circuit. Consider the motion of an electron in the resulting d-c

field. Since the grid is positive with respect to both the cathode and plate,

the electric field is in such a direction as to accelerate the electron when it

travels toward the grid plane and decelerate the electron when it travels

away from the grid plane.

The electron is emitted from the cathode and is accelerated as it ap-

proaches the grid plane. Passing between the grid wires, the electron

enters the grid-plate region where it is decelerated. It comes momentarily
74
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to rest in the vicinity of the plate, reverses its direction of travel, and is

accelerated during its return journey to the grid plane. If the electron

again passes between the grid wires, it is decelerated as it approaches the

cathode, reverses its direction of travel in the vicinity of the cathode, and

once again starts back toward the grid. The electron continues to oscillate

back and forth with approximately equal amplitudes on either side of the

grid plane in a manner similar to the oscillation of a frictionless pendulum,
until it eventually collides wfrh *

pjn'fl
w"^

When the load impedance is connected as shown in Fig. 1 and oscillating

conditions prevail, the a-c potential developed across the load impedance

V| sin cot

d

(a)

P/afe plane

Gridplcine

U)t

Cathode plane

(b)

FIG. 1. Positivr-grid oscillator.

produces an alternating field superimposed upon the d-c field in the inter-

electrode space. In the oscillator of Fig. 1, the frequency of the alternating

potential is twice the frequency of electron oscillation. The phase relation-

ships between the electron displacement and the alternating potential for

the most favorable electron are shown in Fig. Ib. For this particular

electron, the alternating component of grid potential (with respect to

cathode or plate) is negative as the electron approaches the grid from

either direction and positive as the electron recedes from the grid. Con-

sequently, this particular electron will be retarded by the a-c field through-

out its entire cycle of oscillation and will transfer energy to the external

tuned circuit. The kinetic energy and the amplitude of oscillation of the

electron both decrease with each successive cycle of electron oscillation.

In this respect, oscillation of the electron is analogous to the swing of a

damped pendulum.
1

1 The oscillation of the electron is not entirely analogous to the oscillation of a damped

pendulum, since the retarding force of the alternating field does not obey the same laws

as the frictional force of the pendulum.
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The phase relationships shown in Fig. Ib are those of an ideal electron,

i.e., an electron which transfers energy to the external circuit throughout
its entire cycle of oscillation. We shall see presently that the period of

oscillation of an electron changes continuously during successive cycles of

oscillation. Consequently, an electron which starts to oscillate in the ideal

phase will gradually fall out of phase with the alternating potential,

thereby oscillating in a less favorable phase. Since electrons are emitted

from the cathode at a more or less uniform rate, part of the electrons will

depart from the cathode in such phase as to take energy from the alter-

nating field. By virtue of their increased kinetic energy, these electrons

travel all the way to the plate or cathode within a few cycles of oscillation

and therefore are withdrawn from active duty. Hence we find that those

electrons which, on the average, give energy to the alternating field remain

in oscillation, whereas those electrons which take energy from the alter-

nating field travel to either the plate or cathode and are thereby excluded.

6.02. Analysis of the Positive-grid Oscillator. To illustrate the ana-

lytical relationships involved in positive-grid oscillators, consider the triode

tube shown in Fig. 1. The grid is midway between the cathode and anode.

It is assumed that the space-charge density is small and that it does not

affect the electric field distribution in the interelectrode space. Distances

are measured from the grid plane, positive values of x being taken in the

direction of the plate.

Consider now an electron moving in the grid-plate region. The poten-
tial difference between grid and plate is taken as V = FO V\ sin co/,

the negative sign of the d-c potential signifying that the grid is positive

with respect to the plate. Equation (2.07-8) may be used to express the

electron displacement in the grid-plate region if the potentials FO and V\
in this equation are replaced by FO and FI. The electron displacement

equation then becomes

&(a>T)
2

kVi
x =--

1

--
[(wT

- sin coT) cos <t> + (1
- cos wT7

) sin </>]

CO

In this equation o>T is the electron transit angle; i.e., the phase angle

through which the alternating voltage varies while the electron is in flight

from the grid to a point distant x from the grid; <f> is the phase angle of the

alternating potential at the instant when the electron leaves the grid; and
k is given by k = eF /co

2wd.

We now assume that the electron completes one half cycle of oscillation

and returns to the grid while the alternating potential completes one full

cycle. Hence the electron leaves the grid plane (x = 0) when coT = with

an initial velocity VQ and returns to the grid plane when coT = 2ir. Writing
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Eq. (1) for the instant at which the electron returns to the grid plane by

setting x = and co!T = 2?r, we obtain

kVi VQ
TT/H cos + - =

(2)
^o w

Substituting k = eVo/u
2md and solving for o>, we obtain the angulai

frequency of electrical oscillation,

+ -cos^ (3)

The period of electron oscillation TI was assumed to be twice the period

of electrical oscillation, or T1
= 2// = 47r/co. Substitution of Eq. (3) foi

co yields the period of electron oscillation

Equation (4) shows that the period of electron oscillation is dependent

upon the initial phase angle </>. The ideal phase is that shown in Fig. Ib,

corresponding to <t>
= radians. Since electrons cross the grid plane at

various values of $, the period (or frequency) of electron oscillation will

differ slightly for various electrons, each according to its particular value

of <t>. Furthermore, Eq. (4) shows that the period of electron oscillation

varies directly with the electron velocity VQ at the grid plane. If an elec-

tron oscillates in such a phase as to give energy to the alternating field,

its kinetic energy and velocity VQ at the grid plane decrease for each suc-

cessive cycle of oscillation and, according to Eq. (4), the period of electron

oscillation decreases or its frequency increases. This shift from a favor-

able phase of oscillation to an unfavorable phase results in an appreciable

reduction in power output and efficiency.

Instead of finding a simple picture in which all electrons have identical

periods of oscillation, we have a much more complicated situation in which

the frequency of electron oscillation differs for various electrons and

undergoes continuous change for any one electron. The frequency of elec-

trical oscillation is determined by the composite effects of all the electrons

oscillating in the interelectrode space, its value being approximately twice

the average frequency of electron oscillation.

The velocity VQ in Eq. (4) is determined largely by the d-c potential;

hence we may assume that VQ
= V 2Foe/w. The period of electron oscil-

lation then becomes

+(7,770)008*1
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Since the a-c potential is usually much smaller than the d-c potential,

we have Fi/Fo ir arid, to a first approximation, the term (Vi/Vo) cos <t>

in Eq. (5) may be neglected. The frequency of electrical oscillation is

/ = 2/Ti and the corresponding wavelength is given by A = vc/f, where

vc == 3 X 10
8
meters per second is the velocity of light. The period of

K "

FICJ. 2. -Positive-grid oscillator with tuned circuit connected between cathode and plate.

electron oscillation, frequency of electrical oscillation, and wavelength then

become approximately

seconds

. 1 TO 1.48X105

A/
/ = - A / = V TO cycles per second

d * 8m t/

meters

(6)

(/ )

(8)

In these equations d is the cathode-to-grid and grid-to-platc distance in

meters and 7 is in volts. Comparison of Eqs. (6) and (2.07-11) shows

that the period of electron oscillation is approximately four times the time

required for the electron to travel from the cathode to the grid in a d-c

field.

Iiranother form of the positive-grid oscillator, the resonant circuit is

connected between cathode and plate as shown in Fig. 2. With this ar-

rangement, the frequency of electrical oscillation is approximately equal

to the average frequency of electron oscillation. Consequently the elec-

trical frequency will be one-half that given by Eq. (7) and the wavelength
will be double the value given by Eq. (8). The wavelength for this type
of oscillation is, therefore,

X = 4040 = meters (9)
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stability. The positive-grid oscillator may be amplitude modulated by

applying a relatively small modulating voltage in series with the d-c

upply voltage. Due to the inherently poor frequency stability, however,

ere is a considerable amount of frequency modulation along with the

Amplitude modulation.

KLYSTRON OSCILLATOR

6.04. Description of the Klystron Oscillator. In the negative-grid

triode oscillator, the electrons travel through superimposed d-c and a-c

Tuning ring.

Redback line

\ Driftspace.

Hecfcrvdfating
+r' area **area

Catchergrids

^resonator

Coaxialoutput

X

\sZ3Buncher grids

Accelerating grid

Tuning ring

Cathode

'legible diaphragm

Focusing ^
electrode'

Heater*

(a)

Fio. 5. Double-resonator klystron.

lectric fields. Electrons are simultaneously accelerated by the d-c field

nd retarded by the a-c field. If the retarding a-c field is comparable with

he d-c field, the electrons never attain a very high velocity and therefore

lie electron transit angle may be large at microwave frequencies. Several

vpes of tubes have been developed in which the electrons are initially

federated to a high velocity by a d-c field before thc^entgrthe retarding

-TTfield. The electrons then have a relatively high yebci^r.

hruugh the'^leErrEence the electron transit anglels greatly^reduced.

?he doubie^rgonator Idystron and the reflexT3ystron are examples of

ach tubes.
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[The double-resonator klystron, shown in Figs. 5 and 6, contains an

oxide-coated cathode, a control grid, two metallic resonators, and a col-

lector anode. The resonator nearest tfie cathode is known as the buncher

or ifiput resonator and the second resonator is the catcher, or output reso-

nator*. The entire assembly is evacuated And the high-frequency* electrical

^connections consist of small coupling loops placed inside the resonators

with vacuum-sealed coaxial fittings for external connections.

Fio. 6. Double-resonator klystron with tuning mount. (Courtesy of the Sperry Gyroscope
Company.)

In the operation of the klystron, thq ftjftplrnna ^rr> accelerated by the
.d-c fifil^ resulting from the potential Fp and consequently enter the

tmncher-grid region with a higlT initial velocity. If the klystron is oper-

ating as an amplifier, the buncher resonator is excited at its resonant fre-

quency by the incoming signal which is to be amplified. This produces an

alternating field between the buncher grids. As electrons pass through
this field they are either accelerated or decelerated, depending upon the

phase_of the buncher voltage during their transit. Those electrons which

pass through the buncher grids during the accelerating ohase are sneeded
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up and emerge with a velocity higher than the entering velocity. Other

electrons, traveling through the buncher grids during the retarding phase.

are slowed down and emerge from the buncher grids-with reduced velocity.

This variation of velocity of the electrons in an electron stream is known
as velocity modulation.

%

In the
field-fi^ejiiiS!space^between buncher and catcher grids, thejiigh-

velqcitjL-fiLectrons overtaki^he^w-velocity^ljcj^ns which left the

buncher grids at an earlier phase. TEsjresults in a bunching of the elec-

;A-c cafcher

vo/tage

Center of
catcherresonator

Drift

space

o
Centerof

buncherresonator

t
N^ase/oingle

of Nwcher voltage\urt /
D-c accelerating

voltage _______
FIG. 7. Appiegate diagram representing electron bunching in the klystron.

trons as they drift toward the catcher resonator. For optimum per-

formance, maximum hunching should occur" approximately midway be-

tween the catcher grids. The electron bunches pass through the alternating

fieldTbetween the catcher grids during^its retarding phase; hence energy
is transferred from the electrons to the field of the catcher resonator. The
electrons emerge from the catcher grids with reduced velocity and finally

terminate at the collector. If the klystron is operating as an oscillator,

energy is fed back from the catcher to theT)uncfier through a short coaxial

line in order to produce sustained oscillation.

Hie bunching process is illustrated by the Appiegate diagram "of Fig. 7.

This shows the electron displacement as a function of time for electrons

leaving the buncher at different phases of buncher voltage. Each line

represents the displacement-time relationship for a single electron. The
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slope of the line is proportional to electron velocity; hence the higher

velocity electrons are represented by lines having steeper slopes. .The

electron bunches center around the electron which passes through the

buncher grids when the buncher voltage is zero and changing from de-

celeration to acceleration. This particular electron will be designated the

center-of-the-bunch electron^,

Pentode tube eliminates

coupling between input
and output circuits \

Phase delay equivalentofelectron
transittime delay in driftspace

1
AAA/WV

-VWVNAr

FIG. 8. Equivalent circuit of a klystron.

The klystron may be represented by the equivalent circuit of Fig. 8.

The multigrid tube emphasizes the complete isolation of input (buncher)

and output (catcher) circuits. The delay network represents the buncher-

to-catcher transit-time delay. The two tuned circuits represent buncher

and catcher resonators. The load is shown coupled to the output or catcher

resonator. The current 72 is the induced current flowing in the catcher

resonator. While the equivalent circuit is helpful in visualizing the over-all

functioning of the system, the analysis must necessarily proceed along more

fundamental lines.

(b) (c)

FIG. 0. Development of the resonator.

6.05. The Klystron Resonator. The phenomenon of electromagnetic
oscillation in resonators may be illustrated by the development of the

resonator in Fig. 9. Figure 9a shows a parallel resonant circuit consisting

of a parallel-plate condenser and two inductive loops. Adding more
turns in parallel, as shown in Fig. 9b, decreases the inductance and in-

creases the resonant frequency. Carrying this to the limit, we have the
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totally enclosed toroidal resonator of Fig. 9c, with the electromagnetic

field confined entirely to the inside of the resonator.

The effective capacitance of the resonator of Fig. 9c is approximately

equal to the capacitance of the parallel grids, while the inductance is

roughly proportional to the volume of the resonator. Hence, the resonant

frequency may be increased either by increasing the separation distance

between grids (decreasing the capacitance) or decreasing the volume of the

resonator (decreasing the inductance). Tuning is accomplished in the

klystron oscillator by making one wall of the resonator a thin corrugated

diaphragm. Pressure on this diaphragm varies the spacing between reso-

nator grids, thereby changing the effective capacitance of the resonator

The tuning mechanism is shown -attached to the klystron in Fig. 6.

//6.06. Electron Transit-time Relationships in the Klystron.
1"7 The anal-

ysis of the klystron is based upon the following simplifying assumptions:
^ 1. The electron transit angles through the buncher and catcher grids

ire assumed to be negligible.
8

"
2. Space-charge effects are ignored.

b-3^ The alternating voltage between buncher grids is assumed to be small

ia/comparison with the^d-c accelerating voltage*^.

4. The electron beam is assumed to have uniform density in the cross

section of the beam, and all ofjthe electrons which leave the cathode are

assumed to pass through thejcatcher^grids.
These assumptions lead to idealistic values of power output -and effi-

ciency which are considerably greater than those realized in practice. We
shall derive the theoretical relationships and then discusvS the conditions

prevailing in practice.

fin the klystron oscillator of Fig. 10, the electrons are accelerated to an

initial velocity VQ by the d-c field before they enter the buncher grids.

1 VARIAN, R. H., and S. H. VARIAN, High Frequency Oscillator and Amplifier, /.

Applied Phys., vol. 10, pp. 321-327; May, 1939.
2 WEBSTER, D. L., Cathode-Ray Bunching, J. Applied Phys., vol. 10, pp. 501-513;

fuly, 1939.
1 WEBSTER, D. L., The Theory of Klystron Oscillations, /. Applied Phys., vol. 10,

jp. 864-872; December, 1939.
< HARRISON, A. E., "Klystron Technical Manual," Sperry Gyroscope Co., Brooklyn,

tfew York, 1944.
6 HARRISON, A. E., Klystron Oscillators, Electronics, vol. 17, pp. 100-107; November,

[944.

6 CONDON, E. U., Electronic Generation of Electromagnetic Oscillations, /. Applied

Phys., vol. 11-, pp. 502-507; July, 1940.
7 CONDON, E. U., Microwave Generators Using Velocity-Modulated Electron Beams,

D
roc. National Electronics Conference, vol. 1, pp. 500-513; October, 1944.
8 The transit angle of electrons through the buncher or catcher may be quite large

ibr low accelerating voltages, consequently the assumption of negligible transit angle

may be a poor approximation.
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Assume that the electrons leave the cathode with zero velocity. The
kinetic energy aifd the velocity of the electrons entering the buncher, as

given by Eqs. (2.06-5 and 7), are

cV ,v (1)

(2)m

Oscillation of the buncher resonator produces an alternating potential

difference V\ sin wt between resonator grids. / It is assumed that the two

buncher grids in Fig. 10 are at potentials v^ and FO + V\ sin art, both

Feedback cable

Collector

...'.. . f7. /S.- 1-^
II!;; : xj." : ::: ::: ::: :::!:n::: i*

I
resonator

Output^
connection

FIG. 10. Klystron oscillator.

with respect to the cathode. Consider an electron passing; through
^ the

buncher at timeji. Assume tKat the buncher voltage remains constant

3uring the passage of any one electron through the buncher grids. The
kinetic energy ^mvf and velocity v\ of the electron as it emerges from the

buncher grids are

e(VQ + Vi sin

^i
=* \ F

(
1 + -^ sin w<! )*m \ F /

t; \ + -7-7 sin
F

(3)

Equation (3^ is the eqyatinn of velocity modulation.^An electron which

passes through the buncher grids when wt\~^ (Temefges with unchanged
velocity. The maximum and minimum velocities at the buncher-grid exit

are v Vl + (Fi/F ) and vQVl (Fi/F ), these representing the veloci-

ties of electrons which pass through the buncher grids during the maxi-
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mum accelerating and maximum retarding phases of the buncher voltage;

i.e., when wt\ = v/2 and wti = ?r/2, respectively.
- -The time T required for the electron to travel the distance 5 in the field-

free space between buncher and catcher grids is

(4)

Using the bnnchnr alternating vnltagfi aa t,hp t.imp rpfprpnr.p, f.V>p

arrives at the catcher grids at time t2 = ^ + T
7

. The corresponding pha^e
angle (with the buncher voltage as reference) is obtained by multiplying
both sides of the^equation for t2 byju. Substitution of Eg^ (4) yields

fe
= (! + T)

""

(5)

The quantity 5/^0 Is the buncher-to-catcher transit time fpr the electron

passing through the buncher when co^ =
0, i.e., the center-of-the-bunch

electron. The corresponding transit angle is

cos 7-
'

,--
/ .

-
(6)

^0

In subsequent derivations, mathematical difficulties are encountered if

we use Eq. (5) in its present form. (To avoid complication, we assume that

VI/VQ<! and expand the bracketed term into a binomial series. Taking
the first two terms of the series and assuming that the remaining terms

are negligible, we obtain [1 + (Vi/Vo) sin co^]""
H

1 (7i/2F ) sin co^.

Substituting this, together with Eq. (6), in Eq. (5), we obtain

a ( 1 -- sin wi
J\ 2 KO /

(7)

The interpretation of Eq. (7) is as follows: An electron leaving the

buncher at phase angle co^ (with respect to the buncher voltage) arrives

ajTthe catcher at_jjhase angle o^2 (also measured with respect to the

buncher voltage). The arrivaTphase ang;le wfe and departure phase angle

6.07. Power Output and Efficiency of the
Klystron^-Now

consider the

energy and power transfer at the catcher resonator, (fllie analysis is sim-

plified by assuming that the buncher and catcher voltages are in time

aqfji
therefore the catcher voltage will be represented by V% sin <*>

catcher voltage is substantially constant during an eleclron'sHransit
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through the catcher grids, the electron gives up an amount of energy
w -reF2 sin w22^ The negative sign signifies energy transfer from the

electron to the ftfeld. Using this convention, energy output and power

output are positive quantities. Substituting the value of o)t2 from Eq.

(6.06-7) into the energy output equation, we obtain

w = eV2 sin w<2

= eV2 sin orfi + ( 1 sin wti
J (1)

L \ 2 Vo / J

r

(Averaging Eq. (1) for all electrons entering the buncl^er grids during a

complete cycle, i.e., between uti = and wti =
27r, we obtain the average

energy per electron transferred to the catcher resonator,

I /wfi

I

2w Ju>*i=

i-2-

w

ev2 r2*
r / Vi \i= - -

I sin *! + a ( 1 - sinarfi J d(vti) (2)
Zir JQ L \ 2V o /J

This integral yields
l

way = eV*f\(x) sin a (3)

where

7i
x =- (4)

2F
V '

TJke quantity x features prominently in klystron analysis and is known
as the bunching parameter. The quantity J\ (x) is a Bessel function of the

first kfecT and first ^oroer.
r The Bessel function may be expressed as an

1
Substituting x = aV\/2Vo and expanding, we obtain for the integrand of Eq. (2),

sin (w$i + a x sin a>/i)
= sin (w/i {- a) cos (x sin w/i) cos (uti + a) sin (x sin cot\)

In standard treatments of BessePs functions it is shown that

cos (x sin orfi)
= JQ(X) -f 2/2

sin (x sin Ji)
= 2Ji(x) sin w^i

When the first series is multiplied by sin (orfi + a) and integrated between the limits

w<i = and coli
=

2-n-, the integral has zero value since each term is of the form
y2T
I Jn(x) sin (w/i + a) cos nw^i d(wti) where n is an even integer. When the second
Jo
series is multiplied by cos (uti -f- a) and integrated, each of the terms is of the form

X.21T

I Jn(z) cos (ah -f ci) sin nut\ dfati). All of the terms except that corresponding to
Jo

n * 1 are zero. .The remaining term is

eV* rzr
ttfav

M
-jr- I 27"i(a;) sin w/i cos (w^i + a) d(tat\) cFz/iCa?) sin dl*
2ir /o
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infinite series in terms of its argument x as given in Eq. (15.05-12). A
plot of J\(x) as a function of x is shown in Fig. 11.

Let us now consider the power relationships. \ Assume that N electrons

are emitted from the cathode per second. The direct current emitted

from the cathode is then IQ = Ne.
i (Positive current is assumed to flow

in the direction opposite to that of electron flow.) Now assume that all

of the electrons emitted from the cathode flow through the catcher reso-

nator; consequently there are N electrons flowing through the catcher per
second. Equation (3) expresses the average energy transfer per electron.

2 4 6

Bunching parameter X

FIG. 11. Plot of J\(x) against x.

10

To obtain the energy transfer per second or power transfer, we multiply

Eq. (3) by N. Substituting 7 = Ne we obtain for the power output Pac

at the catcher resonator

r) sin a (5)

The power supplied by the d-c potential source is P = -Jo^o and the

conversion efficiency is

~p v *

In Eq. (6) it is assumed that the po\frer required for bunching the elec-

trons is
negligible^

Since the alternating field of the buncher accelerates

some electrons and retards others, the time-average power required for the

bunching, operation would be zero if the electron transit angle were negli-

gible. Qn actual practice, however, the transit angle is not negligible and
some power is required to perform the bunching operation^

6.08. Requirements for Maximum Output and Maximum Efficiency.

The Bessel function /i(z) appears in both the power output and the effi-

ciency equation. Figure 11 shows that /i(a;) has a maximum value of 0.58
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when x 1.84. Referring to Eq. (6.07-6), the conditions required for

maximum efficiency are found to be

1. A maximum value of the ratio F2/Fp.
2. A bunching parameter value ot x =

1.84, yielding J\ (x) 0.58.

3. sin a
'

1, or a 2vn (ir/2) where n is any positive inteftergreater
than zero.

In general, the value of F2/Fo is less than unity. If F2 were greater

than FQ some of the electrons would reverse their direction of travel at

the catcher resonator and absorb power from the alternating field. If we

assume a value F2/Fo = 1 and sin a =
1, the maximum theoretical

efficiency becomes 58 per cent. In addition to the requirements for maxi-

mum efficiency, maximum power output requires that the d-c beam current

/o and the catcher resonator potential Fo have maximum possible values.

It will be shown later that, for the assumed conditions, criterion 3 above

is always satisfied if sustained oscillations exist. Equations (6.07-5 and

6) therefore become

Pac = /olVlCO (1)

1 - /i(*) (2)
Ko

The criterion a = 2?m (v/2) determines the value of the d-c acceler-

ating voltage required for maximum power output. To obtain this rela-

tionship, we return to Eq. (6.06-6) and set a = 2irn (ir/2) and v =

\/2eVo/m, yielding

/ cos \
2 m

1 1
/ cos \

2

Fo =
(
-

)
= 0.284 X 10~n

(
-

I (3)
. ^M -

(7T/2)/ 2e \27rn - (ir/2)/

Equation (3) reveals that there are a multiplicity of values of d-c accel-

erating voltage which will yield maximum power output (one for each

integral value of ri). The highest voltage corresponds to the lowest in-

teger; Le.
}
n = 1.

The criterion x = 1.84 required for maximum power output and maxi-

mum efficiency determines the optimum ratio of buncher voltage to d-c

accelerating voltage 7i/F . To sfcow this we substitute a = 2vn (ir/2)

and x = 1.84 in Eq. (6.07-4) obtaining

For each integral value of n there is an optimum value of VI/VQ which

yields maximum power output. When n = 1 we obtain Vi/Vg 0.78.

As n increases, the d-c accelerating voltage FO and the ratio FI/FQ both

decrease. The reason for this becomes apparent when we recall that the
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electron velocity varies as the square root of VQ. Consequently, if VQ is

small, the electrons travel more slowly and have more time in which to

bunch; therefore less bunching voltage is required, y
In the normal operation of the klystron oscillator, electron bunching

occurs only at the catcher resonator. However, it is possible to have a

condition of oscillation in which the electrons alternately bunch and de-

bunch several times in the drift space between buncher and catcher reso-

nators. This is indicated by the successive maxima of J\(x) for increasing

values of x in Fig. 11. The value x = 1.84 corresponds to single bunching

and yields the highest efficiency.

ir/2 IT 3ir/2

Transit angle through catcher grids

Iff

FIG. 12. Maximum efficiency of the klystron as a function of catcher transit angle.

Maximum power output requires a maximum,value of the catcher resq-

nator voltage 72 . The catcher voltage increases with the d-c accelerating

voltage (this is not apparent from the above equations), and hence the

highest permissible accelerating voltage yields mRvimnnfl povrftr O^P11^-*f

all other conditions are satisfied.

The voltage V2 islblsb dependent upon the effective impedance of the

catcher resonator. The resonator is analogous to a parallel L-C circuit.

At its resonant frequency, the impedance of the resonator is a pure resist-

ance with a value proportional to the Q of the resonator and to its effective

L/C ratio. In order to obtain maximum voltage V%, the resonator imped-

ance should be as large as possible. However, there are other important

considerations involved which necessitate design compr&mises.

Klystron resonators must be designed with a view toward minimizing

electron transit time through the resonator grids. Excessive electron
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transit time through the buncher grids results in inadequate electron

bunching and power is consumed in the bunching process, flf the transit

time through the catcher resonator is excessive, the power output and

efficiency are
reducedfj Figure 12 shows how the maximum theoretical

efficiency of the klystron decreases as the catcher-resonator transit angle

increases. 1 Electron transit angle is minimized by spacing the grids close

together. However, this increases the capacitance and lowers the effective

impedance of the resonator. To avoid excessive transit time and still

obtain high impedance, a compromise in the spacing between, resonator

grids is necessary.

of-bunch

electron

leaves buncher
at this instant

-
Center-of-bunch

electron arrives

at catcherat
this instant

FIG. 13. Phase relationships in the double-resonator klystron.

6.09. Phase Relationships in the Klystron Oscillator. The foregoing

analysis was simplified by the assumption that the buncher and catcher

resonators oscillate in time phase. If this were a necessary restriction, it

would result in extremely critical operation and the slightest deviation of

the voltages from the values given in Eqs. (6.08-3 and 4) would stop oscil-

lation. Actually, however, there is a certain amount of flexibility permis-
sible in the phase relationships between buncher and catcher voltages as a
result of phase shift existing in the resonators and feedback line.

In Eq. (5.03-3) a criterion of oscillation was stated in the form 0K 1

where K is the voltage gain; i.e., the ratio of output to input voltage, and (3

is the ratio of feedback voltage to output voltage. A more general expres-
sion for this criterion is ($K = l/2irn radians, where n is any integer in-

1 BLACK, L. J., and P. L. MORTON, Current and Power in Velocity-Modulation Tubes,
Proc. I.R.E., vol. 32, pp. 477-482; August, 1944.



SEC. 6.09] PHASE RELATIONSHIPS IN -KLYSTRON OSCILLATOR 93

eluding zero. This requires that the sum of the phase angles of K and 0,

or the total phase shift around the closed circuit, be equal to 2m radians.

Let us now apply this criterion to determine the phase relationships in

the klystron oscillator. The diagram of Fig. 13 is drawn for the general
case in which buncher and catcher voltages are not in time phase. The
center-of-the-bunch electron leaves the buncher when its alternating volt-

age is zero. This electron arrives at the catcher resonator when its alter-

nating voltage has its maximum negative value. The transit angle a,

given by Eq. (6.06-6), is the phase angle between the zero of the buncher

4212

1000 2000

Accelerating voltage

3000

FIG. 14. Experimental curves showing power output and frequency deviation as a function

of d-c accelerating voltage for a double-resonator klystron.

voltage and the negative maximum of the catcher voltage. Consequently,

the phase angle between the zeros of buncher and catcher voltage is

a + (ir/2) radians. In adding up the phase shifts around a closed circuit

in a klystron, we must include the phase shift in the resonators and in the

feedback line. If a resonator is operating at its resonant frequency, the

voltage and current are in time phase and the phase shift in the resonator

is zero. However, the frequency of oscillation of a klystron may deviate

slightly from the resonant frequency of the resonator. In this case, the

voltage and current are not in time phase and there is a phase shift in the

resonator. If we let 6 be the total phase shift in the resonators and feed-

back cable, the criterion of oscillation requires that

+ a + - = 2irn radians
2

(1)
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In the derivations of Sees. 6.06 and 6.07, it was assumed that the two

resonators oscillate in time phase. This corresponds to setting in

Eq. (1). We found that maximum power output was obtained when
a = 2irn (ir/2). We now find that if the two resonators oscillate in

time phase, the condition that a = 2irn (ir/2) is not only a requirement

for maximum power output but is also a criterion which must exist if sus-

tained oscillations are to be obtained. In general, however, the resonators

do not have to oscillate in time phase.

In the operation of the klystron oscillator, it is found that a small change
in d-c accelerating voltage will cause a change in frequency. This can be

Critically

coupled

fr

Frequency
Flo. 15. Input impedance of two coupled circuits having the same resonant frequency.

explained by the fact that the change in d-c voltage causes a variation in

the transit angle a. The frequency of oscillation then shifts in such

a way as to yield a new value of 6 which will satisfy Eq. (1).

It is a well-known principle in circuit theory that if two tuned circuits

having the same resonant frequency are coupled together the input im-

pedance looking into either circuit will have a variation with frequency
such as that shown in Fig. 15. A double-peaked resonance curve occurs

when the tuned circuits are overcoupled, while the single-peaked curve

corresponds to critical coupling or undercoupling. The same phenomenon
occurs when two resonators are coupled together.

It is possible to obtain oscillation over a somewhat wider range of d-c

accelerating voltages if the resonators are overcoupled. It is interesting

to note that the critically-coupled klystron has practically a straight-line

variation in frequency with accelerating voltage, thereby offering attractive
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possibilities for frequency modulation. By tuning the resonators to

slightly different frequencies, the power output may be held more nearly
constant. The curves of Fig. 14 were obtained with the two resonators

tuned to slightly different frequenciesX/
6.10. Current and Space-charge Density in the Klystron. An interest-

ing interpretation of the bunching process may be obtained by plotting
curves of electron departure time at the buncher against arrival time at

cut,

PIG. 16. Plot of electron departure phase angle against arrival phase angle.

the catcher. We start by substituting Eqs. (6.06-6) and (6.07-4) into

(6.06-7) and rewriting this in the form

( fe
- -

\ VQ

x sin co^i

In this equation w/i is the phase angle at which an electron departs from

the buncher and o> 2 is the phase angle at which this electron arrives at

the catcher, both measured with respect to the buncher voltage.

Curves of w*i as a function of w[fe (Ao)] for various values of the

bunching parameter x are shown in Fig. 16. The quantity [fe (*/>o)]

is the arrival phase angle at the catcher minus a constant amount a =

WS/VQ which represents the buncher-to-catcher transit angle of the center-

of-the-bunch electron. This plot shows that the electrons arriving at the

catcher at any instant of time may have left the buncher at different in-

stants of time. Thus, referring to the curve x * 1.84 in Fig. 16, we find
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that electrons leaving the buncher at times corresponding to a, b, and c

all arrive simultaneously at the catcher resonator.

The space-charge densities at the buncher and catcher resonators will

be represented by qr\ and qr2 ,
and the corresponding velocities are v\ and

v2 , respectively. The amount of charge flowing through unit area at the

buncher exit during the time interval dt\ is qT\v\ dti. This same charge

flows through unit area at the catcher during a different time interval dt2 ,

and may be expressed as qr2v2 dt2 ; hence we have

qnVi d^ = qT2v2 dt2 (2)

Equation (2) is not valid if we have a condition in which some electrons

overtake other electrons in the drift space. If this occurs, the charges
which arrive at the catcher during the time interval dt2 may have left the

buncher at several different intervals of dt\. Hence, there may be several

different values of qr\v\ dt\ which contribute to the charge qr2v2 dt2 . To
take care of this situation, we express qr2v2 dt2 as the summation of all of

the values of qr\v\ dt\ which contribute to it, thus

qT2v2 dt2 = ZgriVi dti (3)

The space charge density qr \ at the buncher is approximately equal to

the space charge density qrQ just before the buncher; therefore we let

Qn =
#ro- Also, if the velocity variation is small, we have v2 Vi VQ.

Making these substitutions in Eq. {3) and rearranging, we obtain

qr2^o dt2 = qToVo2t dt\

qr2 dti

q TQ dt2 d(co/2)

The quantity d(wti)/d(ut2 ) is the slope of the curve of Fig. 16. Thus, to

obtain the space-charge density ratio qr2/qro for any given value of

w[t2 (S/VQ)] we need merely add the slopes of the curve for the given

value of w[t2 (S/VQ)]. A negative slope indicates that electrons which

arrive at the catcher in one sequence left the buncher in the reverse se-

quence. In adding the slopes, we consider only absolute values and dis-

card the sign. The curves of Fig. 17 were obtained in this manner.

The space-charge density curves plotted in Fig. 17 are not what we

might have anticipated. The value of x = 1.84, which we previously found

to yield maximum power output, is not the critically bunched condition.

The double-peak in this curve indicates overbunching with two distinct

groups of electrons flowing through the catcher resonator a short time

interval apart. The critically bunched condition, i.e., the condition of

maximum bunching, corresponds to x = 1.0. Since the power output and

efficiency vary directly as Ji(x), Fig. 11 shows that the maximum theo-
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retical power output and efficiency for the critically bunched condition is

24 per cent lower than for the overbunched value of x = 1.84.

The convection-current density at any point in the electron stream is

the product of charge density times velocity. The convection-current

density at the buncher and catcher resonators is J\ = qr\vi qrQv and

/2 = Qr2^2 ~ (?T2*>o- The convection-current density at the buncher is prac-

tically equal to the current density J just before the buncher; hence we

-1.5

X=I.O .

\

X-L84

-1.0 -0.5 0.5 1.0 1.5

FIG. 17. Plot of QTZ/QTO and J*/Jo as a function of arrival phase angle.

may substitute J\ = JQ .

equations, we obtain
Making this substitution and dividing the above

tfrO

(5)

We find, therefore, that the curves of Fig. 17 may be used to represent
either the charge-density ratio qT2/QrQ or the convection-current density
ratio /2//o.

.The beam current has a high harmonic content. Thejmrrent induced
in the^catchcr resonator has a> similar waveform This^ current can be

analyzed by Fourier .series to obta^thej-c component, fundamental arc

component, and higher harmonic components^ The catcher resonator may
be fime3jiaany harmom^c^l^^uich^ The a-c comjpon^ts
of current have amplitudes proportional to Jfn(mx) J

where m is the order

of the harmonic. ~~TKe~^5ower output for the mth harmonic is Pac

, where Vm is the voltage developed across the catcher resonator
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for the mth harmonic. If Vm and Im are the peak values of the mth har-

monic voltage and induced j^uirent^jitj^ the_timg-

average power output is t*ac=* Fmjm/j. Equating this to the power out-

put obtained previously, and solving for 7m,
we obtain

The effective impedance of the resonator at jhe mth harmonic of the

buncher voltage is

Zm - ^ (7)
Im

If the catcher resonator is operating at its resonant frequency, the reso-

nator impedance is a pure resistance.

When the klystron is used as an oscillator, the buncher and catcher

resonators are tuned to the same frequency~ahd we have m = 1 in the

above equations. The klystron may be used ss~a frequenc^muItTplier^in
which case fee catcher is tunecTto^^ aTiarmonTcI qf tlie.bunchei:.-Voltage.

The resonant impedance of a resonator is determined by the geometry
of the resonator, the loading, and the electronic effects due to the beam
current. In general, the impedance is increased by increasing the effective

L/C ratio, which means increasing the volume and decreasing the capaci-

tance between grids.

6.11. Operation of the Klystron. In the tuning of the klystron it is

necessary to make simultaneous adjustment of a number of variables.

These include the grid voltage, the d-c accelerating voltage, and the tuning
of the two resonators. The tuning procedure may be simplified by con-

necting a 60-cycle alternating voltage of from 50 to 100 volts in series with

the d-c accelerating voltage. The accelerating voltage may then be ad-

justed to the approximate value required for oscillation and left at this

value while the remaining adjustments are made. The presence of oscilla-

tion may be observed by means of a crystal detector and microammeter

connected to the klystron output. The 60-cycle a-c voltage is removed

during the final adjustment..

Power outputs of the order of a fraction of a watt to several hundred

watts are obtainable with klystrons at wavelengths of the order of 10 centi-

meters or less. Actual efficiencies run far below the ideal efficiency of 58

per cent. This may be attributed to space-charge effects causing debunch-

ing of the electrons, collisions of electrons with the grids, secondary emis-

sion at the grid, power consumed in bunching the electrons, transit-angle

delay of electrons in their passage through buncher and catcher grids, and
losses in the resonators.

The frequency stability of the klystron oscillator is dependent upon the

temperature of the resonator as well as the stability of the power-supply
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strut alters the spacing between grids. The coaxial output lead is coupled
to the resonator by means of a small coupling loop which is clearly shown

in the photograph. This tube has an output rating of 100 milliwatts and

can be tuned over a range of 20 megacycles by varying the potential of

the reflector electrode.

Figures 25a and 25b are photographs of a McNally tube. This tube is

st reflex klystron which is used in conjunction with an external resonator

(not shown in the illustration). The resonator is clamped to the grid disks

and is usually tuned by screw plugs. This tube has a rating of 75 milli-

watts at wavelengths of 8 to 12 centimeters.

In recent years considerable effort has been devoted to the development
3f reflex klystrons which can be tuned over a broad band of frequencies.

1""3

For practical reasons, it has been found desirable to build the tube and

"esonator as separate units. The McNally type of tube is used and the

resonator usually consists of a coaxial line which contains an adjustable

short-circuiting piston at one end for tuning. The line may operate either

is a J^ wavelength or a ^ wavelength resonant line, with a voltage maxi-

mum appearing at the klystron grids. Power output is obtained by coup-

ling either a probe or a loop to the resonant line. Tuning is accomplished

by the simultaneous adjustment of the reflector voltage and the length of

line.

l^In Eq. (6.13-10)itwag_hQwn that ajuimber pfjMerentjnodes o(_oscil-

[ation can exist in a reflex klystron, the various modejjsorrespondingjto
iifPergnrtrridues of lte"iiTteg^r7gr*Tii ^general, the power output increases

ivithdecreasing values of n, but thg^SSJity^TKe oscillator under variable

load conditions becomes poorer. If too large a value of n is used, the fre-

quency ot the oscillator^sseriously affected by small changes irf VR. It

has beeji found that^values ofjft from 1 tq 5 offer^the most stable performance,

with n = 3 being preferred. The mode of oscillationjs determined7~iii

voltage^ Consequently, inlttfempting to obtain con-

binuous tuning by varying VR and the length of line, it is found that mode

jumping may occur, resulting in an abrupt change in frequency and powei

Dutput. For example, if the resonant line was operating as a % wave-

length resonant line, the new frequency may be such that the line operates

is a % wavelength line. This tendency of mode jumping makes it difficull

bo obtain continuous tuning over a large range of frequencies. Despite

this limitation, however, reflex klystrons have been constructed with tuning

1 NELSON, R. B., Methods of Tuning Multiple-Cavity Magnetrons, Phys. Rev., vol. 70

p. 118; July, 1946.
* KEARNEY, J. W., Design of Wide-Range Coaxial-Cavity Oscillators Using Refle?

Klystron Tubes in the 1000 to 11,000 Megacycle Frequency Region, Proc. Nationa

Electronics Conference, vol. 2, pp. 624-636; October, 1946.
8
CLARK, J. W., and A. L. SAMUEL, A Wide-Tuning-Range Microwave Oscillator Tube,

Proc. I.R.E., vol. 35, pp. 81-87; January, 1947.
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ranges exceeding 2 to 1 in the range of frequencies from 1,000 to 11,000

megacycles.
^

Another recent development
l consists of a velocity-modulated tube in

which the electron bunches oscillate back and forth, passing through the

resonator grids during successive cycles of oscillation in a manner similar

to that of electron oscillation in the positive-grid oscillator. A mathe-

matical analysis of this type of tube has shown that the electrons will be

bunched at the center of the resonator grids during successive cycles of

Tuning
capacitance

.Coating water

Focused
electron
beam

Anode
cavity

Bellows-

^'lament-

Slidingsylphon
bellows for
tuninganode
cavity

'Cathode-grid
cavity

-Anode fins

^Screen grid

'Screen grid

^Control grid

Tungsten filament wires

(a)

FIG. 26. Sectional view of the resnatron.

oscillation if the d-c potential has a parabolic distribution on either side

of the resonator grids. Efficiencies exceeding 40 per cent have been ob-

tained with this type of tube.

6.15. The Resnatron. 2> 3 The remarkable performance obtained with

resnatron tubes indicates that this type of tube holds considerable promise
for the future. At present, tubes have been built which deliver continuous

power outputs of 85 kilowatts with anode efficiencies of 60 to 70 per cent,

operating in the frequency range from 350 to 650 megacycles. It appears

quite likely that the frequency range of this type of tube can be extended

farther into the microwave-frequency spectrum.
The resnatron, shown in Fig. 26, is a cylindrical tetrode with an input

resonator between the cathode and control grid and an output resonator

1

COETERIER, F., The Multireflection Tube A New Oscillator for Very Short Waves,
Philips Tech. Rev., vol. 8, pp. 257-266; September, 1946.

2
SALISBURY, W. W., The Resnatron, Electronics, vol. 19, pp. 92-97; February, 1946.

9 Dow, W. G., and H. W. WELCH, The Generation of Ultra-High Frequency Power
at the Fifty Kilowatt Level, Proc. National Electronics Conference, vol. 2, pp. 603-614;
October 1946.
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between the screen grid and anode. The input and output resonators are

coupled together by an external coaxial line when the tube is used as an

oscillator. The control grid is biased beyond cutoff so that the operation

of the tube is similar to that of a class C triode oscillator. However, the

resnatron differs from the triode oscillator in two important respects. In

the triode tube, the electrons are simultaneously accelerated by the d-c

field and retarded by the a-c field. This results in relatively low electron

velocities and the electron transit times may therefore be excessively large

at microwave frequencies. In the resnatron, the electrons are accelerated

by the d-c field between the control grid and screen grid and consequently
attain a high velocity before entering the a-c field between the screen grid

and plate. This results in an appreciable reduction in electron transit

time through the a-c field, making it possible to obtain greater power output
and higher efficiency. Also, by coupling the input and output resonators

together by means of an external coaxial line, it is possible to vary the

length of this line and thereby introduce any desired amount of phase shift

between the two resonators to compensate for electron transit-time delay.

In this way the electron bunches are made to traverse the a-c field between

screen grid and plate at the optimum phase angle for maximum power

output.

The cathode of the resnatron of Fig. 26 is the dark, shaded portion.

This consists of 24 pure tungsten filament wires, each about 1 inch long,

which are hard soldered to two copper rings. Quarter-wavelength chokes

are placed on the cathode rod below the cathode to prevent radio-frequency

loss. The control grid is a piece of copper tubing containing a number of

longitudinal slots, one for each filament wire. The screen grid consists of a

squirrel-cage grid of copper tubing. This is connected to the anode struc-

ture; hence the screen grid and anode are at the same d-c potential. The

anode is a copper annular ring containing fins which project radially inward.

By properly shaping the cathode, control grid, and screen grid electrodes,

the electron beam may be focused in such a way as to minimize screen-grid

current, thereby preventing high screen-grid dissipation.

Both the input and output resonators consist of coaxial lines which are

effectively % of a wavelength long, with the maximum a-c voltage points

located at the tube electrodes. The input resonator is tuned by means of a

lumped capacitance, shown at the top of the resonator in Fig. 26. The

output resonator is tuned by means of a plunger and an expanding bellows,

which is shown at the top of the output resonator. The output loop is

coupled to a wave guide which has cross-sectional dimensions 6 by 15

inches (for 650 megacycles). Vacuum is maintained by an exhaust pump.
For typical operating conditions, the anode potential is 17J^ kilovolts,

control-grid potential 2,500 volts, filament current 1,800 amperes, and

grid current 1 J^ amperes.
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6.16* The Traveling-wave Tube.1"* The traveling-wave tubfijgjt new

type of tube which has shown considerable promise as a broad-band ampli-

fier. As shown in Fig. 27, the tube contains a closd^w^^^wi^Jtielu
through whichjmjejtec^ is

impressed upon^ the
Jhejixjat

the input end of the tube and takes the form

ofa wave^avelliQ^alQngjthe. heUx^ "The infera^tonjrf the electron.stream

and the travelin^[a^ejesultsjn a,niampHfi^tionqf_ the signal as it.pro-

presses along'tKe helix. The^mplified signal is_then.remQYedAtihejatput
end of thelhelix.,

TfIbhe length of wire in the helix is n times asjong^the helix, th^velocity
of the traveling wave is approximately i; ==

v_
c/nf

where vc is the velocity of

The electrons^enter the helix with ^velocity slightly greater than

Collector

Heater ^Cathode

FIG. 27. Traveling-wave tube.

that of the traveljn_waye and tend to become bunched as they, travel

tKn^gh the helixT Those elec^on^whjch_ aj;e
retarded by the a-c field

of the traveling^yave sliSw^doxvn, while those electrons which are accelerated

BylHe a-c field speed up and overtake the preceding slower electrons.

IrTtEs way the electrons tend to bunch in the regions of the retardingjt-c

field.^
This results m energy transfer from the electrons to the traveling

wave, thereby building up the amplitude of the wave. The increase in

amplitude^ the traveling wave is somewhat analogous to the building up
cJ~water waves by a wind blowing past them.

A longitudin^ma^etLcJLeld jfe.ot_dipvm in Fig.J27)Js used to focus the

electrons, thereby compelling them to travel in a direction parallel to. the

axis of the helix. ElecS^35J:1^ ^a^etic field are

nofaffecteJby the magnetic field^
but electrons which have ajcomppnent of

naotionTacrbss the field experiencg^a torqujerwhlch ^ to_fprce them to

move in the direction of the magnetic field.

1
PIERCE, J. R., Traveling-Wave Tubes, Proc. I.R.E., vol. 35, pp. 108-111; February,

1947.
2
PIERCE, J. R., Theory of the Beam-Type Traveling-Wave Tube, Proc. I.R.E., vol. 35,

pp. 111-123; February, 1947.
a KOMPFNER, R., The Traveling-Wave Tube as an Amplifier of Microwaves, Proc.

LR.E., vol. 35, pp. 124-127; February, 1947.
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The traveling-wave tube shown in Fig. 27 is untuned and therefore

operates as a broad-band amplifier. Bandwidths as high as 800 megacycles
have b^nTealized with thistype" of tube. This is of the order of 80 times

the bandwidtFT possible in a single stage video amplifier using a conven-

tional pentode tube.

PROBLEMS

1. A positive-grid oscillator, connected as shown in Fig. 1, has a d-c potential difference

of 100 volts between grid and plate (or cathode) and a peak a-c potential of 75 volte.

The distance between the cathode and plate is 1 cm and the grid is midway between
the cathode and plate. Compute the frequencies of oscillation of electrons which
leave the grid plane at values of </>

**
0, 7r/2, *-, and 3ir/2. What would be the approxi-

mate frequency of electrical oscillation as a Gill-Morrcli oscillator? What would be
the approximate frequency of electrical oscillation as a Barkhausen-Kurz oscillator?

2. Derive expressions for the power input, power output, and conversion efficiency of an

electron moving in the grid-plate region of the positive-grid oscillator shown in Fig. 1.

The grid to plate (or cathode) voltage is V = Vo Vi sin ut and the electron leaves

the grid plane at the phase angle <t>. Assume that the alternating potential is small

and therefore that the electron velocity is determined by the d-c potential only.

3. A double-resonator klystron is tuned to a frequency of 3,000 megacycles. The dimen-

sions of the klystron, as shown in Fig. 10, are d\ dz 0.1 cm and s 2 cm (see

Fig. 10). The beam current is /o = 25 ma and the ratio of Vz/Vo is 0.3. The two
resonators are assumed to oscillate in time phase.

(a) Compute the d-c accelerating voltage, buncher voltage, and catcher voltage

required for maximum power output for integer values of n from 1 to 5.

4. Compute the power output, power input, and maximum theoretical efficiency of the

klystron given in Prob. 3, using values of n = 2 and 3. In computing the efficiency,

take into consideration the reduction in efficiency caused by the electron transit time

delay in passing through the catcher resonator.

5. Obtain a mathematical expression for the curves of Fig. 17 by differentiating Eq.

(6.10-1) and substituting this into Eq. (6.10-4) to eliminate w<o. What values of

<o<i and o>/2 correspond to infinite values of r2/9rO for x 1.0 and x = 1.84?

6. A reflex klystron is tuned to a frequency of 5,000 megacycles. The distance s is

0.5 cm (see Fig. 19). What values of VQ/(VR Vo)
2 are required for oscillation

corresponding to n * 1 to 5? Specify values of VQ and VR which will produce oscil-

lation.

7. Derive the equations for the power output, power input, and efficiency of the re-

flex klystron.

8. Using Eq. (6.13-10) derive an expression for df/dVn for the reflex klystron. Assume
that VQ 350 volts, s = 0.5 cm, / 5,000 megacycles, and n = 4. Compute the

frequency change for a 1-volt change in reflector potential.



CHAPTER 7

MAGNETRON OSCILLATORS

During the early stages of the war, the urgent quest for a suitable

microwave generator, capable of delivering large power output at high
efficiencies under pulsed conditions, for use in high-definition radar, led to

the development of the multicavity magnetron. The British brought to

the United States an early model of the multicavity magnetron in the fall

of 1940 and demonstrated its potentialities as a source of microwave power.
Thereafter its development proceeded rapidly under the stimulus of an in-

tensive wartime research program.
7.01. Description of Multicavity Magnetrons. A cutaway view of a

10-centimeter multicavity magnetron is shown in Fig. 1. (This contains

an indirectly heated oxide-coated cathode and a laminated copper anode.

The anode block is bored or broached to provide for eight identical cylin-

drical resonators. A pickup loop in one of the resonators is connected to

the external circuit by means of a vacuum-sealed coaxial line to provide
the power-output connection. The magnetron of Fig. 1 contains disk-

shaped fins for forced-air cooling. ^

Figure 2 shows a 10-centimeter magnetron and a 3.2-centimeter magne-
tron, complete with alnico permanent' magnets. The output of the small

magnetron is coupled to a wave guide through a vacuum-sealed dielectric

window.

^ In the operation of the magnetron, a high d-c potential is applied be-

tween cathode and anode
f setting up a' radial electric field.' Anjmal mag-

netic^ field is provided by_either a permanent magnet or an electromagnet.
Electrons emitted from the cathode

_ experience a fprce_directed radially
outward dun jQ_tfre d-c electric JieLl apd_ .a. force perpendicular to their

instantaneous direction ofjnotion due..to.the magnetic field. The combined
forces causeJbhe electrons to take a spiral patly the radiua^Qf cuuy&fcurje of

which decreases with increasing magnetic field^strength. y?OT j&j^iyen.value

of d-c anode potential,there is a critical value o^magnetiaJiekL strength
which

causesfohe electrons to just graze the angdejU,' This value of magnetic

fieldLstrength is known as_the cutoffjralue. If the magnetic field, strength
exceeds the cutoff value, the curvaturqjrf the electron patk-ia^uciL.that
the.Jglggtrons miss Jjie anode and spiral back to the cathode.l Magneti
field strengths of the order of one to two times cutoff are nor

for oscillationJ) __
112
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The various types of oscillation of a magnetron will be considered in

detail later in the chapter. However, the following brief description is

intended to give an over-all picture of the mechanism of the traveling-wave

type of oscillation.

^JYhen the magnetron is functioning as an oscillator, the electrical oscil-

lation of the resonators setejqp an a-c electric field across the resonator

Fro. 1. Cutaway view of a 10-centimeter cavity magnetron. (Courtesy of the M.I.I
Radiation Laboratory.)

In the multianode magnetron, Such as that shown in Fig. 1. the

a-c fielcfln the interaction space (the space between the cathode and anode)

is"jargely fehgratral. In general, there is a phase differencejbetween the

oscillations of successive resonators which produces a rotating a-c field

The d-c anode potential and the magnetic field strength are adjusted sc

that the whirling cloud of electrons rotates in synchronism with eitherMJM
fundamental or a submultiple component oFthe rotating a-c field.^

ar^accelerated^by. _ ^

/be a-c field, while other electrons rotate in such a ohase as to be retardec
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by the a-c field. Those electrons which are accelerated by the n,-r, field

experience an increase in velocity and a consequent increase in torque re-

sulting from their motion in the magnetic field. This causes these elec-

trons to liave their paths so altered that they spiral back to the cathode

and they are thereby withdrawn from the interaction space. The electrons

remaining in the interaction space are those wEch, on the average, areire-L

tarded by the a-c field. These electrons give energy to the a-c field thereby

nnnf.rihiif.mp; fa thft
"power^oiitput of the magnetron. {&Ta result of this

Fio. 2. Ten- and three-centimeter magnetrons with magnets. (Courtesy of the Western
Electric Company.)

selection process, the electrons form into groups resembling the spokes of

a wheel, with the entire spokelike formationrotating at synchronous speed

with respect to a component of the a-c fielaa

The foregoing description of the operation of the magnetron applies to

the traveling-wave type of oscillation. The magnetron may also operate

as a negative-resistance oscillator or as a cyclotron-frequency oscillator.

These types of oscillation will be described in detail later.

7.02. Magnetrons as Pulsed Oscillators. The magnetron is particu-

larly well suited to pulsed operation, such as is required in radar systems
and pulse-time modulation. In a pulsed system, a high d-c anode potential

is applied to the magnetron for an extremely short interval of time, with

a relatively long time interval between pulses during which the tube is

inoperative. This makes it possible to obtain very high values of peak

power output and still remain within safe limits of average power output
and plate dissipation for the tube.

A water-cooled magnetron, capable of delivering 2.5 megawatts peak

power output at a wavelength of 10 centimeters under pulsed conditions.
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is shown in Fig. 3. A typical pulse cycle for this tube consists of a pulse

duration of 1 microsecond, with 1,000 pulses per second. If the peak

power output is 2.5 megawatts, the average power would be 2.5 kilowatts.

The cathode current during the pulse interval is 140 amperes and the peak
anode voltage is 50 kilovolts.

Pulsed operation of a magnetron imposes extremely severe requirements

upon the cathode. Current densities of the order of 50 amperes per square
centimeter are sometimes required. Experiments have shown that the

FIG. 3. High-power cavity magnetron. (Courtesy of the M.I.T. Radiation Laboratory?)

cathode current under pulsed conditions may be many times the current

obtainable when the tube is not oscillating. The reason for this very large

cathode current is not entirely clear. One possible explanation is that part

of the electrons (those rotating in an unfavorable phase with respect to

the a-c field) return to the cathode with relatively high kinetic energy and

consequently splash out secondary electrons. Since a portion of the sec-

ondary electrons emitted from the cathode have an unfavorable phase
with respect to the a-c field, these electrons return to the cathode and

splash out other secondary electrons, resulting in a cumulative bombard-

ment of the cathode which builds up the emission to very large values.

Magnetrons designed for short-wavelength operation sometimes depend

entirely upon this bombardment of the cathode by returning electrons to

heat the cathode, there being no additional heater power supplied. Occa-

sionally the back bombardment becomes excessive, resulting in overheating

and damage to the cathode.

Another possible explanation for the high cathode emission is that the

work function of the cathode may be lowered due to relatively large fields

at the cathode surface, ionic conduction, or electrolytic conduction. A
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certain amount of the increased current can be attributed to the space-

charge cloud which has accumulated around the cathode during the qui-

escent period.

Cathodes are usually constructed of a nickel cylinder or a nickel wire

mesh containing an oxide coating. Special oxide coatings have been de-

veloped for the short-wavelength magnetrons to overcome the limitation

of the power output resulting from the small size of the cathode.

FIG. 4. Anodes of 10-centimeter and 3-centimeter magnetrons.
Radiation Laboratory.)

(Courtesy of the M.I.T.

7.03. Electron Motion in Uniform Magnetic Fields. If a charge q is

projected into a uniform magnetic field with an entering velocity v, it ex-

periences a force in a direction mutually perpendicular to its instantaneous

direction of motion and to the direction of the magnetic field. This is

known as the Lorentz force and is given by

/ = qvB sin (1)

where B is the magnetic flux density and is the angle between B and v.

In mks units, B is in webers per square meter.

The Lorentz force may also be expressed in vector notation as a cross

product, thus

/ = 90 X B (2)

The direction of the vector force / is found by applying the right-hand

rule described in Sec. 2.01.

Figure 5 shows the motion of an electron in a uniform magnetic field

when the magnetic field is directed into the page. The force on an elec-
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tron is directed opposite to that of a positive charge, as is evident if we
substitute q = e in Eq. (2).

If the electron moves in a plane perpendicular to the magnetic field, the

path is a circle. The Lorentz force, directed radially inward, is equal and

Electron
sourceJ'XXXXXXXX

1 ' ^ ^' ^'"v' V ^ V V^ ^ j^* ^ ^ ^^\i

X ^X X X X \ X

X /X X X X X X\ X
; / T^-4-e

X l.X X Xr X X XJ.X

x k x
r
/x x x xf^Yc

Xv */ v v v^^v v^\ ^\^ /S ^ ^^ /N XN

xxxxxxxx
Fia. 5. Electron motion in a uniform magnetic field.

opposite to the centrifugal force mv2
/r, where r is the radius of the path.

Equating the magnitudes of the Lorentz and centrifugal forces and setting

sin = 1 in Eq. (1), we obtain

mv2

evB =
(3)

r

The equations for the radius of the path, angular velocity, and period

)f rotation, as obtained from Eq. (3), are as follows:

mv

v eB
a, = - =

(5)
r m
2* 2irm

r - - -
(6)

w eB

The radius of the path varies directly with electrcih velocity and inversely

as the magnetic field strength. The kinetic energy and the magnitude of

the velocity of a charge moving in a stationary magnetic field are constant.

In general, a stationary magnetic field can neither give energy to nor take

energy from a charge moving in the field.

7.04. Electron Motion in the Parallel-plane Magnetron. Let us now
consider the electron trajectories and cutoff criterion for the idealized

parallel-plane magnetron shown in Fig. 6. The electric intensity is directed

in the negative z direction, and the magnetic intensity is assumed to be

y directed.
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The vector force on a charge in combined electric and magnetic fields is

obtained by adding Eqs. (2.06-1) and (7.03-2), yielding

/ = -e(S + vXty (1)

This force may be expressed in terms of its scalar components. The z-

directed force includes a component due to the electric field and a Lorentz

force due to the velocity component vx ]
thus fz

= e(E + vxE). The x-

\
A

FIG. 6. Parallel-plane magnetron.

directed force consists only of a Lorentz force due to velocity vzy or fx =
evzB. Equating the force components to mass times acceleration, we
obtain

VZB = Mdx

-e(E + vxB) = maz

(2)

(3)

These equations may be expressed in terms of velocity, by substituting

the relationships ax = dvx/dt and a z
= dv z/dt into Eqs. (2) and (3), and,

with the additional substitution of E = VQ/dt
we obtain

where

dvx

dt

dvz eVv

dt md

-/?
m

(4)

(5)

(6)

Comparing Eq. (6) with (7.03-5), we find that the expression for o>, is the

same as that for the angular velocity in a pure magnetic field.

To obtain an explicit equation in one variable, differentiate Eq. (5) with

respect to time and substitute Eq. (4) for dvx/dt. Since the potential F
is a constant, we have



SEC. 7.04] PARALLEL-PLANE MAGNETRON 119

A solution of this equation is vz = Ci sin <aet + C2 cos ^. To evaluate

the constants, assume that the electron leaves the cathode at zero time

and with zero initial velocity. Substituting these boundary conditions

into the equation for vz we find that C2
= 0. Thus, there remains

Vz = Ci sin wet (8)

To evaluate the constant Ci, differentiate Eq. (8) with respect to time,

yielding dv2/dt = Cicoc cos wet. Now equate this to P]q. (5) and write the

resulting equation for zero time, remembering that when t = 0, we also

have vx = 0. The constant C\ then becomes Ci = eV/ueind. The z com-

ponent of velocity is obtained by substituting the constant C\ into Eq. (8).

The x component of velocity is found by substituting v z into Eq. (5).

The velocity components then become

eV
vg =-- sin <*et (9)

eV
Vx =--

(1
- COS tteO (10)

Inserting vz = dz/dt and vx = dx/dt into the above expressions and inte-

grating, we obtain the electron-displacement equations. The integration

constants are evaluated by assuming that the electron leaves the origin

at zero time; hence when t = we have x = z = 0, and
*

2 = 4^0 -cos '

(11)

\The path taken by the electrons, as determined by Eqs. (11) and (12),

is a cycloid. A cycloid is the locus of a point on the circumference of a

circle which is rolling along a straight line. From Eq. (11), we find that

the maximum displacement of the electron in the z direction occurs when
o)9 t

= ir. The maximum displacement is therefore

eB2d

Cutoff occurs when the electron just grazes the anode, or when zmax = d.

Making this substitution in Eq. (13) and solving for the cutoff value of

magnetic flux density, we obtain

(14)
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Equation (11) shows that the electron leaves the cathode when wet
=

and returns when wet
= 2ir. The transit time of the electron for one com-

plete cycle is, therefore,

2ir 2irm
T - - -

(15)
we eB

The foregoing equations were derived for electrons moving in a plane

perpendicular to the magnetic field. The relationships are more compli-
cated if the electron has a component of velocity in the direction of the

magnetic field. A parallel-plane mag-

netron, as such, would have little

practical value, since successive oscil-

lations of an electron would soon carry

it out of bounds in the x direction.

7.05. Analysis of the Cylindrical-

anode Magnetron. We now consider

the behavior of electrons in the cy-

lindrical-anode magnetron under d-c

operating conditions. In Fig. 7, the

positive direction of the electric in-

tensity is, by definition, radially out-

ward (the actual electric intensity is

radially inward and therefore is nega-

tive). The magnetic flux-density vec-

tor is assumed to be in the z direction. Cylindrical coordinates p, 0, and

z are

FIG. 7. Diagram for the analysis of the

cylindrical-anode magnetron.

In formulating equations for rotational motion, it is convenient to use

torque instead of force. A fundamental law of mechanics states that

torque is^qual to the time rate,..of.,change of angular momentum. The

Lorentz force on an electron, due to its motion in a magnetic field, is

f = e(v X B), its direction being mutually perpendicular to v and B.

The component of this force is /^
= evpB, and the corresponding torque

is pf+
= pevpB. To derive the angular momentum, we start with the

moment of inertia of the electron mp
2 and multiply this by the angular

velocity d^/At to obtain mp
2
(d<t>/dt). Equating torque to time rate of

change of angular momentum, we get

D dp d /
2
d0\

eBp = I mp* I

dt dt\ dt)

Multiplying both sides of Eq. (1) by dt and integrating, we have

eBp* .**.
Tt

+Cl

(D

(2)
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To evaluate >the integration constant C\ we recall thai_AiL.tbg cathode

(p = a) the angular velocity of the electron d<t>/dt is zero.' Equation (2)

then yields the value of the constant C\ = eBa2/2. Equation (2) therefore

gives the angular velocity as

where, in the cylindrical magnetron, we let

eB
<e = (4)

2m

According to Kq. (3), the angular velocity at the cathode (p
= a) is zero.

The angular velocity increases with radius, approaching an asymptotic
value of d(t>/dt

= we at points such that p a. The value of coc for the

cylindrical magnetron is" one half of the value for the parallel-plane

magnetron.
We need an additional fundamental relationship relating the motion of

the electron to the potential. An electron in motion in an electric field

has a kinetic energy of %mv2 and potential energy of eV. The kinetic

and potential energies are not altered by the presence of a magnetic field.

If the fields are stationary, the sum of kinetic plus potential energy re-

mains constant as the electron moves through the field. Assuming that

the cathode is at zero potential and that the electron is emitted with zero

velocity, the sum of kinetic plus potential energy at the cathode is zero.

Consequently, at any other point in space, we have J^mt;
2 eV = 0.

The velocity has two components: a radial velocity vp and a <t> component

of velocity v^. The resultant velocity is v = V v
2

p + t$. Substitution of

v in the energy equation yields

eV = Mmtf + 4)
1

In order to solve for the cutoff conditions, substitute Eq. (3) into (5),

yielding

At the anode p = b the potential is V = FQ and Eq. (6) becomes
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Cutoff occurs when the radial velocity dp/dt is zero at the anode. Thus,

the condition for cutoff is obtained by substituting B = Be> dp/dt = 0, and

a, - eBe/2m in Eq. (7), yielding

(8)

(9)

where Be is the cutoff value of magnetic flux density. In most magnetrons,

we have b a and Eq. (9) reduces approximately to

1 /8mF 6.75 X 10~6

VVQ (mks units) (10)

The expression for Bc given by Eq. (10) is similar to that of Eq. (7.04- 1-1)

for the parallel-plane magnetron. The foregoing derivations for the cylin-

drical magnetron are valid for any degree of space-charge density. An

B<Bc B=Bc B>Bc

(a) (b) tc)

FIQ. 8. Electron paths in a cylindrical magnetron for various values of magnetic flux density.

electron, moving in a cylindrical magnetron under d-c operating conditions,

describes approximately an epicycloidal path. An epicycloid is the locus of

a point on the circumference of a circle which rolls along the circumference

of another circle (the cathode). The electron paths for several different

values of magnetic field strength are shown in Fig. 8. Cutoff condition

is illustrated by Fig. 8b, and Fig. 8c corresponds to magnetic field strengths

greatly exceeding cutoff.

Equation (9) expresses a critical value of magnetic flux density above

which we would expect the current to drop abruptly to zero. However,

measurements of plate current as a function of magnetic flux density show

a more gradual decrease in plate current, as shown in Fig. 9. The gradual

decrease in plate current in the vicinity of cutoff may be attributed to the
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following causes: (1) electrons are emitted from the cathode with random

emission velocities, and (2) electron collisions and space-charge field effects

alter the individual electron velocities.

Magnetic flux density

FIG. 9. Plate current of a magnetron as a function of magnetic flux density and anode voltage

7.03. Negative-resistance Oscillation. The negative-resistance mag-

netron utilizes a split-anode construction, usually having two anode seg-

ments. Since this type of magnetron is seldom used at frequencies exceed-

+150 volts + 150 volts

Electron

path

+50volh
(a)

+50 volts

(b)

Fia. 10. Electron paths in a split-anode magnetron having different values of d-c potential

applied to the two anode segments.

ing 800 megacycles, the resonant circuit is usuallyjnounted external to the

tube. A common type of resonant circuit consists of a transmission line
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having one end connected to the two anode segments and with an adjust-

able short-circuiting bar at the other end.

Oscillations occur in a negative-resistance oscillator by virtue of a static

negative-resistance characteristic between anode voltage and anode cur-

rent. Kilgore
l showed that if the two anode segments have different values

of d-c potential with respect to the cathode, within a certain range of

potentials, the electron orbits are

such that a majority of electrons

travel to the least positive anode.

This negative-resistance character-

istic makes it possible to utilize

the magnetron as a negative-resist-

ance oscillator. Power outputs of

several hundred watts at efficien-

cies as high as 50 to 60 per cent

have been obtained by this means.

In this type of oscillator there is

no relationship between electron

transit time and the period of elec-

trical oscillation other than the

requirement that transit time be

small in comparison with the

period of electrical oscillation.
^

/

In order to account for flie

negative-resistance characteristic,

200
100 200 300 400 500 600 700

v,-v2

Fia. 11. Negative-resistance characteristic of

the split-anode magnetron.

Kilgore took photographs of the

electron paths in a magnetron. A
small amount of gas was admitted

to the tube so that ionization of

the gas by the electron stream

provided a luminous trace of the electron path. A shield, placed over

the cathode, contained a small aperture in order to confine the emission

to a single spot on the cathode surface. The electron paths shown

in Fig. 10 were obtained in this manner. These show a tendency of the

electrons to spiral out of the region of high potential and into the region

of low potential, eventually terminating at the low-potential anode segment.

Figure 11 shows the negative-resistance characteristic of the magnetron
obtained in this manner.

7.07. Cyclotron-frequency Oscillation. One type of oscillation of a

magnetron has been found to have a period of electrical oscillation which

is approximately equal to the electron transit time from cathode to the

1 KILGORE, G. R., Magnetron Oscillators for the Generation of Frequencies Between

300 and 600 Megacycles, Prtc. I.R.E., vol. 24, pp. 1140-1158; August, 1936.
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vicinity of the anode and back to the cathode. This transit time is known
as the cyclotron period of the electron; hence the associated oscillation is

referred to as the cyclotron-frequency type. For this type, the product \H
is a constant, specifically

\H = 12,000 (mks units)

= 15,000 (emu units)

Cyclotron-frequency oscillations may exist in either a single-anode or a

split-anode magnetron. If a single-anode magnetron is used, the resonant

circuit is connected between cathode and anode. The selection process,

FIG. 12. (a) Path of an electron which gains energy from the a-c field, and (b) path of an

electron which gives energy to the a-c field. The spirals represent projections of the electron

path.

whereby the unfavorable electrons (those which take energy from the a-c

field) are withdrawn from the interaction space, while the favorable elec-

trons (those which give energy to the a-c field) are allowed to continue to

move through the interaction space, is similar to that described in Sec.

7.01. Briefly, this process may be stated as follows: Those electrons which

take energy from the a-c field have their orbits altered in such a manner

that 'they return to the cathode and thereby are withdrawn. The elec-

trons which give energy to the a-c field have their orbits altered in such a

manner that they remain in the interaction space. These two cases are illus-

trated for the parallel-plane magnetron in Figs. 12a and 12b, respectively.

Consider the electron paths in the parallel-plane magnetron under oscil-

lating conditions. Equation (7.03-4) shows that the radius of curvature

of an electron in a pure magnetic field varies directly with the velocity of

the electron. Similarly, in a parallel-plane or cylindrical magnetron, the
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radius of curvature varies more or less directly with the velocity of the

electron. An electron which takes energy from the a-c field experiences an

increase in velocity; hence the radius of curvature of the path increases as

shown in the spiral of Fig. 12a.

Conversely, an electron which gives energy to the a-c field experiences

a decrease in the radius of curvature of the electron path as shown in the

spiral of Fig. 12b. The electron which gained energy from the a-c field

would strike the cathode during the first cycle of oscillation and would

thereby be removed, whereas the electron which gives energy to the arc

field would continue to travel through the interaction space. The

cylindrical-anode magnetron can be vuisalized as a parallel-plane magne-
tron rolled into a circle, allowing the cathode radius to decrease. The
electrons having unfavorable phase terminate at the cathode, while those

oscillating in a favorable phase terminate at the anode.

In the cyclotron-frequency type of oscillation, the electrons in the inter-

action space gradually fall out of phase with the a-c field and it is necessary
to provide some means of removing them before they begin to take energy
from the a-c field. This can be accomplished by tilting the magnetron
with respect to the magnetic field. The electrons are then given an axial

component of motion, causing them to spiral down the interaction space

and out the end of the tube. Another method consists of placing end plates

perpendicular to the cathode and insulated from the cathode at either end

of the tube. The end plates are given a positive potential so as to attract

the electrons, thereby withdrawing them from the interaction space after

several cycles of oscillation. The difficulty of removing the electrons at

the appropriate time in their orbits, before they start taking energy from

the a-c field, constitutes the principal drawback of the cyclotron-frequency

oscillator. The efficiency of this type of oscillation is considerably lower

than that for the traveling-wave type, being of the order of 10 to 15 per

sn*.

^7.08. Traveling-wave Oscillation.^-^Most of the magnetrons in prcs-

mt-day use are designed for operation in the traveling-wave modes of oscil-

ation. To produce this type of oscillation, a multicavity magnetronjsuch
as that shown in Fig. 1

Ijs required.)
The traveling-wave type of oscilla-

tion was briefly described in Sec. 7.01. As previously explained/the phase

difference between the electrical oscillations of successive resonators is such

as to produce a rotating a-c field or a traveling wave in the interaction

1
FISK, J. B., H. D. HAQBTBUM, and P. L. HARTMAN, The Magnetron as a Generator

of Centimeter Waves, Bell System Tech. /., vol. 25, pp. 167-348; April, 1946.
2
BRILLOUIN, L., Theory of the Magnetron, Phys. Rev., part I, vol. 60, pp. 385-396;

September, 1941; part II, vol. 62, pp. 165-167; August, 1942; part III, vol. 63, pp. 127-

136; February, 1943.
1 BRILLOUIN, L., Practical Results from Theoretical Studies of Magnetrons, Proc

I.R.E., vol. 32, pp. 216-230; April, 1944.
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space. The electron space-charge cloud whirls around in the interaction

space with a mean angular velocity equal to the angular velocity of a com-

ponent of the rotating field. Those electrons which rotate in such a phase
as to take energy from the a-c field have their paths altered in such a man-
ner that they spiral back to the cathode and are therefore withdrawn from

the interaction space. The remaining electrons are grouped in a spoke-
like formation, with the spokes rotating synchronously with the a-c field

and in such a phase that the electrons are retarded by the tangential com-

ponent of the a-c field. The paths of the individual electrons are approxi-

mately epicycloids, and the electrons which have a favorable phase even-

tually terminate at the anode.

Since the electrons are retarded by the tangential component of the a-c

field, it would appear that they would slip behind the rotating field and

gradually fall into an unfavorable phase in a manner similar to that of the

cyclotron-frequency oscillation. However, in the traveling-wave type of

oscillation there is a "phase-focusing" effect due to the radial component
of the a-c field which tends to keep the electrons rotating synchronously
with respect to the rotating a-c field. If an electron "leads" the retarding

a-c field, the force due to the radial component of the a-c field is directed

inward (toward the cathode). The resulting radial component of velocity

in the magnetic field produces a torque in such a direction as to decrease

the angular velocity of the electron. Conversely, an electron that "lags"

the retarding a-c field will experience a force that is directed radially

outward because of the radial component of the a-c field, and a torque,

caused by the magnetic field, which tends to increase the angular velocity.

Thus, the phase-focusing action tends to retard the leading electrons and

speed up the lagging electrons, thereby keeping the space-charge cloud

rotating in synchronism with the retarding a-c field,
j

In the cyclotron type of oscillation, the a-c field is radial, whereas in the

rtraveling-wave type of oscillation, the a-c field is largely tangential) In

traveling-wave modes, the electron paths would be similar to those shown
in Pig. 12, except that the path of the unfavorable electron, Fig. 12a,

would be tilted downward, whereas the path of the favorable electron,

Fig. 12b, would be tilted upward. The favorable electrons therefore

eventually terminate at the anode and it is not necessary to make special

provision to remove the electrons from the interaction space at a certain

point in the electron cycle, as was required for the cyclotron-frequency

oscillation.

The operation of the magnetron as a traveling-wave oscillator resem-

bles, in many respects, the operation of a polyphase a-c generator. In this

analogy, the resonators of the magnetron correspond to the armature poles

on the stator of the generator. The space-charge spokes in the magnetron
are analogous to a salient-pole rotor in the generator. In the case of the
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generator, the rotating magnetic field set up by the rotor induces emfs in

the armature windings on the stator. The polyphase currents flowing in

the stator windings produce a rotating magnetic field in the air gap be-

tween the rotor and stator. The reaction of this stator field back upon
the field of the rotor tends to retard the rotor. If the rotor is to continue

to revolve at constant angular velocity, it is necessaiy to supply sufficient

mechanical power to the rotor to overcome the retarding force due to the

armature field, as well as to make up for the mechanical losses in the

generator.

Considering now the(magnetron,
we find that the rotating space-charge

bunches induce emfs (and currents) in the resonators,Analogous to the

induced in the stator windings of the generator by the rotor field.

The resulting electrical oscillation of the resonators sets up a rotating

slectric field in the interaction space which reacts back upon the electrons,

bending to slow them down. /This is analogous to the reaction of the stator

ield back upon the rotor of the generator, (in the magnetron the electron

ounches tend to lead the retarding a-c field, while the phase-focusing effect,

previously .described, tends to keep the electrons rotating at synchronous

speed with respect to the rotating field. The electrons gain energy from

the d-c field as they spiral outward.)
This is comparable to the mechanical

power supplied to the shaft of the generator. .

7.09. Analysis of Traveling-wave Modes of Oscillation.1

Jn the travel-

ing-wave type of oscillation of a magnetron, the electrons rotate at syn-

chronous speed with respect to a component of the a-c field.' /Our analysis

will therefore deal,) on the one hand, Qvith the evaluation 01 the angular

velocities of the electrons in terms of tKe magnetic field strength, d-c po-

tential, etc., )and, on the other hand, (with the resonant frequencies of

resonator systems and the traveling waves which are set up by the reso-

nator
fields.)

Consider, for example, the magnetron shown in the developed view in

Fig. 13. Each curve represents a plot of the a-c component of potential

difference between the cathode and a point on the anode circle. The

potential curves are plotted as a function of angle, with the various curves

representing potential distributions at different instants of time. The po-
tential is constant across the face of the anode and varies linearly across

the gap.

The traveling-wave type of oscillation may have a number of different

modes of oscillation. These correspond to the various resonant frequencies

of the resonator system as well as to various angular velocities of the elec-

trons which will react favorably with the field to produce oscillation. The

particular mode shown in Fig. 13 is known as the v mode. This mode is

1 The treatment of the traveling-wave modes of oscillation presented here is similar

to that given in reference 1, loc. dt.
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characterized by a phase difference of v radians between the electrical oscil-

lation of successive resonators. The electric intensity (and hence the force

on the electron) are proportional to the slope of the potential curve. A
negative slope of the potential curve indicates that an electron in that

particular position is being retarded by the a-c field.

The dotted lines in Fig. 13 represent the progress of electrons which

travel in such a manner as to be retarded by the tangential component of

i \^-
k=28 20 12 4

Fio. 13. Potential distribution in an eight-resonator magnetron oscillating in the mode.
The various curves represent different instants of time. Dotted lines represent the progress
of electrons that travel in a favorable phase.

the a-c field of successive resonators. These electrons, therefore, give

energy to the a-c field, thereby contributing to the power output of the

magnetron. The angular velocity of a particular electron is inversely pro-

portional to the slope of the dotted line in Fig. 13. An electron may have

any one of a number of discrete angular velocities (corresponding to the

various dotted lines in Fig. 13) and still be retarded by the a-c field of

successive resonators.

A convenient relationship may be derived, relating the electrical fre-

quency of oscillation to the angular velocity of the electron. An electron,

having an angular velocity d$/dt, travels once around the interaction space
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(2w radians) in a time 2ir/(d<t>/dt) seconds. For a magnetron having N
anodes, the time T\ required for the electron to traverse the distance from

the center of one anode gap to the center of the next adjacent anode gap

(from A to B in Fig. 13) is

T1

(d<t>/dt)N

Now consider the phase relationships of the a-c field. Since the field at

any point in the interaction space is single valued, the total phase shift

around a closed path is 2irn radians, where n is an integer representing the

number of cycles of phase shift around the closed path. Since there are

N resonators, the phase difference between the oscillations of two adjacent

resonators is

(2)N
where n may take integer values from zero to N/2.
Assume that the electron has the same direction of rotation as the a-c

field. The traveling electron then sees a phase difference between corre-

sponding points of two successive resonators (points A and B in Fig. 13)

of cojfi 6 radians. Since the electron is to experience a maximum re-

tarding force in both positions, this phase shift must be an integral multiple

of 2ir radians, or

uTt - B = 2wp p =
0, 1, 2, (3)

By substituting 6 from Eq. (2) and TI from Eq. (1) into Eq. (3) and solv-

ing for w, we obtain for the angular frequency of electrical oscillation,

d<t>

CO = ]N -|*R W
dt

' '

dt

where
/ n\

r 0)

Equation (4) expresses a relationship between the oscillating frequency
of the magnetron and the angular velocity of the electron. The constant

k may take any one of a number of values as given by Eq. (5), the various

values representing different modes of oscillation.

The value of co in Eq. (4) must also coincide with a resonant frequency of

the resonator system. A system of coupled resonators, such as that used

in a magnetron, has a number of different resonant frequencies; hence, w

may represent any one of the resonant angular frequencies.

Under d-c operating conditions, the angular velocity cf the electrons, as

expressed by Eq. (7.05-3), was found to increase from a value of zero at
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the cathode to a limiting value of d$/dt = eB/2m at distances where

p ^> a. Under dynamic conditions, however, most of the electrons rotate

with constant angular velocity, in synchronism with the a-c field. Since

the favorable electrons are retarded by the a-c field, it is apparent that the

synchronous angular velocity must be less than the limiting value for d-c

operating conditions.

An approximate expression for d<t>/dt may be obtained by assuming that,

at some radius p', the radial forces on an electron due to the electric and

magnetic fields are equal and opposite. The force on the electron due to

the d-c field, neglecting the variation of the field with radius, is / = eE =

eVo/(b a). The radial force due to the motion of the electron in the

magnetic field is / = ev^B = eBp' d^/dt. Equating these forces, and solv-

ing for the angular velocity at radius p', we obtain

d<t> J FO

~dt

*
P'B(b

-
a)

Inserting this angular velocity into Eq. (4), we may solve for the value of

VQ/B required for a given frequency of oscillation

Fo
__

up'(b
-

a)

~B
~~

JT|

where p' is the as yet undetermined radius at which the radial forces on the

electron are equal and opposite. As a first approximation, we may assume

that this occurs at the mid-point between cathode and anode; i.e., at

p' = (a + 6)/2, giving

FQ _ co(6
2 - a2

)
___ . .

\^yD 9MMLJ
t\
K

I

Equation (8) may be used to determine the approximate frequency of

oscillation if FO and B are known.

Hartree has given a more accurate derivation, similar to Eq. (8), based

upon the assumption that the electrons just reach the anode for an in-

finitesimal amplitude of a-c voltage. His equation is

(9)

2*1i i ii
This is a quadratic equation in terms of frequency, which may be used to

evaluate the frequency if the values of F and B are known. If the final

term .1 Eq. (9) is neglected, this equation reduces to Eq. (8).

From an operational viewpoint, it is necessary to adjust the magnetic
field strength and d-c anode potential of the magnetron to obtain the

proper value of d$/dt which will satisfy Eq. (4) for the desired mode,
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There is a large number of possible modes of oscillation, as expressed by

Eq. (9), although only a few of the modes have any practical significance,

since many of the modes yield low power output and low efficiency. Our

principal concern with the extraneous modes is a defensive one, arising out

of the fact that magnetron oscillations have a tendency to jump from one

mode to another mode under slight changes in operating conditions. This

results in an abrupt change in frequency of oscillation and power output.

This tendency of "mode-jumping" can be remedied by methods which will

be described later.

It should be noted that the value of k in Eqs. (4) and (5) may be either

positive or negative, whereas w is always taken as a positive quantity.

7.10. The T Mode. The most common mode of oscillation is the TT

mode, for which the phase shift between successive resonators is ir

radians. From Eq. (7.09-2) we obtain, for the TT mode, n = N/2. Insert-

ing this into Eq. (7.09-5), the allowed values of k become

k =
(p + 1A)N (1)

Usually the IT mode is operated in such a manner that the electrons

rotate synchronously with respect to the fundamental component of poten-

tial. This requires that p = and hence k = N/2 = n. Inserting this

value of k into Eq. (7.09-4), we obtain the angular velocity of the electrons

d<t>/dt
= 2&/N. For example, the angular velocity of an electron in an

eight-resonator magnetron would be d<t>/dt
= w/4 radians per second.

Let us now consider the a-c field of the TT mode. As shown in Fig. 13,

the potential distribution as a function of the angle is trapezoidal. If we
choose our reference at the center of one of the anode pole faces, then the

Fourier series representing the potential as a function of contains only
cosine terms, thus

Vac = / jVk COS tot COS k<t> (2)

where Vk is the amplitude of the kth harmonic. In the Fourier series rep-

resenting the a-c potential, k must have integer values from zero to infinity.

However, we are interested only in those components in the Fourier series

which react favorably with the electrons; hence we shall consider only those

values of k which satisfy Eq. (1).

Equation (2) may be expanded by a trigonometric identity to give

C S

The first term in Eq. (3) represents a potential wave traveling in the

direction with an angular velocity w/k radians per second. The second
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term represents a wave traveling in the < direction, also with the angular

velocity co/A radians per second.

The potential distribution shown in Fig. 13 constitutes a standing wave.

This is expressed as a Fourier series in Eq. (2). In Eq. (3), each one of

the Fourier-series components representing a standing wave is resolved into

two traveling waves which travel in opposite directions with equal angular
velocities. From the point of view of magnetron operation, the electrons

may rotate approximately synchronously with respect to any one of the

traveling-wave components in either direction of travel.

In order for the electrons to react favorably with the fundamental com-

ponent of the potential wave, we must have p = and hence, from Eq. (1),

k = N/2 = n. The angular velocity of the electrons is then d$/dt =

cu/fc
*= 2w/N. The electrons may rotate in either direction and thus travel

approximately synchronously with respect to either one of the traveling

waves corresponding to the fundamental component. The electrons will

react with a harmonic of the potential wave when they travel approxi-

mately synchronously with respect to the traveling wave corresponding to

that particular harmonic. The harmonics of the potential wave with

which the electrons can react favorably are known as the Hartree

harmonics.

On the average, an electron will transfer power only to that particular

component of the field which has approximately the same angular velocity

as the electron. The power transfer to all other field components will

rapidly alternate between positive and negative values, averaging zero.

7.11. Other Modes of Oscillation. The mode corresponding to

n = is the cyclotron-frequency mode which was previously discussed.

For this mode, we have 6 = 0; hence, the potential of all of the anodes

rises and falls in time phase and the a-c field is essentially radial. The
value of k is k = pN and Eq. (7.09-4) gives o> = pN(d<t>/dt).

For the TT mode, we found that the potential distribution can be repre-

sented by a Fourier series. Any one harmonic component in the series

may be regarded either as a standing wave or as two component traveling

waves which travel in opposite directions with equal angular velocities.

In the more general case, the potential distribution can be represented

by a similar Fourier series of component waves traveling in opposite direc-

tions, thus
fe

k cos (w*
~

k(t> + + Bk cos (w* + ** + ?)1 (^

where 6 and 7 are arbitrary phase constants. This expression differs from

Eq. (7.10-3) for the v mode in that the two oppositely directed waves for

the v mode have equal amplitudes, whereas in the general case, the ampli-

tudes may be unequal.
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In the case of the TT mode, there is no preferred direction of rotation of

the electrons. Either direction will give the same power output. How-

ever, in the more general case, the preferred direction is the direction of

rotation of the stronger potential wave. When the electrons travel in the

direction of rotation of the weaker potential wave, they are referred to aa

drn'ng a "reverse mode."

Fio. 14. Anode potential as a function of angular position and time for the modes corre-

sponding to n 2. Dotted lines represent paths of favorable electrons. Negative values
of k correspond to electrons which are driving a reverse mode.

Figure 14 shows a traveling wave of potential as a function of angular

position and time for a magnetron having eight resonators. The dotted

lines represent favorable electron paths corresponding to various modes.

The electrons corresponding to the k modes are driving a reverse mode.

For the IT mode, the positive and negative values of p in Eq. (7.09-5)

give the same sequence of values of k. However, for other modes, the

sequence of values of k are different for positive and negative values of p.

For example, if we let N = 8 and n =
2, the positive values of p give

k = 2, 10, 18 while the negative values of p give k =
6, 14, 22.

The electric and magnetic field distributions for various modes in a

magnetron having eight resonators are shown in Fig. 15. The electric field
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n-0 ??

i

r^ f fir~~ EH "H m}\\fa rrW"""nni ^
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A AV V V
FIG. 15. Electric and magnetic field distributions in an eight-resonator magnetron foi

various modes. The mode n = 4 is the IT mode.
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is represented by the solid lines in the circular diagram, whereas the mag-
netic field is represented by the dotted lines in the developed view. The

output coupling loop is represented by the arrow in the circular drawing
and by the bar in the center of the developed view. The sine-wave curves

represent the fundamental component of potential as a function of 6. For

the mode n =
1, the potential distribution for the second Hartree harmonic

(p = 1, k = 7) is also shown.^
7.12. Resonant Frequencies of the Resonator System. For the pur-

pose of studying the resonant frequencies of the resonator system, let us

represent a single resonator by a parallel L-C circuit. Since a mutual

coupling exists between the various resonators in the magnetron, the

equivalent circuit would consist of a closed chain of parallel L-C circuits,

with mutual inductance between adjacent circuits.

If two identical parallel L-C circuits are coupled together and shock ex-

cited, the system will oscillate simultaneously at two slightly different fre-

quencies. These two frequencies produce a beat effect, with part of the

energy surging back and forth between the two coupled circuits at the beat

frequency. The two frequencies of oscillation result from the fact that the

mutual inductance can either add to or subtract from the self-inductances.

Flence, the two circuits may oscillate either in phase or TT radians out of

phase, the two cases corresponding to two slightly different resonant fre-

quencies.

A closed chain of N identical resonators, such as that used in the mag-

netron, would have N resonant frequencies, spaced a short distance apart

on the frequency scale. In the case of the two-resonator system, the oscil-

lations of the two resonators differed by a phase angle of either or TT

radians. In the more general case of N resonators arranged in a ring-

shaped configuration, the phase difference between successive resonators

is not restricted to or TT radians, but may have any value provided that

the sum of the phase differences around the closed system shall equal some

integral multiple of 2ir radians. Instead of having the mutual inductance

either add to or subtract from the self-inductance, in the more general

case, there will be a phase difference between the effects of self and mutual

inductance which makes new resonant frequencies possible. As the cou-

pling between resonators decreases, the various resonant frequencies draw
closer together, finally converging upon the resonant frequency of a single

resonator.

7.13. Mode Separation. In the design of a magnetron, it is necessary
to provide some means of compelling the magnetron to oscillate in a single

mode in order to avoid "mode jumping/' To a certain extent, this can be

accomplished by using tight coupling between resonators, thereby sepa-

rating the resonant frequencies as far apart as possible on the frequency

scale.
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A method which is commonly used to minimize the possibility of mode

jumping is to connect the anode segments together by means of conducting

straps in such a manner as to maintain a fixed phase relationship between

the oscillations of the various resonators. Figure 16 shows a magnetron
with two ring straps. Each strap is connected electrically to alternate

anodes so as to compel the potentials of the alternate anodes to oscillate

in time phase. This restricts the possible modes of oscillation to the IT

mode or the mode n =
(for which the potentials of all anode segments

oscillate in time phase). Each of the straps is broken at one point in order

to allow for the asymmetry of the field produced by the coupling loop. The

straps add a capacitative reactance and hence cause a shift in the mode-

frequency distribution.

7

_n \ L

FIG. 16. Strap arrangement for the IT mode.

It has been found advisable to shield the straps from the interaction

space in order to minimize the possibility of the n = mode, since the

strap situated closest to the cathode tends to set up a radial a-c field be-

tween cathode and anode which gives rise to the n = mode. Shielding

can be accomplished by milling grooves in the anode structure and embed-

ding the straps in the grooves.

The "rising-sun" resonator system shown in Fig. 17 provides a means of

obtaining mode separation without the use of straps. The resonator sys-

tem contains alternately large- and small-size resonators. The two sizes

of resonators, taken individually, have widely differing resonant frequen-

cies. When the resonators arc coupled together, as in the magnetron, the

TT mode resonant frequency lies between the two individual resonant fre-

quencies. There are also a number of other resonant modes present in the

coupled system. However, if the two sizes of resonators differ appreciably,

there will be sufficient mode separation to assure relatively stable operation

in the it mode.

Figure 18 shows a comparison of the mode separation of: (a) an un-

strapped magnetron with a conventional resonator system, (b) a heavily

strapped magnetron, and (c) a magnetron containing a rising-sun resonator
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FIG. 17. The "rising-sun" resonator.

3456
Mode number, n

FIG. 18. Plot of wavelengths as a function of mode number for magnetrons having 18

resonators, (a) Unstrapped resonator system, (b) heavily strapped resonator, and (c) "rising-

sun" resonator. The TT mode corresponds to n 9. (Courtesy of the Bett System Tech. Jour.)
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system. The resonant frequencies of the rising-sun resonator fall into two

groups, with the TT mode approximately halfway between the two groups.
The mode separation for this particular rising-sun resonator system is not

quite as great as that of the heavily strapped magnetron, but there are

compensating advantages in favor of the rising-sun resonator.

24

22

20

18

!

o

lie

jf!4

1

10 -1100

Constant magnetic field-gauss
Constantpower output-kilowatts
Constant overall efficiency

Typical operating point

8 12 16 20 24

D-c current I, (amperes

28 32

FIG. 19. Contours of constant magnetic field strength, constant power output, and con-
stant efficiency, plotted against voltage and current for a 10-centmeter pulsed magnetron.
(Courtesy of the Bell System Tech. Jour.}

In the strapped magnetron, the mode separation decreases as the axial

length of the anode increases. This is particularly objectionable in short-

wavelength magnetrons, since the restriction on the anode length imposes a

serious limitation upon the power output obtainable from the magnetron.
In the rising-sun magnetron, the mode separation is not seriously impaired

by anode lengths up to approximately % of a wavelength, which is some-

what greater than the allowable anode length for the strapped magnetron.

Furthermore, in the rising-sun magnetron, a large number of resonators may
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be used and still maintain a reasonable degree of mode separation, whereas

in the strapped magnetron, the modes tend to fall close together when a

large number of resonators are used. The copper losses in the rising-sun

magnetron are somewhat less than those in the strapped magnetron; hence

the efficiency of the rising-run magnetron is higher.

The principal disadvantage of the rising-sun magnetron is the tendency

to operate in the zero mode (n = 0). Because of the asymmetry of the

resonators, the a-c field strength across the gap of the large resonators

160,

140
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iioo

T80

o60
o

40

20

Cutoff //k=

parabola^

Region of

current flow

ind-c

magnetron

60002000 3000 4000 5000

Magnetic field B, gauss

FIG. 20. D-c anode potential against magnetic field strength for various modes of oscillation.

differs from that of the small resonators. Since all of the resonators of

one size oscillate in time phase, the excess field contributes to a zero-mode

field. The magnetron can be designed so as to minimize the possibility of

zero-mode oscillation by avoiding the value \B = 15,000 (X in centimeters,

B in Gauss) required for zero-mode oscillation.

7.14. Representation of Performance Characteristics of Magnetrons.
The performance characteristics of a magnetron can be represented by
a contour plot such as that shown in Fig. 19. This graph shows contours

of constant-power output, constant efficiency, and constant magnetic field

strength as a function of d-c anode voltage and anode current. The partic-
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ular plot shown in Fig. 19 was obtained for an eight-resonator, 10-centi-

meter, magnetron which was pulsed with a pulse of one microsecond dura-

tion and 1,000 pulses per second. The typical operating point represented

by the black dot in the center of the graph corresponds to a peak power

output of 135 kilowatts at 42 per cent efficiency, requiring an anode poten-

tial of 16 kilovolts.

Figure 20 shows a plot of d-c anode potential against magnetic field

strength for various modes in an eight-resonator magnetron. The cutoff

Contours of constant power output
Contours of constant frequency

Fio. 21. Rioke diagram showing contours of constant frequency and constant power output
plotted on an admittance diagram similar to that in Fig. 3 [Chap. 9].

parabola is a plot of Eq. (7.05-10), whereas the straight lines representing
the various modes are a plot of the Hartree equation (7.09-9). The magne-
tron i the same as that for which the performance characteristics are shown
in Fig. 19. The magnetic field strengths required for the various modes of

operation are somewhat greater than the cutoff value, as indicated by the

typical operating point in Fig. 20. The range of values of VQ and B in

Fig. 20 is considerably greater than those used in ordinary practice.

The Rieke diagram is a method of representing the performance char-

acteristics of a magnetron in terms of the load impedance (or admittance).

Figure 21 shows a Rieke diagram consisting of contours of constant-power
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output and constant frequency plotted on an admittance diagram similar

to the Smith diagram described in Chap. 9. These data are obtained ex-

perimentally by varying the load impedance and observing the power out-

put and frequency. The Rieke diagram shows how the operation of the

magnetron is affected by load impedance, thereby making it possible to

select the optimum load impedance.
7.16. Equivalent Circuit of the Magnetron. A useful criterion of oscil-

lation was stated in Chap. 5. Another useful criterion of oscillation is the

admittance criterion, which states the requirements of oscillation in terms

C=i=

(a)

M

(b)

FIG. 22. Equivalent circuit of the magnetron.

of the circuit parameters. Briefly, the admittance criterion of oscillation

states that oscillation will occur if the sum of the admittances looking both

ways at any pair of terminals is zero.

If we apply this criterion to the magnetron, we may take the junction
at the extremities of the anode gap. One of the admittances is then the

circuit admittance looking into the anode at the junction. The other ad-

mittance is the admittance of the electron stream. Representing these by
Yc and Ye, respectively, the criterion of oscillation requires that

Yc + Ye
=

For convenience, we represent the electron admittance by

Ye

(1)

Ge +jBe (2)

In order to facilitate the circuit analysis, the magnetron will be repre-
sented by the equivalent circuit shown in Fig. 22. In this equivalent cir-

cuit, L and C represent the combined inductance and capacitance of N
resonators in parallel, as obtained by multiplying the inductance and
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capacitance of a single resonator by 1/N and AT, respectively. The shunt

conductance Gc represents the loss in the resonator walls. The inductance

of the coupling loop is represented by 1/2 and the mutual inductance be-

tween the resonator and coupling loop is represented by M. The external

load impedance is ZL.

For an ideal transformer, the secondary admittances may be transferred

to the primary by multiplying them by the factor (M/L)
2

, yielding

where X% = wZ/2 ,
and G'L and B*L are, respectively, the conductance and

susceptance of the secondary circuit.

The circuit admittance Yc may be viewed as the ratio of the induced

a-c current at the anode junction to the a-c voltage developed across the

anode gap. This may be expressed in terms of the primary circuit param-

eters, shown in Fig. 22, and the reflected secondary circuit parameters as

follows :

Gc + Y'L (4)

Now let o) = I/VLC and F = V<7/L, the latter being referred to as

the characteristic admittance of the resonator. Substitution of these into

Kq. (4) yields

(0) <

o>o ,

)
+ Gc +Y'L (5)

coo /

Upon inserting Fi, from Eq. (3) into (5), we obtain

Yc 2jT

1

Oscillation will occur if the sum of the circuit admittance and the electron

admittance is zero. Adding Eqs. (2) and (6) and setting Yc + Yc
=

0,

we obtain the criterion for oscillation :

G. = -0, - G'L (7)

/
e
=

-2Fo(\



144 MAGNETRON OSCILLATORS [CHAP. J

The first of these states that the equivalent conductance of the electron

stream must be equal in magnitude but of opposite sign to that of the

circuit conductance. Since the circuit conductance is always positive, the

electronic conductance must be negative in order for oscillations to occur.

The second equation above states that the electronic and circuit suscept-
ances must be equal in magnitude but opposite in sign. The frequency
of oscillation is determined largely by this equation.
The foregoing relationships help one to visualize what adjustments are

likely to take place under conditions of variable load impedance. For ex-

ample, if the load susceptance B'L is varied, it is possible for the angular

frequency of oscillation o> to change in such a manner as to satisfy Eq. (8)

FIG. 23. Tuning of magnetrons (a) by variable inductive plunger, and (b) by variable

capacitive straps.

without appreciably altering the value of Be . This accounts for the fre-

quency drift of the magnetron with variable loading. It should be noted,

however, that the electron admittance Ye
= Ge + jBe ,

in general, is not

constant, but rather varies with the operating conditions of the magnetron.

Variations in load impedance, particularly those due to variations in

load reactance, tend to cause a change in the operating frequency of the

magnetron. The frequency may be stabilized by using a high-Q resonator

system or by increasing the characteristic admittance, F = V C/L, of the

resonator. A high Q requires light loading and, hence, low power output.

The over-all Q may be improved somewhat by coupling the output of the

magnetron into a high-Q external resonator and then coupling this to the

load.

7.16. Tunable Magnetrons.
1 One of the early limitations of the magne-

tron was the fact that it constituted a fixed-frequency oscillator. Later,

however, magnetrons were developed which could be tuned over a range

of 7 to 20 per cent of the mean frequency.

The frequency of the magnetron may be varied either by varying the

effective inductance or the effective capacitance of the resonators. Figure

I'^ELSON, R. B., Methods of Tuning Multiple-Cavity Magnetrons, Phya Rev., vol. 70,

p. 118; July, 1946
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23 shows a means of varying the inductance by sliding a conducting pin

into or out of the resonator. The effective capacitance can be varied by

moving an annular ring, shaped like a cooky cutter, into or out of grooves

in the anode. Both methods have been used successfully to obtain variable-

frequency magnetrons. A combination of both the inductive tuning and

capacitive tuning may be used to obtain a still wider range of frequencies.

The frequency of a magnetron may also be varied over a narrow range by

varying the anode potential or by coupling a tunable resonator to the out-

put and tuning this to a slightly different resonant frequency.

PROBLEMS

1. Referring to Eqs. (7.04-11 and 12), let k eVo/^md. Plot curves of z/k and x/k

against aet. These curves can be used to determine the position of an electron as a

function of time in a parallel-plane magnetron with any value of applied voltage and

flux density.

2. A split-anode magnetron has dimensions a - 0.02 cm, b = 0.3 cm, I = 1 cm. The

magnetic flux density is 3,000 gauss. Compute the following:

(a) Wavelength for the cyclotron mode of oscillation.

(b) Approximate d-c voltage required.

(c) Approximate angular velocity of the electrons.

3. A magnetron, operating in the TT mode (p
=

0), has the following characteristics:

N = 8 / = 2,800 me
a = 0.3 cm F = 16 kv

6 = 0.8 cm B = 0.16 wcbers/m
2

I - 2.0 cm (anode length)

(a) Using Eq. (7.09-4), compute the angular velocity of the electrons and compare
this value with that obtained by using Eq. (7.05-3).

(b) Determine the radius p' in Eq. (7.09-7) at which the radial forces due to the elec-

tric and magnetic fields are equal and opposite.

(c) Assume that the radius p' computed in part (6) is valid for all higher modes.

Using Eq. (7.09-7), determine the values of Vo/B required for a frequency of

2,800 me in each of the following modes:

(1) n =
0, p = 1 (the cyclotron mode)

(2) n-l,p-0, 1

(3) n =
2, p =

0, 1

Explain the physical interpretation of each mode.

4. An atomic model can be constructed by reversing the potentials on the electrodes in a

magnetron; i.e., by using a central anode and a concentric cathode. If electrons are

projected into the interclectrode space so as to miss the anode, they will rotate around

the anode much as electrons rotate about the nucleus in an atom. Write the equa-

tions of motion of the electrons and discuss the possibilities of using this principle

for an oscillator.



CHAPTER 8

TRANSMISSION-LINE EQUATIONS

The transmission line may be analyzed by the solution of Maxwell's

field equations or by the methods of ordinary circuit analysis. The solu-

tion of the field equations involves the determination of the field intensities

in three-dimensional space; hence three space variables in addition to the

time variable are involved. Although this method may be used to analyze

a few systems having relatively simple geometry, in most practical cases

the mathematical complications resulting from four independent variables

are usually insurmountable. The solution of Maxwell's field equations re-

veals that the energy propagates through the dielectric medium as an

electromagnetic wave, the conductors serving to guide the energy flow.

In the circuit method, the effects of the electric and magnetic fields are

taken into consideration by the use of the circuit parameters, i.e., the

capacitance, inductance, resistance, and conductance. By this procedure,

the mathematical analysis is reduced to a problem involving one space

variable in addition to the time variable. The circuit method, however,
does not yield the complete solution. In a later chapter we shall find,

using the Maxwellian method, that an infinite number of electromagnetic

field configurations, known as modes, may be associated with a given trans-

mission line. The principal mode corresponds to the field configuration

which exists at frequencies for which the spacing between conductors is

appreciably less than a quarter wavelength. The higher modes appear when
the separation distance between conductors is of the order of magnitude
of a quarter wavelength or greater, or when there are impedance discon-

tinuities on the line.

In this chapter we shall analyze the transmission line using the circuit

method. The Maxwellian method will be considered in later chapters.

8.01. Derivation of the Transmission-line Equations. Consider the

transmission line of Fig. 1, which is assumed to have uniformly distributed

parameters. The resistance, inductance, capacitance, and conductance

per unit length are represented by R, L, C, and G, respectively.

The equations for the instantaneous voltage Av across an incremental

length of line Ax, and the shunt current through it are

di
Av = i(R Ax) + (L As) (1)

dt

dv
At - v(G Ax) + (C Ax) (2)

dt

146
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Replacing Av in Eq. (1) by (dv/dx) Az and dividing by Ax, with a similar

operation for the current equation, we obtain the differential equations of

the transmission line,

= iR + L (3)
dx dt

^ = vG + C^ (4)
dx dt

VR |Z

(b)

FIG. 1. (a) Transmission line, and (b) equivalent circuit of a differential element of line.

In order to illustrate the nature of the solution, consider the case of a

lossless line in which we have R = G = 0. Equations (3) and (4) then

reduce to

^-7," (5)
dx dt

di dv
= C (6)

dx dt

Now differentiate Eq. (5) with respect to x and substitute Eq. (6) for

di/dx in the resulting equation. Similarly, differentiate Eq. (6) with re-

spect to x and substitute Eq. (5) for dv/dx. This process gives

d
2v d2v

d2i d*i

*-"> <8)

These are known as the wave equations for the lossless line. Equations
of this type frequently occur in the analysis of electrical, mechanical,

and acoustical systems. Solutions of Eqs. (7) and (8) are of the form

/i[* -(*/)] or
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The function fi [t (x/v)] represents a wave of arbitrary waveform (de-

termined by the particular function chosen) which travels in the +x direc-

tion with a velocity v. Similarly the function f%[t + (x/v)] represents a

wave traveling in the x direction with a velocity v. Figures 2a and 2b

illustrate waves traveling in the +x and x direction, respectively, for

several successive instants of time. Consider the function fi[t (x/v)].

If we were to ride along with the peak of the wave, it would be necessary

for our displacement x to vary with time in such a manner as to hold

t (x/v) constant. Thus, as time t increases, x must increase in a posi-

tive direction. We therefore conclude that/i[ (x/v)] represents a wave

traveling in the +x direction.

(a )-Wave traveling in +x direction representing f(t)

(b)-Wave traveling m-x direction representing

FIG. 2. Traveling waves.

To find the velocity v, let us substitute v =
fi[t (x/v)] into Eq. (7).

We obtain d2v/dx
2 = (l/v

2
)tf[t

-
(x/v)] and d2v/dt

2 =
fi[t

-
(x/v)]. In-

serting these into Eq. (7) and solving for the vekfcity, we obtain

v = r^ (9)VLC
For a lossless line with a dielectric having a relative permittivity of

unity, the velocity v is equal to the velocity of light, i.e., v = 3 X 108

meters per second.

8.02. Sinusoidal Impressed Voltage. In most practical applications,
we are concerned with voltages and currents having a sinusoidal time

variation. For mathematical convenience, such a variation may be repre-
sented by the time function e**

1
. We therefore let

1

v - Ye*'"' (I)

i = /*" (2)

1 An instantaneous voltage of the fonn v Vm cos (td + 0) may be written
v - ReFm^6"^, where Re signifies that we take the real part of the quantity follow-

ing it. Thus, expanding
*> cos (at + 0) +;'sinM + *) and discarding the

imaginary part, we have Ree*"'4^ cos (w( -f 6). Now write v -



SBC. 8.02] SINUSOIDAL IMPRESSED VOLTAGE 149

where V and 7 are complex quantities which are functions of x but not

of time t. Inserting Eqs. (1) and (2) into (8.01-3 and 4), the time function

ejut cancels out and we obtain equations in which the voltage and current

are functions of the space variable alone,

dV
= Iz (3)

ax

dl
-=Vy (4)
dx

where

(5)

(6)

represent, respectively, the series impedance and shunt admittance per
unit length of line.

To obtain an explicit equation for voltage, differentiate Eq. (3) with

respect to x and substitute dl/dx from Eq. (4). The current equation is

obtained by differentiating Eq. (4) with respect to x and substituting

dV/dx from Eq. (3). These operatJbns yield

d2V
- t v W

where 7 = v zy is the propagation constant of the line. In general, 7 is

complex and may be separated into real and imaginary parts, hence we let

7 = Vzy = a + ft (9)

where a is known as the attenuation constant and /3 is the phase constant.

The solutions of Eqs. (7) and (8) which also satisfy (3) and (4) are

V = A#* + Be-*** (10)

A B
/ = #* -- e~T* (11)

ZQ ZQ
where

Zo =
(12)

*v

is the characteristic impedance of the line.

where 6 is the phase angle of the voltage at zero time. Letting V = VmeP, we have

v = ReVe;w<
. It is customary to drop the designation Re although it is implied and

should be reinserted if we wish to obtain actual values of the voltage or current at any
instant of time. Thus, we have v * Ve'ut.
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*

The instantaneous voltage and current equations may be obtained by

multiplying Eqs. (10) and (11) by e?** as indicated in Eqs. (1) and (2),

thus

v - Ae3'"'^* + Be*"-** (13)

t = Jt+t* - *-**
(14)

These equations contain terms of the form fi(ut + yx) and

indicating the traveling-wave nature of the solution. In Fig. 1, the dis-

tance x is measured from the receiving end of the line. The terms con-

taining e*w<+7
*
represent waves traveling in the x direction and are there-

fore the outgoing waves of voltage and current. The terms containing

el** yx represent waves traveling in the +x direction and constitute the

reflected waves of voltage and current. The ratio of voltage to current

for either the outgoing or reflected wave is equal to the characteristic im-

pedance of the line.

The constants A and B in the transmission-line equations may be evalu-

ated in terms of known boundary conditions. Let us evaluate these in

terms of the conditions at the receiving end of the line. At the receiving

end we have x =
0, V = VR, I = IR and ZR = VR/!R. Equations (10)

and (11) then become VR = A + B and IR = (l/Z$)(A 5), from which

we obtain

2 \~
'

ZR/
~

2 V ZR/
(15)

Inserting these into Eqs. (10) and (11), and using VR/!R = Z#, we ob-

tain the transmission-line equations

vn / 7^\

(16)

The terms in Eqs. (16) and (17) may be regrouped to express these

equations in hyperbolic function form. The hyperbolic functions are

cosh yx =- (18)
2

#* - e-v*

sinh yx =-
(19)

2i

ey* _ e-y*

tanh yx =-
(20)- \ '
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In hyperbolic function form, Eqs. (16) and (17) become

/ ZQ \
V = VR [

cosh yx H sinh yx ) (21)
\ ZR /

t ZR \
I = IR I cosh yx H sinh yx 1 (22)

\ ^o f

+ ZQ tanh -

The impedance Z is the ratio of voltage to current at any point on the

line distant x from the receiving end. This is also the impedance which

would be obtained if the line were cut at the point x and the impedance
were measured looking toward the load.

8.03. Line Terminated in Its Characteristic Impedance. If a trans-

mission line is terminated in an impedance equal to its characteristic im-

pedance, i.e., if ZR = Z
,
^)hen the reflected-wave terms in Eqs. (8.02-16

and 17) vanish, leaving only the outgoing waves,

F = VRe^ (1)

/ = IR#* (2)

Z =
j
= ZQ (3)

Therefore, if the line is terminated in an impedance equal to its charac-

teristic impedance, the impedance at any point on the line is equal to the

characteristic impedance of the line. All of the energy in the outgoing.

wave is then absorbed in the terminating impedance and there is no

reflection.

It is interesting to express Eqs. (1) and (2) in terms of the conditions

at the sending end of the line. At the sending end we have x =
I, V = V$,

and / = Is- Equations (1) and (2) then become

Vs = Vse*
1

(4)

Is = Ise* (5)

Solving these for VR and IR and inserting these into Eqs. (1) and (2),

with the additional substitution s = I x, where s is the distance from

the sending end to the point where V and / are taken, we have

(6)

(7)
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The factor e~aa in these equations signifies a decrease in magnitude or

an attenuation of the outgoing wave as it travels toward the receiving

end of the line. The attenuation constant a is given in nepers per unit

length of line. The factor e~^s denotes a phase shift of PS radians in the

distance s, or ft radians per unit length of line. Figure 3 shows the varia-

tion of the magnitude of the voltage or current as a function of distance

for a line terminated in an impedance equal to its characteristic impedance.

Vs orls

Distance from sending end

FIG. 3. Magnitude of voltage and current as a function of distance along a line terminated in

its characteristic impedance.

The voltages and currents in the above equations are the amplitudes

or peak values of the sinusoidally varying functions. The scalar ampli-

tudes are
|

V
\

= Vse~
as and

1

1
\

' = Ise~
a
*. For low-loss lines the voltage

and current are in phase; the power flow at any point on a line terminated

in its characteristic impedance is:

(8)

The power loss per unit length of line is the space rate of decrease of the
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transmitted power, or PL = -~(dP/dx). Inserting Eq. (8), we obtain

2Z

-5
Consequently, the attenuation constant is the ratio of the power loss per

unit length of line to twice the transmitted power.

8.04. Propagation Constant and Characteristic Impedance. The prop-

agation constant y contains an attenuation constant a and a phase con-

stant 0. The phase constant represents the number of radians of phase
shift per unit length of line. The wavelength X is the distance required for

a phase shift of 2ir radians, or

27T

X -
j (1)

The phase velocity v is the product of the frequency times wavelength, or

_ f\ /o\v y A \ij

The propagation constant y and characteristic impedance ZQ are de-

pendent upon the series impedance z and shunt admittance y per unit

length of line as expressed by Eqs. (8.02-9 and 12).

For most transmission lines operating at frequencies above 100 kilo-

cycles we find that coL R and wC ^> G, i.e., the reactance and suscept-

ance, are large in comparison with the resistance and conductance. We
shall refer to such lines as low-loss lines. Simplified expressions may
be derived for y and Z for this case. Expanding Eqs. (8.02-9 and 12) by
the binomial series and retaining the first few terms of the series, we obtain

7 = Vsy = (R

G
(3,

ZQ - V- =
^y
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Since we have assumed that ooL # and coC <?, the characteristic

impedance as given by Eq. (4), is substantially a pure resistance of value

Zo = <J- (5)

The real part of Eq. (3) is the attenuation constant, whereas the imagi-

nary part is the phase constant. Inserting Eq. (5) into (3), we obtain

R GZn

ft
= coVZc (7)

The wavelength and phase velocity for the low-loss line are

For a lossless line, i.e., R = (7 = 0, the attenuation constant is zero and
the outgoing and reflected waves experience no attenuation as they travel

along the line. It can be shown that the phase velocity for a lossless line

is equal to the velocity of light. The effect of losses in the line is to de-

crease both the wavelength X and phase velocity v and to introduce attenua-

tion in the line.

8.05. Transmission-line Parameters. The R, L, (7, and G parameters
of several different types of transmission lines are given in Table 1. The
resistance given in this table is the skin-effect resistance as computed by
the methods of Chap. 15. The conductance is that resulting from dielec-

tric losses in the insulating medium. The attenuation constants ac and

a* are those resulting from losses in the conductor and dielectric, respec-

tively. The total attenuation constant is the sum of the two terms, or

a = ac + at. The attenuation constants and characteristic impedance

equations are for low-loss lines.

The skin-effect resistance varies inversely as the radius of the conductor.

In general, therefore, the attenuation constant decreases as the radius in-

creases. A coaxial line has minimum attenuation for the ratio b/a = 3.6,

corresponding to a characteristic impedance of approximately 77 ohms.
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TABLE 1. TRANSMISSION-LINE CONSTANTS
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MO 4r X 10~7
henry/meter

coer

eo - 8.85 X 10~12
farad/meter

tr - relative permittivity (dielectric constant)

D - dissipation factor of dielectric (for low-loss dielectrics, D P.P., where P.F is the power factor

of the dielectric. See Appendix II for power factors of typical dielectrics.)

9 - conductivity of conductor

5.80 X 107 mhos/meter for copper
- 6.14 X 107 mhos/meter for silver
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TABLE 2.

[CHAP. 8

Transmission-line configuration Characteristic impedance

/o - 138 logio

Zo == 276 logic
-

where

ZQ

138 logio b/a

Vl + (W/S) (fr
-

1)

Zo - 2761og10 6/a

VI
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If a line is terminated by an impedance equal to its characteristic im-

pedance, the decibel loss in the line is

db - 20 loglo [-- - 20 logio f l - 8-686aZ (1)

|Fjz|

Table 2 gives the characteristic impedance of several of the more com-

mon types of transmission lines.

8.06. Lossless Line Equations. In most microwave transmission lines

we have wL R and coC G and, consequently, the transmission lines

have characteristics approximating those of a lossless line. Let us there-

fore consider the transmission-line equations for the theoretical case of a

lossless line.

A lossless line would have zero attenuation constant and hence y =
jp.

Hyperbolic functions of imaginary angles may be written as trigonometric

functions of real angles, that is

sinh jpx = j sin px tanh jpx = j tan PX

Goshjpx = cospx cothjfix = jcotpx (1)

For the lossless line, Eqs. (8.02-21, 22, and 23) become

V = VR (cos PX+J sin px) (2)
\ ZR /

/ ZR \
I = IR lcospx +j smpxl (3)

\ ^0 '

Consider the case of a lossless line which is short-circuited at the distant

end. We then have ZR = and VR = 0. Remembering that IR =

VR/ZR, Eqs. (2), (3), and (4) become

7 = j!RZ sin ftx (5)

/ = IR COS PX (6)

Z = yZ tan px (7)

Equations (5) and (6) represent standing waves of voltage and current

on the line as shown in Fig. 4. The standing wave is produced by a com-

bination of an outgoing wave and a reflected wave, traveling in opposite

directions on the line. Figure 4 may be visualized as representing the

amplitudes of voltages and currents which have a sinusoidal time variation.

The voltage is zero at the receiving end and has its maximum value at
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points corresponding to ftx
= nx/2 or x nX/4, where n is any odd in-

teger. The voltage and current are in space quadrature, as evidenced by

Fig. 4, and also in time quadrature as indicated by the j term in Eq. (5).

Receiving
4 X

end of line
'

receiving end

FIG. 4. Standing waves of voltage and current on a short-circuited lossless line.

The impedance of the short-circuited lossless line, as given by Eq. (7), is

plotted in Fig. 5. The input impedance is a pure reactance, alternating

between capacitive and inductive reactance as ftx increases. Antiresonance

occurs when the line is an odd integral number of quarter wavelengths

long and resonance occurs when it is an even integral number of quarter

wavelengths long. The antiresonant input impedance of a lossless line

FIG. 6. Impedance ratio Z/ZQ for a short-circuited lossless line as a function of x and &x.

would be a pure resistance of theoretically infinite value, whereas the reso-

nant impedance would be zero. In the practical case of a low-loss line,

the impedance is a very large pure resistance for antiresonance and a very

small pure resistance for resonance.
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Now consider the lossless line which is open-circuited at the distant end.

For this case we have ZR =
oo, IR =

0, and VR = /#. Equations (2),

(3), and (4) then become

(8)V = VR COS fte

1=3 sin Qx

Z = -jZo cot px

(9)

(10)

The voltage and current standing waves are similar to those shown in

Fig. 4, but with voltage and current interchanged. The impedance is a

Fro. 6. Impedance ratio Z/ZQ for an open-circuited lossless line as a function of x and px.

pure reactance as shown in Fig. 6. Resonance occurs when the line is an

odd integral number of quarter wavelengths long and antiresonance when
it is an even integral number of quarter wavelengths long.

We can now conclude that the short-circuited and open-circuited lines

are either resonant or antiresonant when the length I is I = nX/4 or when

pl = nw/2, where n is given by
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8.07. Short-circuited Line with Losses. If the line losses are not zero

and the line is short-circuited at the distant end, we again have ZR =
0,

VR =
0, and IR = VR/ZR. Equations (8.02-21, 22, and 23) then reduce to

V = IRZ$ sinh yx (1)

I -
IR cosh yx (2)

Z = ZQ tanh yx (3)

Fio. 7. Voltage ratio and current ratio
IR

as a function of * and /to for a short-

circuited line having losses.

Inserting y = a. + jft into these equations and applying the identities for

the hyperbolic function of the sum of two angles,
1 we obtain

sinh ax cos fix + j cosh ax sin fix

= cosh ax cos PX + j sinh ax sin PX

Z tanh ax + j tan PX

(4)

(5)

(6)

ZQ 1 + j tanh ax tan px

The scalar values of
|
V/IRZQ

\

and
|
I/IR

\

are plotted against x and jte

in Fig. 7. Equation (4) shows that when px = nir/2, the ratio
| 7//Z |

has the value cosh ax or sinh ax, depending upon whether n is an odd or

even integer. Likewise, Eq. (5) shows that when PX = nir/2, the current

ratio I/IR has the values cosh ax and sinh ax for even and odd integer

*
See, for example, B. O. PIERCE, "A Short Table of Integrals," Ginn and Company

Boston, 1929.



SEC. 8.08] RECEIVING END OPEN-CIRCUITED 161

values of n, respectively. The curves cosh ax and sinh ax therefore repre-

sent the envelope of the curves
|
V/InZQ

\

and
|
I/!R |,

as shown in Fig. 7.

Since IR and Z are independent of x the ratio
|
V/!RZQ represents the

voltage distribution along the line, and the ratio
|

I/In represents the

current distribution.

Referring to Eq. (6), we find that the scalar impedance ratio
| Z/Z^ \

varies between the limits tanh ax and coth ax as shown in Fig. 8. At the

\

PX o

* A/4 A/2 3X/4 I

FIG. 8. Magnitude of the impedance ratio Z/Zo for a short-circuited line having losses.

points where the impedance has its maximum and minimum values, the

impedances are approximately Z = ZQ coth ax and Z = Z tanh ax, re-

spectively.

Figures 7 and 8 represent scalar values, hence all values are plotted as

positive quantities. For the lossless line, the curves in Figs. 7 and 8 would

degenerate to curves similar to those in Figs. 4 and 5 but with all values

plotted as positive quantities.

The variable fix in the above figures may be written 0x = wx/v. Con-

sequently, we may consider the above curves as being plotted either

against frequency, with line length held constant, or against length of

line, with frequency held constant.

8.08. Receiving End Open-circuited. If the receiving end is open-

circuited, we have ZR =
oo, IR = 0; hence Eqs. (8.02-21, 22, 23) yield

V = VR cosh yx

T
VR U/ = smh yx

(1)

(2)

Z ZQ coth yx (3)

Comparison of these equations with Eqs. (8.07-1, 2, and 3) shows that the

ratio
|
V/VR

\

for the open-circuited line has a variation with yx similar
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to the current ratio of the short-circuited line, whereas the ratio
|

of the open-circuited line is similar to the voltage ratio of the short-

circuited line. The impedance ratio
|
Z/Z$

\

for the open-circuited line is

FIQ. 9. Voltage and current ratios for an open-circuited line having losses.

1.0

PX TT/2 TT 3fl/2 2tr

x V4 Aft 3A/4 X

FIG. 10. Magnitude of the impedance ratio for an open-circuited line having losses.

the reciprocal of that of the short-circuited line. These ratios are shown

in Figs. 9 and 10.

8.09. Sending-end Equations. Thus far we have dealt largely with the

transmission-line equations expressed in terms of the voltage, current, and
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impedance at the receiving end of the line. If the sending-end voltage V8

and current It are known, we may readily obtain VR and IR by writing

Eqs. (8.02-16 and 17) or (8.02-21 and 22) for the full length of the line

(letting x =
1) and substituting the known values of V8 and I8 for V and /.

These equations may then be solved for VR and IR.

If only the generated voltage Vg of Fig. 1 is known, it is then necessaiy

to first compute the input impedance of the line by Eq. (8.02-23). The

impedance as seen by the generator voltage Vg is the sum of the input

impedance to the line and the generator impedance Zg . The sending-end

voltage and current may therefore be obtained from

/.--^ 0)
z + zg

V, = Vg
- I8Zg , (2)

where Z is the input impedance of the line.

PROBLEMS

1. Show that the binomial expansion of the terms given in Eqs. (8.04-3 and 4) yields the

approximations indicated in these equations.

2. A coaxial line has dimensions a = 0.75 cm and b = 3 cm. The dielectric is poly-

styrene with a dielectric constant of 2.5 and power factor 0.0004. Compute the

following values at a frequency of 500 megacycles:

(a) Inductance and capacitance per meter of line.

(6) Conductance and skin-effect resistance per meter of line.

(c) Attenuation constant and phase constant.

(d) Wavelength and phase velocity.

(e) Input impedance of a quarter-wavelength section of line if (1) short-circuited and

(2) open-circuited.

3. A lossless line is one-eighth of a wavelength long and is terminated by a pure resistance

which is approximately equal to the characteristic impedance of the line. Show that if

the value of the terminating resistance is varied by a small amount either side of the

value RL = #o, the input impedance of the line will contain a reactive component, the

magnitude of which varies directly with R, whereas the resistive component remains

substantially constant.

4. A high-frequency voltmeter is constructed of a quarter-wavelength lossless line which

is terminated in the heater junction of a thermocouple having a resistance of R
ohms. The thermocouple leads are connected to a microammeter.

(a) Derive an expression for the voltage V9 at the sending end in terms of the current

IR through the thermocouple heater.

(6) Derive an equation for the input impedance to the line. How does this vary with

the value of the thermocouple resistance?

(c) Compute the input voltage and input impedance if R = 5 ohms, Zo = 75 ohms

and IR = 15 ma.



CHAPTER 9

GRAPHICAL SOLUTION OF TRANSMISSION-LINE PROBLEMS

A number of ingenious circle diagrams have been devised to facilitate

the graphical solution of transmission-line problems. Basically, all of these

spring from the same fundamental relationships which are expressed in the

transmission-line equations. In this chapter, we shall consider two types
of impedance diagrams, these being referred to as the rectangular impedance

diagram and the polar impedance diagram. First, however, let us derive

the transAiission-line equations in reflection-coefficient form, since these

will be useful in the construction of the impedance diagrams.
9.01. Reflection-coefficient Equations. The reflection coefficient TR is

defined as the ratio of the reflected voltage to the outgoing voltage at the

receiving end of the line. In Eq. (8.02-15) the terms A and B represent

the outgoing and reflected voltages at the load, respectively. The reflec-

tion coefficient is therefore

ZR Z

Let us now express the transmission-line equations in reflection-coeffi-

cient form. In Eqs. (8.02-16 and 17), let V'R = VR/2[l + (Z /ZK)], where

V'R is the outgoing-voltage wave at the load. Now factor out the term

VReyx and, with the substitution of TR from Eq. (1), we obtain

V = TVtt + rRe-^*) (2)

(3)

Equations (2), (3), and (4) are the transmission-line equations expressed

in terms of the reflection coefficient. They may be used to evaluate the

voltage, current, and impedance at any point on the line. The terms

V'Re
yx and (V'R/Z )e

y* in these equations represent the outgoing waves of

voltage and current, respectively, whereas the terms rxV'tfT*** and

rR(Vfl/Zo)e~~
TX

represent the reflected waves.

If the line is terminated in an impedance equal to its characteristic im-

pedance, Eq. (1) shows that the reflection coefficient is zero and conse-

164
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quently the reflected-wave terms in Eqs. (2) and (3) are zero, leaving only
the outgoing waves.

If the line is short-circuited at the distant end, we have ZR = and

TR = 1; for an open-circuited line, we have ZR = oo and rR = 1. In

the more general case, TR is complex and may be readily evaluated using

Eq. (1).

9.02. The Rectangular Impedance Diagram.
1 In the construction of

impedance diagrams, it is convenient to express the reflection coefficient

as an exponential quantity. We therefore let

where e~ 2<0
is the magnitude and 2w is the angle of the reflection coef-

ficient. Now let

t = tQ + ax
t (2)

u = u + fa (3)

In Eq. (9.01-4) the term rRe^2yx then becomes rRe~2yx = e~2(t+ju} and

the impedance ratio may be written:

Z 1 +

At the receiving end of the line, we have Z = ZR, ax =
0, and fix

= 0;

therefore Eq. (4) becomes

ZR 1 + -*<'+*>

ZQ
-

i - e~2(* +;u )
(fi>

Equation (4) is the basic relationship used in the construction of im-

pedance diagrams. The impedance diagram is essentially a plot of Eq. (4)

which enables us to obtain values of Z/ZQ if the values of t and u are

known, or conversely, to obtain values of t and u if Z/Z$ is known. When
impedances are expressed as a ratio, such as Z/Z , they are known as

normalized impedances.

For convenience, let us separate the real and imaginary parts of Z/ZQ

in Eq. (4), letting
>

^ 1 + .-*>

1 The theory of the impedance diagram presented here is similar to that given by
W. JACKSON and L. G. HUXLEY in The Solution of Transmission-line Problems by the

Use of the Circle. Diagram of Impedance, JJ.E.E. (London), vol. 91, part 3, pp. 105-

127; September, 1944.
1 For low-loss lines it may be assumed that ZQ is real. Writing Z R + jX, we obtain

Z/ZQ - (R/Zo) +j(X/Zo). Here r - R/ZQ corresponds to the normalized resistance

and x - X/ZQ is the normalized reactance.
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The rectangular impedance diagram is a plot of Eq. (6) in the form of

constant-^ and constant-w loci in the r + jx plane as shown in Fig. 1. If

t is held constant in Eq. (6) and u is allowed to vary, the locus of r and x

for various values of u may be shown to be a circle with its center on the

r axis, distant coth 2t from the origin, and with a radius cosech 2t. On the

FIG. 1. Rectangular impedance diagram.

other hand, if u is held constant and t is allowed to vary, the locus of 7

and a: is a circle centered on the x axis, distant cot 2u from the origin,

and with a radius cosec 2u. Since t is related to al by Eq. (2) and u is

related to 01 by Eq. (3), it is customary to designate the constant-^ and
constant-w circles as al and (ft circles, respectively, as shown in Fig. 1.

These constitute two families of orthogonal bipolar circles.
1

Any point in

1
Bipolar circles of the type shown in Fig. 1 are encountered in a number of engineering

applications. For example, the cd and pi circles correspond to the electric and magnetic
field lines of a two-conductor transmission line.
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the impedance diagram represents a value of r + jx and a value of t + ju

(read on the al and ftl circles), these two quantities being related by Eq. (6).

Let us now trace the steps which are necessary to evaluate the input

impedance of a transmission line terminated in a known impedance ZR.

It is assumed that ZR, Z , a, 0, and the length of line I are known. The

procedure is as follows:

1. Compute the values of ZR/ZQ, al, and fil.

2. Enter the chart at the known value of ZR/ZQ and observe the corre-

sponding values of t$ and UQ (on the al and fil circles).

3. Compute the values of t = fo + od and u = UQ + 01. These are the

values of t and u corresponding to the sending end of the line.

4. Reenter the chart at the new values t and u (on the al and ftl circles)

and read the corresponding impedance Z/Z . This is the normalized input

impedance.
As an example, assume that ZR/ZQ = 2 + j'O, al = 0.2 nepers, and ftl

= 0.6 radians. Entering the impedance diagram of Fig. 1 at ZR/ZQ =
2 + JO, we obtain the values of to

= 0.534 and UQ = 90 or 1.57 radians.

Step 3 above yields t = 0.734 and u = 124 or 2.17 radians. Reentering
the impedance diagram at these values of t and u, the normalized input

impedance is found to be Z/ZQ = 1.08 yO.5.

9.03. Polar Impedance Diagram. In the rectangular impedance dia-

gram, the circle al = has an infinitely large radius. Therefore an infi-

nitely large diagram would be required to solve all possible problems.

When dealing with low-loss lines which are open-circuited, short-circuited,

or terminated in a pure reactance, the solution is sometimes found to be

beyond the limits of any practical diagram. In the polar impedance dia-

gram, introduced by P. H. Smith,
1 - 2 the entire impedance diagram is con-

tained within a circle of any desired radius.

The general plan of construction of the polar impedance diagram will

be given here, followed by several illustrative problems. A more detailed

description of the construction of the diagram is given in Sec. 9.07.

In the polar impedance diagram, the impedance Z/ZQ = r + jx and the

quantity t + ju in Eq. (9.02-6) are both related to a new variable p + jq.

Let

p+jj = *-<+*> (1)

and Eq. (9.02-6) then becomes

Z
,

.
1 + fr+M) m3= r + jx = (2)

ZQ
J

l-(p+jj)
1
SMITH, P. H., Transmission-Line Calculator, Electronics^ vol. 12, pp. 29-31; January.

1939.
8
SMITH, P. H., An Improved Transmission-Line Calculator, Electronics, vol. 17, p. 130;

January, 1944.
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FIG. 2. Polar impedance diagram, (a) Constant-r and constant-* loci; (b) constant-* (at
and constant-w loci.
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Let p and q represent the rectangular coordinate axes. Equation (2)

may be used to obtain families of constant-r and constant-:*; loci in the

P + JQ plane. Similarly, Eq. (1) may be used to plot families of constant-/

and constant-^ loci in the p + jq plane. Any point in the polar impedance

diagram then defines three quantities, (1) a value of r + jx, (2) a value of

t + ju, and (3) a value of p + jq. These three quantities are interrelated

by Eqs. (1) and (2). In the solution of transmission-line problems, we are

interested in obtaining values of r + jx corresponding to known values of

t + ju y
or vice versa. Once the diagram has been constructed, the p and

q coordinate axes have no further use and, therefore, are omitted in the

final impedance diagram.

The constant-r and constant-re loci form two families of orthogonal circles

in the p + jq plane as shown in Fig. 2a. The constant-r circles have centers

on the p axis, distant r/(l + r) from the origin, and have a radius of

l/(r + I). The entire impedance diagram is contained in a circle of unit

radius, with center at the origin. The constant-o: circles have centers at

p = 1, q = l/x and have radii l/x. The upper half of the diagram of

Fig. 2a represents positive reactance, whereas the lower half represent?

negative reactance. The constant-r and constant-re circles all pass through
the point (1,0).

The constant-^ loci consist of a family of circles having centers at the

origin and radii e~2t
. These are designated

l al in Fig. 2b. The constant-w

loci are radial lines passing through the origin. However, it is more con-

venient to replace u by a new variable w = u/2ir. Substituting u from

Eq. (9.02-3), with ft
= 2w/\ and WQ = w /27r, we obtain

x
W - WQ + -

(3)
A

Therefore, w is a measure of the length of line in wavelengths. The

constant-w lines are also radial lines passing through the origin, with a

slope tan 4irw as shown in Fig. 2b.

The polar impedance diagram of Fig. 3 is obtained by superimposing

Figs. 2a and 2b. To simplify the final diagram, the constant-w lines have

been omitted, although the values are given on the scales marked "wave-

lengths toward the generator" and "wavelengths toward the load" along

the outer rim of the diagram.

1 The impedance diagram of Fig. 3 contains constant-aJ circles rather than the

decibel or standing-wave-ratio circles which are usually included on the polar diagram.
The al circles facilitate the solution of problems where the line has losses. The method
of solving problems including the effect of 'line losses is practically the same for either

the rectangular or the polar diagram. The standing-wave ratio may be readily obtained

from Fig. 5 after the value of to has been determined from cither impedance diagram
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It is interesting to observe that both the rectangular and polar diagrams

may be used to solve problems in terms of admittances as well as in terms

of impedances. The normalized admittance at any point on the line is the

reciprocal of the normalized impedance, thus Eq. (9.02-4) may be written

y 1 - c-<+AO
(4)W

where F = l/#o *s the characteristic admittance of the line. Equation

(4) gives the same families of curves in the rectangular and polar diagrams
as Eq. (9.02-4). The constant-r and constant-^ circles become constant-

conductance and constant-susceptance circles, respectively, when dealing

with admittances. Otherwise, the use of the diagram is exactly the same
for either impedances or admittances.

9.04. Use of the Polar Impedance Diagram. The polar impedance

diagram is used in much the same manner as the rectangular impedance

diagram. To determine the input impedance of a line terminated in a

known impedance, the procedure is as follows:

1. Compute ZR/ZQ, al, and l/\.

2. Enter the impedance diagram at the known value of ZR/ZQ and read

the corresponding values of fa on the al circles and WQ on the "wavelengths
toward the generator" scale.

3. Compute the values of t = tQ + al and w = WQ + (J/X).

4. Reeiiter the diagram at the new values of t and w and read the corre-

sponding normalized sending-end impedance.

Referring to Fig. 4, assume that point P corresponds to the terminal

impedance ZR/ZQ and that the line is lossless. As we move toward the

generator on the transmission line, the impedance point moves in the

clockwise direction on the constant-all circle along the path PQi. However,
if the line has losses, then the impedance point spirals inward as indicated

by the path PQ2 . As the length of the line increases, the impedance point

continues to spiral inward, eventually winding up on the point Z/Z$ = 1.

If we move toward the generator on the transmission line, the impedance

point moves in the clockwise direction in the impedance diagram and the

values of w are read on the "wavelengths toward the generator" scale. If

we move toward the load, the impedance point in the diagram moves in

the counterclockwise direction and the values of w are read on the "wave-

lengths toward the load" scale. One complete revolution on the impedance

diagram corresponds to a half wavelength of line.

9.05. Standing-wave Ratio. The standing-wave ratio for a lossless

I ^max I

line is defined as p :
^L.

,
where

|
Vmex

\

and
|

Fm in
|

are the magnitudes
I

r min
I

of the maximum and minimum voltages. The standing-wave ratio is of
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considerable importance, since it is a quantity which can readily be com-

puted from laboratory measurements.

To obtain expressions for the maximum and minimum voltages, we re-

turn to Eq. (9.01-2) and substitute Eq. (9.02-1) for rR . For a lossless line,

a = and we have

CD

FIG. 4. Use of the polar impedance diagram.

Maxinlum voltage occurs at that point on the line which makes the second

term inside the bracket in phase with the first term. This occurs at that

point on the line where c
~** (U9+ft*m*> =

1, yielding

I Fma* |

= V'R (l + e~ 2to
) (2)

Minimum voltage occurs when e~2' (t<o4"*i:mill) =
1, yielding

I V^ |

- V'R(l
- e-

2
") (3)
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The standing-wave ratio is therefore

' ms
P ==

'mill
(4)

where
|
TR

\

= e
2t

is the scalar magnitude of the reflection coefficient.

Figure 5 shows a graph of the standing-wave ratio as a function of fo-

If the normalized impedance ZR/ZQ is known, the value of tQ may be ob-

tained from Fig. 3, and Fig. 5 may then be used to determine the standing-

wave ratio.

Values of t

FIG. 5. Standing-wave ratio p as a function of to.

The maximum and minimum voltages, respectively, occur at points on

the line where

2(^o + #Emax) = nv n l<* cvcn (5)

2(u + fen in) =n-7r n is odd (6)

These may be expressed as

wo

2^4 27r 4

71 t^o ^

4 ~2^~4

n is even

n is odd

(7)

(8)

where 2t/ is the phase angle of the reflection coefficient as given by Eq.

(9.02-1).

If a line has attenuation, the successive values of
|

Fmax
|

and
|
Fmin I
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vary along the line and consequently there is no fixed value for the stand-

ing wave ratio.

9.06. Illustrative Examples. The use of the polar impedance diagran
will now be illustrated by several examples.

Example 1. Determine the input impedance of a line having the following charac-

teristics:

I

ZQ 75 ohms - = 0.2
A

ZR - 150 -f ,/100 ohms al = 0.15 neper

We first compute ZR/ZQ = 2 + j1.333. Entering the polar impedance diagram at

this value of normalized impedance, we obtain /o
= 0.35 and WQ ~ 0.210 (on the "wave-

lengths toward the generator" scale). Now compute t to + al = 0.50 and w = WQ +
(J/X)

= 0.410. These are the values of t and w at the sending end of the line. Reenter-

ing the impedance diagram at these values of t arid w, we obtain the normalized input

impedance Z/ZQ = 0.60 j'0.46, or Z = 45 J34.5 ohms. If the line were lossless

the standing-wave ratio from Fig. 5, corresponding to /o
= 0.350 would be p 2.97.

Example 2. A lossless line is terminated in a capacitance such that ZR/ZQ jO.5.

Determine the lengths of line required for (a) resonance (Z/ZQ = 0) and (6) antiresoiiance

(Z/ZQ =00).
The outer circle of the impedance diagram corresponds to zero resistance. Entering

the diagram at ZR/ZQ =
j'0.5, we obtain IQ = and WQ = 0.425. The lengths of

line required for the impedance point to move to (a) Z/ZQ = and (6) Z/ZQ = <x> are

(a) I = (0.5
-

0.425) X = 0.075X.

(6) I = (0.75
-

0.425) X = 0.325X.

The antiresoiiaiit line is a quarter wavelength longer than the resonant line.

Example 3. A line which is 0.4X long is short-circuited at one end and has a lumped

impedance (normalized) of ZI/ZQ = 0.5 -f j'0.2 shunted across the input terminals. The
value of al is 0.2 nepers. Find the normalized input impedance.

In dealing with parallel circuits, it is advisable to use admittances. The impedance

diagram may be used to convert impedances into admittances and vice versa. To
determine the normalized admittance Fi/Fo, enter the impedance diagram at the point,

corresponding to the normalized impedance ZI/ZQ = 0.5 -f- ,7*0.2. The normalized

admittance is halfway around the diagram on the same constant-aJ circle (or on a straight

line through the center of the impedance diagram to the same constant-aZ circle). This

gives YI/YQ - 1.72 -jO.72.
Now consider the input admittance to the line only (with Y\ disconnected). The

admittance of the short circuit is YR =s oo or YR/YQ =
. Entering the diagram at this

value of admittance, we read fo
= and MO = 0.25. At the sending end of the line, we

have t = /o + al ~ 0.2 and w = WQ + (ZA) = 0.65. The w scale returns to zero at

w = 0.5; hence 4he point corresponding to w = 0.65 is 0.15 beyond the zero point (on

the "wavelengths toward the generator" scale). The normalized input admittance of

the line is, therefore, YL/YQ = 0.54 -f jl.23. The normalized input admittance with

Yi connected is then Y/YQ - (YL/Y ) + (Fi/Fo) - 2.26 -f,/0.51. The normalized

impedance is obtained by entering the diagram at Y/Yo = 2.26 -f J0.51 and proceeding

halfway around .the diagram. Thus the input impedance is Z/ZQ
= 0.43 j'0.09.

9.07. Construction of the Polar Impedance Diagram. The polar dia-

gram consists of families of constant r, x, t, and w loci plotted in the p + jq

plane. In order to construct the diagram, it is first necessary to obtain
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expressions relating each of the quantities r, x, t, and w, to p and q. These

equations determine the respective loci.

Returning to Eq. (9.03-2), we add 1.0 to both sides of the equation,

yielding

(r+ !)+---1
(1)

To separate the real and imaginary parts, multiply the numerator and de-

nominator of the right-hand side by the conjugate of the denominator,

yielding

Equating the real and imaginary terms on both sides of Eq. (2), we obtain

2(1
-

p)

?, . , (4)

Equation (3) may be written as

(5)r+ 1 r+1
Adding rV(r + I)

2
to both sides of the equation to complete the square,

gives

This is the equation of the constant-r circles in Figs. 2a and 3. The centers

of the circles are on the p axis at r/(r + 1) and the radii are l/(r + 1).

The circle corresponding to r = has unit radius and is centered at the

origin in the p + jq plane. The circle r = oo has zero radius and is cen-

tered at p =
1, q = 0.

To obtain the equation expressing the loci of the constant-z circles, Eq.

(4) is rearranged to give

(p
-

I)
2 + ^ - ?? =

(7)
x

Adding l/x
2
to both sides of the equation completes the square and gives

i
(8)

This is the equation of the constant-s circles, with centers at p 1, q =
l/x, and radii l/x. The circle x =00 has zero radius.
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To obtain the constant-/ and constant-to circles, we return to Eq. (9.03-1)

and write this in the form

P+jq = e~~
2
'(cos 2u - j sin 2u) (9)

Separating real and imaginary parts, we obtain

p = e
~2t

cos-2u (10)

q = -<r2'sin2w (11)

Squaring these two equations and adding gives the equation of the

constant-* circles.

P
2 + q

2 = e- (12)

These circles are centered at the origin and have radii e~2i.

Dividing Eqs. (10) and (1 1) and inverting, we obtain

- = - tan 2u (13)
P

Substitution of u = 2irw into Eq. (13) gives

- = - tan 47TW (14)
P

Hence the constant-w; loci are straight lines passing through the origin and

having a slope of tan 4?rw.

PROBLEMS

1. Derive the equations for the constant-/ and constant-w circles in the r + jx plane of

the rectangular impedance diagram. Show that these are circles and give the loca-

tion of the centers and values of the radii.

2. A lossless coaxial line, having a characteristic impedance of 50 ohms, is % of a wave-

length long and is terminated in an impedance ZR = 75 + j'60 ohms. A condenser,

having a capacitance of 4 X 10~~12 farads is connected in series with the center con-

ductor one-eighth of a wavelength from the receiving end. Using the impedance

diagram, find the input impedance of the line at a frequency of 1,000 megacycles.
3. A line having a characteristic impedance of 50 ohms is used in the grid-plate circuit

of an oscillator. The grid-plate capacitance is 1.8 X 10~12 farads and the line is

tuned by means of a small air condenser at the far end. If the line is 15 centimeters

long what value of capacitance would be required if the oscillator is to have a fre-

quency of 600 megacycles?
4. A generator is connected to a load impedance by moans of two coaxial lines in cascade.

The first line is 0.6X long and has Z i 50 ohms and = 0.4 neper per meter. The

second line is 0.4X long and has Z 2 m 75 ohms and a = 0.3 neper per meter. The

load impedance is ZR = 45 J75 and the wavelength is X 1 meter. What is the

input impedance?
5. A generator having an internal impedance Zg is connected to a lossless transmission

line having a characteristic impedance ZQ. Show that if Zg
* Zo, the voltage at the

receiving end of the open-circuited line will be equal to one-half the internal voltage

of the generator, regardless of the length of line.



CHAPTER 10

TRANSMISSION-LINE NETWORKS

Transmission lines are often used a^ network elements in microwave

systems. They may be used as resonant or antiresonant circuits, as re-

active circuit elements in filter networks, as impedance transformers, as

attenuators, or as circuit elements in various tj
rpes of measuring systems.

Lumped-parameter networks are usually unsatisfactory at microwave

frequencies, since the values of inductance and capacitance used in such

networks are extremely small and slight variations due to mechanical vi-

bration, temperature effects, etc., seriously alter the characteristics of the

network. Transmission-line networks offer the advantages of greater sta-

bility, ease of adjustment, and much higher Q's than are possible with

lumped-parameter circuits. The basic principles of transmission-line net-

works will be considered in this chapter.

10.01. Resonant and Antiresonant Lines. The properties of lossless

lines were considered in Sec. 8.06. Let us now see what effect losses have

upon the input impedances of open-circuited and short-circuited lines.

The input impedance of short-circuited and open-circuited lines of

length I are obtained by substituting I for x in Eqs. (8.07-3) and (8.08-3),

respectively, yielding

Z = ZQ tanh yl short-circuited line (8.07-3)

Z = ZQ coth yl open-circuited line (8.08-3)

Now substitute y = a + J0 into these equations and use the identities

tanh otl + j tan 01 1

tanh (a + jftyl
= and coth yl = to obtain

1 + j tanh al tan 01 tanh yl

Z - Z
(T

tanh al + j tan ($1 \
short-circuited line (1)

+ j tanh al tan 0l/

(1

+ j tanh al tan /3l\

) open-circuited line (2)
tanh al + j tan pi /

For resonance or antiresonance, we have 01 = n7r/2, where n is an odd
or even integer as specified at the end of Sec. 8.06. Consider the short-

circuited line. Resonance occurs when n is even and antiresonance when
n is odd. Inserting the corresponding values of 01 into Eq. (1), together

176
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with the approximation tanh al al for small values of al, we obtain the

resonant and antiresonant impedances

Z = ZQ tanh al ZQal resonance (3)

Z
Z = Z coth al antiresonance (4)

a/

The resonant and antiresonant impedances of open-circuited lines are alsc

;iven by Eqs. (3) and (4), respectively.

Let us now investigate the variation of impedance resulting from smal

Trequency deviations either side of the resonant or antiresonant frequency.

Let 01 = (nw/2) + 5, where 6 is a small angular departure from the

resonant or antiresonant value of 01 We then have

tan (nw/2) + tan 6

tan (II
1 tan (n7r/2) tan 5

If n is even, this becomes tan pi = tan 5 5, and if n is odd, tan (31
=

(I/tan d) (1/5). For the short-circuited line in the vicinity of reso-

nance, n is even. Insertion of tan 01 = d and tanh al = al into Eq. (1),

gives
/ al + J5 \Z = ZQ [ ) resonance (5)

\l+j8al/

Similarly, for the short-circuited line in the vicinity of antiresonance, we

have n odd, tan/3i = 1/6, and tanh a/ = a/, yielding

/I +J8al\Z = ZQ I
) antiresonance (6)

\ al + J5 /

Equations (5) and (6) apply equally well for the open-circuited line in

the vicinity of resonance and antiresonance. For small values of al and 5,

we have dal < 1, and the scalar values of the input impedance become

approximately

Z = Z V(al)
2 + d

2 resonance (7)

yr

Z = , antiresonance (8)

V(al)
2 +d*

It' now remains to relate 6 to the frequency. Let w be the impressed an-

gular frequency and o> be the resonant or antiresonant angular frequency.

From our previous assumption, we have 01 = wl/v = (n?r/2) + 6.^ At the

resonant or antiresonant frequency, we have w<>l/v
= nw/2. Combining

these two expressions, we obtain

* - (
-

b)
-

(9)
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The quantity w w represents the difference between the impressed

angular frequency and the resonant or antiresonant angular frequency.

10.02. The Q of Resonant and Antiresonant Lines. One of the princi-

pal advantages of transmission-line networks is the high values of Q which

are attainable by this means. Whereas a Q of 300 represents a relatively

high value for lumped L-C circuits, Q's of the order of several thousand

are attainable with lines. A high Q implies a high degree of frequency

selectivity and therefore a sharply tuned circuit.

The Q of lumped L-C circuits is usually defined by the ratio of reactance

to resistance, i.e.,

where coL is the inductive reactance and R is the circuit resistance.

A more general definition of Q, which is applicable to any case of elec-

trical or mechanical resonance, is

peak energy storage
Q = 27r- ----

(2)

energy dissipated per cycle

Multiplying the numerator and denominator of Eq. (2) by the frequency,

and remembering that the product of energy dissipation per cycle times

frequency is the power loss, we have

peak energy storage
Q = 01--- = -

(3)

average power loss L
J
L

where W$ is the peak energy storage and PL is the time-average power loss.

In order to show that Eqs. (1) and (3) are equivalent, multiply the

numerator and denominator of Eq. (1) by }^/
2

,
where / is the amplitude

of the current flowing in the inductance. This gives

ws

where Ws = %LI2
is the peak energy storage in the inductance and PL

= %I2R is the time-average power loss.

Let us now apply the definition given by Eq. (3) to derive an expression

for the Q of resonant and antiresonant lines. The final expression for Q
is the same regardless of whether we choose an open-circuited or a short-

circuited line operating at resonance or antiresonance.

Consider an antiresonant short-circuited line. The peak energy storage

may be evaluated without serious error by assuming that the line is loss-

less. The voltage and current at any point on the line are then in time

quadrature; therefore the energy storage in the electric field has its maxi-
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mum value when the energy storage in the magnetic field is zero, and vice

versa. The peak values of the energy storage in the electric and magnetic
fields are equal and we may choose either for the purpose of evaluating

theQ.
Consider the peak energy storage in the electric field. The capacitance

of a differential length of line dx is C dx and the peak energy storage is

dWs = }^(C dx)V
2

y
where V is the voltage amplitude. Substituting the

voltage from Eq. (8.06-5) into this expression and integrating between the

limits px = and px = rnr/2 (where n is odd for the antiresonant line), the

peak energy storage becomes

where IR is the amplitude of the current at the receiving end.

The time-average power loss is obtained from PL = J^FJ cos 0, where

V and / are the amplitudes of the voltage and current at the input termi-

nals, and 8 is the phase angle between V and 7. The voltage and current

at the input terminals are found by inserting 01 = riTr/2, cosh al 1, and

sinhaZ al into Eqs. (8.07-4) and (8.07-5), yielding the scalar values

V = IftZo and I = /#/, and = 0. The time-average power loss is

therefore

P. -
(6)

Inserting Eqs. (5) and (6) into (3), together with 01 = n?r/2, Z = ^/L/C,

and = wV LCj we obtain an expression for the Q

Q = f (7)
2a

Thus, the Q is the phase constant divided by twice the attenuation con-

stant. It is also interesting to note that if we neglect the conductance in

Eq. (8.04-6) so that a = Jf2/2Z ,
and insert this, together with the above

expressions for ft and ZQ, into Eq. (7), the expression for the Q reduces to

the familiar form Q = wL//2 where L and R are the series inductance and

resistance per'unit length of line.

The Q is a measure of the frequency selectivity of a resonant or anti-

resonant circuit. To show this relationship, we return to Eqs. (10.01-7

and 8). Let w represent the angular frequency for which d = al. At this

frequency, the input impedance is \/2 times the resonant impedance, or

l/\/2 times the antiresonant impedance, as the case may be. Substitu-

tion of 5 from Eq. (10.01-9) into the above expression yields (w o>o)/tv

a, where o> is the resonant angular frequency. From Eq. (7) we obtain
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Q
2(o>

-
A
2A/
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(8)

where /o is the resonant frequency and A/ = ( w )/2ir.

The resonant and antiresonant impedances may be expressed in terms

of the Q, by inserting 01 * nir/2 and a from Eq. (7) into (10.01-3) and

(10.01-4), yielding

40
resonance

antiresonance

(9)

(10)

In general, the Q of a line is increased by increasing either the size of

the conductors or the spacing between conductors. Increasing the size of

the conductors decreases the skin-effect resistance, whereas increasing

the spacing between conductors in-

creases the inductance per unit

length of line. However, in open-
wire lines, the radiation losses in-

crease as the separation distance

increases.

For the coaxial line, the attenua-

tion constant, as given in Table 1,

becomes a minimum when the ratio

b/a is 3.6. This corresponds to a

characteristic impedance of approxi-

mately 77 ohms. Since is inde-

pendent of b and a, it follows from

Eq. (7) that maximum Q likewise

occurs when b/a = 3.6. Figure 1 is

a plot of the Q of copper coaxial

lines as a function of frequency for

various sizes of lines, all having the

optimum value b/a = 3.6.

10.03. Lines with Reactance Ter-

mination. Lines are often used as

tuned elements in vacuum-tube circuits where they are shunted by the

interelectrode capacitances and conductances of the tube. A line may be

tuned by means of a small variable condenser shunted across either end
of the line. Let us observe what effect lumped reactances have upon the

resonant and antiresonant frequencies.

Frequency,me

Fro. 1. Q of copper coaxial lines having the

optimum ratio b/a 3.6.
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In high-Q circuits the resistance has very little effect upon the resonant

frequency; hence we shall confine our attention to lossless lines which are

terminated by pure reactances. Consider the lines shown in Fig. 2, with

lumped reactances X\ at the sending end and XR at the receiving end.

In Fig. 2a the reactance X\ is assumed to be connected in series with a

zero-impedance generator. This is equivalent to the series L-C circuit of

Fig. 2b, the input impedance having zero value at the resonant frequency.

In Fig. 2c, the reactance X\ is assumed to be shunted across an infinite-

impedance generator, this being analogous to the parallel L-C circuit of

Fig. 2d.

X,

(a)

b
(c) (d)

FIG. 2. Lines with reactance terminations and their lumped-circuit equivalents.

A condition of resonance exists when the reactances looking both ways
at any pair of terminals, such as at ab in Fig. 2a or 2c, are equal in magni-

tude and opposite in sign. In Fig. 2a this results in a resonant input im-

pedance, whereas in Fig. 2b, the input impedance is antiresonant.

The input reactance of the line alone at terminals ab is obtained from

Eq. (8.06-4),

/X^^tan^X
J

Applying the above criterion, resonance or antiresonance occurs when

Solving for tan ftl and substituting ft
= w/vc ,

we have

.
wZ / Xi + XR \ f

.

tan- ^^i---=2) (3)
Vc \AiA/2 Z /

In these equations Xi and XR take positive values for inductive reactance

and negative values for capacitive reactance.
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If the line is short-circuited at the receiving end, we have XR 0, and

Eq. (3) reduces to

x
"l Xl fA\

tan = (4)
Vc ZQ

and if open-circuited, XR =
,
and

x
W/ Z

/tan = (5)
vc %i

If there is no reactance at the sending end, we set Xi = for the series

connection and Xi = < for the parallel connection.

Resonant lines have a multiplicity of resonant and antiresonant fre-

quencies which may be either harmonically or inharmonically related. If

the line contains no lumped reactance, the resonant and antiresonant fre-

quencies are harmonically related. For example, the short-circuited line

without reactance termination at either end is resonant when tan wl/vc =

and antiresonant when tan wl/vc = oo . The corresponding resonant and

antiresonant frequencies are given by

nvc n\
/-_ or l = - (6)

where n is an even integer for resonance and odd for antiresonance. The

resonant and antiresonant frequencies are therefore harmonically related.

In general, if the line is terminated by lumped reactances the resonant

and antiresonant frequencies are not harmonically related. This is appar-

ent since the frequency appears on both sides of Eq. (3). The question

sometimes arises: how can we design a line having reactance terminations

so as to be simultaneously resonant or antiresonant at any two or more

specified frequencies? Such a problem might arise if we were to design

an oscillator or amplifier to deliver a relatively large output at a harmonic

of the fundamental frequency. The interelectrode capacitance of the tube

constitutes a lumped reactance shunting the input end of the line, as shown

in Fig. 2. Therefore the antiresonant frequencies will, in general, be in-

harmonically related unless we specifically design the circuit to have har-

monic antiresonant frequencies.

Equation (10.03-3) shows that there are four variables which we are at

liberty to adjust. These are the two terminating reactances, the charac-

teristic impedance of the line, and the length of line. By proper adjust-

ment of the four variables, it should be possible to make the circuit either

resonant or antiresonant at four specified frequencies which may be either

harmonically or inharmonically related.

As a specific example, consider a short-circuited line with a capacitance

C shunted across its input terminals. We wish to find the length of line
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and value of C required to make the circuit antiresonant at the two angular

frequencies wi and 0*2 For the two specified frequencies Eq. (4) becomes

0)i Z 1 C02Z 1

(7)tan =
Vc

Dividing these equations gives

tan

tan =
vc

Fro. 3. Coaxial wavemeters.

If the two frequencies are harmonically related, we have co2
=

ncox, and

Eq. (8) reduces to

u\l coil
tan = n tan n (9)

Vc Vc

This is a transcendental equation of the form tan 6 = n tan nd. Solutions

for uil/Vc may be obtained either by Newton's method * or by graphical

methods. The length of line may then be computed from the known value

of wli/vc .

10.04. Measurement of Wavelength. The coaxial wavemeter shown
in Fig. 3 consists of a coaxial line which is short-circuited at both ends.

One end contains a sliding piston which is adjustable by means of a worm

gear. The microwave source is coupled to the wavemeter by means of a

coaxial line which terminates in a small coupling loop inside the coaxial

1
DOHERTY, R. E., and E. G. KELLER, "Mathematics in Modern Engineering,"

chap. 4, John Wiley & Sons, Inc., New York, 1936.
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wavemeter. A second coupling loop is connected to a crystal detector and

microammeter for a resonance indicator. Resonance occurs when the co-

axial line is an integral number of half wavelengths long. The micro-

ammeter reading has its maximum value at resonance and decreases ab-

ruptly as the coaxial wavemeter is tuned away from resonance. A centi-

meter scale and vernier on the dial indicate the wavelength.

10.05. Measurement of Impedances at Microwave Frequencies. An
unknown impedance can be measured by connecting it to a low-loss trans-

mission line having a known value of characteristic impedance and measur-

ing: (1) the standing wave ratio p =
|

Fmax |/|
7min

|

and (2) the distance

from the terminating impedance to the first voltage maximum or minimum.

The standing wave ratio is a measure of the impedance mismatch of a

line. If the line is terminated in its characteristic impedance, the stand-

ing wave ratio is unity. The standing wave ratio increases as the terminal

impedance becomes increasingly greater than or less than the character-

istic impedance, approaching infinite value for the open-circuited or short-

circuited line.

For a lossless line, the voltage maximum and current minimum occux-

at the same point on the line. In Sec. 9.05 it was shown that the voltage

maximum may be represented by
|

Vmax
|

= V#(l +
|
TR |),

where
|
TR

\

is

the magnitude of the reflection coefficient. By a similar method, the cur-

rent minimum can be shown to be
|

7min
|

= (1
|
TR |)(Ffl/Z ). At the

point where the voltage is a maximum and the current a minimum, the

impedance is i T7 , 1 , i i

i

I
/min

I

1
I

rR
I

where p is the standing-wave ratio given by Eq. (9.05-4). In a similar

manner, it may be shown that the impedance at the voltage minimum

(current maximum) is _
/JQZ-- (2)
p

Now write Eq. (8.06-4) for the impedance at the point of maximum

voltage on the line, letting x = zmax and Z = pZ ,

fZR +j
pZQ = ZQ [

I (3)
\Z + j%R tan #c

(4)

Solving this for Z& and substituting ft
=

2ir/X, we ,have

.

p j tan

1 jptan
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If p, Z , #max> and X are known, the terminal impedance may be readily

computed from Eq. (4). A similar relationship may be derived for the

terminating impedance in terms of the distance from xm[n to the voltage

minimum.
The impedance diagram can be used to evaluate an unknown load im-

pedance. As an example, assume that the values p = 2 and #max/X = 0.15

Fia. 4. Use of the impedance diagram for determining an unknown impedance
*

hav6 been experimentally determined. The normalized impedance at the

voltage-maximum point on the line, from Eq. (1), is Z/Z = p = 2.0 + JO.

Enter the impedance diagram at this value of impedance (point P in Fig.

4) and observe the corresponding values of al = 0.54 and WQ = 0.25. Now
proceed in a counterclockwise direction on the constant-aZ circle to point
Q where w = w + (xmox/X) = 0.40 (on the "wavelengths toward the load"

scale). This corresponds to moving from the voltage-maximum point to
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the receiving end of the line. The normalized impedance at point Q is

ZR/ZO = 0.68 + jO.48. This is the normalized load impedance.

Figure 5a shows a standing-wave indicator which is used to measure the

standing-wave ratio at wavelengths of from approximately 5 to 15 centi-

(a)

Distance

(W

Fio. 5. Standing-wave indicator and method of crystal calibration.

meters. This consists of a sliding probe which extends a short distance

into a slotted section of coaxial line. The probe is connected to a crystal

detector and microammeter. This device actually measures the etectric

intensity in the coaxial line. However, the electric intensity is propor-

tional to the voltage between conduct6rs, hence the standing- wave indi-
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cator may be assumed to be a voltage-measuring device. A scale on the

standing-wave indicator is used to measure the distance between the

terminal impedance and the voltage maximum or minimum.

To calibrate the standing-wave indicator, the coaxial line is short-

circuited at its output terminals and data are taken for a curve of micro-

ammeter reading plotted against probe position, as shown in Fig. 5b. The
sine-wave curve, also shown in Fig. 5b, is the curve which would be ob-

tained if the crystal had a linear volt-ampere characteristic. The relative

calibration curve is then obtained by plotting a curve representing the sine

wave values as ordinates and the corresponding microammeter readings as

abscissas. Care must be taken to couple the probe loosely to the coaxial

line in order to avoid disturbing the standing wave on the coaxial line.

Fia. 6. Thermistor bridge for power measurement.

10.08. Power Measurement at Microwave Frequencies. It is often

necessary to measure the power output of oscillators or amplifiers operating

at microwave frequencies. The thermistor bridge or bolometer bridge,

shown in Fig. 6, provides a convenient and reasonably accurate method of

measuring power. One arm of the bridge, designated as Rt in Fig. 6, con-

tains a resistance element which has a relatively high temperature coeffi-

cient of resistance. This element is connected in such a manner as to ab-

sorb the power from the microwave source whose power output is being
measured.

With the microwave Source disconnected, the bridge is balanced and the

milliammeter reading in the R t branch is observed. The microwave source

is then connected and the stubs are adjusted for maximum power trans-

fer to Rt ,
as indicated by a maximum unbalance of the bridge. The un-

balance results from the fact that the value of Rt changes as the power

dissipation in it increases. Balance is restored by decreasing the d-c power
loss in Rt by an amount exactly equal to the microwave power dissipation

in this resistance. This is accomplished by means of the rheostat in the
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battery circuit. If I\ is the direct current through Rt for the initial bal-

ance and /2 is the direct current when the bridge is balanced with the

microwave source connected, the microwave power is Pac = (I\ /l)/2*.

The milliammeter may be calibrated to read the power in watts.

If the element Rt is a semiconductor having a negative temperature

coefficient of resistance, it is known as a thermistor. Negative tempera-

ture-coefficient materials suitable for thermistors include uranium oxide,

a mixture of nickel oxide and manganese oxide, and silver sulphide. Con-

ducting wires are sometimes used which have a positive temperature coef-

ficient of resistance. These are known as bolometers or barretters. One

commercial form consists of a straight platinum wire, 0.06 mil in diameter,

Antenna

FIG. 7. Power measurement by the sampling method.

which is mounted in a cylinder for use in standard coaxial line fittings.

This particular element has a maximum power rating of 32.5 milliwatts

and may be used to measure values of power as low as 10 microwatts.

In order to minimize skin-effect errors, thermistors and barretters usually

have very small diameters; consequently their power rating is quite small.

Higher power levels may be measured by inserting a calibrated attenuator

between the source and Rt in Fig. 6. Sections of coaxial line having a

high-loss dielectric are sometimes used as attenuators. However, the at-

tenuation characteristics of this type of attenuator are likely to vary with

temperature and humidity. Another type of attenuator consists of a glass

rod upon which has been deposited a thin layer of platinum. The plati-

nized glass rod is used as the center conductor in a coaxial line which is

inserted between the power source and the thermistor or bolometer bridge.

The power consumed in a load impedance may be measured by a sam-

pling method shown in Fig. 7. In this method the power-measuring circuit

is loosely coupled to the coaxial line which connects the microwave source

to the load. A small fraction of the total power enters the power-measuring

bridge, which may be of the thermistor or bolometer type. In this method,
it is necessary to calibrate the power-measuring circuit with the given load

impedance in order to determine what fraction of the .total power is being
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VR
9
+JX

drawn off by the power-measuring circuit. A more accurate sampling
method consists of a coaxial line containing a directional coupler, sirrtilar

to that shown for wave guides in Chap. 18.

10.07. Effect of Impedance Mismatch upon Power Transfer. A well-

known power-transfer theorem states that if a variable load impedance is

connected to a constant-voltage gen-

erator, maximum power transfer oc-

curs when the load impedance is equal
to the complex conjugate of the gen-
erator impedance. When this condi-

tion prevails the impedances are said

to be matched. It is sometimes help-

ful to be able to determine the power
sacrificed as a result of not having
matched impedances.

Referring to Fig. 8, let Zg
= Rg + jXg be the generator impedance and

ZL = RL + JXL represent the load impedance. The scalar value of cur-

rent is

I rl _ Vt /i\

_ _ _ ...
FIG. 8. Generator and load.

+ (X* +

and the power consumed in the load is

If the load impedance is the only variable, the power is a maximum
when RL = Rg and XL = Xg ,

that is, when the generator and load im-

pedance are conjugates. The power is then

V*
"

(3)

The ratio of the power for any load impedance to the maximum power
is found by dividing Eq. (2) by (3),

Now divide the numerator and denominator by R% and let R'

and X' - (Xg + XL-)/Rt, giving

+ +
(B
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If we let R' and X' be the coordinate axes in a rectangular coordinate

system, the loci representing constant values of P/Pmax are circles as shown
in Fig. 9. This graph makes it possible to evaluate the ratio of actual

power to maximum power for any condition of impedance mismatch. The

procedure is to compute R' and X' for the particular problem. The value

FIG. 9. Power transfer ratio P/Pmax for mismatched impedances.

* is then obtained from Fig. 9. If the load consists of a trans-

mission line with a load impedance at the distant end, the impedance Z^
is the input impedance of the line.

10.08. Power-transfer Theorem. There is an interesting and useful

power-transfer theorem which states that if a generator is connected

through one or more pure reactance networks to a load, as shown in Fig.

10, and the conditions are such that there is a conjugate impedance match
at one pair of terminals, then there will be a conjugate impedance match
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at every pair of terminals and maximum power will be transferred from

the generator to the load.

This may be readily verified by the use of Th6venin's theorem. If we

break into the network at any junction, such as at ab in Fig. lOa, Th6ve-

nin's theorem permits us to replace the network to the left of ab by a

generator as shown in Fig. lOb. The generator impedance Z'g in the equiv-

.alent network is equal to the impedance looking to the left at terminals

ab
y
and the generator voltage V'g is the open-circuit voltage at ab. The net-

work to the right of ab in Fig. lOa is replaced by its equivalent impedance

Z2 in Fig. lOb. Now assume that there is a conjugate match of impedances

FIG. 10. (a) Network consisting of a generator connected to a load impedance through pure
reactance networks, and (b) equivalent circuit from Thevenin's theorem.

at ab in Figs. lOa and lOb. A conjugate impedance match in the circuit

of Fig. lOb signifies that there is a maximum power transfer past the junc-

tion ab. If there is a maximum power transfer in the equivalent circuit,

there must likewise be maximum power transfer in the original circuit.

Since we have maximum power flow past the junction ab in Fig. lOa, and

there is no power lost in the reactive networks, it follows that there is a

maximum power flow at every junction and likewise maximum power trans-

fer to the load. Consequently, there must be a conjugate impedance match
at every junction, since, if there were not a conjugate impedance match
at any junction, there could not be maximum power flow past this junction.

For most transmission lines operating at microwave frequencies, we have

coL R and o><7 G; hence the lines may be treated as pure reactance

networks. The foregoing power-transfer theorem makes it possible to

match impedances at any point on the line between the generator and load

and be assured of a conjugate impedance match throughout the entire

system, resulting in maximum power transfer to the load.

10.09. Quarter-wavelength and Half-wavelength Lines. Transmission

lines which are either a quarter wavelength or a half wavelength long have
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special impedance-transforming properties. Consider the input impedance
to a quarter-wavelength lossless line which is terminated in an impedance

ZR. Inserting 01 = ir/2 into Eq. (8.06-4), we obtain

72

* -
f

2 CD
/p

The input impedance varies inversely as ZR] therefore the quarter-wave-

length line is effectively an impedance inverter. If ZR is inductive, the

input impedance is capacitive, and vice versa. If the load impedance is

constant, it is possible to control the magnitude of the input impedance,

Fio. 11. Impedance transformer consisting of two quarter-wavelength lines.

but not its phase angle, by a proper choice of Z . If a generator having an

impedance Zg is connected to the input end of the line and both Zg and

ZR are pure resistances, maximum power transfer occurs when

*7 -Z^ ~ ~ fJ __ "V/ 7 (7 /O\
g ,j

r &0 V ^g^R \")

From a practical point of view, the range of characteristic impedances
of coaxial lines is from 5 to 250 ohms, whereas that for open-wire lines is

from 90 to 1,000 ohms. These provide the practical limits of impedance
transformation using the quarter-wavelength line.

Let us now see what effect variations in frequency have upon the power
transfer. Assume that a lossless line, terminated by an impedance Z#, has

matched impedances at the generator at the frequency for which the line

is a quarter wavelength long. If Zg and ZR are approximately equal, the

variation in power transfer with frequency will be relatively small. How-

ever, if Zg and ZR differ greatly the power transfer decreases rapidly as the

frequency departs from the frequency at which the line is a quarter wave-

length long, and therefore the impedance transformer is highly frequency
selective.

Two or more quarter-wavelength sections of line having different char-

acteristic impedances, such as shown in Fig. 11, may be used to obtain an

impedance transformer which is less frequency selective than that of a

single quarter-wavelength section.
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Now consider the input impedance of a half-wavelength line which is

terminated in an impedance ZR . Inserting ftl
= TT into Eq. (8.06-4), we

obtain

Z = ZR (3)

Therefore, the input impedance of the half-wavelength line is equal to the

terminating impedance, or the half-wavelength line is effectively a one-to-

one ratio transformer.

10.10. Single-stub Impedance Matching. From a practical point of

view, the use of the quaiter-wavelength line as an impedance transformer

is restricted largely to the matching of resistive impedances where the fre-

quency and impedances are constant. Stub impedance-matching systems

FIG. 12. Single-stub impedance matching.

are more versatile in that they may be used to match complex impedances

and are more readily adjustable. A stub consists of an open-circuited or

short-circuited line which is shunted across the transmission line between

the generator and the load. One or more such stubs may be used for im-

pedance matching.

If a single stub is used, as shown in Fig. 12, it is necessary to have both

the length of the stub and the distance from the stub to the load adjustable

in order to match all possible load impedances. Let us analyze this case.

Since we are dealing with parallel circuits, it is convenient to use admit-

tances. The characteristic admittance of the line F = l/#o may be as-

sumed to be A pure conductance for a low-loss line.

Maximum power transfer requires a conjugate admittance (or imped-

ance) match at the generator and, likewise, a conjugate admittance match

at points ab where the stub is connected to the transmission line. In the

following discussion, it is assumed that the line is lossless and therefore that

the characteristic admittance F is a pure conductance. If the generator

admittance happens to be equal to the characteristic admittance, that is,

if Yg
= F

,
then the admittance looking to the left at ab is F and the

admittance looking to the right at ab (including the stub) must likewise
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be equal to FO for maximum power transfer. Under these conditions, there

will be no standing waves on the line between the generator and the stub,

although standing waves will exist on the section of line from the stub to

the load and on the stub itself.

If the generator admittance is not equal to F
,
then the admittance look-

ing to the left at ab is not equal to F
,
and therefore the admittance look-

ing to the right at ab must likewise have some value other than F for

a conjugate admittance match. The section of line between the gener-

ator and stub then serves as an impedance transformer and has standing
waves of voltage and current along its length. It should be noted that

the absence of standing waves on a line is not always an indication of

maximum power transfer.

In the following analysis, we shall assume a lossless line with Yg
= F .

Maximum power transfer then requires that Ya b
= F

,
where Ya b is the

admittance looking to the right at ab including the stub. The admittance

of a lossless stub is a pure susceptance. The stub is located at that point

on the line where the real part of the admittance, looking toward the load,

is F . The stub length is then adjusted so that its susceptance is equal and

opposite to the susceptance of the line at this point, thereby canceling the

susceptance and leaving Ya b
= F .

The reflection coefficient equations will be used in order to gain facility

in the use of these equations. The admittance at any point on the line

looking toward the load (with the stub disconnected) is obtained by invert-

ing Eq. (9.01-4)
Y

=
1 " -*'

Fo 1 + rRe-^
x

where the reflection coefficient is given by TR = (F F#)/(F +
Now let

r* - - -
I

r
I

e
~y2u

where
|
TR

\
is the absolute value of the reflection coefficient and 2u^ is the

angle. Substitution of Eq. (2) into (1), together with y =
jff (for a lossless

line), gives

where ^ = %(UQ + 0x)

Using the trigonometric identity e~J* = cos ^ .;
sin ^ and separating

the real and imaginary terms, we obtain from Eq. (3),

1 - 2
j2|rj,|Bin

'

Y l + 2|r*|cos* + |r|
2

1 + 2|
rR

\
cos* +

|
rR |

2
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The stub is located at that point on the line where the real part of the

admittance is equal to YQ, or where the real part of Eq. (4) has unit value.

This requires that

= -| rR
| (5)

Inserting \f/
= 2(wo + Ph), where l\ is the distance between the receiving

end of the line and the stub, we have

COS 2(UQ + fill)
=

|
TR

|

t0 + - COS" 1 -
I TR \\ (6)

The values of
|
TR

\

and UQ may be evaluated in terms of known values of

F and YR by using Eq. (2). These are then substituted into Eq. (6)

to obtain the distance l\ from the load to the stub.

From Eq. (5), we obtain sin ^ = V 1
|
TR

|

2
. Substitution of this,

together with Eq. (5), into (4), yields

Y . . J2|i*|

For a conjugate admittance match, under the assumed conditions, the

susceptance portion of Eq. (7) must be canceled by an equal and opposite

stub susceptance. Assume that the characteristic admittance of the stub

and line are equal. The normalized stub admittance must then be

Y^ = _ &\ r*
\

(8)

The normalized admittances of the short-circuited and open-circuited

stubs are obtained from Eqs. (8.06-7 and 10),

Fstub . 27T/2= j cot short-circuited stub (9)

= j tan open-circuited stub (10)
YQ X

The length of stub is found by equating either Eq. (9) or (10) to Eq. (8)

and solving for k- '^
The position of the stub and its length may also be determined from

standing-wave measurements on the line. With the stub disconnected,
the maximum and minimum voltages are observed and the distance from

the load to the first voltage maximum is obtained. Equation (9.05-4) is

then used to obtain the value of
|
TR

|

and Eq. (9.05-7) yields UQ. These

values may then be substituted into Eqs. (6) and (8) and the values of l\

and Z2 are then determined as outlined above.
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Example. A generator having an internal impedance Zg
= 75 ohms is connected to

a load impedance ZR == 250 ohms by means of a transmission line having a character-

istic impedance of 75 ohms. The wavelength of the impressed signal is X = 20 cm.

Find the position and length of a short-circuited stub which will yield maximum power
transfer to the load.

o-

FIG. 13. Graphical solution of single-stub impedance matching.

Consider first the analytical solution. The admittances are YQ 1/Zo = 0.0133

mhos and YR = I/ZR = 0.004 mhos. Substitution of these values into Eq. (2) yields

TR -
|
TR

|
e~2'u <> - 0.537

or
I TR |

0.537 and MO Q. Inserting these values into Eq. (6), we obtain

- = cos"1
(-0.537)

X 4*-

There are a multiplicity of values of l\ which satisfy this equation. These values differ

by a half wavelength and any one of the values may be used. The shortest distance
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corresponds to the second-quadrant angle of 121.5 or 2.12 radians. This gives

- - 0.169 h =- 3.38 cm.
A

The length of the stub is found by equating (8) and (9) and substituting |

rR
\

0.537, yielding

cot - 1.264
A

Again we find a multiplicity of solutions differing by a half wavelength. The shortest

stub is

- - 0.1065 /2 - 2.13 cm.
A

Now consider the graphical solution. We enter the polar diagram at the normalized

load admittance YR/YQ = 0.3 + ;0 (point PQ in Fig. 13) and observe that to - 0.30

(on the al circles) and WQ = (on the "wavelengths toward the generator" scale). As
we move back toward the generator, the admittance point moves in a clockwise direc-

tion on the constant-aZ circle. At PI we intersect the unity conductance circle and at

the corresponding point on the transmission line we place the stub. At this point the

admittance is Fi/Ko 1 H-^1.26 and we have w\ 0.17. The distance l\ from the

load to the stub is determined by l\/\ = w\ WQ = 0.17.

The stub must provide a normalized susceptance of 1.26 mhos. Let us now deter-

mine the length of stub. At the short-circuited end of the stub we have Y/YQ = oo.

Entering the diagram at this point (Qo in Fig. 13), we observe that w'
Q 0.25. Moving

in the clockwise direction around the constant-a/ circle we stop at the susceptance

YS/YQ = -./1.26. The corresponding value of w' is w' = 0.356. Thus, the stub length

is obtained from k/\ = w' WQ = 0.106. The values of l\/\ and lz/\ obtained by the

graphical method are in agreement with the analytical solutions.

10.11. Double-stub Impedance Matching. In order to match variable

load impedances using the single stub, it is necessary to vary the length

of the stub as well as its position with respect to the load impedance. Thfr

stub position may be varied by inserting a telescoping "line stretcher"

between the load and the stub. A more convenient impedance transform*

ing system consists of two or more adjustable stubs spaced approximately

a quarter wavelength apart as shown in Fig. 14.

Let us assume that Yg
= YQ . To obtain maximum power transfer, it

is then necessary to adjust the lengths of the stubs so that the admittance

looking to the right at ab is equal to YQ . Stub 1 serves to make the con-

ductance part*of the admittance at ab equal to F
,
and stub 2 is then ad-

justed to cancel the susceptance portion of the admittance at ab.

Consider the graphical solution of the double-stub impedance trans-

former. Assume that the admittance Ycd at points cd in Fig. 14 (with

both stubs disconnected) corresponds to point P in Fig. 15. Connecting

stub 1 adds a pure susceptance, causing the admittance point to move on

the constant-conductance circle to a new position PI which is determined

by the length of the stub. If the stubs are a quarter wavelength apart,
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'

Fia. 14. Double-stub impedance matching.

Fio. 15. Graphical solution of double-stub impedance matching.
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the admittance Ya b (with stub 2 disconnected) is at point P2 in Fig. 15,

which is halfway around the diagram from PI on the same al circle. In

order to obtain the conditions necessary for matched admittances, the

length of stub 1 should be such that point P2 falls on the unity conductance

circle. With stub 2 connected and adjusted to cancel the susceptance at

P2 ,
the admittance point moves from P2 to P3 . The latter point corre-

sponds to Y/YQ = 1 + _/0,which is the requirement for matched admittances.

The double-stub transformer will not match all possible load admittances.

Thus, if the load admittance and position of the stub are such as to place

FIG. 16. Coaxial and open-wire tapered lines.

PO on any conductance circle greater than unity (so that P falls inside the

unity conductance circle), it is then impossible to obtain matched admit-

tances using two stubs which are spaced a quarter wavelength apart. The

range of admittances which can be matched by this method is increased

somewhat by spacing the stubs a little less than a quarter wavelength

apart. Triple-stub impedance transformers are sometimes used where ac-

curate impedance matching is required.

10.12. The Exponential Line. 1

Tapered lines, which are several wave-

lengths long, such as those shown in Fig. 16, provide a gradual impedance
transformatiorr over the length of the line. This type of impedance trans-

former is less frequency selective than the quarter-wavelength line or the

stub transformers. An exponential line is a tapered line in which the char-

acteristic impedance varies exponentially along the line.

As a point of departure, let us write the differential equations of the trans-

mission line similar to Eqs. (8.02-3 and 4), but with the distance x measured

1 WHEELER, H. A., Transmission Lines with Exponential Taper, Proc. I.R.E., vol. 27

pp. 65-71; January, 1939.
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from the sending end. For a lossless line these are

dV
- -JWJ (1)

dx

(2)
dx

where the inductance L and capacitance C per unit length of line are now
functions of the distance x.

We now assume that the tapered line is terminated in such a manner

as to prevent reflections at the receiving end. For this condition, there

will be outgoing waves of voltage and current but no reflected waves.

Assume that the outgoing wave of voltage has a variation with x given by

V = Vse~
wx

(3)

where Vs is the amplitude of the sending-end voltage and e~~*
x
represents

an exponential voltage transformation resulting from the line taper. The
constant 5*will be referred to as the voltage transformation constant.

If the voltage is transformed by an amount e~
Sx

,
we would expect that

the current would be transformed by the inverse amount, or by an amount
e*

x
. Hence the current is represented by

/ = lse
-v>*

(4)

where 7$ is the sending-end current amplitude.

The voltage and current given by Eqs. (3) and (4) are in time phase at

any point on the line and the power flow is

p = y2\v\\i\ = y2vsis (5)

The power is independent of distance x.

Let us now determine what conditions are required to obtain the assumed

voltage and current distribution. The impedance at any point along the

line is the ratio of voltage to current. Dividing Eqs. (3) and (4), we have

Z = I = Zse~2*x (6)

where Z& = Vs/Is* Equation (6) shows that the impedance is transformed

by the factor e~ 26x which is the square of the voltage transformation.

Substitution of the voltage from Eq. (3) and the current from (4) into

(1) and (2) gives

(7)

(8)
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The product of these two equations gives

g2 + 02 W2LC (9)

and solving for ft

V52

1 -
"5 (10)
CO iC

The phase constant /3 may be either real or imaginary, a condition similar

to that encountered in filter networks. For large values of co, the phase

constant, given by Eq. (10), is real and the voltage and current waves

propagate without attenuation (although they are transformed owing to the

taper of the line). This corresponds to the pass band in conventional filter

theory. For values of co below a certain critical value, ft is imaginary and

the voltage and current, as given by Eqs. (3) and (4), are both attenuated

with distance along the line. This corresponds to the attenuation band in

filter theory. Hence the exponential line has properties similar to those of

an impedance-transforming high-pass filter.

Cutoff occurs when ft is zero, or from Eq. (10), when

,

where coc is the cutoff angular frequency and vc = 3 X 10
8 meters per second

is the velocity of light. Equation (11) shows that a high transformation

constant 5 results in a correspondingly high cutoff frequency.

The inductance and capacitance variation along the line are determined

by the form of voltage and current distribution. Returning to Eq. (7)

and writing this for the sending end (x = 0), we obtain (6 + j(f)Zs
= jwLg

where LS is the inductance per unit length at the sending end of the line.

Dividing this into Eq. (7), gives

= e~28x (12)
LS

A similar procedure applied to Eq. (8) yields

(13)
^S

where Cs is the capacitance per unit length at the sending end.

If we define the characteristic impedance at any point on the line by the

relationship Z = VZ/C, Eqs. (12) and (13) give
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Finally, let us evaluate the terminal impedance ZR which is necessary

to prevent reflections. By dividing Eqs. (7) and (8), and substituting

Zs = Ze2** from Eq. (6), we obtain

Rationalizing Eq. (15) and separating real and imaginary terms, we obtain

Z =

Substitution of

52 + f = JLC = ?t* and s* =

from Eqa. (9) and (11) into Eq. (16) gives

Equation (17) is an expression for the impedance (ratio of voltage to cur-

rent) at any point on the exponential line. The impedance at either the

transmitting or receiving end of the line is obtained by inserting the values

of L and C at the corresponding end of the line into Eq. (17). This gives

the impedances which are required to terminate the line so as to prevent

reflections.

If the impressed frequency is much greater than the cutoff frequency,

then Eq. (17) reduces to Z = V L/C, i.e., the impedance at any point on

the line is equal to the characteristic impedance at that point. For maxi-

mum power transfer, the generator and receiver impedances should then

be approximately equal to the characteristic impedances at their respective

ends of the line. In general, the condition w o>c is satisfied if the expo-

nential line is several wavelengths long.

As the impressed frequency approaches cutoff the imaginary term in-

creases. At cutoff the impedance is Z = jVL/C. The j signifies that

the impedance is a pure reactance; hence there is no power flow.

Figure 17 is a plot of the voltage-transformation term e~*
x and the

impedance transformation term e~
2ax

against dx.

Example. An exponential line is desired to transform between resistive impedances
Zg

= 450 ohms and ZR = 75 ohms at a wavelength of X =* 10 cm. Find the length of

coaxial line and the equation for the taper.

Inserting the values of Zg and ZR into Eq. (6), we obtain

^ = -2 0.167
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Referring to Fig. 17, we obtain dl = 0.9. It is desirable to choose a length of line such

that a>c. Inserting c from Eq. (11), the inequality becomes 5t>c which

may also be written 6 <C 2v/\. A value of 5 equal to 10 per cent of 27T/X would yield

an impedance Z, which differs from Zo by less than 1 per cent. In order to obtain a

reasonable length of tapered line, assume a value of 8 0.06. From the value of dl

given above, we obtain I 15 cm.

z

z

z

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

6x

FIG. 17. Plot of voltage and impedance transformation factors against dx.

The characteristic impedance of the line at the sending end should be approximately
450 ohms and that at the receiving end, approximately 75 ohms. To obtain the equa-
tion for the exponential taper, write Eq. (6) in the form Z/Z$ e~ 26x

. Inserting

the characteristic impedance of a coaxial line from Table 1, Chapter 8, for Z, and

Zs 450 ohms, we obtain

138 b

logic- - e- 25x

450

or

logio
- - 3.26e

where a and b are the radii of the inner and outer conductors, respectively,
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10.13. Filter Networks Using Transmission-line Elements.1 Various

types of filters may be constructed using transmission-line elements. In

general, filter networks of this type are band-pass filters with multiple-pass

bands due to the multiple-resonance properties of the component lines.

If the filter contains no lumped reactances, the resonant and antiresonant

frequencies of the line elements are harmonically related and therefore the

multiple-pass bands occur at harmonic intervals on the frequency scale.

If lumped reactances are used, the multiple-pass bands, in general, will be

inharmonically related.

b-
(b)

FIG. 18. Band-pass filter and equivalent circuit

Consider the simple T filter shown in Fig. 18a. In the pass band, this

may be represented by the equivalent circuit of Fig. 18b. The lengths l\

and 12 may be adjusted so that the series arms are resonant and the shunt

arm is antiresonant at the mid-frequency in the first pass band. Let fm

represent this mid-frequency. At even harmonics of fm the series arms are

antiresonant and the shunt arm is resonant. This condition corresponds

to maximum attenuation of the impressed signal. At odd harmonics of

fm the same conditions prevail as at the frequency fm . Consequently, the

pass bands are centered at odd harmonics of fmt whereas the attenuation

bands are centered at the even harmonics.

1 MASON, W. P., and R. A. SYKES, The Use of Coaxial and Balanced Transmission

Lines in Filters and Wide-Band Transformers for High Radio Frequencies, Bell System

Tech. J., vol. 16, pp. 276-302; July, 1937.
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Figure 19a shows another type of band-pass filter using two resonators

These are joined by a transmission line which is effectively a quarter wave-

length long at the mid-frequency of the first pass band. The resonators

are tuned by adjustable plungers so as to be resonant at the mid-frequency

of the pass band. In general, the multiple pass bands for this type of

filter are not harmonically related since the capacitance between the end

of the plunger and the bottom wall of the resonator is effectively a lumped
reactance. Figure 19b shows the equivalent circuit for this type of filter.

The width of the pass band is determined, in part, by the effective Q of

the loaded resonators.

(a)

(b)

FIG. 19. Band-pass filter and equivalent circuit.

Low-pass and high-pass filters may be constructed as shown in Fig. 20.

The inductive reactances consist of short-circuited lines which are less than

a quarter wavelength long.

A rigorous analysis of filters of the type shown in Figs. 18 to 20 is quite

laborious. However, several useful relationships may be obtained by

analogy with -equivalent lumped-parameter networks. For example, the

cutoff frequencies of low-pass and high-pass filters with lumped elements

are fc = l/w\/LC and fc = l/4ir\/LC, respectively, where L and C are

as shown in Figs. 20b and 20d. 1 The image impedance of the low-pass
filter at zero frequency or the high-pass filter at infinite frequency is

Zk = V ZiZ2,
where Z\ is the total series impedance and Z2 is the total

1
EVEBITT, W. L., "Communication Engineering," 2d ed., chap. 6, McGraw-Hill Book

Company, Inc., New York, 1937.
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shunt impedance of the lumped-parameter filter. The attenuation con-

stant a for the lumped-parameter filter, in the attenuation band, is given by
cosh a =

|

1 + Zi/2Z2 I-
These relationships may be used as first approx-

imations in the design of filters such as those described above. It is helpful

to construct experimental filters with elements which can be adjusted to

give the desired characteristics. The dimensions obtained from the ex-

perimental filter are then used in the design of the actual filter.

Shunt Series

capacitance, inductance
Series

Insulation, capacitance

inductive

stub

X
T

-\\-

(b)

LOW PASS

(d)

HIGH PASS

FIG. 20. Low-pass and high-pass filters and their equivalent circuits.

In order to illustrate the methods of analysis of distributed-parameter

filter networks, let us consider the band-pass filter shown in Fig. 18a. It

is assumed that the transmission elements are lossless. The image imped-

ance Zk for the network as a whole is given by

(i)

where Zoc is the impedance looking into terminals ab with terminals

cd open-circuited, and Z8C is the impedance at ab with terminals cd short-

circuited. The image impedance is the impedance which should be used

to terminate the network in order to prevent reflection. It corresponds to

the characteristic impedance in transmission-line theory. If the two series

branches in Fig. 18a are identical, the network is symmetrical and the image

impedance at ab is equal to that at cd. If the series branches are unequal,
the network is unsymmetrical and the image impedances at ab and cd

are unequal and the network is then an impedance-transforming filter.
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The propagation constant F = of + j$ for the entire filter network con-

tains an attenuation constant a' and a phase constant ft'. The propagation

constant is related to the open-circuited and short-circuited impedances by

cosh T (2)

We may replace F by a! + jp
f and expand the hyperbolic cosine to obtain

cosh (a' + j/3')
= cosh a' cos & + j sinh a' sin p' (3)

For a dissipationless filter, a' is zero in the pass band and /3' is either zerc

or IT radians in the attenuation band. Equation (3) then reduces to

FIG. 21. Block diagram representing the band-pass filter of Fig. 18a.

cosh F = cos $' in the pass band and cosh F = cosh a' in the attenuation

band. In the band-pass filter, the pass band lies in the region defined by
-1 < cosh r < + 1.

Let us now evaluate the image impedance and propagation constant foi

the filter shown in Fig. 18. A block diagram of this filter is shown in Fig.

21. Admittances will be used since we are dealing with parallel circuits.

Consider first the admittance at terminals ab with cd short-circuited. The

admittances Y\ and F2 in Fig- 21 are

(4)

Yl
= -jF

Y2
= -JYQ2 cot

The admittance FI + F2 terminates the input branch of the filter. The

input admittance of a lossless line terminated in an admittance YR may
be obtained by writing Eq. (8.06-4) in terms of admittances, yielding
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Substituting YR = FI + F2 ,
where FI and F2 are given in Eq. (4), we

obtain the admittance at db with cd short-circuited,

- F02 cot^2 1

3 01
L 2F i + Y02 tan flfe cot #2 J

Let us now find the input admittance at ab with cd open-circuited. With
cd open-circuited, the admittances FI and F2 are

FI = jFoi tan fa

F2
= -jToacottfa (7)

By substituting YR = FI + F2 into Eq. (5), with the equations for

and F2 as given by Eq. (7), we obtain the open-circuited admittance

= / 2F01 tanffl1
- F02 cotffl2 \

C ^ 01

\Foi - FOI tan2 fa + F02 cot ftl2 tan ftlj

To obtain Z& and cosh F, substitute Zac
= 1/YSC and Z0c

= l/F0c ,
where

}%c and FOC are given by Eqs. (6) and (8), into Eqs. (1) and (2). Expressing

the final result in terms of impedances, we obtain, after considerable

manipulation,

/I +
\/\ _

tan fli/2Z 2 tan
(9)

cot /9i1/2Z02 tan

cosh T = cos 2^j + --
(10)

2Z02 tan /3i2

Now consider the special case in which l\
=

1%, hence |8Zi
= (H2 . Equa-

tion (10) may be written

('
cosh r = l + cosW + ^- (11)

The mid-frequency of the pass bands occurs when the series branch is

resonant and the shunt branch is antiresonant. In Sec. 8.0G it was shown

that this occurs when 01 = mr/2 where n is an odd integer. Inserting

ft
= u/vc into this expression, the mid-frequencies are found to be

wml rnr nvc .= or fm = nis odd
vc 2 42

where ve = 3 X 108 meters per second is the velocity of light. The con-

dition that ftl
=

n7r/2, where n is odd, also corresponds to cosh F =
1,

as is evident by substitution of ftl
= nw/2 into Eq. (11).
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Cutoff occurs when cosh T = 1. Equation (11) then becomes

- (Z i/2Z02)
cos 201

(Z i/2Z02)
(12)

Comparing this with the identity cos 201 = (1
- tan2 01)/(I + tan2 01), we

obtain

tan = db
2Z

(02

(13)

= tan
2Z,02

The two cutoff frequencies for each band correspond to the positive and

negative signs in Eq. (13). The width of the pass band decreases as the

ratio Zoi/2Z 2 increases, approaching zero band width as Z i/2Z02 > .

50

40

c
o

30

520

10

40
N

J ,
3J- 1T

Value of radians

FIG. 22. Attenuation characteristic of the filter shown in Fig. 18a.

From a practical point of view, the largest attainable ratio is of the order

of Zoi/2Z 2 = 100, corresponding to a minimum pass-band width of 20 per

cent. In the attenuation band we have cosh T = cos a'. A plot of a!

as a function of 01 for various values of Zoi/2Z 2 is shown in Fig. 22.
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The image impedance at the mid-frequency is obtained by inserting

ftl
= nir/2 (where n is odd) into Eq. (9), yielding

Now consider another special case in which it is assumed that Z i
= 2Z 2-

Equation (10) then becomes

UTIcosh T =-- (15)
sin #Z2

The mid-frequency for this filter occurs when cosh F = 0, or when

0(2/1 + 12 )
=

tt7r/2, where n is even. Inserting /3
= u/vc into this expres-

sion, we obtain

nvc

rtiseven

Cutoff frequencies occur when cosh r = 1
, corresponding to

The image impedance at the mid-frequency is

7 ir/2 \ fir / 1 + /2//i M- tan (
- -

)
tan -

(
- ^

} (18)
\1 + /2/2/i/ L2 \1 + /2/2/i/ J

For narrow bands the image impedance is approximately Zk = (4/i/7

The band width of this type of filter decreases as /2 is made smaller.

By making /2 very small, it is possible to obtain a band-pass filter with a

very narrow pass band.

PROBLEMS

1. A lossless line is terminated in a pure resistance which is not equal to the character-

istic impedance of the line. Prove that the standing wave has its maximum and

minimum values at the receiving end and at integral multiples of quarter-wavelength

distances from the receiving end. Derive an expression for the standing-wave ratio

for this case. Will the voltage be a maximum or a minimum at the receiving end?

2. A tuned circuit for an oscillator consists of an open-circuited line containing two differ-

ent sizes of coaxial line as shown in Fig. 23. Derive an expression for the input imped-
ance at terminals ab assuming that the lines are lossless. What are the conditions for

antiresonance at a6? Show that the antiresonant frequency can be varied by varying
the lengths l\ and h, but keeping l\ + h constant. (Note: This is the principle used

in tuning the lighthouse-tube oscillator shown in Fig. 6b, Chap. 5.)
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3. A silver-plated coaxial line has dimensions a 0.5 cm and 6 2.0 cm and is to be
used at a frequency of 700 megacycles. Assume that the dielectric is lossless.

(a) Compute the attenuation constant and Q of the line.

(6) Evaluate the input impedance of a quarter-wavelength short-circuited section of

line and a quarter-wavelength open-circuited section of line.

(c) Compute the data and plot a curve of the scalar value of input impedance as a
function of frequence in the vicinity of the antiresonant impedance for the short-

circuited line.

4. A line having a characteristic impedance of 75 ohms is terminated in an unknown
impedance which is to be measured. The maximum and minimum voltages on the

line are found to be 120 volts and 25 volts, respectively, with the maximum voltage

point 30 cm from the terminal impedance. The frequency is 300 megacycles.

(a) Compute the value of the terminal impedance and cheek this value using the

impedance diagram.

(6) Find the length and position of a single stub which will match the impedance to

the line.

L

6. It is desired to construct an oscillator which will operate at 500 megacycles and deliver

an appreciable amount of third harmonic in its output. A short-circuited coaxial

line, having a characteristic impedance of 75 ohms, is used for the tuned circuit.

This is shunted at its input end by the grid-plate capacitance of the tube which has

a value of 1.5 X 10~~12 farad. Determine the length of line and additional shunt

capacitance which should be added at the input end of the line in order to make it

simultaneously antiresonant at 500 and 1,500 megacycles.
3. The input circuit of a microwave receiver consists of a half-wavelength dipole antenna

coupled to a coaxial line which is 2}^ wavelengths long. The line is terminated by a

crystal detector. A short-circuited stub is placed near the receiving end in order

to assure maximum power transfer to the detector and to increase the selectivity of

the input circuit. The antenna impedance and the characteristic impedance of the

line are both 72 ohms. The frequency selectivity of the circuit for crystal resistances

of 150 ohms and 1,000 ohms are to be compared. The input circuit is tuned to a

wavelength of 20 cm. The impedance diagram is to be used in the following
calculations.

(a) Find the length of stub and its position for matched impedances at X = 20 cm.

(6)' Tabulate the values of complex impedance of the line at the antenna terminals

(with the antenna disconnected) at wavelengths of X 20 db 0.5fc cm, where k
is an integer from 1 to 10. Plot a curve of the scalar value of input impedance
against wavelength.

(c) Assume that the antenna can be replaced by a generator having an internal

impedance of 72 ohms. Using the impedances of part (6) and the power diagram
of Fig. 9, plot curves of P/Pmox against wavelength for the two cases considered.

(d) What conclusions can be drawn regarding the relative selectivity of the two

systems?
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7. Show that the power in a load impedance is given by

Zo

where
|
Vmax

|
and

|

Vmin
|
are the maximum and minimum voltages on the transmis-

sion line supplying the load. This relationship is valid regardless of the magnitude
or phase angle of the load impedance.

FIG. 24.

8. The system shown in Fig. 24 is a band-pass filter. The lengths I are all a half

wavelength long in the middle of the pass band. Assume that ZR = 50 ohms,

ZQI = 50 ohms, and #02 =" 200 ohms. The wavelength at the middle of the pass

band is 10 cm. Using the impedance diagram,

(a) Find the input impedance of the system at wavelengths of X = 10 i 0.3& cm
where k is an integer from 1 to 10.

(6) Using the input impedances obtained in part (a) and the power diagram of Fig. 9,

obtain the corresponding values of P/Pmax- Plot a curve of P/Pmax against

wavelength.
9. Design a symmetrical coaxial-line filter of the type shown in Fig. 18a to have a mid-

frequency of 1,500 megacycles and a bandwidth of 5 megacycles. The image imped-
ance is ZR = 150 ohms at the mid-frequency. Plot a curve of ct against pi for the

filter.



CHAPTER 11

TRANSMITTING AND RECEIVING SYSTEMS

The fundamental processes involved in the transmission and reception

of signals at microwave frequencies are essentially the same as those at

ordinary radio frequencies. At the transmitter, the carrier may be gener-

ated by any one of the various types of microwave oscillators previously

described, or it may be derived from a crystal oscillator followed by a

chain of frequency multipliers. The carrier is modulated and the signal

is then either impressed directly upon the transmitting antenna or it may
be amplified by one or more successive stages of amplification before being
radiated. Either amplitude, phase, or frequency modulation can be used.

A new type of modulation, known as pulse-time modulation, also offers in-

feresting possibilities at microwave frequencies.

Superheterodyne receivers are commonly employed in microwave sys-

tems. The input usually contains a frequency-selective circuit followed

by a mixer. In the mixer, the incoming signal is heterodyned against a

signal generated by a local oscillator to obtain the difference frequency.

This difference frequency is amplified in one or more tuned stages of

intermediate-frequency amplification after which it is detected and ampli-
fied in an audio- or video-frequency amplifier.

At microwave frequencies, difficulty is often encountered in maintain-

ing a high degree of frequency stability of the carrier oscillator at the

transmitter and of the local oscillator at the receiver. Various automatic

frequency-control systems have been devised for the purpose of stabilizing

these oscillators. Another difficulty arises owing to the fact that the band-

widths of the microwave circuits and the tuned circuits in the intermediate-

frequency amplifier are usually relatively large. Consequently these cir-

cuits admit a large amount of noise, resulting in a low signal-to-noise ratio.

Certain types of microwave oscillators, particularly magnetrons, generate

relatively high-noise voltages. These considerations favor the types of

modulation in which the signal may be more readily separated from the

noise, such as frequency modulation or pulse modulation.

A typical low-power microwave transmitting and receiving system, em-

ploying a frequency-modulated klystron oscillator and a superheterodyne

receiver, is shown in the block diagram of Fig. 1. At the transmitter the

klystron is frequency modulated by impressing the modulating voltage

on its anode. Parabolic reflectors are used for directional transmission

213
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FIG. 1. Microwave communication system employing frequency modulation.
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and reception. The local oscillator at the receiver consists of a reflex

klystron oscillator, the output of which is combined with the incoming

signal in the crystal mixer to obtain the intermediate frequency. The

remaining portions of the receiver are similar to those of an ordinary

frequency-modulation receiver.

11.01. Propagation Characteristics. Long-distance radio communica-

tion is made possible by the reflection of radio waves from the ionosphere.

The ionosphere consists of the upper atmosphere of the earth (from approxi-

mately 50 kilometers up), which is ionized principally by the passage of

ultraviolet radiation from the sun through the rare atmosphere. The ioni-

zation has a tendency to become stratified, forming reflecting layers, the

effective heights of which vary with the time of day, season of the year,

sunspot activity, and other factors. Each layer has a more-or-less sharply
defined cutoff frequency. At frequencies below the cutoff frequency the

radio waves are reflected, whereas above the cutoff frequency they travel

through the ionized layer without appreciable reflection. The low fre-

quencies are reflected from the lower layers and the higher frequencies

from the higher layers. The cutoff frequency for any one layer varies

with the conditions of the ionized atmosphere.
Radio waves in the frequency band above 30 megacycles are seldom

reflected from the ionosphere layers, and reflections above 150 megacycles
are almost nonexistent. At still higher frequencies spurious reflections

sometimes occur from the troposphere, which is that region extending from

the earth's surface up to the ionosphere layer. These reflections are

attributed to discontinuities in the dielectric constant at boundaries of air

masses having different atmospheric characteristics. Occasionally the con-

ditions are such as to form atmospheric "ducts" which have the properties

of guiding the waves. These conditions make it possible to carry on

microwave communication over distances exceeding the horizon distances.

At the higher frequency end of the microwave band and in the infrared

spectrum there are well-defined narrow absorption bands in which molecular

absorption occurs. Communication over any appreciable distance in these

absorption bands is virtually impossible.

Ground reflections or reflections from neighboring buildings may cause

partial reinforcement or cancellation of the received signal, depending upon
the relative phases of the direct and reflected waves at the receiver. In

the transmission of television signals, these reflections ma}' produce objec-

tionable "ghost" images at the receiver. In general, it is desirable to

locate the transmitting and receiving antennas as high as possible, with a

clear line-of-sight path between the two antennas.

The power at the transmitter required to produce a given signal strength
at the receiver can be greatly reduced by the use of directional radiating

systems. Consider a microwave transmitter with a total radiated power
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of PT watts. If the power is radiated uniformly in all directions and there

is no reflection or scattering of the waves, the power density (power per

unit area perpendicular to the direction of propagation of the wave) at a

distance r from the transmitter is Pr/4irr
2

.

If a half-wavelength dipole antenna is used, the power is not uniformly

radiated in all directions. The power density at any point in a plane

perpendicular to the antenna, passing through the center of the antenna,

is then taken as

P =
(1)

87rr
2 V '

The power absorbed by a half-wavelength dipole, used as a receiving

antenna, corresponds to that in the equivalent area l 2 Ad = 3X2
/87r; hence

the power at the receiver is

If the transmitting antenna has a power gain of GT as compared with a

dipole antenna and the receiver is nondirectional, the receiver power is

/3A\ 2

PR = (-}PTGT (3)

If the receiver also has a directional antenna with a power gain GKy the

receiver power is

/3X\
2

PR =
( ) PTGTGR (4)

Solving for the transmitter power, we obtain

/87rr\
2 PR

PT =
[ ) (5)
\3\/GTGR

Hence, the transmitter power required for a given signal strength at the

receiver varies inversely as the product of the gains of the transmitting
and receiving antennas.

The power gain of a parabolic antenna may be approximated by the

ratio of the effective absorption area of the parabola to that of the dipole.

Let Ap be the area of the mouth of the parabola. The effective absorption

area can be taken as approximately 0.65.4P ,
where the factor of 0.65 allows

for the directional characteristics of the dipole antenna. Dividing this

1
SLATER, J. C., "Microwave Transmission/' p. 244, McGraw-Hill Book Company,

Inc., 1942.
2 JENKS, F. A., Microwave Techniques, Electronics, vol. 18, pp 120-127; October, 1945
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effective area by Ad given above for the dipole antenna, the gain of the

parabola is

G = 0.65 X ~ (6)

A typical parabola at a wavelength of 10 centimeters has an area of

6,000 square centimeters, resulting in a power gain of 327. If we compare
two systems, one using dipole antennas at the transmitting and receiving

ends and the other using dipole antennas with parabolic reflectors, we find

that the power output of the first system would have to be approximately

100,000 times the power output of the second system in order to produce the

same signal strength at the receiver. Hence, transmitters which are de-

signed for general coverage require considerably greater power output than

those designed for point-to-point communication.

TRANSMITTING SYSTEMS

11.02. Amplitude, Phase, and Frequency Modulation. 1 Modulation

is a process by which a high-frequency carrier wave is varied in accordance

with the instantaneous value of the modulating voltage. In amplitude

modulation, the envelope of the modulated wave has the same waveform

as the modulating signal, as shown in Fig. 2a. In phase and frequency

modulation, the amplitude of the modulated wave is constant, but its

phase is shifted with respect to the unmodulated carrier, as shown in Fig.

2b. A phase shift is also accompanied by an instantaneous frequency shift;

hence both the phase angle and the frequency of the modulated wave
deviate with respect to those of the unmodulated carrier.

A modulated wave is approximately sinusoidal and may be represented by

v = V cos (uct + </>) (1)

where V is the amplitude of the wave, ov is the angular frequency of the

unmodulated carrier, and <t> is a phase angle. In amplitude modulation,
o>c and <t> arc constant but V varies in accordance with the modulating

signal. For sinusoidal modulation, we let V = F (l + ma sin o>m2), where

ma is the amplitude-modulation factor and o>m is the angular frequency of

the modulating voltage. Inserting this value of V into Eq. (1) and setting

</>
=

0, we have

v = F (l + ma sin wmf) cos uct (2)

which may be expanded into

maVo
v = F cos wct H-- [sin ( c + W)J

- sin (o>c com)J] (3)
2

I
EVERITT, W. L., Frequency Modulation, Elec. Engineering, vol. 59, pp. 613-625,'

November, 1940.
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The amplitude-modulated wave therefore consists of a carrier wave and

two side bands, the side bands having angular frequencies coc + com and

Wc Wm . if the modulating voltage is nonsinusoidal, it may be analyzed

tModulating vo/fage

Modulation,

envelope

(a)

(Modulating vo/fage

Phase orfrequency
f modulated wave

FIG. 2. (a) Amplitude-modulated wave, and (b) phase- or frequency-modulated wave.

by Fourier series into sinusoidal components which are harmonically re-

lated. Each frequency component produces its corresponding side bands.

In phase modulation, the amplitude V in Eq. (1) is constant, but the

instantaneous phase angle < varies in direct proportion to the modulating

voltage; hence we let

(^
cs

nip sin umt (4)
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where mp is the phase-modulation index, representing the maximum phase-

angle deviation from the unmodulated carrier in radians. Let the instan-

taneous voltage be represented by

v = VQ sin ( c + *) (5)

and insert <t> from Eq. (4), to obtain

v = VQ sin (coc + mp sin comO

= Fo[sin uci cos (mp sin wmt) + cos uct sin (mp sin com )] (6)

The terms sin (mp sin coTO and cos (mp sin com /) may be represented by
the following series containing Bessel functions

sin (mp sin comQ

= 2[Ji(mp) sin com/ + Jz(mp) sin 3com/ + JS(WP) sin 5com2 + ]

cos (mp sin o)mt)

= jQ(mp) + 2[J2(mp) cos 2cowJ + J(mp) cos 4comJ H---- ]

Inserting these into Eq. (G), we have

v = VvlJo^mp) sin wct + Ji(mp)[sai (coc + a)m)t sin (coc com)J]

+ J2 (wp)[sin (wc + 2 W)J + sin (coc
- 2o>m)fl (7)

w)[sin (wc + 3com)/ sin (coc

Equation (7) shows that there is an infinite number of side bands having

angular frequencies coc db no>M ,
where n takes integer values. 1

However,
if mp (the maximum phase-angle deviation) is small, the side-band ampli-
tudes diminish rapidly with increasing order of side-band frequency. The
relative side-band amplitudes for a phase-modulated signal with modulation

frequencies of 2,000 and 10,000 cycles per second and a maximum phase
deviation of mp

= 4 radians are shown in Figs. 3a and 3b.

A change in phase angle <t> is also accompanied by a change in instan-

taneous frequency. To show this, we return to Eq. (5) and let = coc + <t>-

The instantaneous angular frequency is

d9 d<i>

CO = - = COC H-- (8)
dt dt

If we now insert <t> from Eq. (4) into (8), we obtain

CO = Wc + WlpCOm COS C0m (9)

1 Curves of Jn(mP) as a function of mp are given in Fig. 2, Chap. 15.
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The maximum deviation of the angular frequency is mpum . Hence, in

phase modulation, the maximum phase deviation mp is independent of the

modulating frequency, whereas the maximum angular frequency deviation

nipMm varies directly with the modulating frequency.

Frequency modulation is similar to phase modulation, except that the

maximum frequency deviation is proportional to the amplitude of the

modulating signal but is independent of its frequency. For sinusoidal

modulation, the instantaneous angular frequency may be represented by

cos

where m/ ij the maximum frequency deviation in cycles per second.

phase angle </> may be obtained by equating (8) and (10), yielding

/ 2 mf cos wm t dt = sin umt

(10)

The

(ID

Inserting this value of <t> into Eq. (5), we obtain the equation of the fre-

quency-modulated wave,
/ mf \

= VQ sin ( coc/ H sin <*m t 1

V fm '

(12)

Comparing Eqs. (6) and (12), we find that these are identical except

for the substitution of m//fm for mp . Consequently, Eq. (7) may also be

used as an expression for the frequency-modulated wave by the substitu-

tion of mf/fm for mp .

The maximum phase-angle and frequency deviations for phase and fre-

quency modulation may be summarized as follows:

In phase modulation, the maximum phase deviation is independent cf

the modulating frequency, whereas in frequency modulation, the maximum

frequency deviation is independent of the modulating frequency. It should

be noted that both mp and mf vary directly with the amplitude of the

modulating signal.
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Let us now compare the bandwidth of phase- and frequency-modulated

signals. Assume that both the phase- and frequency-modulation systems

have the same maximum frequency deviation at a modulating frequency of

fm 10,000 cycles. Hence, when fm = 10,000 cycles, we have mp =

wj/fm, and the side-band components, as expressed in Eq. (7), are identical

for phase modulation and frequency modulation. These are represented

by the bar graphs in Figs. 3a and 3c.

(a)
PHASE MODULATION

(b)

fm =
10,000 cycles

m p
= 4 radians

mf "^pfm
=
40,000 cycles per sec.

I

fnrZOOO cycles

m p=mf/fm =20 radians

mf = 40,000 cycles per sec.

(c) FREQUENCY MODULATION (ch

FIG. 3. Comparison of sidebands in phase and frequency modulation. The maximum
frequency deviation is assumed to be the same for both types of modulation at a modulating

frequency of fm = 10,000 cycles.

In the case of phase modulation, as the modulating frequency decreases,

mp remains constant and therefore the amplitudes of the side bands remain

constant. However, as the modulating frequency decreases, the side bands

move in closer to the carrier as shown hi Fig. 3b. Consequently the effec-

tive bandwidth for phase modulation varies with the modulating frequency.

We may look at this hi another way. In phase modulation, the maximum

frequency deviation is fmmp . Since this varies directly with /m ,
it is clear

that the maximum frequency deviation and hence the bandwidth both vary

directly with the modulating frequency.
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Now consider the bandwidth required for frequency modulation. In

frequency modulation, we substitute mf/fm for mp in Eq. (7). As the

modulating frequency decreases, the side bands again move in closer to

the carrier, but at the same time w///m increases; hence the number of

significant side bands increases as shown in Fig. 3d. We find, therefore,

that in frequency modulation, the effective bandwidth is substantially con-

stant for all modulating frequencies. This conclusion can also be reached

by noting that in frequency modulation, the maximum frequency deviation

m/ is independent of the modulating frequency.
It is apparent from the foregoing discussion that the effective band-

width varies directly with fm for phase modulation but is independent of

fm for frequency modulation. The signal-to-noise ratio in either type of

modulation is proportional to the bandwidth. Hence, for a given amount
of frequency space, in general, frequency modulation results in a higher

signal-to-noise ratio and is therefore preferred.

11.03. Methods of Producing Amplitude Modulation. Amplitude mod-
ulation may be obtained by impressing the modulating voltage upon either

the grid or the plate of a class C triode oscillator or amplifier. The modula-

tion of an oscillator presents difficulties in that the carrier frequency shifts

during the modulation cycle, thereby resulting in poor frequency stability.

Also, oscillators will usually operate successfully over a limited range of grid

or plate voltage; hence it is difficult to obtain a high percentage of modula-

tion. The carrier frequency may be stabilized either by the use of auto-

matic frequency control or by the use of compound modulation. In

compound modulation the modulating voltage is impressed upon two

electrodes simultaneously in such a manner as to tend to produce frequency

changes in opposite directions, thereby maintaining constant carrier

frequency.

In plate modulation, the class C stage is adjusted so that its radio-

frequency output voltage varies directly with the plate-supply voltage over

the range of modulation desired. When the modulating voltage is im-

pressed upon the plate, the envelope of the modulated wave then has the

same waveform as that of the modulating voltage. For 100 per cent modu-

lation, the modulating power required is 50 per cent of the d-c plate power

supplied to the class C stage during unmodulated conditions. The modu-
lator must therefore be designed to deliver the necessary power output.

In grid modulation, the class C stage is adjusted for optimum operation

at the least negative grid voltage which will be obtained during the modula-

tion cycle. For undistorted modulation, the radio-frequency output volt-

age should vary linearly with grid voltage over the range of the modulating

voltage.

Several systems of absorption modulation have been proposed as a means

of producing amplitude modulation at microwave frequencies. In this type
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of modulation, the modulating voltage varies an auxiliary load impedance
which is coupled to the microwave oscillator or amplifier. The variations

in load impedance result in corresponding variations in power absorption.

The power delivered to the transmitting antenna is the difference between

the power output of the oscillator or amplifier and that absorbed in the

auxiliary load impedance. Hence, variations in power absorbed in the

auxiliary load impedance result in inverse variations in power delivered

to the antenna, thereby producing amplitude modulation. The auxiliary

load can consist of a vacuum-tube circuit with the modulating voltage

applied to the grid. The output of this modulator stage is coupled to the

microwave system in such a way as to absorb microwave power in inverse

proportion to the modulating voltage.
1

11.04. Methods of Producing Phase and Frequency Modulation. The

frequency of most microwave oscillators can be varied over a range of

several hundred kilocycles or more by varying the potential of an electrode

in the oscillator. Frequency modulation can therefore be obtained by im-

pressing the modulating voltage upon an electrode which is frequency sensi-

tive to voltage. In order to produce undistorted modulation, it is necessary

that the frequency vary linearly with the modulating voltage, while the

power output remains constant. The linear frequency-voltage relationship

is more important than constant power, since the limiter stage in the

receiver serves to smooth out any amplitude variations which might occur.

In most microwave oscillators, relatively large frequency deviations are

produced by small changes in voltage, hence the modulating voltage can be

relatively small.

The principal difficulty encountered in phase- or frequency-modulation

systems is that of stabilizing the average frequency of the oscillator.

Several automatic-frequency-control systems have been devised to stabilize

the oscillator frequency without interfering with the modulation process.

These are described in the following section.

An arrangement for frequency modulating a klystron oscillator is shown

in Fig. 1 . The modulating voltage is in series with the d-c resonator poten-

tial. Figure 14, Chap. 6 shows how the frequency and power output vary

as a function of resonator potential. The power output is maintained rea-

sonably constant over a relatively wide frequency range by tuning the

resonators to slightly different frequencies.

The reflex klystrons can be frequency-modulated by inserting the modu-

lating voltage in series with the reflector potential. The oscillator is then

adjusted to obtain a linear frequency deviation as a function of the modulat-

ing voltage.

1 RODER, Hans, Analysis of Load Impedance Modulation, Proc. I.R.E, vol. 27

pp. 386-395; June, 1939.
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Another method of producing either phase or frequency modulation at

microwave frequencies is to modulate a class C amplifier or oscillator at

ordinary radio frequencies and use a chain of frequency multipliers to

obtain the desired microwave frequency. It is then possible to use either

a crystal-controlled oscillator, or an oscillator which has been stabilized

by any one of the conventional automatic-frequency-control systems.

Since a relatively high-frequency multiplication is required, the phase-angle

or frequency deviation at the oscillator can be quite small. The final

multiplier stage can be a klystron with a multiplication ratio as high as

15 in a single stage. This can be followed by a klystron power amplifier

which delivers the required power output.

FIG. 4. Armstrong method of producing frequency modulation.

The Armstrong method of producing frequency modulation at radio fre-

quencies is represented in the block diagram of Fig. 4. This method is

essentially a modified phase-modulation system. In Sec. 11.02, it was

shown that in phase modulation the phase-angle deviation is independent
of the modulating frequency, whereas in frequency modulation, it varies

inversely with the modulating frequency. Hence, phase modulation can

be readily converted into frequency modulation by merely inserting an

R-C circuit into the audio-frequency channel, such that the output of this

circuit varies inversely with the modulating frequency.

In the Armstrong system, the output of a crystal oscillator and the

modulating voltage are both impressed upon the grids of a balanced modu-
lator. The output of the balanced modulator contains the side bands corre-

sponding to amplitude modulation but it does not contain the carrier.

The carrier voltage, from the crystal oscillator, is shifted through a phase

angle of 90 degrees and combined with the side bands from the balanced

modulator.
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In order to show how this process yields phase modulation, let us com-

pare Eqs. (11.02-3 and 7). Assume that the maximum phase-angle devia-

tion mp is small in Eq. (7). We then have jQ(mp) 1, J\(mp) is propor-

tional to mp ,
and all higher-order side bands are negligible and can therefore

be discarded (see Fig. 2, Chap. 15). The principal distinction between

Eq. (11.02-3) for amplitude modulation and (11.02-7) for phase modulation,

then, is that the carrier-frequency term is a cosine term in the first equation
and a sine term in the second. Amplitude modulation can therefore be

converted into phase modulation by shifting the carrier through a phase

angle of 90 degrees with respect to the side bands. This is exactly what is

done in the Armstrong method. In this method it is necessary that mp

Reactance
tube

Oscillator

tube

FIG. 5. Reuotance-tube modulator.

be less than one-half radian, in order to minimize distortion. By inserting

the R-C circuit mentioned above into the audio-frequency channel, the

modulation can be converted into frequency modulation.

As an example, assume that a crystal oscillator is operating at a fre-

quency of 5 megacycles and is multiplied to a frequency of 3,000 mega-

cycles, requiring a multiplication ratio of 600:1. If a maximum frequency

deviation of 200 kilocycles is required at the 3,000-megacycle frequency,

the corresponding maximum frequency deviation at 5 megacycles is

m/ = 200/600 = 0.333 kilocycles. The corresponding phase-angle devia-

tion for a modulating frequency of 1,000 cycles is mp
= mf/um = 0.0532

radians.

The reactance-tube method of producing frequency modulation, shown

in Fig. 5, consists of an oscillator with a reactance-tube circuit shunted

across the tuned circuit of the oscillator. A reactance-tube circuit has

the property of drawing a current which is approximately 90 degrees out

of phase with the voltage across its terminals; hence it has the character-

istics of a reactance. With the proper circuit constants, the effective

reactance will be proportional to the transconductance of the tube. By
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using a tube whose transconductance varies linearly with grid voltage and

impressing the modulating voltage upon the grid, the effective reactance

can be made to vary in direct proportion to the modulating voltage. This,

in turn, produces an oscillator frequency deviation which is directly propor-

tional to the modulating voltage, thereby producing frequency modulation.

It is necessary to provide automatic frequency control for this system in

order to stabilize the average carrier frequency of the reactance-tube

modulator.

11.05. Automatic Frequency Control of Microwave Oscillators. The

purpose of automatic-frequency-control systems is to stabilize the frequency

of an oscillator without interfering with the modulation process. Two

principal methods are used: (1) comparison of the frequency with that

FIG. 6. Block diagram of an automatic-frequency-control system.

of a standard oscillator and (2) comparison of the frequency with the

resonant frequency of a standard tuned circuit. In either case, the fre-

quency deviation is detected in a comparison circuit which feeds back an

error voltage of the proper magnitude and polarity to correct the frequency
of the oscillator.

The first method is illustrated by the block diagram of Fig. 6. In this

system, the frequency of the microwave oscillator is compared with the

output of a crystal-oscillator and frequency-multiplier chain. The differ-

ence frequency is amplified in a band-pass intermediate-frequency amplifier

and detected in the frequency discriminator circuit. The discriminator

circuit, shown in Fig. 12, has no output voltage as long as the impressed

frequency (the intermediate frequency) is the same as the resonant fre-

quency of the discriminator circuitA/However, if the impressed frequency

should deviate from this value (due to a frequency drift of the oscillator),

the discriminator has an output voltage whose polarity and magnitude

depend upon the direction and amount of frequency drift, respectively.

This error voltage from the discriminator circuit is impressed upon an

electrode in the oscillator which is frequency-sensitive to voltage. By
designing the discriminator circuit so as to have a long-time constant in

comparison with the audio frequencies, it is possible to correct for slow
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frequency drifts without interfering with the modulation. The bandwidth
of the feedback circuit and the loop gain of this circuit determine the

degree of frequency stabilization.

Another system of automatic frequency control is shown in Fig. 7. The
microwave oscillator is frequency modulated by a "sensing" oscillator.

The output of the microwave oscillator is impressed upon a high-Q resonator

which is used as a reference frequency standard. If the microwave fre-

quency is the same as the resonant frequency of the standard resonator, the

output of the resonator contains an amplitude-modulated wave which has

(a)

FIG. 7. Block diagram of an automatic-frequency-control system.

twice the frequency 6f the sensing oscillator as shown in Fig. 7b. If the

frequency of the microwave oscillator is either above or below the resonant

frequency, the output of the resonator is amplitude-modulated with a modu-
lation frequency equal to that of the sensing oscillator, as shown in Fig. 7c

and 7d. There is a phase difference of 180 degrees in the amplitude-

modulation envelopes, depending upon whether the impressed frequency is

higher or lower than the resonant frequency of the standard resonator.

The resonator output is detected and amplified, and the phase of the de-

tected signal is compared with the voltage of the sensing oscillator in order

to determine whether the microwave frequency is above or below the

resonant frequency. The phase-detector circuit feeds back an error voltage

which corrects the oscillator frequency. It is of course necessary to main-

tain accurate temperature control of the standard resonator. The micro-

wave oscillator can be amplitude-modulated in the customary way without

interfering with the frequency-control system.
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If the automatic-frequency-control system is to regulate the frequency

of high-power oscillators, it may be necessary to feed the error voltage into

a servomechanism which tunes the oscillator to maintain constant frequency.

RECEIVING SYSTEMS

11.06. Signal-to-noise Ratio in Receivers. 1 The noise in microwave

systems includes noises generated in the transmitter and receiver, and noises

due to natural and artificial static. The most prominent of these are the

noises generated in the receiver. These consist of: (1) noises due to the

thermal agitation in resistances, including the radiation resistance of the an-

tenna, (2) shot noises resulting from statistical fluctuations of electron emis-

sion, (3) secondary emission effects, and (4) miscellaneous noises. The
noise voltages in the first three categories are more or less uniformly dis-

tributed over the entire frequency spectrum; hence the noise admitted by
the tuned circuits in the receiver is proportional to the effective bandwidth

of these circuits.

The mean square noise voltage due to thermal agitation in a resistance is

E* = 4KTR<> A/, where K = 1.37 X 10~23 joule per degree Kelvin is Boltz-

man's constant, R is the resistance, T is the temperature in degrees Kelvin,

and A/ is the bandwidth. If we consider En as being the noise voltage in

the receiving antenna due to the random motion of particles in space, then

RO is the effective resistance of the antenna.

Now consider the antenna as a generator, having an internal resistance

RO and internal voltage En which is working into matched impedances, i.e.,

the load impedance is assumed to be RQ. The noise power delivered to

the load is then Ni = El/4R . Substitution of En from our previous rela-

tionship gives the noise power

Ni = KT&f watts (1)

Although the equivalent temperature of space is not known, the value

T = 290 degrees Kelvin (63 degrees Fahrenheit) has been suggested as a

reasonable value. The noise power per cycle of bandwidth is then N{ =
KT = 4 X 10~21 watt per cycle.

The signal power Pi at the input terminals of the receiver was given by

Eq. (11.01-4). Dividing this by Eq. (1), we obtain the signal-to-noise

power ratio at the receiver input terminals

Pi _ (3\\
2 PTGTGR

Ni VSW KT A/

1
FRIIS, H. T., Noise Figures of Radio Receivers, Proc. I.R.E., vol. 32, pp. 419-422

July, 1944.
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Additional noises are generated in the receiver. In order to account for

these, a noise figure is defined as the ratio of the signal-to-noise ratio at

the input terminals to the signal-to-noise ratio at the output terminals,

assuming matched impedances at both the input and output terminals.

Let NQ be the noise power output, and P be the signal power output for

matched impedances. The noise figure F is then given by

P,/N, . N, P,

or the signal-to-noise ratio at the output terminals is

(4)

Substituting Pt/Ni from Eq. (2) into (4), we obtain an expression for the

signal-to-noise ratio at the output terminals,

PO =
1 /3\\

NQ F \8irr)

2 PTGTGR

ATA/
The noise figure is always greater than unity since Po/No is less than

Pi/Ni- A noise figure of unity would correspond to an ideal receiver, i.e.,

one which introduces no noise itself. This noise figure must be determined

experimentally, since its value depends upon all of the noises generated in

the receiver. In the design of communication systems it is customary to

set a minimum signal-to-noise ratio which can be tolerated. The com-

munication system must then be designed so as to produce a signal-to-

noise ratio at the output terminals which exceeds this minimum value.

Equations (4) and (5) show that the signal-to-noise ratio at the output
terminals varies inversely as the noise figure. Hence, a reduction in

receiver noises thereby decreasing the noise figure is just as beneficial as a

proportionate increase in power output at the transmitter.

11.07. Frequency Converters. The converter or mixer circuit is usually

an integral part of the tuned input system, such as that shown in Fig. 1.

In order to obtain a high degree of frequency selectivity of the input cir-

cuit, the crystal or diode impedance should differ appreciably from the

antenna impedance. The stub matching system then produces an imped-
ance match over a narrow range of frequencies and the input circuit is

frequency selective.

In superheterodyne receivers there are two frequencies, equally spaced

above and below the local oscillator frequency, which produce the same

difference frequency. One of these is an undesired signal known as the

image frequency. Another undesired signal which sometimes appears in

the receiver is one having a carrier frequency equal to the intermediate fre-
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quency of the receiver. The rejection of these two unwanted signals must

occur in the tuned circuits preceding the converter. The undesired signals

may be reduced by the use of tuned amplifier stages preceding the con-

verter. At frequencies above approximately 1,000 megacycles, tuned

amplifiers have low gain and low signal-to-noise ratio; hence they are

not often used.

The frequency converter may be represented by the equivalent circuit

of Fig. 8a. The incoming signal e8 and the local oscillator signal eQ are

mixed in the crystal mixer which is assumed to have the ideal character-

; Output Crystal voltage 65
(b)

Local !

oscillatorinput Crystal voltage e^

(a) (c)

FIG. 8. Crystal converter and characteristics.

istic shown in Fig. 8b. The output circuit is tuned to the difference fre-

quency and is assumed to have negligible impedance at the frequency of the

incoming signal.

In the customary operation of the converter, the local oscillator voltage

e$ is made considerably greater than the signal voltage in order to reduce

distortion. For this condition, the conductance of the crystal at any instant

of time is dependent upon the local oscillator voltage. If the local oscillator

voltage is e = E cos o>
,
the instantaneous conductance of the crystal can

be represented by the Fourier series

g = c&o ~h &i cos a>o ~t" a2 cos 2<o<> + an cos i

n̂-l
(1)

where the coefficients are determined by the shape of the conductance char-

acteristic of the mixer.

If we assume that the crystal resistance is high in comparison with the

impedance of the other circuit elements, the Current will be determined by
the impedance of the crystal and may be represented by

ib - get (2)



SEC. 11.07] FREQUENCY CONVERTERS 231

Now assume that the incoming signal is an unmodulated sine wave, given

by e8 = E sin w8t. Inserting this expression for ea and the conductance

from Eq. (1) into (2), the crystal current becomes

sin w8t + E8 an cos na? J sin w8$ (3)
n*l

which may also be written

E, v-i
ib = a E, sin w8t -\

-- ) an[sin (co, + nco )i + sin (wa nco )*] (4)
2 n-i

The final term in Eq. (4) contains the intermediate-frequency term.

The output circuit may be tuned to any one of the frequencies co
fl

TICOO .

Thus, conversion can take place with the fundamental frequency of the

local oscillator (n = 1), or any harmonic of the fundamental frequency,

corresponding to higher integer values of n. If the incoming signal includes

modulation side bands, then the intermediate frequency would likewise

include side-band terms having angular frequencies (w nw + com) and

(o>8 no>o cow).

Equation (4) shows that the amplitude of the intermediate-frequency

current of frequency (cos no> ) is IIP = anE5/2. The conversion con-

ductance for the ?ith harmonic of the local oscillator frequency is defined

as this current divided by the signal voltage, or

_ IIP _ an
gcn - - -

(5)

The value of an may be obtained from the familiar expression for the

coefficients of Fourier series,

1 (**
an = ~

I 9 cos nw d(o?oO (6)
7T t/0

where g is the conductance of the mixer. Since the value of g varies with

the local oscillator voltage, g is a function of a> .

The output voltage at the intermediate frequency is

E/F = IIF%L (7)

where ZL is the impedance of the output circuit at the intermediate fre-

quency. The conversion gain is defined as the ratio of the output voltage

at the intermediate frequency to the signal voltage. From Eqs. (5) and

(7) we obtain the conversion gain

.
(8)
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Thus far, the analysis holds for a mixer element having any form of

ib e& characteristic. Let us now evaluate the conversion gain for the

ideal rectification characteristic of Fig. 8b. The conductance g = dib/de^

is constant for positive values of voltage e& and zero for negative values.

If a negative bias is placed on the tube, the variation of conductance

with time is as shown in Fig. 9. The conductance is zero until e& becomes

Flo. 9. Conversion characteristic as a function of time for a crystal or diode mixer.

positive, then it suddenly rises to the value g = dib/deb and is constant at

this value until eb turns negative. If the conduction angle is from B\

to 0i, the value of an in Eq. (6) becomes

9 f1

0/1
= "~

I

7T J6

*= sin 7i0i
irn

Inserting Eq. (9) into (8), we obtain the conversion gain

sn

E. irn

(9)

(10)

Maximum conversion gain occurs when n = 1 and 0i = 7r/2, i.e., when
the intermediate frequency corresponds to wg w and there is no bias

voltage on the mixer. The value of conversion gain for this condition is

gZL
(11)
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The conversion conductance g/ir for this ideal condition is about one-third

of the conductance of the crystal mixer. The conversion conductance for

higher harmonics is considerably smaller.

In order to obtain a high conversion gain, therefore, conversion should

take place with the fundamental of the local oscillator frequency, the load

impedance ZL at the intermediate frequency should be as large as possible,

and there should be no bias voltage on the mixer. If the output circuit is

broadly tuned, the value of ZL, decreases and the conversion gain is like-

wise reduced.

11.08. Intermediate-frequency Amplifiers. In general, both the volt-

age gain and the signal-to-noise ratio of tuned amplifiers vary inversely

with the bandwidth. Therefore the objective in intermediate-frequency

amplifier design is to obtain minimum bandwidth consistent with faithful

amplification of the signal. Certain types of modulation, such as that used

in television, pulse modulation, and wide-band frequency modulation, re-

quire amplifiers having a relatively large bandwidth in order to reproduce
the signal faithfully.

Wide-band amplification may be obtained by the use of: (1) double-

tuned circuits which are tuned to the same frequency but overcoupled,

(2) double-tuned circuits with primary and secondary tuned to slightly

different frequencies, (3) the use of stagger tuning in which successive

stages are tuned to slightly different frequencies, or (4) low-Q tuned circuits.

In the first method, two circuits are tuned to the same resonant frequency

and are overcoupled. This produces a voltage-gain curve which has two

peaks, one on either side of the resonant frequency with a dip midway
between the two peaks. As the coefficient of coupling increases, the peaks

separate farther apart and the dip at the center becomes more pronounced.

In order to flatten out the over-all gain curve, the succeeding intermediate-

frequency amplifier stage can be critically coupled so that its gain curve

has a single peak midway between the peaks of the preceding stage. This

method requires high-Q circuits.

Stagger tuning of successive stages, i.e., tuning the various stages to

slightly different frequencies, produces approximately the same effect as

overcoupling.

Low-Q tuned circuits offer an alternative method of obtaining wide-band

amplifier characteristics. The low Q is sometimes obtained by shunting

the tuned circuit by a resistance. For a given effective bandwidth, the

voltage gain of the low-Q amplifier is less than that of the overcoupled

amplifier. Also, the overcoupled circuit has a higher attenuation outside

the pass band. However, the low-Q system is considerably easier to adjust

in production.

11.09. Amplitude-modulation Detectors. In simple types of micro-

wave receivers, the signal may be fed directly into a crystal detector. The
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detected signal is then amplified by audio- or video-frequency amplifiers.

In superheterodyne receivers, diode detectors are commonly used to detect

the amplitude-modulated signals.

Amplitude-modulation detectors may be broadly classified into two

categories: (1) square-law detectors and (2) linear detectors. The square-

law detector operates on the principle that the detection characteristics

of most detectors are not linear, but rather, are more nearly parabolic.

The output voltage then contains frequencies corresponding to the sum
and difference of the input frequencies. The difference frequency contains

a voltage proportional to the original modulation voltage. The square-

<b

p
l

(a)

FIG. 10. Intermediate-frequency amplifier used as a limiter.

law detector is essentially a small signal detector, since its characteristic

approximates a parabolic (square-law) curve for only a limited range of

operation.

In the linear detector, rectification of the wave takes place because of

the rectifying properties of the detector. The envelope of the rectified

current has the same waveform as the modulation voltage. An R-C circuit

is used to take out the radio-frequency components, leaving a wave having
the same waveform as the original modulation voltage. Linear detectors

are essentially large-signal detectors.

11.10. Limiters and Discriminators in Frequency-modulation Receiv-

ers. In frequency-modulation receivers, the incoming signal is reduced to

a constant amplitude by a limiter stage before detection. This serves to

reduce the noise voltage which appears largely as amplitude modulation

in the signal.

An intermediate-frequency amplifier using a pentode with a low plate

voltage may be used as a limiter. If a relatively large grid-driving voltage
is used, the operating point varies between PI and P2 on the load-line

characteristic in Fig. lOb and the amplitude of the output voltage is sub-

stantially constant. The tuned circuit in the output serves to provide a

sinusoidal output voltage, thereby eliminating waveform distortion. Fur-

ther limiting action may be obtained by using a pentode with a remote cutoft

characteristic and inserting a parallel resistance-capacitance combination in
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the input circuit, as shown in Fig. lOa. Rectified grid current flows through
the R-C circuit, producing a negative bias voltage. The bias voltage in-

creases with an increase in signal strength, causing a reduction in the trans-

3
li-

ck

R-F Input voltage

FIG. 11. Characteristic of the limiter stage.

conductance of the tube. The voltage gain of the stage then varies

inversely with input voltage, thereby giving a constant output voltage.

Figure 11 shows how the intermediate-frequency output voltage varies

with input voltage for a typical limiter.

__ Output
-p ? voltage

(C) Ebf
FIG. 12. Discriminator circuit and characteristics.



236 TRANSMITTING AND RECEIVING SYSTEMS [CHAP. 11

A typical discriminator circuit for the detection of frequency-modulated

signals is shown in Fig. 12. This consists of a tuned circuit which is con-

nected to two diodes in such a manner that the output voltage is dependent

upon the difference between the rectified currents passed by the two diodes.

In the circuit of Fig. 12, assume that the impedance of the R-C circuit is

negligible at the intermediate frequency. The voltage across the two

diodes is then ED i
= E^ + E and Ez>2 = E'2 + E

,
where E\ and E'2

are each one-half of the voltage of the tuned circuit. If the impressed

frequency is equal to the resonant frequency of the discriminator tuned

circuit, the voltage relationships are those shown in the first diagram of

Fig. 12c. The diodes then have equal impressed voltages and pass equal

rectified currents. Since the currents flow in opposite directions in the

load resistance, the output voltage is zero. If the impressed frequency
differs from the resonant frequency of the discriminator, the diode voltages

and diode currents are unequal, and there will be a net output voltage.

The output voltage plotted against frequency is shown in Fig. 12c. An
ideal discriminator would have a linear variation of output voltage with

frequency.



CHAPTER 12

PULSED SYSTEMS RADAR

In pulsed systems the transmitted wave consists of a succession of carrier

pulses, each of very short duration. These are interspaced by relatively

long time intervals during which there is no transmitted signal.

Prior to the war, pulsed systems were used, to a limited extent, to measure

the height of the ionosphere layers and in a few experimental radar units.

However, most of our present-day knowledge of pulsing systems and tech-

niques can be attributed to the intensive wartime effort devoted to the

V

-2ir IT -cofp cui IT

FIG. 1. Rectangular pulse.

2ir out

research and development of radar systems. Despite the fact that our

present knowledge of pulsed systems is of comparatively recent origin,

they have found widespread application throughout the field of communica-

tion and undoubtedly many interesting and useful applications will be

discovered in the future.

12.01. Fourier Analysis of Rectangular Pulses. Consider the rectangu-
lar pulse shown in Fig. 1. Let to be the pulse duration, / be the repetition

rate (number of pulses per second), and Vm be the peak value of the pulse.

In the Fourier series analysis of the rectangular pulse, the fundamental

frequency component is the pulse repetition rate /. Let w =
2irf be the

angular frequency. The Fourier series for the instantaneous voltage v of

the wave of Fig. 1 contains only odd harmonic cosine terms, or

VQ + COS (1)

n-1

237
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where n is any odd integer and Vn is the amplitude of the harmonic. The

angular duration of the pulse is from o>J /2 to cofo/2. The average value

of voltage is

to/2

(2)
rt

I

J-tt-tttQ/2

By the customary method of evaluating the Fourier series coefficients,

we obtain the amplitude of the nth harmonic,

cos ;iut d(<af)
= sin

v J-uto/2 vn 2
(3)
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Fio. 2. Plot of : as a function of x.
x

The ratio of the nth harmonic voltage to the average is found by dividing

Eq. (3) by (2), yielding

Vn sin
..-,_ .., o _ o

sn x
(4)

where x = nwfe/2. The curve of sin x/x as a function of x is plotted in

Fig. 2. This curve may be used to determine the ratio Vn/VQ for any
harmonic component.
Now assume that the pulse duration is very small in comparison with

the time interval between pulses. For the fundamental frequency com-

ponent, we have n 1
; also x = wfo/2 is very small. The corresponding

value of sin x/x t from Fig. 2, is approximately unity. Hence, Eq. (4)
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shows that the fundamental frequency component has an amplitude equal
to twice the average value. In order to observe how rapidly the amplitudes
of the harmonics decrease with the order of the harmonic, let us find the

harmonic which has an amplitude equal to 0.707 of the fundamental ampli-
tude. Referring to Fig. 2 we observe that sin x/x has a value of 0.707

when x = ncofo/2
= 1.46 radians. Solving for n we obtain

2.92
n = (5)

wfo

The effective bandwidth nf will be defined as the bandwidth which

includes all harmonic components having magnitudes greater than 0.707

of the fundamental. Multiplying both sides of Eq. (5) by /, we obtain

the bandwidth as

0.465

nf cycles per second (6)
fo

Hence, the effective bandwidth for pulses of very short duration varies

inversely with the pulse duration but is independent of the repetition rate.

As an example, assume that a rectangular pulse has a duration of 1 micro-

second and a repetition rate of 1,000 pulses per second. We then have

o
= 10~6 second and/ = 1,000 cycles per second. The bandwidth is then

nf = 0.465/10""
6 = 465,000 cycles per second. If the rectangular pulse

is used to modulate a carrier wave, the various harmonic components pro-

duce amplitude-modulation side bands with frequencies above and below

the carrier frequency; hence the total effective bandwidth is twice the value

given above, or 930,000 cycles.

The foregoing example shows that an extremely large bandwidth is

required to transmit and receive pulses of very short duration. If the

transmitting and receiving circuits have insufficient bandwidth to pass the

significant harmonic components, then the pulse will be rounded off,

thereby altering the waveform. The effective bandwidth may be reduced

by using a rounded or triangular-shaped pulse. However, in many
applications a steep wavefront is required in order to trigger circuits at

a definite instant of time. In such cases the larger bandwidth must be

tolerated.

12.02. Radar Principles. Radar systems are used to locate a target

and to determine accurately its position in space with respect to the radar

unit. Pulsed waves are used as a means of determining the distance from

the radar unit to the target, this distance being known as the range. The

radar transmitter sends out pulsed waves which are partially reflected from

the target. A small portion of the reflected energy returns to the receiver.

Since the waves travel through space with a velocity equal to the velocity

of light, the time interval between the transmission of a pulse and the recep-
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tion of the reflected pulse is directly proportional to the range. Each

microsecond of time delay corresponds to an increase in range of 164 yards.

In most radar systems the transmitter and receiver are assembled as a

unit, with a single antenna serving both the transmitter and receiver.

Highly directional antenna systems are usually used; hence the azimuth

and elevation of the target may be determined by the position of the

antenna when the reflected signal is a maximum. The range, azimuth,
and elevation determine the position of the target with respect to the radar

unit. In some applications, such as ship detection, it is not necessary to

know the elevation.

Several standard scanning systems have been devised to enable the radar

unit to search over a relatively large area. One of these is a circular

scanning system in which the antenna revolves slowly and the radiated

beam sweeps out a circular path. This supplies range and azimuth infor-

mation only. In another system, the circular motion is combined with a

slow vertical tilting motion so that the beam follows a helical path. A
typical system might have a circular sweep at the rate of 6 revolutions per

minute, with 4 degrees of vertical tilt for each revolution. This scanning

system makes it possible to determine range, azimuth, and elevation.

Still another scanning system uses a conical sweep. This is obtained

by using a dipole antenna and a parabolic reflector. The dipole antenna

is a short distance from the focal point of the parabola and is rotated in a

small circle which has the focal point at its center. This causes the

radiated beam to sweep out a conical path with a cone angle which is

dependent upon the distance between the dipole antenna and the focal

point of the parabola. In some radar units, the antenna is equipped with

motor drive and servomechanism control which permits the antenna to

automatically track the target.

At the receiver, the range, azimuth, and elevation information usually

appear on one or more cathode-ray oscilloscopes. Several types of sweep
circuits have been devised in order to translate the information into a form

which can be quickly interpreted. The simplest arrangement is the type
A scope which has a saw-tooth wave applied to the horizontal deflection

plates to provide a linear horizontal time axis. The pattern on the oscillo-

scope is as shown in Fig. 3a, the distance between the transmitted and
reflected pulses being directly proportional to the range.

The type J oscilloscope, shown in Fig. 3b, has the outgoing and reflected

pulses superimposed upon a circular trace. The angle between the two

pulses is proportional to the range.

The PPI (plan-position indicator) oscilloscope, of Fig. 3c, has a trace

which starts from the center of the oscilloscope, each time that a pulse
is transmitted, and moves radially outward. A circular motion is super-

imposed upon the radial sweep so that the complete path resembles a wagou
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wheel with a very large number of spokes. The output of the radar receiver

is impressed upon the grid of the oscilloscope, thereby controlling the beam
current in the oscilloscope beam. A bright spot on the screen denotes a

reflection. When used with the circular-scan antenna, the radial distance

from the center of the oscilloscope screen to a bright spot (denoting a

reflection) is proportional to the range of the target and the angular posi-

tion is proportional to the azimuth.

The type B oscilloscope is similar to the PPI oscilloscope except that

rectangular coordinates are used instead of polar coordinates. The

cathode-ray beam starts at a base line each time that a pulse is trans-

Reflected Transmitted

pu/se ^.Briqhtspot
indicatesa
reflected

puke

Reflected

TYPE A TYPEJ ?uls* TYPE PPI

(a) (b) (c)

FIG. 3. Oscilloscope traces for radar systems.

mitted and moves vertically during the interval between pulses. The
vertical distance is proportional to ran'gc and the horizontal distance is

proportional to azimuth.

12.03. Specifications of Radar Systems.
1 The specifications of a radar

system, i.e., the power output, pulse repetition rate, pulse duration, type
of antenna, receiver sensitivity, etc., must necessarily be governed by the

use for which the particular system is intended. The following are some

general principles which affect the choice of these specifications.

First, consider how the maximum range varies with transmitter power.

In Sec. 11.01, it was shown that the power density of a wave radiated from

a transmitting antenna varies inversely as the square of the distance. A
small portion of this power is intercepted by the target and is reradiated

into space. The power density in the reradiated wave likewise varies a>s

the inverse square of the distance. Consequently the power received by
the radar receiver varies as the inverse fourth power of the range. Because

of this inverse fourth-power relationship, a relatively large increase in trans-

mitter power results in a disproportionately small increase in maximum

range. For example, in order to double the maximum range of a radar

system, it is necessary to increase the transmitter power by a factor of 24

or 16 times, assuming that all other factors are held constant. In general,

1 SCHNEIDER, E. G. t Radar, Proc. LR.E., vol. 34, pp. 528-580; August, 1946
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the maximum range is determined by the transmitter power, directivity

of the antenna system, receiver sensitivity, and signal-to-noise ratio at the

receiver.

Now consider the factors affecting the choice of pulse duration and pulse

repetition rate. Since, in pulsed systems, the transmitter is usually in

operation for a very small fraction of the total time, it is possible to obtain

very high values of peak power without exceeding the safe average plate

dissipation of the transmitter tubes. If we assume that the efficiency of a

tube is the same for pulsed operation as for continuous-wave operation,

the ratio of pulsed power output (peak value) to continuous-wave power
output for the same average plate dissipation is

(1)

where h is the duration of the pulse and T is the time interval between

the beginning of one pulse and the beginning of the next succeeding pulse.

For example, consider a system in which the pulse is 1 microsecond long

and the repetition rate is 1,000 pulses per second (T = 10~~
3
second). We

then have P^^/Pcw = 10"~
3
/10~

6 = 103
,
or the safe peak power output

available from the pulsed system is approximately 1,000 times the safe

power output with continuous operation. The same average power is

obtained in both cases.

From a casual observation, it would appear that the maximum range of

a radar unit can be increased by decreasing the pulse duration and propor-

tionately increasing the transmitter power output. However, if we investi-

gate the conditions at the receiver, our conclusions are somewhat different.

At the receiver, the bandwidth required to amplify the pulse without dis-

tortion varies inversely with the duration of the pulse. Hence, a shorter

pulse requires a larger bandwidth which also results in an increase in noise

voltage. The minimum discernible signal at the receiver is one whose

voltage is approximately equal to the noise voltage; in other words, one

which corresponds to a signal-to-noise ratio of approximately unity.

Thus, the shorter pulse makes higher peak power possible, but it also

necessitates a larger bandwidth at the receiver, which increases the receiver

noise. Consequently, the signal-to-noise ratio at the receiver is approxi-

mately the same for a short pulse with high peak power as for a long pulse
with low peak power, assuming the same average power in both cases.

We therefore conclude that, for a given average power output, the maximum
useful range of a radar unit is independent of the pulse width. However, if

the radar system is used for short ranges, a short pulse is required in order

that the transmitter be off and the receiver fully recovered when the

reflected signal arrives at the receiver.
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If the radar system is intended for long-distance detection, a low pulse

repetition rate is required, since the time interval between pulses must be

sufficient to allow the reflected pulse to return before the next succeeding

pulse is sent out. On the other hand, in order to have a good signal at the

receiver, at least five pulses must hit the target each time that it is scanned.

This may be accomplished by using a slow scanning speed or a high pulse-

repetition rate. Pulse-repetition rates of typical radar systems range from

200 to 4,098 pulses per second and the pulse duration varies from 0.25 to

30 microseconds.

FIG. 4. Block diagram of SCR 584 radar system.

12.04. Typical Radar System. A simplified block diagram of the SCR-

584 radar unit is shown in Fig. 4. This system was designed to direct the

fire of antiaircraft batteries. It uses a pulsed magnetron transmitting tube

operating at a wavelength of 10 to 11 centimeters and delivering a peak

power output of 300 kilowatts. The pulse repetition rate is 1,707 pulses

per second and the duration is 0.8 microseconds. When searching for a

target the antenna describes a helical path at the rate of 6 revolutions per

minute. The unit is equipped to automatically track a target, in which

case conical scanning is used. The angular accuracy is dbO.06 degree and

the range accuracy is 25 yards.

The timing unit, shown at the extreme left, contains a quartz-crystal

oscillator, frequency-dividing circuits, and pulse-shaping circuits. This
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timing unit initiates the transmitter pulse and also serves to synchronize

the oscilloscope as well as to provide marker pulses for accurate ranging.

In the transmitter circuit, the timing circuit triggers a multivibrator at the

beginning of each pulse. The multivibrator circuit contains an artificial

transmission line, known as a delay line, which controls the duration of the

pulse.

The modulator circuit, shown in Fig. 5, contains a condenser which is

charged to a high voltage (22 kilovolts) during the period between pulses.

This condenser is discharged by a modulator tube. The grid of the modu-
lator tube is normally biased beyond cutoff but is driven into the positive

Magnetron =- High

Fio. 5. Simplified diagram of a pulse-modulator circuit.

region by the pulse from the multivibrator. This causes the condenser

to discharge through the magnetron and the modulator tube. The high

voltage impressed upon the magnetron causes it to oscillate at its natural

frequency. The microwave power obtained from the magnetron is im-

pressed upon the antenna.

The T-R (transmit-receive) box, shown in Figs. 4 and 6, serves to prevent

the transmitted pulse from entering the receiver, without interfering with

the reception of the reflected pulse. It contains a T-R tube, a tunable

resonant cavity, and provision for coupling the input and output circuits

to the cavity. The T-R tube has two conical metallic electrodes with the

apexes separated a short distance apart. The tube is enclosed in a glass

envelope and contains a slight amount of water vapor. The transmitter

pulse causes a spark discharge in the T-R tube which detunes the resonant

cavity. This introduces a very high attenuation between the transmitter

and receiver circuits. At the conclusion of the transmitted pulse, the T-R
tube deionizes and the passage is clear for the reflected signal to pass through
the T-R box to the receiver.

The receiver contains a crystal mixer, a local oscillator consisting of a

reflex klystron, seven stages of intermediate-frequency amplification, a

detector, and video amplifier stages. One channel of the receiver output
is impressed upon two type J oscilloscopes which are used in a range-

indicating system. One oscilloscope has a range of 32,000 yards for coarse

adjustment and the other 2,000 yards for fine adjustment. The operator
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adjusts a range handwheel so as to keep the reflected pulse on a hairline

on the oscilloscope, and this handwheel circuit feeds the range information

into the data transmission system.

Another receiver channel is used to automatically position the antenna.

The antenna uses a conical scanning system when tracking a target, and the

antenna is positioned so that the reflected pulses are equal throughout the

entire cycle of conical scan. If the antenna position is slightly in error,

,

'amplifier

Fia. 6. T-R box and crystal mixer.

the reflected signals are unequal during different portions of the conical

scan. An error signal is then fed into the servomechanism which operates

to correct the position of the antenna.

The third receiver channel goes to the PPI oscilloscope which also

receives trigger pulses from the timing unit.

12.05. Pulse-time Modulation. 1 ' 2 Several communication systems have

been devised which use pulsed waves. In such systems the pulses occur

at an inaudible repetition rate, or at such a rate that the pulse frequency

can be separated from the modulating signal by suitable filters. The

modulating voltage can be made to vary:

1. The height of the pulse.

2. The duration of the pulse.

3. The repetition rate.

4. The timing of the pulse with respect to a standard marker pulee.

Pulse-time modulation uses the fourth method. In this system, a num-

ber of messages can be transmitted on a single carrier frequency. Figure 7

shows the pulse arrangement for a five-channel system. Each frame con-

tains one marker pulse and five channel pulses (one for each communica-

1 GRIEG, D. D., and A. M. LEVINE, Pulse-Time Modulated Multiplex Radio Relay

System, Elec. Commun., vol. 17, pp. 1061-1066; December, 1946.
2
LACY, R. E., Two Multichannel Microwave Relay Equipments, Proc. I.R.E., vol. 35

DP. 65-70; January, 1947.
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tion channel). The modulating voltage of any one channel varies the

timing of the corresponding pulse with respect to the marker pulse. A

positive modulating voltage produces an advance in pulse time, whereas a

negative modulating voltage retards the pulse. The time displacement

of a pulse from its mean position is proportional to the amplitude of the

modulating voltage, while the number of cycles of deviation per second is

equal to the frequency of the modulating signal.

A typical system uses a marker pulse which is 4 microseconds long and

channel pulses which are approximately 1 microsecond long. A 15-micro-

second time interval is reserved for each pulse, which allows for a time

FIG. 7. Pulses of a five-channel pulse-time modulation system.

variation of 6 microseconds with a 2-microsecond interval between adja-

cent channels. The recurrence rate for the entire frame is 8,000 per second.

The audible signal produced by the frame recurrence rate is removed in the

output by low-pass filters.

Despite the fact that a large number of messages can be transmitted on a

single carrier frequency, it appears that pulse-time modulation requires

more frequency space than either amplitude or frequency modulation.

This is due to the high harmonic content of the pulses. Pulse-time

modulation, however, may have the advantage of a higher signal-to-noise

ratio, particularly in systems involving a chain of relay stations. In

such systems, the total distortion is the cumulative distortion of all of the

relay stations in the relay link. In pulse-time systems, the relay stations

contain multivibrator circuits which are triggered by the incoming pulse.

In order to introduce distortion, a relay station would have to alter the

timing of a pulse. This can easily be guarded against. In general, the

relay stations of pulse-time systems can be much simpler than those of

amplitude- or frequency-modulation systems, since a large number of chan-

nels can be amplified by a single chain of multivibrators.



CHAPTER 13

MAXWELL'S EQUATIONS

The experimental and theoretical researches of Coulomb, Ampere, Fara-

day, and others during the last part of the eighteenth century and first of

the nineteenth century laid the foundation for an understanding of the

basic principles of electric and magnetic phenomena. Coulomb experi-

mented with the forces of attraction and repulsion between charges,

Amp&re demonstrated that magnetic effects are produced by an electric

current, and Faraday showed that an electromotive force is induced in

a conductor moving through a magnetic field.

Previously, Newton had explained gravitational forces in terms of an

"action-at-a-distance" philosophy which had at first appeared incredulous

but later gained widespread recognition. It was quite logical, therefore,

for the early experimenters to accept this point of view as an explanation
of the electric and magnetic forces which they experienced. However,

Faraday's discovery that the capacitance of a condenser is dependent upon
the nature of the dielectric, led him to suspect that an electric field exists

in the dielectric of the condenser. Since the new field theory was in con-

tradiction to the deeply rooted action-at-a-distance theory, a lively con-

troversy ensued.

Maxwell, in a series of brilliant mathematical contributions, skillfully

welded the electromagnetic-field concepts into a unified pattern. His

introduction of the displacement current and the assumption that this

produces a magnetic field led him to the prediction of electromagnetic wave

phenomenon. Since his theoretical velocity of propagation proved to be

very nearly equal to the velocity of light, Maxwell concluded that light

itself is an electromagnetic-wave phenomenon. He visualized an all-

pervading ether in which the electromagnetic waves propagate as a dis-

turbance. Although the ether concept has since been discredited, Max-
well's fundamental concepts of electromagnetic-field theory remain as the

foundation of our present-day concepts.

13.01. Fundamental Laws. The four laws commonly referred to as

Maxwell's equations include Faraday's law of induced electromotive force,

Ampere's circuital law, Gauss's law for the electric field, and Gauss's law

for the magnetic field. In rationalized mks units, these are

dt

247
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(2)<p/7'd7
= i

D-ds = q (3^

S-ds =
(4;

with the supplementary relationships

D = tE (5)

B = & (6)

Faraday's law states that the emf induced in a closed path, such as

that shown in Fig. 1, is equal to the rate of change of magnetic flux linking

the path. No restriction is imposed as to the nature of the medium. Thus,

Fio. 1. An illustration of Faraday's induced ernf law.

the path over which the electric intensity is integrated may be in a con-

ductor, in a dielectric, or in free space.

Ampfere's circuital law, Eq. (2), states that the line integral of magnetic

intensity around a closed path is equal to the current linking the path.

The line integral (bH-dlis known as the magnetomotive force. Amp&re's

law is illustrated in Fig. 2, in which the dotted-line path indicates the path
of integration and i is the current flowing in the conductor. Maxwell

showed that the current i must include not only the conduction (or con-

vection) current, but also the displacement current. The displacement cur-

rent is necessary in order to explain electromagnetic-wave phenomenon in

free space or in dielectrics where the conduction and convection currents

may be negligible.
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Equation (3) is Gauss's law which was discussed in Sec. 2.04. This

states that the net outward electric flux through any closed surface is

Fjqual to the charge enclosed by the surface. In electrostatic fields the

H

D

FIG. 2. An illustration of Amp:re's circuital law.

electric flux lines begin and end on charges. In time-varying fields, how-

ever, the electric flux lines can exist as closed loops.

Gauss's law for the magnetic field, Eq. (4), states that the net outward

magnetic flux through any closed surface is zero. This is equivalent to

stating that magnetic flux lines are always continuous, and thus form closed

loops.

In rationalized mks units, E is in volts per meter, D in coulombs per

square meter, q in coulombs, and i in amperes. Among the magnetic-
field quantities, we have H in ampere turns

per meter, <f> in webers, and B in webers per

square meter. The permittivity is given by
c ==

r ,
where = 8.85 X 10~~

12
farad per

meter is the permittivity of free space and

r is the relative permittivity (or dielectric

constant). Similarly, we have n = MoMr,

where MO = 4?r X 10~7
henry per meter is

the permeability of free space and /xr is the

relative permeability. The relative perme-

ability of nonmagnetic materials may be

taken as unity.

13.02. The Curl. Maxwell's equations

become exceedingly powerful tools when ex-

pressed in differential-equation form. The

differential-equation forms of Faraday's and Ampere's laws are stated in

terms of the curl of a yector. Let us therefore derive an expression for

the curl, as applied to Faraday's law. In Eq. (13.01-1), the electric in-

FIG. 3. An illustration of Gauss's
law.
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tensity E may be interpreted as the force on unit positive charge placed

in the field, and the integral (fcJEf-d? then becomes the work done by the

field in moving unit positive charge around a closed path (the path of

integration).

Now consider the work done in carrying unit charge around the perimeter

of the differential area shown in Fig. 4. The differential area is assumed

to be oriented parallel to the yz

plane. Let dw be the work done in

carrying unit charge around the

closed path abcda. We shall define

curlx E by the relationship

curL E = lim
dw
... (i)

\dydz

Thus, curlx E is the work done in

carrying unit charge around the

perimeter of the differential area,

divided by the area. Dividing by
the area gives us the work per unit

area. However, it should be noted

that the curl is computed for a

vanishingly small area and is there-

fore a point function. curl* E is a vector, having a direction perpen-

dicular to the area dy dz.

Let E = Ezl + Evl + Ezk be the electric intensity at the center of the

differential area. The electric-intensity components at the sides of the

differential area are then

FIG. -x. The derivation of curl* E.

Ey
dEv / _ cfe\

1T\ 2/

dE /dy\<-* + -(T)

?(*)

(2)

Ey =S Ey

The work done in moving unit charge around the closed path may be

obtained by multiplying the electric intensity (or force on unit charge)

times distance of travel. Thus, referring to Fig. 4, the first and second
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expressions in Eq. (2) are multiplied by dy and dz, respectively, while the

third and fourth are multiplied by dy and dz, respectively. Adding
these four terms to obtain the work done in carrying unit charge around the

closed path, and simplifying, we obtain

(dE
g dEy\

) dy dz
dy dz /

Substitution of Eq. (3) into (1) gives, for curlx E

/dEz dEv\_
curU E =

[ ) ^

\ dy dz/"

(3)

(4)

The differential area could also have been oriented parallel to the xz

and the xy planes to obtain two other curl components,

curL /dj
\dz dx)'

(dEvcurl z E =
[

\dx

dEA
) k

dy/~
(5)

Equations (4) and (5) give the three components of a resultant vector quan-

tity symbolized by curl E. Adding the components, we obtain

dy dx dy

If we take the differential operator V given by Eq. (2.03-2) and perform
the operation V X E

y using the cross-product rule outlined in Sec. 2.01,

the resulting expression gives the terms on the right-hand side of Eq. (6).

The curl may therefore be written in the determinental form

curl E = V X

I 1 k

d d d

dx dy dz

TJT 7JT "El&X &y & Z

(7)

Expressions for the curl in cylindrical and spherical coordinates are given

in Appendix III. In expanding these determinants, the second-row differ-

entials operate on the third-row quantities.

Thus far we have been concerned with the derivation of a mathematical

expression for the curl. Let us now use Faraday's law to relate curl E
to the magnetic-field quantities. We first write Eq. (1) in the form

dw I
= curlx E dy dz

The work dw is the value of the line integral <bE -dl

(8)

around the differential

area. According to Faraday's law, Eq. (13.01-1), this must be equal to
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the negative time rate of change of magnetic flux through the differential

area. The magnetic flux through differential area is <t>
= Bx dy dz, where

Bx is the ^-directed component of magnetic flux density. Plence, Faraday's
law yields

- dBx
curl* E dy dz = dy dz I

, * dB*
curl* E = - 1

dt

In a similar manner, we may obtain curlj, E = (dBy/dfyj&nd curl 2 E =

(dBz/dt)k. The whole curl, obtained by adding the component curls,

is therefore

&
curl E = V X 1? = (9)

dt

where

B = Bxi + By] + B 2k

Equation (9) is the differential equation form of Faraday's induced-emf

law. Each component of the curl was defined as the work done by the field

in moving unit charge around the perimeter of a differential area, divided

by the area or briefly, the work per unit area. The three orthogonal

orientations of the differential area at any one point in space yield the three

curl components, the whole curl being the vector sum of the three compo-
nents. There is always a particular orientation of the differential area,

such that the curl computed for this area gives the whole curl without

bothering with the components. This occurs when the differential area is

oriented in a direction normal to the direction of the magnetic flux-density

vector 5.

13.03. Useful Vector-analysis Relationships. The divergence theorem

and Stokes's theorem are two vector-analysis relationships which facilitate

the derivation of the differential equation form of Maxwell's equations.

Let us therefore consider these relationships.

The divergence theorem may be written

-X)dT (1)

This states that the surface integral of a vector A is equal to the volume

integral of the divergence of Z.

In order to visualize a physical interpretation of the divergence theorem,

let us assume that the vector X is a flux density. The quantity I A*ds

is then the net outward flux through the given surface. In Sec. 2.05,
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the divergence of A was defined as the net outward flux through a differential

volume, divided by the volume. Now consider a volume of any size, which

we divide into a very large number of differential volume elements. In

computing the divergence for the differential elements, we find that part
of the flux flows out of one element and into an adjacent element. This

flux produces equal and opposite contributions to the divergences of the

respective elements. In summing up all of the divergences, therefore, we
find that the flux which is common to adjacent

elements cancels. The only flux which does

not cancel is that through the outer surface of

the volume. Hence, the summation of the

divergences throughout the entire volume gives

the net outward flux through the bounding
surface.

Stokes's theorem may be expressed as

=
f(V

FIG. 5. An illustration

Stokes's theorem.

This states that the line integral of the vector

A around a closed path is equal to the surface

integral of the curl over any surface bounded

by the closed path.

To simplify the physical interpretation, let us replace the vector A by

the electric intensity E. The integral <t)E-dl may be interpreted as the

work done by the field in moving unit charge around a closed path. Refer-

ring to Fig. 5, let us divide the area shown into a large number of differ-

ential area elements. The curl of any element may be considered as the

work done in moving unit charge around the differential element, divided

by the area of the element. We note that the differential elements have

interior sides which are common to two adjacent elements and exterior

sides bordering on the perimeter. In evaluating the work of two adjacent

elements, the common side is traversed in opposite directions. When these

two works are added, the net work done in carrying the unit charge along

the common side is zero. Thus, in summing the curls for the entire area,

we find that the work done along the paths which are common to two

differential elements cancels. The only sides which contribute any net

work are those bordering on the perimeter. The work done in carrying

the unit charge along these sides is
<p

E-dl. Hence, the summation of the

infinitesimal contributions over the given area is equal to the line integral

over the perimeter of the area.
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Two additional vector analysis identities will aid in the physical and

mathematical interpretation of the field equations. The first of these states

that the curl of a gradient is always zero, that is

V X (V7) -
(3)

This relationship may be used to point out certain limitations in com-

monly used field equations. In Eq. (2.03-3), the electric intensity was

expressed as E = VV. If this is inserted into Eq. (3), there results

V X J? = 0. This is not in agreemenc with Eq. (13.02-9) except for the

special case where dB/dt = 0. Since Eqs. (3) and (13.02-9) are always

valid, we conclude that the relationship E = V7, as well as its counter-

part V =* I E-dl, and Poisson's equation, which was derived from the

gradient relationship, are valid only when dB/dt =
0, i.e., in stationary

fields.

A field in which the curl is everywhere zero is known as an irrotational

field. The foregoing discussion may be generalized by the following vector-

analysis theorem: A vector field may be expressed as the gradient of a scalar

potential only if the field is irrotational.

The second useful vector-analysis identity states that the divergence
of the curl of a vector quantity is always zero, or

V-(V Xl) =
(4)

A useful corollary of this identity states that if the divergence of a vector

field is everywhere zero, the vector field may be expressed as the curl of

another vector. A vector field which has zero divergence is known as a

solenoidal field. We shall find that magnetic fields are solenoidal fields.

13.04. Maxwell's Equations in Differential-equation Form. Let us

now use the divergence theorem and Stokes's theorem to obtain the differ-

ential-equation form of Maxwell's equations. Returning to Faraday's law,

Eq. (13.01-1), and applying Stokes's theorem, Eq. (13.03-2), we obtain

(%-dl
= f(V X E) -ds (1)

J Jt dt

The magnetic flux may be expressed as the surface integral of flux density,

thus < = I B-ds. Inserting this into Eq. (1) and interchanging the order

of differentiation and integration, we obtain

/iJ5\

dS (2)
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Both sides of Eq. (2) are integrated over the same surface area, hence we

may equate the integrands, yielding the curl equation

**
V X E - -

(3)
ot

This is identical to Eq. (13.02-9).

The differential equation form of Ampere's law may be obtained by a

similar procedure. Combining Eqs. (13.03-2), written in terms of magnetic

intensity, and Eq. (13.01-2), we get

fll-dl
= f(V X fy-ds = i (4)

The current may be expressed as the surface integral of current density,

thus i = I J-ds. Inserting this into Eq. (4), we have
J8

f(VXE)'ds
=

fj-ds (5)
J8 JS

Again the integration of both sides of the equation is over the same surface

area; hence the integrands may be equated to obtain the curl equation
for the magnetic field,

V X ff = 1 (6)

The current density J includes the conduction current density and dis-

placement current density as expressed by Eq. (3.02-5). When this is

substituted into Eq, (6), there results

^ 3D
V X # = 7C + (7)

ot

The differential equation form of Gauss's law may be derived by the use

of the divergence theorem. Combining Eqs. (13.01-3) and (13.03-1), we
obtain

<f)B-ds
= f(V-5) dr q (8)

Electric charge can be expressed as the volume integral of charge density,

thus q = I qr dr. Inserting this into Eq. (8), we obtain
JT

dr (9)f(
J r

Both sides of this equation are integrated over the same volume, hence,

upon equating integrands, we obtain the divergence equation

V-U - qr (10)
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A similar procedure applied to Eq. (13.01-4) yields the divergence equa-

tion for the magnetic field,

V-5 = (11)

The foregoing relationships are summarized in Table 3 at the end of this

chapter.

13.05. The Wave Equations. The curl equations (13.04-3) and (13.04-7)

contain electric and magnetic quantities hi each equation. These two equa-
tions may be solved as simultaneous equations to obtain two explicit equa-

tions, one containing the electric intensity and the other containing the

magnetic intensity. These are known as the wave equations. They are

more convenient than the curl equations for the solution of many types

of electromagnetic-field problems.

Before proceeding with the derivation of the wave equations, let us state

a useful vector-analysis identity for the curl of the curl of a vector quantity.

This may be written

V X V X X = -V2^ + V(V- 1) (1)

Now take the curl of both sides of Eq. (13.04-3) thus,

dH d
V X V X E = -/iV X = -M- (V X /7) (2)

dt dt

The step in going from the second to the third form of Eq. (2) amounts to

interchanging of the order of differentiation.

Now substitute Eq. (1) for the left-hand side of Eq. (2), and Eq. (13.04-7)

for V X B on the right-hand side. In place of Jc ,
we write Jc

=
crE, thus

obtaining

[ dE 2
E~]

-V^+V(V.) =-,[,-+ J
(3)

In most applications, the space-charge density is zero; hence Eq. (13.04-10)

gives V-E = 0. Equation (3) may then be written

This is the wave equation for the electric field. A similar expression may
be derived for the magnetic field by taking the curl of both sides of Eq.

(13.04-7) and substituting Eqs. (1), (13.04-3), and (13.04-11). This yields

the wave equation for the magnetic field,

The use of the wave equations will be considered in the following chaptei
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13.06. Fields with Sinusoidal Time Variation. The principal electro-

magnetic-field equations can be simplified for fields with sinusoidal time

variation. We shall assume a time variation of the form JW<
. The time

derivatives may then be written dE/dt = juE and d2E/dt
2 = w2

!?.

Making these substitutions in Eqs. (13.04-3 and 7) and (13.05-4 and 5),

we obtain the curl equations and wave equations

V x E = -jwH (1)

V X n> (ff + jue)E (2)

V2E =
jw/u(<r + juc)E = y

2E (3)

where

7 =
Vjco/i(o- + jcoc)

= a + j/3 (5)

The quantity 7 is a property of the medium known as the intrinsic

propagation constant. It is analogous to the propagation constant of the

transmission line. In general, 7 is complex, its real part being the attenua-

tion constant a. and imaginary part the phase constant 0.

13.07. Power Flow and Pointing's Vector. The energy density stored

in an electromagnetic field can be represented by
1

w = y2 ( E2 + M#2
) (1)

where J^eU
2

is the energy density of the electric field and Y^Jf is the

energy density of the magnetic field. In mks units the energy density is

in joules per cubic meter.

Let us now consider the concept of Poynting's vector, which we shall

have frequent occasion to use in evaluating the power flow. We start

by taking the divergence of E X B. A vector-analysis identity yields

. v- (E x H) = H- (v x E) E- (v x 5) (2)

Substitution of Eqs. (13.04-3 and 7) for V X E and V X H in Eq. (2) yields

_ _ an _ / __ dE\
v-(SxB) = -/J? E - [aE+ ] (3)

dt \ dt/

The dot product of a vector with itself is equal to the scalar quantity

squared, that is, E-E = E2
. Also, we may write

dE _ Id(E-E) _ ld(E)
2

dt

"
2 dt

~~

2 dt

1 FRANK, N. H., "Introduction to Electricity and Optics," pp. 52-134, McGraw-Hill

Book Company, Inc., New York, 1940. Equations given in this reference are in unra-

tionalized units and therefore differ from the above equations by a factor of 4ir.
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A similar expression may be written for the magnetic intensity. Inserting

these into Eq. (3), we obtain

- V- (E X #) = - -(eE
2 + M#2

) + *E2 (4)
dt 2

FIG. 6. Poynting's vector is perpendicular to E and H.

The vector quantity E X H in the first term of Eq. (4) is known as the

Poynting vector, thus

a5 = E x n (5)

Poynting's vector may be interpreted as the power-density flow per unit

area. It is represented by a vector

ds
which is perpendicular to the E and

H vectors.

Divergence is the net outward flow

per unit volume, hence V (E X H)

represents the net inward flow of

power per unit volume. Part of this

power contributes to an increase in

the energy storage in the electric and

magnetic fields, while part of it is lost

owing to imperfect conductivity of the

medium. The quantity d/dt[%(tE*
+ nH2

)] on the right-hand side of

Eq. (4) is the time rate of change of

FIG. 7. Application of Poynting's vector, energy storage in the field. There-
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fore, this term represents that portion of the power which contributes to

an increase in energy storage. The second term on the right-hand side

represents the power loss due to imperfect conductivity. Thus, Eq. (4)

states that the net inward power flow per unit volume is equal to the rate

of change of energy density stored in the field plus the loss per unit volume

due to imperfect conductivity.

We may obtain an expression for power flow through any surface by
integrating the left-hand side of Eq. (4) over the volume enclosed by the

surface and applying the divergence theorem. Representing the total

power flow by p, we have

=JV (E X H) dr = (E X #) -ds (6)

Hence the total power flow through any closed surface is equal to the sur-

face integral of the normal component of Poynting's vector over that sur-

face. As an example, the power radiated by the antenna of Fig. 7 may
be computed by integrating the normal component of Poynting's vector

over the surface enclosing the antenna.

13.08. Boundary Conditions. In order for a given electromagnetic

field distribution to exist, it must: (1) be a solution of Maxwell's equations

and (2) satisfy certain boundary conditions for the given physical system.

Let us therefore consider these boundary conditions.

First, consider the tangential components of electric intensity on either

side of a geometrical surface which is the interface between two different

mediums as shown in Fig. 8. Assume that a unit charge is carried a short

distance Az parallel to the boundary at the surface in medium 1 as shown

in Fig. 8, then an equal distance along the surface in medium 2, to return

to the starting point. The work done in carrying the charge, around the

closed path is

-dl = (Ei2
- En) Az (1)

From Faraday's law, we have toE-dl = d<f>/dt. Since the two paths are

assumed to be an infinitesimal distance apart, the magnetic flux linking the

path is vanishingly small, and
(pE-dl

= 0. Equation (1) therefore yields

Eti = Et2 (2)

or, the tangential components of electric intensity are continuous across

the boundary.
Gauss's law enables us to establish a relationship between the normal

components of electric flux density at the boundary. Consider a small
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surface enclosing an incremental boundary area As, as shown at the bottom

of Fig. 8. If the surface charge density is q8 ,
the charge enclosed is qa As.

Gauss's law then yields

p
or

(Dn2 - Dni) As = qa As

Dn2
-

(3)

Therefore, the discontinuity in the normal component of electric flux density

is equal to the surface charge density. In most problems with which we

Medium I
I
Medium 2

Medium 1

H
t |

'ni Bnr

Medium 2

>m

FIG. 8. Boundary conditions for

the electric field

FIG. 9. Boundary conditions for

the magnetic field.

will be concerned, we may assume that q8
= 0; hence Dn2 = Dn \ or

To obtain a relationship for the tangential components of the magnetic

field, we use Ampfere's law. The magnetic intensity U may be interpreted

as the force on a fictitious unit magnetic pole, and thus
,

(h is the

work done in carrying the unit pole around a closed path. If such a pole

is carried a distance Az parallel to the boundary at the surface of medium 1

and an equal distance in the opposite direction in medium 2 to return to

the starting point, the work done becomes

H-dl = (Hn -
(4)
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Applying Ampere's law, we have (LH-dl = f, where i is the current

flowing through the area enclosed by the line integral. Since Hn and Ht2

are assumed to be an infinitesimal distance apart, the area is vanishingly

small and, in the limit, we have toU-dl = Q. Thus, Eq. (4) yields

Hn = H t2. There is one important exception to this statement. In the

theoretical case of a perfect conductor (<r
=

<*>), an infinitely thin current

sheet can flow on the geometrical surface of the conductor. This current

flows in a direction perpendicular to Ht . The current per unit length of

surface will be referred to as the surface current density, J8 . Thus, the

surface current flowing through the infinitesimal area between H t \ and

H12 of height Az is J8 Az, and Eq. (4) yields

Hti
-

ff/2
= Js (5)

The discontinuity in the tangential component of magnetic intensity is

therefore equal to the surface current density. In all cases except that of

a perfect conductor, the surface current density is vanishingly small, and

we have H t \
= H^.

Applying Gauss's law for the magnetic field in a manner similar to that

for the electric field, we obtain

Rm = Bn2 (6)

Thus, the boundary conditions may be summarized as follows:

1. The tangential components of electric intensity are continuous across

the boundary.

2. The normal components of electric flux density differ by an amount

equal to the surface charge density.

3. The tangential components of magnetic intensity differ by an amount

equal to the surface current density. The surface current density is

vanishingly small and may be assumed to be zero in all cases except that

of a perfect conductor.

4. The normal components of magnetic flux density are equal.

Tables 3 and 4 summarize a number of the more important electro-

magnetic field relationships given in this chapter and in Chap. 14.
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PROBLEMS
1. Given a vector Z * (3? y

2
)i + 2xyJ

(a) Evaluate V X X.
c

(b) Evaluate the surface integral I (V X -J) <& over a surface in the xy plane bounded
Js

by the four lines x =
0, y =

&, a; = a, and y = 0.

(c) Evaluate 0>.J-(# around the perimeter of the rectangle.

(d) Show that Stokes's theorem
J (V xl)-ds = l-dl applies.

2. Prove the relationship V X (W) = using rectangular coordinates.

3. Prove that V X (V X -J)
= V2 + V(V.J) using rectangular coordinates.

4. Prove that V-(Z xE) - J5-(V X ^) - -I-(V X B) using rectangular coordinates.

6. Derive the wave Eq. (13.05-5) for the magnetic intensity U.

6. Write Maxwell's equations in differential equation form and the wave Eqs. (13.05-4

and 5) for the following special cases:

(a) Stationary electric and magnetic fields

(6) A lossless dielectric medium (with time-varying fields)

(c) A good conductor (with time-varying fields)

7. A long coaxial line has a d-c generator at one end and a load resistance at the other

end. The conductors are assumed to have finite conductivity, but the dielectric

between conductors is assumed to be lossless. On an enlarged view of the coaxial

line, show by means of arrows the directions of the electric intensity, magnetic

intensity, and Poynting's vector in the dielectric between conductors and in each of

the conductors. Explain the mechanism of power flow along the line and of power
loss in the conductors in terms of your diagram. How would you compute the power
flow down the line and power loss in the conductor if the field intensities were known?

8. In deriving the wave equations, the space-charge density in the interior of the

medium was assumed to be zero. The question arises as to whether or not this

assumption is valid in the interior of metals where there is a plentiful supply of free

charges. To investigate this, write Eq. (13.04-7) in the form V X # = <rE +
t(dE/dt). Now take the divergence of both sides of this expression and use Eqs.

(13.03-4) and (13.04-10) to obtain a differential equation involving the space-charge

density qr as a function of time. The solution of this equation yields qr = e
~
<*/>+<.

The constant c may be evaluated by assuming that at zero time the space-charge

density is qTQ .

Carry through the foregoing derivation and obtain the expression for qr as a

function of qro and time. Show that the space-charge density decreases at an

exponential rate which is independent of any applied fields. The relaxation time

is the time required for qr to decrease to 1/c of its original value. Compute the

relaxation time for silver, letting a- = 6.14 X 107 mhos per m and e = 8.85 X 10~12

farad per m. Compare this relaxation time with the period of a 3,000-mcgacycle
wave. Is the assumption of qr =* justified when deriving the wave equation for

metals?

9. Show that at the boundary of an imperfect conductor, the tangential magnetic

intensity is equal to the current flowing through a section of conductor of unit height
and infinite depth (in a direction perpendicular to the boundary surface). Explain
what happens, to the electric and magnetic fields in the conductor and the current

. and current density as the conductivity approaches infinity.

10. Show that if the boundary conditions are satisfied for either the electric intensity or

the magnetic intensity, and the fields satisfy Maxwell's equations, then the boundary
conditions for the other intensity are automatically satisfied.



CHAPTER 14

PROPAGATION AND REFLECTION OF PLANE WAVES

We can conceive of electromagnetic waves as being initiated by the

motion of charged particles. The particle motion produces a disturbance

in the field which, under proper circumstances, can take the form of an

electromagnetic wave propagating outward from the source with a velocity

equal to the velocity of light.

Maxwell's equations show that a time-varying electric field produces a

magnetic field and, conversely, that a time-varying magnetic field produces
an electric field. By virtue of this interrelationship, the electric and

magnetic fields can propagate each other in the form of an electromagnetic

wave. Although the wave is initiated by the motion of charged particles,

once the wave starts on its journey, we may consider it to be detached from

the charged particles at the source. The propagation characteristics of the

wave are then determined solely by the electrical characteristics of the

medium through which the wave travels.

If a small antenna is isolated in space and is radiating energy, the

radiated waves are essentially spherical. A spherical wave is one in

which the equiphase surfaces are concentric spheres. These equiphase

spheres expand as the wave travels outward from the source. To an

observer who is situated at a remote distance from the antenna, the wave
would appear substantially as a uniform plane wave, since he is able to

j^bserve only a very limited portion of the wavefront. This is analogous
to the observer on the surface of the earth who sees the earth's surface as

a plane, since he is able to view only a small portion of the total surface.

In this chapter we shall consider the propagation characteristics of

uniform plane waves in various mediums and the reflection of plane waves

at boundary surfaces. We shall find that the expressions for the electric

and magnetic intensities may be written in a form similar to the expres-

sions for voltage and current on transmission lines. In fact, it is possible

to carry over most of our methods of transmission-line analysis and apply
them directly to problems dealing with plane-wave propagation and

reflection.

14.01. Uniform Plane Waves in a Lossless Dielectric Medium. In

order to illustrate the use of Maxwell's equations, let us consider the ele-

mentary case of a uniform plane wave in a homogeneous dielectric medium*
265
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The dielectric is assumed to be lossless; hence we have a = 0. It is also

assumed that the electric intensity is polarized in the x direction, as given

by E = Exl, and that the wave is traveling in the y direction. The magnetic

intensity is perpendicular to both the electric intensity and the direction

of propagation of the wave; therefore we have U = H zk. Since a uniform

plane wave has no variation of intensity in a plane normal to the direction

of propagation of the wave, we have d/dx = d/dz = 0.

With the assumptions stated above, the wave equations for the electric

and magnetic intensities, Eqs. (13.05-4 and 5), reduce to

d2Ex 32EX

, (2)

dy* dt~

Comparison of these equations with Eqs. (8.01-7 and 8) shows a similarity

between the expressions for wave propagation in a lossless dielectric and

wave propagation along lossless transmission lines.

A solution of Eqs. (1) and (2) is of the form

(t
- -

\ vc

Ex = Afl [t + -] + Bh[t--] (3)
\ Vc/ \ Vc/

The function fi [t + (y/vc)] represents a wave traveling in the y direction,

whereas f2 [t (y/vc)] represents a wave traveling in the +y direction, both

waves having a velocity vc . The functions/i and/2 are determined by the

waveform of the signal radiated from the source.

In a homogeneous medium, there can be an outgoing wave but no reflected

wave. Either one of the terms in Eq. (3) may be used to represent the

outgoing wave. In order to be consistent with the following discussion,

we shall assume that the outgoing wave is traveling in the y direction.

For a sinusoidal time variation, the outgoing wave of electric intensity

may be represented by
#* =

.

The magnetic intensity is obtained by inserting Eq. (4) into the curl

equation (13.06-1). For the assumed conditions, the curl equation reduces

to

dEx
(5)

Substitution of Eq. (4) gives

fi 17

(6)
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To obtain the velocity of the wave, we may substitute Eq. (4) into (1)

above, yielding

(7)ve =

For a lossless dielectric medium, the velocity is equal to the velocity of

light in the given medium. In free space, the velocity is vc = 3 X 108

meters per second.

Direction of
outgoing wave

Plane
wave

source

FIG. 1. Plane wave traveling in the y direction.

The ratio of electric intensity to magnetic intensity for an outgoing wave
is defined as the intrinsic impedance of the medium and is designated by
the symbol 17. Dividing Eq. (4) by (6), we have, for a lossless dielectric

medium,

17
=
JT

= V (8)

The intrinsic impedance of a medium is analogous to the characteristic

impedance of a transmission line. Later we shall derive a more general

expression for the intrinsic impedance.

Equations (4) and (6) represent the electric and magnetic intensities of

a wave which travels in the y direction with a velocity equal to the

velocity of light. The electric and magnetic intensities are in time phase
but in space quadrature. The instantaneous values of Ex and Hz may be

evaluated by taking the real part of Eqs. (4) and (6) as explained in the

footnote of Sec. 8.02. If E' is real, the real parts of these equations are

Ex = Er
cos <*[t + (y/ve)] and Hn

=
(E'/ii) cos *>[* + (y/vc)]. These equa-

tions may be used to plot the electric and magnetic intensities as functions

of either distance or time. Figure 1 shows the intensities as a function of

distance, with time held constant. The Poynting vector, representing power

density, is perpendicular to E and R and is therefore in the y direction.
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14.02. Uniform Plane Waves General Case. The preceding section

dealt with plane-wave propagation in a lossless dielectric medium. Let

us now consider the more general case of uniform plane-wave propagation

in any homogeneous isotropic medium.

Again we assume an electric intensity in the x direction and a magnetic

intensity in the z direction, with the wave traveling in the y direction.

A wave in which the electric and magnetic intensities are both perpendicular

to the direction of propagation is known as a transverse electromagnetic wave

(TEM wave). The intensities are assumed to have no variation in the xz

plane, and a time variation of the form e
j(at

is assumed. The wave equation 3

(13.06-3 and 4) then become

yr
= **. (1)

^ = y*H, (2)

where y is the intrinsic propagation constant given by

7 =
V/o>/;((r +>) (13.06-5)

We may write the solution of Eq. (1) in the form

Ex = Eftf" + tfRe~
"

(3)

To obtain the magnetic intensity, substitute Ex from Eq. (3) into the curl

equation (13.06-1), or into the simplified form, Eq. (14.01-5), giving

Hz
= (E

f

Re^ - Ef

Rc^) (4)

jw/i

For convenience, we write Eq. (4) in the form

H, = H'Re + H"Re~ (5)

where

fli - -?- $* and H"R - - ^- E"R

By comparing Eqs. (3) and (4) with (8.02-10 and 11), we again observe

a similarity between the relationships for plane-wave propagation and those

for waves on transmission lines.

In the following discussion, it will be assumed that the outgoing (or

incident) wave travels in the y direction and that the reflected wave

travels in the +y direction. This convention will enable us to write the

equations for plane-wave propagation in a form identical to that of the

transmission-line equations. According to this convention, the first terms

in Eqs. (3) and (4) represent outgoing waves, whereas the second terms
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represent reflected waves. The intrinsic impedance of a medium was previ-

ously denned as the ratio of electric intensity to magnetic intensity for an

outgoing wave. Upon applying this definition to Eqs. (3) and (5), we
obtain the ratio of electric to magnetic intensity for either the outgoing or

the reflected wave

If we had derived the magnetic intensity by inserting Eq. (3) into

(13.06-2) instead of (13.06-1), a relationship similar to Eq. (4) would

have resulted, but with rj
= y/(v 4-,/coe). Therefore the intrinsic imped-

ance for TEM waves may be represented by either of the relationships

y/* 7
17
= =

(7)
7 a + JW6

14.03. Intrinsic Impedance and Propagation Constant. The intrinsic

impedance and intrinsic propagation constant are properties of the medium.

They are analogous to the characteristic impedance and propagation con-

stant, respectively, of transmission lines. The expressions for these quanti-

ties may be simplified for the special cases where the medium is (1) a lossless

dielectric or (2) a good conductor.

First, however, let us rewrite the complete expressions for ready reference

(14.02-7)
7 a + juc *cr + jwe

7 = V/w/z(<r +jue) = a + jp (13.06-5)

Consider now the case of a lossless dielectric medium, for which we
have (7 = 0. The intrinsic impedance and propagation constant then reduce

to

C
(1)

(2)

The intrinsic impedance of a lossless dielectric is of the nature of a pure
resistance and has a value of 376.6 ohms for free space. Equation (1)

resembles the familiar form of the characteristic impedance of a lossless

line, ZQ =5 v L/C. Since all dielectric mediums have approximately the same

permeability (MO
= 4ir X 10~~

7
) and there are no known dielectrics having

permittivities appreciably less than that of free space, it follows that the

intrinsic impedance of free space is about the maximum attainable value

for known dielectric materials.
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The intrinsic propagation constant of lossless dielectrics is imaginary;

consequently, we have a = and ft
= wVjue. These relationships also

have their counterpart in the lossless transmission line where we find a =

and ft
= wV LC. The wavelength and phase velocity for plane waves are

2ir - 2ir
* -

-T
= 7= &

P wVjue

vc = A - 7= (4)

Now consider the special case in which the medium is a good conductor.

In a good conductor we find that <r >*> we. This is valid over the entire

range of frequencies extending from the audio frequencies through the

microwave frequencies. As an example, consider silver, having a conduc-

tivity of <r = 6.14 X 107 mhos per meter. While the permittivity of metals

is not accurately known, the evidence indicates that it is of the same order

of magnitude as the permittivity of free space. Assuming that e = e
,
we

find that" even at the relatively high frequency of 10
11

cycles per second,

the value of we is of the order of we = 5 as compared with a = 6.14 X 10
7

.

It is therefore apparent that we can assume that a we for good conductors.

Equations (13.06-5) and (14.02-7) then reduce to

/
-

/WjLKT /WjLMT

y = Vjaiiff
= ^ + j (5)

/wu

V*
The attenuation constant, phase constant, wavelength, and phase velocity

may be obtained from Eq. (5) as follows:

,

a =
ft
= -J-- (7)

t

2* nr
(8)

ft

v = /X = (9)

The intrinsic impedance of conductors is extremely small in comparison
with that of most dielectric mediums. This indicates a low ratio of electric

to magnetic intensity in conductors. Equation (6) shows that the electric

intensity leads the magnetic intensity by a time phase angle of 45 degrees
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in conductors. The attenuation and phase constants have equal values in

good conductors.

Some idea of the properties of a wave in metal may be obtained by evalu-

ating the intrinsic impedance, wavelength, phase velocity, and attenuation

constant in silver at a frequency of 100 megacycles. At this frequency,

the intrinsic impedance of free space is
rj
= 376.6 ohms, whereas that of

? ilver is ij
= 0.0025 + ./0.0025 ohm. The wavelength and phase velocity

in free space are X = 3 meters and vc = 3 X 10
8 meters per second, respec-

tively. In contrast with these values, we obtain for silver X = 0.004

centimeter and v = 4 X 103 meters per second. Thus, the wavelength
and phase velocity in a conductor are very much smaller than the corre-

sponding values in free space. The attenuation constant is a = 15.7 X 10
4

nepers per meter or 136 X 10
4

decibels per meter, which represents an

extremely high attenuation. The wave is therefore attenuated to a negligi-

ble value in a distance of a few thousandths of a centimeter.

14.04. Power Flow. Poynting's vector, "(P = E X H, may be used to

evaluate the instantaneous value of power density in an electromagnetic

wave. In the plane-wave example of the preceding article, the intensity

vectors are mutually perpendicular and the scalar value of Poynting's vector

may therefore be written (P = EH.
Since we will be dealing largely with fields having sinusoidal time varia-

tion, it will be convenient to have an expression for the time-average power

density. While we could derive such a relationship on rigorous grounds, the

same results may be more readily obtained by analogy with transmission-

line equations. The time-average power flow at any point on a transmis-

sion line is Pav = %VI cos 6, where V and / are peak values and 8 is the

time phase angle between V and /. By analogy, the time-average power

density in a uniform plane wave is (Pav = ^j # | |# |

cos 0, where
|

E
\

and

|
H

|

are the peak values of the electric and magnetic intensities, and 8

is the time phase angle between E and //. This may also be shown to be

equivalent to

(Pav = 1A Re (EH*) (1)

where E and H are complex values, and H* is the complex conjugate of H.

The complex conjugate is formed by reversing the sign of the phase angle.

Thus, if A =
|

4
\e

j
\ we have A* =

|

A Q \e-
j6

. The symbol Re in Eq. (1)

signifies that the real part of the bracketed term is to be retained and the

imaginary part is to be discarded.

For an outgoing wave only, we have E/H =
17. Replacing E in Eq. (1)

by qH, we obtain

(Pav = i Re (HH*ii) -J-^- Re (17) (2)
2 2i

The later form follows from the fact that ////* =
I H I

2
.
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For a lossless dielectric medium, we have rj
= Vji/e and Eq. (2) reduces

.w-lib-ia

For a good conductor, we have 77
=

(1 + j) v w/z/2cr and Eq. (3) becomes

Equations (2), (3), and (4) are the most convenient forms to use for

evaluating the time-average power density. In these equations |

E
\

and

|

H
|

are peak values of the intensities.

14.05. Plane-wave Reflection at Normal Incidence. 1 *
2 When an elec-

tromagnetic wave, traveling in one medium, impinges upon a boundary-

surface between two mediums having different intrinsic impedances, a

partial reflection occurs at the boundary between the mediums. This

results in a reflected wave traveling back toward the source in the first

medium, and a transmitted wave in the second medium. In the first

medium the incident and reflected waves combine to produce a standing

wave. If the two mediums have approximately the same intrinsic imped-

ances, most of the wave energy is transmitted into the second medium

and the reflected wave is relatively small. Conversely, if the intrinsic

impedances differ greatly, the transmitted wave is small, and the reflected

wave is relatively large. The standing-wave ratio in the first medium

(ratio of maximum to minimum standing wave of electric intensity) may
be used as a measure of the degree of impedance mismatch.

Consider a uniform plane wave which is normally incident upon a plane

surface between two mediums, designated by the subscripts 1 and 2 in

Fig. 2. Both mediums are assumed to be infinite in extent in all directions

except at the boundary surface. This surface is chosen to coincide with

the plane y = in Fig. 2. The mediums are assumed to bo homogeneous

but they may be conducting, semiconducting, or insulating. The incident

wave travels in the y direction and contains the propagation term cyy

while the reflected wave travels in the +y direction with a propagation

term e^v
. The transmission-line analogue consists of a line having

parameters Z i and 71 terminated by a second line which is infinitely long

and which has the parameters Z 2 and 72.

1 SCHELKUNOFF, S. A., The Impedance Concept and Its Application to Problems of

Reflection, Refraction, Shielding, and Power Absorption, Bell System Tech. /., vol. 17,

pp. 17-48; January, 1938.
2 SCHELKUNOFF, S. A., "Electromagnetic Waves," D. Van Nostrand Company, Inc

New York, 1943.
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The electric and magnetic intensities in medium 1 are given by Eqs.

(14.02-3 and 4). With the substitution of Eq. (14.02-6), these may be

written

Ex - E'Re + ti'Rc- (14.02-3)

Hz
= e e" yiv

(14.02-4)

where E/

R and E*R are the incident and reflected wave intensities, re-

spectively, at the surface y = 0.

Transmitted

wave

H'z

Incident

wave

}Hz Reflected

wave

(a)

CO

(b)

Fio. 2. Intensities of a normally incident plane wave and the transmission-line analogy.

Referring to the transmission-line in Fig. 2b, the impedance terminating

line 1 is the characteristic impedance of line 2, or Z 2- Likewise, in Fig. 2a,

the wave impedance which terminates medium 1 is the intrinsic impedance

of medium 2, or r/2 . The same conclusion can be reached by applying the

boundary conditions of Sec. 13.08. These require that the tangential com-

ponents of E and H be qual on either side of the boundaiy . Consequently,

the ratio E/H must be the same on either side of the boundary. The wave

in medium 2 is an outgoing wave only; hence ffx/tf" = 172- Therefore,

to satisfy the boundary conditions, we must have, at the boundary in

medium 1, ER/HR = E%/lf? =
172, where ER and HR are the resultant
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electric and magnetic intensities at the surface in medium 1 (the sum of the

incident and reflected-wave intensities). Thus, the impedance terminat-

ing medium 1 is the intrinsic impedance of medium 2.

At the boundary surface in medium 1 y =
0, Eqs. (14.02-3 and 4) be-

come ER = tfR + &R and HR = (l/i?i)CEfl 15*). Substituting HR =

Zfo/172 into the second of these equations and solving them for E*R and

E!'R we obtain

ER
(1)

2 \ TJ2/ 2

Jpon inserting these into (14.02-3 and 4), we obtain the intensity equations

2

H, = ~(l+-]e-^(l --)e-> (3)

These equations are similar to the transmission-line equations (8.02-16

and 17). They may be expressed in hyperbolic form similar to Eqs.

(8.02-21 to 23), as follows:

= ER (
cosh 7iy H-- sinh y vy )

\ V2 /
Ex = ER cosh 7iy H-- sinh y vy ) (4)

Hz
= ( cosh 7iy H-- sinh yiy ) (5)

\

yiy )
/

We now define a wave impedance Z as the ratio of the resultant electric

intensity to the resultant magnetic intensity, at any given point. This is

analogous to the impedance at any point on a transmission line,

tanh ..
(6)

+ rj2 tanh

In writing the equations for the intensities in medium 2, we recall that

the tangential electric intensities are equal at the boundary. Since ER
is the tangential intensity in medium 1, it must also be the surface intensity

in medium 2. Therefore the intensities in medium 2 are

/C = BB?" (7)

e (8)
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The reflection coefficient
l
TR is defined as the ratio of the electric intensity

of the reflected wave to that of the incident wave at the boundary surface,

or TR = Er

R/E'R . Inserting the values of E'R and Ef

R from Eq. (1) yields

It is also convenient to define a transmission coefficient as the ratio of

electric intensity in medium 2 to the electric intensity of the incident wave
in medium 1, both being taken at the reflecting surface, or rT = ER/$R.

Replacing ffR by Eq. (1), we obtain

*---*- CO)

The transmission coefficient enables us to evaluate the electric intensity

in medium 2 in terms of the electric intensity of the outgoing wave in

medium 1.

The expressions in reflection coefficient form, analogous to Eqs. (2) to

(6), are

Ex = Ef

Re^(l + rR t~
2

) (11)

~ 2
(12)

14.06. Normal-incidence Reflection from a Conductor. As a special

case of the foregoing relationships, let us assume that medium 2 is a perfect

conductor. The intrinsic impedance of a perfect conductor is zero and there

can be no electric or magnetic fields inside the conductor. The reflection

coefficient is rR = 1 and the transmission coefficient is TT = 0, indicating

total reflection of the incident wave. The boundary conditions require that

the electric intensity ER be zero. However, the magnetic intensity HR at

the boundary in medium 1 is not zero. In Eqs. (14.05-4, 5, and 6) we sub-

stitute ER = and 772
= 0. To eliminate the indeterminant, we use

HR = ER/^J yielding
Ex = HRVH sinh yiy (1)

Hz
= HR cosh 7i2/ (2)

E
=

7
=

*li tanh yiy (3)

1 In optics the reflection coefficient is taken as the ratio rR = HR/H'R . This reflec-

tion coefficient is equal in magnitude to that of Eq. (9) but has opposite sign. The
definition given by Eq. (9) is consistent with the definition of the reflection coefficient for

the transmission line.



276 PROPAGATION AND REFLECTION OF PLANE WAVES [CHAP. 14

These equations are similar to those of the short-circuited line discussed

in Sec. 8.07. The curves of
| V/!RZQ

\

and
| I/IR \

in Fig. 7 may be used

to represent |

Ex/Hni\i |
and

|

HX/HR |, respectively. The impedance
curves of Fig. 8, Chap. 8, also represent the wave impedance ratio Z/t\\, as

given by Eq. (3).

If medium 1 is lossless and medium 2 is a perfect conductor, we have

7i =
jfat and the hyperbolic functions in Eqs. (1) to (3) reduce to trigo-

nometric functions, yielding

E* = JH&IH sin fay (4)

Hz
= HR cos fay (5)

Z =
jrji tan fay (6)

The incident and reflected waves combine in such a manner as to produce
the standing waves shown in Fig. 3. The electric and magnetic fields have

FIG. 3. Standing waves produced by reflection from a perfect conductor.

a sinusoidal time variation and the values plotted in Fig. 3 represent the

peak values of the sine wave. The electric and magnetic intensities are

in time quadrature as well as in space quadrature.
At the conducting surface ER is zero, while HR is a maximum, having a

value of twice the magnetic intensity of the incident wave. The magnetic

field is terminated by a current flowing on the geometrical surface of the

conductor (for a perfect conductor). This current flows in a direction

perpendicular to the magnetic intensity. The value of the surface current

density, as given by Eq. (13.08-5), is J, = HR.
The standing wave of electric intensity has its maximum values at dis-

tances y = nX/4 from the reflecting surface, where n is an odd integer.

Nodal values of electric intensity occur at distances of y = nX/4, where

n is an even integer.

14.07. Depth of Penetration and Skin-effect Resistance. If the con-

ducting medium has finite conductivity, a very small portion of the energy
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of the incident wave enters the conductor. The remaining energy is

reflected at the surface of the conductor. The wave entering the conductor

is rapidly attenuated as it travels inward from the surface, the intensities

being attenuated by the factor l
e""

a2V
. Consequently, the electric and

magnetic intensities decrease to a value of 1/e, or 36.8 per cent of the surface

value at a depth for which a2y 1. This particular value of y is known as

the depth of penetration or skin depth, and is represented by the symbol 52 .

From Eq. (14.03-7) we obtain

In silver at a frequency of 100 megacycles, the depth of penetration is

62 = 0.637 X 10~5
meter. Thus, in good conductors at microwave fre-

quencies, the wave is attenuated to a negligible value within a few thou-

sandths of a centimeter.

The transmission coefficient enables us. to evaluate the intensities in the

conductor in terms of the electric intensity of the incident wave. Since

we have rji rj2 ,
the transmission coefficient, from Eq. (14.05-10), becomes

TT =
2rj2/rtij and the electric intensity at the surface in either medium is

ER = tfR (2)
h

and the magnetic intensity is

ER 2E'

The time-average power density entering the surface of the conductor

is obtained from Eq. (14.04-4), thus

In an a-c circuit, the resistance may be defined by the relationship

Pav = /2ff/2, or R = 2Pav//
2

,
where Pav is the time-average power con-

sumed in the resistance and I is the peak value of current flowing through
the resistance. The skin-effect resistance for the plane conducting surface

may be defined in a similar manner by the relationship (R8
= 2(Pav//

2
,

where (Pav is the power density as given by Eq. (3). The current I is the

peak value of the current flowing through a cross section of the conductor

taken parallel to the yz plane in Fig. 2, with unit length in the z direction

1 A wave traveling in the +y direction will contain the attenuation terra c~"av . A
wave traveling in the y direction has an attenuation term &*v

,
but the sign of y

reverses. Consequently, the intensities may be considered to be attenuated by an

amount e~~
av for either direction of travel.
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and infinite thickness in the y direction. This current is equal to the surface

value of the magnetic intensity, or / = HR. Inserting this value of current,

together with (Pav from Eq. (3), into the equation for (RB above, we obtain

where 62 is the depth of penetration. The quantity 62(r2 may be viewed

as the conductance of a slab of conductor of unit length, unit width, and

depth equal to 62 . The skin-effect resistance is the reciprocal of this con-

ductance. It is also interesting to observe that the intrinsic impedance as

given by Eq. (14.03-6) may be written in the form ?;2
=

(1 + j)(ft8 . The

real part of the intrinsic impedance is the skin-effect resistance.

14.08. Normal-incidence Reflection from a Lossless Dielectric. If

both mediums are lossless dielectrics having different permittivities,

partial reflection occurs at the boundary surface. The reflection and trans-

mission coefficients are obtained by substituting rj2
= V/

/i2/ 2 and 971
=

V/ux/ei into Eqs. (14.05-9 and 10). Since dielectric materials are non-

magnetic, their permeabilities are equal. The reflection and transmission

coefficients then become

&R Vfa/cj) - 1
,,,

The reflection coefficient is zero when i/c2 = 1, that is, when the two

dielectric mediums have the same permittivities. As the ratio departs
farther from unity value, the reflection coefficient increases and the trans-

mission coefficient decreases, indicating increasing reflection at the bound-

ary surface.

14.09. Multiple Reflection and Impedance Matching. Problems deal-

ing with multiple reflection at normal incidence may be analyzed by the

foregoing methods. As an example, consider the arrangement shown in

Fig. 4, consisting of three different mediums, represented by subscripts 1,

2, and 3. Let us evaluate the wave impedance at the surface between

mediums 1 and 2. In the transmission-line analogy, this impedance corre-

sponds to the impedance looking to the left at points a&, in Fig. 4b. At
this point we have the impedance looking into transmission line 2 termi-

nated by an infinitely long line 3. Equation (14.05-6) may be modified

to express the equivalent wave impedance in Fig. 4a, thus

JJT / \ 4-OW^Vk A< 7 \& f tf3 i tf% tann 72^2 \= =
172 1

- r) (1)
" z \ty2 T" *?3 tann *y2&2/
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This is the wave impedance terminating medium 1. The reflection and

transmission coefficients at the surface between mediums 1 and 2 are

obtained by substituting the value of Z from Eq. (1) into Eqs. (14.05-9

and 10), thus

rn (2)

2Z
(3)

An interesting application of multiple reflection is that of matching the

wave impedances of two different dielectric mediums. In our transmission-

line theory we found that unequal generator and load impedances could be

Transmitted

wave*
- Incident wave

^Reflected wave

Plane
wave
source

oo

(b)

FIG. 4. Multiple reflection and the transmission-line analogy.

matched, if they are both resistances, by inserting a quarter-wavelength
section of line, having the proper value of characteristic impedance, be-

tween the generator and load. This results in an impedance match at the

generator and maximum power transfer from the generator to the load.

In a similar manner, a slab of dielectric, which is a quarter-wavelength thick,

with properly chosen intrinsic impedance, may be inserted between two

different dielectric mediums to obtain a match of the intrinsic impedances.
For an impedance match, there will be no standing waves in medium 1 and

maximum power will be transferred from medium 1 to medium 3, despite
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the fact that the two mediums have different intrinsic impedances. The

absence of standing waves in medium 1 may be attributed to the fact that

there are two reflected waves in this medium which are equal in amplitude
but 180 degrees out of phase, thereby canceling each other. The two re-

flected waves originate at the surfaces between mediums 1 and 2 and be-

tween mediums 2 and 3.

Another way of viewing this is that medium 2 serves as an impedance

transformer, which is chosen so that medium 1 is terminated in a wave

impedance equal to its intrinsic impedance. The impedance terminating

medium 1 is expressed by Eq. (1). Since medium 2 is a lossless dielectric,

we may replace tanh 72^2 byj tan /32/2- If medium 2 is a quarter-wavelength

thick, we have fah = T/2 and Eq. (1) reduces to Z = ijlAa- For an

impedance match, we must have Z =
771, or

*?2 , ,x

rii
= -

(4)
1?3

This is similar to Eq. (10.09-2) for the quarter-wavelength line used as

an imped&nce transformer. Replacing in, r?2 ,
and 173 by their respective

values for a dielectric medium, we obtain

(5)

Since the permeabilities are all equal, this may be written

(6)

Hence, the permittivity of medium 2, required for maximum power trans-

fer, is the geometrical mean between the permittivities of mediums 1 and 3.

14.10. Oblique-incidence Reflection Polarization Normal to the Plane

of Incidence. The foregoing discussion has dealt with the reflection of

uniform-plane waves impinging upon a plane boundary surface at normal

incidence. Let us now consider plane-wave reflection at oblique incidence.

Consider the reference axis shown in Fig. 5. The boundary surface

between the two mediums is assumed to coincide with the plane y = 0.

Poynting's vectors for the incident, reflected, and refracted waves are

assumed to lie in the yz plane, this plane being referred to as the plane

of incidence. Two special cases are considered: (1) the electric intensity

normal to the plane of incidence, as shown in Fig. 5, and (2) the electric

intensity parallel to the plane of incidence. These will be referred to as

waves polarized normal to the plane of incidence and polarized parallel

to the plane of incidence, respectively.
1

Later, in the treatment of wave

1 The direction of polarization is taken as the direction of the electric intensity vector.
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guides, the first case will be identified as a transverse-electric (TE) wave
and the second as a transverse-magnetic (TM) wave.

Consider first a uniform plane wave with polarization normal to the plane
of incidence. The general propagation term for a wave traveling with

respect to a rectangular coordinate system is c
-yCte+m +w)

j
where I = cos X ,

m = cos 6y ,
and n = cos Q2 are the direction cosines. The angles Ox ,

6y,

and B z are the angles between the wave normal and the x, y, and z axes,

respectively.

Transmitted

wave

-y

A

Incident

wave

x
/S Plane wave

(5 source

Fio. 5. Intensity components of a plane wave polarized normal to the plane of incidence.

For the incident wave of Fig. 5, we have I 0, m = cos 0i, n = sin 0j.

Since the wave is traveling toward the origin, the positive sign is used in

the propagation term. The incident wave is therefore

E'x =
"* 8in *l}

(1)

where jE/? is the electric intensity of the incident wave at the origin.

For the reflected wave, we have I = 0, m = cos0i, n =
sinfli. This

wave is traveling away from the origin; hence we use a negative sign,

yielding

where E'R is the intensity of the reflected wave at the origin. The magnetic-

intensity components may be obtained by substituting the expression for

Ex into the curl equation (13.06-1), or they may be obtained by dividing
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the incident wave electric intensity by 771 and the reflected wave by in.

The resultant electric and magnetic intensities in medium 1, therefore, are

Ex = (E'Re
cos * + Ef'Re-

ooa 9l
)e~

yi' ** l

(3)

Ff

' __ y? VW cos i-~

A uniform plane wave at oblique incidence may be interpreted in several

ways. We may view the wavefront as an equiphase plane having uniform

electric and magnetic intensities over its surface. This wave impinges upon
the boundary surface at oblique incidence, causing a plane reflected wave
in medium 1 and a plane refracted wave in medium 2. Another equally

valid interpretation is to view the wave as consisting of a standing wave
in a direction normal to the boundary surface and a traveling wave moving
in a direction parallel to the boundary surface.

The field intensity components contributing to the normal components
of Poynting's vector are Ex and Hz . To obtain Hz ,

we multiply Eq. (4)

by cos 0i, thus,

Hz
= -

(E
f

Re
yiycoaei - &'10-

9

i)e-
yi" n ' 1

(5)
171

A similar expression is obtained for IIy by multiplying Eq. (4) by sin 0i.

A few simplifications will now make the equations for Ex and Hz resemble

more closely the preceding equations for normal incidence. We define the

following quantities
Zni =

171 sec B1 (6)

7nl = 71 COS 0i (7)

(8)

The foregoing equations express the intensities resulting from reflection

at oblique incidence. In these equations, Zn i is the characteristic wave

impedance, analogous to the intrinsic impedance, and yni is the propagation

constant, both of these being taken in a direction normal to the reflecting

surface. The wave impedance ZR in Eq. (8) is the ratio of the tangential

components of electric and magnetic intensity at the surface, and is there-

fore the terminating impedance in a direction normal to the reflecting

surface.

The values of incident and reflected intensities $& and ffR at the origin

are obtained in terms of ER by setting y = z 0, with Ex ER and Hz
=

HgR in Eqs. (3) and (5). The additional substitution of Eq. (8) yields

E*R - ER/2[1 + (Znl/ZR)] and E& = ER/2(l - (Znl/ZR)]. Replacing
these in the equations for Ex and H z ,

we obtain
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-
IT ('

+ )- + T(1 -

Comparing these with Eqs. (14.05-2 and 3), we find that the bracketed

term in Eqs. (9) and (10) may be interpreted as a wave which is normally
incident upon the boundary surface, with a propagation constant yn i and

characteristic wave impedance Zn \.

The incident and reflected waves combine to produce a standing wave in

a direction normal to the reflecting surface in medium 1 . The term e~ yi* am 6l

may be viewed as a phase-amplitude variation of the intensities in the z

direction.

Consider now the wave in medium 2. Boundary conditions require

equality of tangential components of electric intensity on either side of the

boundary. Since the tangential electric intensity in medium 1 is ER, this

is also the tangential intensity in medium 2. In medium 2, we have

I = 0, m = cos 62 ,
and n = sin 2> and the wave travels away from the

origin. Therefore, the intensities are

(11)

* C S ^ -

12

We let

Q2)

Zn2 = 12 SCO 2 (13)

7n2 = 72 COS 2 (14)

yielding,
' = ERe^e-"** 9*

(15)

J^j
-n

H? = e
ye~

e*
(16)

Zn2
It still remains to evaluate the wave impedance ZR which terminates

medium 1. Substituting y = z = in Eqs. (15) and (16) and using Eq.

(8), we obtain JEJT//C = ER/H ZR = Zn2 . Hence, the impedance ter-

minating medium 1 is the characteristic wave impedance of the normally
incident components in medium 2. We may therefore substitute Zn2 for

ZR in Eqs. (9) and (10). The reflection and transmission coefficients,

similar to Eqs. (14.05-9 and 10), are

(-7)
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If medium (2) is a good conductor, then Zn2 = 0; hence, TR ^ 1, and

the angle B2 can be assumed to be zero degrees.

14.11. Oblique-incidence Reflection Polarization Parallel to the Plane

of Incidence. The treatment of the case of polarization parallel to the

plane of incidence is similar to that of polarization normal to the plane of

incidence except that the electric and magnetic intensities are interchanged.

Thus, if the magnetic intensity is HX9 the electric intensity components are

Ey and Ez . The intensity components contributing to the normal compo-
nent of the Poynting vector are E z and Hx . The intensity equations in

medium 1, expressed in terms of the incident and reflected wave magnetic

intensities at the origin H'R and H"R are

Hx = (Iftf
cos l + Il"Ke~

cos
*)<T

7I- flin *
(1)x K

Inserting Hx into the curl equation (13.00-2), we obtain an expression for

E. The Ez component is

Ez
=

T?! cos e l ( -H'Re
cos * l + H"Re~

cos *)-' sin *l

(2)

In medium 2, we have

//;"
= HRc

cos
*e- y* sin *2

(3)

#7 _ ^ cos e2HRe
cos eze~

sin z

(4)

where HR = H'R + H"R is the resultant magnetic intensity at the origin

For polarization parallel to the plane of incidence, the effective propagation

constant and characteristic wave impedance in a direction normal to the

reflecting surface are

Znl =
1?1 COS 0i Zn2

=
r]2 COS 2 (5)

Tnl = 71 COS Oi 7n2 = 72 COS 2 (6)

The reflection and transmission coefficients are again given by Eqs.

(14.10-17 and 18) where the impedances are given by Eqs. (5).

The characteristic wave impedance for the wave polarized parallel to

the plane of incidence is always less than the intrinsic impedance of the

medium and approaches zero value as the angle of incidence approaches
90 degrees. For the wave polarized normal to the plane of incidence, the

characteristic wave impedance is always greater than the intrinsic imped-
ance and has the limiting value of > as the angle of incidence approaches
90 degrees.

14.12. Oblique-incidence Reflection Lossless Dielectric Mediums.

Many of the fundamental laws of optics may be derived from the foregoing

relationships. For example, let us assume that both mediums are lossless

dielectrics and derive Snell's law of refraction. We start by obtaining

expressions for ER at the boundary surface by setting y = in Eqs.
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(14.10-9 and 15). The boundary conditions require equality of tangential

electric intensities on either side of the boundary; hence we have

* 1 = ERe- y2* 6iri9*
(1)

Equating exponents and substituting 71 =
t/wvjLi 1 i and 72

we obtain v Mi i/M2 2
= sin 62/^in Q\. Since the permeabilities are equal,

the latter equation reduces to the familiar form of Snell's law,

sin 62 fa _ ni- ~ ~ \ -
(4)

sin #1
*

2 ft2

where n\ and n2 are the indices of refraction of mediums 1 and 2, respec

tively. The angle of refraction may be computed from Snell's law if the

angle of incidence and the permittivities are known. SnelFs law shows that

the angle between the Poynting vector and the normal to the boundary sur-

face is smallest for the medium having the highest permittivity.

A special case of interest is that in which the angle of refraction ie

62 = 90 degrees. For this case, the Poynting vector in the second medium
is parallel to the boundary surface and consequently no average power
crosses the boundary surface. Snell's law then becomes

sin 0! = J- (3)
X

i

The angle B\ for this critical condition is known as the angle of total internal

reflection. If the incident angle is less than the value given by Eq. (3),

the propagation constant 7n2 ,
taken in a direction normal to the reflecting

surface in medium 2, is imaginary and is given by 7n2 = jco v M2 e2 cos 0%.

The transmitted wave is then propagated without attenuation in medium 2.

If, however, the angle of incidence exceeds the critical angle, the propaga-
tion constant 7n2 is real, indicating an exponential attenuation of the wave

in medium 2. Since medium 2 is lossless, this attenuation must be due to

internal reflection of the wave in the second medium.

Fresnel's equations are frequently used in geometrical optics. They

express the reflection and transmission coefficients in terms of the angles of

incidence and refraction. Fresnel's equations enable us to evaluate readily

the .intensities in the reflected and transmitted waves if the intensities of

the incident wave and angles of incidence and refraction are known. The
reflection and transmission coefficients for either direction of polarization

are

r =
Z

(14-10-17)
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If the wave is polarized normal to the plane of incidence, the impedances

Zni and Zn2 are given by Eqs. (14.10-6 and 13). For a lossless dielectric

medium these become Zn\
= V \i\li\ sec 0i and Zn2

= V /i2/e2 sec 2 .

Substituting these into the reflection and transmission coefficient equa-

tions and canceling out the permeabilities, we obtain

v i/ 2 sec 2 sec 0i

sec 62 + sec 0\

rT =s
/

.

V ci/ 2 sec 2 + sec 0i

Snell's law is used to eliminate V ei/e2 , giving

tan 2 tan 0i sin (02 0i)

r/J
= = (4)

tan 2 + tan A sin (02 + 0i)

2 tan 2 2 sin 2 cos 0i

tan 2 + tan X sin (02 + 0i)

In a similar manner rR and rT may be evaluated for a wave polarized

parallel to the plane of incidence. The impedances Zni and Zn2 for this

case are obtained from Eq. (14.11-5), yielding

sin 20i
- sin 202 tan (0i

-
2)

sin 20i + sin 202 tan (0i + 2)

(6)

2 sin 202 sin 202
Y __ __ '

(7)

sin 20! + sin 202 cos (0i
-

2) sin (Bi + 2)

Equations (4) to (7) are the Fresnel equations for dielectric mediums.

In a typical problem, the known quantities might include the angle of

incidence, the electric intensity of the incident wave, and the dielectric

constants of the mediums. Snell's law may then be used to compute the

angle of refraction 2 . The reflection and transmission coefficients may then

be computed either by the Fresnel equations or by Eqs. (14.10-17 and 18).

Having the values of TR and rT ,
these are used to compute the values of

electric intensities of the reflected and transmitted waves. We are then in a

position to evaluate the magnetic intensities and power flow in the incident,

reflected, and transmitted waves.

If the reflection coefficient has zero value, the wave is transmitted

without reflection. Inspection of Eq. (6) shows that this is possible for

the wave which is polarized in the plane of incidence if we have 0i + 2
= 90

degrees, since we then have tan (0i + 2)
=

. The corresponding angle

of incidence is known as Brewster's angle or the polarizing angle. For this
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particular angle, we have 2 = 90 X ; hence, SnelPs law becomes

sin 0i = tan 0i
=

cos 0i

Since the reflection coefficient is zero, Eq. (14.10-17) shows that the

impedances are matched, or Zn2 = Zn\.

In general, light radiation is polarized in all directions. This may be

resolved into components polarized normal to the plane of incidence and

components polarized parallel to the plane of incidence. If the angle of

incidence is equal to Brewster's angle, the wave polarized parallel to the

plane of incidence will be transmitted without reflection. The reflected

wave will therefore consist of a wave which is polarized in a direction

normal to the plane of incidence. This is a method which may be used to

obtain polarized light.

Equations (4) and (6) show that the reflection coefficient is also zero if

0i = 2 . This simply means that the two mediums have identical electrical

properties, and obviously there will be no reflection under these conditions.

14.13. Wavelength and Velocity. In our discussion of wave guides, we
shall encounter several different types of wavelengths and wave velocities.

It is therefore advisable to clarify these concepts by taking advantage of

the simple illustrations provided by plane-wave reflection.

Consider a uniform plane wave traveling in a dielectric medium and

impinging upon the surface of a perfect conductor at oblique incidence.

The incident wave is shown in Fig. 6, the reflected wave being omitted for

clarity. The wavelength may be defined as the distance between two succes-

sive equiphase points on the wave at any instant of time. Applying this

definition to the incident wave in Fig. 6, we discover that there are many
different ways in which the wavelength can be taken. For example, X

is the wavelength taken in a direction normal to the wavefront, or in the

direction of propagation of the incident wave; Xn is in a direction normal

to the reflecting plane; and Xp is parallel to the reflecting plane. Conse-

quently, we must be careful to specify not only the magnitude of the wave-

length, but also its direction with respect to the direction of travel of the

wave. If is the angle of incidence, Fig. 6 shows that these wavelengths
are related by

x. =
a (i)

eos 6

**--?-. (2)
sin

If we were asked to choose a single wavelength to represent the wave, we

would in all probability select the wavelength X measured in a direction
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normal to the plane of the wavefront. However, we shall find later in our

studies of wave guides that this is the one wavelength which we cannot

conveniently measure in the guide. On the other hand, it is a simple matter

to set up standing waves which enable us to measure either Xn or \p .

Consequently, in the wave-guide theory we shall be largely concerned with

the wavelengths Xn and X^.

FIG. 6. Incident wave, showing wavelengths parallel to and normal to the reflecting surface

The phase velocity may be defined for sinusoidally varying fields by the

relationship v = /X. Any one of the three wavelengths may be used to

determine a corresponding phase velocity. The one which is commonly
referred to as the phase velocity in wave guides is that which is parallel

to the reflecting surface, given by vp
= f\p or

TA

(3)
sin 6 sin 6

where vc is the velocity of light in the particular dielectric medium. Equa-
tion (3) shows that vp may exceed the velocity of light in fact, it ap-

proaches infinity as 6 approaches radians. It would appear that this
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is inconsistent with the principle of relativity which states that the velocity

of light represents the maximum attainable velocity. Referring to Fig. 6,

we note that the velocity vc may be determined by observing the time that

it takes a wave particle to travel from a to b. The distance ab divided by
time of travel gives the phase velocity. If we had computed the velocity

using the distance ac instead of ab, the time remaining the same, we would

have obtained the velocity vp ,
which is greater than vc since ac > ab. How-

ever, we might object to this procedure on the grounds that the wave

particle actually travels from a to b and not from a to c. Thus, while the

velocity vp represents the velocity of the peak of the wave taken in the

direction parallel to the reflecting surface, it does not represent the velocity

of any one wave particle. Therefore the phase velocity vp is a somewhat

fictitious velocity.

14.14. Group Velocity. The discussion thus far has been restricted to

waves having sinusoidal time variation with steady-state conditions. The

concept of wave velocity must be modified when dealing with nonsinusoidal

waves, such as those encountered in transients or in amplitude-modulated
carrier waves. In general, a modulated wave may be represented by
carrier and sideband frequencies. If the wave travels in a lossless medium,
all of the frequency components have the same velocity and there is no

attenuation. Consequently, the wave retains its original waveform. How-

ever, if the medium is not lossless, the various frequency components have

different velocities and rates of attenuation, and the wave changes its

shape as it travels through the medium. We then refer to the group

velocity, this being the velocity of a narrow band of frequencies.

Consider an amplitude-modulated wave of the form

E = E (l + m sin AwJ) sin at (1)

mJ^o= EQ sin ut H-- [cos (co Aw) cos (w + Aw)] (2)
t

where Aw is the angular frequency of the modulation. Equation (2) is the

familiar expression containing the carrier and two side bands. It is assumed

that w 2> Aw, so that the carrier and side-band frequencies occupy a narrow

frequency band.

Now consider the carrier and side bands as traveling waves, the carrier

having a phase constant ft and the upper and lower side bands having

slightly different phase constants ft + Aft and ft Aft, respectively. Writ-

ing Eq. (2) as waves traveling in the z direction, we have

/*W 77T

E = EQ sin (w/
-

ftz) H---
{cos [(w

- Aw) -
(ft
- A)z)]

-cos[(w + Aw)< - (/? + A,8)z]} (3)
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which may also be written

E = E [l + m sin (Aw* - A#s)] sin (ut
-

Qz) (4)

The term [1 + m sin (Aw A0z)] is the envelope of the modulated wave.

If we were to travel along with a fixed point on the envelope, it would be

necessary to satisfy the condition Aco A/3z = a constant. Choosing the

constant as zero, we have

Aw* - A/te = (5)

Our velocity would then be the group velocity

z Au>
vg
= - =

(6)
t Aft

or in the limit,

_ _
g

dp dfi/du

The second form of Eq. (7) is usually easier to evaluate. A plane wave

traveling through a lossless unbounded medium has a phase constant

P = o>Vju, and the group velocity from Eq. (7) therefore becomes

Vg
= l/v'/ie = vc . Hence, in a lossless medium the group and phase

velocities are both equal to the velocity of light in the medium. In a

medium with losses, p is not ordinarily directly proportional to w and the

group velocity therefore differs from the phase velocity. Such a medium
is known as a dispersive medium.

We shall find, in our study of wave guides, that it is possible for the

group and phase velocities to differ even though the medium may be non-

dispersive or lossless. This occurs when the group and phase velocities

are taken in some direction other than the direction of travel of the incident

or reflected waves. This may be shown in a somewhat superficial way by
referring to the wave in Fig. 6. Assume that the medium is lossless and

that the wave particle at point a has a velocity vc in the direction f travel

of the incident wave. The component of this velocity parallel to the reflect-

ing wall is analogous to the group velocity in wave guides, this being

Vg VG sin (8)

Combining with Eq. (14.13-3), we have, for a lossless medium

VgVp
= t>*

Thus, if vp and vg are not taken in the direction of travel of the wave, they
are unequal even though the medium may be lossless.
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PROBLEMS

1. Compute the following for sea water at a frequency of 3,000 megacycles per sec

Constants of sea water are r = 4, <r/ 0.29.

(a) Intrinsic impedance.

(6) Attenuation constant.

(c) Phase constant.

(d) Wavelength.

(e) Phase velocity.

(/) Depth of penetration.
2. Repeat Prob. 1 for polystyrene.
3. A uniform plane wave is normally incident upon a body of sea water. The electric

intensity of the incident wave is 100 microvolts per m and the frequency is 3,000

megacycles per sec. Compute the following:

(a) The electric and magnetic intensities of the incident, reflected, and transmitted

waves.

(6) The time-average power densities in the incident, reflected, and transmitted

waves.

4. Polystyrene has a dielectric constant of approximately 2.5. Compute the reflec-

tion coefficient and transmission coefficient for a normally incident wave passing
from air into polystyrene. What would be the electrical characteristics and thick-

ness of a material which would serve as a quarter-wavelength transformer to obtain

total transmission of the incident wave at a frequency of 1,000 megacycles per sec?

5. The electric intensity of a wave in space propagating spherically outward from a

source is given by

*,_
r

Derive the expressions for:

(a) The magnetic intensity.

(6) The ratio of electric to magnetic intensity.

(c) Poynting's vector.

(d) Using VJ5 =
0, show that this field is an approximation which is valid only at

very large distances from the source. (The above intensity corresponds to the

radiation field of an incremental antenna, Sec. 19.02.)

6. A uniform plane wave in space has its electric intensity polarized in the y direction

and is given by Ey
= E^(lx+nz)

. Derive expressions for the magnetic intensity and

Poynting's vector.

7. A uniform plane wave in air impinges upon a body of polystyrene at an angle of

incidence of 30. The incident wave has an intensity of 100 microvolts per m and

is polarized normal to the plane of incidence.

Compute:
(a) The angle of refraction.

(6) The electric and magnetic intensities of the incident, reflected, and refracted

waves.

(c) The power densities in the incident, reflected, and refracted waves.

(d) Compute the normal components of power density and show that the difference

between the normal components of incident- and reflected-wave power density

is equal to the normal component of transmitted power density. Is this state-

ment true for the resultant power densities?

8. A uniform plane wave in space is incident upon a body of dielectric having er = 5.

The wave is polarized parallel to the plane of incidence and has an incident angle
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of 45. The electric intensity of the incident wave is 0.1 volt per m and the fre-

quency is 100 megacycles per sec. Compute the following:

(a) The angle of refraction.

(6) The reflection and transmission coefficients by the impedance method. Check
these values using Fresnel's equations,

(c) The electric and magnetic intensities of the incident, reflected, and transmitted

waves.

((I) Power density in the incident, reflected, and transmitted waves.

9. Find Brewster's angle and the angle of total internal reflection for a boundary
between free space and a dielectric, assuming that the dielectric has a relative

permittivity of 5.

10. A uniform plane wave, polarized normal to the plane of incidence, impinges upon a

copper surface with an incident angle of 50. The electric intensity of the incident

wave is 100 microvolts per m and the frequency is 1,000 megacycles per sec.

(a) Compute the electric and magnetic intensities of the incident, reflected, and
transmitted waves.

(b) Compute the power densities in the incident, reflected, and transmitted waves.

(c) At what depth will the intensities in the copper have a value of l/e of the surface

value?

(d) Discuss the phase relationships of the incident, reflected, and transmitted waves
at the surface.

11. A uniform plane wave is obliquely incident upon a plane dielectric surface.

(a) Show that if the angle of incidence is equal to or exceeds the angle of total

internal reflection, the normal component of time-average power density in the

second medium is zero.

(b) Will the relationship 772
= E'"/H"

f
still apply in medium 2?

(c) What are the phase relationships between the electric and magnetic intensities

in medium 2 for the normal wave and for the resultant wave?
12. At high frequencies the skin-effect resistance may be found from the relationship

P = /^j/
2
/2, where P is the time-average power dissipated in the conductor, 7TO is

the peak value of current, and R is the skin-effect resistance. Consider a single con-

ductor of radius a carrying a current Im . Using Ampere's law, obtain an expression
for the magnetic intensity at the surface of the conductor. Integrate the normal

component of Poynting's vector over the surface of unit length of conductor to

obtain the power loss and obtain an expression for the skin-effect resistance. Verify
the equation for the skin-effect resistance of a coaxial line in Table 1, Chap. 8.

13. Starting with the equations for the reflection coefficient and transmission coefficient,

Eqs. (14.10-17 and 18), derive Fresnel's equations for a wave polarized parallel to

the plane of incidence, assuming a lossless medium.



CHAPTER 13

SOLUTION OF ELECTROMAGNETIC-FIELD PROBLEMS

The general problem of the electromagnetic field might be defined as the

solution of Maxwell's equations to obtain the field intensity as a

function of space and time for a given physical system. In this chapter
we shall obtain the general solution of the wave equation in rectangular,

cylindrical, and spherical coordinates. The general solution is a mathe-

matical expression for the various types of waves which may exist, as

referred to a given coordinate system. This solution contains a number of

arbitrary constants which are evaluated in such a manner as to make the

field satisfy the boundary conditions for the given physical system.
A given field distribution may be expressed in any desired system of

coordinates. However, the problem of satisfying the boundary conditions

is greatly simplified by the choice of a coordinate system which best suits

the boundaries of the particular physical system. For example, the field

distribution inside of a rectangular wave guide is best expressed in rectangu-

lar coordinates, whereas the field of a guide having circular cross section

should be expressed in cylindrical coordinates.

Electromagnetic fields are produced by charges and currents. In certain

types of problems, such as the determination of the radiation field of an

antenna, it is necessary to express the field in terms of the currents or

charges producing the field. In problems of this type, it is convenient to

use scalar and vector potentials since these can be expressed in terms of the

charges and currents. The electric and magnetic intensities are then ob-

tained from the potential functions.

15.01. Scalar and Vector Potentials for Stationary Fields. In Chap. 2,

Poisson's equation was derived for the electrostatic field by inserting

D'

=. *E = VV into the divergence equation V-D = qT , yielding

V*F - l
(2.05-8)

For regions in which the space-charge density is zero, Poisson's equation
reduces to Laplace's equation,

V2F =
(1)

293
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The expression for V2 F in spherical coordinates is given in Appendix
III. If the potential V is a function of r only, Laplace's equation becomes:

1 d

UTr
2
dr

This equation has a solution of the form V = Ci/r + C2 . Assume that

the field results from a point charge q situated at r = 0. If we assume that

the potential is zero at r = oo
,
we have C% =

0, and the potential is given

by Eq. (2.02-7), thus

(3)

Since F is a scalar function, it follows that the potential at a given point

due to n discrete charges is ~ "'

(4)

For a volume distribution of charge the potential becomes

F = f-dr (5)
47T JT r

where qr is the charge density and r is the distance from dr to the point

where the potential is evaluated.

Equation (5) represents a solution of either Poisson's equation or La-

place's equation.
1 If this equation is integrated throughout all of space so

as to include the charges everywhere, it would yield the potential at any

given point. Such an integration would obviously be impractical, and so

we confine our attention to a given region. The general solution of Poisson's

aquation then consists of the sum of the potential given by Eq. (5) (inte-

grated over the given region) plus the solutions of Laplace's equation for

the given region. The solutions of Laplace's equation may be viewed as

the potentials which could be produced by charges either outside the given

region or on its boundary surface. For the electrostatic field the electric

intensity is related to the potential by

E = -VF (2.03-3)

We now ask, is it possible to represent stationary magnetic fields by a

potential similar to the electrostatic potential? Since magnetic fields

are set up by currents which have direction as well as magnitude, a vector

potential is needed. In Sec. 13.03 it was shown that, if a field has zero

1
STRATTON, J. A., "Electromagnetic Theory," pp. 166-169, 192-194, McGraw-Hill

Book Company, Inc., New York, 1941.
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divergence, the field may be represented as the curl of a vector quantity.

Equation (13.04-11) gives V-E = 0; hence we may let

B - V X I (6)

where -J is the vector potential.

Writing the curl equation (13.04-7) for stationary fields, we have

V X 3 = 7C ,
where Jc is either the convection- or conduction-current

density. Inserting U = B/p = (!/M)V X A from Eq. (6) into this expres-

sion, we obtain

V X V X I = /Jc (7)

We now use the identity V X V X A = V(V-I) - V21. The curl and

divergence of a vector may be defined independently.
1

Equation (6)

defined the curl of I. We now let V A =
0, yielding V X V X A = - V2JL

Equation (7) then becomes

V2A = -rfc (8)

This equation is analogous to Poisson's equation for electrostatic fields and

its solution is

(9)

where r is the distance from dr to the point at which A is evaluated and

Jc is the current density at dr.

The vector potential has the same direction as the current producing it.

If the current density distribution is known, Eq. (9) may be used to evaluate

the vector potential. Then the magnetic intensity is obtained from Eq. (6),

using the relationship J7 = B/p,.

If a problem under consideration involves a finite region, then the solu-

tion of Eq. (8) is the sum of Eq. (9) (integrated over the given region) plus

any solution of the equation
V2A = (10)

which satisfies the boundary conditions. The latter solution accounts for

any vector potential which may result from currents outside of the given

region. The current density Jc may, for example, be the current flowing

in a conductor or the current produced by a stream of electrons in a vacuum
tube. In those regions where Jc

=
0, there is no contribution to the vector

potential, hence the integration of Eq. (9) need not be carried out over

such regions.

15.02. Scalar and Vector Potentials in Electromagnetic Fields. Since

we are primarily interested in dynamic fields rather than in stationary fields,

1 As an example, the curl and divergence of the vector E in Maxwell's equations are

defined by the independent equations V X E = n(dH/dt) and VJP qr/.
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it is necessary to extend the foregoing concepts. We would logically

expect that the expressions for the scalar and vector potentials of dynamic
fields would be more general than those for stationary fields, and would

reduce to the stationary-field equations if the electric field is due to sta-

tionary charges or the magnetic field is due to unvarying currents. Let us

therefore consider the dynamic relationships, assuming a lossless medium.

Again we let

B = V X A (1)

and substitute this into Eq. (13.04-3) to obtain V X E = -V X (dA/dt),

which may be written

v x E + = o (2)
\ dt /

A solution of Eq. (2) is E + (dA/dt) = 0. Since the curl of the gradient

of a scalar function is always zero, a more general solution is E + (dA/dt) =
- V7, or

E = -V7 -- (3)
dt

where V is the scalar potential and A is the vector potential. For electro-

static fields we have dA/dt =
0, and Eq. (3) reduces to the familiar expres-

sion E = VF.

In order to obtain an expression for the scalar potential as a function of

the charges, we insert E from Eq. (3) into V-E =
gv/e, obtaining

VF- (4)
dt

The curl of A has been previously defined. However, we are at liberty

to define the divergence of A in any suitable manner. We shall define

V-A in such a way that Eq. (4) reduces to an equation similar to Eq.

(13.05-4) when there is no space-charge density present, and to Poisson's

equation for the electrostatic field. This requires that

v.I. -\
a

l g
vc dt

where vc = l/\/M is the velocity of wave propagation. Inserting Eq. (5)

into (4), we obtain

"-#--?
This is the dynamic form of Poisson's equation. Before discussing this

relationship, let us derive a similar expression for the magnetic potential.
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Starting with Eq. (13.04-7)
dE

V XH = JC + e (13.04-7)
dt

we insert 77 = (l//z)V X I from Eq. (1). The identity V X V X I =

V(V!) - V2! then yields

The electric intensity from Eq. (3) is next inserted into Eq. (7) and the

scalar potential V is eliminated in the resulting equation by the use of Eq.

(5). With these substitutions Eq. (7) becomes

Equations (6) and (8) are the differential equations for the scalar and

vector potentials. These equations reduce to Eqs. (2.05-8) and (15.01-8).

respectively, for stationary fields, i.e., when d/dt = 0.

For regions in which qr
= and Jc

=
0, Eqs. (6) and (8) reduce tu

the wave equations

(10,

If the potential is due to a point charge or a differential current element, the

solutions of Eqs. (9) and (10) may be expressed in spherical coordinates as

":") and
c / r\= -/(<-)
r \ J

The term (l/r)f[t (r/ve)] represents a wave traveling radially outward

from the origin, whereas (l/r)f[t + (r/vc)] represents a wave traveling

radially inward.

We would expect that the solutions of the more general expressions,

Eqs. (6) and (8), would consist of traveling waves which, however, take

into consideration the effects of the space charge and the currents. Further-

morej these solutions must reduce to Eqs. (15.01-5 and 9) for stationary

fields. The solutions satisfying these requirements are

= f^
4irc JT

XsgJL
"n* w " c"

dT ri2)
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Since the wave travels with a finite velocity vc ,
the time required for it

to travel a distance r is r/vc . Hence the potentials at a point distant r

from the source at time t are due to the values of qr and Jc at the source at

an earlier time given by [t (r/vc)]. In Eqs. (11) and (12) the quantities

Qr[t (r/vc)] and Jc[t (r/vc)] represent the charges and currents at the

source at time t r/vc while the resulting potentials are at time t. The

potentials in these equations are known as retarded potentials because of

the finite time required for the wave of potential to travel from the source

to the given point.

For a time function of the form e?
ut

, Eqs. (11) and (12) become

'-e-^dr (13)

e-^dr (14)

V2F = y
2V (15)

7
21 (16)

y =
jun(<r + jut) (13.06-5)

where e??* is omitted for brevity and ft co/i;c is the phase constant for a

lossless dielectric medium.

Also, for the time function e*"
f Eqs. (9) and (10) reduce to V2F = -02F

and V2A =
/3
2A. The foregoing relationships were derived for a lossless

medium. For a medium which is not lossless, it can be shown that the

wave equations for the potentials are similar to Eqs. (13.06-3 and 4), i.e.,

where

15.03. Methods of Solving the Wave Equations. Let us first consider

a region in which there are no charges or currents; i.e., q r
= and Jc

= 0.

The sources of the field are then external to the region under consideration.

This region might, for example, be inside of a hollow wave guide or in free

space. For a time function ejui
, the wave equations for E and fl are given

by the wave equations, Eqs. (13.06-3 and 4), while the corresponding equa-
tions for V and A are Eqs. (15.02-15 and 16).

The wave equations are second-order partial differential equations. They
are also linear, since the potentials (or intensities) and their derivatives

occur only as first-degree terms. A second-order ordinary differential

equation has two independent solutions, each containing an arbitrary

constant. The general solution may be represented as the sum of the two

solutions. For example, if <fo and fa are the two independent solutions of a

second-order differential equation, the general solution is Afa +
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We shall obtain solutions for the wave equations in rectangular, cylindri-

cal, and spherical coordinates using a method known as separation of varia-

Ues. In this method, the partial differential equation is broken up into

three ordinary differential equations, corresponding to the three independ-

ent variables (the coordinates). Each one of the ordinary differential equa-

tions is a second-order equation and therefore has two solutions as described

above. The general solution of the partial differential equation is the

product of the solutions of the ordinary differential equations. Thus, in

rectangular coordinates, let X(x) = 1*1 (z) + 2*2(20, Y(y) =
3*3 (y) +

4*4(0), and Z(z) = 5*5(2) + 6*6(2) be the solutions of the three ordi-

nary differential equations. The general solution of the partial differential

equation is then

This solution contains six arbitrary constants which must be adjusted to

satisfy the boundary conditions. At first sight, this appears to be a formida-

ble task. However, most of the problems with which we will be dealing

have relatively simple boundaries and the constants can therefore be easily

evaluated.

The general solution of the wave equation shows that there is a very

large number of field distributions possible for a given set of boundaries.

The various possible field distributions are referred to as modes. The
actual field distribution in a given physical system may consist of a single

mode or a superposition of two or more modes. Although a number of

modes may be required to describe the field, it should be remembered that

the field itself is single-valued, i.e., there is one resultant electric intensity

and one magnetic intensity at any point in the field at a given instant.

Whether or not a particular mode will exist in a given region depends, in

part, upon the distribution of charges and currents at the exciting source.

However, the wave equation does not relate the fields to the charge or

current source and therefore we cannot expect the solution of the wave

equation to tell us which modes actually do exist. The solution of the wave

equation informs us of all of the modes which are physically possible within

the given boundaries, but it does not specify which ones actually exist.

If we are interested in evaluating the specific field set up by a given

charge or current source, it is necessary to include the source in the region

under consideration. The scalar and vector potentials must then be

obtained by means of Eqs. (15.02-11 and 12). The intensities can then be

evaluated by inserting the potentials into Eqs. (15.02-1 and 3). This

method of solution is often more difficult than the solution of the wave

equation, where no attempt is made to relate the fields to the source.

In the remainder of this chapter, we shall obtain the general solution

of the wave equation in various coordinate systems. The analysis of wave
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guides and resonators in succeeding chapters will likewise be approached
from this viewpoint. The scalar and vector potential method will be used

in the analysis of radiation from antennas. The wave equations for E,

H, V, and J, Eqs. (13.06-3 and 4) and (15.02-15 and 16), all have the same

form and consequently we would expect them to have the same general

solution. There is a distinction, however, in that E, J7, and A are vector

functions, whereas V is a scalar function. In rectangular coordinates the

general solution of the wave equation is the same for either vector or scalar

functions. However, in cylindrical and spherical coordinates the vector

and scalar solutions differ slightly. Although the solution of the vector

wave equation would be the more useful solution, it is considerably more

difficult to obtain than that of the scalar wave equation. Consequently
the solution for the scalar wave equation will be obtained. The solutions

of the vector wave equation will be introduced as they are used.

15.04. Solution of the Wave Equation in Rectangular Coordinates.

Consider the wave equation
V2F = y

2V (15.02-15)

applying to a region not including the source. A time function e?
wt

is

assumed. The medium may be conducting, semiconducting, or insulating,

and the intrinsic propagation constant 7 may accordingly take complex or

imaginary values.

It is significant to note that the wave equation reduces to Laplace's

equation for the electrostatic field V2V = if we set 7 = 0. Hence, with

this substitution, the solutions of the wave equation become valid for

electrostatic-field problems.

In rectangular coordinates, the wave equation is

6
2V 6

2V d2V

The variables may be separated by assuming a solution of the form

V = X(x)Y(y)Z(z) (2)

where X(x) is a function only of the x coordinate, Y(y) is a function only
of y t

and Z(z) is a function only of z. Inserting Eq. (2) into (1) and

dividing by XYZ, we obtain

1 d
2X 1 B2Y 1 d2Z

The X
, F, and Z functions appear in separate terms on the left-hand side

of Eq. (3). Since the sum of the three terms is a constant and each term

is independently variable, it follows that each term must be equal to a
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constant. Therefore, we equate the first term to a
2

,
the second term to a

2
,

and the third term to a2
, yielding three ordinary differential equations,

where

al + a2 + a
2
,
= y

2
(5)

Each of the equations in (4) has a general solution of the form

X = dea*x + C2e'
axX

(6)

If ax is imaginary, we let ax = jax and the solution may be written as a

trigonometric function,

X = Ci cos 0,'xX + C2 sin a^x (7)

The solution may also be expressed in terms of hyperbolic functions,

X = Ci cosh axx + C2 sinh axx (8)

The differential equations for the Y and Z functions have similar solu-

tions. The values of X, 7, and Z may be inserted into Eq. (2) to obtain

the solution

V = (W + C2e-
a*x

)(Cze
a v + C4e'

a
^)(C5e

afZ + C6<T
a*2

) (9)

If any one of the a's is zero, the corresponding term in Eq. (9) is replaced

by X = Cix + C2 ,
Y = C3y + C4 ,

or Z = C5z + <76 .

As an example, let us return to the uniform plane waves of Sec. 14.02.

The scalar and vector wave equations have the same type solutions when

expressed in rectangular coordinates. Therefore the components of electric

and magnetic intensity may be represented by an equation similar to Eq.

(9). In Sec. 14.02, it was assumed that the electric intensity had only an x

component. It was also assumed that there was no intensity variation in

the x and z directions; hence X(x) and Z(z) are constants. Also, we have

ax = az
=

0, and Eq. (5) gives ay = y. Thus, the solution of the wave

equation for the electric intensity is Es = C^e
yy + de", or in instan-

taneous form, E9 = Cs^'+w + C4e*"~w .

15.05. Solution of the Wave Equation in Cylindrical Coordinates. In

cylindrical coordinates the wave equation becomes

1 d / dV 1 d
2V

p dp \ dp / p
2

d<t>
2

To separate variables, let

(2)
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where 72, $, and Z are functions, respectively, of the p, < and z coordinates.

Inserting Eq. (2) into (1) and dividing by R$Z, we have

1 d

The third term is a function of z only. Again the sum of the three terms

is a constant and hence the third term may be set equal to a constant a2 or

<& (4)
dz2

This equation has a general solution of the form given by Eqs. (15.04-6, 7,

or 8).

Inserting a
2
for the third term of Eq. (3) and multiplying by p

2
,
we have

R dp 4> d(f>
2

The second term is function of <t> only; hence, equating this to a constant

which we represent by v
2

,
we have the equation for $

(6)
d<t>

The solution of this equation is also of the form expressed in Eqs. (15.04-6,

7 or 8), although (15.04-7) is most commonly used.

Replacing the <i> term by v
2
in Eq. (5) and multiplying through by R,

we obtain the equation for the radial function

d / dR\
^T ( P Tl + [(a *

-
72)p2

-
p2]R = (7)

dp \ dp/

This is a form of Bessel's equation. It may be put in standard form by

letting fc
2 = (a

2
y
2
) and x = kp (note: x is a new variable and is not

the x coordinate). Equation (7) then becomes

=
(8)

ax~ ax

Since the Bessel equation is a second-order differential equation, it has

two independent solutions. The solutions l~8 are obtained by assuming an

1 McLACHLAN, N. W., "Bessel Functions for Engineers," Oxford University Press,

New York, 1934.
1 GRAY, A., G. B. MATHEWS, and T. M. MACROBEBT, "Bessel Functions," The Mac-

millan Company, New York, 1922.
1 WATSON, G. N., "Theory of Bessel Functions," Cambridge University Press, London

1922.
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infinite series solution of the form

00

t-0

The coefficients d and the constant b in the series are evaluated by
substituting Eq. (9) into (8). Thus, the series for R is differentiated twice

with respect to x and then multiplied by x2 to obtain the first term of

Eq. (8). The second and third terms are evaluated in a similar manner.

The three terms are then added and coefficients of like powers of x are

collected. We then have an ascending power series in x which represents

the left-hand side of Eq. (8). Since the sum of the series is zero for any
value of x

y
it follows that the coefficients of any term must be zero. In this

manner, the coefficients Ci and the exponent 6 in Eq. (9) are evaluated in

terms of one undetermined constant, which is usually the first coefficient of

the series.

The two solutions of Eq. (8) obtained by this procedure are the Besscl

functions of the first kind and order v\

E
- x

- i-^L^-
(10)

where F(m + v + I)
= T(p) is a generalized factorial function which is

defined by F(p) = I xp
~ le~* dx. This function is known as the Gamma

A)

function.

When v takes integer values, we replace it by v = n and the Gamma
function then becomes the factorial F(ra + n + 1)

= (m + ri)l. The two

solutions expressed in Eqs. (10) and (11) are then related by Jn (x) =

( l)V_n(x) and hence are not independent solutions. Another solution,

known as the second-kind Bessel function of order n, represented by Nn (x),

may also* be obtained. The first- and second-kind Bessel functions of

integral order are

Jn(x) cos nir - J_n (x)Nn (x) =-:

--
(13)

sin me
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The first- and second-kind Bessel functions are plotted for zero order

in Fig. 1 and for orders zero to five in Fig. 2. All of the Bessel functions

of the second kind have negative infinite values for zero argument.
The R solution is related to the $ solution since v appears in both Eqs.

(6) and (8). In many problems $ will be of the form $ = Ca cos v<t> +
(74 sin ?#, and will have a periodic variation with <, with a period of 2ir.

Thus, in a circular wave guide $ must have the same value for < = 6

Values of X

FIG. 1. Zero-order Bessel functions of the first and second kind.

radians as it has for </>
= 8 + 2?r radians, since they correspond to the same

point in the guide. This requires that v be an integer, hence we let

v = n.

The solution of the wave equation in cylindrical coordinates for integral
values of v = n is

(14)V = [CtJn&p) + C2Nn(kp)](Cz cos n<t> +
while for nonintegral values of v

y we have

V -
[CiJ,(kp) + C2J_v(kp)](C3 cos v<t> + C4 sin + (15)

Special cases occur when a, 7, or v are zero. If a =
0, the Z function

reduces to Z - (C5z + C6). If a, and y are both zero, then Eq. (7)
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Flo. 2. Beuel functions of the first and second kind.
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becomes

dp

which has a solution R = (C\p
v + C2p~"")- The potential is then

F = (dp
1' + CW-'XC's cos v* + C4 sin v)(<75* + C6) (17)

Finally, if az , 7, and v are all zero, the R solution becomes R =
(?i In p + (72

and we have

F = (Ci In p + C2)(C3 < + C4)(C5* + C6) (18)

The choice of the potential equation for a particular problem depends

upon the boundary conditions. For example, if the problem is an electro-

static-field problem in which the potential is known to vary linearly in the

z direction, then we would have 7 = and az
=

0, and Eq. (17) would be

usecf If the field also has no variation in the <t> direction, then Eq. (18)

is used, with C$ = 0. The following conclusions may be drawn:

1. The general solution of the scalar wave equation is given by Eq. (14)

for integer values of v, and by Eq. (15) for noninteger values.

2. The Bessel functions of the second kind have infinite values for zero

argument, hence this solution must be discarded if the field extends to the

origin.

3. If the field is periodic in <t> with a period which is a submultiple of

2T, then v = n is an integer and the Bessel functions have integral order.

4. In a field which has no variation in the <t> direction, we have n = 0.

The Bessel functions are then of zero order and the <t> function reduces to a
constant.

5. If azi 7, or v are zero, special cases occur which are represented by
Eqs. (17) and (18).

15.06. Bessel Functions for Small and Large Arguments. Approxi-
mate expressions may be obtained for the Bessel functions for either small

or large arguments. For small arguments, i.e., x <C 1, the functions become

xv

Jv (x)
-

(1)
y?(v + i)

v }

-2TWNv(x) \L (2)
*(*)"

For large arguments such that x 2> 1, the asymptotic expressions are

[2 / 2v + 1 \
J,(aO -v/

cos ( x-- IT
) (3)

*irz \ 4 /
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2v+ 1 \

')
w

It is interesting to observe that the Bessel functions for large arguments
as shown in Fig. 2 resemble damped sinusoidal functions, and the asymptotic

expressions for large arguments as given by Eqs. (3) and (4) contain cosine

and sine functions.

15.07. Hankel Functions. The Hankel functions are linear combina-

tions of Bessel functions. There are two kinds, represented by H^(x) and

H(x), where
= J,(x)+jN,(x) (1)

-J,(x)-jN,(x) (2)

The Bessel functions of the second kind were found to have infinite

values for p = 0. Consequently, the Hankel functions have infinite values

for p = and cannot represent physically realizable fields which extend

to the origin. Hankel functions may be used to represent the field between

the conductors of a coaxial line, since the field is discontinuous at the sur-

face of the inner conductor and does not extend to the origin.

The asymptotic expansions for the Hankel functions for large values of

x are

-^+^/fl
(3)

vx

15.08. Spher^P^essel Functions. Bessel functions of order n + %
are frequently ^countered in spherical waves. It is therefore convenient

to have a separate representation for these functions. They are known as

spherical Bessel functions and are represented by the lower-case letters

;n (x), nn (x), h$*(x), and h\x), and are defined by
1

(1)

Whereas Bessel functions in general are represented by an infinite series,

the spherical Bessel functions can be expressed in trigonometric form. The

1 The definition of the spherical Bessel functions is that given in P. M. Morse, "Vibra-

tion and Sound," pp. 246-247, McGraw-Hill book Company, Inc., New York, 1936.
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first few may be written

sin x cos x
jo(x) ~ no(aO =

x x

sinz cosz sin re cos a;

x2 x xx2

/x /
3 ^ 3 ^ f

1 3
\

*(*) =
(^

-
-Jsm*

- -cos* n2 (x) = ^
-
~J

cos # sin re

x*

15.03. Modified Bessel Functions. In dealing with waves in a dissipa-

tive medium where 7 is complex, it is often more convenient to make the

substitution k2 = (a
2

y
2
) and x =

fcp in Eq. (15.05-7). This gives

the modified Bessel equation

dR ..._

Its solutions are the modified Bessel functions Iv (x) and /__(#), given by

A useful linear combination of these two solutions is another solution,

KM = ^ [/_(*) -
/,(*)] (4)

2 sin VTT

For positive integral values of v, we let ^ = n. For this case there results

7 n (z) = ^n(^), necessitating a new independent solution of the form

(5)

The relationships between the modified Bessel functions and the Bessel

functions are

(6)

)

[/,(x)
-^r(*)] (7)

In other words, a modified Bessel function with an imaginary argument

may be expressed as an ordinary Bessel function. In a dissipative medium
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the propagation constant y is complex and consequently x = (y
2

is likewise complex. The modified Bessel functions are then the most

convenient expression. However, for lossless mediums, 7 = j0 is imaginary
and consequently x is imaginary. The Bessel functions are then pre-

ferred.

15.10. Other Useful Bessel-function Relationships. In the following

equations Zv(x) may represent any one of the functions Jv(x), /_(#),

Recurrence Formula:

Differentiation of Bessel Functions:

= -Z,(x) (2)

,Z (x)--Zl (x) (3)
X

N' (x)
= -#,(*) (5)

I' (x) - !,(*) (6)

dx

d(x->Z,(x)}

dx 2

'-(XW
_ x*ifI,_i(a;) (9)

(10)

Integrals of Bessel Functions:

i dx = -Z (*) (11)

afZ^x) dx = *%(*) (12)

fx-*Z,+l (x) dx = --%(!) (13)



310 SOLUTION OF ELECTROMAGNETIC-FIELD PROBLEMS [CHAP. 16

dx =

fJQ Jn (x) dx - 1

/'/o
dx = -

n
n = 1,2,3-

(14)

(15)

(16)

15.11. Illustrative Example. As an illustration of the solution of field

problems in cylindrical coordinates, let us determine the potential distribu-

tion in the dielectric of the short-circuited coaxial line shown in Fig. 3

FIQ. 3. Electric field distribution in the dielectric of a coaxial line.

in the vicinity of the short-circuited end. A d-c potential difference Vb
is applied between the two conductors and steady-state conditions are

assumed. At the outset, let us assume that both conductors have finite

conductivity.

The problem is essentially a solution of the Laplace equation V2F =
in cylindrical coordinates. This is equivalent to setting y = in Eq.

(15.05-1). The field is symmetrical in the <t> direction; hence we have

: 0. We also have k ~ vcfc y
2 = az and x = kp = azp. Thus,a,+ n

the potential distribution, as obtained from Eq. (15.05-14), becomes

* + C4e-
a
*) (1)

The second-kind Bessel function is allowed since the field extends only
to p = a, where a is the radius of the inner conductor.

If the potential varies linearly along the z axis, we have a, = 0. Since
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we also have 7 = and n =
0, the potential may be represented by Eq.

(15.05-18) (with C3
=

0), thus

The boundary conditions determine whether the solution is of the form

given by Eq. (1) or (2). In the example shown in Fig. 3, the potential drop
varies linearly along the Z axis, hence the potential will be given by Eq. (2).

To further simplify the solution, let us assume that the outer conductor

and short-circuiting end wall have infinite conductivity. If the radii of

the inner and outer conductors are a and 6, respectively, the boundary
conditions become:

V = when p =
b, z = any value

V = when z = 0, p = any value

V = Vb when p = a, z = I

The first two boundary conditions require that CQ = and C2
=

Ci In 6, yielding V = CQZ In (p/b) where C = CiC5 . The last boundary
condition gives C =

Vi>/[l In (a/6)], and the final potential distribution is

therefore given by

V =
l\n(a/b)

(3)

The electric intensity may be obtained from the relationship E = VF
= (dV/dp)g (dV/dz)k. The electric field lines and equipotential lines

for this case are shown in Fig. 3.

15.12. Solution of the Wave Equation in Spherical Coordinates.1 ' 2 In

spherical coordinates the wave equation becomes

1 d[r
2
(dV/dr)] 1 a[sin 0(dV/dO)] 1 d2V _ g

r
2

dr r
2
sin 6 SO r

2
sin

2
6 dj>

2

We will assume a solution of the form

V =
R(r)P(6)*(<t>) (2)

Inserting this into Eq. (1), dividing both sides by RP&, and multiplying

by r
2

,
we obtain

1 B(r
2
(dR/dr)} I d[sm e(dP/dO)] 1 a2*

= ^
R dr PsmO 30 $sin2

0d<
2

I STRATTON, J. A., "Electromagnetic Theory," pp. 399-406, McGraw-Hill Book

Company, Inc., New York, 1941.
* MARGENAU, H., and G. M. MURPHY, "The Mathematics of Physics and Chemistry,"

pp. 60-72, 216-232, D. Van Nostrand Company, Inc., New York, 1943.
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The R terms are contained in the first and last terms, hence we set them

equal to a
2
., yielding

d(i*(dR/dr)}

dr

which may be written

- (7V + a?)/? - (4)

,. . ... - (5)
ar dr

For the moment, we drop consideration of the R solution and return to

Eq. (3). Replacing the R terms by a2 and multiplying through by sin
2

6,

we have
sin B d[sin B(dP/dB)] 2 . 2

1 32 <f> _
~~P 30

ar Sm
i d02

""

The <t> term is equated to a constant m2
, yielding

(7)
aq>-

with a solution of the form $ = C5 cos mb + C6 sin m<f>. Again, if the

field is periodic in <t> with a period of 2v radians, m must be an integer.

Replacing the <t> term in Eq. (6) by w2
, expanding the first term, and

multiplying through by P/sin
2

0, we obtain

d2P dP / m2
\

+ cot0 + [a
2
--T-T-JP =

(8)
d0 dB \ sin 0/

This is the Associated Legendre equation. Being a second-order differential

equation, it has two solutions which may be obtained by the series method

described for the solution of the Bessel equation. Here we find it con-

venient to let a
2 = n(n + 1), where n is an integer, and x = cos B. Equa-

tion (8) then reduces to

* - * - - m
The solution of Eq. (9) determines the variation of the field in the B

direction. A special case occurs when the field has circular symmetry, i.e.,

when there is no variation in the <t> direction. We then have m = and

Eq. (9) reduces to the Legendre equation

d2P dP
(1
- x2) - 2x + n(n + 1)P -

(10)
ax ax

In the solution of Eqs. (9) and (10) by the series method, it is found that

n must have integer values to avoid an infinite value of P. Furthermore,
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the solutions corresponding to positive and negative values of n are related,

so that we may restrict ourselves to positive integers only. The two solu-

tions of the Legendre equation for integral values of n are represented by
Pw (cos S) and Qn (cos 0), while those of the Associated Legendre equations

are P(cos 0) and Q%(cos 0). These are given by

Z*
(-l)p(n + p)\

\ \7 g si

-O (*-p)KpO
sin

2*-
(11)

p
Qn(cos 0)

= Pn(cos (?) In cot - -
""*.

*~*
(12)

cTPn (cos 6)

(13)

cos 0)
=

(
-

l)
m
sin- (14)

d(cos 0)
m

The Q functions have infinite values at 6 = and 6 = T and hence

cannot represent physically realizable fields which include these regions.

Therefore the Q functions are discarded if the region under consideration

includes = and 8 = IT. When n is an integer, the series given by Eq.

(11) terminates after a finite number of terms and the Eqs. (11) to (14)

may be represented by polynomials. The first few Legendre and Asso-

ciated Legendre polynomials are as follows:

P (cos 0)
= 1 P}(cos 0)

= - sin

PI (cos 0)
= cos0 P2(cos0) = 3 sin cos

P2 (cos 0)
= H(3 cos

2 0-1) Pl(cos 0)
= -K sin 0(5 cos

2 0-1)

P3 (cos 0)
= 3^(5 cos

3 - 3 cos 0) Pl(cos 0)
= 3 sin

2
(15)

Returning now to the differential equation for R, as expressed by Eq. (5),

we find that two changes of variable are required to reduce this to the stand-

ard form of the Bessel equation. First, let a? = n(n + 1) in conformity

with the notation used in the P-function solution, k2 = y
2 and x = kr.

Equation (5) then becomes

dR
x2 T + 2x + [x

2.- n(n + l)]R - (16)
dx2 dx

Now, let R = x~**W, where W is a new variable. Substitution into

Eq. (16) gives
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This is the Bessel equation of order n + J^, which has a general solution

W = CiJn+x(x) + C^-cn+H)^)- Replacing x and W by the values given

above, together with a different choice of constants, yields the solution

+ C2nn (kr) (18)

where jn (kr) and nn(kr) are the spherical Bessel functions defined by

Eq. (15.08-1).

The R function takes a simpler form in the solution of the Laplacian

equation for stationary fields. Here we set y = and a? = n(n + 1) in

Eq. (5), to obtain

9 <PR dR
r
2 - + 2r-- n(n + l)R = (19)
dr dr

The general solution of this equation is of the form R = Cra. Substitution

of this into Eq. (19) yields the values a = n and a = (n + 1); hence

the solution of Eq. (19) is

R = drn + C2r~
(n+1)

(20)

We are now prepared to write the general solution of the wave equation

in spherical coordinates. Inserting the equations for 72, P, and $ into

Eq. (2), the solution is obtained:

V = [C^(fcr) + C2nn(Ar)][C3P;r(cos0)

s 0)][C5 (cos m<fi + C6 (sin m<t>)] (21)

The following observations apply to this solution :

1. In stationary or quasi-stationary fields, the spherical Bessel functions

are replaced by Eq. (20).

2. Integral values of n are required if infinite values of Legendre func-

tions are to be avoided. Also, m must be an integer if the field is periodic

in <t> with a period which is a submultiple of 2ir radians.

3. Since QJT(cos 0) has infinite value at = and 8 = TT radians, this

solution is discarded if the field includes these regions.

4. For a circularly symmetrical field (no variation of the field in the <t>

direction), we have m = 0. The second term becomes the Legendre func-

tioii [CsPn(cos 0) + C4Qn(cos 0)] and the third term reduces to a constant.

15.13. Example in Spherical Coordinates. As an example of the solu-

tion of a field problem in spherical coordinates, consider the case of a perfect

dielectric sphere placed in an otherwise uniform electrostatic field. The
field is assumed to be uniform at points remote from the sphere but will
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be distorted in the neighborhood of the sphere. It is desired to determine

the potential distribution both inside and outside the sphere.

If we choose our coordinate system such that <t> is measured in a plane

perpendicular to the field, we then have a circularly symmetrical field and

consequently m = 0. The final bracketed term in Eq. (15.12-21) then

reduces to a constant. The term Q?(cos 6) cannot be present in our solu-

tion since this would yield infinite value of potential for = and = ir

radians; hence we discard this solution. Since m =
0, the second bracketed

FIG. 4. Dielectric sphere in an electrostatic field.

term becomes the Legendre function Pn(cos 6). Also, since our problem is

an electrostatic field problem, the R function is given by Eq. (15.12-20).

The potential is therefore of the form

V = [Cir
n + C2r-(n+l)

]Pn(cos 6) (1)

We try the solution corresponding to n = 1. The Legendre polynomial

is PI (cos 6)
= cos 6, and Eq. (1) becomes

(2)

In regions remote from the sphere the field is uniform; hence in Fig. 4

the potential must vary directly with distance in the horizontal direction.

This distance may be taken as r cos 0. If the plane 6 = */2 is taken as the

zero potential plane, the potential in regions remote from the sphere must

be Vi = Cir cos 6. This is satisfied by Eq. (2) since the term C2/r
2

is

negligible at large values of r. Thus, a preliminary check shows that

Eq. (2) may represent the potential distribution exterior to the sphere.
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If Eq. (2) is also to represent the potential in the interior of the sphere,

to avoid infinite potential at the center of the sphere it is necessary that

2 = 0. Hence, in the interior of the sphere we have, es a trial solution,

F2 C3r cos 9 (3)

The constants in Eqs. (2) and (3) are evaluated by matching the solutions

at the boundary of the sphere. Assuming perfectly insulating mediums,
the boundary conditions require equality of tangential electric intensities

and equality of normal flux densities, or

Tjl .. T7T f/l\

Dn2

where subscripts 1 and 2 refer to the outer and inner mediums, respectively.

We also have E t\
= (dV\/r 36) |

r=B8a and E& = (dF2/r 99) \
T=a >

where

the derivatives are evaluated at the surface of the sphere; i.e., at r = a.

Equation (4) may now be written:

rdO rd9
(5)

Also,

Thus Eq. (4) becomes

|
r a, and similarly,

Ai2

dV\

dr

dr rssa

dr
(6)

Taking Eqs. (2) and (3) as the potential equations for mediums 1 and 2,

respectively, and inserting these into Eqs. (5) and (6), we obtain two equa-
tions which may be solved simultaneously foi^the constants C2 and C3

in terms of C\. This process yields

Replacing these in Eqs. (2) and (3), the potential equations become

5-^-J
coefl (9)

3Ciircos0
-M-z do)
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These equations satisfy all of the boundary conditions and they are

solutions of the Laplace equation; hence we conclude that they represent

the field distribution for the given problem.

PROBLEMS

1. A sphere of radius a contains a space charge having a density qr o2 r2. Using

Eq. (15.01-5), evaluate the electrostatic potential at points inside and outside the

sphere. Show that these potentials satisfy Poisson's equation. Obtain expressions

for the electric intensity as functions of r inside and outside the sphere.

2. Obtain the expression for the zero-order Bessel function by inserting the series given

by Eq. (15.05-9) into Eq. (15.05-8) and evaluating the coefficients as descrbed in the

text. Show that the resulting series can be expressed in summed form similar to

Eq. (15.05-10).

3. Prove that ~ xnJn^i(x) by inserting the series for Jn(x) into the above
ax

expression and performing the indicated differentiation. Also show that

dx
-

4. Starting with the two identities given hi Prob. 3, differentiate the left-hand sides of

these equations as products and combine the resulting expressions to show that

6. Obtain expressions for the potential and electric intensity in the vicinity of a conduct-

ing sphere which is placed in an otherwise uniform electrostatic field. Evaluate the

space-charge density on the surface of the sphere and sketch the field.



CHAPTER 16

WAVE GUIDES

A wave guide may consist of any system of conductors or insulators

which serves to guide an electromagnetic wave. A common form of wave

guide consists of a hollow metallic tube containing an exciting antenna at

one end and a load at the other end. The antenna sets up an electro-

magnetic wave which travels down the guide toward the receiving end.

The conducting walls of the guide serve to confine the field and thereby

to guide the electromagnetic wave. From the point of view of the Poynting

theorem, the energy propagates through the dielectric inside the guide,

although a small amount of the energy enters the guide walls where it is

dissipated as I2R loss.

A large number of distinct field configurations or modes are theoretically

possible in wave guides. These modes correspond to solutions of Maxwell's

equations which satisfy the boundary conditions of the particular guide.

We shall find that a wave guide has electrical properties similar to those of

a high-pass filter. A given guide has a definite cutoff wavelength for each

allowed mode. If the guide is assumed to be lossless, and the wavelength
of the impressed signal is shorter than the cutoff wavelength for a given

mode, then electromagnetic waves can propagate down the guide in that

particular mode without attenuation. However, if the wavelength of the

impressed signal is appreciably longer than the cutoff wavelength, the field

of the corresponding mode will be attenuated to a negligible value in a

relatively short distance.)

The dominant mode in a particular guide is the mode having the longest

cutoff wavelength. It is possible to choose the dimensions of a guide in

such a manner that, for a given impressed signal, only the dominant mode
can be transmitted through the guide. In order for the dominant mode to

exist, the width of a rectangular guide or the diameter of a circular guide
must be greater than a half wavelength for the impressed signal. For this

reason, wave guides are economically feasible only in the microwave por-

tion of the frequency spectrum.)
16.01. Transverse-electric (TE) and Transverse-magnetic (TM) Waves.

A uniform plane wave in unbounded medium is a transverse-electromagnetic

(TEM) wave. In such a wave the 1? and H vectors are both perpendicular
to the direction of propagation of the wave. In wave guides, it can be

318
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shown that the resultant wave, traveling longitudinally down the guide,

can be resolved into two or more plane waves which are reflected from wall

to wall in the guide as shown in Fig. Ib. This results in a component of

either E or H in the direction of propagation of the resultant wave; hence

the wave is not a TEM wave. In lossless wave guides, the modes may be

classified as either transverse electric (TE) or transverse magnetic (TM)
modes. In transverse electric modes, there is no component of electric

intensity in the direction of propagation of the resultant wave. The electric

\ \/v /
\ x X /

/V V'V
/ A /\ / \

/ /V v'\

\ A A
/\ /\ / \

('
v y )

A/V

(a)

X A A
' v V ''iA A /
/ V V
/ A A

(b)

FIG. 1. (a) Reflection of uniform plane waves at oblique incidence, and (b) reflections in

a wave guide.

intensity components, therefore, lie in a plane perpendicular to the direc-

tion of propagation. In TM modes, there is no component of magnetic

intensity in the direction of propagation. It can be shown that any wave
in a lossless guide may be resolved into TE and TM components.

16.02. Wave Guides as a Reflection Phenomenon. We may consider

the fields in wave guides as being comprised of plane waves which are

reflected from wall to wall in the guide in such a manner that they travel a

zigzag' path down the guide. The analysis of the guide, therefore, can be

built up on the basis of plane-wave reflections similar to those discussed in

("hap. 14. This approach offers a convenient means of visualizing the

traveling waves in guides, although its application is restricted to the sim-

pler types of modes in rectangular guides. A more rigorous approach is

through the solution of Maxwell's field equations for the given boundary
conditions. Let us first consider wave guides from the viewpoint of plane-

wave reflections.
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In Sec. 14.10, it was shown that if a uniform plane wave impinges upon a

conducting; surface at an angle of incidence 6, there will be a standing wave

in a direction normal to the reflecting plane and a traveling wave in a direc-

tion parallel to the reflecting plane. The corresponding wavelengths are

Xn -- (14.13-1)
COS0

XP - T^T (14.13-2)
sin (9

where X is the wavelength of the impressed signal in unbounded medium.

Let us now consider the wave polarized in a direction normal to the plane
of incidence. This wave will be designated the transverse electric or TE
wave. We will assume that the reflecting plane is perfectly conducting

and that the dielectric is lossless. There will be nodal planes of electric

intensity parallel to the reflecting surface and separated from it by distances

where n is any integer. A second conducting plane may be inserted parallel

to the first plane and coinciding with any one of the nodal planes without

altering the field distribution between the two planes. It is assumed, of

course, that the plane-wave source is situated between the two conducting

planes. The addition of the second conducting plane confines the field

to the region between the two planes, thereby forming a parallel-plane

wave guide. It can be shown that the resultant wave can be resolved into

two component waves, which are reflected from wall to wall of the guide
as they progress down the guide.

An expression for the angle of incidence of the component waves may be

obtained by eliminating Xn from Eqs. (14.13-1) and (1), thus

- (2)

The angle of incidence, therefore, is determined by the wavelength of the

impressed signal, the separation distance between the planes, and the

integer n. The integer n represents the half-wave periodicity between

the two planes, taken in a direction normal to the planes.

If we take the point of view that the field may be resolved into two
uniform plane waves, as described above, then the angle of incidence of

the component waves must satisfy Eq. (2). Any other angle of incidence

would result in a tangential electric intensity at the conducting surface,

which would be a violation of our boundary conditions.
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The wavelength parallel to the reflecting plane is obtained by eliminating

from Eqs. (14.13-2) and (2), yielding

(3)
Vl -

(nX/26)
2

The cutoff wavelength XQ is the wavelength which makes the denominator

of Eq. (3) zero or \p infinite, hence

26
Xo = - (*)

n

The longest cutoff wavelength occurs when n = 1, yielding XQ = 26. Hence,
for the dominant mode, the cutoff wavelength is equal to twice the separa-

tion distance between the planes.

In terms of the cutoff wavelength, the wavelength Xp and the correspond-

ing phase velocity vp ,
both taken in a direction parallel to the reflecting

walls, become

where vc = /X is the velocity of light in unbounded dielectric. It should

be noted that the wavelength X is that corresponding to the impressed signal

as measured in unbounded dielectric, whereas Xn and \p are wavelengths

in the wave guide.

Let us now consider the effect of varying the spacing between the con-

ducting planes, assuming that the impressed wavelength X remains con-

stant. Equation (2) shows that as 6 decreases, the angle of incidence

likewise decreases. Consequently, the wave is reflected back and forth

across the guide many more times for a given distance of longitudinal

travel. The wavelength \p and phase velocity vp both increase as 6 de-

creases. As the separation distance 6 approaches cutoff, approaches

zero; hence the wave is reflected back and forth across the
^

guidfeTwithout

anylongitudinal motion. The values of vp and Xp both approach infinity

for this limiting condition. If 6 is less than the cutoff value, the angle

is imaginary and the wave is highly attenuated in the guide.

For very large values of 6, the angle 6 approaches 90 degrees. The wave-

length Xp and phase velocity vp then approach the values in unbounded

dielectric, X and vc , respectively. The wave then travels down the guide

without being appreciably affected by the presence of the guide walls.
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Two additional conducting planes may be added to the parallel-plane

wave guide to form a closed guide as shown in Fig. 2. The electric intensity

is uniform in the x direction but varies sinusoidally in the y direction, with

zero values at the two side walls to satisfy the boundary conditions. Two
components of magnetic intensity, Hy and HZ) are present. The resultant

wave travels longitudinally down the guide.

In rectangular guides, the modes are designated TE[m,n or TMm tn) the

integ^rmdenotingthe number of half waves oLelectric jntensity in the x

direction, while n is the ja\Hnbgr_pf_ halfjvagS-iQ-lh ft y ^jj-pntinn. In the

FIG. 2. TEo, n mode in a rectangulaf guide.

mode described above, there is no variation of electric intensity in the x

direction, and n half waves in the y direction; hence this corresponds to

the TEQ ,n mode. -*
*

16.03. Solutions of Maxwell Equations for the 7 0>n Mode. Let us

obtain a solution for the TEGtn mode using Maxwell's equations. Consider

the idealized case of an infinitely long rectangular guide with perfectly

conducting walls. For the present, no restrictions will be placed upon the

nature of the dielectric. The guide is assumed to be excited in the TE$, n

mode, the resultant wave intensities traveling in the z direction with a

propagation term e*
ui~ r

*. It should be noted that the propagation constant

F in the guide differs from the intrinsic propagation constant y of the

dielectric.

We start the analysis by assuming that the electric intensity is in the x

direction and has a sinusoidal distribution in the y direction, thus

(1)

where ft is the width of the guide and n is an integer. The electric intensity

given by Eq. (1) is zero at the guide walls, y = and y -
b, thereby
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satisfying the boundary conditions. For the assumed conditions, the two
curl equations (13.06-1 and 2) reduce to

(2)
oz

dEx--- -j<*i*Ht (3)
dy

(4)

dy dz

Inserting Ex from Eq. (1) into (2) gives

E*

Hy r

where Z is the characteristic wave impedance of the guide. Equation (5)

states that the ratio of the tr&nsverse components of electric intensity to

magnetic intensity ijg_equal
to a characteristic wave impedance. Tt will

be recalled that a similar relationship was obtained for plane-wave propaga-
tion in Chap. 14.

There are two components of magnetic intensity, Hy and Hz . These may
be obtained by hiserting Ex from Eq. (1) into (2) and (3). For brevity, we
let ky = nir/b. The magnetic intensities then become

Hy^sinhvye^-
rz

(6)

(7)

Boundary conditions require that the normal components of magnetic

intensity be zero at the guide walls, a condition which is satisfied by
the above equations. In fact, it can be shown that if the boundary con-

ditions for the electric intensity are satisfied, the magnetic intensities, as

determined from the curl equations, will also satisfy the boundary condi-

tions, and vice versa.

Having determined the field intensities in the guide, we now turn to the

wave equation for additional information concerning the properties of the

wave in the guide. Since the electric intensity has only an x component,

the wave equation (13.06-3) becomes

,8,
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Inserting Ex from Eq. (1) into (8), we obtain

r2 = <y
2 + kl (9)

In this expression y = Vjw/i(<r + jwe) is the intrinsic propagation con-

stant in unbounded dielectric. In general, the propagation constant F

is complex; hence we let

r-^+jft (10)

where a\ is the attenuation constant and fi\ is the phase constant in the

guide.

Consider now the special case in which the dielectric is lossless, i.e.,

<r =* for the dielectric. We then have y = jwV^c, and

r = A/A;* - coV (ii)

The propagation constant r will be either real or imaginary, depending

Upon the value of co. Cutoff occurs when F =
0, i.e., when

&* =
*J (12)

where co is the value of w at cutoff. From the relationship /o\ = vc =

I/V /*, we have WOM = (2irAo)
2

- Making this substitution, together with

kv = nir/6, in Eq. (12), we obtain the cutoff wavelength

2ir 26
Xo = = - (13)

ky n

which agrees with Eq. (16.02-4). For TE0tH modes, the cutoff wavelength
is dependent upon the b dimension of the guide but is independent of the a

dimension.

A convenient expression can be obtained by relating the propagation
constant F to the impressed wavelength X and cutoff wavelength X .

Inserting y
2 w2

/i*
=

(2ir/X)
2

, together with k*v
=

(2ir/Xo)
2

,
into Eq.

(9), gives us the propagation constant of the guide:

2r
p __

X

If the impressed wavelength is shorter than the cutoff wavelength, i.e., if

X/Xo < 1, then F is imaginary and we set F =
j$\. For this condition, the

wave propagates down the guide without attenuation and the intensity

components undergo a phase shift of &\ radians per unit length of guide.

Conversely, if X/X > 1, then F is real and we let F =
i. The intensities

in the guide are then attenuated by the factor c"
ai*
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For impressed wavelengths shorter than cutoff, we have F ==
jfa, and

06)

where Xp and vp are again the longitudinal wavelength and phase velocity

in the guide.

To obtain the group velocity, we let F =
jfti in Eq. (11), yielding

Pi = V 2
/* ky. Now evaluate dfii/dw and insert this into Eq. (14.14-7)

to obtain

Combining Eqs. (17) and (18), we note that

vvgp v
2
c (19)

Thus, the product of group velocity and phase velocity is equal to the square

of the velocity of light in unbounded dielectric.

To express Z in terms of X and X
,
substitute F from Eq. (14) into (5),

and use r\
= V/u/6, to obtain

Z =
,

*
(20)

Vl-(X/Xo)
2

If the impressed wavelength is longer than the cutoff wavelength, F

is real and we let F =
i. Equation (14) then becomes

It is interesting to observe that the dimensionless ratios XP/X, vp/vc ,

Vg/Vc, '^iX, and ZQ/ri at wavelengths shorter than cutoff are all functions

of the wavelength ratio X/Xo, or the corresponding frequency ratio / //.

Figure 3 shows curves representing these quantities as a function of X/X

and/o//. These curves show that if X < XQ, then the quantities Xp ,
vp ,

and

Z all increase as X increases, approaching infinite values as the wavelength

approaches cutoff. The group velocity, on the other hand, decreases with

increasing X, approaching zero value at cutoff. Figure 3 also contains a

plot of aX against X/X ,
as given by Eq. (21). The attenuation is zero
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when A/Xo < 1, but rises rapidly as the ratio X/X increases beyond unity

value.

We shall find later that Eqs. (14) to (19) inclusive, as well as the curves

of Fig. 3, are universally applicable to wave guides of either rectangular or

circular cross section operating in any TE or TM mode.

,
16.04. Rectangular Guide, TEmtH Mode. We now consider the more

general case of TEmtn modes in rectangular guides. Again, it is assumed

that the guide is infinitely long and has perfectly conducting walls. The

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

Wavelength ratio A/A or frequency ratio f /f

FIG. 3. Universal curves for wave guides.

2.0 2.2 2.4

propagation term is taken as eP*
r
*, denoting a wave traveling in the z

direction. Since all of the intensity components contain the same propaga-
tion term, we note that, for any intensity component, we may write

dE/dz = TE or dH/dz = TH. Bearing this in mind, the curl equa-
tions (13.0G-1 and 2) may be expanded into the following six equations.

dE,
+ TEy = -JU

dEt
__

dx
Jfc

dx

(1)

(2)

(3)

dHz~-
dy

-THX
- dH,

dx

dH-

dx

?x (4)

? (5)

?. (6)
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For transverse electric waves, we set Ez 0. Equations (1) and (2)

then yield

Hu Hx
(7)

Again we find that the ratio of the transverse components of electric

intensity to magnetic intensity is equal to the characteristic wave imped-

ance of the guide. The pair Ex and Hy result in a Poynting vector in the

+2 direction. However, in the second pair, it is necessary to take Ey

FIG. 4. Intensity components of the TEm , n mode in a rectangular wave guide.

and Hx to obtain a Poynting vector in the +z direction (the assumed

direction of propagation of the wave). This accounts for the negative

sign in the second term of Eq. (7).

In the analysis of TEQ ,n modes, we started with an assumed equation

for Ex which satisfied the boundary conditions. Substitution of this value

ofEx into the Maxwell equations enabled us to determine the other intensity

components. However, in the analysis of the TEmtn modes it is easier to

start with an assumed equation for the longitudinal component H z . To

be consistent with Eq. (16.03-7) and still allow for a variation of intensity

in the x direction, we assume an intensity of the form

H z
= //o cos kxx cos kvyeP*

T*

where

a

ntr

6

(8)

(9)

It will be shown later that this assumption satisfies the boundary con-

ditions.
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The wave equation (13.06-4) may be written in terms of Hf, thus

V2He
- v*H, (10)

By inserting Hz from Eq. (8) into (10), we obtain

r2 = 7
2 + kl + fc

2 - 7
2 + *2 (ii)

where fc
2 = fc

2 + fc
2

. Equation (11) is similar to Eq. (16.03-9).

For a lossless dielectric, we have y = jwVfJLe, and therefore

r = Vk2 - V (12)

Again cutoff occurs when T = or when k2 = WO/AC. Substituting
-*

(2ir/X )
2

,
we obtain the cutoff wavelength

(13)

or, by inserting the values of kx and ky from Eq. (9),

X =
>

2
===== (14)

V(m/a)
2

%
+ (n/6)

2

The fcutoff wavelength is dependent, therefore, upon both the a and b

dimensions of the guide as well as the integer values of m and n. In general,

the cutoff wavelength decreases as m and n increase, corresponding to the

higher order modes.

To obtain T in terms of X and X
,
insert co

2
/i
=

(2ir/*)
2 and k2 = (2ir/Xo)

2

into Eq. (12), yielding

(15)

which may be inserted into Eq. (7) to obtain the characteristic wave

impedance for TE modes

-
(X/X )

2 (16)

The propagation constant F for the TEm%n modes is identical to that

obtained for TEo,n modes. Consequently, the expressions for ft, Xp ,
vp ,

vg ,

ZQ, and j, a$ given by Eqs. (16.03-15) to (16.03-21) inclusive, and the

curves in Fig.
v

3, are valid for all TEmtH modes. The expression for the

cutoff wavelength, however, is different for the two cases. For the TEm ,n

modes, this is obtained from Eq. (14).

In order to evaluate the remaining intensities, we return to Eqs. (1)

to (6) and set Ez
= 0. An expression for Hv is obtained by inserting f\



SEC. 16.04] RECTANGULAR GUIDE, TEm ,n MODE 329

from Eq. (7) into (5). Similarly, Hy is found by inserting Ex from Eq. (7)

into (4). These substitutions, together with y
2 =

juv.(<r + jwc), yield

T S"-
(17)

(18)

Hy "

Hx

Side View

7
2 - T2

dy

r\ TJOn. z

7
2 - r2

IfcT

(a) TEOJ Mode

Side View

Top View

5" "i^^WlK^^g-> \ ^///-~\V B//V'
.x'/'/'ivvC-vVftxV'v.

(b)TE
0<2
Mode

Top View on Section a-a\ Side

(c)TE tI Mode
(d)TM 11 Mode

Electric field lines

Magnetic field lines

Fi. 5. Field patterns of various modes in infinitely long rectangular guides.

The intensity Hz from Eq. (8) is now inserted into Eqs. (17) and (18).

With the help of Eq. (7) and the additional relationships r2
7
2 = A;

2 -

(27r/X )
2

,
rZ = jw> tod T =

jjSi, the TEm ,n mode intensities become

/X \
2

Hx = jffikx f 1 HQ sin kxx cos kyy (19)
\2ir/

(20)

(8)

Hy
= jpiky {

I ^o cos k*x sin kyy
\27T/

Hz
= HQ cos kxx cos fc

tfy
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Ex = HyZ = jfakyZo() HQ cos k& sin kvy (21)

/X \ 2

Jy = HXZQ = jPikxZ I -
)
# sin fc^x cos ft^y (22)

\27r/

#, = (23)

The propagation term e
3^*^ has been omitted in the above equations

for brevity.

The boundary conditions are satisfied by the above intensities, since the

normal components of magnetic intensity and the tangential components of

electric intensity vanish at the guide walls. The field intensity distribu-

tions for several TEm%n modes are shown in Fig. 5. Methods of exciting

these modes are shown in Fig. 1, Chap. 18.

16.05. Rectangular Guides, TMmtH Modes. The analysis of TM modes

is quite similar to that of TE modes. For the TM modes, we have Hz
=

and Eqs. (16.04-4) and (16.04-5) may be used to express the ratio of trans-

verse electrid to magnetic intensities, thus

Hy HX

We start the analysis by assuming an axial component of electric intensity

of the form

Ez
= EQ sin kxx sin kvye'

at~ T*
(2)

This satisfies the boundary conditions, since Ez is zero at the walls of the

guide.

Substitution of Eq. (2) into the wave equation, written for the Ez com-

ponent, V2EZ
= y

2Ez , yields

T . Vy2 + k2 (3)

Equation (3) is identical to Eq. (16.04-11) for TE modes. The cutoff

wavelength is obtained in the same manner as that of the TE modes and

is found to be identical to Eq. (16.04-14), for a lossless guide, thus

X = ^ -
> f ===== (16.04-1^

k V(m/a)
2 + (n/b)

2

Again we may express F in terms of X and XQ, as follows:

(16.04-15)

Equations (16.03-15 to 19) and (16.03-21), expressing fa, Xp,
vp) vg ,

and i

in terms of X/X ,
as well as the curves of Fig. 3, apply equally well for TM

modes.
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The characteristic wave impedance of TM modes, however, differs from

that of TE modes. Insertion of T from Eq. (16.04-15) into (1) yields, for

TM modes,

Cr.r-

'
''

(*)

The characteristic wave impedance of a guide is greater than the intrinsic

impedance of the dielectric for TE modes and less than the intrinsic imped-
ance for TM modes. At very short wavelengths, such that X X

, the

characteristic wave impedance is approximately equal to 17 for both TE
and TM modes. As the impressed wavelength approaches cutoff, the value

of ZQ approaches infinity for TE modes and zero for TM modes. It is

interesting to note that ZQ for TE and TM modes has the same form of

frequency variation as the image impedance of v and T section high-pass

filters, respectively.
l A comparison of the wave-guide equations with

those of high-pass filters reveals many other interesting resemblances.

The remaining intensities are obtained by inserting Eq. (1) into 16.04-1

and 2), giving
r 3E,

7
2 - T2

Inserting Ez from Eq. (2) and using (1), we obtain for a guide with lossless

dielectric

(X

\
t<

J
EQ cos kxx sin kyy (7)

/X \ 2

Ey
=

jftiky (
J
EQ sin kxx cos kvy (8)

Eg = EQ sin kxx sin kyy (2)

Ey fa / X \2

Hx = -- = j kv [
I EQ sin kxx cos kvy (9)

ZQ ZQ \2ir/

Ex fa ( X \ 2

Hy
= = j kx ( ] EQ cos kyX sin kvy (10)

ZQ ZQ \2lT/

Hz
- (11)

1 SHEA, T. E., "Transmission Networks and Wave Filters," pp. 228-229 D. Van Nos-

trand Company, Inc., New York, 1929.
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If either kx or ky are zero, the field intensities all vanish. Hence there

cannot be a TM$,n or TMm# mode in rectangular guides comparable to

the TEQtfl mode. The T#o,i mode is therefore the dominant mode in

rectangular wave guides.

16.06. Wave Guides of Circular Cross Section. In the analysis of

circular guides, we again assume an infinitely long guide with perfectly

conducting walls and an outgoing wave with a propagation term e**~
r
*.

FIG. 6. Circular wave guide.

The curl equations (13.06-1 and 2) in cylindrical coordinates may be written

in the following form by expanding the determinant V X E, given in

Appendix III, and replacing dE/dz by YE:

IOEZ

O vO

dEz

TEp =
jap.!!* (2)

dp

ldEp = ju>iM z (3)
dp p d<f>

(4)

(5)

(6)
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For TE modes, we have Ez = and for TM modes Hz = 0. Upon
inserting Ez

= into Eqs. (1) and (2), and HZ
= Q into Eqs. (4) and (5),

we again find that the ratios of transverse components of electric to magnetic

intensity are equal to the characteristic wave impedances:

Z
<> TEmodes (7)

= Z TM modes (8)
H+ Hp ff + J

The type of solution for the wave equation in cylindrical coordinates was

discussed in Sec. 15.05. For an outgoing wave, the axial intensity com-

ponents are of the form given by Eq. (15.05-14), thus

H\ = [ClJn (kp) + C2Nn (kp)](C3 cos n<t> + C4 sin n<t>y^
Tz TE modes (9)

Eg
= [CVnt/kp) + C2Nn (kp)](C3 cosn<l> + C4 smn<t>)e>'

ut- r* TM modes (10)

If the field extends to the axis, the second-kind Bessel functions must be

discarded since they all have infinite values for zero arguments. The terms

sin n<t> and cos n< determine the angular variation of the intensities. They
are essentially the same type of variation since, by rotating the reference

axis through an angle of ir/2 radians, the sine function becomes a cosine

function and vice versa. To simplify writing the intensity equations, we

retain the cosine function and discard the sine function. The z-component

intensities are then expressed as

Hz
= ffoJn(fcp) cos nfr?*-** TE modes (11)

cos n</>^-
rz TM modes (12)

In order to have single-valued intensities, we must choose n such that

cosn< = cosn(< + 2ir). This requires that n have integer values, con-

sequently we are concerned only with Bessel functions of integer orders.

To obtain expressions for the intensities, we return to the curl equations

(1) to (6) and let Ez
= for TE modes and HZ

= Q for TM modes. For

the TE modes, we insert E+ and Ep from Eq. (7) into Eqs. (5) and (4),

respectively. For the TM modes, insert H+ and Hp from Eq. (8) into

(2) arid (1), respectively. We then have

TE modes TM modes

dHz

7
2 - T2

dp

T dHz

P (7
2 -r2

)~d^

dEz

k,2

(13)

- r2
dp

r

- r2
)

(14)
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Inserting Ez and Hg from Eqs. (11) and (12) into these expressions, with

the additional substitutions of Eqs. (7) and (8), we obtain the intensity

equations. The propagation term <P*~
T* has been omitted for brevity

and the substitutions T =
jfa, and r2 - y

2 A2 (as given by Eq. (17)

below) have been made.

TE modes

Hp
= - - HoJ'n (kp) cos rut>

HoJn (kp) sin n^

a. cos 7t0

CO/i

ff*
Pi

OJ/Z- H
ft

PI

fj
=

TM modes

2,
=

-^flo/-(*p)cOBfl*k

j?,- sm

(15)

^ = EoJn (kp)cosn<t>

C0

//p = -
PI

TT ET
/l^

= &p

HZ
= Q

(16)

In order to satisfy the boundary conditions, Ez and E+ must both be

zero at the guide wall where p = b. For TJ? modes, this requires that

/n (A*) = and for TM modes, Jn (kfy = 0. The functions Jn (kb) plotted

against (A:6) are shown in Figs. 1 and 2 in Chap. 15. There are theoretically

an infinite number of discrete values of (kb) which yield ^(kb) = and

Jn (kb) = 0. For convenience in designating the modes, the successive

TABLE 5

TE modes

Roots of Jn(kb) -

TM modes

Roots of Jn(kb) =

values of (kb) satisfying these conditions are represented by the integers

m =
1, 2, 3, etc. Hence, the designations for circular wave-guide modes

are TEn ,m and TMn>m modes. From the viewpoint of the field distribu-

tion in the guide, Eqs. (11) and (12) show that n represents the number
of full cycles of variation of Et or Hn as <f> varies through 2ir radians. The
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integer m represents the number of times E+ is zero along a radial of the

guide, the radial extending from the axis to the inner surface of the guide,

the zero on the axis being excluded if it exists. Table 5 gives the first few

roots of the equations Jn (kb) = and fn (kb) = 0.

It now remains to evaluate the propagation constant and cutoff wave-

length for circular guides.

The constant k in the above equations is related to the propagation con-

stant F in the guide and the intrinsic propagation constant 7 of the dielectric

in a manner similar to that of Eq. (16.04-11). We could obtain this rela-

tionship by the procedure used for rectangular guides, that is, by inserting

either Hz or E z from Eqs. (11) or (12) into the wave equation and solving

for F. However, this involves a little difficulty in the manipulation of

Bessel functions. A simpler procedure is to return to the treatment of

Bessel functions in Sec. 15.05, where we had previously set k2 = a* y
2

.

To obtain az ,
we recall that the Z function solution in cylindrical coordinates

is of the type Z = Cie
a** + C2e~

a
**. Since we are concerned only with a

wave traveling in the +z direction, the first term is discarded. Comparison
of the remaining term with Eqs. (11) and (12) shows that az

= F. There-

fore for either the TE or TM modes, the propagation constant becomes

k2 = r2 - 7
2

r = Vk2 + 7
2

(17)

The cutoff wavelength is obtained by writing Eq. (17) in the form

- y
2

(18)
o~

from which we obtain, for lossless dielectric,

- V (19)

Cutoff occurs when T =
0, or when ufoe = (kb)*/b

2
. Also we have w^tt =

(2,r/Xo)
2

; hence
V

^ ^
Xo = = (20)

k (kb)

The values of (kb) are given in Table 5 for various modes. The TE\,\

mode has the longest cutoff wavelength and is therefore the dominant mode
in circular guides. For this mode, we have (kb) = 1.84 and XQ = 3.416.

The propagation constant may be expressed in terms of X and X by

substituting o>V =
(2ir/X)

a and (kb)
2
/b* = (2T/X )

2
into Eq. (18), giving

the familiar expression

2ir

r = -
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Section through c-d

I53fc 4^-?E=i3\ *'S&K~

tte i*>:lf L .
" o <** > o

fi ^}_r , oo

afr

(a) TEM Mode

I ^" "~^^ p"^^~^""^^^^^^ & ^x" O *" U^ ^Jy

Y/f/S/SSSJSSSSP/JSSS//////S////////s////////s////sSj

! (b)TM
0(1

Mode

{d)TM,,Mode

Efecfrlc field lines Magnetic field lines

Fio. 7. Field patterns of various modes in circular guides.
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Since this is identical to Eq. (16.03-14), it follows that Eqs. (16.03-15) to

(19) and the curves in Fig. 3 expressing the values of ft, Ap ,
vp ,

vg ,
and a

apply. The characteristic wave impedance in circular guides is given by
Eq. (16.04-16) for TE modes and (16.05-4)'for TM modes. The field pat-

terns corresponding to several modes in circular guides are shown in Fig. 7.

16.07. TEM Mode in Coaxial Lines. The principal mode or TEM
mode is the most common of all modes. It has no cutoff frequency and is

the mode of operation of transmission lines at low frequencies or on direct

current. This mode cannot exist in wave guides since it requires two con-

ductors, such as provided by the open-wire or coaxial transmission line.

The analysis of the TEM mode affords an excellent opportunity to illus-

trate the relationships between the circuit method of approach and the

analysis based upon the field equations. In the following analysis it is

assumed that the conductors have infinite conductivity and that the dielec-

tric is lossless. The electric lines are then radial, terminating on charges on

the conductor surfaces, and the magnetic lines are concentric circles linking

the current in the center conductor. The effect of losses would be to intro-

duce a small axial component of electric intensity and the field would no

longer be a truly TEM mode, although it may closely approximate it.

In the coaxial line of Fig. 8, we have two intensities, Ep and H^. The
curl equations (13.06-1 and 2), expressed in cylindrical coordinates, become

= ->,*//, (1)
dz

(2)
dz

With a propagation term of the form c
*"'- r*

> Eqs. (1) and (2) reduce to

TEP
= jwH* (3)

T// = ja>*Ep (4)

from which we obtain the characteristic wave impedance

= (5)

H+ r jw

Solving Eq. (5) for r, we obtain

T =
jcoV^e (6)

If this is inserted into Eq. (5), there results

;
- n (7)

The propagation constant and characteristic wave impedance are there-

fore equal to the corresponding values in unbounded dielectric.
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Ampfere's law may be used to relate the magnetic intensity to the cur-

rent. For a current in the center conductor given by 7 = /o^""^, Am-

pfere's law <bH -dl = I yields ZvpH^ = I&?**"**. Solving for H+ and

inserting this into Eq. (7) to obtain Ep ,
we have

7 .

# = e*"~
r'

(8)*
2irp

(9)

The potential rise from the outer conductor to the center conductor is

f
found by inserting Ep from Eq. (9) into V = -

I Ep dp, yielding
Jb

Io
-In-V"*- 1 *

(10)
a

The characteristic impedance of a coaxial line is equal to the ratio of

voltage to current for the outgoing wave. Dividing the voltage in Eq. (10)

by the current / = 7 ^w*" rz
,
we obtain

V l
,

b
= 7 = J-ln-

/ 2* * e a

gio- (11)
a

which agrees with the characteristic impedance given in Table 1, Chap. 8.

The curl equations (1) and (2) may be expressed in terms of voltage and

current, whereupon they take on the familiar form of the differential equa-
tions of a lossless transmission line. From Eqs. (9) and (10) we obtain

Ep
= V/[p hi (6/a)]. Also, since / = /oe**~

r
*, we have from Eq. (8),

H+ = 7/2irp. Inserting these values of Ep and H+ into Eqs. (1) and (2)

gives

dV ( n b\_ _yw (.^-in -.)/ ~ywL7 (12)
dz \2ir a/

dl
v - ~

These are the transmission-line equations for a lossless line. The bracketed

term in Eq. (12) is the inductance per unit length of line, while the bracketed

term in Eq. (13) is the capacitance per unit length.
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By integrating Poynting's vector over the cross section of the dielectric,

it may be shown that the power is transmitted through the dielectric.

Equation (14.04-1) gives the time-average power through unit area of

dielectric as (Py = J^Epfl^. The direction of power flow is mutually

perpendicular to both Ep and H+ and hence is in the z direction. Dropping
the term J*~ T*

in Eqs. (8) and (9), we have, for the amplitudes, H+ =

/o/27rp and Ep
= V/i/XJo/27rp). The time-average power density is there-

fore G*T = (Jo/8?r
2
p
2
)V ///. The total power transmitted through the

dielectric is found by integrating the power density over the cross section

of the dielectric, or

PT

b

(14)
a

Since the voltage amplitude from Eq. (10) is F = (/o/27r)V /u/e In (6/a),

Eq. (14) may be expressed as

PT =* ^TVo (15)

where VQ and /o are voltage and current amplitudes. Equation (15) is

the time-average power flow in a lossless line having only an outgoing
wave. Hence, the Poynting theorem shows that the power flpws through
the dielectric of the coaxial line.

16.08. Higher Modes in Coaxial Lines. If the separation distance

between the inner and outer conductors of a coaxial line is of the order of

magnitude of a half wavelength or greater, it is possible for higher modes to

exist. The field distributions are then of the form given by Eq. (15.05-14).

It is necessary to retain the second-kind Bessel function since the field does

not extend to the axis, and therefore the singularity of this Bessel function

at the axis offers no difficulty. Choosing the cosine variation with respect

to 0, we write the axial components of intensity as

E, = [CiJn (*p) + C2Nn (kp)] cos n<tx?<*-
Tz TM modes (1)

Hz
= [CiJH (kp) + C2Nn (kp)] cos n<tx?**-

Tz TE modes (2)

To satisfy the boundary conditions for the TM modes, Ez must be zero

at the surfaces of the inner and outer conductors, i.e., at p = a and p = b.

This requires that r /? \ n *r /? \ t\

CiJn(ka) + C2Nn(ka) =0 TM modes (3)

CiJ(A*) + C2Nn(kb) -
which yields

/(ta) ATB(te)= TM modes (4;

/() ^.()
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For TE modes, the tangential electric intensity is E+. By inserting Hp

fromEq. (16.06-7) into (16.06-5), we obtain # = \]<*p/(T?
- y

2
)](dllz/dp).

FIG. 8. Coaxial line.

Consequently, dHz/dp must be zero at the guide walls in order to make

E# zero. Hence, to satisfy the boundary conditions for TE modes, it is

necessary that

Cy'n(*o) + C2N'n(ka) =
TE modes (5)

Cr,J'n (tt) + C2N'n(kV =
or

Again we have k2 = F2
7
2

,
or F = \/k2 w2

/ze for a lossless dielec-

tric, and cutoff occurs when -2

or

Xo - (7)

The difficulty arises in the evalua-

tion of k. This may be evaluated by

solving Eq. (4) or (6) either graphically

or by a cut-and-try process.

For large values of (ka) and (kb)

such that (ka) 1 and (kb) 1, the

Bessel functions may be replaced by their asymptotic expressions given in

Eqs. (15.06-3 and 4). These indicate a sinusoidal distribution of field

intensities in the radial direction. Referring to Fig. 9, we may write the

FIG. 9. Coaxial line.



SEC. 16.09] WAVE GUIDES OF CIRCULAR CROSS SECTION 341

axial component of electric intensity for TM modes in the form

Ez
= Ci sin k(p

-
a) cos n^"** (8)

where p in the denominator of Eq. (15.06-3) is treated as a constant.

Since Ez must vanish at the conductor surfaces, we have k = nnr/(b a)

where m is an integer. Consequently, the cutoff wavelength is

m

For m =
1, the distance b a must be at least a half wavelength. In

general, a given mode in a coaxial line requires a larger radius of outer

conductor than is required for the corresponding mode in a circular wave

guide.

FIG. 10. Circular wave guide general case.

16.09. Wave Guides of Circular Cross Section General Case. Circu-

lar wave guides may take any one of the following forms:

1. A hollow or dielectric filled metallic guide with the electromagnetic

field predominantly in the dielectric.

2. A coaxial line with the electromagnetic field in the dielectric between

two concentric conducting cylinders.

3. 'A conducting cylinder in a dielectric medium, with the field in the

dielectric outside the cylinder.

4. A dielectric cylinder in a second dielectric medium, with the field in

both mediums.

The first two types have been previously considered. We now turn to a

more general approach which is applicable to all four types.

Consider an infinitely long circular cylinder, designated medium 1 in

Fig. 10, which is immersed in a second medium, designated medium 2. No
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restrictions are imposed upon either medium, except that they are homo-

geneous and isotropic. We assume a wave traveling in the axial direction,

with a propagation term e**~
r-

. Equation (15.05-14) gives the general

form of the intensities in the two mediums. In medium 1, we admit only

the first-kind Bessel function to avoid infinite intensity on the axis. In med-

ium 2, however, both the first- and second-kind Bessel functions may exist;

hence the field may be represented by the second-kind Hankel function.

The second-kind Hankel function is a linear combination of the first-

and second-kind Bessel functions and its asymptotic expression for large

values of (kp) is given by #f (k2P)
= V(2M2P)e"^

2p" (2n+1)T/41
. The

exponential term may be interpreted as representing a wave traveling

radially outward from the axis. The axial intensities in the two mediums

are

= CiJn (kip) cos n<f> Ez2
= C3H (

n
2)

(k2p) cos n<f>

Hzl
= C^Jn (klP) cos n* HZ2

= C4//1
2)

(k2p) cos n<t> (1)

where the term e^~ r*
is omitted. The remaining intensity components

may be obtained by inserting Eqs. (1) into (16.06-1 to 6). We also have

k\ - r2 - 7? k\ = r2 -
T| (2)

where 71 and y2 are the intrinsic propagation constants of the mediums.

Since the axial propagation constant r must be the same in both mediums,
it follows that ki and k2 are interrelated. Combining Eqs. (2), we obtain

k\ + 7? - k\ +

, _ , 2
r Ti ~~T2 r 72= r i 2

The tangential components of electric and magnetic intensity are con-

tinuous across the boundary unless either medium is a perfect conductor.

The field vanishes in a perfectly conducting medium, while in the non-

conductor, the tangential electric intensity is zero and the tangential mag-
netic intensity is equal to the surface-current density. The tangential

magnetic intensity satisfies the relationship dHz/dp = 0. Pure transverse-

electric and transverse-magnetic modes can exist only when both mediums
are lossless dielectrics, or when one medium is a lossless dielectric and the

other is a perfect conductor.

Assuming finite conductivity of both mediums, the tangential components
of Eg and Hz on either side of the boundary are equated, giving

(4)
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Similar expressions may be obtained by equating E+ and H+ on either side

of the boundary. These relationships determine the values of (fab) and

(k2b). They may be solved either graphically or by a cut-and-try process.

Let us consider the special case in which medium 2 is a perfect conductor.

This corresponds to the circular guide considered in Sec. 16.06. For this

case, there is no field in medium 2. At the boundary in medium 1, we have

E z
= for TM modes and dHz/dp = for TE modes. Referring to Eq.

(1), it is apparent that these conditions are satisfied by Jn (k\b) = for

TM modes and J'n (kib)
= for TE modes. This is in agreement with the

relationships previously derived for circular guides. If the guide walls are

not perfectly conducting, there will be a field which penetrates into the

conductor. It would then be necessary to solve Eqs. (4) for (fab) and

(k2b) and these values, in turn, are inserted into Eq. (3) to evaluate F.

If the guide wall is a good conductor, the only appreciable effect upon F

would be to introduce a small attenuation constant.

Now consider the reverse situation, i.e., medium 1 is a perfectly conduct-

ing cylinder and medium 2 is an insulating medium. The field exists only

in medium 2. It may be shown 1 that only the symmetrical modes, i.e.,

those corresponding to n =
0, can exist at any appreciable distance from

the source. We will consider only the transverse magnetic modes, that is,

those modes having Hz
= 0. To evaluate F it would be necessary to

set E+ = and Ez
= 0. It can be shown that these are satisfied if

H (

Q\k2b)/H
(

i\k2b)
== which, in turn,_requires that k2 = 0. Conse-

quently, Eq. (2) gives F = 7 =
./w v /i2*2 and the propagation constant

F is equal to the intrinsic propagation constant of the dielectric. The field

then propagates with a velocity equal to the velocity of light in the dielec-

tric. The single-conductor transmission line is of little practical value,

since the fields extending radially outward will eventually terminate on

some conducting medium which makes it effectively a two-conductor trans-

mission line.

The final illustration is that of a cylindrical dielectric rod in a second

dielectric medium. In Chap. 14, we found that it is possible for a wave

to be totally reflected at a boundary surface between two dielectric mediums.

This occurs if the incident wave is in the medium having the higher dielec-

tric constant and the angle of incidence exceeds the angle of total internal

reflection. By utilizing this principle, a wave guide may be constructed of

a rectangular dielectric slab without any conducting boundaries. If the

slab has the proper thickness, the wave will be reflected from wall to wall

as it propagates longitudinally down the guide. The same phenomenon
also occurs in dielectric guides of circular cross section.

1 STBATTON, J. A., "Electromagnetic Theory," chap. 9, McGraw-Hill Book Company,

Inc., New York, 1941.
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For the circular rod, the values of (kib) and (k2b) which determine the

value of F are again obtained from the boundary equations. The circu-

larly symmetrical case (n = 0) is the simplest, since the Bessel and Hankel

functions then reduce to zero-order functions. This is the only case in

which the wave may be either a TE or TM wave, since if n > 0, both Ez

and Hz are present. We will consider this special case, assuming that both

mediums are lossless.

In Eq. (3) we let y\ = a>
2
/iiei and -yjj

= co
2
/i2 2 to get

2 2

from which we obtain

1 KW) 2 -
(A-26)

a

W =
6^^T-~e, (6)

(kib) 2 Kk^b)
' F = \/ r CO Uii = \/ CO

jLC2 C2 (7)\ 2 \
,

2

The intensity Ez or H z in medium 2 has a Hankel function variation

which, for large values of k>2p may be replaced by the asymptotic representa-

tion

If the field is to exist predominantly in the dielectric rod, it is necessary

that &2 be imaginary or that (k%b)
2 be negative. The intensities in medium

2 are then attenuated in a direction radially outward from the surface of

the cylinder. The borderline case occurs when (k%b)
= 0. The correspond-

ing value of co, from Eq. (6), is

- .**> (9)
b v /x2 2

Hence the propagation constant is that of medium 2 and the wave travels

with a velocitott characteristic of that of medium 2. The frequency given,

by Eq. (9) canbe considered the cutoff frequency, since it is the frequency

for which the radial propagation constant in medium 2 changes from real

to imaginary, or from a phase constant to an attenuation constant. Equa-
tion (4) shows that (kib) is a solution of Jo(kib) =

0, the lowest value being

(kib)
= 2.405. This may be inserted into Eq. (9) to obtain the cutoff

frequency.
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If (&2&)
2

is very large and negative, Eq. (6) may be approximated by

I (Ml
(u)

1

a ,/ (12)
PI VMICI

i This occurs at high frequencies. The wave propagation takes place

predominantly in medium 1, with a velocity and propagation constant

determined by medium 1. The field in medium 2 decreases rapidly with

distance from the surface and therefore is confined to a thin film at the

surface of the dielectric rod.

16.10. Power Transmission Through Wave Guides. The power trans-

mitted through a wave guide and the power loss in the guide walls may be

evaluated by the use of the Poynting theorem. Assume an infinitely long

guide, or a guide terminated in such a manner as to avoid reflections at the

distant end. The guide has conducting walls and may have either circular

or rectangular cross section. In general, there are two pairs of EH vectors

which contribute to the longitudinal power flow. Thus, in rectangular

guides the two pairs are Ext Hy and Ev,
Hx ,

which are related by Ex/Hy
=

EV/HX = ZQ. In cylindrical guides, the two pairs are Ep , H<j> and E+,

HP, these being related by EP/H^ = E<p/Hp = Z .

For a lossless dielectric, the time-average power density is obtained by

inserting Z for 17 in Eq. (14.04-3), yielding

1 , .... Z*. ,.

(i)
2Z

where
|
E

\

and
|
//

| represent the resultant transverse intensities; thus for

rectangular guides |

E
|

2 =
|

Ex
|

2 +
|

Ey \

2
or

j

H
|

2 =
|
H,

\

2 +
\

Hv
2

v

Integrating Eq. (1) over the cross section of the guide yields the time-

average power flow through the guide, thus

(2)

where the symbol I da denotes integration over the cross section of the
JA

guide. For rectangular guides, the first of Eq. (2) becomes

PT =^ f fd Ex
|

2 +
|

Ey |

2
) dxdy (3)

JZo VQ /0

and for circular guides "
(4)f"jf (|P|

2/o ^o ^o



346 WAVE GUIDES [CHAP. 16

Substitution of the intensities for the TE and TM modes as given in Sees.

16.04 to 16.06, together with Z - ij/Vl -
(X/X )

2
for TE modes and

Z rjVl -
(X/X )

2
for 7W modes, into Eqs. (3) and (4), yields

l

Rectangular guides

g ^ modes (5)

Circular guides

Rectangular guides

^
Circular guides

irfo
2 /X \ 2 / X \ 2

PT -- (J> )
Jl - (- ) ^ol/n(fc6)]

2 TM modes (8)

4q \X/ *
\Xo/

1 The time-average power transmitted through the guide may also be expressed in

terms of the longitudinal intensities Ez or Hz as given by

These integrals are easier to evaluate than those of Eq. (4), particularly for the circular

wave guide. To illustrate the method, consider the TM mode in a circular guide, for

which Eq. (16.06-16) gives E, EoJn(kp) cos n<t>. Substituting this into the above equa-

tion, with Ci -
(l/2r;)(Xo/X)

2Vl -
(X/Xo)

2
, we obtain

PT - Ci^g f

d

fri/nlMt cos2 n+d+dp- rC^g fV.OWJ
1*

Jo Jo /o

The last integration is obtained from Eq. (15.10-14). For TM modes, we haveJn(kb)

0, hence

Replacing Ci by its expression yields Eq. (8). .<&

For the derivation of power transfer equations similar to those given above, see 8. A
SCBBLKUNOFF, "Electromagnetic Waves,

11

chap. 10, D. Van Nostrand Company, Inc..

New York, 1943.
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16.11. Attenuation in Wave Guides. The attenuation of electro-

magnetic waves in wave guides may result from one or more of the follow-

ing causes:

1. An impressed wavelength greater than the cutoff wavelength.
2. Losses in the dielectric.

3. Losses in the guide walls.

If the impressed wavelength is greater than cutoff, the intensities will be

attenuated even though the guide is lossless. This type of attenuation is

due to internal reflection at the entrance of the guide. The effect is similar

to the attenuation experienced in lossless filters when operating in the

attenuation band. For this type of attenuation, the propagation constant,

as given by Eq. (16.03-14), is real, and we set F =
i, as indicated in Eq.

(16.03-21). If the impressed wavelength is much greater than cutoff, a\

approaches the limiting value of

Wave guides with dimensions much smaller than cutoff are often used

as attenuators. The input and output circuits may consist of coaxial lines

which are coupled to the guide by means of either probe or loop antennas.

The attenuation can be varied by means of a sliding piston which varies

the length of the guide.

16.12. Attenuation Due to Dielectric Losses. Let us now consider the

attenuation of a wave resulting from dielectric losses. For a plane wave

traveling in unbounded dielectric, the propagation constant, as given by

Eq. (13.06-5), is 7 =
Vjfco/i(<r + >>). This may be written

JJ-V (i
- j-) - juV^t (i

- j
-

(i)
* \ / \ .

W/

The second form of Eq. (1) may be expanded by the binomial theorem. For

a low-loss dielectric, i.e., <r/we <$ 1, only the first two terms of the series

are significant. With the substitution w2
/i

= (2v/\)
2

y
these terms may be

written
. / ~ \

(2)

The phase constant is the familiar = wV^e. The attenuation constant

may be expressed as

T / ff \ W
a -- -I 1

A \W/ 2
(3)

where 17 is the intrinsic impedance of the dielectric. The approximate

power factor of a Jow-loss dielectric is P.P. = <r/w. Hence, if the power
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factor of the dielectric is known, the attenuation constant may be readily

computed from the first form of Eq. (3).

A similar approach may be used to evaluate the attenuation in wave

guides resulting from dielectric losses. The propagation constant in the

guide is

r - vy + fc
2

(4)

Inserting 7 from Eq. (1) with o>V =
(2ir/^)

2 and k2 = (2ir/>.oA we have

Expanding Eq. (5) by the binomial series and retaining the first two terms,

we obtain

r =
-

(A/Xo)
2

Hence the phase constant in the guide is ft = (27r/X)Vl (X/X )
2

. The

attenuation constant may be expressed as

-
(X/X )

2

As X/X approaches zero, the attenuation constant in the guide approaches
that for unbounded dielectric given by Eq. (3). The attenuation becomes

very large as the wavelength of the impressed signal approaches cutoff.

16.13. Attenuation Resulting from Losses in the Guide Walls. A useful

relationship may be obtained which relates the attenuation constant of a

guide to the power transmitted through the guide and the power loss. Since

this expression will be helpful in evaluating the attenuation constant result-

ing from losses in the guide walls, let us consider it for a moment.

The time-average power transmitted through the guide is expressed by
Eq. (16.10-2). The magnitude of the resultant magnetic intensity may be

written
|

H
\

=
\

HQ \e~
aiz

,
where IIo is the intensity at z = 0. Upon

inserting this into Eq. (16.10-2), we obtain

Pr = ^ |H |

2e-*'da (1)UA
The power loss per unit length of guide is the space rate of decrease of

power flow, or PL = dPr/dz. Inserting PT from Eq. (1) into this rela-

tionship, we have

P *, 7 I W 2^>"" 2ai* /7/ /O1f L "~ a!^0 I
I
"0

I

" Q** \")
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If we now divide Eq. (2) by (1) and solve for ai, we obtain the desired

relationship,

", - -^
(3)

2PT

The attenuation constant is therefore equal to the power loss per unit

length of guide, divided by twice the transmitted power. This expres-

8km is analogous to Eq. (8.03-9) which was derived for the transmission

line.

The attenuation constant resulting from the power loss in the guide walls

is found by obtaining expressions for PL and PT and inserting these into

Eq. (3). We have previously derived expressions for the transmitted power.
To evaluate the power loss in the guide walls, we first write the equations
for the electric and magnetic intensity as though the guide were lossless.

Since the walls of the guide are assumed to be perfectly conducting, the

tangential component of electric intensity at the guide walls is zero. How-

ever, there will be a tangential component of magnetic intensity which is

terminated by a current flowing on the surface of the conductor. If we now
assume that the guide walls are imperfectly conducting, the tangential

component of magnetic intensity will be substantially the same as if the

walls were perfectly conducting. We may therefore use Eq. (14.04-4) to

evaluate the power density in the imperfectly conducting walls. The power
loss per unit length of guide is obtained by integrating the power density

over the surface of the conductor corresponding to unit length of guide;

thus, from Eqs. (14.04-4) and (14.07-4), we obtain

- ^* f I I

2
L
~~2j}

*'

where Ht is the tangential component of magnetic intensity at the wall of

the guide and (R9
= V wju2/2<r2 is the skin-effect resistance of the conductor.

Inserting PT from Eq. (16.10-2) and PL above into Eq. (3), we have

(Raf\Ht
\

2
ds

2ZQ (\H\
2 da

*M

(5)

The integral in the numerator is evaluated over the surface of the guide

walls for unit length of guide, whereas that in the denominator is over the

cross section of the guide.

Let us now apply the foregoing method to the determination of ct\ for

TM modes in rectangular guides. The tangential magnetic intensities at



360 WAVE GUIDES [CHAP. 16

the walls of the guide, as obtained from Eq. (16.05-9 and 10), are

(7)

These result in a longitudinal current in the guide walls, causing the power
loss. Inserting the tangential intensities into Eq. (4), we obtain the power^

Pt _* r*teY&l

f

|V fsin'^ + A
2 faX Tj

"""* l/ 41 1 I *-'Oil "'V I D1A1 /vjf v \WU \^ rV# I Dill

LZ V2ir/ J L J Jo

/n2o m2
b

r
~

To obtain.the attenuation constant, insert PL from Eq. (8) and PT from

Eq. (16.10-7) into (3), yielding

-
(X/X )

2

In the case of TE modes, the longitudinal magnetic intensity at the guide

walls contributes to the power loss resulting from a transverse current

flowing in the guide walls. As an illustration, consider the attenuatior

in a circular guide, TEntTn mode. From Eqs. (16.06-15) the tangential

magnetic intensities are

R Yt

(10)

Inserting these into Eq. (16.13-4) yields the power loss

0?//n r/0iw\
2
r
2*

r**
PL = Jn(kb) [ r- J I & sin

2
n<<> d<t> + I fc cos

2

2 L\Ar&/ J ^o

ir6^?a

Substitution of PL from Eq. (12) and PT from Eq. (16.10-6) into Eq. (3)

yields

. <. f/X\
2

,
n2
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The attenuation constants of rectangular and circular guides for TE and

TM modes are given in Table 6. Figure 11 shows/the variation of attenua-

tion constant as a function of frequency for a circular guide 5 inches in

diameter. It is interesting to note tha/the attenuation of the TE0tm mode

in circular guides decreases indefinitely as the impressed wavelength de-

creases. This is evident in Eq. (13), since Vl -
(X/X )

2
approaches unity,

Frequency,megacYcles

Fio. 11. Attenuation as a function of frequency in a circular guide 5 inches in diameter.

while ,(\/\Q) decreases approaching zero. However, L. J. Chu has shown

that (this anomalous attenuation characteristic is lost if the guide is slightly

deformed.
)

All modes in rectangular or circular guides have an impressed wave-

length for which the attenuation is a minimum. For TM modes in either

rectangular or circular guides, the optimum wavelength is given by

(14)

(15)

^ A /opt. Vo/opt

For TE modes, we have

TV .

fopt. \/0/opt.
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where

p = 2a/b in rectangular guides TEQtn mode

p = a/b[l + (m/ri)
2
(b/d)

3
]/[l + (m/ri)

2
(b/a)] in rectangular guides

TEm ,n mode (if m ^ and n 5* 0)

p = [(kb)
2 n2

]/n
2
in circular guides TEn%m modes n -^

A plot of ( XoA) pt.
as function of p is shown in Fig. 12. As an example, the

.n mode in a rectangular guide with a ratio a/b = 0.8 has a value of

6

V

"0 2 4 6 6 10

Values of p

FIG. 12. Plot of (r-M as a function of p for rectangular and circular guides (except
\A /opt.

TE0tm modes in circular guides).

p = 2a/b = 1.6. Referring to Fig. 12, we find that minimum attenuation

occurs when (Xo/X) opt.

=
(/o//)opt.

= 2.75.

For a given guide perimeter, the dominant mode in circular guides

(TEi t i mode) has the lowest attenuation. The next lowest is the TEQ ,i

mode in rectangular guides having a ratio b/a = 1.18, the attenuation con-

stant being about 85 per cent greater than the TE\ t \ mode in circular

guides. We might have anticipated lower attenuation in circular guides,

since the transmitted power flows through the cross section of the guide,

whereas the
powder loss occurs in the guide walls. Consequently, as /a

rough criterion, the ratio of cross-sectional area to perimeter should be a

maximum for minimum attenuation, a condition which is satisfied by
circular guides.
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It is interesting to compare the attenuation in circular wave guides with

the attenuation of the principal mode in coaxial lines. Assuming the

optimum ratio of b/a = 3.6 for the line, and the dominant mode in the

circular guide, the attenuation ratio, in terms of the impressed wavelength
X and the cutoff wavelength X in the guide, is

-
(X/Xp)*

( }
0.418 + (X/X )

2

The attenuation constants are equal when X/Xo = 0.88. For a larger

wavelength ratio, the coaxial cable offers lower attenuation, whereas for a

lower ratio the guide has less attenuation. As X/X > 0, the attenuation

ratio given in Eq. (16) approaches the value 4.3. In the wavelength range
where guides have approximately the same dimensions as coaxial cables,

the guides are preferable, since they offer the advantages of less copper

and simpler construction.

Some wave guide modes are relatively more stable than others with slight

deformations of the guide walls. L. J. Chu * has shown that, for guides of

elliptical cross section, (1) all circular modes, i.e., modes in which n =
0,

are stable under slight changes of cross section along an axis of symmetry,

(2) the TEQt i and TM0t i modes are stable under slight changes in cross

section, and (3) with the exception of (1) and (2) above, all modes are

unstable under cross-section deformations. Also, as previously stated, the

attenuation characteristic of TE0tn mode changes with deformations.

1 CHU, L. J., Electromagnetic Waves in Elliptic Hollow Pipes of Metal, Jour. Applitd

Phys., vol. 9, pp. 583-591; ft'ptrntber, 1938.
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TABLE 6. SUMMARY OF WAVE GUIDE FORMULAS

[CHAP. 16

Cutoff wavelength rectangular guides

Cutoff wavelength circular guides

Where
Jn(kb)

=* TM modes

J'n(kb) =0 TE modes

Phase constant in the guide (longitudinal)

Wavelength in the guide (longitudinal)

Phase velocity (longitudinal)

Group velocity (longitudinal)

Velocity relationships

Characteristic wave impedance TE modes

Attenuation at wavelengths longer than cutoff

(nepers per meter)

Attenuation due to dielectric loss

(nepers per meter)

Power transmitted

Xo -

Xo -

/

V(m/a)2 + (n/6)
2

2*6

^777

pi
-- -i/1 - f

J

vp f\p

v. ^ZtVV/l { )
api/dta \ VXo/

-
(X/Xo)

2

Characteristic wave impedance TM modes ZQ =ij-i/l
(~~~)

oti \/(~~)
~"^

X ^ VXo/

2Vl -
(X/X )

2

Rectangular Guides

Circular Guides

Pr ^ "odes
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where

1.59

~&7

f-r-(
=y+ iPaLaVn/ J

TABLE 6. SUMMARY OF WAVE GUIDE FORMULAS (Continued)

Attenuation in hollow guides due to losses in the guide walls (decibels per meter)

Rectangular Guides

TEo,n modes

TEm ,n modes

modes

TEn.m modes

.m modes

0.79X /Mr f/6\ 3
2 ^ 2 1

-^73-^ \/ I- I m2
-f n2

2b*v \a2XL\a/ J

Circular Guides

0.79

0.79

079

6

<r2X

Coaxial Line

21n-
a

Mr - relative permeability (unity for non-magnetic materials)

PROBLEMS

1. A hollow rectangular guide has dimensions a = 4 cm, and 6 = 6 cm. The frequency
of the impressed signal is 3,000 megacycles per sec. Compute the following for the

3Wo,ii 3Wi,ii and TEz.z modes:

(a) Cutoff wavelength.

(6) Wavelength parallel to the guide walls for modes in the pass band.

(c) Phase velocity and group velocity for modes in the pass band.

(d) Characteristic wave impedance for modes in the pass band.

(e) Attenuation constant for modes in the attenuation band.
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2. Show that the group velocity in a lossless wave guide is given by

by inserting f from Eq. (16.03-11) into Eq. (14.14-7).

3. Starting with the axial magnetic intensity, as given by Eq. (16.04-8), derive expres-

sions for the remaining electric and magnetic intensities in a rectangular guide for

the TE modes.

4. Show that if both Et and Ht are zero in a rectangular guide, all of the other intensities

are zero and hence the TEM mode cannot exist in a guide. What happens to the

axial component of electric or magnetic intensity as the dimensions of the guide are

increased indefinitely?

5. A circular wave guide is to be operated at a frequency of 5,000 megacycles per sec

and is to have dimensions such that X/\o = 0.9 for the dominant mode. Evaluate

the following:

(a) The diameter of the guide.

(b) The values of \p,
VP,

vg ,
and ZQ.

(c) The attenuation in decibels per meter for the next higher mode in the guide.

6. Starting with the axial electric intensity, as given by Eq. (16.06-12), derive the

expressions for the remaining electric and magnetic intensities in a circular guide for

the TM modes.

7. The attenuation of a hollow wave guide is to be compared with that of a dielectric-

filled guide at a frequency of 3,000 megacycles per sec. Both guides are silver

plated and have rectangular shape with a height equal to two-thirds of the width.

The guides are operated in the T^o.i mode and are each designed such that X/X

0.8. The dielectric-filled guide has a dielectric having the properties cr * 2.5 and

<r/uc
= 0.0005.

(a) Specify the dimensions of the two guides.

(6) Compute the attenuation constants and the attenuation in decibels per meter.

8. Compute the cutoff wavelength and corresponding frequencies for the first three

higher modes in a coaxial line having dimensions a 3 cm, 6 = 4 cm, considering

only those modes of the type expressed by Eq. (16.08-8).

9. A rectangular wave guide is designed to have a ratio X/Xo= 0.8 at a frequency of

5,000 megacycles per sec in the T#o,i mode. The guide has a height to width ratio

of 0.5. The time-average power flow through the guide is 1 kw. Compute the

maximum values of electric and magnetic intensities in the guide and indicate

where these occur in the guide. Evaluate the currents in each of the side walls and

indicate the directions in which they flow.

10. Derive Eq. (16.10-6) for the power flow in a circular guide TE mode.

11. Show that V-E and V-S for TE and TM modes in rectangular guides.

12. An infinitely long dielectric slab of thickness 6 is immersed in a second dielectric

medium. Both mediums are assumed to be lossless. Show that the cut-off wave-

length for the slab as a wave guide is

Ao

Hint: Assume that at cutoff the angle of incidence in the slab is equal to the angle of

total internal reflection, given by Eq. (14.12-3) and that the wavelength normal to

the guide is 25.



CHAPTER 17

IMPEDANCE DISCONTINUITIES IN GUIDES RESONATORS

The resultant wave traveling down an infinitely long guide, which has a

aniform characteristic wave impedance, may be regarded as an outgoing
wave. Since this outgoing wave sees no discontinuity in wave impedance,
tihere is no tendency to set up a reflected wave. It is also possible to termi-

n&te a uniform guide of finite length in such a manner that the outgoing
wive sees no impedance discontinuity, thereby eliminating reflections.

TJiese two cases are analogous to the transmission line which is infinitely

Long and the line which is terminated in its characteristic impedance,

^respectively.

17.01. Effect of Impedance Discontinuities in Guides. The effect of

impedance discontinuities in wave guides is to produce reflections which

originate at the points of impedance discontinuity. The outgoing and re-

flected waves, traveling in opposite directions, produce standing waves of

electric and magnetic intensity in the guide. These standing waves are

analogous to the standing waves of voltage and current on a transmission

line resulting from an impedance discontinuity on the line.

The standing-wave ratio in the guide (ratio of the maximum to minimum
value of electric intensity) may be measured by means of a traveling detector

such as that shown in Fig. 6, Chap. 18. The methods described in Sec.

10.05 may be used to evaluate wave impedances in terms of the standing-

wave ratio. A standing-wave ratio of unity indicates that there is no re-

flected wave; hence the energy of the outgoing wave must be totally ab-

sorbed in the load. A standing-wave ratio appreciably greater than unity

indicates that the guide contains an abrupt impedance discontinuity. From
a practical point of view, it is often possible, by careful adjustment, to

obtain standing-wave ratios of the order of 1.01.

There are a number of ways of terminating wave guides so as to avoid

reflected waves. For example, a wave guide may be terminated by a

metallic horn such as that shown in Fig. 7, Chap. 21. The electro-

magnetic horn provides a gradual transformation of impedance from the

characteristic wave impedance of the guide to the intrinsic impedance of

free space. If the electromagnetic horn is many wavelengths long, there

will be virtually no reflected wave and all of the energy of the outgoing
wave will be radiated into space.

Another method of terminating a guide so as to utilize the energy of the

outgoing wave is to place a small pickup antenna in the guide and connect

357
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this, through a coaxial line, to an external load. Any one of the impedance-

matching methods described in Chap. 10 may be used to match the imped-
ance of the load to the impedance of the guide, thereby assuring maximum

power transfer from the guide to the load. To prevent loss of energy due

to radiation, the guide may be closed off by a conducting wall placed across

the end of the guide just beyond the pickup antenna. Although a pickup
antenna of this type does not provide a uniform termination across the

guide, experience has shown that it is possible to obtain a standing-wave
ratio approaching unity by this means.

Consider a wave guide which is excited in such a manner that the out-

going wave travels down the guide in the dominant mode. If the guide

contains an impedance discontinuity, the reflected wave can propagate
either in the dominant mode, or in a superposition of modes including the

dominant mode and higher-order modes. Whether or not the higher-order

modes will appear in the reflected wave depends upon the nature of the

impedance discontinuity and the dimensions of the guide.

If the impedance discontinuity is uniform across the guide, then there

is little likelihood that higher-order modes will appear in the reflected wave.

Such a uniform impedance discontinuity might arise from the use of two

different dielectric mediums in the guide, with a plane interface between

the two mediums which is transverse to the guide, as shown in Fig. 1.

If the impedance discontinuity is nonuniform, such as that provided by
an aperture or an antenna in the guide, then higher-order modes will appear
in the vicinity of the impedance discontinuity. If the dimensions of the

guide are such as to pass the dominant modes and attenuate all higher-

order modes, then the higher-order modes cannot be present in the reflected

or transmitted waves at any appreciable distance from the impedance dis-

continuity. However, if the dimensions of the guide are such as to pass

some of the higher-order modes, then the reflected wave will in all proba-

bility contain the dominant mode as well as some of the higher-order modes;
hence there will be energy transfer from the dominant mode to the higher-

order modes.

17.02. Wave Guide with Two Different Dielectric Mediums. Con-

sider an infinitely long guide which contains two different dielectric mediums
with a plane interface normal to the axis of the guide as shown in Fig. 1.

It will be assumed that the outgoing, reflected, and transmitted waves all

propagate in the dominant mode. The outgoing and transmitted waves
are assumed to travel in the z direction and therefore contain the propaga-
tion term e

rz
, while the reflected wave travels in the +z direction and con-

tains the propagation term e~~
r
*.

For either a TE or TM mode in a rectangular guide, there will be two

pairs of transverse intensity components which contribute to the longi-

tudinal component of Poynting's vector. These are Ex ,
Hv and Ev,

Hx .



SEC. 17.02] TWO DIFFERENT DIELECTRIC MEDIUMS 359

The intensities of the outgoing and reflected waves for the first pair in the

medium 1 may be represented by

< Ex =(Ae
r* + Be- r

)f(x,y) (1)

(2)Hy
= (A f - -?- e~

r
Af(x, y)

\Z i ZQI /

Tke time function 4** has been omitted in the above equations for brevity,

and the transverse spatial distribution function f(x, y) may be obtained

from Eqs. (16.04-21) for TE modes or (16.05-7) for TM modes.

FIG. 1. Wave guide with two different dielectric mediums.

The A and B coefficients in Eqs. (1) and (2) may be evaluated in terms

of the surface intensities by the methods used for transmission lines in

Sec. 8.02 or for plane-wave reflections in Sec. 14.05. The wave impedance

terminating medium 1 is the characteristic wave impedance Z<>2 of the

second medium. Letting EXR be the value of Ex at the interface between

the two dielectric mediums, the A and B coefficients are given by the

expressions.
j? _ / ?--\ v _ / 7.-.\

(3)
2 V W 2 \ Z02

Upon inserting these into Eqs. (1) and (2), we obtain

Equations (4) and (5) are analogous to Eqs. (14.05-2 and 3) for the reflec-

tion of uniform plane waves. In order to satisfy the boundary conditions,

the tangential electric and magnetic intensities must be equal on either

side of the boundary surface between the two dielectric mediums. Since

EXR is the value of Ex at the boundary surface in medium 1, it must like-

wise be the value of Ex at the boundary surface in medium 2. The intensi-
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ties of the outgoing wave in medium 2 may therefore be written

& =ExRc
l

'*f(x,y) (6)

'7(*,y) (7)
^02

Expressions similar to those given by Eqs. (1) to (7) may be written for

the Ey,
Hx components of intensity. The reflection and transmission coeffi-

cients are given by Eqs. (14.10-17 and 18) which, for this case, become

R =
02

,^x
r = ------

(9)*
r/ i r/

^ '

^02 ~f~ ^01

If both mediums are lossless dielectrics, the characteristic wave impedances
are given by Eqs. (16.04-16) for TE modes and Eq. (16.05-4) for TM
modes.

When Eqs. (4) and (5) arc expressed in hyperbolic form, they become

/ ZQI \
Ex = ExR

(
cosh IV + sinh T,z

)
f(x, y) (10)

\ ^02 /

Jji
/ r? \

Hy
=

(
cosh IV +~ sinh IV

) f(x, y) (11)
^02 \ ^01 /

and the wave impedance for the transverse components of intensity may
be written

17.03. Wave Guide with a Perfectly Conducting End Wall. The rela-

tionships derived in the preceding section apply equally well if medium 2

is a dielectric or a conducting medium. As a special case, consider a rec-

tangular guide which has a lossless dielectric and perfectly conducting side

walls. The guide is also assumed to be terminated by a perfectly conducting
end wall, which we designate as medium 2. We then have FI =

jf3i,

Zo2 =
0, and EXR = 0. Making these substitutions in Eqs. (17.02-10) to

(12), and using HUR = EXR/%02 to eliminate the indeterminate, we obtain

Ex = jHyRZ01 sin ft* f(x, y) (1)

Hv
= HyRcaaftizffay) (2)

pi

Z = ~ = jZol tw/3iZ (3)
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Equations (1) and (2) are the equations for standing waves of electric

and magnetic intensity in the guide. The standing waves are shown in

Fig. 2. These equations and the standing-wave patterns are similar to

those for the voltage and current on a short-circuited lossless transmission

line.

'////////////////////////////////////////

FKS. 2. Standing waves in a guide.

The wave impedance given by Eq. (3) is reactive, indicating that the

electric and magnetic intensities are in time quadrature and that the time-

average power is zero. The variation of reactance as a function of distance

z from the end wall (or as a function of ftz) is similar to that shown in

Fig. 5, Chap. 8.

17.04. Impedance Matching Using a Dielectric Slab. In transmission-

line theory it was shown that a quarter-wavelength section of line may be

used to obtain an impedance match if the generator and load impedances

are pure resistances. If a wave guide contains two different dielectric

FIG. 3. Impedance matching by use of a quarter-wavelength dielectric slab.

mediums, it is possible to obtain an impedance match and thereby avoid

reflections by interposing a dielectric slab between the two original dielectric

mediums, as shown in Fig. 3. The dielectric slab must be a quarter-

wavelength thick (as measured in the guide) and have a characteristic

wave impedance given by

(i)
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If the impedances are matched, there will be an outgoing wave in medium

1, but no reflected wave. All of the energy of the outgoing wave will then

be transmitted to medium 3.

17.05. Apertures in Wave Guides. If a wave guide contains a non-

uniform discontinuity, such as the step discontinuity of Fig. 4 or the aper-
tures of Fig. 5, new modes may appear in the reflected and transmitted

waves which are not present in the outgoing wave.

Assume that the outgoing wave in Fig. 4 propagates in the dominant
mode and that the dimensions of the guide are such as to attenuate all

higher-order modes. Field distributions corresponding to higher-order

-01

Outgoing wave-

Ref/ecfedwave
^Transmitted

wave

(a)

lr

(b)

FIG. 4. Wave guide with a step discontinuity and equivalent circuit.

modes may then appear in the vicinity of the aperture, but they will not

exist at any appreciable distance away from the aperture. Under these

conditions, the higher-order modes represent reactive energy storage, which
is similar to the energy storage in a lumped inductance or capacitance.

Thus, a step discontinuity, such as that shown in Fig. 4, may be represented

by two transmission lines, having different characteristic impedances, which
are joined together with a lumped capacitance at the junction.

If the dimensions of the guide of Fig. 4 are such as to pass higher-order

modes, then the reflected and transmitted modes will probably contain the

allowed higher-order modes as well as the dominant mode. The step dis-

continuity then serves to convert energy from the dominant mode (in the

outgoing wave) into higher-mode energy (in the reflected and transmitted

waves). The equivalent circuit shown in Fig. 4b is not valid if the dimen-
sions of the guide are such as to pass the higher-order modes.

Apertures, such as those shown in Fig. 5, may have either inductive or

capacitive characteristics. If the electric-intensity vector is parallel to the

aperture sides, as shown in Fig. 5a (TE .i mode assumed), the currents can
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flow vertically in the aperture wall to terminate the magnetic field. The
reactive energy is then largely in the magnetic field and the equivalent

circuit consists of a transmission line shunted by an inductance.

On the other hand, if the electric-intensity vector is perpendicular to the

sides of the aperture, as shown in Fig. 5b, the current flow in the aperture

wall is interrupted and an electric field appears across the gap. For this

condition, the reactive energy storage is in the electric field and the aperture

appears capacitive. The equivalent circuit then consists of a uniform line

shunted by a lumped capacitance.

T
(a) (b) (c)

FIG. 5. Apertures in wave guides and their equivalent circuits (for the dominant mode).

The aperture shown in Fig. 5c may be either capacitive or inductive,

depending upon the relative dimensions of the width and height of the

aperture. By properly proportioning the aperture, the equivalent induc-

tive and capacitive reactances may be made equal and the equivalent circuit

is analogous to an antiresonant parallel L-C circuit. Since the impedance
of such a circuit is very high, it has very little shunting effect and the wave

will therefore pass through the aperture almost as though the aperture

were not present.

17.06. Practical Aspects of Resonators.1 If a wave guide, excited from^

a microwave source, is terminated in a conducting end wall, there will be

nodal planes of electric intensity at distances from the end wall correspond-

ing to 2 = nXp/2, where n is any integer and Xp is the wavelength for the

given mode in a direction parallel to the guide walls. A second conducting
end wall may be added so as to coincide with the nodal plane of electric

intensity without altering the field distribution between the two end walls.
'

It is assumed, of course, that the exciting antenna is in the guide between

the two end walls. The totally enclosed guide then becomes a resonator

1 WILSON, I. G., C. W. SCHRAMM, and J. P. KINZER, High-Q Resonant Cavities fo?

Microwave Testing, Bell System Tech. J. t vol. 25, pp. 408-434; July, 1946.
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with discrete resonant frequencies and resonance properties somewhat simi-

lar to those of the resonant line or the parallel L-C circuit. It is not neces-

sary, however, that a resonator have a simple geometrical shape, such as

that described above. In fact, any closed conducting surface may be con-

sidered to be a resonator, regardless of shape.
^ A given resonator has theoretically an infinite number of resonant modes.

Each mode corresponds to a definite resonant frequency (or wavelength).

If the exciting source has a frequency differing appreciably from any of the

-Input

Inpul

FIG. 6. Methods of exciting a resonator.

resonant frequencies, the electromagnetic field in the resonator will be

extremely small. However, as the frequency of the impressed signal ap-

proaches one of the resonant frequencies, pronounced electromagnetic oscil-

lations appear, as evidenced by relatively large standing waves of electric

and magnetic intensity in the resonator. The maximum amplitude of the

standing wave occurs when the frequency of the impressed signal is equal

to a resonant frequency. In general, the various resonant frequencies are

not harmonically related, although in exceptional cases they may be har-

monic. Harmonic resonant frequencies are most likely to occur in the

rectangular and spherical resonators. The mode having the lowest resonant

frequency (or the longest wavelength) is known as the dominant mode.

17.07. Methods of Determining the Resonant Frequencies. There are

a number of ways of evaluating the resonant frequencies of a resonator.

One method, which is particularly applicable to resonators of simple geom-

etry, consists of writing the field-intensity equations as outgoing and re-
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fleeted waves in the manner described in Sees. 17.02 and 17.03. The reso-

nant frequencies are then determined by the requirement that the tangential

electric intensities must be zero at the boundary walls (assuming perfectly

conducting walls). Another way of stating this requirement is that the

wave impedance must be zero at the resonator walls.

A useful resonance criterion states that if a pure reactance circuit is

broken into at any junction, such as at ab in Fig. 7a or 7b, resonance occurs

*l A
2

oo
oo

b

(a)

a

-x, x
2
-

b

(b)

a/j

(c)

FIG. 7. Resonance occurs when X\ = X%.

at that frequency for which the reactances are equal in magnitude but

opposite in sign, i.e., when X l
= -X2 . This criterion may be applied to

a lossless resonator by writing an expression for the reactance looking both

ways at the plane ab in Fig. 7c. Resonance occurs when these reactances

are equal and opposite.

A more general method of determining the resonant frequencies consists

of solving Maxwell's field equations to obtain the field intensities which

satisfy the given boundary conditions. The boundary conditions deter-

mine the resonant frequencies.

Another method is based upon the fact that at resonance the peak energy

storage in the electric and magnetic fields are equal. Consequently, if

expressions can be Obtained for the energy storage in the electric and mag-

netic fields, these can be equated to obtain an expression which can be

solved for the resonant frequency.
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Finally, certain types of resonators have a construction similar to that

of the coaxial line. These resonators may be treated by the transmission-

line methods described in Sec. 10.03. In some cases it is possible to use

approximate formulas to evaluate the equivalent inductance and capaci-

tance of the resonator. The resonant frequency is then determined by

the familiar relationship wr
= 1/VLC.

A reentrant resonator is one in which the metallic boundaries extend

into the interior of the resonator. Several different types of reentrant

resonators are shown in Fig. 8. The resonators of Fig. 8a and 8c are

(a)

(c)

FIG. 8. Reentrant resonators.

similar to those used in klystron oscillators. Figure 8b shows a resonator

which is essentially a coaxial line terminated by a lumped capacitance

(the capacitance across the gap between the center conductor and the end

wall) . The resonator of Fig. 8d is spherical in shape and has conical dimples.

It is sometimes convenient to represent a resonator by an equivalent

parallel R-L-C circuit. To obtain the equivalent inductance, the energy

storage in the magnetic field is first evaluated. This energy storage is

equated to %LI2
,
where L is the equivalent inductance and / is the current

in one of the resonator walls. The equivalent capacitance is obtained by

evaluating the energy storage in the electric field and equating this to

%CV2
,
where V is the voltage difference between two opposite points on

the resonator walls, taken where the voltage difference is a maximum.

An equivalent shunt resistance R may be evaluated by expressing the

power loss in the resonator as PL = V2
/2R, yielding R = V2

/2PL . If

the power loss and voltage are known, the shunt resistance can be deter-

mined. The values of R, L, and C in the equivalent circuit of a resonatoi
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are sometimes useful in appraising the over-all merits of the resonator.

For example, the same resonant frequency can be obtained with a wide

variety of resonator shapes provided that the L-C product is held constant.

However, the Q of the resonator increases with L; hence a high L/C ratio

results in a high Q.

An interesting and useful principle of similitude states that if two reso-

nators have identical shapes but different scale dimensions, the resonant

frequencies of the resonators are inversely proportional to their linear dimen-

sions. If it is desired to construct a resonator having a given shape and

resonant frequency, an experimental resonator may first be constructed

having the desired shape and approximate size. The resonant frequency

may then be measured, and the ratio of the experimental resonant frequency
to the desired resonant frequency gives the scale factor to be used in con-

structing the desired resonator.

17.08. Reactance Method of Determining the Resonant Frequencies.
Consider a rectangular resonator as shown in Fig. 7c, with perfectly con-

ducting walls and a lossless dielectric. At the resonant frequency the

reactances X\ and X% looking in opposite directions from a point in the

plane ab are equal in magnitude and opposite in sign. Let us now transfer

our point of observation to the right-hand wall. The reactance X2 look-

ing to the right (into the perfectly conducting end wall) is zero. Conse-

quently, at. resonance, the reactance X\ looking to the left must likewise be

zero. Applying Eq. (17.03-3), we obtain

Xi = jZ tan pic = (1)

where c is the length of the resonator. Equation (1) is satisfied when

Pic = vp or Pi =
PTT/C, where p is any positive integer.

Our analysis of wave guides gave the z-directed propagation constant in

a lossless rectangular guide as

A*-V (2)

This is likewise the propagation constant in the Z direction for the reso-

nator. At the resonant frequency we have from Eq. (1), Pi =
pir/c.

Since Pi is given by an expression similar to the expressions for kx and kyt

we let Pi = kg) obtaining

WTT nir pir

Ky = ' Kg =
a b c

Inserting kz for Pi into Eq. (2) and solving for the resonant frequency

/r,
we obtain

h tf + *? (4)
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where vc = l/V/i. The substitution co^e = (27r/Xr)
2
yields the resonant

wavelength

.

V(m/a)
2 + (n/6)

2 + (p/c)
2

(5)

In these equations vc and X r are the velocity and wavelength for the

given signal in unbounded dielectric.

Modes in rectangular resonators are designated as either TEmtntp or

TMmtntp modes. In conformity with the wave-guide terminology, the

TE modes are characterized by Ez
=

0, whereas the TM modes have

Hz
= 0. It is possible, of course, for TE and TM modes to exist simul-

taneously in the resonator. The integers w, n, and p represent the half-wave

periodicity in the x, y, and z directions, respectively. Since Eqs. (4) and

(5) are valid for either TE or TM modes, it follows that there are two

possible modes for every resonant frequency, one of these being a TE mode
and the other a TM mode. An exception occurs when any one of the

integers is zero. Modes of the type Tl?o,n,p can exist, but TMQtn tp modes

cannot exist. At least two of the integers w, n, and p must have values

greater than zero in order for the field to exist. A single resonant fre-

quency which has two or more modes of oscillation is known as a degenerate

frequency. In rectangular resonators, all resonant frequencies for which m,

n, and p have non-zero values are twofold degenerate.

The lowest resonant frequency, i.e., the frequency of the dominant mode
for a rectangular resonator, occurs when the integer associated with the

smallest dimension is zero and the other two are unity. Thus if a is the

smallest dimension, the !T&o,i,i mode is the dominant mode, with

For a cube, we have a = b = c and Xr
= \/2a, or the resonant wave-

length is equal to the length of the diagonal of one face of the cube.

17.09. Rectangular Resonator Solution by Maxwell's Equations.
Let us now consider the analysis of the rectangular resonator from the

viewpoint of Maxwell's equations. Again we assume that the resonator

walls are perfectly conducting and that the dielectric is lossless. We start
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the analysis by assuming electric-intensity components which satisfy both

the boundary conditions and the divergence equation. These are

* Ex = E\ cos kxx sin kyy sin kgz

h
Ey

= E2 sin kxx cos kyy sin kzz
'

(1)

Ez
= Z?3 sin fcjo; sin kyy cos fc^

where the time function ej<ai has been omitted for brevity. The insertion

of these into the divergence equation V-E =
yields

-f- (2)

This imposes a restriction upon the values of E\, E2 ,
and /?3 . If we had

assumed all sine terms or all cosine terms in Eq. (1), these would not have

satisfied the divergence equation and hence such a field could not exist.

FIG. 9. The rectangular resonator.

, In rectangular coordinates the wave equation may be written for

3omponent, such as V2EX = y*Ex . Inserting Ex from Eq. (1) into the

wave equation, together with y
2 = o&ic =

(2?r/Xr)
2

,
we obtain the res

onant frequency and wavelength

(3;

Xr

V(m/a)
2 + (n/b)

2 + (p/cf

These are identical to Eqs. (17.08-4 and 5),

(4
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The magnetic intensities may be readily obtained by inserting the electric

intensities given by Eq. (1) into the curl equation (13.06-1). This process

yields

.
fHx =-:

- sm kxx cos kyy cos kzz

fan

(kxE3
- kzEi)Hy

=-
;

- cos kxx sin kyy cos kzz (5)

Hz
=- cos kxx cos

fcj,!/
sin

For transverse-electric modes, one of the coefficients EI, E2 ,
or E^ must

be zero, whereas for transverse magnetic modes, one of the coefficients of

the magnetic intensities must be zero.

If any one of the integers m, n, or p is zero, the corresponding k is

also zero and two of the components of electric intensity in Eq. (1) vanish,

leaving the intensity component which is polarized in the direction of the

zero integer axis. For example, the TE0tn ,p mode has Ev
= Ez

=
0, and

only Ex exists. If two of the integers are zero, all of the field intensity com-

ponents vanish and consequently there can be no such mode of oscillation.

If we apply the resonance criterion shown in Fig. 7 to a lossless transmis-

sion line which is short-circuited at both ends, we find that resonance occurs

when tan $1 = 0, where / is the length of the line. This requires that

(ft
= nvj or =

rnr/l, where n is any integer. The resonant wavelength
is then

21

Xr
= -

(6)
n

Comparison of Eqs. (4) and (6) shows that transmission-line resonance

may be regarded as a special case of Eq. (4) in which two of the integers

are zero. Hence, resonance on a transmission line may be viewed as an

oscillation in one degree of freedom (the longitudinal direction). Resonatoi

oscillations, on the other hand, may have either two or three degrees of

freedom. Oscillations in two degrees of freedom occur when one of the

integers is zero, and in three degrees of freedom when none of the integers

is zero.

The resonant frequencies or wavelengths of a rectangular resonator may
be represented by the lattice structure shown in Fig. 10. 1 *2 This is obtained

1 This is similar to a method used for determining the resonant frequencies of an

acoustical resonator as described by P. M. MORSE in "Vibration and Sound," chap. 8

McGraw-Hill Book Company, Inc., New York, 1936.
1 CONDON, E. U., Principles of Microwave Radio, Rev. Modern Phya., vol. 15, pp. 341

389; October, 1942.
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by writing Eqs. (3) and (4) in the form

371

(7)

and plotting the values of m/a, n/b, and p/c along the x, y, and z axes,

respectively. Each rectangular box in the lattice corresponds to one set

of values of m/a, ri/b, and p/c, and the length of its diagonal is proportional

to 2fr/vc or 2/Xr . If one of the integers is zero, this is represented by a

rectangle in one of the coordinate planes and the length of the diagonal

of the rectangle is proportional to 2fr/vc or 2/Xr .

.^Length ofdiagonal/*
proportional

vc /V 222
Mode

FIG. 10. Lattice structure representing the resonant frequencies of a rectangular resonator.

The number of resonant frequencies mounts rapidly with increasing

values of m, n, and p. For example, there are four resonant frequencies

including and below the TE\ t i t \ mode, and 20 resonant frequencies below

its second harmonic, the TE2 ,2,2 mode. Most of the resonant frequencies

are nonharmonic. Each rectangular box corresponds to two modes, a TE
mode and a TM mode, both having the same resonant frequency.

If two or more resonator dimensions are equal, the integers associated

with "these dimensions are interchangeable without altering the resonant

frequency, hence their resonant frequencies are degenerate.

17.10. Q of Resonators. The Q of a resonant system is a measure of

its frequency selectivity. The Q of a resonator may be evaluated by using

the definition given by Eq. (10.02-3), i.e.,

Q
w.

PL
(10.02-3)
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where W8 is the peak value of energy storage in the field of the resonator

and PL is the time-average power loss.

In a high-Q resonator, the electric and magnetic intensities are in time

quadrature. When the electric intensity has Us maximum value, the mag-
netic intensity is zero, and vice versa. Therefore the peak energy storage

in either the electric field or the magnetic field may be used in Eq. (10.02-3).

The peak value of energy density stored in the electric and magnetic fields

may be expressed as we
=

J^c| E |

2 and wm =
y<x\ H |

2
, respectively, where

|

E
|

and
|

H
\

are the peak values of the intensities. The total energy

storage in the resonator is obtained by integrating this energy density over

the volume of the resonator, or

* /

V\
2 dr (1)

The time-average power loss is evaluated by integrating the power

density given by Eq. (14.04-4) over the inside surface of the resonator,

thus
fD /*

(2)

where (R8 is the skin-effect resistance per unit area of conductor, as given

by Eq. (14.07-4), and Ht is the peak value of the tangential magnetic

intensity.

Inserting these expressions for W8 and PL into Eq. (10.02-3), we obtain

an expression for the Q of the resonator

Q ---
(3)

The numerator of Eq. (3) is integrated over the volume of the resonator,

while the denominator is integrated over the inside surface area of the

resonator walls.

An approximate expression for the Q of a rectangular resonator may be

obtained by assuming that the standing wave of electric intensity has a

sinusoidal distribution. The value of
|

H t
\

2
at the resonator walls is

approximately twice the value of
|

H
|

2
averaged over the volume. Hence,

Eq. (3) may be represented approximately by

~ W/iT
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where r is the volume of the resonator and s is the inside surface area of the

resonator walls. Hence the Q is roughly proportional to the ratio of volume

to surface area of the resonator.

Extremely high Q's are attainable with well-designed resonators. Typical
values of Q for unloaded resonators are from 2,000 to 100,000. Silver and

gold plating are often used to reduce the skin-effect resistance and thereby

increase the Q. If sliding pistons are used to tune the resonator, the loss

due to the current flow across the contact resistance between the piston

and the resonator walls results in an appreciable lowering of the Q of the

resonator. The use of spring contact fingers of low-resistance material on

the piston helps to reduce this loss.

If there are losses in the dielectric of the resonator as well as in the reso-

nator walls, the Q for each type of loss may be computed separately. Repre-

senting these Q's by Qi and 62, the effective Q of the resonator is

(5)
i !

The resonant frequency of a resonator varies inversely as the square root

of the dielectric constant. It is therefore possible to reduce the size of a

resonator for a given resonant frequency by the use of a dielectric having a

dielectric constant greater than unity. However, all known dielectric mate-

rials have appreciable losses at the microwave frequencies, hence their use

in resonators results in a substantial decrease in the effective Q of the

resonator.

17.11. The Q of a Rectangular Resonator. The Q of a resonator may
be evaluated by the methods of Sec. 17.10. To illustrate the method, the

Q will be determined for a rectangular resonator operating in the TEQ%n ,p

mode. The intensities are obtained by setting kx = in Eqs. (17.09-1 and

5), giving
Ex = EI sin kvy sin kgz

Hy
= --

:

- sin kyy cos kzz (1)

HZ =- cos kyy sin kzz

The peak energy storage in the electric field is obtained by inserting Ex

into Eq. (17.10-1) and integrating, yielding

.jP f*
C f^

Wa
=--

1 I sin
2 kvy sin

2 kzz dy dz
JQ JQ

(2)
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The time-average power loss is obtained by inserting the tangential com-

ponents of magnetic intensity into Eq. (17.10-2) and integrating. Referring

to Fig. 9 and Eq. (1), the tangential magnetic intensities are

at side walls

, ,
kvEi

I

Hgt
I

=- sin kzz

rA*

at front and back walls

at top and bottom walls

i

Hyt |

= sin kyy cos kzz

If I

I

Hzt
|

= cos kyy sin kzz

The power loss then becomes

o ^ /^2

r,2f
c

f- *!. ,, j j.ijf'f*- i. ^^
* (W i I I A/y I I sin AJZ2 dx dz ~p ^* I I sin rcyy dx dy

\Wrp/ L JQ JQ JQ JQ

+ k% I I sin
2 &yy cos

2 izz dy dz + ky l I cos
2 Ayy sin

2 i^ dy dz
JQ JQ JQ JQ J

Performing the indicated operations and substituting the values of kx ,
ky,

and kz from Eq. (17.08-3), we obtain

Inserting W8 and PL into Eq. (10.02-3), with the substitutions w2
/ic

(27T/\r)
2 and 17

= V/I/e, gives

(p
2
ab/c

2
) + bc/2[(p

2
/c

2
) + (n

2
/6

2
)]}

For a resonator in which 6 = c, this becomes

( )

and for the cube a = 6 = c,

If the cubical resonator is excited in the TZ?o,i,i mode, we have Xr

and Q 0.
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17.12. Cylindrical Resonator. The cylindrical resonator having a cir-

cular cross section may be analyzed by the methods of Sec. 17.08. The
intensities of the outgoing and reflected waves and the wave impedance of

a circular guide with a perfectly conducting end wall may be expressed by

equations similar to Eqs. (17.03-1 to 3). Thus, for Ep and H$ we may write

Ep jH+R Z i sin ftz f(p, 4>) (1)

COB ftz f(P, 0) (2)

p
Z = -- = jZoitanftz (3)

H+

where H^R is the value of II$ at the end wall, and the function /(p, <) may
be obtained from Eqs. (16.06-15 or 16). Similar expressions may be written

for the E+ 9
Hp pair, the impedance being the same as that given by Eq. (3).

Resonance occurs when the second conducting end wall is at a point of

zero impedance. This requires that tan ftc = 0, where c is the axial length

of the resonator. This requirement is satisfied by ftc = pir or ft = pn/c,

where p is any integer. An expression for ft in circular guides or resonators

is obtained by setting T =
jfa in Eq. (16.06-19), yielding

The substitutions ft =
pir/c and o^/ie

= (27r/Xr)
2
yield the resonant fre-

quency and wavelength,

i / /nr*\ 2 /I.M2

(5)

X
27T

r

The values of (kb) are the roots of Jn (kb) = for TM modes and of

J'n (kb)
= for TE modes, as given in Table 5, Chap. 16. In circular reso-

nators the modes are designated TEntm,p and TMn ,m tp- The integer n

determines the periodicity in the < direction [see Eqs. (16.06-15 and 16)],

m denotes the number of zeros of electric intensity in the radial direction

(exclusive of the zero on the axis), and p is the number of half wavelengths
in the axial direction.. Since the values of (kb) are different for TE and

TM modes, the resonant frequencies do not have the type of degeneracy
found in rectangular resonators.

For n = the electric intensity has a radial distribution corresponding
to a zero-order BesseLfunction and there is no variation of the field in the

direction. For TM modes we may also have p =
0, corresponding to
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uniform intensity in the axial direction. The resonant wavelength of

TM
,m ,o modes is 2wb

^r = 7777* (7)
(kb)

The TM0,1,0 mode has a value (kb)
= 2.405 and a resonant wavelength of

Xr
= 2.616. For the TM ,2,o mode we have (kb) = 5.520 and Xr

= 1.146.

For TE modes n may be zero but p must have nonzero integer values.

The TEi.i.i mode has a value of (kb)
= 1.84 and

X _
V(T/c)

2 + (3.3S/6
2
)

The resonant wavelength of the TEi t i t i mode is less than that of the TAT
,i ,o

mode if c < 2.026.

The n?o,m,p modes in circular resonators are unique in that no axial

currents flow in the side Avails of the resonator and there are no currents

circulating between the end walls and side walls for these modes. Conse-

quently, resonators operating in any one of these modes may be tuned by
means of a sliding piston without appreciably lowering the Q. The piston

may be loose fitting in order to discourage undesired modes. The T/?o,i,i

mode has a value of (kb)
= 3.832 and X r

= 2ir/V(*/c)
2 + (14.70/6

2
).

17.13. Q of the Cylindrical Resonator. The Q of the cylindrical resonator

will be derived for the TAf ,w,o mode. This mode has a radial variation

of intensity corresponding to the zero-order Bessel function, no circum-

ferential variation, and no variation axially. The intensities, as obtained

from Eqs. (16.06-16), are *

Ep
= -j-^/o(*p) (1)

/c

E, = EoJ (kp) (2)

U .

H*= -J-EJM (3)
k

From Eq. (15.10-4), we obtain Jo(fcp)
=

Ji(kp), and for convenience

we write H+ as H+ = HoJi(kp). The peak energy storage in the magnetic
field is obtained by inserting H^ into Eq. (17.10-1), yielding

(4)
o

The integration is given by Eq. (15.10-14). Substituting

J' (kb) - -
J^Jfcb)

and remembering that /o(&b) = for TM modes, we obtain
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Equation (4) then becomes

W. = S^jfttt) (5)

The power loss is obtained by inserting H^t from Eq. (3) into (17.10-2),

giving

PL = ~^ [2*bcJ\(kb) + 2 f
Jo

(6)

The Q for the TA/o.w.o modes then becomes

0}rW8 TTTjbc

A similar derivation for the !TA/o,w ,p modes yields

wnbc
Q = ----

(8)

+ 26)

17.14. The Spherical Resonator. Since the sphere has the highest

ratio of volume to surface area, it offers attractive possibilities as a high-Q

resonator. In the following analysis we shall consider the natural modes

of oscillation inside of a perfectly conducting spherical shell with a lossless

dielectric. The analysis of the oscillating sphere has been treated by
Debye,

1

Stratton,
2
Condon,

3 and others. The complete analysis is beyond
the scope of this text and theref6re we shall draw upon the treatment given

by Condon.

The vector intensities in the resonator may be constructed from a scalar

wave function U which is similar to the solution of the scalar wave equation

given by Kq. (15.12-21), except that the expression for U is multiplied by

(*r).

U =
[(kr)jn (kr)]P%(cos &)[A cos m<t> + B sin m<t>] (1)

where jnCfcr) is the spherical Bcssel function defined by Eq. (15.08-1) and

PJT(cos 0) is the associated Legendre function described in Sec. 15.12.

For brevity, we let Ynm = PJ?(cos 6) (A cos m<t> + B sin ra</>) and Eq. (1)

then becomes

U= (kr)jn(kr)Ynm (2)

1 DEBYE, Der Lichtdruck auf kugcln von bclicbigem Material, Ann. Physik, vol. 30,

p. 57; 1909.
2
STRATTON, J. A., "Electromagnetic Theory," chaps. 7 and 9, McGraw-Hill Book

Company, Inc., New York, 1941.
8 CONDON, E. U., Principles of Microwave Radio, Rev. Modern Phys., vol. 14, pp. 341-

389; October, 1942.
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In spherical systems the TE mode is characterized by Er
= and the

TM modes by Hr
= 0. Condon has shown that the following equations

express the intensities in terms of the scalar wave function,

TE modes

Er =
v TT

J&fj, du
J5T - __ ^________ _^___&0

r sin d<t>

dU

r 60

1 d*U

r drd0

mddr d<f>

TM modes

+

E =
rdrd0

(3)
E+

r sin dr d<t>

Hr
=

JOJ6 df/
rj ==

rsinO 3<#>

d(7

r ^iT

(4)

In these equations

(5)

Inserting U from Eq. (2) into (3) and (4), and remembering that Ynn

is a function of and
<f>, the intensities become

TE modes

r
=

E,- -
.

r sin B d<j>

fc
2

^r
= ^n(n

H,
/ n/i \

r sin d(kr)
Af
d<t>

(6)
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TM modes

k2

379

r d(kr)

k d

rsm8d(kr)
K*r)j,(*r)]-

d<t>

TJHe
=

r sin
((kr)jn (kr)]

dYn

(7)

.dYnm

60

To satisfy the boundary conditions it is necessary that Ee

at the surface where r = a. This requires that

TE modes (8)

TM modes (9)

The roots of Eqs. (8) and (9) determine the values of the resonant fre-

quencies. Equation (5) may be written

_^(*o)
Jr ~2T a

2ra

(ka)

(10)

(ID

where the values of (ka) are determined by Eqs. (8) and (9).

We shall designate spherical resonator modes by the symbols TEn ,ptm and

TMntptm where n is the order of the spherical Bessel function, p is an integer

denoting the rank of the roots of Eq. (8) or (9) for a given value of n, and

m is the periodicity in the <t> direction. It is interesting to note that the

resonant frequency is independent of the integer m. However, in order

for the field to exist, it is necessary that m ^ n since PH*(cos 6) vanishes

when m is greater than n. Hence, for a given value of n the integer m
may have values from to n inclusive, each corresponding to a separate

mode but all having identically the same resonant frequency. Further-

more, the intensity distribution in the direction may be of the form
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cos w< or sin m$ or any linear combination of the two. A spherical reso-

nator, therefore, may oscillate in a number of different modes having the

same resonant frequency.

The field vanishes if n = 0; hence this does not correspond to an allowed

mode. The lowest resonant frequency for either the TE or TM modes

H

(a)-TE, |J|0
Mode (b)-TM J|J|0

Mode

FIG. 11. Field patterns in the meridian plane of a spherical resonator.

occurs when n = p = 1. The corresponding roots of Eqs. (8) and (9)

are (fca)M = 4.49 for the TE mode and (fca)M = 2.75 for the TM mode.

Inserting these into Eq. (11) gives

TEltltm \r
= 1.40a (12)

TMltl ,m \r
= 2.29a (13)

If m =
0, the field has no variation in the < direction since the term

A cos m$ + B sin m<t> reduces to a constant. The field is then circularly

symmetrical and the function P(cos6) then reduces to the Legendre
function Pn (cos0). We then have Ynm = Pn (cos0) and d/d<t>

= 0. The
intensities given in Eqs. (3) and (4) then simplify to

Er

TE modes

H
<f>

=

= ^[(^B(*r)^i^]

Hr
= n(r

*-*.
r d(Jfcr)

l)[(AT)A(Ar)]Pn (cosfl)

[(*rW.(*r)].
BO

(14)
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TM modes

k2

Er
= -

r

k d

381

r d(fcr)

[(kr)jn(hr)]

7CO- J
[(kr)jn (kr)]

36

dPn(cos 0)

30

(15)

17.15. rMi ti f0
Mode in the Spherical Resonator. As an example, con-

sider the TMi t i tQ mode. Equation (15.08-2) gives the spherical Bessel

r // \
! /sm kr

i
function as ?i (kr) = 7- I

- cos kr
kr\ kr

From Eq. (15.12-15) we obtain

PI (cos 0)
= cos0. Inserting these into Eq. (17.14-15), we obtain the

intensities

E* = Hr
= He

=

87T
2 /sin kr \Er

=
[ cos kr ] cos 6

X*r* \ Trr /A / \ n/t /

27r fcosJkr f 1 I 1 (1)Ee
= < hi ^ sin kr

\
sin ^

\r [ kr I (kr)
2
] j

j2?r /sin AT \
//<*

=
( cos kr ] sin 6

Xr/r \ kr /

To evaluate the energy storage in the resonator we write H^ in the form

7/0
= Aji (kr) sin 9. Inserting this into Eq. (17.10-1) the energy storage

in the resonator becomes

W. = Z-T sin
3

d(Jfer)

U

The time-average power loss is evaluated by inserting

into Eq. (17.10-2), yielding

(2)

Aji(ka) siuB

r,
<***

-2

PL =
-j- Jt

47T

'

(*a) r
*/o

sn

(3)
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The resonator Q is obtained by inserting these into Q = o>rWVPz,. With

the help of wr
= 2wc/\r and a = Xr/2.29 from Eq. 17.14-13, we obtain

Jo(ka)j2 (ka)

The spherical Bessel functions may be evaluated using Eq. (15.08-2)

For the TM\ t\^ mode we have (&a)i,i
= 2.75 and j' (fca)

= 0. 139, j\ (kd) =*

0.386, and j2 (ka) = 0.282. Equation (4) then becomes

(5)
s

As an example, a silver-plated spherical resonator operating in the

rAf1,1,0 mode with a resonant frequency of 3 X 109 cycles per second

would have (RB = V^W^ = 0.0139 and a theoretical Q of 27,400.

Figure 1 1 shows the electric and magnetic field distributions of the TE\ , i ,

and TAf1,1,0 modes in a spherical resonator. The electric and magnetic
intensities for either mode are in time quadrature. The current flow in the

resonator walls is proportional to H^ t and flows in a direction perpendicular

to Hjt- For the TM mode, the magnetic lines are parallel to the equator
and hence the current flows along the meridian lines from pole to pole.

17.16. Orthogonality of Modes. If two or more modes exist simultane-

ously in a lossless wave guide or resonator, the resultant field may be

expressed as the summation of the fields due to the individual modes.

Conversely, any given resultant field may be analyzed by the methods of

Fourier analysis to determine the various modes which, when superimposed,

give the resultant field. Wave guide and resonator modes have an impor-

tant property of orthogonality which gives them a degree of independence
Consider a lossless wave guide having two different modes, represented

by p and q. Let the transverse electric intensities of the p and q modes be

given by
Ep - E0pf(x, y)

Eq
= EQqg(x, y)

where the transverse spatial distribution factors are represented by f(x, y)

and g(Xj y). The condition of orthogonality may be stated mathematically
as

f/(*, V)v(x, y)da = Q (2)
JA

where the integration is over the cross section of the guide. Equation (2)

is valid for all modes in lossless guides where p 7* q, hence wave-guide
modes are orthogonal functions.

The significance of the orthogonality principle becomes apparent when
we consider power flow in the guide. The longitudinal power flow for
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either mode taken separately, for example the p mode, may be expressed

by Eq. (16.10-2), thus PT = -^- f
|

E
\

2 da =^ f \f(x, y)}
2
da, which

2^o *A 2Zo /A
we assume to have nonzero value. Let us suppose, however, that we were

to attempt to compute the power flow by the Poynting-vector method using
the transverse electric intensity from the p mode and the transverse mag-
netic intensity from the q mode. We would then encounter an integral of

the type given by Eq. (2), which has zero value. Hence, by virtue of the

orthogonality property, the various modes transmit power independently
of each other in a lossless guide.

Two resonator modes are orthogonal if

f/fo y, *)ff(*, V, *) dr = (3)
JT

where the integration is over the volume of the resonator.

PROBLEMS

1. A portion of a rectangular wave guide is hollow and the remaining portion is filled

with polystyrene (er
= 2.5), as shown in Fig. 1. The guide is assumed to be infinitely

long and the cross-sectional dimensions are a 4 cm and b = 6 cm. The frequency
is 3,000 me per sec. Compute the following for a TEo,\ mode:

(a) The characteristic wave impedances in the hollow and dielectric-filled portions

of the guide.

(6) The reflection and transmission coefficients in the guide.

(c) The standing-wave ratio.

(d) The ratio of the power density of the transmitted wave to that of the incident

wave.

2. A shielded radio room has dimensions 12 by 12 by 7 ft. Compute the six lowest

resonant frequencies of the room as a resonator. Sketch a lattice structure, such

as that shown in Fig. 10, to represent the resonant modes of this room. Evaluate the

Q at the lowest resonant frequency, assuming that the walls are of copper.

3. Show that the peak energy storage in the electric and magnetic fields of a rectangular

resonator are equal at resonance.

4. What are the dimensions of cylindrical resonators to oscillate in the TM\ t\ t\ mode at

a frequency of 4,500 me per sec, assuming

(a) a hollow resonator?

(6) a dielectric filled resonator having er 5?

6. Discuss the nature of the fields and the boundary conditions in a resonator which

is excited at a frequency other than the resonant frequency.

6. A cylindrical resonator is to be resonant in the TEo,i,i mode at a frequency of 3,000

me per sec.

(a) Specify the dimensions of the resonator, assuming that the diameter is equal
to the height.

(6) Write the equations for the field intensities.

(c) Derive an expression for the Q of the resonator.

(d) Evaluate the Q, assuming that the walls are silver plated.



CHAPTER 18

APPLICATIONS OF WAVE GUIDES AND RESONATORS

In constructing wave-guide systems, it is desirable to have available a

number of devices which are the counterpart of our low-frequency net-

works. Such devices include impedance transformers, filters, attenuators,

bridges, etc. It is also necessary to have accurate measuring devices in

order to obtain quantitative data on the electrical performance of systems.

In this chapter we shall consider some of the practical aspects of wave

guides, as well as a number of useful devices which have found widespread

application in wave-guide systems.
1

-
2

-3

18.01. Methods of Exciting Wave Guides. The antenna systems for

launching various modes in rectangular and circular wave guides are shown

in Figs. Hind V, respectively. In general, ^traiglit^wirelntennas are placed

so as to coincide witfrjjift positionsjrfjn^^^
for the

desired mode. The loop antenna is placed so as to have a maximum num-

ber of magnetic flux linkages for the desired mode. If two or more antennas

are used, care must be taken to assure the proper phase relationships be-

tween the currents in the various antennas. This may be accomplished

by inserting additional lengths of transmission line in one or more of the

antenna feeders. Impedance matching may be accomplished by varying

the position and depth of the antenna in the guide as well asJjy the use of

impedancFmatcKmg^ st^jonj^coaxial line fggdingjhc wave guide.
An ^rmngpm^f, for launching a Tflo,i ndp in one direction only is

shown in Fig. 3. This consists of two antennas spaced a quarter wavelengtfi

apart and phased in time quadrature. Phasing is accomplished by means

of the additional quarter-wavelength section of line in the feed to one of the

antennas. The fields radiated by the two antennas are in phase opposition

to the left of the antennas and hence cancel each other; whereas in the

region to the right of the antennas the fields are in time phase and reinforce

each other. The resulting wave therefore travels to the right in the guide.

1
KEMP, J., Wave Guides in Electrical Communication, J.I.E.E. (London), vol. 90,

Part III, pp. 90-114; September, 1943.
2
GAFFNEY, F. J., Microwave Measurements and Test Equipment, Proc. I.R.E.

}

vol. 34, pp. 776-793; October, 1946.

1 GREEN, E. I., H. J. FISHER, and J. G. FERGUSON, Techniques and Facilities foj

Microwave Testing, Bell System Tech. /., vol. 25, pp. 436-482; July, 1946.
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Two methods of exciting wave guides from coaxial lines are shown in

Fig. 4. In Fig. 4a, a relatively large magnetic field exists in the vicinity

of the short-circuited termination of the coaxial line. Part of this field

extends into the wave guide through the aperture and serves to excite the

guide. If the wave-guide dimensions are such as to transmit the dominant

FIG. 1. Methods of exciting various modes in rectangular wave guides.

mode but attenuate all higher modes, only the dominant mode will exist in

the guide at distances exceeding several wavelengths from the aperture.

In Fig. 4b, the wave guide begins where the coaxial line leaves off and the

field configuration transforms from the principal mode in the coaxial line

to the dominant mode in the wave guide (assuming that the higher modes

are attenuated).

Figure 5 shows a bridge arrangement of wave guides which may be used

to feed two microwave sources into a single guide without introducing

coupling between the sources. This device consists of a ring-shaped wave
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Ficu4. Methods of exciting wave guides from coaxial lines.
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Fio. 5. Bridge arrangement of wave guides, which prevents coupling between oscillators
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guide containing several branch guides which are spaced a quarter wave-

length apart on the ring. Power, entering the ring-shaped guide through

any one of the branch arms, divides into two waves, one traveling in the

clockwise direction and the other traveling in the counterclockwise direc-

tion around the ring. If the two waves travel the same distance to another

branch arm (or distances which differ by an integral multiple of a full wave-

length), they arrive at that branch arm in time phase and power will be

FIG. 6. Standing-wave detector for measuring the standing-wave ratio in a wave guide
*~

(Courtesy of the M.I.T. Radiation Laboratory.)

transmitted through that arm. If the two paths differ by a half wavelength,
the two waves arrive in phase opposition; hence, the waves cancel and no

power will be transmitted through the branch arm.

Referring to Fig. 5, it is evident, therefore, that power can be transmitted

from either oscillator to the adjacent arms, but there will be no coupling
between oscillators.

18.02. Impedance and Power Measurement in Wave Guides. A meas-

urement of the standing-wave ratio in a wave guide is useful for a number
of purposes. It may be used to determine whether or not a load is properly
matched to the guide and, if a mismatch occurs, how much power is sacri-

ficed by the mismatch. The standing-wave ratio measurement may also

be used to compute the effective impedance terminating a guide by a method
similar to that described in Sec. 10.05. Figure 6 shows a standing-wave
detector for use at wavelengths of approximately 3 centimeters. This con-
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sists of a slotted section of wave guide with a movable carriage which is

adjusted by a rack and pinion gear. The carriage contains a small probe

antenna which protrudes through the slot into the guide. The antenna is

connected to a crystal detector and thence either to a microammeter or to

an amplifier with a suitable output meter. The device is then calibrated to

read the d-c current. The meter may be calibrated to read the standing-

wave ratio directly. By adjusting the output so that the meter has full-

scale deflection with the detector in the position of maximum intensity and

then moving the detector to the position of minimum intensity, the mini-

mum deflection on the instrument gives the standing-wave ratio.

Tuning

plungers^.

To thermistor

: bridge

Thermistorelement

Incoming
wave

Fia. 7. Thermistor mount in a wave guide.

The power in a wave guide may be measured by means of a thermistor or

bolometer bridge, such as that described in Sec. 10.00. The thermistor or

bolometer element is mounted in the guide in a position of maximum electric

intensity and parallel to the electric-intensity vector, as shown in Fig. 7.

The tuning plungers are used to match the element to the guide.

In many applications, it is necessary to measure the power by a "sam-

pling" process which does not interfere with the transmission of power to

the load. The device used for sampling the power must not be affected by

standing waves in the guide. This may be accomplished by means of a

directional coupler, such as shown in Fig. 8. The directional coupler con-

sists of an auxiliary wave guide which is coupled to the main guide by means

of two small apertures spaced a quarter wavelength apart. The auxiliary

guide is terminated at one end by an absorbing medium having a wave

impedance equal to the characteristic wave impedance of the guide, and

at the other end by a thermistor element or a crystal detector. Since the

two apertures are spaced a quarter wavelength apart in the guide, the

fields at the thermistor element or crystal detector add for one direction of

power flow in the main guide and cancel for the opposite direction of power

flow. The directional coupler, therefore, measures power flow in one direc-

tion only and is not affected by power flow in the reverse direction. Ordi-
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narily a small fraction of the total power in the guide enters the directional

coupler, a typical value of the power ratio being 20 decibels. Two direc-

tional couplers, arranged to measure power flow in opposite directions, may
be used to compare the power in the outgoing and reflected waves.

Absorbing
material.

Outgoing wave

componentsadd.-

Irmrnitfer
~*
Reflected wave

Reflectedwave
- components cancel

'Thermistor

element

To load

FIG. 8. Directional coupler.

The directional coupler may also be used in reverse for launching a wave

in one direction only in the guide. The thermistor is then replaced by a

transmitting antenna and the coupling apertures are enlarged so as not to

introduce appreciable attenuation of the signal in going from the auxiliary

guide to the main guide.

18.03. The Spectrum Analyzer. The spectrum analyzer is a useful

laboratory instrument for microwave measurements. It provides a means

of observing the frequencies present in a given signal, as well as the relative

FIG. 9. Block diagram of a spectrum analyzer.

magnitudes of the various frequencies. It can be used, for example, to

measure the frequency drift of oscillators, to measure the Q of resonators,
or to observe the side bands present in a modulated wave.

The block diagram of the spectrum analyzer shown in Fig. 9 contains two
microwave oscillators, designated A and B. The A oscillator is frequency
modulated by impressing a sawtooth voltage upon an electrode in the oscil-

lator which is frequency-sensitive to voltage. The B oscillator operates at
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a constant frequency. The remaining components include a crystal mixer,

a narrow-band intermediate-frequency amplifier, a detector, a video ampli-

fier, and a cathode-ray oscilloscope. The horizontal sweep of the oscillo-

scope is derived from the sawtooth generator which

is used to frequency-modulate the A oscillator.

Assume now that the B oscillator is amplitude
modulated by a pure sine-wave voltage. The
modulated wave then contains a carrier frequency
and two side-band frequencies. As the A oscillator

sweeps across its frequency spectrum, the oscillator

output combines at successive instants of time with

the lower side band, the carrier, and the upper side

band from oscillator B, to produce a difference

frequency which falls within the range of the in-

termediate-frequency amplifier. Therefore, the

pattern on the oscilloscope contains three sharp
vertical pulses which are separated from each other by a horizontal dis-

tance depending upon the modulation frequencies.

The horizontal axis on the oscilloscope represents the frequency scale.

It can be calibrated by amplitude modulating the B oscillator with a small

rectangular voltage whose frequency is accurately controlled. The oscillo-

scope pattern then contains a number of equally spaced marker pulses

corresponding to the frequencies /o db nfi, where /o is the carrier frequency

of the B oscillator, /i is the modulating frequency, and n is any integer.

For example, if /i is one megacycle, the interval between two successive

CALIBRATED

Pio. 10. Spectrum of a

pulsed carrier, showing the

sidebands present in the

wave.

I ATTENUATOR

m^w*v^-

Fio. 11. Method of measuring the Q of a resonator.

pulses on the screen corresponds to one megacycle. If the B oscillator is

then simultaneously amplitude modulated with another signal, the fre-

quency components corresponding to the new side bands appear on the

screen superimposed upon the pattern of the marker pulses. The new side-
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band frequencies can then be determined by their relative position with

respect to the marker pulses.

Figure 11 shows how the spectrum analyzer may be used to measure the

Q of a resonator. The resonator and a calibrated attenuator are inserted

between the B oscillator and the mixer. The B oscillator is tuned to the

resonant frequency of the resonator. This will be indicated by maximum

height of the pulse on the oscilloscope. The calibrated attenuator is then

adjusted to insert a 3-decibel loss, thereby reducing the power delivered

Output

Output

Defector-"'

Halfwave
'

Parabola

^Resonator

(b)

FIG. 12. Methods of using resonators in receiving systems.

to the resonator to one-half of its former value. The height of the pulse is

observed on the oscilloscope. The attenuator is then returned to its original

setting and the B oscillator frequency is varied until the pulse on the

oscilloscope is reduced to the previously determined half-power value. If

/o is the resonant frequency and A/ is the change in frequency corresponding

to the half-power point, the Q becomes

/_

(1)
2 A/

It is necessary that the power output of the B oscillator remain constant

during this measurement, since any variation would give erroneous results.

18.04. Receiving Systems. A wave-guide system may be either tuned

or untuned. Figure 12a shows a tuned receiving system consisting of a
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receiving horn which is coupled to a resonator by means of an iris aperture.

A crystal detector, also coupled to the resonator, is used to detect the incom-

ing signal. If a superheterodyne receiver is used, the local oscillator output

may be coupled into the resonator by means of the probe shown in the dia-

gram. The signal emerging from the crystal detector then contains a fre-

quency corresponding to the difference between the carrier frequency and

local oscillator frequency. The difference frequency is amplified by the

FIG. 13. Three-centimeter laboratory setup. (Courtesy of the M.I.T. Radiation Laboratory.)

intermediate-frequency amplifier following the crystal detector. A final

detector then detects the signal. Precautions must be taken to use loose

coupling between the local oscillator and the resonator in order to avoid

frequency changes of the local oscillator due to either the tuning of the

resonator or the tendency of the local oscillator to lock in with the incoming

signal. In some applications it may be desirable to use separate resonators

for the incoming and local-oscillator signals in order to avoid frequency-

pulling of the local oscillator. The two resonators are then coupled to the

detector by means of iris apertures.

A typical test-bench setup with elements which correspond to a trans-

mitter and a receiver is shown in Fig. 13. At the extreme left is a Shepherd-

Pierce tube, operating at a wavelength of 3 centimeters. The output ter-

minal of this tube extends into the wave guide and serves as the transmitting

antenna. This is followed by two "flap attenuators," each consisting of a
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thin piece of fiber upon which has been deposited a layer of carbon or

other absorbing material. The attenuators may be moved into or out of

the wave guide to vary the attenuation. In the center of the guide is a

wavemeter. This is followed by a slotted section for a standing-wave

detector. The probe and detector of the standing-wave detector unit are

on the table below the guide. At the end of the guide is a crystal detector,

with two adjustable screws to match the impedance and thereby assure
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'spacer

(a)

fceflecfsTE
lf,Mode

(b)

Reflects TE om
Passes TMam

(c)
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j

(d)
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0,1

(eJ

Reflects TE,,

FIG. 14. Gratings used in wave guides either to absorb or to reflect the given modes.

maximum power transfer to the detector. An adjustable piston in the end

of the guide also serves to match the impedances at the receiving end of the

guide.

18.05. Wire Gratings. Wire gratings of the type shown in Fig. 14 may
be used in wave guides to either reflect or absorb a particular mode without

interfering with other modes. The wires are placed so as to coincide with

the electric field lines for the mode which is to be reflected or absorbed. If

the wires have high conductivity, the particular mode will be reflected. If

the wires have low conductivity, part of the energy in the particular mode
will be absorbed and part will be reflected. A second grating of similar

construction, placed a quarter wavelength from the first grating, increases

the power absorption. Gratings of this type are sometimes used in wave
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guides and resonators to absorb the energy which appears in undesired

modes. Two types of longitudinal gratings are shown in Figs. 14d and 14e.

These are constructed of sheet metal and are more effective than the wire

gratings.

Grating detectors, such as those shown in Fig. 15, may be used in receivers

to respond to a single mode. The effectiveness of the detectors may be
increased by placing an adjustable piston in the guide beyond the detectors

in order to set up a standing wave in the guide which has its maximum value

at the position of the detector.

FIG. 15. Grating detectors which respond to the modes indicated.

Wire gratings may be used to convert from one mode to another mode.

Gratings for this purpose are illustrated in Fig. 16. They consist essentially

of a superposition of two wire gratings corresponding to the two modes.

The grating of Fig. 16a may be used to convert from a TE0ii mode to a

TEi t i mode, or vice versa, while that shown in Fig. 16b converts between

the TM0t i mode and the TEQt i mode. Transverse apertures, such as those

shown in Figs. 16c and 16d may also be used as converters.

18.06. Multiplex Transmission through Wave Guides. Two or more

signals may be transmitted simultaneously through a wave guide and

separated at the distant end. In order to separate the signals, it is neces-

sary that they have either:

1. Different carrier frequencies but the same mode.

2. The same carrier frequency but different modes.

3. Different carrier frequencies and different modes.

If different carrier frequencies are used, the signals may be separated

at the distant end either by means of resonators or by the use of a super-
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(c) (d)

FIG. 16. Gratings for converting from one mode to another mode in circular guides.
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Fio. 17. Multiplex transmission in circular guides: (a) signals having different carrier fre-

quencies, and (b) signals transmitted in different modes.
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heterodyne receiver. In the case of the superheterodyne receiver, the selec-

tivity between signals is determined largely by the bandwidth of the

intermediate-frequency amplifier. Since this amplifier can be sharply

tuned, it is possible to separate signals which differ in carrier frequency by

only a few megacycles.

Resonators may also be used to separate two or more signals on the basis

of differences in carrier frequency. In general, however, resonators do not

provide as sharp a selectivity between signals as is possible with the super-

heterodyne receiver. The selectivity can be greatly improved by using the

resonator as a preselector which feeds into a superheterodyne receiver.

TEMode

T
o,

output Electric*'-

intensity

distributions

(a)

FIG. 18. Multiplex systems employing different modes: (a)

and (b) TEQ,i and TE^ modes.
modes and TE\ t Q modes,

Figure 17a shows a method of using resonators to separate the signals in a

multiplex wave-guide system. The same arrangement may be used as a

superheterodyne receiver by coupling a local oscillator to the various reso-

nators and using the crystals for converters. The succeeding stages of

amplification are then tuned to the intermediate frequency.

If the signals are to be separated on the basis of different modes, it is

necessary to use mode-selective detectors, that is, detectors which respond

to one mode but not to other modes. Figure 17b shows a system using a

grating reflector and grating detectors. The TMQi i mode is reflected by the

grating reflector and the corresponding detector is placed a quarter wave-

length from the reflector on the generator side in order to be in a position of

maximum electric intensity. The T7?o,i mode passes through the TMo,i
mode detector and reflector and is reflected from the end wall of the guide.

Consequently, its detector is placed a quarter wavelength from the end

wall. It should be noted that the quarter-wavelength distances in the guide
are different for the two modes.

Other mode-selective detector systems are shown in Fig. 18. The system
shown in Fig. 18a uses the TEQt i and T#i,o modes, while that of Fig. 18b
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uses the TUo.i and TJ ,2 modes. In both systems the antennas consist

of probes which are placed in a position of maximum electric intensity for

the desired mode. In Fig. 18b the TJ?o,2 antennas also pick up the T^o.i
mode. However, by using a half-wavelength section of line between the

two antennas, the TEQt i voltages can be made to cancel, leaving only the

TE0t2 mode signal.

A number of difficulties are likely to be encountered if the separation of

two or more signals is attempted entirely on the basis of different modes of

transmission. Any irregularities in the guide, or even the presence of probe

antennas, such as those shown in Fig. 18, will tend to distort the field in

the guide and introduce coupling between the various modes, resulting in

objectionable cross talk.

ShUopickup
tesonrtor

7EtttMode

output

Resonator-

*Antenna to

pickup TM0t,Mode

Fio. 19. Multiplex transmission system using the TE\,\ mode and TM^\ mode in a circular

guide.

A more complete separation of the signals may be accomplished by com-

bining the methods described above, that is, by using different carrier fre-

quencies and different modes. The modes may then be separated by means
of mode-selective detectors and the carrier frequencies may be separated
either by resonators or by a superheterodyne receiver or both. In general,

it is preferable to restrict the transmission to not more than two modes,
since it becomes difficult to obtain suitable mode-selective detectors for a

larger number of modes. It should be noted that the use of different modes
makes it possible not only to separate the signals at the receiving end, but

also to isolate the transmitters at the sending end. This serves to minimize

the possibility of interaction of the transmitters.

Figure 19 shows a method of separating the two modes which have the

longest wavelength in a circular guide, i.e., the TE\ t i mode and the TMo.i
mode. If the two signals are also transmitted on different carrier fre-

quencies, resonators may be used to improve the selectivity between the

signals. A slot in the guide wall is used to intercept the TE\,\ mode.

In general, a slot will intercept a given mode only if it interrupts the current

flow in the wall of the guide for that mode. Since the TEi t \ mode has
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currents flowing in the <t> direction in the guide wall, a longitudinal slot will

interrupt these currents; hence, this mode will be transmitted through the

slot. The rAf ,i mode currents flow only in the longitudinal direction;

hence, the slot will have very little effect upon this mode.

18.07. Wave-guide Filters. Several wave-guide filters are shown in Fig.

20. These are band-pass filters with pass bands corresponding to harmonics

of the first pass band. In the filter of Fig. 20a, the centers of the pass bands

(a)
3A/4

U-/-

(b)

FIG. 20. Filters using wave-guide sections.

occur at the frequencies for which the short-circuited sections of wave guide

have a maximum input wave impedance. Maximum attenuation occurs

when the input wave impedance of the short-circuited sections is a

minimum.
The filter shown in Fig. 20b has the center of the pass band at the fre-

quency for which the enlarged section of the guide is an integral number

of half wavelengths long. A half-wavelength section of guide is similar to a

half-wavelength transmission line in that it serves as a one-to-one ratio

transformer, that is, -the input wave impedance is equal to the terminal

impedance. Hence, there is no apparent discontinuity in impedance at the

wavelength for which the enlarged sections are a half wavelength long,

whereas, at other frequencies there is an abrupt discontinuity at the junc-

tions, resulting in reflections. Maximum attenuation occurs at the fre-

quencies for which the enlarged sections are a quarter wavelength long.



CHAPTER 19

LINEAR ANTENNAS AND ARRAYS

The function of an antenna is either to radiate or to receive electro-

magnetic energy. A transmitting antenna has an alternating emf applied

to its terminals which produces a current in the antenna and an electro-

magnetic field in space. The energy radiated from the antenna appears as a

traveling wave, propagating outward from the antenna with a velocity equal
to the velocity of light. A receiving antenna, placed in an electromagnetic

field, has an emf induced in it by the field which produces an alternating

potential difference at the antenna terminals.

A given antenna or an array of antennas has similar characteristics

when usecl either as a transmitting or as a receiving antenna. For example,

the directional properties of an antenna system are the same when the

antenna is used as a transmitting antenna as when used as a receiving

antenna, under similar conditions of operation. This is a consequence of an

important principle of reciprocity which will be discussed in the following

chapter. We shall consider the antenna primarily from the viewpoint of

the transmitting antenna, although many of the conclusions apply equally

well to receiving antennas.

Two or more antennas may be grouped in an array to obtain directional

radiation. The directional characteristics of the array are determined by
the spacing between antennas and the phase relationships of the currents

in the various antennas of the array. Since antennas used at microwave

frequencies have small physical size, they are particularly adaptable for

use in arrays, parabolic reflectors, and other directional radiating systems.

This makes it possible to concentrate the radiated energy into a narrow

beam for point-to-point communication, thereby affecting a very apprecia-

ble saving in transmitter power.
In the design of an antenna system, the following factors must be con-

sidered:

1. Design of the antenna system so as to obtain the desired field distribu-

tion in space.

2. Determination of the total radiated power and radiation resistance.

3. Determination of the input impedance as a function of frequency.
This is particularly important when considering wide-band antennas.

4. Design of the electrical networks which feed the antenna system.
These networks must be such that the antenna presents the proper imped-
ance to the transmitter. If maximum power output is desired, the imped-

400
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ances must be matched at the transmitter. For antenna arrays, the net-

works must be adjusted to give the proper magnitude and phase of currents

in the various antennas of the array.

This chapter will deal with the methods of determining the field distribu-

tion of linear antennas and arrays. The Poynting-vector method of evaluat-

ing the total radiated power and the radiation resistance of single antennas

will be described. The determination of self-impedances and mutual imped-
ances of antennas requires a more accurate determination of the field distri-

bution in the vicinity of the antenna than that presented in this chapter.

Consequently, this subject will be deferred for treatment hi the following

chapter.

19.01. Methods of Determining the Field Distribution of an Antenna.

In the foregoing chapters we have considered solutions of Maxwell's equa-
tions as applied to passive systems of relatively simple geometry. We
started with the general solution of the wave equation in the coordinate

system which was best suited to the boundaries of the particular problem.
The constants in the general solution were then adjusted so as to satisfy

the boundary conditions. No attempt was made to relate the fields to the

charges or currents at the source, but rather, it was assumed per se that a

proper distribution of charges and currents could exist which would produce
the given field. This type of solution reveals all possible types of modes

which can exist within a given set of physical boundaries, but it does not

specify which modes actually do exist for a given distribution of charges

and currents at the source.

We found that in wave guides and resonators having relatively simple

geometry the boundary conditions favored certain modes and discouraged

others. Thus, a wave guide having dimensions such as to pass only the

dominant mode will transmit the dominant mode but attenuate all higher

modes. Consequently, the physical boundaries may be such as to favor

certain modes, the existence of which, however, is contingent upon a proper

distribution of charges and currents at the source.

We could presumably determine the field distribution of an antenna in

much the same manner as that used for wave guides and resonators. That

is, starting with the general solution of the wave equation, we would

proceed to evaluate the constants in this equation in such a manner as to

satisfy the boundary conditions. If we assumed perfectly conducting

boundaries, the summation of the tangential components of electric

intensity for the various modes would have to be zero at the conducting
surfaces. Similarly, the summation of the tangential components of mag-
netic intensity would be equal to the surface current density. If we were

to pursue this course, we would find that a very large number of modes
would be required to completely describe the field of an antenna and the

problem of evaluating the constants so as to satisfy the boundary condition?
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would involve serious mathematical difficulties. A few types of antennas

having relatively simple geometry, such as the sphere, the spheroid, and the

biconical antenna, have been analyzed by this method,
1 '2 '8 but the analysis

is too involved for ordinary engineering work.

Fortunately, there are more direct ways of determining the field distribu-

tion of an antenna which involve less mathematical complication. The

method which will be used here starts with the vector potential as given

by Eq. (15.02-12),

If the current distribution in the antenna is known, Eq. (15.02-12) may
be used to evaluate the vector potential anywhere in space. The magnetic

intensity is then obtained by applying

n = - V X A (15.02-1)
M

and the electric intensity (for sinusoidally varying fields in a lossless

medium) is obtained from

V X H = je# (13.06-2)

In applying this method, it is necessary to start with a known current

distribution in the antenna. The simplest case is that of a linear antenna,

since it can be shown that the current distribution in an infinitely thin

straight wire antenna has a sinusoidal variation along the length of the

antenna. 4 We shall first consider the field of an incremental antenna which

is assumed to have infinitesimal length. The linear antenna will then be

treated as consisting of a large number of infinitesimal antennas placed end

to end.

19.02. Field of an Incremental Antenna. Consider the incremental

antenna shown in Fig. 1, having a length dz and carrying a uniform current

/*".

Referring to the expression for the vector potential, Eq. (15.02-14), we

replace Jcdr by I dz, yielding the vector potential at a point distant r from

the antenna, T ,

4. .*.- CD
4?rr

I
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Expressing the vector potential in spherical coordinates and dropping

the time function e?
ui

,
we obtain

A r cos Qe"

A g sin6 =
rfdz

47TT

A+ =

(2)

(3)

FIG. 1. Coordinates for the incremental antenna.

The magnetic intensity is obtained by inserting A r and Ae into ff

(l/M) V X A, where V X A" is given in Appendix III. With the additional

substitution of /3
= 2jr/X and remembering that d/d<t>

=
0, we obtain

V 4*
sin i (4)

To obtain the electric intensity, insert H$ from Eq. (4) into V X H
jueE, giving

(5)

(6)
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The electric and magnetic intensities contain terms varying as 1/r, 1/r
2

,

and 1/r
3

. The components containing 1/r
2 and 1/r

3
predominate in the

immediate vicinity of the antenna and are known as the induction field

of the antenna. The induction field represents reactive energy which is

stored in the field during one portion of the cycle and returned to the

source during a later portion of the cycle. The induction field terms become

vanishingly small at remote distances from the antenna and hence do not

contribute to the radiation of power from the antenna.

The terms varying as 1/r in the intensity expressions comprise the radia-

tion field of the antenna. The radiation field is comprised of electromagnetic

waves traveling radially outward with a propagation factor e?
(ui
~

ftr} =
g/wtt-r/pc) an(j ^k intensities which vary inversely as the first power of the

distance from the source. Equation (4) shows that the induction and radia-

tion field components of magnetic intensity are equal at a distance of

r = X/27T, or approximately a sixth of a wavelength from the antenna.

It is interesting to observe that if we had assumed that the field builds

up instantaneously throughout space, i.e., if we had used &*** instead of

g/we-flr jn -gq i^ fae radiation-field terms would not have been present

in the resulting intensity equations. Radiation is therefore dependent upon
the fact that the field has a finite velocity of propagation. In conventional

circuit analysis it is customary to ignore the finite velocity of propagation
of the field. This approximation is valid if most of the field is confined to a

region which is very small in comparison with the wavelength. It leads

to what is known as the quasi-stationary analysis.

The radiation-field terms, taken alone, comprise a spherical TEM wave

propagating radially outward from the source with a wave impedance

equal to the intrinsic impedance of free space. Discarding the j factor

in Eqs. (4) and (6), we obtain the radiation field intensities,

H* = -sinftT^ (7)
2Xr

til dz
Ee

= -- sinfle-^ (8)
2Xr

The ratio of electric to magnetic intensity is equal to the intrinsic impedance
of the medium, thus

The power radiated by the incremental antenna is found by integrating
the normal component of Poynting's vector over the surface of an imaginary

sphere having the antenna at its center. For convenience we choose a
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sphere which is large enough so that the induction-field terms are negligible.

Inserting Eg from Eq. (8) into (14.04-3) and dropping the phase-shift term

e~tf
r

,
we obtain for the time-average power density,

P = Ee\

2,
sin

2
(10)

FIG. 2. Field pattern of the incremental antenna in the vertical plane.

The total radiated power is therefore

P = Sirr
2
sin dBfpSirr

2

JQ

-

(ID

The radiated power is independent of the radius of the sphere over which

the power density is integrated. This is a consequence of assuming a lossless

transmission medium.

The radiation resistance RQ is defined as the ohmic resistance which would

consume the same power as the antenna radiates, if the resistance were

carrying the same current. The radiation resistance of the incremental

antenna is

2P 2

*-P
/dz\

2

(T)

The field pattern of an antenna is a polar plot of the electric intensity

in a given plane, taken at a constant distance from the antenna. The incre-

mental antenna radiates uniformly in the horizontal direction; hence its

field pattern in a horizontal plane is a circle. In the vertical plane the

intensities vary as siri 8 and the field pattern is as shown in Fig. 2, with

maximum intensity in a plane perpendicular to the antenna and zero inten-

sity at any point directly above or below the antenna.
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Fio. 3. Electric field of a radiating dipole during the formation of a wave.

Figure 3 shows the electric-field lines for an oscillating dipole at various

stages during the formation of a wave. The dipole considered here consists

of two opposite charges which are separated an infinitesimal distance apart

and which have oscillating magnitudes. Such a dipole can be shown to be
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equivalent to an antenna of infinitesimal length. At the outset, the electric

lines are attached to the charges, but as the charges reverse their positions,

we can visualize the electric-field lines as becoming detached and forming
closed loops. The magnetic-field lines are circles which are concentric

with the axis of the dipole. As the wave

propagates outward from the source,

the closed loops of electric and magnetic

intensity expand. At a remote distance

from the antenna, the wave is essentially

a spherical TEM wave, traveling radially

outward with a velocity equal to the

velocity of light.

19.03. Radiation Field of a Linear An-

tenna Approximate Method. A linear

antenna may be viewed as consisting of

a very large number of incremental an-

tennas placed end to end. The field of

the linear antenna may therefore be ob-

tained by integrating the contributions

of all of the incremental antennas.

Consider the linear antenna of Fig. 4,

which is assumed to be isolated in space

and to have a length /. The current in an infinitely thin antenna has a

sinusoidal distribution; hence we let

FIG. 4. Linear antenna.

/]= 7 sin (ftz + <f>) (1)

To obtain an expression for the electric intensity of the linear antenna,

insert / from Eq. (1) into (19.02-8) and integrate. This gives

ti sin 6 r*/2 /o sin (ftz

2X J-i/2 r
'dz (2)

For distances remote from the antenna, we may substitute r for r in the

denominator of Eq. (2). However, the term e~^r determines the phase
of the electric intensity and must be evaluated more accurately. In this

term we substitute r = r z cos 6 and Eq. (2) then becomes

17/0 sin .

e

-l/2
(3)

Assume now that the antenna is an integral number of half wavelengths

long, i.e., I = wX/2, where n is any positive integer. If the antenna is an

odd integral number of half wavelengths long, the current distribution is

a cosine function of 2, hence we let <p
=

ir/2. For an even integral number
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of half wavelengths long, the current distribution is sinusoidal and we let

<p
= 0. Integration of Eq. (3) for the two cases yields

?7/o cos[(nir/2) cos0] _
e "

Ee

sin0

17/0 sin [(nir/2) cos 0]

2irr<) sin 6

n is odd (4)

e
~
3ftr n is even (5)

(d)n=!6

Fio. 5. Field patterns in the vertical plane of antennas having various lengths.

Evaluating the coefficients and remembering that e~ J(3r has a magnitude
of unity, we obtain the intensity

60/o cos [(nir/2) cos 0]
Ee

r sin

60/o sin [(nir/2) cos 0]

rn sin

n is odd (6)

n is even (7)

For a half-wavelength dipole antenna, the electric intensity is

60/o cos [(ir/2) cos 0]

(8)
r sin

The radiation field patterns in the vertical plane for antennas of various

lengths are shown in Fig. 5. As the antenna length increases, the number
of lobes increases and the angle max , corresponding to the major lobe,



SEC. 19.03] RADIATION FIELD OF A LINEAR ANTENNA 409

decreases. The number of lobes is 2n. If the conductor were infinitely

long and perfectly conducting, all of the energy would propagate in the

direction of the wire.

To obtain the time-average radiated power, insert Eq. (6) or (7) into

(14.04-3) and integrate over the surface of a sphere, and we have

_ r\&,
Jo 2?y

2irr
2
sin dd

0^2 T
ff
CQs2 KW2) cos 0] ^ .= 30/o I :

~ dO n is odd (9)
Jo sin

p = 30/o I

Sm
dO n is even (10)

Jo sm

Integration of these equations yields
1

P = 15/&2.415 + In n - CiZirn] n odd or even (11)

where

Cix
C" cos a;

ix = -
I cfo (12)
Jx x

is the cosine integral. Values of Cix as a function of x may be obtained from

tables. 2
Figure 6 shows a plot of the cosine integral as a function of x.

The sine integral, defined by

rsina: dx (13)

is also shown in Fig. 6. The sine integral will be used later in connection

with the evaluation of antenna impedances.

The radiation resistance for the linear antenna is

2P

= 72.45 + 30 In n - 30Ci2irn n is odd or even (14)

For a half-wavelength antenna we have n = 1, P = 36.56/0, and RQ = 73. 13

ohms. Figure 7 shows how the radiation resistance of antennas varies with

the length of the antenna. The radiation resistance is the resistive compo-
nent of the input impedance if the antenna is fed at the current loop

(maximum current point).

^TRATTON, J. A., "Electromagnetic Theory," pp. 438-444, McGraw-Hill Book

Company, Inc., New York, 1941. These equations may also be integrated graphically

for specific cases.

2 JAHNKE, E., and F. EMDE, "Tables of Functions," pp. 6-9, Dover Publications,

1943.
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Fia. 6. Plot of the cosine and sine integrals.

Number of half wavelengths, n

Fio. 7. Radiation resistance of antennas of various lengths*
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19.04. Antennas in the Vicinity of a Conducting Plane. Thus far we

have considered only the idealized case of an antenna which is isolated in

space. If an antenna is in the vicinity of the earth or other reflection

objects, the radiating characteristics of the antenna may be appreciably

altered. For example, consider a vertical antenna above a perfectly con-

ducting plane, as shown in Fig. 8a. Here we may use the principle of

images and replace the antenna of Fig. 8a by the antenna and its image as

>t

'S//S/////////////S//S///S/S

(a)

(b)

I
\Z/

I

(c) (d)

FIG. 8. Antennas above a perfectly conducting plane.

shown in Fig. 8b. But the antenna of Fig. 8b is merely the linear antenna

for which we have already derived the expressions for the field intensities.

Since there is no field below the conducting plane, the radiated power is

integrated over the surface of a hemisphere instead of a sphere. Conse-

quently the radiated pewer and radiation resistance are one-half of the

values given by Eqs. (19.03-11 and 14). Thus, the radiation resistance of

a quarter-wavelength vertical antenna above a perfectly conducting ground

plane is 36.56 ohms.

The horizontal antenna above a perfectly conducting ground plane, shown

in Fig. 8c, may be replaced by the image equivalent of Fig. 8d. The antenna

of Fig. 8d is essentially a two-element array which may be analyzed by the

methods of the following section.
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The electrical characteristics of the earth vary in different localities, de-

pending upon the soil composition and moisture content. In many cases

the error is not serious if perfect conductivity is assumed for the purpose
of image calculations.

19.05. Radiation Field of Arrays of Linear Antenna Elements. By
combining two or more linear antennas in an array, with proper spacing

between antennas and proper phasing of

antenna currents, directional radiation

may be obtained. Consider the array

shown in Fig. 9, composed of m parallel

linear antennas, each a half wavelength

long, with a separation distance d be-

tween successive antennas. It is as-

sumed that the current in each successive

antenna lags the current in the preceding

antenna by a phase angle of a radians.

The electric intensity at a distant

point P in a horizontal plane perpen-
dicular to the antennas, due to antenna

1, is obtained by setting =
7r/2 in Eq.

(19.03-6), which gives

(a)- PLAN VIEW

I/ 12 \3 \4 \S

(b)-FRONT VIEW

Fio. 9. Array of linear antennas.

60/Q
(D

Antenna 2 is closer to the point P than antenna 1 by an amount d cos <t>.

Consequently the intensity at P due to antenna 2 leads that of antenna 1

by the angle (27rd/X) cos $ a, where a. is the phase angle between the

antenna currents. Similarly, the intensity due to antenna 3 leads that of

antenna 1 by an angle 2[(2ird/\) cos < ]. The intensities at P due to

the various antennas are therefore

607n

(2)

To simplify the notation, let

2ird
d = cos a

A
(3)
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The resultant intensity is then

60/o sin (w6/2)
=-- (4)

r sin (5/2)

The series form of Eq. (4) shows that maximum intensity occurs when
all of the intensities are in time phase at P, that is, when 6 = 0, 2ir, etc.

Let us assume that 6 = 0. Equation (3) then gives

a\
cos < max = -

(5)
2ird

where 4>max is the value of <t> corresponding to maximum radiation. The

intensity in this direction is EQ = 60/ m/r ,
this being m times the intensity

of a single antenna with the same current (but not necessarily the same

power). By a proper choice of the antenna spacing d and phase angle a,

any desired value of <Arnax may be obtained.

The summed form of Eq. (4) shows that if m is large, secondary lobe

maxima occur approximately when w6/2 =
&7T/2, where k is an odd integer.

Nodal values occur when k in this expression is an even integer, provided
that sin (6/2) is not also zero. The latter case results in an indeterminant

value of Eq. (4). The corresponding values of cos< max and cos< are

found by substituting the values of 6 from this expression into Eq. (3),

yielding

(kir

+ ma\-
I

2wmd /

- IX k is odd (6)

(kir

+ ma\-
)

2irmd I

-
)
X & is even (7)

2irmd I

Two particular cases of interest are the broadside array, with maximum
radiation corresponding to < max = ir/2, and the endfire array, with < max =
or TT radians. Let us first consider the broadside array.

.In the broadside array, we have cos < max = 0, and Eq. (5) gives

a\
*"- =

(8)'

2ird .

This is satisfied by a =
0, requiring that all antennas be fed in the same

phase regardless of the spacing between antennas. A single-row broadside

antenna has two major lobes which are 180 degrees apart as shown in

Fig. 10. The angle <t> corresponding to secondary maxima and nodes, for
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arrays having a large number of elements, may be found by setting a

in Eqs. (6) and (7), giving
k\

cos < max = k is odd (9)
2md

k\

2md
k is even (10)

The directivity of the broadside array increases as the over-all length of the

array increases. The directivity improves somewhat as the spacing between

<a)t=:2A <b)l=4X

(d) t= (e) U4X (f)l=8X

FIG. 10. Field patterns of arrays of various lengths. Upper row, broadside antennas; lower

row, end-fire antennas.

antenna elements is increased up to a critical value of approximately

d = 3X/4, beyond which the directivity rapidly decreases.

The end-fire array has a single major lobe with maximum radiation at

or v radians. Since cos < max = =tl, Eq. (5) becomes

a
2*d

X
(11)

Inserting this value of a into Eqs. (6) and (7), we could obtain the values of

<t> corresponding to the secondary lobe maxima and the nodes.

The end-fire array has a single major lobe with maximum radiation in the

direction of the end of the array having the lagging phase. The major
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lobe width, however, is wider than that of the broadside antenna for a given

array. The directivity increases with the over-all length of the array and

also increases as the spacing between conductors increases up to a critical

value of approximately d = 3X/8.

FIG. 11. Colinear antenna array.

19.06. Other Types of Arrays. The colinear antenna array, shown in

Fig. 11, may be treated by methods similar to those of the preceding article.

The electric intensity at a distant point P is

60/o -;[(2ird/X)co80-] e-y2[(2,r<f/X)cos0-a]

60/Q _
jv,ro

sin (mS/2)

r sin (5/2)
(1)

where m is the number of antenna elements and d is given by Eq. (19.05-3)

with <t> replaced by 0. The function /(0) is given in Eqs. (19.03-6 and 7).

This array radiates uniformly in the <t> direction but may be made to have

any desired directivity hi the direction.

Arrangements for feeding the antenna elements of colinear arrays are

shown in Fig. 12. In Fig. 12a, the antenna sections are each approximately
a half wavelength long. The transmission-line elements are inserted be-

tween successive antenna sections to obtain proper phasing of the antenna

currents. A common arrangement is to use transmission lines which are
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Choke-4

(a) (b)

FIG. 12. Colinear arrays.
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Fio. 13. Rectangular array.
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each a quarter wavelength long, in which case the antenna currents are in

time phase. This results in a field distribution similar to that of the broad-

side array shown in Fig. lOa.

The array of Fig. 12b is fed by a coaxial transmission

line. The first antenna of the array consists of the ex-

tended center conductor and the sleeve, forming a half-

wavelength dipole antenna. Other antenna elements are

formed by the sheath of the coaxial line and additional

quarter-wavelength sleeves. The choke sleeve is a

quarter wavelength long and serves to minimize induced

currents in the coaxial-cable sheath below the array.

A rectangular array is sometimes used to obtain in-

creased directivity. Figure 13 shows a rectangular array

of half-wavelength dipole antennas. A metal screen be-

hind the antennas serves as a reflector to give unidirec-

tional radiation. The array shown is a broadside array,

operating at a frequency of approximately 200 megacycles.

The turnstile array of Fig. 14 is an arrangement in

which the two antennas on any one level cross at right

angles and have a 90-degree phase displacement of antenna currents. This

results in a circularly symmetrical field pattern with horizontal polarization.

FIG. 14. Turnstile

antenna.

-22.5 +22.5

Phase angle of parasitic antenna fmpedoince

PIG. 15. Field patterns in the horizontal plane for a driven antenna and a parasitic antenna.
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By proper spacing of antenna elements and phasing of the antenna cur-

rents, the vertical radiation may be largely canceled.

19.07. Parasitic Antennas. If a conducting wire is placed in the

vicinity of a transmitting antenna and is oriented so as to be parallel to

the electric-field lines, it becomes a parasitic antenna. Induced currents

flow in the conductor and it absorbs and reradiates power according to its

own directional radiation characteristics. The driven and parasitic an-

tennas then comprise a two-element array with a field distribution which

may be computed by the methods of the preceding section if the currents

in the driven and parasitic antennas are

known. The length of the parasitic an-

tenna as well as the spacing between

driven and parasitic antennas may be

varied to obtain a variety of directivity

patterns as shown in Fig. 15. The phase

angles are those of the self-impedance of

the parasitic antenna, which depends upon
its length. The self-impedance of an iso-

lated antenna which is less than a half

wavelength long is capacitive, while that

of an antenna greater than a half wave-

length but less than a full wavelength

long is inductive.

19.08. Loop Antennas. Consider now
the radiation from a circular loop antenna

with dimensions which are small in com-

parison with the wavelength. Uniform

current distribution in the loop is assumed and the radius of the loop is

taken as a.

In the spherical coordinate system of Fig. 16, consider the vector poten-
tial at point P, with coordinates (r, 0, <), resulting from a differential cur-

rent element at Q, with coordinates (a, 6', <'). The differential current

element is la dtf. The resultant vector potential at P is in the <t> direction

and, because of symmetry, the vector potential is uniform in the </> direc-

tion. In order to simplify the following discussion, we shall let <t>
= 0.

The differential current element at Q makes an angle of <t>' with respect to

the resultant vector potential at P, hence Eq. (15.02-14) may be written

Fio. 16. Loop antenna.

M/ r2'

+
= I

4vJo
a cos tf d<t>' (1)

Referring to Fig. 16, we may let r = TQ a cos ^ in the exponential
term of Eq. (1) and r r in the denominator. It may be shown that

cos ^ = cos cos tf + sin sin tf cos (</> 0')- For our problem, we have
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0' = 7T/2 and < = 0; therefore, r = r a sin cos <'. Making this sub-

stitution in Eq. (1), we obtain

r2*
. . *

I e**
600** cos *' cfo' (2)

Jo4*T

Taking the first two terms of the series expansion for the exponential,

we have

aide-'** (**
A+ =- I (1 + j@a sin 6 cos <') cos <t>' d</>'

%/o4irr

jirla
2
^

. (3)
2Xr

Inserting this value of A^ into H = (!/M)^ X A, we obtain the magnetic-

intensity components,
-iV 7/ z

(4)

He =
-5 sin fle-^ro (5)

The electric intensity may be obtained by substituting J7 into V X H =
<ieE. The scalar value of the radiation-field components are

He = ~^ sine (6)

sin0 (7)
X'TQ

The radiation field of a loop antenna consists of a TEM spherical wave

with intensities similar to those of the incremental antenna given in Eqs.

(19.02-7 and 8), but with the electric and magnetic-intensity directions

interchanged. The field pattern in the plane perpendicular to the loop is

the same as that of the incremental antenna shown in Fig. 2.

The total radiated power and radiation resistance are:

/Jo sin dO

(9)
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As an example, a loop antenna with a value of a/X = 0.05 has a radiation

resistance of 7?o
= 1-94 ohms, as compared with 73 ohms for the half-

wavelength dipole antenna. The low radiation resistance of the loop an-

tenna in comparison with its ohmic resistance results in relatively inefficient

operation. Also, the low radiation resistance makes it difficult to obtain a

proper impedance match to a transmission-line feeder.

Several modifications of the loop antenna have been developed in order

to overcome the difficulty of low radiation resistance. The Alford loop,
1

shown in Fig. 17, has a current loop at the center of each side, with the

currents in all four sides in phase. The nodal current points are brought

^Transmission
line

FIG. 17. Alford loop. FIG. 18. Shielded loop antenna.

close together so that they do not radiate. This loop presents a relatively

high reactive input impedance which is canceled by the reactance of the

short-circuited stub. The radiation resistance of the Alford loop is R =

320 sin
4
(vl/\), where I is the length of one side. This may be made con-

siderably greater than the radiation resistance of an ordinary loop antenna.

Figure 18 shows a loop antenna with an electrostatic shield. Antennas

of this type are often used as transmitting or receiving antennas on air-

planes. The electrostatic shield serves to minimize the static interference

but does not appreciably alter the radiation characteristics as a loop an-

tenna. Antenna currents flow on both the inside and outside surface of

the outer conductor, the currents flowing on the outside being responsible
for the radiation of power from the antenna.

19.03. Parabolic Reflectors. The parabolic reflector is frequently used

in microwave systems as a means of obtaining a high degree of directivity
of transmitting and receiving antennas. Either a plane parabola or a

1 ALFORD, A., and A. G. KANDOIAN, Ultra-high-frequency Loop Antennas, Trans

A.I.E.E., vol. 59, p. 843; December, 1940.
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paraboloid of revolution, such as shown in Fig. 19a or 19b, may be used.

The antenna is placed at the focal point of the parabola. The following dis-

cussion applies principally to the paraboloid of revolution.

^Paraboloid
ofrevolution

,> Spherical

reflecting
shell

(a)

FIG. 19. Parabolic antennas.

It is a well-known principle in optics that if a point light source is placed

at the focal point of a parabolic mirror, the reflected rays emerge as parallel

rays, concentrated in a narrow beam. Radio waves may be reflected by a

parabolic reflector in much the same manner. The beam width is dependent

Parabolic--
reflector

RFrotatingjoint
/ andswitch

^Wave guide

FIG. 20. Schwarzschild antenna consisting of a plane parabola fed by a folded waveguide.
Beam width is 0.6 degree in azimuth and 3 degrees in elevations. X 3 centimeters.

upon several factors. If the parabola is small, appreciable diffraction occurs

at the edges of the parabola, resulting in increased beam width. In order

to minimize diffraction the parabola should have a diameter exceeding 10

wavelengths.
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Another factor tending to increase the beam width is the finite size of

the antenna. Since the antenna is not a true point source, it produces focal

defects, known as aberrations, which cause the rays to diverge from the ideal

parallel beam. To minimize this difficulty, the parabola should have a focal

distance of approximately one-quarter of its diameter.

A half-wavelength dipole antenna radiates uniformly in the horizontal

direction but has a field pattern as shown in Fig. 5a in the vertical plane.

Consequently, the parabola is uniformly illuminated in a horizontal plane
but has most of the radiation concentrated at the center in the vertical plane.

This results in a narrower beam in the horizontal direction than in the verti-

cal direction. The direct radiation from the antenna which is not reflected

by the parabola tends to spread out in all directions and hence partially

destroys the directivity. The spherical reflecting shell, shown in Fig. 19b,

or a parasitic antenna, may be used to direct all of the radiated energy
toward the parabolic reflecting surface, thereby avoiding direct radiation.

PROBLEMS

1. An isolated linear antenna is 3\ long. The antenna is fed at a loop current point
and the current is 10 amps.

(a) Determine the angular positions of the maxima and minima of the radiation

field in the vertical plane and sketch the field pattern.

(6) Compute the electric intensity, magnetic intensity, and time-average power
density at a point 10 km from the antenna in the direction of the maximum
intensity,

(c) Compute the radiation resistance.

2. Show that the time-average power radiated from an infinitesimal antenna, including

the induction field terms, is the same as that of the radiation field alone. Obtain

an expression for the peak value of reactive energy density stored in the field.

3. An array of m half-wavelength dipole antennas, such as that shown in Fig. 9, is

mounted vertically over a perfectly conducting ground plane. Derive an expression

for the electric intensity of the radiation field.

4. An end-fire array consists of six quarter-wavelength antennas mounted vertically

over a perfectly conducting ground plane. The electric intensity in a horizontal

plane at a distance of 25 miles from the antenna is to be 20 microvolts per m and the

frequency is 50 megacycles per sec.

(a) Specify the spacing between antennas for a maximum directivity of the radiated

signal.

(6) Sketch the field pattern in the horizontal and vertical planes.

(c) What should be the antenna currents and phasing of the antenna currents?

(d) Show how the antennas can be fed in order to obtain the desired phase relation-

ships.

6. Derive an expression for the field pattern of the turnstile antenna of Fig. 14, assuming
that all of the antennas in a vertical plane are fed in time phase and that the two
antennas in any one horizontal plane have a phase displacement of 90. Show that

the resulting electric intensity is circularly polarized.
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6. A loop antenna has a radius of 2 cm and a current of 100 ma. The frequency of the

exciting source is 1,000 megacycles per sec.

(a) Compute the radiation resistance and power input, assuming that the antenna

losses are negligible.

(6) Evaluate the electric intensity at a point in space 500 ft from the antenna and

making an angle of 30 with respect to the plane of the antenna.



CHAPTER 20

IMPEDANCE OF ANTENNAS

The antenna must be considered not only from the viewpoint of a

radiator or receiver of electromagnetic energy, but also as a circuit ele-

ment in transmitting and receiving systems. For example, if maximum

power transfer is to be realized, the networks feeding the antenna must

be designed so as to present a conjugate impedance match at the antenna

terminals. In certain applications, sharply tuned antennas are required,

whereas in other applications, such as in television and pulse-modulated

systems,, the antennas must have a relatively constant input impedance
over a wide range of frequencies. These few examples indicate the need

for further knowledge of the subject of antenna impedances.

20.01. Input Impedance of Antennas. The input impedance of an an-

tenna is dependent upon its length, shape, the point where the antenna is

fed, and the proximity of conductors or other objects which alter the field

distribution in space.

A linear center-fed antenna, which is isolated in space, has an impedance
variation with length (or impressed frequency) somewhat similar to that

of the open-circuited transmission line shown in Fig. 10, Chap. 8, and has

reactance characteristics similar to those shown in Fig. 6, Chap. 8. The

length of the equivalent line is slightly greater than one-half of the antenna

length. Resonant and antiresonant input impedances occur when the an-

tenna length is approximately 5 per cent shorter than an integral number
of half wavelengths, the deficiency being due to what is sometimes referred

to as "end effects." The nature of these end effects will be discussed in

connection with biconical antennas in the following chapter. The reac-

tive component of input impedance alternates between capacitive and
inductive reactance as the length of the antenna increases. The input

impedance is a relatively low resistance at resonance and a high resistance

at antiresonance.

In an array of antennas, the input impedance of any one antenna is

dependent not only upon its self-impedance, but also upon the mutual

impedance between the given antenna and all other antennas in the array.
The use of a parabolic reflector or other reflecting device likewise alters

the input impedance of an antenna.

424
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A reciprocity theorem l of fundamental importance in the analysis of

antennas states that if a voltage V, impressed at the terminals of one

antenna, produces a current 7 in a second antenna, then the same voltage

applied at the terminals of the second antenna will produce the same current

Fzo. 1. End fire array of curved dipole antennas. Beam width between half-power points is

28 degrees at A 12 centimeters. (Courtesy of the M.I.T. Radiation Laboratory.)

in the first antenna. Another way of stating this is that the transfer imped-
ance of two antennas is the same with the generator connected to the

terminals of either antenna, that is, Zt
= Vi//2 = V*/I\ 9

where 72 is the

current in antenna 2 due to the voltage Vi applied to antenna 1, and

/i is the current in antenna 1 due to the voltage F2 applied to antenna 2.

1
CARBON, J. R., Reciprocal Theorems in Radio Communication, Proc. I.R.E., vol. 17,

p. 052; June, 1929.
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As a result of the reciprocity theorem, the field pattern of an antenna or

an array, as well as the self and mutual impedances of the various antenna

elements, are the same when the antenna is used either as a transmitting

or receiving antenna. The reciprocity theorem is restricted to isotropic

mediums and does not apply if the field includes an ionized medium in the

presence of a magnetic field, such as exists in the ionosphere region.

20.02. Methods of Evaluating Antenna Impedances. There are four

general methods of evaluating the input impedance of antennas. These are

as follows:

1. If solutions of the wave equation are obtainable and the constants,

representing the relative magnitudes of the various modes, can be evaluated,

then the antenna current may be obtained for a given applied emf as a

boundary-value problem. The input impedance is then computed as the

ratio of voltage to current at the input terminals. Although this method

represents a jigorous approach, the evaluation of the constants in the general

solution of the wave equation involves considerable mathematical difficulty.

For this reason, other simpler methods are used wherever possible.

2. The radiation resistance of an antenna may be determined by the

Poynting-vector method described in the preceding chapter. In this

method the field distribution is obtained in terms of either a known or an

assumed current distribution in the antenna. The total radiated power is

then computed by integrating the normal component of Poynting's vector

over the surface of a large sphere having the antenna at its center. The
radiation resistance is then obtained from RQ = 2P//JJ, where P is the total

radiated power and 7 is the amplitude of the current at the position on

the antenna where the current has its maximum value (the loop current

point). For a perfectly conducting antenna, the radiation resistance would

be the resistive component of input impedance, neglecting ohmic resistance,

at the loop current point. This method does not give the reactive compo-
nent of input impedance. When applied to arrays, this method may be

used to obtain the total power radiated by the array, but it does not tell

how much power is radiated by each individual antenna, nor does it enable

us to evaluate the self and mutual impedances of the antenna elements in

the array.

3. A modification of the Poynting-vector method is obtained if the sur-

face over which Poynting's vector is integrated is chosen so as to coincide

with the surface of the antenna conductor. This yields real and imaginary

components of power, the real part representing power which is radiated

from the antenna and the imaginary part representing energy which is

stored in the induction field during one portion of the cycle and returned to

the source during a later portion of the cycle. If ^ is the complex power,
then the input impedance is Z = 2^//

2
,
where 7 is the amplitude of the

input current.
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4. In the induced emf method, we again start with either a known or an

assumed current distribution in the antenna and determine the resulting

field distribution. The field induces a counter emf in the antenna which

opposes the current in the antenna. Consequently the source must supply

an equal and opposite emf to overcome the induced emf and thereby sustain

the current flow in the antenna. The procedure, therefore, is to evaluate the

induced emf by taking the line integral of electric intensity over the length

of the antenna. The applied emf is equal and opposite to the induced emf

and the ratio of applied emf to current,

at the input terminals of the antenna,

gives the input impedance.
We shall see presently that the third and

fourth methods are essentially the same.

Since these methods yield the most useful

information, we shall consider them in

greater detail in this chapter. In the fore-

going discussion, no mention was made of

the losses in the antenna itself. The power

input to the antenna must equal the sum
of the radiated power and the power loss

in the antenna. The efficiency is the ratio

of the radiated power to the power input.

Since the losses in most antenna systems

are small, they have very little effect upon
the input impedance.

20.03. Field of a Linear Antenna Exact

Method. In Sec. 19.03, the field distribu-

tion of a linear antenna was obtained by an approximate method in which

only the radiation-field terms were included. Since the induced emf method

requires a knowledge of the field distribution in the immediate vicinity of

the antenna, we shall retrace our steps and derive more exact expressions

for the field distribution.

Consider the center-fed linear antenna of Fig. 2, which is assumed to be

isolated in space and to have a sinusoidal current distribution up to the

feed point of the antenna. The current is given by

FIG. 2. Center-fed antenna with a
sinusoidal current distribution.

/ - 7 sin ft (- - Z
J

< Z < -

(I \ I

I = 7 sin /J f - + Z
J

- - < Z <

(1)
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The charge distribution may be obtained by inserting the current from

Eq. (1) into the equation of continuity, Eq. (3.02-7), which, for the one-

dimensional case, may be written dl/dZ = -~dqi/dt = jwqi, where qi is

the charge per unit length of conductor. The charge distribution then

becomes r
-*o - - - ~

< Z < -
2

(2)

/o (I \
qi
= J cos (

- + Z
)

vc \2 /
-- <Z <0

2

The retarded scalar and vector potentials are obtained by inserting the

current and charge from Eqs. (1) and (2) into (15.02-13 and 14), with the

substitutions q r dr =
qi dZ and Jc dr = / dZ. The potentials at P in Fig. 2,

resulting from the charge and current in the upper half of the antenna, then

become
j ^-1/2 c~jftr

7=-; - cos/3--ZdZ (3)

n x

(--Z)\2 /

n \

(
-- Z)
\2 /

dZ (4)

Similar expressions may be written for the potentials at P due to the current

and charge in the lower half of the antenna.

The field intensities may be evaluated in terms of the potentials by using

Eqs. (15.02-1 and 3), l

ff = - V X I (15.02-1)
M

dl
E = -VF -- (15.02-3)

dt

When expressed in cylindrical coordinates for our particular problem, these

become

Ep
= -- # =

(5)
dz dp

1 dA.
//,= ---

(6)
M dp

The intensity component Ez at p resulting from the charge and current

in the upper half of the antenna is obtained by inserting Eqs. (3) and (4)

into the first of Eq. (5). Letting /(r)
= e~^r

/ry
we have

dz

~ l/2 I

(7)

~

>
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Referring to Fig. 1, we obtain

r
2 = P

2 + (*
- Z)

2
(8)

from which we obtain df(r)/dz = df(r)/dZ. This substitution may be

made in the first integral of Eq. (7) and the integration may then be

completed by parts. We let u = cos ft[(l/2)
-

Z] and dv [df(r)/dZ\ dZ,

and the first integral of Eq. (8) becomes

-,r
Jz=<

Z-f/2

/j \

(
- - Z

)
\2 /

/(r) sin j8
- - Z dZ (9)

When Eq. (9) is substituted into Eq. (8), the two integral terms cancel,

leaving

E,= -j^- cos/3(--

Returning to Fig. 2, we find that when Z = and Z = 1/2 we have r = r

and r = r2 , respectively. The intensity E2 due to the current in the upper

half of the antenna therefore becomes

(10)
47T \ r2 r

A similar derivation, with the current and charge in the lower half of

the antenna substituted into Eqs. (3) and (4), would yield the contribution

to Ez resulting from the current and charge in the lower half of the antenna.

Adding these two terms yields the total intensity,

/2(r*ro
01 e-*r > <T*f2\

E, = J30/o (
- cos ------

)
(11)

\ r 2 ri 7*2 /

Expressions for E
p
and //^ may be obtained by inserting V and A z

into Eqs. (7) and (8), yielding, after considerable manipulation,

r2 r

y^ri + ->*. . 2e-^ro
cos ~ (13)

2 /

These equations may be used to evaluate the intensities for any value of

p up to the surface of the antenna conductor.
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20.04. Input Impedance of a Linear Antenna. Having derived expres-

sions for the intensities in the immediate vicinity of a linear antenna, we
are now prepared to proceed with the impedance derivations. Assume that

the linear antenna of Fig. 3 has a point source generator and a sinusoidal

current distribution. The power density, flowing in a direction normal to

the surface of the conductor, is given by

Poynting's vector. The time-average power

density may be expressed as ^ = ^^//J,
where Eg and H+ are the complex values of

the intensities at the surface of the conductor

and H% is the complex conjugate of H^. The

power density represented by this expression

is complex, the real part representing power
lost by the system and the imaginary part

* /u . representing reactive energy stored in the

field. Integration of the power density over

the surface of the conductor gives the total

complex power

... _ CD
-1/2

where a is the radius of the conductor and
Ilo.

3.-IUustr^kmfor
induced- ^ negative gign ^^^^^ by^

system.

The total power leaving the antenna may also be expressed in terms

of the antenna current. Ampere's law toU'dl =
/, for our problem,

becomes 2iraH^ =
/, or H* = I*/2ira. Making this substitution in Eq.

(1), we obtain an alternate expression for the complex power

/W

J-

72
'
2EJ*Z dz (2)

1/2

Equations (1) and (2) offer two different interpretations for one and the

same phenomenon. In Eq. (1), the complex power is expressed as the

surface integral of Poynting's vector over a surface enclosing and coinciding

with the antenna conductor surface. Our interpretation of Eq. (2) is that

the intensity Ez opposes the current flow in the antenna, compelling the

source to supply an equal and opposite electric intensity to sustain the

current. The emf induced by the field is obtained by integrating E9 over

the length of the antenna. This is equal and opposite to the applied

emf.
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The complex impedance at the input terminals is

where /o is the amplitude of the input current.

The intensities in the power expressions, Eqs. (1) and (2), are those at

the surface of the antenna. These may be obtained from Eq. (20.03-11)

by setting _
r - V* + a2 n'= VQ +

*)
2+a2 * -

\V5
-

where a is the radius of the conductor. The value of Ez obtained in this

manner is then inserted into Eq. (2) together with the current from the

first of Eq. (20.03-1). The integration may be performed over the upper
half of the antenna and the resulting power multiplied by two to obtain

the total complex power. This gives

V[(J/2) + z]
2 + a2

This integral may be evaluated by straightforward methods, although the

actual manipulation is quite involved. The integration could be simplified

by assuming that the conductor has zero radius, that is, a = 0. This would

yield approximately the correct value of the real power and hence the re-

sistive component of input impedance, as computed by inserting Eq. (5) into

Eq. (3), would be the correct value. However, the imaginary component
would be infinite, indicating an infinite reactance. In order to evaluate the

reactive component of input impedance, it is therefore necessary to use the

more exact expression. Schelkunoff l has obtained the following expressions

for the resistance and reactance of the linear antenna by a method similar

to that outlined above

R = 60(c + In 01
- Off) + 30(t2pZ - 2Sifil) sin 01

/pi \
+30 ( c + In 2Cipl + Ci2pl] cos ftl (6)

X - WSipl + 30(2St# - S&01) cos ft

-30 fin - - 2.414 - Ci2pl + 2Ciftl\ sin ft (7)

1 SCHELKUNOFF, S. A., "Electromagnetic Waves," pp. 369-374, D. Van Nostrand

Company, Inc., New York, 1943.
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where c = 0.5572 is Euler's constant and the cosine and sine integrals are

as defined in Sec. 19.03. These terms may be readily evaluated for an

antenna of any desired length if tables of the cosine and sine integrals

are available. For example, if the antenna length is an odd integral number

of half wavelengths long, we then have 01 = nv where n is an odd integer;

then sin 01 and cos/ft = 1. Equations (6) and (7) then reduce to

R = 72.45 + 30 In n - 3QCi2irn (8)

X 30St2im (9)

The resistive component of input impedance agrees with that obtained

by the Poynting-vector method in Eq. (19.03-14). For a half-wavelength

dipole antenna, we have Cftim and Si2irn = 1.43. The input imped-

ance then becomes Z = 72.45 + j43 ohms. The reactive component of

the input impedance may be made zero by using an antenna which is

slightly less than a half wavelength long.

20.05. Validity of the Induced-emf Method. Although the induced-

emf method of evaluating antenna impedances yields results which agree

favorably with measured values, this method embodies certain inconsist-

encies which lead us to question its validity. If we assume that the antenna

is a perfect conductor, then the tangential intensity must be zero in order

to satisfy the boundary conditions. This presents an embarrassing situa-

tion, since if Eg is zero at the conductor surface, then the normal component

of Poynting's vector is likewise zero and there can be no power flow normal

to the surface of the antenna. Docs this mean that a perfectly conducting

antenna could not radiate power? Experimental evidence indicates that

the radiating properties of an antenna are actually improved as the con-

ductivity of the antenna conductor increases. Intuitively we would expect

that a perfectly conducting antenna would radiate just as effectively as an

antenna with finite conductivity. If the radiated power does not leave the

surface of the conductor, then where does it leave the antenna?

Before attempting an explanation of this anomaly, let us straighten out

the matter of current distribution in the antenna. It is evident that, for a

perfectly conducting antenna, the assumption of a sinusoidal current dis-

tribution is erroneous, since it yields a tangential intensity at the surface

of the antenna which we know cannot exist. However, the value of Ez

computed on the basis of an assumed sinusoidal current distribution is

quite small and, for thin antennas, only a slight modification of the current

distribution is necessary in order to cause Ez to vanish at the surface of the

conductor, thereby satisfying the boundary conditions. Consequently, the

current distribution along a thin, perfectly conducting antenna would differ

slightly from a sinusoidal distribution, the discrepancy being most pro-

nounced at the current nodes. As the conductor diameter approaches zero,

the current distribution approaches a sinusoidal distribution.
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In order to answer the question "where does the radiated power leave

the antenna?" we must searpfeffor a surface over which the normal compo-
nent of Poynting's vector'is not zero. Could this be the extreme end sur-

faces of the antenna? In order to have a normal component of Poynting's

vector, it would be necessary to have a tangential component of electric

intensity at the end surfaces, but this is again ruled out by our assumption
of a perfectly conducting antenna.

Let us now consider the antenna shown in Fig. 4, in which it is assumed

that there is a finite separation distance between conductors at the feed

point ab. An electric field exists in the region ab such that

the line integral of electric intensity over this interval is

equal to the impressed emf . A magnetic field also exists

in this region owing to the current flow. Consequently we
would expect to find a normal component of Poynting's

vector over any surface enclosing the region ab. This leads

us to suspect that the radiated power might depart from

the antenna in the region between a and 6. As the dis-

tance ab is decreased, the electric intensity increases in

such a way that the line integral of electric intensity from

a to 6 always equals the applied emf. In the foregoing

derivations, a point generator was assumed, implying that

the distance ab approaches zero. If this were true, how- ^ A

xi i i. x -x u u CL -x i
FlG - 4~Field

ever, the electric intensity would approach infinite value in the vicinity of

over the infinitesimal distance ab. ^
^.

fe<

j

d ^
in

^
of

Since the induced-emf method apparently yields reason-

ably correct results, we conclude that the complex power leaving a thin, per-

fectly conducting antenna may be determined by either of two methods.

1. Assume a sinusoidal current distribution and a point source feeding

the antenna. Ignoring boundary conditions, evaluate Ez by the methods

outlined above and insert this in either Eq. (20.04-1 or 2) to obtain the

complex power flow.

2. With the true current distribution, Ez is zero at the surface of the

antenna, but it is not zero in the region ab. We may therefore obtain the

complex power flow by integrating Poynting's vector over a surface enclos-

ing the region ab.

It is not clear why the two methods give essentially the same result. Ap-

parently the slight modification in antenna current, which is necessary to

satisfy the boundary conditions, causes a shift from a situation of distri-

buted power flow from the conductor surface to one of concentrated power
flow emanating from the region afe, without appreciably altering the value

of the power or the complex impedance computed from it. Since all

practical antennas have finite conductivity, the value of Ez is small but

need not be zero.
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20.06. Mutual Impedance of Linear Antennas. When two or more

antennas are located in a mutual field, a coupling exists between the

antennas which influences the input impedance of each. Designating
the self-impedances of a group of antennas at the input terminals as

Zu, Z22 , ZM, etc., and the mutual impedances as Zi2 , #23, etc., we may
write the following familiar network

equations

If

V2 72Z22 7nZ2n (1)

FIG. 5. Illustration for mutual im-

pedance between antennas.

flow in antenna 2.

the induced emf is

where V\ 9
V2 , Vs, etc., are the applied

emfs. From the reciprocity theorem, we
find that the mutual impedances bear

the relationship Zi 2
= Z2 \, etc.

Consider the mutual impedance of two

thin, parallel antennas of equal length as

shown in Fig. 5. The current in antenna

1 produces a tangential component of

electric intensity at the surface of antenna

2. This tangential electric intensity pro-

duces an emf in antenna 2 which, we
will assume, opposes the current flow in

antenna 2. It is then necessary for the

source of antenna 2 to supply an equal

and opposite emf to sustain the current

The complex power required of source 2 to overcome

-l/2
E zi 2I2 dz (2)

where Ez \ 2 is the intensity at the surface of antenna 2 due to the current

in antenna 1, and 72 is the current in antenna 2. The mutual impedance
is then

(3)Mi
For linear antennas, Eq. (2) may be evaluated by assuming sinusoidally

distributed currents in the two antennas. The electric intensity Ezi2 at

the surface of antenna 2 resulting from the current in antenna 1 is then

obtained from Eq. (20.03-11). The values of Ez i 2 and 72 are inserted into

Eq. (2) and the integration is then performed to obtain ^2 . Inserting this
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Spacing between antennas in wavelengths-

OA 0.8 1.2 1.6 2.0 2.4 2.8

Spacing between adjacent ends in wavelengths

(b)

Q. 6. Magnitude and phase angle of the mutual impedance of two half-wavelength anten*

nas; (a) parallel antennas, and (b) colinear antennas.
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value of ^2 into Eq. (3) gives the mutual impedance. The integration is

quite lengthy and will therefore be omitted. For two half-wavelength

dipole antennas, the mutual impedance is

R12
- 30[2C#p - Ci/3(r' + -

Ci0(r'
-

I)]

(4)
+ Z)

where p and r' are the distances shown in Fig. 5.

As an example, consider the mutual impedance resulting from two half-

wavelength dipole antennas which are spaced a quarter wavelength apart.

We then have ftp
= T/2. Referring to tables of Cix and Six in Jahnke and

Emde, or Fig. 6, Chap. 19, we obtain

ftp
= -

Ciftp = 0.47 Siftp = 1.37
2

0(r' + 1)
= 6.65 Cip(r' + 0=0 ^(r' + = 1-43

- = 0.377 Ct/3(r'
- Q = -0.45 5t/S(r

/ -
I)
= 0.37

We substitute these values into Eq. (4) and the mutual impedance is

found to be ZJ2
= 41.7 - J2S.2 ohms.

Graphs of the magnitude and phase angle of the mutual impedances of

two half-wavelength antennas, arranged either as a parallel or colinear

array, are shown in Figs. 6a and 6b.

PROBLEMS

1. Derive the expressions for Ez ,
EP) and H^ given by Eqs. (20.03-11, 12, and 13), for

the linear antenna.

2. Compute the input impedance of a center-fed, linear antenna which is 1 wavelength

long. The frequency is 200 megacycles per sec.



CHAPTER 21

OTHER RADIATING SYSTEMS

A linear antenna, used either alone or in an array, constitutes a sharply

tuned antenna, i.e., relatively large impedance variations occur for small

variations in frequency either side of the resonant or antiresonant fre-

quency. Many applications require wide-band antennas which have a rela-

tively small impedance variation over a wide range of frequencies. Certain

types of antennas, such as the biconical antenna, the ellipsoidal antenna,

the electromagnetic horn, and others,

are inherently wide-band radiating and

receiving systems. We shall consider

several types of wide-band antennas in

this chapter. The diffraction of electro-

magnetic waves passing through an

aperture will also be treated.

21.01. Field of the Biconical Antenna.

The field in the vicinity of an antenna

may be regarded as consisting of a

superposition of a principal-mode field

and higher spherical-mode fields such as

those described in Sec. 15.11. Schelkunoff

has shown that the biconical antenna

has the unique feature that, insofar as

the principal mode is concerned, it appears as an open-ended transmission

line with uniformly distributed circuit parameters. Consequently this an-

tenna offers an excellent opportunity to study radiation phenomenon from

the viewpoint of transmission-line theory on the one hand, and the solu-

tions of Maxwell's equations on the other.
- The biconical antenna of Fig. I is assumed to have two perfectly con-

ducting cones, each of length / and cone angle 20 1. The electric field lines

for the principal mode are arcs of circles terminating on charges on the

surface of the cones as shown in Fig, 2a. The magnetic lines for the princi-

pal mode are circles concentric with the axis of the cone. If we assume a

small cone angle, the principal-mode field may be assumed to be contained

within the imaginary spherical surface s in Fig. 1. The electric field lines

for two of the higher spherical modes are shown in Figs. 2b and 2c.

437

FIG. 1. The biconical antenna.
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For the present, let us consider only the principal mode. The intensity

components are Ee and H+. The field is circularly symmetrical, hence

d/d<t> = 0. The curl equations (13.06-1 and 2), expressed in spherical coordi-

nates, then become

1 d(rEe)
(1)

dr

r dr

(sin 0H+) =
36

rEe =

where" the time function e*
at

is implied.

(2)

(3)

(4)

(a) (b) (c)

Fro. 2.- Field of tho bironical antenna, (a; principal mode, (b) and (c) higher order modes.

An explicit expression for Ee is obtained by multiplying Eq. (1) by r

and then differentiating with respect to r. Substitution of [d(rH^)}/dr from
Eq. (2) into this expression yields

(5)
dr

2

where = wV ^.

Similarly, for the magnetic intensity we have

ar
2 (6)
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Solutions of Eqs. (5) and (6) which also satisfy Eqs. (3) and (4) are

Ee
= (Ae^r + Be*r

) (7)
rsin0

(8)

ijr sin 6

where 77
= v/z/c.

Equations (7) and (8) contain outgoing and reflected wave terms corre-

sponding to the principal mode. The intensities decrease as l/r due to the

spherical nature of the waves. The ratio of electric to magnetic intensity

for either the outgoing or reflected wave is equal to the intrinsic impedance
of free space. Boundary conditions are satisfied since the electric intensity

is normal to and the magnetic intensity tangential to the conducting surface.

The voltage between corresponding points on the two conductors is due

to the field of the principal mode only.
1 This voltage may be computed

as the line integral of electric intensity over the circular electric-flux path
of the principal mode, or

V = - f
l

EerdO (9)
J01

F = - (Ae-jijr + B^r
)

'- d6
sin 6

Upon inserting EQ from Eq. (7), we obtain

r
) r

'

J0i si

c\

+ B^r
)2 In cot - (10)

2

Ampfire's law (kfl-dl = / may be used to evaluate the current. Inte-

grating over a circular path concentric with the cone, we have 2irr sin 6H^
=

7, and inserting H$ from Eq. (8) gives

(11)
vi

From the viewpoint of a transmission line, the characteristic impedance

ZQ of the biconical antenna is the ratio of voltage to current for either the

outgoing or reflected wave. Equations (10) and (11) give

>7 0i 2
ZQ = - In cot 120 In (12)

TT 2 0i

The second form of Eq. (12) is valid for small cone angles only.

1 SCHELKUNOFP, S. A., "Electromagnetic Waves/
7

p. 447, D. Van Nostrand Company,
Inc., New York, 1943.
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The characteristic impedance is independent of r; therefore, insofar as

the principal mode is concerned, the biconical antenna has the properties

of a uniform transmission line. The inductance and capacitance per unit

length are also independent of r by virtue of the fact that the conductor

diameter increases in direct proportion to r.

Although the biconical antenna appears as an open-ended transmission

line, the energy of the outgoing wave is only partially reflected at the sur-

face s, in Fig. 1, the remaining portion being transformed into higher-mode

energy. Schelkunoff has shown that, from the viewpoint of the principal

mode, this transfer of energy into the higher modes may be treated as a

lumped impedance terminating a uniform transmission line.

21.02. Impedance of the Biconical Antenna. The input impedance of

the biconical antenna may be obtained from the transmission-line equa-
tion (8.06-4)

: + jZQ tan 0l\
) (8.06-4)+ jZR tim(3l/

where ZR is the equivalent terminating impedance representing the effects

of energy transfer from the principal mode to the higher modes.

Let us now consider, in a general way, the method used by Schelkunoff

in determining the terminating impedance ZR . The voltage difference

between conductors (taken over a circular electric-flux path) is not affected

by the presence of the higher-mode fields; hence we designate this voltage

Vo(r) y
where the zero subscript represents the principal mode. The current,

however, contains components due to the principal mode as well as all

higher-order modes. The current expressed in Eq. (21.01-11) represents

the principal-mode current only. The higher-mode currents are represented

by /'(r) = /i(r) + 72 (r) H 7n (r), where the subscripts denote the

various modes. The total current at any point distant r from the apex
is therefore

7(r) = 7o(r) + 7'(r) (1)

where 7 (r) is the principal mode current.

At the ends of the antenna (r
=

I) the current must vanish; hence we
have

7 (0 = -7'(Z) (2)

The equivalent terminating impedance is the ratio of voltage to current

at the open end of the antenna, or
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The problem of evaluating the terminating impedance, therefore, is to

evaluate the higher-mode currents I'(I) at the end of the antenna for a

given impressed voltage. Schelkunoff accomplished this by considering

the biconical antenna as consisting of two regions, (1) the region inside

of the spherical surface s and (2) the region exterior to s. The distant field

5000

FIG. 3. Input impedance of hollow biconicai antennas for various values of characteristic

impedance. Solid lines represent resistance, and dotted lines, reactance.

of the biconical antenna was then assumed to be the same as that of a

linear antenna. This distant field was expressed in terms of spherical

modes. The field inside of s was likewise expressed in terms of spherical

modes, with the constants evaluated in such a manner as to satisfy the

boundary conditions. The intensities corresponding to the field inside s

and that outside s must have the same value at the boundary surface s.

This requirement also makes it possible to evaluate constants in the

spherical-mode solutions. Once the expressions for the field intensities have

been obtained, the higher-mode currents can readily be evaluated as a
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boundary-value problem; i.e., the tangential magnetic intensities at the

conductor surface must equal the surface-current densities for the various

modes. The terminating impedance is then computed from Eq. (3) and

this, in turn, is inserted into Eq. (8.06-4) to obtain the input impedance.

Figure 3 shows the variation of impedance with ftl for biconical antennas

having various values of characteristic impedance. The characteristic

impedance for a given cone angle may be obtained from Eq. (21.01-12).

Fio. 4. Biconical antenna for use in the frequency range from 132 to 150 megacycles. (CVmr-
tesy of the Bell Telephone Laboratories.)

The resonant length of the biconical antenna is somewhat shorter than a

half wavelength. The resonant impedance is a pure resistance of approxi-

mately 72 ohms and is reasonably constant for a wide range of cone angles.

As the cone angle increases, the antiresonant impedance decreases and

the impedance variation with frequency is reduced. Consequently the

biconical antenna with a large cone angle is essentially a broad-band

antenna.

21.03. Higher-mode Fields of the Biconical Antenna. The higher-
mode fields of the biconical antenna are of the general form described in

Sec. 17.14. The field is circularly symmetrical; hence we let m = and use

equations similar to Eqs. (17.14-14 or 15).
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The radial component of electric (or magnetic) intensity may be repre-

sented by

coB ) + BQn (cos 0)] (1)

where zn (kr) is a general representation for any combination of spherical

Bessel functions. In the region exterior to s, we use the spherical Hankel

function h (

n\kr) defined by Eq. (15.08-1) and discard the second-kind

Legendre function Qn(cos 0) because of its infinite value at = and
= TT. The intensity in the region outside s then becomes

ErQ
= -h(kr)Pn (cosO) (2)

r

Inside of the surface s the second-kind Bessel function is discarded

because of its infinite value at r = 0, hence zn (kr) = jn (kr). If we assume

an infinitely thin antenna (zero cone angle), then Qn (cos 6) is discarded.

The radial intensity inside s then becomes

^
Eri = -jn(kr)PH (c<*e) (3)

r

Expressions torjn (kr), h
(

n\kr) y
and Pn (cos 6) for the first few modes may

be obtained from Eq. (15.08-1 and 2) and (15.11-15). The electric field

lines for the first two higher-order modes are shown in Figs. 2b and 2c.

The field in the region exterior to s is the same as that shown in Figs. 2b

ind 2c, except that the small loops terminating on the conductor in Fig. 2

are not present.

21.04. Other Wide-band Antennas.1 '2 In general, the variation of

impedance of an antenna with frequency decreases as the transverse dimen-

sions of the antenna increase. Figure 4 shows a typical biconical antenna

and Fig. 5 shows an antenna consisting of a cone and a disc. These are

both wide-band antennas.

Schelkunoff has extended the method previously described for biconical

antennas so as to apply to antennas of arbitrary size and shape. In this

analysis, an average characteristic impedance is obtained for the particular

antenna considered. The terminal impedance which is the equivalent of

the higher-mode field effects is then obtained by the method described for

the biconical antenna. The average characteristic impedance and equiva-

lent terminal impedance are then substituted into an equation similar to

1 SCHELKUNOFF, S. A., Theory of Antennas of Arbitrary Size and Shape, Proc. I.R.E.,

vol. 29, pp. 493-521; September, 1941.
2 MOULLIN, E. B., The Radiation Resistance of Surfaces of Revolution, Such as

Cylinders, Spheres, and Cones, J.I.E.E., vol. 88, p. 60; March, 1941
;
also discussions in

J.I.E.E., vol. 88, p. 171; June, 1941.



Fio. 5.Di8cx>ne antenna and standing-wave ratio. (Courtesy of Federal Telecommunica-
tions Laboratories.)
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Eq. (8.06-4) (but derived for nonuniform lines) to obtain the input imped-
ance of the antenna.

The average characteristic impedance of a cylindrical antenna is

120 (i)

where / is the total length of the antenna and a is the radius. Figures 6a

and 6b show the resistive and reactive components of impedance as func-

tions of Z/X for cylindrical antennas

having various average character-

7^ /// istic impedances.

y+-~ /// 21.05. The Sectoral Horn. An
open-ended wave guide, which is

excited by a microwave source, will

radiate energy from the open end

of the guide into space. Since the

characteristic wave impedance in

the guide differs from the intrinsic

impedance of free space, the out-

going wave meets an abrupt dis-

continuity at the open end of the

guide. Consequently there is a re-

flected wave in the guide which, in

combination with the outgoing wave,

produces a standing wave. The

magnitude of the standing wave in

the guide is a measure of the degree

of impedance mismatch. At the

opening of the guide, diffraction of the radiated field causes the radiated

energy to scatter and results in poor directivity.

However, if the wave guide is terminated by an electromagnetic horn,

such as shown in Fig. 7, there is a smooth impedance transformation from

the characteristic wave impedance of the guide to the intrinsic impedance
of free space. Consequently, the electromagnetic horn serves as an imped-
ance transfo mer, thereby increasing the radiated power and decreasing

the reflection hi the guide. The horn also improves the directivity of the

field pattern. In many respects, the electromagnetic horn Is similar to the

acoustical horn.

Consider the sectoral horn shown hi Fig. 7, terminating a rectangular

guide.
1 The guide is assumed to be excited in the TEQtU mode. Cylindrical

coordinates are used, with the origin at the apex of the extended horn. For

1 The analysis presented here follows that given by W. L. BARROW and L. J. CHU,

Theory of the Electromagnetic Horn, Proc. I.R.E., vol. 27, pp. 51-64; January, 1930.

(b)

FIG. 7. The sectoral horn.
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the TEQtn mode, we have Ep
= E$ = Hz

= and the curl equations

(13.06-1 and 2) become

Id ldH
(1)

p op p o<t>

ldEz- =
-JCOM//P (2)

P #<

(3)

The solution of the wave equation in cylindrical coordinates, P]q.

(15.05-14), for our particular problem, may be written

Ez
= [CiJ,(kp) + C2Nv (kp)} cos v* (4)

The TE0tn modes have no intensity variation in the z direction. Only
the cos v4> terms are present if the guide is excited by a transverse antenna

which is centered in the guide.

For convenience, the Bessel functions of the first and second kind may
be replaced by Hankel functions of the second kind. Inserting Ez from

Eq. (4) into (1) to (3), we obtain the magnetic intensities

Ez
= jicositfff<

2)
(fcp) (5)

7/p
= ^-sin^ff? )

(fcp) (6)
J<PP

77
' A _*"?(kP> mH* = -J cos v<t>

-
(7)

7? d(kp)

where k =
2ir/\. In general, the Bessel and Hankel functions in Eqs. (4)

to (7) are of nonintegial order, hence v is usually not an integer. In the

horn the wave spreads as it travels outward and the propagation of the

outgoing wave in the radial direction is governed by the second-kind Hankel

function. The fact that nonintegral-order Hankel functions have infinite

value for zero argument need not concern us here, since our analysis ex-

tends only to the junction of the guide and horn and therefore does not

iiiclude the origin of the coordinate system.

To satisfy the boundary conditions, Ez must be zero at the side walls of

the horn. This requires that cos vfa = where 2<h is the flare angle of the

horn. We therefore have
nir nir

"*1
= T or " =^ (8)

where n is an odd integer denoting the half-wave periodicity in the <t>

direction.
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In its impedance-transforming properties, the electromagnetic horn is

similar to the tapered transmission line. In Sec. 10.12 the exponential line,

terminated in its characteristic impedance, was shown to have an outgoing

voltage wave given by V = Voe
~~ (a+jWa;

>
where e~ 6x

represents the voltage

transformation resulting from the taper. A wave function of this type is a

solution of the differential equation dV/dx =
(8 + jff)V.

We now assume that the horn has an exponential taper and that Ez

satisfies the same differential equation as the voltage on the exponential

line, or

(9)
dp

Inserting Ez from Eq. (5) into (9) gives

(10)

where

d(kp)

Replacing the Hankel function by its value for small and large argu-

ments, we obtain

2

irkp

- kpl (11)
kp/

kp 1 (12)

Inserting these into Eq. (10), with the substitution k =
2ir/X, we obtain

the transformation constant d and phase constant 0,

HIT

27T

B =
X -I]!)

1

Orn/00-i]
kp 1 (13)

kp 1 (14)

Small values of (kp) correspond to the throat region of the horn, whereas

large values correspond to the mouth region. Equation (14) assumes that
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the horn is many wavelengths long. The phase and group velocities in the

throat region of the horn are practically the same as those in the guide. At

the mouth of the horn the transformation constant approaches zero, and

the phase and group velocities approach the velocity of propagation in free

space.

\

^

HORIZONTAL SECTION
TRANSVERSE
SECTION

VERTICAL SECTION

FIG. 8. Field of the TE$t i mode in a sectoral horn.

The characteristic wave impedance is the ratio of the transverse com-

ponents of electric and magnetic intensity, ZQ = E2/H<j>. Inserting Eqs.

(5) and (7) into this expression, we obtain

(15)

and substituting Eq. (10) gives

Z = -Jn

ft

(16)

At the throat, the characteristic wave impedance is approximately equal

to that in the guide, whereas at the mouth, the characteristic wave imped-
ance is practically equal to the intrinsic impedance of free space.

The electromagnetic field in the horn is gradually transformed from the

TE wave of the wave guide to a TEM wave in free space, i.e., the radial

component of electric intensity Ep decreases as the wave progresses through
the horn. Figure 8 shows the electric and magnetic field lines for a TE0tn

wave in a sectoral horn.
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21.06. Radiation Field of Electromagnetic Horns. The radiation field

of the electromagnetic horn may be obtained by applying either Huygens'

principle or the equivalence principle. Later, we shall see how the equiva-
lence principle may be applied to a somewhat simpler problem the diffrac-

tion of a uniform plane wave in passing through a rectangular aperture.

The analysis of the radiation field of the electromagnetic horn involves

lengthy integrations and hence will not be considered here. 1

10 20 30 40

Flare angle 2<J>, ( degrees

50

FIG. 9. Beam angle between half-power points for sectoral horns having various lengths ami
flare angles.

Figure 9 shows the beam angle of sectoral horns as a function of flare

angle and length. The optimum flare angle 2fa is seen to vary between
40 degrees for a short horn to 15 degrees for a long horn.

The directional radiating properties of the electromagnetic horn result

in a very appreciable power gain in the direction of maximum radiation.

Figure 10 shows the power gain as compared with the radiation from a

dipole antenna. The power is proportional to the square of the electric

intensity.

The radiation field pattern of the sectoral horn in the plane perpendicular
to the plane of the flare is less directional than in the plane of the flare.

1 BARROW, W. L., and L. J. CHU, loc. tit.
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10 20 30 40 50

Flare angle, degrees

FIG. 10. Power gain of a sectoral horn compared with a one-half wavelength antenna.

The over-all directivity may be improved by the use of the pyramid horn,

shown in Fig. lla, which is flared in both directions. The conical horn of

Fig. lib may be used with circular guides.

Maximum directivity of long conical horns

is obtained with a flare angle of approxi-

mately 40 degrees.

21.07. The Equivalence Principle.

Huygens showed that if the field distribu-

tion is known over any surface enclosing
the source, such as surface s in Fig. 12, this

may be used as the basis for determining
the field distribution in space outside of s.

According to this point of view, each point

on the surface s is considered to be a

secondary source of radiation, emitting

spherical wavelets, the summation of which

determines the field in space. Eirchhoff

formulated this principle in terms of a

scalar wave function, and presented a

method of analysis which is commonly used

(a)

(b)

Fia. 11. Pyramid and conical horns
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in the solution of optical and acoustical diffraction problems. This method

is also applicable to microwave diffraction problems, provided that the

wavelength is small in comparison with the dimensions of the aperture.

The equivalence principle is a modification of the Huygens-Kirchhoff

principle and is valid even though the aperture dimensions are comparable
to the wavelength.

l In the equivalence method, we again start with a known
field distribution over the closed surface s. However, in this method we
remove the source and replace it by an imaginary current sheet coinciding

with surface s, the magnitude and phase of the currents being such as to

produce the identical field distribution on s as existed with the original

source. The field distribution in space exterior

to s will then be the same either for the origi-

nal source or for the imaginary current sheet

and may be evaluated in terms of the currents

in the equivalent current sheet.

In order to determine the value of the cur-

rents in the equivalent current sheet, we restore

the original source and reverse the direction of

the currents in the current sheet. With the

proper value of currents (but reversed in di-

Fio. i2.-liiustration of the rection) the fields exterior to s due to the origi-
equivalence principle.

'

nal source and the current sheet are equal and

opposite and hence cancel each other. Inside of the surface s the field is

identical to that of the source alone, since the current sheet merely serves

to terminate the field at s. The field intensities are then discontinuous

across the boundary and the current density on s may be evaluated in

terms of this discontinuity.

Our boundary conditions require that the discontinuity in the tangential

component of magnetic intensity must equal the surface electric-current

density on the equivalent current sheet. The tangential magnetic intensity

Ht is perpendicular to the electric current density 7 and may be expressed

oy J = n X Ht> where n is a unit vector in the direction of the outward

drawn normal.

There is also a discontinuity in the tangential component of electric

intensity at s. This is a violation of the boundary conditions of Sec. 13.08

and consequently it cannot exist physically. However, we may handle this

case theoretically by inventing a fictitious magnetic current of density M
on the surface s. The magnetic-current density serves to terminate the

tangential electric intensity. Since the magnetic-current density is per-

pendicular to the tangential electric intensity Et ,
we write M = n X Et-

The currents which we are seeking are those which produce the same field

1 SCHELKUNOPF, S. A., Some Equivalence Theorems and Their Application to Radia-

tion Problems, Bell System Tech. J., vol. 15, pp. 92-112; January, 1936.
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outside of s as the original source. These are equal and opposite to those

given above, or

J = n X Ht (1)

M = -n X Et (2)

The current densities in the equivalent current sheet may therefore be

evaluated in terms of the known values of electric and magnetic intensity

on s and we may then proceed to evaluate the field outside of s in terms of

these currents.

The curl equations may be written so as to include the hypothetical

magnetic currents in a nondissipative medium as follows:

- dU
VXE = -M-M (3)

dt

* &E
v x n = j + (4)

dt

Two vector potentials are required, one in terms of the electric current

and the other in terms of the magnetic current,

--('47T J8

--f4?r J8

ds (5)

0r

- ds (6)

In terms of the vector potentials, the intensities become

E = -jo)I --VXF-J-V(V-X) (7)
e w

3 = -jaF + -VXI-J- V(V-F) (8)
fJL

0)

The procedure, therefore, is to evaluate the electric and magnetic cur-

rents in terms of the known intensities on s. The vector potentials are

obtained by inserting the currents into Eqs. (5) and (6). Equations (7) and

(8) are then used to evaluate the field intensities in space. The equivalence

principle is particularly useful in finding the field distribution in various

types of diffraction problems, or the radiation fields of open-ended coaxial

lines and electromagnetic horns.

21.08. Diffraction of Uniform Plane Waves. As an application of the

equivalence principle, let us consider the diffraction of a uniform plane

wave in passing through a rectangular aperture in a perfectly absorbing



454 OTHER RADIATING SYSTEMS [CHAP. 21

screen as shown in Fig. 13. A perfectly absorbing screen would have an

intrinsic impedance equal to that of free space and a very high attenuation

constant, and would therefore absorb all of the incident energy except for

that which passes through the aperture. The relationships derived here

may be used as a first approximation for the diffraction of a uniform plane

wave by an aperture in a conducting screen.

In optics, if the aperture plane A of Fig. 13 is uniformly illuminated and

the viewing screen is placed close to the aperture, the image of the aperture

H

Aperture

ne
ĵ

ofthe
aperture

Nj
Fio. 13. Example of plane-wave diffrac-

tion.

FIG. 14. Coordinates for the diffraction of a

uniform plane wave.

appears on the viewing screen. As the spacing between the two planes is

increased, the image begins to show fuzzy variations in intensity at the

edges. Upon further increasing the spacing, the image gradually loses its

original shape and the intensity variations at the edges become more pro-

nounced, with definitely distinguishable light and dark bands parallel to

the edges of the image. The light bands result from reinforcement and the

dark bands from cancellation of the waves. Fresnel's diffraction occurs for

small spacings, while Fraunhofer diffraction corresponds to large spacings

between the object and image planes, the mathematical solutions differing

for the two cases.

Radio waves experience a similar diffraction phenomenon. Let us redraw

Fig. 13 as shown in Fig. 14, with the plane of the aperture coinciding with

the xy plane. Point Q(x , 3/0, 0) is in the plane of the aperture, whereas

P(x, yy z) is assumed to be in the viewing screen. The plane-wave source

is assumed to be below the xy plane and the intensities EXQ and Hyo in

the plane of the aperture are assumed to be uniform.
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Since the intensities are uniform over the aperture surface, the currents

in the equivalent current sheet are likewise uniform, and Eq. (21.07-1 and

2) give
3f*0

Also, we have

HyQ

(1)

(2)

Inserting Eq. (1) into (21.07-5 and 6), we ob-

tain the vector potentials

ds

We also note that

eExo re"**1

1 da
47T J rj

A,

Fv

(3)

(4)

(5)

Assume that the distance r is large in compari-

son with the aperture dimensions and that it is

also large in comparison with the wavelength.

We also assume that the wave at point P is a

transverse electromagnetic wave and hence has

no z component of electric or magnetic intensity.

With these assumptions, the last term in Eq.

(21.07-7) varies as 1/r
2 and hence is negligible

for large distances r. Discarding this term, Eq.

(21.07-7) becomes

E = -yo>I - - v x F (6)

The last term in Eq. (6) may be written

l[dFy r dFy}- -% --- f

L dX dZ J
"

1

-VX
PIG. 15. Slot antenna

for X = 3 centimeters.
Beam width to half-power
points is 10 degrees.

The term (dFy/dx)k represents a z component of electric intensity at P
which we have assumed to be negligible; hence

-V ----I
c dz

"

Equation (6) may therefore be expressed as

I dF
(7)
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and with the substitution of Eq. (5)

ldFyEx = --- jwnFy (8)
OZ

The problem now is to evaluate Fy and dFy/dz in terms of the intensity

EXQ at the aperture. To evaluate Fy ,
we return to Eq. (4) and make the

substitution

r,
-

((x
~

*o)
2 + (V

-
yo)

2 +
2
2
)
-

2(.rx + 3/2/0) + xl + &* (9)

Fia. 16. Diffraction of uniform plane waves by a grid.

Since XQ and yQ are small in comparison with x and ?/, the last two terms

in Eq. (9) may be discarded. Expanding the remaining terms in a binomial

series and retaining the first two terms of the S3ries and letting

r
2 = X2 + y

2 + Z
2

we obtain

xxo + yya ,

f
Tl
= r (10)

r

For conciseness, let x/r = I and y/r = m, giving r\
= r lxQ my$, which

is substituted into Eq. (4), yielding

^r /a/2

J-a/i -I fa <">
4?rr J-a/2 J-6/2

where we have treated r\ r as a constant in the denominator of Eq. (4).

Equation (11) integrates to

4irr

which we write

r

where

("sin (wla/\) sin--
(12)

L

(13)

sin (irla/\) sin
(7rra&/X)~|

4ir L (VZa/X) firm6/X) J

xQdb f

4ir L
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2

r

z I

\\k
r) r

1\
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Fia. 17. Metal lens antenna fed by a horn. Power gain over isotropic radiator is 12,000.
Power gain is 1 per cent of maximum value at 1.8 degree off the axis of the beam. Wave-
length, 7.5 centimeters.

Inserting Eqs. (13) and (14) into (8), together with the value of
Jfc, gives

the desired expression for the electric intensity as

E**ab\ sn (irmfc/X)

sin u sin t;

(15)

where A is the bracketed term in Eq. (15), u =
irla/\ and v = irm6/X.

The values of sin w/w and sin v/v determine, to a large extent, the varia-

tion of intensity in the viewing plane, since u and v vary with x and y,

respectively, where x and y are the coordinates of the point P. This is

apparent if we write u ~ irax/\r and v = vby/\r. The function sin u/u is
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plotted in Fig. 2, Chap. 12. From this graph, it is clear that nodal values of

electric and magnetic intensity occur for values of u (or v) equal to TT,

27T, etc. Maximum intensities occur approximately when u =
3ir/2, 57T/2,

etc. This accounts for the light and dark bands found in the Fraunhofer

diffraction pattern.

21.09. Optics and Microwaves. We have found that microwaves be-

have, in many respects, like light waves, obeying the same laws of wave

propagation, reflection, refraction, and diffraction. Intuitively, we would

expect this, since fundamentally they are one and the same physical

phenomenon. However, the electrical properties of materials, i.e., the

, /z, and a parameters, may differ greatly in passing from microwaves to

light waves. These parameters are inextricably dependent upon the be-

havior of atoms and electrons in high-frequency electromagnetic fields.

Such phenomena as electron resonance within the atom or energy-level

transitions seriously affect the values of these parameters. If we were to

pursue the subject further it would be necessary to make a fundamental

analysis of the electrical properties of matter in high-frequency fields.

It is interesting to speculate on the possibilities of using various types of

optical systems for microwaves. Thus, if low-loss refractive materials are

available, it may be possible to construct lenses, prisms, diffraction gratings,

and other optical systems for operation at microwave frequencies. In

theory, at least, all of these are possible, although the physical size would

probably be larger than the corresponding optical counterpart.



APPENDIX I

SYSTEMS OF UNITS

In the formulation of an absolute system of units, each quantity must be

expressed in terms of a minimum number of basic, independent units. The
choice of the basic units is somewhat arbitrary although they are usually

chosen in such a manner that permanent, reproducible standards can be

constructed. The units of mass, length, and time have been generally ac-

cepted as three of the basic units. In order to define electromagnetic

quantities, one additional basic unit is required.

The cgs electrostatic and electromagnetic systems of units use the centimeter,

gram, and second as the units of mass, length, and time, respectively. In

the electrostatic system of units, the permittivity of free space is taken

as unity and the units and dimensions of all other quantities are dimen-

sioned in terms of mass, length, time, and e . In the electromagnetic sys-

tem, the permeability of free space MO is taken as unity, and mass, length,

time, and /z become the basic units. The quantities e and pto, however,
are not independent, since Maxwell's equations show that the quantity

1

Vc J=LVWo
is equal to the velocity of light, which is a measurable physical quantity

(pc
= 2.99796 X 10

10
centimeters per second). This establishes a relation-

ship between the electrostatic and electromagnetic systems of units and

accounts for the fact that the velocity of light appears in the conversion of

quantities from either system of units to the other system.

Many of the electromagnetic equations contain both electric and mag-
netic quantities in a single mathematical expression. The question then

arises as to whether the quantities in these equations should be expressed

in (1) the electrostatic system of units, (2) the electromagnetic system of

units, or (3) a mixed system of units in which the electrical quantities are

expressed in electrostatic units while the magnetic quantities are in electro-

magnetic units. The latter system is commonly used and is known as the

Gaussian system of units. This is a hybrid system of units, since both

electrostatic and electromagnetic units may appear in the same equation;

hence the velocity of light often appears in these equations as a propor-

tionality constant.
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From a practical viewpoint, the units of the electrostatic and electro-

magnetic systems proved to be of inconvenient size. Consequently, a

practical system evolved in which the units are related to those in

the electromagnetic system by powers of ten. The electrical quantities in

the practical system of units are the familiar volt, ampere, coulomb, ohm,

watt, joule, henry, farad, etc.

Giorgi showed that this practical system of units could be made into a

self-consistent, absolute system of units by a suitable choice of the basic

units. In this system of units, the meter, kilogram, and second are chosen

as the units of mass, length, and time, respectively. This is known as the

absolute mks system of units. The choice of the fourth basic unit is arbitrary.

In recent years the unit of charge, the coulomb, has become generally

accepted as the fourth basic unit. This choice is due largely to the fact

that dimensional formulas of electric and magnetic quantities do not con-

tain fractional powers when expressed in terms of mass, length, time, and

charge. For example, if resistance were taken as the fourth basic unit, the

dimensional formula for electric potential would be [V] =
\M.

y*LT~'**$*],

whereas, in terms of charge, the dimensions of potential become

[V] = [ML*T~
2Q-

1

]

Any system of units may be either rationalized or unrationalized. In

unrationalized units, the unit of electric flux is chosen in such a manner that

4w lines of electric flux emanate from each unit of charge. This choice

results in a factor of 4?r appearing in the principal electromagnetic field

equations; thus, in unrationalized units, Eqs. (13.01-1 to 4) become

d<t>

dt

<bD-ds =
lirq

i

B-ds

In the rationalized system of units, the units are defined in such a manner

that each unit of charge has one unit of electric flux emanating from it.

This choice of units eliminates the 4?r factor in the above equations, as well

as in many other important electromagnetic field equations, thereby simpli-

fying the writing of these equations. In the rationalized system of units,
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CQ
= l/(36ir X 109) and /i

= 4ir X 10
7

. The more common quantities,

such as potential, charge, current, resistance, power, energy, capacitance,

inductance, electric intensity, magnetic flux density, etc., are the same in

rationalized and unrationalized units. However, the units of electric flux

and electric flux density, as well as those of magnetic intensity and magneto-
motive force, differ by a factor of 4ir in rationalized and unrationalized units.

It should be noted that, although rationalization removes the 4ir factor

from many equations, this factor reappears in other equations, such as

Coulomb's law, Eq. (2.02-2), and the potential equations expressed in terms

of charge and current (15.02-11 and 12). The rationalized mks system of

units is used throughout this text.

CONVERSION TABLE

CONVERSION TABLE FOR RATIONALIZED MKS, ESU, AND EMU SYSTEMS OF UNITS.

EQUALITY SIGNS ARE IMPLIED BETWEEN THE ELEMENTS OF A Row, i.e.,

1 KILOGRAM = 1,000 GRAMS



APPENDIX II

ELECTRICAL PROPERTIES OF MATERIALS

CONDUCTIVITY OF METALS

Material Conductivity <r, mhos

per meter at 20C

PROPERTIES OP SEMICONDUCTORS
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PROPERTIES OP DIELECTRICS AT Low FREQUENCIES

PROPERTIES OF DIELECTRICS AT MICROWAVR FREQUENCIES 1

J The electrical properties of most materials at microwave frequencies vary appre-

ciably, deluding upon the composition of the material, humidity, temperature, etc.

2 ENGLUND, C. R., Dielectric Constants and Power Factors at Centimeter Wave-

lengths, Bell System Tech. J., vol. 23, pp. 114-129; January, 1944.

3
ROBERTS, S., and A. VON HIPPKL, A New Method for Measuring Dielectric Constant

-and Loss in the Range of Centimeter Waves, /. Applied Phys., vol. 17, pp. 610-616;

July, 1946.

4 "Microwave Transmission Data," Sperry Gyroscope Co., New York, May, 1944.
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Index

Admittance, input of triodes, 61

Ampere's law, circuital, 248

Antenna arrays, 412-417

broadside, 413-414

colinear, 415-416

end-fire, 413-414

Antennas, 400-446

above a conducting plane, 411

biconical, 437-443

field of, 438-430, 442-443

impedance of, 440-441

dipole, 406

incremental, 402-407

induced emf method, 426-427, 430-434

induction field of, 404

input impedance of, 424-436

linear, 430-432

linear, 407-410, 427-429

loop, 418-420

metal lens, 457

methods of determining field of, 401-402

mutual impedance of, 434-436

parabolic reflectors for, 420-421

parasitic, 418

radiation field of, 404

radiation resistance of, 405, 409, 419

Schwarzschild, 421

slot, 455

turnstile, 417

wide-band, 443-446

.perture, in wave guides, 363

perture diffraction of plane waves, 453-

457

Applegate diagram, 83, 101

Associated Legendre equation, 312-313

Attenuation, decibel, 157

in wave guides, 347-355

Attenuation constant, of plane waves, 270

of transmission lines, 149, 153-156

Automatic frequency control, 226-228

B

Bessel functions, 302-310

curves of, 305

for large arguments, 306-307

modified, 308

relationships, 309-310

for small arguments, 306

spherical, 307-308, 314

Boundary conditions, 259-261

Brewster's angle, 286

Capacitance, transmission-line, 155

Cavity resonators, 84-85, 363-383
Child's law, 54

Communication systems, 4

Conductance, transmission-line, 155

Conductivity, 28, 462-463

Conservation of electricity, 29

Continuity, equation of, 30

Converters, 229-233

Coordinate systems, 89
Cosine integral, 409-410

Coulomb's law, 9

Cross product, 7

Curl, 249-252

Current, capacitive, 31

conduction, 28

continuity of, 28-30

convection, 28, 31

displacement, 29-31

induced, 31

resulting from motion of charges,
32

Cylindrical coordinates, 8-9

Decibel attenuation, 157

Del operator, 12

465
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Depth of penetration, 276-277

Dielectrics, waves in, 265-267, 284-287

Diffraction of plane waves, 453-457

Diode, equivalent circuit, 48-50

space-charge-limited, 51-56

admittance of, 56

impedance of, 54-56

temperature-limited, 46-50

transit time for, 21, 53

Divergence, 13-16, 255

Divergence theorem, 252-253

Dot product, 7

E

Efficiency, conversion, 37-40

Electron, charge of, 19

e/m ratio, 19

mass of, 19

motion of, in cylindrical magnetron,
120-124

in d-c electric fields, 16-19

in magnetic fields, 116-117

in parallel-plane magnetron, 117-

120

in superimposed fields, 35-38

in time-varying fields, 19

power and energy transfer, 32-35

relativistic mass of, 19

transit angle of, 21-24, 53, 61

transit time of, 20-24, 53, 61

Energy, in electric field, 257, 372-373

kinetic, 32

in magnetic field, 257, 372-373

in resonators, 372-373

transfer of, from electron, 32-35

in superposed fields, 35-38

Equivalence principle, 451-453

Equivalent circuits, conventional, 43-46

at microwave frequencies, 55-58

Faraday's law, of induced emf, 247-248

Filters, transmission line, 204-210

wave guide, 399

Flux density, electric, 12-13

magnetic, 116, 248

Fourier series analysis of pulsed wave,
237-239

FresnePs equations, 285-286

G

Gauss's law, 12, 248

Group velocity, 289-290, 325, 328

H

Half-wave line, 192-193

Hankel functions, 307

Horns, design curves of, 450-451

sectoral, 446-451

Huygens' principle, 450 452

Hyperbolic functions, 150

1

Image, of antennas, 411

Impedance, of antenna, 424-436

characteristic, 149, 153-156

in wave guides, 323, 325, 327, 331

effect of mismatch, 189-190

measurement of, 184-187

of transmission lines, 151, 157-163, 176

177

Impedance diagram, polar, 167-175

rectangular, 165-167

Impedance matching, 193-199

Induced emf method, 426-427, 430-434

Inductance, transmission line, 155

Induction field of antenna, 404

Infrared waves, 2

Intensity, electric, 10, 248

magnetic, 248

Intrinsic impedance, 267, 269-271

Ionosphere, 3, 215

Irrotational field, 254

K

Klystron, cascade, 99

double resonator, 81-98

analysis of, 84-90

current and space-charge density

95-97

efficiency of, 89-91

operation of, 98

phase relationships in, 92-94

power output of, 88-93

electron transit time in, 85-87

reflex, 100-108

analysis of, 102-105

efficiency of, 101, 105-106

power output of, 105-106
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Clystron, resonator, 84-85

L

Legendre equation, 312-313

Ught waves, generation of, 2

Line integral, 11

M

McNally tube, 107-108

Magnetron, 112-145

angular velocity of electron in, 121,

131

cathode emission, 115-116

cutoff flux density, 119, 122

cyclotron-frequency oscillation, 124-

126

cylindrical-anode, 120-145

description of, 112-116

d-c operation, 120

equivalent circuit of, 142-144

field distributions in, 135

Fourier series analysis of potential dis-

tribution in, 132-133

Hartree harmonics in, 133

mode jumping in, 136

mode separation in, 136-139

negative-resistance oscillation of, 123-

124

parallel-plane, 117-120

performance characteristics of, 139-141

pulse circuit for, 244

as pulsed oscillator, 114-116

resonant frequencies in, 130, 136

Riecke diagram, 141

rising-sun, 137-139

strapped, 137

traveling-wave modes in, 126-136

tunable, 144r-145

types of oscillation in, 113-114

Materials, properties of, 462-463
'

Maxwell's equations, 247-249, 254-257

summary, 262-263

MKS units, 9, 459-461

Microwave frequencies, 3

Modes, in resonators, 364

in wave guides, 318-319

Modulation, amplitude, 217-218, 222

phase and frequency, 218-226

pulse-time, 245-246

N

Noise, in receivers, 228

Operator, del, 12

Laplacian, 15

Orthogonality of modes, 382-383

Oscillation, criterion of, 67, 142

Oscillator, Brakhausen-Kurz, 80

class C, 41, 70-72

Gill-Morrell, 80

klystron, double resonator, 81-99

magnetron, 112-145

positive-grid, 74-80

reflex klystron, 100-108

triode, 64r-66

frequency stability, 72

Permeability, 249, 461

Permittivity, 10, 249, 461

Phase constant, for plane waves, 270

of transmission lines, 149, 153-156

Phase velocity, in guides, 321, 325, 328

Plane waves, 265-290

angle of total internal reflection, 285

attenuation constant of, 270

Brewster's angle for, 286

in conductors, 270-271

depth of penetration of, 276-277

diffraction of, 453-457

Fresnel's equations for, 285-286

impedance matching in, 280

intrinsic impedance of, 267, 269-271

in lossless dielectric, 265-267, 269-271

multiple reflection in, 278-279

oblique incidence in, 280-287

phase constant for, 270

power relationships in, 271-272

propagation constant for, 268-271

reflection at normal incidence, 272-280

reflection coefficient for, 275, 279, 285-

286

Snell's law, 285

transmission coefficient for, 275, 279

285-286

TEM wave, 268

wave impedance in, 274
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Plane waves, wavelength, 270, 287-288

Poisson's equation, 15-16, 293, 296

Polarization, 266, 280

Polarizing angle, 286

Positive-grid oscillatoi, 74-80

analysis, 76-79

cylindrical anode, 79

frequency of oscillation, 78-79

Potential, electric, 10-11

retarded, 297-298

scalar, 29&-29S

vector, 295-298, 402-403

Potential difference, 10

Potential gradient, 11-12

Power flow, in plane waves, 271-272, 277

in wave guide, 345-346, 354

Power loss, in resonators, 372, 374, 377

in wave guides, 348-350

Power radiation, 405, 409, 419

transfer, due to space charge flow, 38-

39

from electron, 32-35

in superposed fields, 35-38

Poynting's vector, 257-259, 271-272, 277

Product, cross, 7-8

dot, 7

Propagation characteristics, 215-217

Propagation constant, in guides, 324, 328,

330, 335, 340, 342

intrinsic, 268-271

of transmission lines, 149, 153-156

Pulse circuit, for magnetron, 244

Pulsed wave, analysis of, 237-238

Q

0, of resonators, 371-375, 377, 382

of transmission lines, 178-180

Quarter-wave line, 191-192

Quasi-stationary analysis, 404

Radar, 239-245

oscilloscopes, 240-241

specifications of, 241-243

Radiation, from antennas, 400-422

from aperture, 453-457

Radiation field of antenna, 404

Radiation resistance (see Resistance, radia-

tion)

Receiving systems, 213-215, 228-236

converters, 229-233

detectors, 233-234

discriminators, 235-236

I-F amplifiers, 233

limiters, 234

noise in, 228

wave-guide, 392-394

Reflection coefficient, 164, 275, 278, 279

283, 285-287, 360

of plane waves, 272-287

transmission-line, 150, 164-165

in wave guides, 319-320, 358-362

Reflectors, parabolic, 420-421

Resistance, radiation, 405, 409-410
of antenna, 405, 409, 419

skin-effect, 155, 276-278

transmission-line, 155

Resnatron, 108-109

Resonators, 84-85, 363-383

cylindrical, modes of oscillation of, 375-

376

Q of, 376-377

practical aspects of, 363-364

rectangular, modes of oscillation* in,

371

Q of, 371-374

reentrant, 366

resonant frequencies of, 364-367,
371

spherical, 377-382

3

Scalar, definition of, 6

Shepherd-Pierce oscillator, 106-107

Sine integral, 409-410

Snell's law, 285

Solenoidal field, 254

Spectrum analyzer, 390-392

Sphere, in electrostatic field, 314-317

Spherical coordinates, 8-9

Space charge, oscillating, 42

power and energy transfer, 38-40

Standing-wave ratio, on transmission lines

170-173

Standing waves, plane waves, 276

on transmission lines, 157

in wave guides, 361

Stokes's theorem, 253
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Tetrode, equivalent circuit of, 58

Thermistor bridge, 187, 390

Trat lit angle, of electron, 21-24

Transit time, of electron, 20-24, 61

in space-charge-limited diode, 53

Transmission coefficient, of plane waves,

275, 279, 285-286

Transmission lines, attenuation constant,

149, 153-156

characteristic impedance, 149, 153-156

coaxial, higher order modes, 339-341

TEM mode, 337-339

effect of impedance mismatch, 189-190

equations of, 146-163

exponential, 199-203

filter networks, 204-210

impedance of, 151, 157-163, 176-177

matching of, 193-199

measurement of, 184-187

with losses, 160-163

lossless, 157-159

low-loss, 153-154

normalized impedances of, 165

^pen-circuited, 159-162

parameters of, 154-156

hase constant of, 149, 153-156

lolar impedance diagram, 167-175

power measurement in, 187-189

power relationships in, 152-153

lower transfer theorem for, 190-191

propagation constant of, 149, 153-156

Q of, 178-180

quarter- and half-wavelength, 191-192

with reactance termination, 180-183

rectangular impedance diagram, 165-

167

reflection coefficient for, 164-165

resonance and antiresonance in, 158-159,
176-178

short-circuited, 157-158, 160-161

sinusoidal voltage of, 148-151

standing wave ratio for, 170-173

standing waves on, 157

terminated in characteristic impedance,
151-152

traveling waves on, 148, 150

in triode oscillators, 64-66

velocity of propagation for, 148, 153-154

wavelength of, 153-154

T-R tube, 244r-245

Transmitting systems, 213-215, 217-228

TE waves, 318-319, 322-330, 332-336

TEM waves, 268, 337-339

TM waves, 318-319, 330-336

Traveling-wave tube, 110-111

Traveling waves, 266, 267

on transmission lines, 148, 150

Triode, equivalent circuit of, 44- 46, 56-57

grounded grid circuits in, 62-63

input admittance of, 61

interelectrode capacitance of, 60, 62

lead inductance of, 62

lighthouse, 63-64

Triode amplifiers, 73

Triode oscillators, 64-66

Troposphere, 3, 215

U

Unit vectors, 7

Units, systems of, 9, 459^461

Vector, definition of, 6

Poynting's, 258

unit, 6

Vector analysis, formulas of, 252-254, 464

Vector identities, 252-254

Vector manipulation, 6

Vector operator, 12

Vector potential, 295-298, 402

Velocity, group, 289-290

phase, 287-290

of propagation, in plane waves, 267, 27C

288-290

on transmission lines, 48, 153-154

Velocity modulation, 83

Voltage, 10-12

W

Wave equations, 256-257, 298-317

in cylindrical coordinates, 301-306

in rectangular coordinates, 300-301

in spherical coordinates, 311-314

Wave-guide filters, 399

Wave guides, 2, 318-370

apertures in, 363

application of, 384-399
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Wave guides, attenuation in, 347-355

attenuation constant of, 325, 328

characteristic wave impedance of, 323,

325, 327, 331

circular, 332-337

field patterns in, 336

general case for, 341-345

cutoff wavelength of, 321, 324, 328, 330,

335

dielectric rod, 343-345

gratings in, 394-395

group velocity of, 325, 328

impedance discontinuities in, 357-363

impedance matching in, 361

methods of exciting modes in, 385-386

multiplex transmission through, 395-399

phase constant for, 325, 328

phase velocity in, 321-325, 328

DOWC r measurement in. 389-390

Wave guides, power transmission in, 345-
346

propagation constant in, 324, 328, 330,

335, 340, 342

rectangular, field patterns in, 329

TE^n modes, 326-330

TEm ,n modes, 322-326
TMm.n modes, 330-332

summary of formulas for, 354-355

TE and TM modes, 318-319

universal curves for, 326

wavelength in, 320-321, 325, 328

Wavelength, in guides, 320-321, 325, 323

measurement of, 183-184

of plane waves, 270, 287-288

on transmission lines, 154

Waves, plane, 265-291

spherical, 265

on transmission lines. 147. 158














