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Enhanced dynamic range in a sensory network of excitable elements
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Sensory arrays made of coupled excitable elements can improve both their input sensitivity and
dynamic range due to collective non-linear wave properties. This mechanism is studied in a neural
network of electrically coupled (e.g. via gap junctions) elements subject to a Poisson signal pro-
cess. The network response interpolates between a Weber-Fechner logarithmic law and a Stevens
power law depending on the relative refractory period of the cell. The same phenomenon has been
observed in two different excitable media: cellular automata and Hodgkin-Huxley networks. This
amplification mechanism could also be implemented in artificial sensor devices.
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INTRODUCTION

A very common trade-off problem found in the biology
of sensory mechanisms (and sensor devices in general) is
the competition between two desirable goals: high sensi-
tivity (the system ideally should be able to detect even
single signal events) and large dynamic range (the system
should not saturate over various orders of magnitude of
input intensity). For example, in physiology broad dy-
namic ranges are related to the Weber-Fechner law [4, 5]:
the response R of the sensory system is proportional not
to the input level I but to its logarithm, R ∝ ln I.

It is known that receptor cells of sensory systems are
electrically coupled via gap junctions [1, 2, 3]. How-
ever, their functional roles are largely unknown. Here
we report a simple mechanism that could increase at
the same time the sensitivity and the dynamic range of
a sensory epithelium by using only this electrical cou-
pling. The resulting effect is to transform the individual
linear-saturating curves of individual cells into a collec-
tive Weber-Fechner like logarithmic response curve with
high sensitivity to single events and large dynamic range.
We also observe a change to power law behavior (Stevens
Law [4, 5]) if relative refractory periods are introduced
in the model.

Although the principles of self-limited amplification
proposed in this work could be illustrated by using sev-
eral different models of excitable cells [6], we have chosen
here to work with the simplest elements: cellular au-
tomata (CA). The simplicity of the model supports our
case that the mechanisms underlying the described phe-
nomena are very general. To confirm this picture, we also
present preliminary results for neurons modeled by the
Hodgkin-Huxley equations. The similarity of the results
attest to the robustness of the phenomenon.

The n-state CA model is an excitable element contain-

ing two ingredients: 1) a cell spikes only if stimulated
while in its resting state and 2) after a spike, a refractory
period takes place, during which no further spikes occur,
until the cell returns to its resting state. Denoting the
state of the i-th cell at time t by xi(t) ∈ {0, 1, . . . , n−1},
the dynamics of the proposed CA can be simply described
by the following rules:

1. If xi(t) = 0, then xi(t + 1) = hi(t), where hi ∈
{0, 1}.

2. If xi(t) 6= 0, then xi(t+ 1) = [xi(t) + 1] mod n.

Interpretation of the above rules is straightforward: a cell
only responds to stimuli in its resting state (xi = 0). If
there is no stimulus (hi = 0), it remains unchanged. In
case of stimulus (hi = 1), it responds by spiking (xi = 1)
and then remaining insensitive to further stimuli during
n− 2 time steps (xi ∈ {2, . . . , n− 1}).

In what follows, we assume that the external input
signal Ii(t) arriving on cell i at time t is modeled by a
Poisson process of supra-threshold events of stereotyped

unit amplitude: Ii(t) =
∑

n δ
(
t, t

(i)
n

)
where δ(a, b) is

the Kronecker delta and the time intervals t
(i)
n+1 − t

(i)
n

are distributed exponentially with average (input rate)
r, measured in events per second. For uncoupled cells,
we have then simply hi(t) = δ (Ii(t), 1).

In order to visualize the effect of the refractory period,
we mimick the behavior of the spike of a neuron by map-
ping the automaton state into an action potential wave
form

V (xi) = V0

{
δ(xi, 1)− [1− δ(xi, 0)] [1− δ(xi, 1)]

×k
(

1− (xi − 2)

n− 2

)}
. (1)

Notice that V plays no role whatsoever in the dynamics.
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FIG. 1: Time evolution for n = 5: (a) V (x(t)) for a single
uncoupled cell (solid lines) and stimuli h(t) (bars) at r = 100
events/sec with V0 = 5 and k = 0.3; (b) system with L = 50
cells at r = 10 events/sec: xi = 1 (filled circles), 2 ≤ xi ≤
n − 1 (open circles) and xi = 0 (white background). Arrows
indicate events to be considered in more detail subsequently.

Fig. 1(a) shows the behavior of V (xi(t)) for an uncou-
pled 5-state automaton. We observe that stimuli that
fall within the refractory period go undetected, and in
the absence of stimuli the automaton eventually returns
to and stays at its quiescent state xi = 0. Since a typical
spike lasts the order of 1 ms, this provides a natural time
scale of 1 ms per time step, which will be used throughout
this paper.

Response of uncoupled receptor cells is shown in Fig. 2
(thick lines on top panels). We draw input signals at rate
r per cell and measure the average firing rate f (spikes per
second per cell) of the n-state automata over a sufficiently
long time. In the low rate regime the activity of the un-
coupled receptor cells is proportional to the signal rate.
If the rate increases, there is a deviation from the linear
behavior due to the cell’s refractory time ∆n ≡ n× 10−3

seconds. The single-cell response f is extremely well fit-
ted by a linear-saturating curve fn [Fig 2(a) and (b)]:

fn(r) = r/(1 + r∆n) , (2)

which can be deduced from the fact that the firing rate
is proportional to the rate discounting the refractory in-
tervals, fn = r(1− fn∆n).
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FIG. 2: Firing rate F (top) and amplification factor A (bot-
tom) vs. input rate r for n = 3 and varying L [(a) and (c)]
and for L = 5000 and varying n [(b) and (d)]. Lines (top
panels) show fn(r) as in Eq. 2.

How to improve the sensitivity for very low rates? If
we consider the response R (spikes per second) of the to-
tal pool of L independent cells, we have R = Lf ≈ Lr,
so increasing L increases the total sensitivity of the ep-
ithelium. Although certainly useful, this scaling is trivial
since the efficiency of each cell remains the same.

Coupled excitable cells (say, via gap junctions) are an
example of excitable media that supports the propaga-
tion of nonlinear waves [7, 8]. Here we show that the
formation and annihilation of these waves enhance the
sensitivity and, at the same time, extends the dynamic
range of a sensory epithelium. We couple L cellular au-
tomata in a chain by defining the local input as

hi(t) = 1− [1− δ(Ii(t), 1)]
∏

j=±1

[1− δ(xi+j(t), 1)] , (3)

i.e. hi(t) will be nonzero whenever either of i’s neighbors
are spiking and/or the external input is nonzero.

A sample of the resulting chain dynamics is shown in
Fig. 1(b). Due to coupling, single input events create
waves that propagate along the chain, leaving behind a
trail of refractoriness (of width n − 1) which prevents
new spikes from reappearing immediately. More impor-
tantly, refractoriness is responsible for wave annihilation:
when two wave fronts meet at site i they get trapped be-
cause the neighboring sites have just been visited and are
still in their refractory period (notice that waves disap-
pear at the extremes of the array because open boundary
conditions have been used). This is a well known phe-
nomenon in excitable media [7, 8] and occurs in the CA
model ∀n ≥ 3. Notice that the overall shape of two con-
secutive wave-fronts are correlated (see Fig. 1), denoting
some kind of memory effect, a phenomenon observed by
Chialvo et al. [9] and Lewis and Rinzel [10].

Due to a chain-reaction mechanism, the spike of a sin-
gle receptor cell is able to excite all the other cells. The
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sensitivity per neuron has thus increased by a factor of
L. This can be clearly seen in Fig. 2, which shows the
average firing rate per cell F in the coupled system (top
panels), as well as the amplification factor A ≡ F/f (bot-
tom panels). This is a somewhat expected effect of the
coupling: neuron j is excited by signal events that arrive
not at neuron j but elsewhere in the network.

More surprising is the fact that the dynamic range (the
interval of rates where the neuron produces appreciable
but still non-saturating response) also increases dramati-
cally. This occurs due to a second effect, which we call the
self-limited amplification effect. Remember that a single
spike of some neuron produces a total of L neuronal re-
sponses. This is valid for small rates, where inputs are
very isolated in time from each other. However, con-
sider the case for higher signal rates where a new event
occurs at neuron k before the wave produced by neu-
ron j has disappeared. If the initiation site k is inside
the fronts of the previous wave [e.g. the events signaled
by arrows in Fig. 1(b)], then two events produce 2L re-
sponses as before. But if k is situated outside the fronts
of the j-initiated wave [as in the first input events shown
in Fig. 1(b)], one of its fronts will run toward the j-wave
and both fronts will annihilate (the other k and j-fronts
will continue until the borders).

Thus, two events in the array have produced only L
excitations (that is, an average of L/2 per input event).
So, in this case, the efficiency for two consecutive events
(within a window defined by the wave velocity and the
size L of the array) is decreased by half. If more events
(say, m) arrive during a time window, many fronts coex-
ist but the average amplification of these m events (how
many neurons each event excites) is only of order L/m.

Therefore, although the amplification for small rates
is very high, saturation is avoided due to the fact that
the amplification factor decreases with the rate in a self-
organized non-linear way. The amplification factor A
shown in Figs. 2(c) and 2(d) decreases in a sigmoidal
way from A = O(L) for very small rates (since a single
event produces a global wave) to A = 1 for large rates,
where each cell responds as if isolated since waves have
no time to be created or propagate.

The role of the system size L for low input rates be-
comes clear in Fig. 2(c): the larger the system, the lower
the rate r has to be in order for the amplification factor
to saturate at O(L). In other words, we can think of a
decreasing crossover value r1(L) such that the response is
well approximated by F (r) = Lf(r) ≈ Lr for r � r1(L).
In this linear regime consecutive events essentially do not
interact. Larger system sizes increase not only the overall
rate of wave creation (∼ 1− (1−r)L) but also the time it
takes for a wave to reach the borders and disappear. In
the opposite limit of large input rates, the behavior of the
response is controlled by the absolute refractory period
∆, as shown in Fig. 2: F and f saturate at r2 ≡ 1/∆ for
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FIG. 3: F ×∆ vs. input rate r for L = 5000 (open symbols)
and L = 200 (filled symbols) for different values of n. Straight
line 0.2 log(r) is intended as a guide to the eye.

f & r2, independently of the system size.

So what happens for intermediate input rates, i.e.
r1 � r . r2? The answer is a slow, Weber-Fechner-like
increase in the response F , as can be seen in Fig. 3. The
logarithmic dependence on r is a good fit of the curves
for about two decades. Notice however that the r-interval
where this fit is valid depends on the absolute refractory
period, independently of the system size.

Motivated by preliminary results obtained with more
realistic model elements (cells with slow hyperpolarizing
currents and relative refractory period [6]) we introduced
a relative refractory period in our CA model. We first
define a time window M after a spike during which no
further spikes can occur (absolute refractory period). In
the following n −M steps (relative refractory period), a
single input does not produce a spike but two or more
inputs can elicit a cell spike if they arrive within a tem-
poral summation window τ (details of this model will
be described in a forthcoming full paper). This ingredi-
ent produced the appearance of a power law F (r) curve
(Stevens Law [4, 5]), as shown in Fig. 4. Notice that the
exponent depends on the relative refractory period.

We may confirm the generic character of the self-
regulated amplification phenomenon by performing sim-
ulations using biophysically detailed cell models, for ex-
ample a network of Hodgkin-Huxley (HH) elements with
the standard set of parameters given in [11] connected via
gap junctions of 30MΩ. Preliminary results are given in
Fig. 5 and more detailed results will be reported else-
where [12].

Concerning the functional role of gap junctions for sig-
nal processing, it has been recognized that they pro-
vide faster communication between cells than chemical
synapses and play a role in the synchronization of cell
populations [13]. Here we are proposing another func-
tional role for gap junctions: the enhancement of the
dynamic range of neural networks.
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FIG. 4: Neuronal “Stevens Law” F ∝ rα in automata which
takes temporal summation effects into account (see text for
details). Firing rate F vs. input rate r for a CA with n states
and an absolute refractory period of M = 3 time steps. Open
circles: n = 15, τ = 10, α = 0.38; filled circles: n = 100,
τ = 80, α = 0.44.
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FIG. 5: (a) Firing rate for coupled (F , filled circles) and un-
coupled (f , open circles) systems and (b) amplification factor
A = F/f vs. input rate r for Hodgkin-Hukley neurons for
L = 200.

There is a considerable debate about what is the most
appropriate functional law to describe psycophysical re-
sponse: Weber-Fechner, Stevens or some interpolation
between the two [5]. Our results suggest that proper-
ties of excitable media could be a bottom-up mechanism
which can generate both laws, depending on the presence
of secondary factors like the relative refractory periods
and temporal summation.

We can even make two more specific predictions which
are easily testable experimentally:

• The larger the relative refractory period (e.g., due
to slower hyperpolarizing currents) of sensory ep-
ithelia neurons, the larger the exponent of Stevens
Law.

• For sufficiently low input rates, the sensory epithe-
lium response will be always linear (α = 1).

The presented mechanism for amplified but self-limited
response due to wave annihilation seems to be a general
property of excitable media and is not restricted to one
dimensional systems. Work with higher dimensional sys-
tems will be reported elsewhere [12]. We conjecture that
the same mechanism could be implemented at different
biological levels, for example in excitable dendritic trees
in single neurons [9, 16, 17]. This amplification mecha-
nism could also be implemented in artificial sensors based
on excitable media.
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