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PREFACE .
THE present volume 1s mtended to serve as a text-book of that part
of the theory of alternating-currents and the allied branches of the
theory of electricity, which are necessary for a complete study of
heavy electrical engineering. In the first chapters the phenomena
alternating-current cirewts are treated at length For the calculation
of alternatmg-currents the symbole method has been chiefly used,
because this 13 the smplest and forms the best connecting link with
the practical expressions for the watt and wattless components
Alongmde the symhbohc method, however, the graphic has also been
systematically developed by substituting the corresponding graphic
constructions for all analytic operations Thus, expressmg the well-
known Kuchhof’s Laws symboheally, the equation of any circurt
appears as the simplest possible analytical expressions, and these
formulae at once supply the graphical method for the complete
solution of the problem In this way not only can every problem be
expressed mathematically in the simplest possible manmer, but also
we have the great advantage that the result obtamed by the graphical
solution shews stiaight away the behaviour of the circuit under all
conditions ¢

In the following chapters the measurement of electric} currents, the
magnetic properties of iron and the electric properties of dielectrics
are fully dealt with In the last chapter the constants of electric
conductors and circuits are calculated

The work has been carefully translated by Dr S, P Smith,
Lecturer at City and Guilds (Engmeering) College, London, and late
Chubf Designer at the General Electric Co, Witton, m addition,
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INTRODUCTORY.

1 Continuous Currents 2 The Magnetio Field 3 Electromagnetism. 4 Eleo-
t‘&-omn.guehu Induotion 5 Energy, Work and Power 6 Complex
nantities

IN thls mtmductory chapter, only the more important laws governing
will rised The elechostatec laws
refarred to 1n the later chapters w111 be found discussed 1 Chapter XIX.

1. Continuous Currents. If an electric diyffzrence of potental (PD)
exist between the terminals of a conductor, 1n which there are no
electromotive forces (EM ¥.'s)"active, a curent will flow along the
conductor from the higher to the lower tial If ]
difference 18 maintamed constant, the ourrentrst.rength wﬂf also be
constant

Ohm was the first to prove that, with constant temperature, the
current-strength 1 a conductor 18 du'ectly proportional to the difference
of potential at the terminals of the conductor

The ratio of the terminal pressure p to the current 2 18 defined as
the electric o1 ohmac 1esistance of the eircuit

Thus ')=%J. . N )

The ohmic resstance 1 of a umform conductor of constant cross-
section 18 directly proportional to 1ts length I and inversely proportional
to 1ts cross-section ¢, or 1
1= Pz

p s called the specific 1esistance of the conductor
In the electromagnetic system of umts, 2 has the dimension

EMF., 1
1 =dm (222 t) dum (LT,
and 18 measured 1 ohms

ol f—lof =10° ¢ .S umits.
ampere 1071
A 0. A

Thus, ohm =
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CONTINTUOUS CURRENTS 3

the several parts of the cwcuit equals the algebrawc sum of the EM.F.s
actmg m the corcut,

If we consider the phenomena m an electric conductor from the
electrostatic standpomnt, then the current 2 corresponds to the passing
of a quantity of electricity 2 per second from a point at potential P, to
a pomt at lower potential P;. By moving unit postive electric charge
from potential P, to P,, the work done by the electrie forces 1s P, — Py,
hence the work done when current 3 flows for time ¢ is

A=1(P,-P,)t
This energy 1s converted mto heat. The work done in umt time is
the power (W), whence
W=i(P, - P)=t¥. . RNE))

This law was first demonstrated experimentally by Joule, and reads :
The amount of heat produced w a omuguctm by a constant current e umit
time var1es du ectly as the resistance of the conducior and as the square of the
curr ent flowing in if,

If a constant current s flows in a cirewt in which an EMF.
e—produced by a battery or generator—is acting, the work done
per second equals e, and we can say in geneml that 1 any part of a
crcut where the EMF ¢ 18 present and a current ¢ 18 flowing, the
power W=e will be given out  When ¢ and 2 have the same direction,
this energy must be supplied from the external sources which produce
the current. When, on the contrary, ¢ and z oppose one another, work
will be done by the current and can be used outside 1 the form of
mechanical or chemical energy, and so on

2, The Magnetic Field. The space mn which magnetic actions can
be observed 1s called a magnetic field. Without forming any special
hypothesis about the nature of magnetism, 1t is nevertheless possible
to speak of & quantity of magnetism, or of magnetic masses which can
be regarded as mathematically definite quantities, the magmtude of
which can be determined by the forces they exert. Like magnetic
masses repel, unlike attract one another.

Though actually there 18 no such thing as free magnetism, it 18
often convenient to substitute for magnetic fields, magnetic masses
which are assumed capable of acting at a distance For instance, the
field of a long bar magnet can be replaced, with close approximation, by
1maginary magnetic masses situated ab two %oints symmetrically placed
with regard to the axis of the magnet Thess points—known as the
poles of the magnet—are from 0'8 to 0 85 of the axal length apart

The force exerted by two magnetic masses, each concentrated at a
point, on one another, 1s expressed by Coulomb’s Law,

K=fﬂﬂﬁ,... e e (8

where 7 18 the distance between the two masses and f 18 a coefficient
depending on the system of umts and on the medium
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In the electromagnetic system of umts (CGS system) and for a
gaseous medum or vacuum, f=1 The mechanical force K has the
dimension dim (K)=dmm (LMT"2),

m g
and 18 measmed m " 8™ 1y absolute umts.
sec?

The unit of mechanical force is the dyne, and 18 defined as that force
which gives unit acceleration to iinit mass

The practical unit of force 18 & kilogram weight, 1 kg= 981000 dynes
The dimension of the product m,m; 18

dim, mymy = Ki?=dim (L8MT-?),
consequently magnetic mass has the dimension
dum. (m) = dum (ZAB137-1),
Unit magmetic mass is defined as that mass whieh, when placed in air,

exerts a foree of one dyne on a similar mass at a distance of 1 cm

In general, the pomnts m a field where magnetic masses appear
to De concentrated are designated poles nit
magnetic mags 1n a magnetic field 1s acted on by a
mechanical force & This force H is defined as the
field-strength or -mtensity, and has the dimension *

i, (meohamcal folce) - dim, ( s M*T‘l).
magnetic maes

By a lune of force 18 understood that lme the tan-
_ , gent to which at any pomnt comncides m direction

Line of Foree 2 th the field-strength at any pont (Fig 3)
Lines of force can be represented by means of iron filings strewn on

Fic 8

X % )
\‘&\\\ X 2 f /1 it
Fio 4.—Teld of Bar Magnet.

a sheet of paper placed in the plane of the field The filings then
arrange themselves 1n lines which approximate m direction to the Lines
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of force  Fig 4 18 from a photograph taken with a bar magnet, whilst

Fig b shows the lies of force

of a horse-shoe magnet T 1T sl
Constant magnetic forces ‘ =

have a potential, which, at any \I It

pownt 1n the field, 18 given by Ml

P=2(’7f‘), . B

where o 18 the magnetic mass
of the field and 1 the distance
from the pomt considered
The summation is taken for
all the magnetic masses pro-
ducing the held.

A surface which, at every
pomt, 18 perpendicular to the
drection of the field 1s
called an equypotentinl sw1face
Such a surface 18 the locus of
all pownts having the same
potential.

The element of magnehe fluz
passing through a surface- VEINASARNSANISS HRU
element 18 the product of Fro. 5 —Field of Horse-shoe Magnat
the surface-element df and
the normal component H, of the field-strength, that 18 (Fig 6)
d®=H,df = H cos a.df,

#B  and H,,=[fl-2}

If we spht up any desred surface F into surface-
elements and take the sum of the fluxes passing
through the several elements, we get the magnetc
Fia. 6 Sluz & passimg though the swface F,

or, &=3,H cosadf
- _[Hcos adf= jH,,df.
r »

A magnetic tube of force (Fig. 7) 18 defined
as the space which 18 bounded by lLnes of
force passing through a closed ourve C
If we draw a number of surfaces thiough
any point in the tube, then the same /
flux will pass through all sections which Fio % —Tubo of Farco
the tube of force makes with these sur-
faces, for, m an infimtely small tube, for any section, we have

d% = H,df= H cosadf = Hdf,,
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where df, denotes the section which the tube cuts on the equipotential-
surface at the point cousidered

Gauss and Green’s Theorem can be deduced directly from Coulomb’s
Law, and may be written . The fotal number of lwnes of force ® passing
through any closed sw face F equals 4w tumes the sum of the magnetic masses m
within that surfuce From this 1t follows the flux has the same
dimension as magnetic mass

anrlf= &= 4x(m). .. (6)

Since no flux can pass through the boundary of a tube of force,
1t follows, from Gauss and Green’s Theorem, that the flux passing
through any section of a tube 18 quite independent of the position
of the section,"ie the fluz wmsude a tube of force is constani A tube
enclosing the flux ®=1 (0 &8 umts) is defined as a uns tube of force,
and any tube of force may be said to contain a certain number of umt
tubes. In a strong field, the umt tubes have a very small cross-
section. The field-strength at a pont denotes the number of umt
tubes of force of like section which pass through a square cetimetre at
the pluce 1 question

The above properties of the magnetic field hold in general for
a homogeneous medwm, as for instance a vacuum If a body be

Fio 8.—Weakening of Magnetio Fleld duoc  Fra # —Btrongthening of Mngnetic Flold due
to Introduction of Diamagnetioc Body to Introduction of Paramagnotic Body

rought 1nto a vacuum where a magnetic field exists, the field m the
body and 1ts neighbourhood will, 1n general, change m shape anc
strength  If the field is weakened, 1e 1f the tubes of force are widenec
out, the body 18 called dwmagnetic (Fig. 8), 1if the field 1s strengthened
ie. if the tubes are contracted, the body 1s called pm amagnetic (Fig 9)
whlst 1f the field becomes strongly concentrated, the body 1s sad to b
ferro-magnetic

The magnetic conductivity of a substance 1s called 1ts permealality
and 18 denoted by p

When a body 18 brought into a magnetic field, 1t 18 saxd to b
magnetised by mduchion, and the ratio

a®
Ef=‘B
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is called the magnetus snduction or the fluz density. d@ is the flux passing
through the elemental section df of an equipotential surface n the body.

In a ferro-magnetic substance situated 1n a uniform field, take two
cyhndrical cavities, whose axes Lie in the direction of the magnetic
force. The one cavity (Fig 10a) 18 a narrow canal, so long that 1t may
be considered as a tube of force, since the lines of force are parallel to
the axis, If we bring umt magnetic mass mnto this cavity, in order to
test the magnetic conditions, 1t will be acted on by a force equal
to the field-strength H at this pomt; this force 18 much smaller than

He4TI-B

Fig 10a. Fie 100
Fiold strength and Induction inside a Ferro-magnetic Body

the above defined induction B, whence 1t follows that the magnetic
force inside a ferro-magnetic substance or a magnet is not the same
as that d_ch: 1n a vacuum, but 18 defined thus:

The magnetw force, o field-stength, at a pomt mside a magnet is the force
which acts on unit magnetc mass when placed at this pownt, when the sume
18 taken w an wnfimtely thm camty cut wm the direchom of the lnes of
magnetisation

The second cavity (Fig. 10b) is an infimtely thin crevasse perpen-
dicular to the direction of the magnetic force. The unit mass,
when brought mto this crevasse, will be acted on by the force B,
although the magnetic force nside the magnet 1s, as shown, only H
In order to explain this phenomenon, we imagine the two end-
surfaces F, and Fy to be respectively charged with north and
south magnetism These magnetic masses exert a force on the unit
mass at pomnt P, which can be calculated from Coulomb’s Law

Denote the magnetic density of the two charges by +7 and -1

Then the force exerted on P by a surface-element df 18 Ir—dgf. This can

be spht up mto two components—one in the direction of the magnetic
force, and the other normal to 1t Component forces normal to the
magnetic force obviously neutrahse one another, whilst the resultant
1n the direction of the magnetic force is *

Idf 0
-Fcos'#_Idw,



& THEORY OF ALTERNATING-CURRENTS

where dow 13 the sohid angle subtended by df at P Summing up tl
components of all surface-elements of the surface 7, n the diection «

&, wo get j Ido=2aI,
Fy

when the surface F 18 large compared with the height of the cyhinde
The same result is obtaned by considering the surface F, so that th
resultant magnetic force of the two surface-charges 15 47, and :
resultant force on the unt mass in the crevasse, we get

H+4rI=B,

where  is defined as the wntensity of magnetisaton I 1s also—as aboy
assumed—equal to the densuy of the surface-charges assumed to ox
on the boundary surfaces F, and Fy.

The magnetic permeability 15 2

=7

and has the dimension of & number

Consequently the' magnetic mduction B and the field-strength .
have the same dimension. The umt of this dimension m the electr
magnetic system of umts is called a Gauss

.En distinction must be made between the H-flux and the B-flu
The BAlux, i.e the flux due to induction, which passes throngh
closed surface F, is independent of the magnetic nature of the medun
1 which the surface 18 taken, that 15, Gauss’ theorem 18, in general

I,uH,,df=41r2(m), . (6

or, in other words, the Bfuz remawms constani wm passng fiom o
medvum to another,

Take two pomnts close to the boundary surface hetween the tw
substances K, and K, (Fig 11) Tha
smce the B-flux remams the samo m passm
from one medium to the other, we have

Bu=3, o wH,=pl,

If w=p,, then H,=<I,, that 1, 1
passing from one medwim. to the other, 1l
components of the magnetic force, talen 101 me
Fio 1 to the boundary swrface, are discontimnons

The tangential components of the mag

netic force are continuous in passing from one medium to anothe
that 1s,

H,=H,,

B
whence Ou _H,

B, py

1e in passmg fiom one medwum to another the tangentwal components of 1,
Bfluz are discontinuous,
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Hence, m passing fiom one medwm to another the imdichom.or=
are discontmuous In substances of high permeability therefore, like
1ron, the tubes enter and leave almost perpendicularly to the surface.

In order to treat magnetic problems mathematically in spite of the
discontinuity of the H-tubes, we assume the boundary surface between
the two bodies to be replaced by magnetic surface-charges from which
tubes enter and leave Where the flux passes out of a medium of
higher permeability, e g iron, these magnetic charges have the positive
sign (north-pole magnetism), and where it enters a medinm of
higher permeability, the negative sign (south-pole magnetism). Such
mmaginary charges are called poles

8. Electromagnetism. A magnetio field is most easily produced by
means of an electric current Owsted was the first to discover that
an electric current acted on a freely-suspended magnetic needle by
tending to bring the same mnto a direction perpendicular to that of the
current According to the elementallaw of Laplace, the mechanical
force K exerted by a current-el t on the tic mass m at a

distance 7 18 ”
K= ”%if s1n . . se enee aeeme (7)

This force has a direction normal to the plane passing through the
element ds and the mass m (Fig 12a) Conversely, the current-element
18 acted on by the magnetic mass m the opposite direction

Fia 12 Fia 12h
Electromagnetic Forces

Every electric current produces a magnetic field, which surrounds
the conductor 1 which the current flows, and acts on all magnetic
masses in the neighbourhood, conversely, every conductor which
carries a current 18 acted on by a mechamcal force when brought into
a magnetic field, This force 18 expressed by

K'=Hidssin ¢, Ce e (Ta)
where ¢ denotes the angle between the current-element ds and the
direction of the field H (Fig. 120)

As mentioned above, tﬁe field at any pomnt due to a current-

element 18 perpendicular to the plane passing through the element and
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the point consdered The du ection, of this field can at once bhe found
from the following rule

Place the palm of the right hand along the conductor so that the fingers
pomnt wm the duechon wm whach the curent 18 Sflounng—then the thumb powis
. the duection of the field-strength H at the point P (Flﬁ 13)

If the conduotor (Fig. 120) 18 movable, 1t would be displaced by
the force X’ 1 the direction as given by following rule

Place the left hand along the conductor so that the flue. enters the palm of
the hand and the fingers powd wb the duecton of the current—the thunb
wall then gwe the du ection . which the condctor wndl tend to move.

This rule can be used for determining the direction of rotation in
the case of a motor.

Fro 18—Determination of Direction of Ficld Fio_ 14 —Magnotlo bold prodused
due to Eleotric Current Dby Current in & Straight Wiro

From formula (7) 1t 18 clear that the lmes of force produced by a
sty asght-lme curent (F1g 14) are concentric circles, lying n planes normal
to the conductor, and that the field-strength H at any pomnt 2 cm away
from the conductor 18 u %

-

For a cucular current (Fig. 15) the field at the centre 1a
H 2m
=3

where R =radius of the circle.
t From this we can express the dimension of current
m electro-magnetic umts,
2=dim (length x field-strength)
=dmm. (LAMET-1);

.and m the same system of umts, umt current 18
that current which—flowing 1 a circle of umt radius—produces a
field-strength 27 at the centre. An ampere 18 1 of this umt.

Fia. 16
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At the centre of a long solenowd (Fig. 16), the strength of the
field 15
_ 4w
" JIEDY

where w=no of turns of the solenoid and 2= current n each turn,
measured 1n absolute units.

' -
BRI, §
L j
Fia 16 —Solenoid

When lf), 18 small, the field-strength may he written
dariw
=z
and 1s nearly constant at all pomnts mside the solenod When the
current 18 measured 111 amperes, We get

H—O dmw 126w w |
TTL TTL TosL’
4w 18 called the ampere-turns of the solenoid, and 1s of late referred
to as the magnetomotwe force *

This formula 18 stall more exact 1f the solenoid be closed (Fig 17)
to form a rin,

The work (ﬁme I carrymng unit quantity
of magnetism, placed nside this ring,
round one complete turn of length L
aganst the force H, is

HL=0 4mw

If the umt quantity 18 moved over any
closed curve C, the work done 1s equal to
the sum over the whole cireumt of all the
work-elements Hdl, ie.

2,Hdl=j Hil
g
This summation 18 called the lnewniegral

of the magnetw force H over the ourve C, and 13 equal o O 4w times the sum
of all the amper e-turns lunked unth the curve C

Thus, Hdl=0 4mw 8)

o
Of recent years, 1t has been customary to start fiom this as the

Fie 17 —8imple Magnetic Circuit.

* This must not be confused with the obsol P of mag
foroe (M M F ), which 18 used to denote 1 251w, 1 €

M M.F. =1} amp,-turns

ve
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damental law of electromagnetism and not from the differential
ation 1n formula (7%, the former can be deduced from the latter.
6t the toroid 1 Fig 17 have an iron core, and let a current
s through the coils, which are wound evenly on the core Then at
points equidistant from the axis of the ring there will be—on account
symmetry—the same magnetis force; and, eorraspondmg to this
se H, there will be the micmon B. Hence the tubes of induction
duced by the current are concentric and have their path meide the
; The whole body will be magnetically neutral to all other
1es, i.e. there are no poles, and is therefore termed a closed magnetss
uid.

Aagnetic circuits as a rule have not a constant section as in the
3 of the above ring, and have not the same material throughout,
hat the permeability varies from point to pont.

Jonsider, however, one tube of induction of a magnetic circuit—we
w that the flux @, in the tubo 18 constant, and piactically sym-
ncally distributed over the small surface f,, then

2,3,

ce ="=—2,

ance 1t follows that
1w b, dl
0—B=jEdl=j _dZ=@,I a4

4 ot oM
1w 0 8dl
w2 _pR
2, .‘.a e =
sre R, 18 called the tic 1681t or 9eluct of the tube of
se under consideration 1
)"z=ﬁ)

he magnetic permeance of the tube and has the dimension of a length
several tubes are nterhnked with the same ampere-turns, the
meance of all the tubes can be added and the reluctance I of
total magnetic circuit with which the ampere-turns ww are
srhinked 18 1
R=E_)‘,'
e total flux in the circuit 1s then
@:E@,:mEMJR’f,
ampere-turns 9
reluctance e 09)

e electromagnetic unit of flux 1s called a weber Formula (9) 1
olar to Ohm's Law for electric currents From this formula and

flux =



ELECTROMAGNETISM 13

the fact that tubes of duction possess constant flux, it follows thabt
Kirchhoff’s two laws hold for magnetic cireuits

e

Fie 18a. Fio 180
Comparison betweon Interlinked Magnetic Cfrouits and Interlinked Electric Cirouits.

Fig 18a shows two mterlinked circwts for which these laws hold,
the magnetic circuits corresponding to the electric aircuits of Fig. 180

4. Electromagnetic Induction. When & conductor forms a closed
circuit 1 & magnetic field which 18 varying, an EMF will be mduced
n the ciremt. This phenomenon, discovered by Faraday, 18 known as
alectromagnetwc mducton  On the basis of Faraday’s researches, Mazwell
formulated the fundamental law of electromagnetic mduction, which
experience has completely verified This law can also be developed
from the fundamental laws of electromagnetism and the principle of
the conservation of energy Maxwell’s Law is as follows

The E M.F. ¢ mduced w a closed conductor C' equals the 1aie of change of
the flue ® whach 18 wterlinked with the conductor C _

Thus o= _% e e e e o (10)
The current produced in the ewrcuit ¢' by this mnduced EM F 18 called
an wnduced current, and the field which 1nduces the E.M.F. is called the
wnducing field. The change of flux can take place mn various ways,
eg. by a change of field-strength, whilst the conductor retains its
position, or by a change of

position of the conductor mn a é i ds
constant field In the first case A

the direction of the current is =

always such as to oppose the % ‘;ﬁ
A §

change mn the field-strength—
hence the negative sign 1n
formula (10). By means of
the hand-rule, we get the direc- 1
tions of the induced E.M F’s as Fia 19a. Fia 10
m Figs. 19a and b for increase
and decrease of the field-strength In the second case the EMF 18
induced by a relative displacement of the conductor in the field

When only a part of the conductor is 1 the field 1t 1s_easier
to determine the mduced EMF by means of the elementallaw of
electromagnetic induction  Such a law cannot be proved, and 1t must
suffice that from this the fundamental law can be deduced
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This elemental law 1s as follows
I an element ds of a cuouit be moved m a magnete field, an E 2 F wnll
be induced equal to the JSowx cut by ds wn wmat fime, ie

do= - Ba (11

To determine the positive direction of the mduced kKM F the followmng
hand-rule 1s convement .

Place the vight hand wn the magnetec field so that the fiw enders the palm
and the thumb pownds v the
duection wn whach the con-
ductor moves—the_fingers
will then pownt w the duec-
twm of the mduced E M F
(o1 of the ecwnient), as

1g 20

Often the cirewt (' 1s
not a simple curve, but
consists of sevoral turns,
some of which do not
embrace the total flux
In every caso, the EMF.
mduced 1w a turn 18 pro-
portional to the change

Fi10. 20 —Determination of Direction of BM F induced in a s
‘Conduotor by Motion in a Megnetio Fold. of flux in that turn
Hence, to find the total

EMF. induced m a circut or coil, the sum Z(®.w,) of all the nter-
linkages of flux and turns must be taken, thus, 1n general,

az(®,w,)
=— d‘”’ PPN ¢ (11}

that is, the EMF wmduced m a circust equals the 1ate of change of the
number of wmiterimkages of the flux unth the cir cust
EM.F has the dimension
dim ¢ dim (field-strength x surfacg} .
time
=dim. (LM,
The absalute unit of electromotive force 15 that EMF which 18
mnduced 1n a circatt when the number of interhnkages 18 altered by
unity in unit time The practical unit has been chosen equal to
108 times this absolute umt, and 1s called a vlf, hence
6= — dE(Z,w,) 1078 volts.
5. Energy, Work and Power. Every mechameal system of forces
Possesses & certain potential energy. Such a system always tends
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asgume & position of equilibrium, in which the potential energy
11 be & mimmum  When the potential energy 18 decreased, worlk 1s
ne by the system, when the potential energy 18 increased, energy
taken from outside, 16 work 18 given to the system

Electromagnetic forces also possess potential energy, which can be
sermined from the fundamental law of electromagnetism The
sential energy of an electric current ¢ interlinked with a magnetic
d @ independent of the current 18 —#®, where ® 18 the flux inter-
ked with the current s, the direction of the flux

ng the same as that of the flux due to the s

rent (Fig 21) If the conductor carrying the

'rent 1 18 displaced, or the field 18 vared, so

st the interhnked flux changes from &, to ®;, ¢ | ¢
y forces exerted by the field on the current

1 perform an amount of work 4 equal to the

.nge of potential energy in the system &

Chus, A=1(8,- ). P 0

According as @, is greater or less than @,, the energy of the system
reases or increases, and the work 1s done by the field forces or
JAnst them.
f the current 18 kept constant and the flux veried, the work done
the field on the current m the time-element di 18

dd=1d®,
L the power exerted by the field at this mstant will be

W=-d—t =1. Et—
W= =6« et ceeiiiiiiennns vee e eue aae (12)
sre ¢ 18 the E.MF 1nduced m the direction m which the current

78,
£ the flux @ is ncreased, i.e. if d® 18 postive, an EM.F ¢ will be
aced which will tend to weaken the flux by opposing the current
18 W18 %oalhve and work 1s done by the field This is the case of
otor n the other hand, if the flux & ig decreased, an EMF will
nduced m the same direction as the current s and the power W is
ative The work 18 thus done agamst the field, and we have a
arator. We thus see that the current and wmduced E M F have the same
shon m a generator and opposle drections wn a motor
rom formula (12) and from section 1, 1t 18 seen that the work
whaed b0 & cirewtt i the element of time df is always

dd=adl, .. .. ceecieerieeennn. (13)
re ¢ and ¢ are to be taken positive when they have the same
ction.

current and EM.F. have constant magmtudes, as is the case

. continuous currents, the supphed power is

w=er,
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If the cirewit is not a smple one, as 1 Fig, 21, but has several

complicated branches, then the potential energy of this system 1s
~Z{Z(w,2,)},

where Z(w,®,) denotes the number of interhnkages of tubes of force with
the current 4. The product of cuirent and interlinkages =(w,®,) must
be taken for each current of the system and the sum of the whole found

If the circwit is movable m space, the electrodynamic forces which
act on 1t tend to make the potential energy of the system a mimmum
Conversely, 1f the circwit 1s fixed 1n space the distribution of the flux
will be such that the number of interlinkages of tubes of force tends to
become a maximum

‘When the flux of the magnetic field is not independent of the current in
the electric circuit, but its reluctance constant, then the potential encrgy
of such a system 18 15 {Z(w,@,)}

The simplest form of such an electromagnetic system 18 an electric
cirewt together with the magnetic field produced by the current in the
crrewt ﬁ‘he energy which 18 necessary for the production of the mag-
netic field of the circurt 18 equal to the potential energy with opposite
sign Let us calculate this energy. The variation of tho enorgy mn the
time dt is dd = - evdi=142(w,B,)

If the reluctance of the field 1s constant, ®, 18 proportional to 4, and hy
integration we obtain Ae IMZE (0.2) = }iS (w2,

which is the magnetic energy of an electric circuut with constant

reluctance. Substituting in this formula the relation | A dl = 4muw,, the
energy of the field per unit volume 15 expressed by
dB
4= (B2 (mar

which is quite analogous to the expression for the work of deformation
in & purely elastic body This formula for the field energy per unit
volume holds quite generally for all mag-
netio fields

If an 1ron ring with an air gap, as shown
in Fig 22, 18 magnetised by means of a
continuous current, the energy supphed to
1t will be #iZ(w,®,), which will be stored
in the magnetic circmt  This energy exerts
a force on the magnetic cirewit, which strives
to reduce the re%ucta.nce of the latter. In
the present case this could be accomphshed
by decreasing the air gap. The magnetic
chn.r%es which we can suppose to exst
on the boundary surfaces possess opposite
polarity and attract one another Thus
the force of attraction between these two surfaces stresses the whole
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ring hike a spring, which condition only ceases when the current, and
with 1t the magnetism and stored energy, disappears.

The attractive force hetween the two surfaces ¢ may be easily
calculated The magnetic charge on a surface exerts a force of 2z on
each of the 7@ umts of the opposite surface ~Consequently, the force
of attraction 1s K=97I%Q,

or, if we put B=dxl,
BQ B®
then K= 8_1? =% dynes.

Power has the dimension
dim (power) =dim. (E.M F x current)=dim (L3MT-%)

The practical umt of power 1n the 0 G S system 18 a watt
Watt =volt x ampere =108 x 10-1 =107 umts of power 1n the electro-
magnetic system
he umt of work 1 the electromagnetic system is the erg
1 erg=1 cm dyne,
and the practical umt 1s the joule
1 joule =107 ergs
Thus the power of one watt corresponds to one joule per sec The
engmeer’s umt of work 18 the Iulogramme-meire (kgm) or the fool-
pound (£5-1b ) '

Since 1 kg=2 205 1bs =981000 dynes
or 11b =0 453 kg =444000 dynes,
and 1 metre=3 28 ft or 1 ft =30'6 cm.,
then 1 kgm =981000 100 ergs=9 81 joules
and 1 it -Ib =444000 305 ergs=1 355 joules.

The Emetmal umt of power is known as a /o1 st
The horse-power 1n the metric system as used on the Contanent 18

1 P8 =175 kgm per second="75 9 81="736 watts,
and n the Englsh system,
1HP =550 ft -Ibs per second =550 1 365 ="T46 watts

The umit of heat 1s the calorte, and 1s equal to the mean amount of
heat required to raise the temperature of unit mass of water by one
Centigrade degree

The small or gm-calore 18 equivalent to 0 428 kgm , thus a gm-calorie
18 equivalent to 4 2 joules or the power of 42 watts for one second.

The large or kg-calorse 18 1000 times as large as the gm-calorie

6. Oomplex Quantities. It 18 well known that any given positive
or negative number can be represented by a pomnt n the abscjssa-axis
0X, by telang the chrection from the origm O towards X as positive

AOG I
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and the opposite direction as negative. We can extend this system of

representation hy letting the complex number a+3b, where j=+v -1,

be represented by a pomnt

é m the plane of the co-

ordinates, which 18 obtained

§‘ by setting off the distance

b along the ordinate at a

§ Xob in the X-axs, b bemng set

’ off n the direction of the

§ b Y-axis when 1t 18 positive

g % and m the opposite direc-
negative real values 0 " ~ tion when 1t 18 negative

reel velies Thus every mmn])e%f: whether

g real o ymaginary, has a corre-

' spondmg pownt n the plane

of the co-ondunates (Frg 23),

conversely, every point In

the plane of the co-ordmates

é corresponds to a definite

iy

number.
In the following, symlolic
Mo 28 expressions for complex
quantities will be denoted by placing a dot below the letter Thus, 1n
Tig. 23, let a=rcos¢ and D=rsmng,
where r=na?+b and tan¢=£,

then the symbolic expression for the pomnt X is
X=a+jb=1(cos ¢+ amn ¢) =re,
where e=2 71828 is the base of natural logarithms.

1 is called the absoluts value of the complex quantity X, and equals
the length of the hne jomning the origm O to the point X. & 18 defined
as the argument of the complex quantity, and is the angle the vector 0X
makes with the axis of positive real values Positive real numbers fall
on the axs representing positive real values, 16 to the right of 0 on
the abscissa-axis (see .F%g 23), and have the argument zero, whilst
negative real numbers fall to the left of O on the abscissa-axas and have
the argument .

Sumlarly, positive 1maginary numbers have the argument g and lie

on the positive ordinate-axis, negative imaginary numbers have the
argument 32—7' and lie on the negative part of the ordate-axis

Two complex numbers which have the same absolute value and
whose arguments are equal but of opposite sign are called compugate
nurebers, as, for example, a +7 and a—yb Two conjugate complex
numbers correspond to points in the plane which are the 1mages of one
another with respect to the axis of real values
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We must now extend our conception of complex quantities and see
how the same can be subjected to the process of calculation This
extension can be so effected, that complex magnitudes can be calculated
by the same rules as those which govern the operation of real ni-
tudes, and the fundamental laws for real magnmitudes can be taken
as special cases of these rules. For this purpose, we deduce the
following formulae

ADDITION AND SUBTRACTION.
Let X=a,+sh;, and Y=a,+sb,.
Then Z=X+Y=a+jb
= (@ +1by) £ (@ +18) =y £ 0y +7 (b £ By)
Both X and Y represent a pomt or a vector mm the plane of the
co-ordinates .
Let a pomnt P 1n the plane of the co-ordinates he represented by two
complex expressions, e.g. P=a+jb=c+sd, then we must have
a=c and b=d,
for the point P has only one abscissa and one ordinate Hence every
complex equation such as a+jb=c+ 7@ can always be sphit up 1nto two
real equations This 18 due to the fact that, strictly speaking, ; is
merely a symbol or index, which serves to distinguish between ordinate
and absoissa magmtudes in analytical expressions
From the above Theorem of Addition, 1t then follows directly that
a=a,*a, and b=b b,
when X=a,+7by, Y=a5+5b,,
and Z=X% ¥Y=a+)b
Hence Z 18 represented by a poimnt whose co-ardinates are the sum
of the co-ordinates of X and Y.
As seen from Fig 24a, the radius-vector Z is the geometrical sum of
the vectors X and ¥, or, m other words, Z 1s the resultant of the two
components X and ¥

i
1
J
g
Fia 24a —Addition Fio 240 —Subtraction

The pomnt Z 18 obtamned by drawing a lne from the pont X parallel
and equal to O, or, mn other words, starting from the one component .Y,
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the sum Z is obtamed m the same way as when the second component ¥’
18 found by starting from the origmm 0

Similarly the diagram m TFig 240 represents the process of
subtraction.

MULTIPLICATION.

Let X=a,+b,=1,(c08 ¢, +7 810 by) =1,™,
and V=g + 7y =1,(CO8 by + 7 811 ) =267
Then Z=XY=a,8y—b;by+7(a,by +ya,)
or =1,7,{(c08 ¢ 008 ¢, — 811 ¢, 810 b;)

+7(s1n ,CO8 ¢, + €08 b, 81n y) }

=1115{cos($; + ¢5) +78m($; + b,)}
)
that 18, the multipheation of two complew numbers s effected by multiplymg
the absolute magmiude of the one by that of the other and taking the sum of
thew a1 guments

The product of two conjugate complex quantities 13 a real quantity
and equals the sum of the squares of their absolute values, thus

(@ +1b)(a - 1b) =a2 + b2

As seen from Fig 25, the product of two vectors can he regarded as
formed from one vector by multiplying the absolute value of one vector

z
Y
5
Y
Fia 256 —Multiplication Fra 20 —Division

by that of the other, and at the same time turning the former vector
through an angle equal to the argument of the latter vector ~Such an
operation 18 called 70tation 1n geometry, for the vector Z 18 considered
to result from the vector X by rotating and by increasmg X by an
amount given by the second vector ¥=1,e74s  The rotation 18 counter-
clockwise when ¢, 18 positive and clockwise when ¢, 1s negative.
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Let the value +1 be set off along the abscissa axis and jom 17.
Then the triangles 01¥ and 0XZ are sumlar, for we have

0Z 0Y

2222, and £(X0Z)=¢,=2(107),

3 (X0Z)=,=c(

that 18 to say, the product Z is formed fiom one of the factors, e.g Sfiom X,
. the same way as the second factor Y s formed fiom wmity

DIVISION. '

The operation of division is the reverse of that of multiplication, as
seen from Flg 96, that 18, the dumswn of two complex number s 1s offected by
inding the absolui tude of the one by that of the other and takmng the
dufference of then @ guments i
The denominator of a complex quotient is made real by multiplying
both denommnator and numerator by the conjugate quantity of the
denommator, for example

g X _a+sb_(a+7h) (ay—J8)
Y ay,+jby a}+0;

_ 0+ Dby +7 (B3~ ayy)
@+ b

_ni(cos ¢, +75m ;)
"~ 14(c08 g+ 8111 cby)

= {oos(dy ) +yam (- 9}

or

=M ei-09
79

s
INVOLUTION

From the formula for multipheation, we get
Z=X"=(a+yb)"={1(cos p+7mn ¢)}" | z
=1"(co8 n¢ + 8in ne) = 1"einé

Hence, to rase a complex number to amy power,
we must 1a1se the absolute value to that power and
multyply s a1 gument by the mdex

«Fig. 87 represents this operation We ¢ X
have thus, for example,

(a+7b)=a? - b +72ad ¢ F1o 27 —Involution
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EvoLuTioN
4=VY¥=Nax7
- 4
=:‘/‘l (GOS %4- 78m %) =%‘€J"'-
Hence, to find the 100t of a complex number, we take the 100t of the absolute
value and dwide the argument by the imdex

It may here be noted that mn complex equations 1t 1s always allowable
to substitute —j for +j, provided all terms m the equation are smmlarly

treated. For example, to calculate +/a+,5, put
Vatib=a+1pB,
then also Va—jb=a-)8
Multiplymg these two equations together, we get
NP+ b =al+ B
By squaring the first equation,
a+jb=0a?- B2+

or a=02-f% and b=2a0,
whence o=+ /3 WP+ B +a)
and B= /3T T -a)

Smee b=20p, 1t 18 seen that « and B have the same sign when b 18
positive and unhke signs when b is negative Hence
Vazpb= + (J}(WE+ B+ a) ) J}(NFFF - a)}
Since the above theorems apply equally well to real numbers, 1t 1s
obvious that they are therefore quite general.
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SIMPLE ALTERNATING-OURRENTS AND THEIR
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7. Sme Wave Currents The simplest alternating-current 1s one
whose momentary value can be expressed as a function of the time

by a sime wave, e g. = I, 810 (20t 4 )

t
=T 80 (2r7+ &#)
=T, 8m (i +¢),
where I, 18 the amplutude of the current, T the fune i seconds the current
takes to pass thiough a complete cycle o1 perrod, whilst %,= ¢ represents the

number of such cyclas the current passes through 1n one second, and

N /

Fio 28.—S8inusoidal Varlation of an Alte\mt.iug Current. o

18 called the frequency of the current. Fig. 28 shews such a current,
which obeys a sine law, drawn as a function of the time
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With polar co-ordmates, the sme curve 1s represented by a cucle
(Fig 29), whose diameter O equals the amphtude I, OB 15 the
momentary value, whilst ¢ 18
called the phase angle of the
current The pomt B moves
over the cirele twice 1n a cycle,
consequently, w=2mc¢ repre-
sents the angular velocsty of
rotation of the straight lmne
0B

The current passes through
zero when

== -7,

8
whence the phase of the current
18 given by
Fio 29 —Representation of & Sinusoidal Ourient b
Polar Co ordinates ey b= % T

Since the amphtude and phase (4: %) of the ourrent are given by the

magnitude and direction of the vector 04, the latter represcnts the
current completely. Its m tary value 18 obtained by projecting
the vector 04 on to a straight line OF rotating about O m a counter-
clockwise direction with the velocity w. The rotating lme OB 18
therefore called the fume line

This method of representation rests on the assumption that the
alternating-current 1s smusoidal, consequently, the same can also be

——

o R\
7

ST

Fio 80 —Produotion of a Sinusoidsl B M F

L

applied to an alternatng EMF which obeys a sne law  Such an
EMF ‘can be produced by the umform rotation of a restangular coil
about 1ts longitudinal axis between the poles of a magnet, as depicted
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m Fig 30 The poles are assumed to be sufficiently large, so that the
field 1n which the coil rotates 1s quite uniform

At the 1nstant consdered, the flux passing through the surface F of
a turn 18 (Fig 31)

®=HFcos vt ,

) N Y
and since the mduc;i EMF 18 %////////////////AV/////////////%
=T }
the E M F. induced 1n the turn will he | N\
__d(HFcoswt) - — sy o —
e=-=="4 = HFosm wi \ufg,- H

Now HF 1s the maximum flux em- R O )
braced by the turn during a revolution, |
denoting this by ®,,., we get W////////// /////////////%
6= 2mcd,,, 811 wf 7
The embraced fux ® is a maximum  Fio 81 —Produotion of a Binusoldal

EMF due to Rotatlon of & Coll in &

T
when wi=0 and 15 zero when wi=3 Uniform Flold

The EMF. induced by & 15, on the contrary, zero when wi=0, and
reaches 1ts maximum when mt=g. It 18 thus apparent that the

induced EMF 18 a mmmmum when the coil 18 mterhnked with the
maximum number of lines of force, 16. when the coil 18 perpendicular
to the field

This 18 also 1 agreement with the pievious statement, that the
induced EM ¥ vares directly as the rate of cutting of lines of force,

Fio 82

for, when the number of interlinkages 1s zero, the coil 1s vertical

(1e wt=§> and cuts the lines of force at the maximum rate, con-
2

sequently, n this position the mnduced EMF 18 greatest In Fig 32,

the flux ®, and the EMF e induced by 1t, are drawn as functions of

the time With nemg @, ¢ 13 negative, and with falling @, ¢ 15
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positive; in other words, the EMF. curve 15 the differential of the
flux curve, with the negative sign prefixed.

If, mstead of one turn, there 18 a coil composed of several turns all
1 the same plane, the induced E M F. will be

e=HZ(F)wsmn ot

If all w conductors 1n a coil-side are so near together that the same
flux @, 18 embraced by each turn, then

e=2mrewd,, sin ot

Since the field-strength H, the sum of all surfaces =F of the turns, and
the angular velooity w are constant, we can write

¢=FE, . 9wt

If H, F and w are m 0GS units, then ¢ and £ will also be in absolute
units. To reduce to volts, we must write

By = 2rew®,,., 1078 volts (14)

A cycle in this case corresponds to a revolution of the coil, and the
fre%ﬁeuo ¢ equals the number of revolutions per second.

e direction of the TM.F 1induced 1n the coil at any moment
can be found from the hand rule on p. 14, and 18 represented by the
arrows (Fig 30)

8. Summation of Sme Wave Ourrents. In Fig 30, all the turns
of the rotating coil lie in the same plane, and the EM.F’s induced m
‘ the several turns all reach their zero

{3 V4 2 together and all attain their maximum
K7 together In this case, the E.M.F’s

[ are sad to be wn phase with one
another.

If the turns are in different planes,
but arranged about a common axs,
ag in Fig 33, the EM F’s induced 1n
the several turns will no longer have
the same phase, but, 1 respect to
time, they will be displaced 1n phase
Denoting the EM F mduced in coil I.
by 6,=E) s 0t
then the EMF 1nduced m coil II
will have the same frequency as the
EMF. mduced 1n coil I, since the
angular velooity o is the same 1n the two cases, but 1ts phase will be
different , thus, ty= Eymae sin (ut - $),
where ¢ 18 the constant angle bﬂ which col II lags behind ocoil I.

Thus the EM¥’s of cols I and IL are displaced from one another by
the angle ¢, which the coils make with oue another m space, whence

|
%////////////////}//////////////////2
7

1
Fia 83
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the angle ¢ 18 called the angle of phase-displacement between e, and e,
The negative sign before ¢ denotes that e, lags behind, or reaches 1fs
maximum after e,.

Agan, the plane of coil IIL 1s displaced from that of coil I by the
angle ¢, 1n the direction of the sense of rotation. The E M.F. induced
1 coil IIT can then be written

5= Eg e 810 (0f + ),
which means that coil IIL reaches 1ts maximum EMF (or its zero)
before coil I attamns 1ts maximum EMF (or its zero) by an amount
corresponding to the time taken for the system to rotate through the
angle ¥ Thus e, 18 sard to lead e;, and the angle ¥ 1s called the angle
of lead, 1n the same way as the angle ¢ above is called the angle of lag

BN

Fig 84

Injorder to obtain the sesultant E M F. induced in the whole coil, the
algebraic sum ot the momentary Elues of the EM F’s 1n the several
turns must be taken In Fig 3%, the instantaneous values of the
three EMF’s ¢, ¢, and ¢, and their algebraic sum ¢, are plotted as
functions of the time

We often require the resultant of several EMF’s or currents of
chfferent phase This can be most readily found graphcally. The
several momentary values e;, ;? and e& are obtamed by projecting the

corresponding vectors By, Eguay 80d Ejy .. 00 the rotating vector or
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time lme, in accordance with the well known theorem #he p7gection
of the 1esultant (1o the geometrucal sum) of ssveral vecims on a sharght
line equals the sum of the pojections of the several vectors on the same hne
From this 1t follows that the sum of several smusoidal EMF’s,
which are represented in amplitude and phase by means of vectors, is

¥ 36 Fia 36

given by the resultant of the vectors of the several E M ¥’s (Fig 35) *
In a similar manner, the sum of several alternating-currents flowing to
or from a point (Fig 36), ie the resultant of several parallel currents,
can be found by determinming the resultant of the vectors of the several
currents, as in Fig 37.* Thus
= Dy 810 (08 + ) = I e 8110 (08 + ;) + Lyruns 810 (08 + by)
+ Iy 8101 (01 + bg)
: From Figs 35 and 37 1t
18 seen that the amplitude
of the resultant EMF. or
current 18 not equal to the
algebraic sum of the amph-
tudes of the several com-
ponents, but depends on
the phase displacement of
the latter, so that the geo-
metrical sum must always
be taken

9. Mean, Effective, and
Fio 87 ¢ Maximum Values of Sine

‘Wave Ourrents. Since an

alternating-current 18 continually changing 1ts direction, 1ts mean value
taken over a whole number of cycles 18 zero Thus, such a current

*In Figs 35 and 37, the veotors denoting the amplitudes of the & M ¥ ’s and
ourrents are—for the sake of olearness—denoted by i, I, eto , mnstead of by
Bymex; Iymas, etc
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cannot be used directly for charging a battery, nor can 1t produce any
njurious electrolytic effects when flowng as an earth current

The mean value of an alternating-current 18 always understood to
be the largest mean value which can be obtained during half a period.

/ %r"%\

—_— b \
\_/ | \SD,‘Q

Fio 88 !.l, — v
Consder the sine curve shewn 1 Fig. 38, representing (5, ’ (_7_3
2=, 8m (2—% t) r): ;:

Then the largest mean value 18 % 0 ]
m\ =

2 (7 o
' T =, T (1) \\_/o‘
T 8L, o T ‘90 \
@ T [_COBTt:lcun \Q_'iz"

2
=2 Lo =0636L,

/‘

Thus the mean value of a sine curve 18

Tpo=2

7—‘_1,.,,, PR ¢ 1))
The mean value, however, 18 not of ﬁrea.t interest 1n dealing with
alternating-currents or pressures, for the power does not depend on
the mean values From Joule’s Law, the work done in overcoming
the resistance ¢ of a conductor by a current 4 in time dt 18
dd = di,
whence the mean heating effect 18
(., 1" 2
W=TL ad= TL # =Ty,

where Ig 15 used to denote the current-shength whach a conbnuous-cursent
must have mn o1der to produce the same heating eflect as the alternating-cur ent

T
Thus L= JH @i (16)
0
This 18 called the effectwe value (or, 1 accordance with eq (16), the
root-mean-square or R.M.S -value) of the alternating-current
IISc Lib  B'lore

S 11 T

G2 e DI
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Let 1=1,, 8 (277—,' t)
)
Th =7 227
. en PR = T 8111 (T t)

=;1:,_x{1 — cos (%t)}

This 18 shewn 1n Fig. 39 as a function of the time,

o

0

rew .-
[ ]

———)
Fro 80 —Effective Valuo of Alternating-Ourrent.

The ourve ¢? is also a sine wave, but varies with double the frequency
of the current «+ Further, 4 does not oscillate about the abscissa-axis,
Dhut between zero and I, so that

2 _1 -" LI
= 2t ="
= | PlE==5
whence Lp=Tom o T o077 (17
=772 “ 1414 maxs
amplitude
y

2

or, effective valne=
From eq. (15) and (17), 1t follows,

T Jogan _ 1.
Le=3 72 =11 e (18)
The factor 1 11 1 called the form factor of a sme curve

Similarly for the E M 7.

By= ! Te‘zdt = E—"'"——, 17a)
7), Wi (17a)
and E.,=5% Brn=111E, . (18a)

On p. 26 16 was seen that the masxamum EMF induced in a coil
of w turnss. B, = 2mewd, . 108 volts
From eq. (17a) 1t follows further that the effective EM ¥ will be
Byg=f2moud,,, 1078
=4 ddewd,,, 1078 volts, . (19)
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Agam, since Bau=" Epgss (15a)

it follows that Epoa= 40%@,,,,_,1'0‘5 volts. (20)

This last formula can also be simply deduced thus—during one
complete cycle, the flux @ passes from 1te zero to 1ts positive maximum
value &,,, and then sinks again to zero—thus 1n half a period the flux
changes twice—similarly, i the negative half-period, the flux also
changes twice, so that in a complete period I' the flux @,,, changes
4 tames, hence 1n a second, the flux vanation 18

4P,
e ™
whence formula (20) follows directly

Smnce we have made no assumption in deducing this formula as
to the way 1n which the flux vares, 1t is obvious that the formula (20),
16 the value of Eye.,, 18 Independent of the shape of the EMF curve.

In practice the effective value of an alternating-current or pressure
plays the most important part Consequently, 1n what follows we
shall deal almost exclusively with effective values, and m the diagram-
matic representation, the vectors will denote such values. If we require
the momentary values from such a figure, we have only to multiply
the projections of these vectors on to the rotating vector by /2 In
general, we shall denote instantaneous values by small, and effective
values by large letters, whilst maximum or mean values will be denoted
by the suffixes maz and mean respectively.

2
T

10. Symbolic Representation of Sine Wave Currents. In place of
graphical representation of veotors, it 18 possible to proceed analytically,
a8 1 Mechancs, by resolving each
vector mto two components along I
axes perpendicular to one another
One axis—the abscissa-axs—coin-
cides with the rotating vector OB
(Flﬁ 40) at the mstant =0

o

1=,/2Ism (vt + ¢)
=/2I(cos ¢ s1n wt + 810 b cOS wi),

where I, as above explamed, denotes
the effective value of the current 3~ [,y
Thus the momentary value of a sine = o @ . onof o Stausoldal
function always equals the sum of Garront h}’ ‘two Veotar Componenta
the momentary values of the two
components mto which the vector of the smne wave can be resolved

As seen from Fig 40, the current 2 18 completely determined by the
co-ordinates I cos ¢ and Ismn ¢ of the pomnt 4

Just as a complex number can be represented by a pomt in the plane
of the co-ordinates, so & pomt n the plane of the co-ordinates can be
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represented by a complex number Thus the pomt 4 (Fig 40), am
consequently the current I represented hy U4, can be determimed fror
I=1Icos¢p—jlsimg,
where the vertical co-ordinate is taken as the real axis and the hor
zontal as the mmagmary g‘lg 41) This method was first mntroduce:
into electrical theory by Helmholiz and Raylewgh.
In the expression for the momentary current,
1=,/2] s1n (wi + ¢),
¢ is the phase angle, which shews that the current passes through it

zero value at the mstant )= —% ve % before the mstant 1=0. Th

greater ¢ 1s, the earher the current passes through its zero, z¢ th
greater the lead If ¢ 18 positive, then, as shewn 1n Fig 28, the tim
t, must be set off along th
negatwe direction of the tim
axis  In a silar manner
- . m the vectorial representa
’ tion of the current 1n Fig 4C
g a poative phase angle ¢
, e bn# TOUSE be set off from th.
{ i T real axis 1n the negatuwe direc
i tion of rotation of the tim.
nay values 7 1,,,,,;‘ Ime In the representatiol
of this current » by means o
{ua HQua complex numbers,
I=1I(cos¢—jsm ¢p)=Te-7
Fra 41
therefore the phase angle u
also +¢ , hence, with negative sign, we always obtain a positive phasc
angle, and vice versa
The system of co-ordinates used m this figure can be regarded as
formed from the co-ordinate system in Fig 29, which 1s the onc
generally used 1n Mathematics, by rotating the latter through 90
1 the direction of rotation of the time-hne Hence, 1 representing
sine wave currents symbolically, we set off the real values along
the ordmate-axis and the imagnary values along the negative
direction of the abscissa-axis
-The current vector can be given either by 1its magnitude and phase o1
by the components of the vector along the two axes The symlolu
cxmosswon I 1mphes these two vomponents, so that the vector 1
completely determined from this symbolic expression
In what follows, we shall denote effective values by simple capita
Tetters when they merely denote magmtudes, and by capital letters
with a dot underneath when the effective value 18 a veetor,
representing both magnitude and phase This method was applied
by Stemnmefz, who has been chiefly mstrumental mn shewing how
technical alternating-curient problems can be treated symbolically
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If the veotor 04 is moved through 90°, m the sense of rotation
of the time lne, to 04’ (Fig 41), the co-ordmates of the point 4’ are

Tcos(p—90°)=Ism ¢
and ~Ism(¢p-90")=1Tcos¢
Thus the complex expression for the vector 04 18

I'=Ismn ¢+jIcos ¢
=j7{Icos¢—jIam$}
=L

We thus see that multiplying a complex or symbolc quantity by j
corresponds to moving the vector 04 through 90° i a counter-
clockwise direction Similaily, multiplying by —; corresponds to
rotating the vector 90° 1n a clockwise direction

In order to find the components of the resultant of several currents,
or kM F’s, we determne the algebraic sum of the several components
along the two axes, or, when we proceed symbolically, we can add
all real terms together and all the mmagmary terms together Thus,
for example, the sum of the currents

Ii=a,+jb, and Iy=ay+)b,
18 I=a+jb=a,+a,+7(b+by)

This complex equation can he replaced by two real equations (as
shewn 1n Section 6), namely .

a=a,+a, and b=b +b,

Untal now we have always spoken of the time-line as revolvmf; it
18 possible, however, to suppose this fixed, and let the plane of the
co-ordinates rotate about the origm  This must then rotate 1n a clock-
wise direction* with the angular

velocaity w, and the projection of a 2,

vector rotating with the plane on %

to the fixed vector represents the

momentary value of the sinusoidal 3

magmtude represented by the vec- 4

tor revolving with the plane It 1s

eagy to see that the mutual position

of the vectors, also thewr posston unth 5
respect to the co-ordmate azes, 15 the _

same whether we have a 10tating tume- [

lme and fifed system of co-ordwnates Fro 43

and vectors, or a fized tyme-line and o

rotating system of co-ordwnates and vectors Smce 1t 18 customary to
imagine the whole diagram, 1e the plane of the co-ordinates and the

*Ths d of 18 opp to that adop snce these drawings
were prepared, by the International Committee for Electrical Symbols
Ac c
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vectors fixed n regard to it, as rotating, this method will also be used
m what follows, and the arrow will represent the rotation of the
diagram—which 1s always clockwise. Of two vectors, that one always
leads which 1s first ' the clockwise direction. Thus, in Fig 42,
1, is leading I, by the angle y.

11. Power given by Sine Wave Ourrents. It has been shewn
on p. 15 that the work done in an electric circutt 1 tume d# 18

dd =eidi,

where ¢ and ¢ denote respectively the E M.F. and current in the awreuit
at the moment considered

Writing e=,/2E sin (vt + ¢,)
and 2= /2] sin (wt + ¢by),

where J and I are effective values, the momentary value of the
power will be — -

ei=2EIsn (wf + ¢y) sin (wi + ¢,)
= EI{cos (¢, — bg) — cos (2ut + ¢, + by}

From this it 18 seen that the instantaneous value of the power 18 a
function of the time, and varies as a sine function about the mean

Fia 48

value EIcos(p, —¢,) with double the frequency of the current or
pressure (Fig. 43) Hence the mean value of the power durmg a
complete cyels, i.e. the mean o1 gffectwe power, is,

W= _;_,j:ez dt=EIcos(p,— bq)

=Elcos¢, (21)
where ¢ =, — $,=phase-angle between the pressure £ and current 1
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The product EI of EMF and current 1s called the apparent power,
and 18 often referred to as the wolt-amperes, cos ¢ 18 equal to the
power-factn, bemg the factor by which the volt-amperes £I must be
multiphed m order to obtamn the frue power 77 1 watts .

As'we have just seen, the power surges to and fro n the circuit—at
one nstant 1t 1s positive, at another negative. This surging will be a
miumum when ¢, - ¢, =418 zéro, or cos ¢ 1s unity, 1e. when current
and pressure are in phase, for in this case, and in this case only, the
momentary value of the power 1s never negative (Fig. 39). In other
words, although the power is transmitted from the generator to the
hine in the form of pulsations, the line never returns power to the
generator. The greatest amount of surging will occur when

- $y=d=3,

16. when cos ¢ =0, for now the mean value of the power is zero, and
the power merely surges to and fro between generator and line, but

Fi6 44 —Perlodic Variation of Prossure, Ourrent and Power when ¢=¢, - po=00"

no actual transmission of power occurs (Fig 44). In this case, the
area of the pomtive part of the power curve equals that of the negative
part.

The momentary power can be shewn disgrammatically by setting
off the constant magnitude

ETcos (¢, — ¢g)=Elcos ¢

on the ordinate axis from O to 0, (Fig 45), and describing a circle
about 01 with radius EZ Then, if the radius of this ecircle rotates
with uniform velocity 2¢ m a clockwise direction, the momentary
power ez will be given by the ordinate drawn from the end 4 of the
radws EI on to the abscissa-axis passing through 0.
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At the moment ¢=0, the radms EI has the postion 0,4—its
component along the ordinate-axis 18 ~ EIcos (¢, +,) and along the
abscissa-axis — ETsm (¢ + ¢,)

a 1 RS AR
. /4 ' "
Mﬁ/ / Eleaty Eeary _
(ethZy 0) ‘ ) H
'_q lnng, : [.mw;

Fio 45 Fia. 46

Using the graphic representation of Fig. 46 for & M F’s and currents,
and resolving the vectors mto components along the axes, we get

e=,/2E cos ¢, s1n wi + /2 E s ¢, cos wi \
and i=4/2Icos ¢, s1n wi+ /2] 51 ¢, COS Wi
Since also
W =EIcos (b, - bs)

=EIcos ¢, cos ¢, + EIsmn ¢, sin by,
we see that the resullant power equals the sum of the powers of the several
components of the vectns From Fig 46, 1t is also seen that the power
equals the & M.F. multiphed by the projection of the current on to the
EME, or equals the current multiplied by the projection of the EMF
on the current

12. Symbolic Representation of Power. If EM.F and current are
represented symbolically, we get the following expressions for thess
magnitudes (see Fig 46)

E=Ecos b, —Eam ¢, = Ee~t,

I=TIcos ¢y —yImn dp=Ie™h,
where e denotes the base of natural loganithms E and I are absolute
magnitudes, whilst -, and - ¢, are called the argumenis of the
complex quantities To multaply two complex quantities together, we
take the product of their absolute magmtudes and the sum of therr
arguments (see Section 6) Hence the product of the complex
expressions for current and pressure 1s

B9 = BT {cos (¢ + b) —) i ($, + $,)}
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From this we see that the product of the complex expressions for £
and I merely gives the complex expression for that part of the
momentary power which varies after a sme law of double frequency
(Fig. 45) and has no

relation to the actual
power § P

In practice, however, E,. 4 ]
1t 18 not the momentary ¥

power we require, bubt
the mean value EI cos ¢,
the apparent power EI
and the power factor
cosp These are especi-
ally 1mportant when we
come to deal with curves
of any desired shape

For this purpose, 1t
18 best to set off the Fro 47
apparent power EI as a
vector at angle ¢=¢, — ¢, to the ordmate-axss (Fig 47) The pro-
jection of this vector EI on to the ordinate-axis then represents the
effective power Elcos¢  Choosing again the orcinate-axis to represent
the real and the abscissa-axis the 1maginary values, we get the follow-
ng symbohie expression for the power vector .

(EI)=EIcos¢—jEIsmn¢
=Ele ¥ =W +jW,

We can suppose the power vector to be formed from the EM.F.
vector, by simultaneously moving the latter through the angle ¢,,
i the counter-clockwise direction, and multiplymg 1t by the current
I. In other words, the power vector 18 obtained by multiplying the
EMF vector by Je#.. Hence the symbolic expression of the power
vector 18 obtamned by multiplymg the EMF vector by the conjugate
vector I' (= Ie) of the current vector I. The vector I'=Je’® 1s the
1mage of the current vector J=JIc¢ ™% about the real axis

unay oaluss

Let E=Ee =, -1E,
and I=Ie=1 -1,
Then (ED =W +1W;=(By —1Bg) (I +)15)

=EB\L + Byly +1 (ByI, - Bol)
Hence the effective power /7 (=EIcos ¢) 18
W=E I +E,I, (22)
and the so-called unagmnary power (EIsin $) 18
W,=E\I,- E,I, (28)
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*  In this method of representation, the 1maginary power 1s positive or
negative, accordmg as the current leads or lags i respect to the E M.F,
and 18 zero when the two are 1n phase If we had proceeded otherwse,
and called the 1magmary power positive, when the current lags, the
power vector would have been obtamed by multiplymg the current
vector by the conjugate of the E.M.F. vector

From the foregoing, we see that the symbolac expr esswon for the power 1s
obtawned by multiplymg the symboluc expression for the presswe vector by the
symbolsc exp esswon. for the wmage of the cument vactor with 1espect to the ams
of real values

The above mtroduction of the image 1n the complex expression for
the power depends solely on the manner 1 which the E M F, current
and power vectors are expressed, and has no physical relation to the
expression for the momentary power.
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THE PHYSICAL PROPERTIES OF ALTERNATING-OURRENT
CIRCUITS.

13 Self-Induotion. 14 g:fuulty 16 The Pressure Components n a Ciromt
carrying & Sinusoidal Current 18 Differential Equation of a Simple
Ciroutt 17 Graphical Representation of an Alternating current Cirowit.
18 Examples. 19. Resolution of the Current mto Watt and Wattless
Components

13. Self-Induction. When a current flows 1n a conductor, a field is
produced encirchng the conductor The flux @, produced by a
current 2 flowing through a conductor of w, turns 1s, from equation (9)

& e
R
where R, is the reluctance of the magnetio path of the flux &,, inter-
linked with the w, turns

If the current changes m strength or direction, the flux &, changes
in the same sense, and along with it the stored-up energy }12(w,2,).

Consider any conductor, for example a loop
(Fig. 48). If the flux embraced by the loop 18
varied, an EM.F. ¢, wil be induced n the con-
ductor, which, in accordance with the law of
mduction, 18 expressed by

_ _G2(w®,)_ _d Z(wf)
%=~ @ T~ @& R’

¢, 18 called the counter- o1 lack-E M.F. of self- Fio 48 —Sell-induotion of
snduction & Coll
Since the same current 2 flows through each of the turns,

d we
= - 52(5)
where the sum of all fluxes produced by the curient s 18 to be taken
In general, we write
s o= -4I0), 24
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where L= E(%) (25)
The factor L 1s called the coeffictent of self-unduction of the cirewt, and
has the same dimension as magnetic per viz. the d of
a length. 4

With constant reluctance R,, the flux &, will be m phase with
current %, in accordance with equation (9) If the current vares sinu-
soidally, the flux and EM T will also follow a smne law, and since the
induced E.M.F. ¢, lags 90° behind the mducmg flux ®,, 1t will also lag 90°
behind the current, and we get the curves for ®,, 2 and ¢, as shewn 1
Fig 49. p,1s the exteinal pressure applied to the coil, and 18 equal and

AN

Fio. 40.

opposite to the EMF ¢, The reason ¢, has the opposite sign to d(Ls),
18 because the induced EM.F always tends to prevent any alteration
10 the current strength  Thus, 1n a cirewit where the current 18 rsing,
the counter-E M F will oppose 1t, and the current will be 16fa1ded 1n 1ts
growth  On the other )l;n.nd, a falling current 18 always acted on by a
counter-E M F which tends to keep the current constant, and so lowers
the rate of decrease  Thus, 1n an electromagnetic circut, self-mduction
seeks to prevent any change of current, just as with matter, ineitia
tends to prevent any change of velocty.
Tho energy ¢4 supplied to the flux during time d? 18

Ad = —epdi=1d2(w,®,)
2
< (vt L
= dz_(%')=l};dz=§d(#)

If the coefficient of self-induction L 1s constant, 1t follows that
the electrical work which must be expended in rasing the current
from 0 to + (excluding heating losses) 18
§7
e (26)
This work—which 18 often referred to as the electromagnetic energy m
the eireurt—wall be given out agam when the current sinks from ¢ to

A=
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zero  The coefficient L 13 measured in absolute umts (cm)—the
practical umt of self-imduction 1s called the Henry, and 1s chosen equal
to 10° times the absolute umt

On page 12, the 1eluctance of & thin tube of force C' was defined as

08dl
R.=
o M

dl
- 10_[ _a
RETA

80 that the flux mn the tube can be found directly by dividing the
ampere turns 1nterlnked with the tube of force by the reluctance K,.
Thus, I, 18 not measured 1 absolute umts, but mn unmts g5 of the

absolute, hence
’ L= EG{) 107

=2(w,®,) 1078 hem y, . 27

where ®, 18 the flux due to 1 ampere. In calculating L, we may
use the following definition  The cogfficient of self-mducton L of a cucurt,
wn absolute umats, 1s measwr ed by the number of wierimkages =(®,w,) whach the
conductor makes unth the flux produced by a curent of 10 amperes (1e. by
one ahsolute umt of current).

14, Capacrty.* If an EM.F. is applied to the plates of a condenser,
a charge will be taken by the latter. The relation between the acquired
charge ¢ and the pressure p, at the terminals of the condenser is

7=0pes

where C 18 called the capacity of the condenser If we make p,=1,
the capacity will be numerically equal to the electric charge which
must E: supplied to the condenser in order to rase the potential
dufference between 1ts terminals to umty.

If during the time d¢ the pressure 18 increased or decreased by dp,,
the 1ncrease or decrease 1 the charge, 1e tho quantity of electricity
passing along the conductor, will be

dg=idi,
where 7 18 the current in the conductor.
Hence C dp,=sdt
P,
or 1= Cm

If the pressure at the terminals of the condenser 1s altered, the
current 1 the counductor 18 proportional to the rate of change of
the pressure

* For further mformation on condensers, see Chap XIX
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On the other hand, if the rate of change of the current 2 in the
conductor 18 given, the pressure at the condenser will be

[t
b=\
Hence the energy supplied to the condenser durmng any time element
will be
w,di= mj%’

If the current vames periodically, the condenser will be periodically
charged and d.\schargeg The energy stored-up i the condenser
during charge is given up agam durmg discharge, that 1s, the charge of
the condenser surges to and fro 1n the crcuit.

Assuming that the charging current follows the sine wave

1=4/21 smn o,
then the pressure taken up by the condenser will be

p,=j’%é=%%{ain (wt - %) =4/2P, s (mt - g)

In Fig 50, the curves of current + and pressure p, are shewn The
curve p,—representing the pressure consumed by the condenser—is
seen to lag 90° behind vhe current This 1s to be expected when 1t is

[ pe -

-

remembered that the pressure rises so long as the current 1s positive
and reaches 1ts maximum when the current passes through zero. The
pressure curve which concides with the charging curve g 1s the
mtegral of the current curve,

As the practical umt of capacity, a condenser may be used whose
terminal pressuro rises one volt per second when the charging current
18 One ampere

Tho practical umt of capacity equals 107" absolute units, and 18
called a farad—smnce this unit 1s very large, it 1s usual to use the
macrofarad, which equals one-millionth of one farad or 10~1¢ abgolute
umts

Fia. 50,
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15. The Pressure Components in a Circwt carrying a Smusoidal
Ourrent. If the current +=,/2/smnwt flow along a conductor having
the ohmic resistance 7, the instantaneous value of the pressure will be

Pp=u=,/2] g1 wi=,/2P, sn ot,
where P.=I

The pressure curve is thus a smne wave m phase with the current
curve

This 18 not the case when the circwit possesses selfinduction. If the
current 1=/2I s ut
flow m such a conductor whose ohmic resstance 1s neglgible, the
pressure at the terminals will be
=L 2ol oo ot

=,/2P, cos ut,
where P,=IoL=1Iu,

Here the termunal pressure p, leads the current ¢ by 90°  Instead of
the resistance, we employ @,=wL=2wcL m calculating the effective
pressure

If the conductor possess both resistance and self-nduction, the sum
of the two respective pressures must be applied to the terminals at any
mstant The terminal pressure 1s then

Pry=Dr+P,= /211 810 0t + /22, CO8 wl.
Substituting, Vit gi =+ (wL) =2,
”
V124 (wL)?
oL _
T ely

and tan ¢, = =

we get Pa=~2Iz,8m of cos ¢, + ~/§Iz; cos wi 811 ¢,
=2Iz,sn (vt + )
or Pae=~2P, s (wt + )
The effective value of the terminal pressure 1s thus
P,,=1Iz,

and the pressure leads the current by ¢,
If a condenser be connected 1n a circutt, the pressure at 1ts terminals 1s

e (12
Do T
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The current 18 again taken to be

1=+/2T sm ot
Then Po= - %eos wt= —+/2P, cos wf

The effective condenser pressure 18 therefore
p-L
=20’
and this pressure lags 90° behind the current

Lastly, 1f the current ¢ flow m a cirewt m which resistance, self-
induction and capacity are all conuected 1 series (as shewn 1n Fig 51),

r L
e . -
I. el g
| T
Fia 51 —Hleckrlo Crreult baviug Belf. and Capacity 1o Serlos

the momentary value of the terminal pressure equals the sum of the
several pressures g,, p, and g, Thus

P=p+ P+ D=0 +Lj~;+j‘%’
=./2I| rsmot+ (mL - ;)%) cos mt].

Substibuting, \/ 224 (mL - m_lﬁ(}"), =2,
1
=cos ¢,
2
,\/ 22+ (mL - m—1—0>
WL
1\ =8I ¢,
«/ 224 (wL - aTC')
we get p=y/21zan (0t + ) =4/2P s1n(wi + ¢)

The pressure wave is also siusoidal i this case and has the effective
value 112
P=Iyfi+ (ol o) = Is

This pressure leads the current by the amount
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16, Differential Equation of a Simple Circmt. The differential
equation of the pressure, developed 1n the previous section for a circuit
possessing resistance, self-induction and capacity (as shewn m Fig 51);
was du | (adt 28

p=u+ Lit 7 (28)
This represents Kirchhoff’s Second Law in 1ts most generalised form
Multiplymng all through by +df, we get the energy equation

pdt=rdt+ It +mzj’-‘cl—‘. (280)

This tells us that during any time element the energy supplied at
the terminals of the eircuit equals the sum of the energy consumed in the
several parts  Differentiating the pressure equation with respect to df,
we get the differential equation of the current

da 1du 2 ldp
@TIHTICTT W (28)

which holds fo1 any pressure

In the previous section 1t was shewn that a smusoidal current
requires a sinusoidal pressure at the terminals of the circuit when
7, L and C me constani From this the converse follows, that a smu-
sodal pressure can only produce a smusoudal cwment Hence, we shall
not cousider the general solution of this differential equation, but onl;
that for the case when the conditions have become steady, a state whic!
18 reached soon after switching 1 For a sinusoidal pressure at the
termmnals P=/2Psmof,

14
we get 1 eq (28D) I d—jz=\/z%l’cos wt

The specal 1ntegral of this equation 18 then

Pons /el 1
1= 1 , 50 I:mt— tan l(u;__m_@):l (29)
\/m(w/:_m)
The current 18 thus a sme wave, but 18 not n phase with the

Ppressure
Equation (29) can also be written

1= 1,0, 810 (0 — &),
Proe

whete L=
\/ sy (o- LY
! +(“’ 'wo)
= amplitude of the curent ,
—tan-1(0L_ L
and ¢=tan (1 wC"r)

= angle of phase displacement
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The angle of phase displacement ¢ 1s positive, zero or negative
according as = 1 - 1
wlh=— =___.

<ol =JLiC
When ¢ 18 positive the current lags behind the pressure, whilst 1t
leads when ¢ 18 negative

- L 30
When v=715 (30)
the current and pressure are in phase,
e $=0,
and the current attamns 1ts maximum value
=L
T

When this occurs the self-induction and capacity exactly neutralise one
another, and this condition is generally termed *Resonance ”

Since m this case the inductance and capacity are m series, We refer
to thewr resonance as pressure 7esomance+* 1 contradistinction to
currend resonamce, which 1s used for parallel erremts Using effective
values of current and pressure, we get

= P .
N

17 Graphical Representation of an Alternating-current Circuib.
In Section 16, 1t was seen how the solution of the differential equation
can be avoided 1f we #tart from the current We shall now sce how
this method leads to & graphical solution A smusoidal current 18
assumed as given, and we calculate the terminal pressure 7 From
eq (28) the momentary value p of the termiral pressure 1s.

p=u +L%+I%l—t=ir+p,+p,
Thus the apphed pressure p can be spht up nto three components,
which are respectively necessary to overcome the ohmio resistance, the

counter-E.M P. of self-induetion and the condenser pressure  When the

*This frequenoy 18 not the natural period of osaillation of a ciromit
considerable remastance, for 1n this case

=1 \/ iz
v S NIgTim
Only when the resistance of the airowmt 18 neghgble 18 the natural period of
osoillation equal to the period of supply, when

1
“2rNIO

4



REPRESENTATION OF ALTERNATING-CURRENT CIRCUIT 47

current s 18 known, each of these three pressures can bhe calculated.
In Fig 52, the current curve 1s drawn

i=1I,/28n (ot - ¢).

In phase with the current 18 the curve 4, which represents the pressure
necessary to overcome, or the pressure consumed by, the ohmic resist-

—_—t

Fro 52 —Periodic Variation of the .M F.'s in & Circuit.

ance of the circwit. This curve # 18 also a sme wave, smoce 7 18
constant

The pressure p, required to counter-halance the back-EM F of self-
mduction ¢, 18

D= —e,=LZ%=mLIJ2sm (mt—¢+7§r)

Ths curve p,, which must be a sine wave, with sinusoidal current, 18
shewn 1n Fig 52 leading the current by 90°—whlst the counter-k M ®
¢, (not shewn) lags 90° behind the current

The pressure p, required to charge the condenser 18

dt_I./2
p,=j%=%sm (wt— 4:—%).

Thus the curve p, is also sinusoidal and lags 90° behind the current

By summing up the three sme curves #, p, and p, we get the
resultant sine curve p, which leads the current curve + by the angle
¢ (Fig 52). Thus tfe curve p represents the pressure applied to, or
consumed by, the circut

Now, since sinusordal quantities can be represented by vectors, 1t is
posaible to represent the phenomena mn an alternating-current circuit
graphically (see Fig 53) ~The current vector I1s drawn at an angle
¢ to the ordinate-axis, which 1s taken to represent the applied pressure
P Smce the diagram 18 taken as rotating mght-handedly, and the
current 18 lagging behind the pressure P, the angle ¢ falls to the left
of the ordinate-axis. The pressure Ir consumed by 18 1n phase with
7, and must therefore be set off along 0I. The vector representing the
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pressure required to overcome the self-induction 1s given by
oLl =2ncLl=a,]
and leads the current by 90°  , 1s called the snductiwe reactance of the
ciremt It has the dimension of an ohmic resistance, and may therefore
be measured m ohms

\ When L 1s given m henrys
SN \ and ¢ 1n cycles per second, , 18

7 N\ obtamed directly in ohms
N\ Yo [WE
N (E) ohms.. (31)
Then Iz, 18 set off 90° 1n advance

of I

The vector representing the
pressure P, used to charge the
condenser is wib' and lags 90°
7 behind the current Capacity
' Reactance x, 18 analogous to m-
duective reactance and 1s defined

Fra 63, —Geometrio Addition of Pressures in a 28 1 1
Qtreutt

% N z,=m2

\

P

This 18 messured 1n ohms when ¢ 18 given 1n cycles per second and ('
i farads, The capacity pressure .P,= Iz, is set off 90° behind 7, ie
in the opposite direction to Jz,. From this we see that inductance and

capacity act directly agamnst one another, and give the resultant
component

or

(32)

@ 15 called the 7esulfant 1eactance or sumply the 1eactance of the eircuit
‘When z,=12,, then z=0
and resonance occurs In this case the current depends only upon the
resistance ¢ in the cirenit and the angle ¢ 18 zero, that 1s, the current s
is 1n phase with the pressure p

Returning to the general case, we see that the vectors I and Ix
combine to form the resultant P (see Fig. 53) along the ordinate-axis,
at angle ¢ to J

Thus (D)2 + (Ix)2=P2
P P
or = == 29
N %)
where z=+/1Z+2% 13 called the smpedance or apparent resistance of
the eiromt, whilst z
tan p=> (29%)

e 1
and 08 ¢=- = power factor.
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Whon P, 1 and z=z,—1, are given, I can be at once found by
drawmng a semcircle on P as diameter, setting off the angle ¢ and
dividing the 1ntercept of O on the circle by 7

As a rule, the apphed pressure P 1s spht up mto the two components
I and I at nght angles to one another 11 is called the resistance
messwe and Iz the reactance presswe. The effective value of ¢, 18 — Iz,
and 18 called the counter-E M F of self-unduction , simlarly

—I1 =counter-EM F of resistance,

- Iz,= » 1 mductance,
-Iz= »  capacity,
and -Iz = » » mmpedance (or total counter-E M.F.).

From the diagram mn Fig 54—due to Bedell and Crehoe—may be
seen how the current 18 affected when the constants r and z=z,—g,
are altered, whilst the pressure P 1s kept constant. From the pressure

" Watt Gerrent

A Walllow Curens f g
Fio 54 —Cunent Dingram of n Chouit with Variation of one of the Constants 1 or =

triangle of Fig 53, the two simlar triangles OBC and 4ABO can be
deduced by dividing each sde of the piessure tmangle by 2 m the
one case and by 7 1n the other Thus

0a-2, op-1, 0c-L,

Aj=£ and R‘:I—T.

z 7

Hence the current I 1s represented by the vector OB. If @18 constant
and 1 varied, the pomnt B moves over the semicircle on 04 —from
0 to 4 as 1 decreases from co to 0, that 18, on the line 4 BC the point
A 15 fixed so long as z 18 constant, whilst the pont C' moves on the
ordinate axis when s 1s varied, thus the phase displacement ¢

changes from 0 to 90°
AC D
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For = positive, 04 falls to the left, and for = negative to the mght
of 0C
If 1 is kept constant and z varied from zero to + oo and from —

back agam to zero, then B moves on the circle on OC—starting from C,
passing through O and coming back to '

When 2=0 and r constant, J has 1ts maximum equal to OC, and
the two pressure curves p, and p, (Fig. 52) have the same amphtude

A curve which represents the variation of one magmitude as a
function of a second 18 generally called a diagram of the first quantaty ,
thus Fig 54 is a curment dugi am.

18. Examples.

1. Gaven the terminal pressure P applied to a circwt possessing
resistance, self-induction and capacity of the following values, in series
with one another,

P =100 volts, 1 =20 ohms,
L=0169 henry, (=050 microfarads.

To determine and to shew graphically the current J, the phase
displacement ¢ and the pressures P, and P,, across the condenser and

mpedance 2=~/ ¥+ 2] respectively as fanctions of the frequency ¢
At a frequency of 50,

z,=2meL=2w50 x 0 159 =50 ohms

_ 1 1xI10°
~9meC™ 2760 x 50

Hence #=2,—v,= —13'8 ohms, and the total impedance i this case 1s
2=n/r? +22=4/20%+ 13 82=24 15 chms,
whence the current J 18

and T, =638 ohms

P 100 .
I=; ST =415 amperes,
tan¢=§=;2103—8—= —064 and é= -32° 40,

P,=Ir,=4 15 x 63 8 =264 volts

The 1mpedance z, is
2,=~/18 + 2 =+/202 4+ 50%= 53 8 ohms,
P,,=Iz2,=4 16 x 53 8=223 5 volts

In this way, I, ¢, P, and P,, are calculated for different frequencies,
and are shewn plotted i Fig. 65
The total reactance of the circuit 1s zero when the frequency ¢ 1s
1

1
=—— _ =565
=IO 20 159 x 50 x 100

-
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F1a 55

0w~ ~_ ~ _
A = \\\‘
o 5'/ ﬂ‘( ) 77 & 209 ohms
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At this frequency ¢=0 and I 18 a maximum. The pressures P,
and P,, nse until the frequency has approximately this value, and then
fall of P, Ocours somewhat before and P,, ., (and P, p,) somewhat
after the frequency corresponding to maximum current.

2 Let the terminal pressure, resistance and capacity remain the same
as1n 1, and the frequency be kept constent at 50 whilst the reactance
%, 18 varied Fig 56 shews the current I, the phase displacement ¢
and the pressures P, and P,, as functions of ,.

Ama .

a\\

N

Fra. o7

‘When ,=%,=63 8 ohms the current reaches 1ts maximum value,
which 18 the same as in 1, whilst =0 In this case P,,,, and P,...
both occur at this same value

3 718 varied whilst P, L and C have the same values as m 1 and
¢=50 By means of Fig 54, the current I and phase displacement ¢
ﬁn bc?, found for different values of 1 These are shewn plotted in

g 5

19 Resolution of the Current into Watt and Wattless Components.
Instead of resolving the pressure P into two components, the current
may be resolved mto two components along co-ordinate axes, one of
which 1s 1n phase with the pressure P

Now, z=“/;:‘P sin {wt —tan~1 (:f)}
= ‘/Z—P{cos (ta,n'l;) S0 wf — g (mn‘lzf) cos wt}

= \/2P(§sm w —gcos wt).
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For the sake of simplicity, we write
r 7

peaai e conductance of the e cust (33)
and §’= Nﬁ= b= susceptance of the ci cuat. (34)
Cond and ptance have the reciprocal dimensions of a

resistance and are measured 1n m/hos.

Thus we can write the current 3=,/2P(¢sin wf - b cos wf), that is, the
current vector OB 1n Figs 53 and 54 is represented by two components
Pgand Ph From Fig 58, we see

b
tan $=,
and further, I=PJ@+5 =Py,
where y= %= admattancs of the cureuat, (36)
|
"
P
w0
Fie 88 —Current-triangle Fia 68 —Cwrrent triangle

Rotating Fig. 58 1n a clockwise direction through the angle ¢, we get
Fig 59, which 1s analogous to Fig 53.

%f 1t 18 required that the current in a circwit shall remain constant
whilst g and b are varied, the pressure must be correspondingly altered
both 1 phase and magnitude

From Fig 60 (analogous to Fig. 54) the pressure = OB can at once
be found If b 18 constant and g varied, the pownt B will move over

the semi-arele described on 04, where 04 =b{. When b 18 positave,

4 falls to the right of 0, and to the left when b 18 negative. If g1s
kept constant and b altered, the circle described on OC 18 the locus of B
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Of the two current components Pg and Pb, only the component Py,

which 18 m phase with the pressure, does work. Consequently Py
18 called the watt component of the current, or, simply, the watt current

!

0 Wllless Prosouro A

F1o 60 —Pressure Diagram of a Circuit due to Varintion of one of the Constants g o1 ¥

The power is then written
W=P,Pg=Py. . .. (36)

The second component Ph of the current 1s called the waitless
component of the cwrment, or, brefly, the waitless current

On p 52 we saw that the momentary value of the current equals the
algebraio sum of the momentary values of the two current components
From the foregoing, we now see that the effective value of the current
equals the geometrical sum of the effective values of the watt and
wattless components of the current

Hence, 1 general, for any circuit contaiming constant reactances
and energy-consuming apparatus (resstances), the impressed sine wave
KEMTF can always be resolved nto two components, viz mto the watt
component Ir which 18 1n phase with the current, and the wattless
component Iz which leads the current by 90°.

Similarly, the current can be spht up mto the watt component Py 1m
phase with the pressure, and the wattless component Pb which lags 90°
behind the pressure

‘ Thus the constants of a circwit can be written

watt component of pressure_ ¢
ourrent B )

= ¢ffectwe resistance 1n ohms, . (37)
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wattless component of pressure _ b
current I
= effectwe 1cactance 1 ohms, . . ... . venees(38)
watt component of current _ 1
pressure =I=prg
= gffective conductamee 1n mhos,

wattless component of current _ ==
pressure T i g?

= ffectwe susceptance 10 mhos,
pressure

current
= gffactwe ympedance 1 ohms,

|
SR = e S
2=t J

current _ 1 1
prassme_y-J42+x2_ z
= gffectwe admattance in mhos.

‘When several resstances and reactainces are 1n series, 1t 15 sumplest to
use 17, # aud 2, for m this case the corresponding pressure components
can be added directly

On the contrary, when we are dealing with parallel circuits, 1t 18
more convenent to use g, b and y, smce the current components can
then be added m accordance with Kirchhoft’s First Law.
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20, The Symholic Method. Let the instant of time =0 be chosen
so that the current vector J coincides with the positive direction of
the ordinate axis We then get tho vector

diagram shewn m Fig 61 If all real values

,% are set off along the positive direction of the

orcdinate axie and all imagmary values along

the negative direction of the abscissa axis,

we get—as already shewn—a system of co

1 ¥
&
# A ordmates smlar to that enerally used
Mathematics, when the Iatter system 18
4 rotated through 90°
unag valuzs
’

The BEMF vector P 15 given by the co-
ordiates 71 and Jz of the pomt 4, or,
symbolically

P=Ir—jla=1I(r-)z)
Fia 61 In order to mvestigate the meanmmg of this

expression for the general case, where I also
18 complex, we consider the product of the two complex quantities

I=1Tcos ¢, — )T sin = I(cos by ) 811 bg) = T ™/#:
and z=1 —)w=2(c08 ¢ —) 81 ) =z ¢
The product of 7 and 2 18 .
Fo=I{cos (dy+ 9) ~7 sin (g, + 9)}
= Jpe~I(bat+$)

This product 18 represented by a vector which leads the current
vector by the angle ¢, and has an absolute magmtude equal to the



THE SYMBOLIC METHOD 57

product of the absolute values of the two complex quantities This
vector comeides with the pressure vector, hence we can write for the
symbolic expression of the pressure

P=1I (39)
where the symbolic expression of the impedance z 18
Z=T=J2 . . (40)
Conversely, the symbohc expression of the current [1s*
P
I==

It 18 now possible to carry out all the operations of calculation with
these symbolic expressions 1 the same way as with real quantities,
and when the calculation 18 fimshed, the complex quantities are simply
substituted for the symbohe

The complex expressions can then be changed into the real
expressions of the momentary values We have above:

I=1c,

2=z
and P=lz= [z @9 _ pe-ildetd)
Then the corresponding momentary values are

8= Lo 810 (0l + ) = /2T 810 (0l + b,)

and P =P 8101 (0f + by + ) =, /2P s1n (wf + g+ ¢).
‘While the momentary values show directly the amplitude, frequency
and phase of a current, the complex quantities only show amphtude
and phase, and no more represent the fiequency than the graphical
method It 18 therefore evident that no dwect mathematical relation
can exist between the momentary values and the complex expressions

The symbolic expression

P=Iz=1I(1 —)x)
shows that the pressure can be analysed mnto two components, 73 1
phase with the current and Jz leading 1t by 90°

The negative sign m z=1 —jz 1s due to the fact that the figure has
been rotated 1 a clockwise direction—if the sense of rotation were
reversed, the minus sign would then become plus

Instead of calculating symbolically, we might also proceed graphically
Like the representation of complex quantities, the graphic representa-
tion 18 also a purely symboliec method, 1n which the vectors can be
added, multiplied, or divided Up to this stage, we have only used
vectors to denote current and pressure In order, however, to carry
out all operations graphically, 1t 15 also desirable to represent impedance
and admittance by vectors In Fig 62, the vector O, with the
ordmate 1, and abscissa 2, represents the 1mpedance

F=1-J2
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If now the curtent 18 given by the vector 0B, the pressure vector 0.4
will be found by turning the current vector through angle ¢, and at
the same time mcreasing it m the ratio z If we set off OD equal to
umty, the two tmangles OCD
and 04B will be simuilar, so
that the pressure vector can
be regarded as formed from
the eurrent vector, 1 the same
way as the impedance vector #
18 formed from nmty
Further, assume the current
I to vary after some definite
| law  Graphically this means
Fia 02 that the locus of the extremity
B of the current vector 0B 18
a celtam line. For example, let this lne be the curve K m
Fig 62. Then the pressuie vector P=Jz must also obey some
definite law  The locus of the extremity of this vector 04 will be
a curve K;, which 18 found by multiplymg all vectors of curve X
by the constant impedance z=ze-#. The curve K, must be similar
to the curve X, for this graphical multiphcation can be considered
as offected by the curve being moved through the angle ¢
about the orign O, whereby curve K’ 18 obtaned, and then all
the vectors of X' are woreased m the ratio z By this process, a
pomt B on curve K becomes pomt 4 on curve Ig For any two
such corresponding powmts as 4 and B, the triangle 043 must have

the same shape, smce the angle BOA =¢ and %=: are constants

Hence the curve K can be regarded as bemg traced out by the angle
at A4 of the trmngia AOB, whilst the latter moves about O, without
change of shape, and with 1ts third angle B always on the curve X

If the curve K 1s formed from a system of straight lines and ciroular
arcs, 1ts corresponding curve K, admits of a very simple geometrical
coustruction.

To multiply a straight line we multiply a pomt on the same, but
keep the angle constant which the vector from this pomt to the origm
makes with the straight line A eircle 13 multiplied by multiplying
1ts centre and the radms, or 1ts centre and any pomt on the
cireumference

Let the moment of time ¢=0 be so chosen that the pressure P =04
falls on the postive direction of the ordinate axws (Fig 63) Then
we can write symbolically

I=Py="Pg+;Pb ' . (3%)
and - y=g+b, . L. (41)
1 which expression the current 1s given i terms of two rectangular
components, one of which 18 1n phase with, and the other at 90° to,
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the pressure Fig. 64 shews that the current vector 18 formed from
the pressure vector mn the same way as the admuttance y 18 formed
from umty Whilst the extremnty of the pressure vector moves over
the curve K (chosen a circle 1n this case), the extremity of the current
vector describes the circle X, In Figs 62 and 64 1t has been tacitly

4
p
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)C ) I
g
I v
7 14
— y B
Fio 68 Fia. 64.

assumed, that P, I, 2 and y are all diawn to the same scale,—that 1s to
say, 1 volt, 1 ampere, 1 ohm and 1 mho are all represented by the
same Ie;gth, e.g 1 mm—for only m this case are the trangles 0CD

and 0B4 similar
In graphe muliypheation, 1 s to be noted that the 10tahon of the
maultiplied vector must be clock o counter-clockunse, acconding as the

argument of the second factor 15 megatwe or posutwe.

21. Rotation of the Co-ordinate Axes It follows directly that
m Fig 62 the curve K;—which represents the pressure P, acting at
the terminals of a constant impedance z =1,—7), and 1s smmlar
to the ecurve K of the current vector J—can be obtained by graphic
multipheation At the nstant £=0, the current and pressure vectors
coincide, but are otherwise chosen independently of one another The
scale of the pressure curve depends on that of the current curve X
and of the impedance z,. If the impedance scale 18 chosen so that
1 cm =2, ohms, the vectors representing the pressure P; will be of the
same length as those representing the current The pressure curve X,
18 then obtamned by simply rotating the current curve K through

the angle ¢, = f,a‘u'laﬁ 1n a clockwise direction

Instead of revolvmlg the vectors, the co-ordinate axes can be moved
through the angle ¢, 1n a counter-clockwise direction If the current
curve 18 drawn so that 1 cm=m amperes, this same curve, with
respect to the new axes, will serve as the pressure curve to the
scaﬂa 1 em=zm volts

Rotating tlle co-ordinate system means that zero time for the
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pressures occurs %_LT seconds earlier than that for the currents This
process 18 shewn 1n Fig 66.

Consider now, the special case of a constant termunal pressure P
acting on the cireuit, m which the current I 1s represented by the
curve K Set off the terminal pressure P along the real current axis
The pressure P, = Iz, consumed 1n the ine 1mpedance 2, 1s represented
by the current curve K with respect to the new co-ordinate axes To
obtamn the duection and scale of the new real axis (or the pressure
axis), we draw the current vector [ for the case when the load 18
short-cairemted, and the only impedance 1n the crcwt 18 2, This
18 called the shor-circuat curvent, and 18 expressed by

E T

and has thus the direction of the real (or pressure) axs i the rotated
co-ordinate system.

Now, wo have just seen that 1 cm represents z, times as many volts
m the new co-ordnate system as amperes 1n the origmal system

ence, 1f I, 18 set off 1 the
origmal system, this same vec-
tor will represent the terminal
pressure P 1n the new system
both 1n magmtude and direction.
This direction comecides with
that of the real axis of the new
system, since we have taken the
terminal pressure as real, 1e. as
having no component along the

1maginary axis

%%: loy;id pressure P, which
remams after subtracting the
pressure P; consumed 1n the
1mpedance z from the supphed
pressure P 18

Py=P-P,

and 18 thus given n the new
co-ordinate systen: by the distance of a pomt 4 on the curve X fiom
the short-circwt point Py (see Fig 65) In other words, the curve K
in the new system 18 the locus of the apex of the pressure triangle,
whose two hase angles are situated at the origin O and the short-
carcwit pomnt P, respectivel

In many cases 1t 18 a,d}‘,la.ntageous to take the opposite diection
of the vectors as positive m the new system of co-ordinates This
18 effected by rotating the co-ordinate system through the angle
$,+180° m a counter clockwise direction, and removing the origmn
to the short-cirewit pomt Py (Fig 66) Such a diagram 1s known
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as a bipolsr diagram—0 1s the pole for currents and P, the pole for
pressures

In Fig 64 1t was seen how the current curve K;—simlar to the
given pressure curve K—could be formed by multiplymg the latter
by a constant admittance ‘
y,=0,+sb;. Here also 1t
18 not necessary to draw a
new curve, if we rotate
the co-ordinate system as
above Theaxes of the new
system are moved through

the angle ¢, =tan"1-1 m

the diection m which' the
figure rotates, whilst the
current scale in the new
system 18 1 ecm=y,m am-
peres, where 1 em =m volts
1 the original system
An important case 18 the
determination of the press- Fra. 60
ure curve K of the supplied
ressure P when the current I is to be constant at all loads. Let K
Ee such a curve m Fig 67. Apart from other conductors which may
be present, let there be a path of constant admttance g,. For the time
‘bemng, suppose all other paths except g, to be cut out of ciremit  The
pressure necessary to produce the
constant current / would then be

i B el
16

$ P, can be called the no-lond
pressure, and comneides with the

2, axis of real values in the new

%, (- ) system Moreover, since a dis-
%:% tance represents 7 times as
£ many amperes in the new system

ag volts n the origmal, the no-

‘""y values & load pressure vector P, in the
o prosure M\ orgmal system gives the mag-
mtude and direction of the
Fra 67 constant curtent I in the new
system.
‘When the other branches are 1 cireutt, the current mn them is -
I,=I-1,

and 1s represented 1n the new system by the distance of the pomt A
on the curve K from the no-load pomt P, (see Fig 67) Hence the
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pressure curve is the locus in the new system of the apex of the
current triangle, whose two base angles are at the origm O and the no-
load pomt P, respectively.

By displacing the origmn of the new system to the no-load Eomb P,
and turmng 1t through 180°, we get the bipolar diagram shewn 1n
Thg, 68, where O 13 the pole of piessures and P, of currents

3

1 Quad WV Quad
-
unag values b -
1 of pressure / g
?‘ }f 7 Quad & guaa
Fra 08 Fre 60,

22. Inversion. In Fig 69 the vector OC represents the impedance
% and OF the correspondng admittance y=1/z They both make the
same angle ¢ with the ordinate axis In this method of 1epreseniation,
reswstance and conductance are set off along the ordinate o 1eal ams, and
1eactance and susceplance along the abscissa or vmagmary axis  The two

triangles ODC and OED are
Ky K similar when z and y are
drawn to the same scale
If we set off OF" = O along
the 1mpedance vector OC,
then, between the pomnts

2 B, B E’, which 1s the 1mage of
0 ) E 1n respect to the ordinate
1 axas, and C there exists the
Y simple relation,
A 0C OF =z y=1

Two such pomts are called
uwerse points with respect
to the omgm 0, which 18
. called the centre of mversin

In general, if two curves K and K, are such that the product of the
lengths 04 and 04, cut from a straight hne passmg through a fixed

Fia 70 —Inversion of a Straight Lino.
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pomt O 1s constant, 16 04 .0A;=const =I, the one curve 18 sad
to be the snwerse curve of the other, whilst I 18 called the constant of
mwersion and 0 18 the inversion conire 4 and 4, are called correspondin,
pomts The mverse curve of a straight line 15 a circle passing througg
the centre of mversion (Fig 70)

Proof Snce triangle 04, B, 18 similar to triangle 0B4,
then 04, 0B,=0B 04,
thus, for any line 04,
04 04,=0B 0B,=1
Conversely, the mverse curve of a awrcle which passes through the centre
of mversion 18 a straight line

Fio 71 —Inverso of a Oirclo.

\The mnverse curve of & circle, which does not pass throngh the centre
of nversion, 18 a circle (Fig 71), and the centre of nversion 18
mmilarly situated 1n respect to each of the circles

Proof. 0D,.0B=0B,-0D
or 0D OD,=0B.0B,=04 04,=1L

If both circles coineide, so that the circle 18 1ts own 1nverse curve,
then the constant of inversion 18 I=042

The theorem 1s equally true when the pomt O falls within a circle,
for the proof 18 quite mndependent of the position of 0 The pomnt O
then falls mnsde the inverse circle also

It may be noted that when the pomnt .4 moves along the curve K m
a certain sense, the pomt 4, on curve K, correspondmg to 4 on curve
K will move m the opposite sense

If the two curves cut or touch at pomt 4, the mverse curves will
also out or touch at the corresponding pomnt 4,

If the two curves cut one another at 4 at a certain angle, the mverse
curves will also cut at the same angle at 4; In order to shew how
mversion may be applied to the solution of alternating-current problems,
consider a cireu1t along which a constant alternating-current g 18 flow-
mg, the terminal pressure P must then be varied as the circuit constants
are varied, and the end 4 of the pressure vector 04 will describe
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some curve K (Fig 72) The abscissa of any pomt on the cmve
represents the wattless component and the ordinate the watt component
of the corresponding E M F.

Smce the shape of the curve is independent of the current-strength
and also holds for =1, the vector 04 will also represent the 1mped-
ance z to another scale. Waith symbolic representation the impedance

2= —jr=2(cos ¢ —y BIn ) =ze#

18 given by a radws-vector of length z making angle —¢ with the
veal axis. - Smce yz=1, the eurve K, over which the end 4, of the

Fic 72

admittance vector fy moves, 18 given by iverting the curve K over
which the end 4 of the 1mpedance vector z moves

From the relation é:‘; 1t follows also that the two radu-vectores

y and » have the same direction, when conductance 1s set off along the
ordinate and susceptance along the abscissa (see Fig 72) If the radn-
vectores of the admittance curve are multiphed by a constant pressure
P, the vectors 04, will give the current m the circuit to a certan
scale The ordinates then represent watt currents and the abscissae
wattless currents The admittance g, corresponding to the 1mpedance
z=gcM, 18 11
V=g =m=yt=gs

Hence, the admittance vector  will he i quadrant I when = lies 1n
quadrant IV_and viee versa—or, 1f # hies in quadrant ITI then y les
in quadrant IT and vice versa Thus we see that the vector y cannot
comeide with the vector » if the same system of co-ordinates 1s used
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for admittance and current vectors as for impedance and pressure
vectors
The direction of the y-vector is the image of the z-vector with
1espect to the ordinate axis Hence, 1f we wish to apply graphical
mversion to alternating-currents, we must in every casc substitute ﬂL?
moese curve K, (obtawned by wnverswon of the curve K) by s vmage K|
wnth respect to the ordinate azs
In practice, however, the process of inversion can be simplified as
follows If the admittance or current curve of a arcuwt is desired,
and we wish to derive the same
by a single mversion of the im- b
pedance curve, then, mstead of
drawing the impedance curve x E K
1tself, we draw its 1mage with
respect to the ordmate axis, the §
desired admittance or current
curve 18 then obtamed directly %\
by inverting this 1mage & RN £
The process can be best 1llus- Halllass Govent 3
trated by an example Given a ;
sumple cireuit with constant react-
ance 2 1 series with a variable S EL e
resistancer. Thempedance curve
18 then a straight lme X parallel Fia 78
to the ordinate axis and displaced
from the same by a diwstance z (Fig 73) The image of this straight
lne about the ordinate axis 18 K'. The inverse curve of the straight

line K" 18 the circle KX, of diameter % This circle, whose centre lies on

the abscissa axis, 13 then the admittance curve, and when all vectors
are multiphed by the pressure P, we get the current curve This
agrees with that in Fig 54, but has been obtained m another way,

both circles have the same diameter —5

Similarly the impedance or EMF. curve can be constructed b% a
single mversion of the image K’ of the admittance curve X For
a ciremt with constant susceptance b 1n parallel with a variable conduet-
ance g, the curves K and K' are straight lines parallel to the ordinate
axis (Fig 74). The inverse curve K, representing the impedance

curve, is a circle of diameter 71;" whose centre lies on the ahbscissa axis
By multiplying all the vectors by I, the same pressure d1a§mm 18

obtained as 1n Fig 60, for both circles have the same diameter 7
It often happens that two inversions must be made in order to
obtain a desired diagram
In this case 1t 18 not necessary to draw the image of the inverted
AC B
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curve, for if the first curve lies in quadrant IV the inverted curve

will lie 1 I, and the curve obtained after the second inversion will

fall again 1 quadrant IV Hence, sice both the curve from which
we start and the curve we

' obtain lie 1 the same quadrant,
1t 18 more convenlent to carry

K out all the operations in the one
quadrant, whereby the figures
are also clearer

In general, therefore we pro-
/ ceed as follows Acondmg as
/f N an even o an odd number of

7 e Wottloss Possure  1ver stoms must be carred out
N / order to obtam a particular
b ]

~

4

Wa

>
ott Pressure

e

dwagram, 1 15 deswable to stard
Sfrom the actual dwagram, or s
umage.
Fia T4 Of the two curves which
represent the impedance and
admittance of a circuit by polar co-ordinates, the one 18 always the
inverse of the other. The constant of inversion I depends on the
scales for y and 2
Smce the ratio of mversion is a function of ‘the scales, after drawing
the first magnitude to a convement scale 1t 1s possible to choose the
constant of 1nversion I so that the inverse figure will also be drawn
to a switable scale. This 18 1llustrated by the following example
In Fig. 72 let the admittance y be set off so that 1 cm=m mhos
Then, it we wish to have the scale of the impedance # such that 1 em
equals % ohms, we get

y=m 04, mhos,

z=n 04 ohms,
Then ye=mn04;, 04=1.
Henee, the constant of iversion 18
-04 04,-L 2
I=04 OAI_Wm e e e (49)

If Fig 72 18 drawn for currents and pressures to the scales 1 em
=m amps =n volts, and I, and Py denote the corresponding constants
of the circuit, we have

I=m. 04,= P,y amperes
and P=n.04d=1I volts,
whence mn0d O0d,=I,Pyz=1I,P,,
and the constant of 1nversion 18

1-04.04,=50 . L )
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+ Before leaving inversion, the following theorem may be mentioned
If we have two figwies wn which any powt and any cucle of the one
corvespond to o powt and a cucle of the other, them it 1s always possible, by
wnwen ston, amd multiplication, to convert one system wito the other
From this it follows that, by means of the foregoing methods, every
locus which 18 a straight lme or a circle can be deﬁuced from other loct
which are straight lines or circles
Smce the mverse of a cirele 15 a
circle, 1 carrying out the inver-
s1on of errcles, instead of proceeding
pomnt by pomnt, 1t 18 smpler to
calculate the co-ordinates of the
centre and the radms of the new
circle
Example Given a circle K of -
radius B (Fig 75), the co-ordinates
of whose centre M are v and u—to F16 76,
calculate the radus R and the
co-ordinates p’ and v' of the centre M’ of the circle X, which 1s to be
the mverse of K for the constant of nversion I Drawing the common
tangent OI'T" to the two circles, we have

«
=
o ek
x
Q."'

u——
or'= o7
and OT=Vpt+v2 - B2
By aid of the similar triangles 0M'S’, OMS and OTHM, OT'I, 1t 18 easy
to shew that , I v
e I

72
' I
U R IR Y
1 R
SR e
so that the new circle 15 determined both as regards magnitude and
position
Two aircles which are formed
from one another by multiph-
4, cation and rotation correspond
B pomt for pont with respect to
the origin of the co-ordmate
axes, for we pass from two
corresponding points 4; and
A, (F1ig 76) of the two circles
to two other corresponding
pomnts B, and B, by rotating
the vectors about O through
Fia 76 the same angle a.
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The locus of the sum of the corresponding vectors of two corre-
sponding circles 18 also & circle For when the circle K, 18 formed
from Klgby multiplymg by a constant & and rotating througﬁ a constant
angle y, we have, for corresponding vectors, a, and a, of these circles,

ay=ayke5.
Hence, the resultant vector,
ay+ay=a;(1+ke2¥),
is always proportional to @, and dwsplaced from 1t by a constant angle,
and consequently moves over a circle

If two circles correspond m respect of two points on ther
cireumferences, the locus of the sum of the vectors of correspondng
pomnts 18 also a cirole,

Fia, 77,

In Fig 77 let K, and K, be the two circles and D;, D, two
corresponding pomts If 4, and A, are likewise to be corresponding
ponts, we shall then have

LD M A,=rD,M,dy=c.
The pomt } is obtamed by adding OM, and OM,. Settng off
MA’ equal and parallel to M4,
44, ., o Md,
then 4 18 the sum of the two Bomte 4, and 4, In the same way,
D 18 the sum of the two points D, and D,, where the angle DMA =a.
The sum of the two circles K, and K, 1s thus the arcle X,
hose radi
ThOSETRCMET R VB + B4 9R,Ry00n5,

where 8 18 the angle between two corresponding radn of the circles
K, and K,
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i
23. Graphic Representation of the Losses in the Impedance m a ..
Cwrewt. If a current J 1s transmitted over a cirewit whose lme
mmpedance 18 z=1 — jz, the energy con-
sumed thereby 1s /'=1I%. Vﬂyshnll
now shew how this emergy 7, which
18 chssipated 1n the form of heat, can
be represented graphically for the case
when the current diagram 18 a oircle
Let u and v be the co-ordinates of the
centre of a circle whose radius 1s £, and
u and v the co-ordinates of a pomt on
the arrcle (Fig 78) The equation of
the crrele 18
(@ + (o= sfi= I8
or

ud+ 02— Quu— 2w =R2—p? - 2= —pl
The heating losses are
V=I% =(u?+0%)
o2
=2r(,uu+w——)=2:v,

2
where, for the sake of brevity,

AL+ V0~ g =V

Now V=015 the equation of a straight hine, whilst » and v represent

the co-ordinates of pomnts on 1t

The polar of the current circle, with respect to the origin 0, has the

equation
/1Y pav+ww—p2=0.

From this, we see that the straight

hne V=0 1s parallel to the polar

and bisects the distance between

1t and the origm Hence the lne

2
Y/ V=pu+w-%=01scaﬂ5dthesmu~

the origin O
To construct the semi-polar V=0,

o0 7" draw a arcle on O as ciameter,
' where J 1s the centre of the current
circle (Fig 79). The circle on OM

Fio 70 cuts the current eircle in two pomts *
which hie on the polar, so that the
latter can be drawn at ouce. The semi-polar V=0 18 then the line
drawn parallel to the polar to bwsect the distance OP.

) polar of the cirele with respect to
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For any point on the semi-polar, we have
V=pu+ w;-';—z=0,
where u, v are the co-ordinates of the pomnt
For pomnte u, » which do not hé on the semi-polar, the expression

for V can be found as follows
Let the straight Ime I (Fig 80) have the equation

7
’,// Further, p a=b-a®+8?,
. ab
I Jar+ 12

Hence the equation of the straight line
I may also be written

bu+av—praZ+ B2=0

A parallel straight line I7 at distance P
from the origin has the equation

Fa 80 bu+av- PJaT+ 52 =0
For a point u,, v, on the straight lne I7,
bu, +av, - PNaf+ 12 =0
Hence the equation of the straight line 7 may also be written
bu=) +a(v-0)+(P-p)VaF+ 1B =0

Introducing now mto the equation of straight lne 7, the co-ordmates
%, 9, of & pomt on straight lme I7, we get

(P-pWa+ B =ANJa + I
Returning to the previous case, we see that the lmear expression

2
;wu+w—%=v,

for any point , » m the plane has a value which 18 proportional to
the distance of this pomt from the straight lme whose equation 18
obtamned when we put the Imear expression of the co-ordinates equal
to zero The factor of proportionality 18 &/u+% and equals the
distance of the centre of the circle M from the origin 0

For any pomt 4, corresponding to the current I on the ecircle
(Fig 79), we thus get the loss 7" in the impedance,

V=I=2uV=2.0M.4.N, . (43)

where 4,V 15 the distance of 4, from the semi-polar. In what follows
we shall call the semi-polar the Yoss iome.
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If the circle represents the current due to a constant terminal
pressure P, then for the pomnt A,, the fotal suppled power W 18

W =PIcos =P xordimnate of pomnt 4. .

Untal now, 1t has been assumed that the current scale 18 unity, so
thet 1 cm corresponds to 1 ampere. If the current scale is
1 cm=m amps,
then the loss 718
V= I%=2m20M AN watts, (43a)
and the supplied power 7 18
W = Pm x ordinate of pomt 4.
Hence the ratio of the scales for loss and power 18
2mrOM
-
If the origin O hes on the circle, then the loss Ime V=0 comeides
with the tangent at this lgomt 0 TFor the case when the orgm O lhes
within the cirole, as m Fig 81, the
gtrnle P of the orgin 18 found by

awing a perpendicular through 0,
and where this perpendicular cuts
the cirele, drawing tangents to meet
at P MO produced The loss line
V=0 then bisects OF at right angles
ag previously Thus, every pot has
the same loss line a8 1ts pole.

If the pressure P between two
pomts 1 a circurt 18 represented by
a crcle diagram and we wish to
find the loss consumed m a constant
admittance y=g+7b between these
two pomts, we get the same construction as above, for the loss 1
the admittance 18 V=py,

where P2 can be represented by the distances of pomts on the circle
from a loss lme V=0, just as I2 above Hence, for a pomt 4, on
the pressure cirele whose centre 13 J, the loss is

V=20v=290M AN, .. . . (44)

where O 18 the orgin and 4,V the distance of the point on the circle
from the line V=0

24, Graphic Representation of the Useful Power in the Impedance
m a Circmt. With constant {erminal pressure P, the power supplied
to the circuit 18

W = P x watt component of current=2 v,
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where v 18 the ordinate of the current curve The difference between
the supplied power 77 and the heating losses 7, which we shall call
the useful power 7, can also be represented graphically ~Thus

Wy W= V= 7 = %= Py~ 3V =2 (51;«;- v

P
where V=pu+w-5.
Substituting in the same way,

w=Ly and we=2w,

2
then W=0 1s the equation of the abscissa axis of the system of
co-ordmates. Then Wy =2r(W-V)
: : =2W,,
2
where W =W-V= —/.L’Lb—(v——;g)q)-{-%:O

is the equation of a straight hne passing through the pomnt of inter-
section of the loss line with the abscissa axzs.

In general, for any pomnt whose co-ordmates are u and v, the
expression for W, has a value proportional to the distance of the pomt
(u, v) from the straight line W,;=0. Denoting this distance by 4, ¥,

then
o PN\
W1='\/I"+("-2—7> AN

Hence the difference 77, between the supplied power 77 and the losses
V 18 given by the distance of the respective point on the current circle
from the straight lne W, =0
This lne W; =0 will be denoted
as the power line of the diagram

The equation of the power
line 18 obtained by subtracting
the equation of the circle

[ 5 v=0
from the equation of the current
curve
1?4+ 0% - 2p1 - v + p?=0

Thus the power line passes
thiough the mtersection of these

Fia 82,—Ropiosentation of Usoful Powe with
plmpnd&nee fn Serles two circles and can be con-

structed, as 1n Fig 82, provided
the current curve and resistance 7 are known
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For a pownt 4, on the current curve,

P\E o
W=+ (=5 ). LN =D, AT,

and the power Wy=aW,=2MM, 4N, (45)
or, for the current scale m,
W, =2m» MM, AN watts (4ba)

The pomts of intersection of the power line with the current circle
have a definite physical meaning, which we shall now consider. As
already shewn i Ch II p. 49, the aircle about centre M; with

radius 2_1; would represent the current diagram for the case when only

the resmstance 7 and a vamable reactance z are in the ciremt. This
must hold for the pomts of mtersection between power hne and
current curve, for these pownts he on
the circle about centre M,, as proved
At these pomnts, the total suppled
power 18 consumed 1n the resistance
7, and the useful power 18 therefore
zero  One case when this happens 1s
when the appled pressure 1s short-
cirewted through the impedance 2z
(short-ciremit  point), and the other
case when the load m series with the
mmpedance # 18 wattless (no-load point)
The power scales for the diagram Pro. 83

can be determined as follows Let the

current curve be drawn to such a scale that 1 cm along the ordinate
of & pomt corresponds to m, watts. Then for a pomnt P, the supplied
power (Fig 83) 18

W =my,. P\N,=m,P,0sm[WW,].

The Power line passes through the pomts where the sulpplled pressure
s 1

equals the losses. If the pomnt P, lies on the power lme W, =0, we
havé also W =V=m,P,N,=m,P,0sn[W,V],
where m, = the scale of the losses. Hence

m, _sin[WW,] (46)

m,  sm[WV]
Since the loss lme V=0 also passes through the pomts where the
useful power 77, equals the supplied power 77, we get for a pomnt P,

m,PN,=m, PN,
1, 810 [WV] =1, s [W,V],

my, _ sm[WV] 46,
™, [W, V] (46a)
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where 71, 18 the scale for the useful power  Hence we get the followmng
rule for determiming the power scales of the diagram Jf fwo powers are
measured by the perpendiculm distamces of a pownt fiom the conesponding
straaght lines, the scales are wnversely proportional to the smes of the angles,
which the 1espectwe shawght lnes make wnth the lme for whach the two
measwied giowers are equal  Smce the perpendicular distance of a pont
from a straight line always remains proportional to the length of the

vy Iy
oS
g 5,
P g nisl
-‘%M‘
TFic 84 F1o 86

line drawn at a constant angle to the straight line, the followmg Rule
will at once be apparent (see Fig. 84). If two powers are measuid by
the distances of a pomi from the corresponding shawght lmes w the direchon
pallel to that bme for wiach both the measured powes ars equal, then the
two powers will have the same scale.

Thus 10 Fig 84, for a poiut P,

wm_P4 v _PU V_PE
W pB’ W PD’ W, PF

If the loss does not ocour 1 an impedance in series wath tho load,

but, as 18 shewn m Fig, 85, n a constant admittance y=g+Jh con-
nected m parallel with the load,
M, the uscful power 13
v wy=W-Py

Let: the pressure vector P move
over the circle K i Tig 86,
which has the equation

u?+ 0% — Qpu — 2w

=]:,’3—,u5—v5= -p

and set; off the current =7 along
the real axis, we can then write

07,=3(50-v) =29(W-v),

Fio 80.—Roprasentation of Ussfal Powo: with Vhere P
‘Admittanco in Parallol, Ve put -,

whilst V=0 15 the equation of the somi-polar of the pressure circlo
with respect to the origm, or the loss line
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Further, Ly W,
2
and W =0 15 the equation of the abscissa axis.
‘We now proceed precisely as above, and put

I P
W;=W-V= -,uu—(v—z—y)v+§-

From this we see that with a constant current I the equation
W, =0

represents a straight Ime  This 15 the power lune of the circuit

The power line must pass through the pomts of the circle K for
which the output 77,18 zero  For these pomnts g; =0, and consequent],
the whole conductance between the termmals equals g. Now nﬂ
pressure vectors for a circuit with a constant current I and conductance
g he on the ercle drawn about M; with radws I/2g in Fig 86
Hence the power lme W, =0 passes tLIough the pomnt of intersection
of this eircle with the pressure circle XK.

For a pomt A, on the pressure circle K,

w1=Jya+(v-§§)’ AN -, 47,

and the output w,=2gMM, AN. (47)
If the pownts M, M, and 4, are set off to the pressure scale 1 cm =n volts,
then 1, = 25T, A waths (&70)

25, Graphic Representation of Efficiency. Let a straight line
(Fg 87) from the pomnt P pass through the pomt of intersection S
of the three straight lines
W=0, W,=0 and V=0,
then for all points on this
straight Ime SP the ratios
between the several powers
remain constant, which fol-
lows at once from the
graphic representation of
these ratios. W,

From. this 1t 18 seen that
the efficiency of a circuib
can be shewn as m Fig 87
The hne EF 18 drawn
parallel to the lme of
supplied power W=0 be- _
twoen the power lme W;=0 and the loss lme V=0 This hne EF
18 then divaded 1nto 100 equal parts, as shewn

4

-

Fio 87
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For a point P on the current (or pressure) circle, the percentage
efficiency # 18 given by the pomt P', where PS produced cuts EF
Progf. For every point P on the line SP, we have (Fig. 87)

v _PE

W, P
w, PP
(A FLLI
w, PF
WiV W PE+PF_EF
wy, PF’ PF
W, 100 5z 100 =
Th %=100 —1= PF'=—=PF

. %=1005 g P - 77
‘When the pressure acting on the two termunals of a arcmt 18 altered,
without altering the circnit constants, the current alters in proportion
to the pressure, and the ratio between the powers in the several parts
remains unaltered.

Hence, the method deduced above for determmmng the relation
between two powers in a current-aircle diagram holds even when the
pressure changes 1ts value. In hike manner the analogous mothod 18
applicable for a pressure-circle diagram when the current varies




CHAPTER IV

SERIES CIROUITS.

26 Ciromt with two Impedances m Series. 27. Example I 28. Example IT
20 Several Impedances m Series.

26 Circuit with two Impedances in Series As an example of two
1mpedances 1n series, we have the power transmission line represented
in Fig. 88. Since this case 18 one of the simplest and also of consider-
able practical importance, we shall investigate 1t fully

X Py I
P‘E“:xz
r-: ? - L

Fio 88

The pressure P,, which is applied at the supply terminals, 18 consumed
by the resistance and reactance of the line and the load at the receiver
termmnals  Since the pressure required to overcome the EMF of self-
mduction of the transmission hine leads the current by 90°, whilst the
pressure consumed by the ohmic resistance of the line 18 1 phase with
the current, it 1s obvious that, with constant supply pressure I, the
pressure P, at the receiver termmals depends to a large extent on the
phase dispﬁmement of the load The receiver pressure P, can be
resolved 1nto two components, the one Ir,, 1n phase with the current,
and the other Jz,, leading the current by 90°, where 7, and , are the
constants of the receiver or load owecuit Conversely, the curient I
can be resolved nto two components, one of which P,g, 18 1n phase
with the receiver pressure and the other Pgb, lags 90° behnd 1t.

Assummg the current I to be given, we can find the receiver
pressure P, from 1ts components Ir, and Iz,, simlarly we can find
the pressure drop Jz mn the hne from its components /1,, Iz; P, 18
the geometrical sum of these two pressures E;ae Fig 89) Fig 90
follows at once from Fig 60
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Since r, and #, are constant, the pressure Iz, will be constant so long
as the current remains unchanged Let b, be kept constant m the
recewver eircuit and g, varied, then extremity P of the vector P, will

move over the semi-ircle on 4 5= b£ If g, is mamtamed constant
]

and b, varied, the locus of P 18 the circle described on A—5=—I—

2

The assumption of constant current I 18 of much less practical

interost than the case of constant receiver pressure P, or constant
supply pressure P,, which we shall now discuss.

i
fI i
;
| 3 #
i pe
>
i “ay d 4
2 Gy
a om 7 m Watlses Brssurs

Fras 80 and 00 —Prossurc Diagrams of I'wo Cirouits in Serles.

Smnce all the vectors m Fig 90 are directly proportional to 7, we
can suppose the diagrams to be drawn for the case =1, then the
vector UP will represent the total impedance # n the cireuit

From Fig 89 1t 1s seen that

F=Nr +19P+ (@ +2,)7,

b,
tan ¢,=%=—y—:,

= 9

CO8 ¢y m,
+

tan¢l=_:‘-.:+_f:,
A A
7 P+ (g o)
A Py
Y2 2~/z§+1¢§+2r1‘r2+24,|z2
- Py .
V12423 +8) + 2,9, + 92,0,

I=

P,
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or, by transformation,
=- — P1
P V(L gy + @by + (51, - D)
1
a= .
V(L +0395 +2,55)8 + (3105 = 115y)?

=Pg,  .(48)

where

The current 1s then
L]
I=Pr=h \/(1 +1y + 8, 0)% + (2,95 —1,0)7
and the power at the receiver terminals,
Wy =P, x watt component of current
=Pigy=Pla’g,

If the susceptance b, and the supply pressure P; are constant, the

power 7, will have a meximum value ~The value of g,, for which

the power /7, 1n the receiver circuit 18 a maximum, #a found by
differentiation , that 1s,

aw, _d(Fie'g,)

dﬂg dy2
or, since the reciprocal of /7, will then be a mimmum, we can put
d ( 1 ) d (1+7192+”1b2)2+(f‘192_"1 2)2} 0

0)

dgy \a¥gy) ~ dgy
This occurs when Ga=~Ng+ (b +b2)? . (49)
P, 1
In this case =a= —,
B Vgt +7)
and the mawumum power transmitted 1s
7

W= gty + 0

Sinco, in general, the power transmitted to the receiver cirowt can
be written W,y=TI%, watts,
and the total supphed power
Wy=I3r + rg),

the eficiency n is given by 7%= IOOr +n %

or, since 7 %:100_%,
1+0
T2
1t 18 obvious that the efficiency will be a maximum when % 18 a
mumum, 2
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The ratio ﬁ="(b§+g§)
s 9a
has 1ts mumum value (with constant susceptance b,) when

2 (G2,
dgy\ g, ’

1e when ga=0g
Hence the mazmum efficiency 18
o_ 100 100 51
(AT ¥ il B ’ 6D
1 +117g:- L2,
2

27. Bxample I A load, having constant susceptance B, and
conductance g, variable with the load {g asynchronous motors), 18
fed over a long transmssion lme, which has both ohmic reswstance

i

P i
Fio 0L

and self-induction. In order to better illustrate the effect of these
constants on the receiver pressure P,, they have been chosen larger
than would be the case 1n an efficient installation

‘We are given (see Fig 91):

P, =2000 volts; 7,=20 ohms,

2,=50ohms, 3, =005 mho.
Determine first how the recerver (or load) pressure P, and the current J
depend on the load, and secondly, find the efficiency % and the power-
factor cos ¢, of the system.

A simple solution of the problem can be obtamned by the graphical
method of inversion and rotation of the co-ordinate system, whilst at
the same time we get a clear insight into the workmg of the system

In F1g 92 the circle X, 15 the Image of the 1mpedance of the system
for the case when g, 1s varied The impedance scale 18 1 cm =5 ohms

Thus 04,=2=328_1 076 om,

b b
J11.1 1
5%, 5005
The current curve for a constant pressure P, at the supply terminals 1s,
ag already explamed, the mverse curve k of the mage K of the
ogrve representing the total impedance between the supply terminals

A,B, =4 om.
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The constant of inversion must now be chosen so that thoe eurrent curvo
18 drawn to a swuitable scale Let 1 cm=»50 amps, thon for two
corresponding pomts P, and P, which lie on the 1mpedance and
current curves respectively,

- 1
0[’1:55,
A= 1 1 P 0
Ry SR P
01—50 50 2 =2°

OP, . OP =8 = constant of 1nversion

In this way the current curve 18 obtamed as circle KX with centro
M Consmder the pomts 4 and B which he on this circle The

Fro 92 —Ourrent Disgram of Clrouit in Fig 01

vector 04 represents the current when g,=co or 2,=0, that s,
the current when the receiver terminals are short-ciremited (1e¢ A is
the short-ciremt pomnt). The eurrent represented by O is theiefore

P (]
1=_1=P(J 21)
Gk Al

The vector OB represents the current when g,=0, or 7,= %, that 1s,
when thoe load 15 purely inductive and possesses only the susceptance b,
(1e B s the no-load pomt) The no-load current 1s

P, P, o1
I(,=” - 1=,g 1 2{11+j(ﬁ1+172>}
n=Jg, 1+(7’1+[,g>
For any load resistance 7,, the vector OP gives the cmreut J hoth

n magnitude and phase displacement ¢,
ac F
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The pressure P, at the receiver terminals 1s most simply represented
by the method given in Section 21, m which we assume a new co-
ordimato system with origm at 4 and real axis passing through 0 We
then choose the pressure scale so that the distance 40 represents the
ﬁl (see F1g 93)

supply pressure

Thus A0=1_IA_=£_P1

whence the pressure scale 18
1 em =502 =50.5 38 =269 volts.
For any load point P, the vector 427 gives the receiver pressure J,
1 the new co-ordinate system, whilst the drop of pressure /s, m tho

line is represented by the vector Y0 The &n‘easure drop 18 given by
the arthmetical difference of the primary and secondary pressures,

ie. at no-load by A0-4AB=F0,
on load by A0-AP=FP0.
The merease of pressure-drop from no-load to load 18 4B~ 4P= PB.
The wattless component of the load current with respect to the
Tecelver prossure 18 . _,py b (P, ~ Ix)
=bg (Iz~ I).
Hence the watt component of the load current 18
Ly=1I-Iyi=1-)bg (I~ 1)

At no-load, Iy=0 and [=],
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whence 0=1,— bz, (Lx — 1)
Subtracting this last equation from the previous one, we get

Ty =(1+10)(I - Lo)s
whilst the wattless component 7y, of the load current varies 1 mag-
nmitude and direction proportionally to the vector P4, the watt
component J,, thus varies proportionally to the veotor BP.

In the previous chapter, the loss line of the diagram was shewn
to be given by thé semi-polar of the cirele K, m respect to the origin,
whilst the power hine passes through the short-cremt pomt 4 and
the no-load pomt B. Accordmgly, the efficiency # will be represented
as shewn m%ﬂglg 92

The point on the circle K, for which the transmtted power 18 a
maximum, 1§ given by that pomt on the circumference of K which 1s
at the maximum distance from the power lme At thie pomt the
vectors (Zy— I) and (Z~1,) are equal in magnitude, hence we must

ve

Ly b, value of 7b,

1\2
2 =
Iy _gy_value of (I+sb) _N"F _(”1 +7§,)v
4
The condition for maximum power 18 therefore

b, J n 1,1

g==" +2 - +55

9> VA Ty LtE

=B 2y yE =N+ (B B
This 18 the same condition as that previously deduced (eq. 49,
p 79) m another manner
From the diagram, we can now measure off the several magnitudes
P,, I, m and cos ¢, and plot the same along rectangular co-ordinates
a8 functions of the useful power /7, This 1s done mn Fig 94
In the above example, we have
g=+ and b=+,
hence for maximum power
9o =g+ (b, +b,)* = 0 232 mho,

P
whence T e = 2(‘%5;:_”1)=
The maximum efliciency occurs, as shown above, when
gq="0,=005 mho,

100 100

7]"'“%=1+21'lb,=ﬁ=83 3%

229KW

50 that

As seen from the diagram and curves, for every value of the load
W, there are two values of Py, n and cos¢,. The curves are drawn
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for positive values of the conductance g,, 1e for pomts on
circle which lie above the power lme  For this part of the ¢
the transmitted power 1s positive Powts of the current diag

825 25 100 508 |
z

I’

©
©
©
[

200 250K W
Fro 9¢—Load Qurves for Ofrcuit in Fig €1

which lie below the power line correspond to negative values of g,
this region the supplied power 18 negative, 1e the machmes mn
recelver station act as generators e curves for negative va
of g, are not shewn m Fig 94, since they possess but [ittle mte
for us here.

28, Example II. 'We now consider a power transmission sche
in which the hine has resstance and mductance, while the power-fa
cos ¢ of the recerver circuit remamns constant at all loads For ¢
a system, the formulae deduced on p. 79 can be appled althoug]
this case the varable 1s not g, but g,

‘We can write, therefore,

= - Pl
Pr=ely (1 +919p +210p)* + (19, — 1,5g)°
= Py
e 7'1Y/5 CO8 g + T,y 810 ¢by)2 -+ (2495 CO8 by — 1,y 810 ¢
and since  I=Pyy,,
Py =n{Py+ I(ry cos ¢y +; s ¢g) }2 + I%(z, cos by — 1, 81n ¢
From this we get

Py=P} — Iz, cos ¢, — 1, s hg)? — T(1, €08 g+, 511 by).
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It follows from that equation that the curve of the recerver terminal
pressure P, as function of the current 1s part of an ellipse
The power 1n the receiver circut 18
Wy=PyIcos ¢,
=TIcos ¢, {~/P§ = Iz, co8 g — 1y 8111 )% — Z(1, COS by + Ty Sin hy) }
=1I,
_ Piacos ¢,
(71 +25 008 )2 + (m; + 2, 81n by)?
_ Picos
2+ 2+ 22, (1) €08 by + 7, 810 by)
The mazimum power transmtted oceurs when w, =0.
dzy
This 18 the case when
B+ %+ 22,(r; 008 b, + 2y 81N by) — 2,{ 22, + 2(2, CO8 By + T 81 )} =0 ,
thus when Zy=2, (52)
that 15, whence the impedance of the recewver cwewt equals the
mmpedance of the transmussion line.
ubstitutimg this value for z,, we get the following expression for
the maximum useful power

w,

2

_ Posg
W2 (2 —1, 008 g+ T, 1D )
Asgume the same line constants as 1 previous example
P, =2000 volts, r,=2ohms; z,=5 ohms
For the sake of compunson, we shall develop the diagram for the
following three cases ~
cos d3 =09, current lagging
cos¢;=1,  current in phase.
cos ¢y =09, current leading
In Fig 95 0, 1s the mage of the impedance z;, drawn to the scale
1 em=2 ohms
Draw the thiee stiaight hnes K3, K7 and K7 through the pont 4,
at angles g, ¢3 and ¢’y respectively to the vertical ~These straight
lines are the 1mages of the sum of the impedances = +z, for the three
cases under consideration By the mversion of the impedance curves
K;, K7 and K'Y we get the three circles X', K” and K", which are the
current curves of the system The current scale 18 chosen so that
1 cm="75 amps If P, and P are two corresponding pomts on the
impedance curve and curient curve respectively, then
0P, =}z
1 2000 2000

1
—mr=x 20 290
OP=zl=% = 15z 0P,

consequently the constant of mversion 18 0P, 0P =13 3.

(53)
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The circles can he still more simply determined 1f we remember that
they must all pass through one common short-cirowit pont A4 and
through the omgin O of the co-ordinate axes Consequently the
centres M’, M" and I of the circles must all lie on the line w}qcl]x
bisects 04 at right angles Further, the mes O}', OM" and OM"
make angles ¢;, ¢, and ¢’ respectively with the abscissa axs For

Fre 06,

the case ¢;=0 (non-mductive load), the centre M" falls on the abscissa
axis  The receiver pressure P, 18

P,
}.731=P1‘I”1="1(;:_1>="1<Ix‘1)|

whilst the short-cireuit current . 18 given by the vector 04 For
& point P on the current curve, the current (Iz — /) 18 represented by
the vector P4 When we choose the pressure scale so that the length
A0 represents the supply pressure, P, = 2000 volts, then the distance
AP from the short-circut pomnt 4 to the respective load pomnt P on
the current curve gives the receiver pressure P,. It 1s seen that the
drop of pressure 18 greatest for nductive loads. For nonanductive
loads the pressure drop 18 not so large, whilst for capacity loads there
18 & pressure rise at small loads, provided ¢,>¢,.

At no-load, the power-factor cos ¢, of the system approaches the
value cos ¢,, for 1n this case the effect of the line 15 neghgible. As
the load 1ncreases, the effect of the line reactance begins to make 1tself
felt, and the power-factor cos ¢, falls as the mductive or non-mductive
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load 1868

On the other hand, with capacity load, cos ¢, rises until

125 25400 500 - =

ey
—D—ﬂ*ﬂ*ﬁ"”‘r o , Losd
50 100 150 200 250 30 350K W,

Ia 96.—Load Cuives for Loadiug Powor Factor at Secondmy Terminals.

1t eaches unity, as the load ncreases, but falls again when the load 1s
further mcreased

3 cosf

g%

& IAmp
% E Volts

675 75 366 1506

650-50--206- 1650

50 100 150 200 250 KW
Fia 97a.—Load Cuives for Unity Powal Faotor at Sccondary Terminals

All the circles have the same dpower lne 04 with different scales
The maxmmum power 18 obtamned when the extremity of the current



88 THEORY OF ALTERNATING-CURRENTS

vector lies midway between O and A4 on the current curve At this
pownt the vector of the pressure drop in the hne has the same length
ag the vector of the pressure in the recever cirewt , thus,
Ipy=1Iz, ie z=2,

as shewn previously by another method

Each curient curve has 1ts own loss hine, which 1s the tangent to the
crrcle ab the orgmn The efficiency for each kmd of load 18 found m
the usual way (see Fig 95)

In Figs 96, 97a, 9?6, the curves for P,, I, 7 and cos ¢,, as taken
from the diagram, are plotted as functions of the load It 1s seeu that

nEn £ ann anan -
G50 G0 200 1500 -

. o

zs 1T

525 25 10856 PRGa
- 52
- Pria
P

| o n an az=" It 1 Load

e s 50 100 150 200K W

Fio 970 —Load Qurves for Lagging Power Factor at Secondary Terminals.

the maximum power is greatest for the capacity load and least for the
mductive  Here also, as in Example 1., for every load there are two
corresponding values of each of the respective magmtudes. Of
these two values, that which hes on the full-line curve 1s the usual
one—it corresponds to the pont on the current curve which hes
between the origin and the pomnt of maximum power

Pomts on the current curve lying below the power e correspond
to the case when the recerver cucwt works as generator This part of
the diagram has not been plotted 1 the rectangular co-ordinates

29, Several Impedances in Series If several impedances, with the
constants 7y, Z;, 7g, EYITET and so on, are connected 1n series,
the resmstance of each impedance will require an E M F. component mn
phase with the current, and the reactance an EM F. component which
leads the current vector by 90°
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To drive the current J through the eircuit, a termmal pressure P

1 rOed P g, ~gm) + 13— g0a) + L0 =J20) +

=1(1,-ga) =1z,
where 1,=1y + 1y +1g+ .. =2(1)
and T=2 + Byt B+ =2(x)
The total vmped: of a cucudt tung of several vmpedances w series 15
equal to the geometiw sum of these umpedances, or, expressed symbol-
cally, Z=zttyt . (54)

Fig 98 shews the graphical addition of the EM.F’s necessary to drive
the current J through the several impedances Since the current 1s the
same throughout the whole circut,
the same result would have been
obtamned by summing up the 1mped-
ances of the circuit.

Assuming that each part of the
ciewt 18 umform, 16 ¢ and z are
umformly distributed over the re-
spective portions of the circuit, and
also that one terminal of the circuit
has zero potential, then the polygon
04,4,44, and so on, 1llustrates
the distribution of potential in the
circwt  The potential at any pomnt
m the cireutt 1s given by the dis-
tance of the corresponding pomt P
m the polygon from the origin, and Fia 98
the phase displacement of this _
potential from the current J equals the angle ¢ which the vector 0P
makes with the ordinate axis The difference of potential between
two pownts P, and P, m the circwt equals the distance between the
two corresponding pomts on the polygon The straight lme P)#,
giwves this potential difference both m magmtude and direction.




CHAPTER V.

PARALLEL CIRCUITS.
4

30 Cwowt with Admbtances m Parallel. 31 Current Resonance 32 Eq
valent Impedance of Two Purallel Impedances

30. Circuit with Admittances in Parallel. We shall now cc
sider the case 1n which a pressure p=,/2Psin wt acts at the termin:
4 and B of a compound ciremt having two parallel branch

(Fig 99). We denote t

< 5. A currents 1 thesetwo branch
- by I, and I;. These can
resolved, as shewn abov

mto the components Pg,, F

I 1 and Pg,, Pb, By setting
P these components, as 1n
g5b, gb, 100, we get the currents

and Z,, and hence the
geometric sum, the resulta
R v current 7,. Let P, g, an
: B by be constant, we can the
Flo 09 —Clreait with Two Admittances m Pundlel  vepresent what takes plac
in the ciremt when g, or .
18 varied by the diagram 1n Fig. 101 (cp Fig. 54) If @, 18 kept cor
stant, whilst 7, 18 varied, the locus of 7, will be the semi-circle OB
Conversely, when 1, 18 con-
stant and 2, vared, the
current vector will move over
circle 0,BC'  The semi-circle
lymg to the mght of 0,C
applies to the case when 2,
18 & capacity-reactance.

If several admittances
having the constants g;, &, ,
g> by, 95, by, and so on,
are connected 1n parallel, the
pressure P applied at the ter-
mimals will send a current

U

Fio 100 —Geometric Addition of Ounents in Two
Parallel Oirouits



CIRCUIT WITH ADMITTANCES IN PARALLEL 91

through each admittance, which can be resolved wmto a watt com-
ponent Py 1n phase with the pressure and a wattless component P

Hatt Ciorent

5

Waltless Current ‘Py,

Fru 101 —Cwirent Diagram for Two Parallel Oucuits

laggmg 90° hehind the pressure Hence the current flowing i the whole
OIS T Plgy +yly) + Plgy +iby) + PGy 30 +
=P(g,+1b)=Py,,
where ge=g1+Ga+0+. . =2(g),
by=b +b+b+ =2(),
whence 1t follows, that the fofal admittance y, of a cucut with several
admattances conmected wn parallel oquals the geometric sum of these admat-
tances ; or, expressed symbolically,
Ye=h+Y%t+h+
81, Zero Susceptance. If two circuits are connected i parallel,

one of which conteins capacity and the other inductance, the current
1 the former will lead and 1n the latter

lag m respect of the applied pressure |

Consequently the wattless component "
of the resultant current will be less ki v
than the wattless components of the P P L
currents 1 the branches If the watt- T

less currents in the two branches are . |
equal but of opfmmta sign, the resul-
tant current will be in phage with the
pressure, and the total susceptance will thérefore be zero In such a
case, 1esonance 18 saxd to prevail m the circmit, and, m distnction to
prossure resonance—which we have seen (p 46) takes place n seres
circurts—resonance n parallel ciroutts 18 called current 1esonance *
‘We can write the reactance of the two circuits 1n Fig 102 thus.

Fro 102 —Oirouit for Current Resonauce

1
%= z,=wl

*As explained for series orowts, this condition can only truly be termed
¢ Resonance ”’ when the of the oseillatory cirewt 18 neghgibl
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The condition necessary to give equal and opposite wattless currents m

the two circuits 18 )
b,=b,,
z 5
or 2, 1 iell?
e 02

If we drav 0d,=0A4,=b,=b,m Fig 103, the above condition for
resonance 18 fulfilled as soon as the extremity B, of vector ¥, falls on
the vertical through A,, and the extremity B, of vector g, on the
vertical through 4,, for then the resultant admittance y= 0D
comeides with the ordinate axis The circles on 04, and 04, are the
loct of the 1mages of the impedances z, and z,

1
|
|
i
i
l
-

o
P10 108 —Disgram for Zero Busceptance.

‘When 1, =1,=0, we have the same condition for zero susceptance m
the parallel eircuits as for zero impedance 1 the series cirewit (see
Sect 16) We then get

u’L":uTCTo:z'“:T""gm“’
1
LCy= o . (85)

When 1,=1,=1, =0, the total susceptance becomes zero 1 two casos
Case 1. When 2,=2,=z,
wL= L
oC’
. 1
2

LC=
In this case the resultant conductance of the two branches 15
I=Gs+Ges
or, since $i=Go=G,
g=2g,
equals double the conductance 1n one branch.

(66)
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Case 2. When 1 =2,(2, - 2,) =22,= % - (56a)

This case 18 shewn 1 Fig 104. The resultant conductance of the two

paths 15 here g=y,+g,=b,;j+b,£l.

Now, since by=0,=b,
1.1 1 2
we get also g=10 (E +;) =nb (5’.‘.7_3)
T 1
2
ot 111
=1, P —11bIE e

| i
| ANE |
1 I
L S
Fio 104 —Diagram for Zero Susosptance Indspondent of Frequency
The resultant resistance between the terminals 18 therefore

r=g=n,

equal to the resstance m one branch
This latter example of a ciremit with zero susceptance 18 of special
terest as the effect 18 independent of the frequency

32. Bquvalent Impedance of Two Parallel Impedances. If the
two impedances =, and z, are connected in parallel, and we write

symbolically . 1 1
Z=—, Zy=—
o h Y2
then the 1mpedance of the parallel circurt 18
.l
¥
where y=y1+,1/g=lz=z—1+;12,

or U S cee L (BT)
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Thie expression 18 simular to that for the resultant resstance of two
ohmue remstances joined m parallel
The mmpedance = can he determmed graphically in & simple manner.

In Fig. 105, let 0d=% sud 0B=z

Then OC =2 +2y=2.
Make A ODB similar to & 04C

— 04 ¢
Then 01)=03ﬁ=7%—2=z.

Hence the required 1mpadance = 13 given by the vector OD.

Fa 105 Ce of Eq for Two Parallel Impodunces

This can also be proved as follows If we write equation (57) mn
the form . _m_mh_zeth
7y mta, 2 Zeih dei’

then, for the absolute values, we have

L
X
and for the angles b= - ¢,
or L BOD=,COA.

From this we see that the construction of Fig. 105 is correct

The pomnt D can also be found from the following construction
(Fig 106) Draw OM, and O, perpendicular to tho impedances
#y and #. Determme the pomnts 4’ and B, which are respectively
the 1mages of points 4 and B with respect to these perpenchiculars
OM, and OM; Then we have

A 0AB similar to A 0A4'B similar to A BCO,
‘whence L. 04B =1, BC0=LDAO,
L 0B4'=1B0C=c DBO

The desired point D therefore lies on the two lnes 4B and B,
1e. D 18 the pomnt where these two lines cut



IMPEDANCE OF TWO PARALLEL IMPEDANCES 95

For the case when the mmpedance 2, is altered mn amount but not
m phase—ie 1ts diection remans unchanged—the pomnt B moves
on & straight lme through O and B Thus 2 0BC=¢ 0DA remains

4
Fie 100 —Impedance Disgram for Two Parallel Impedanoces,

constant The pomnt D then moves over a circle deseribed about M,
ag centre and passing through the pomnts 0, 4 and 4'. Conversely,
if 2, 18 constant and 2, alters 1n value but not in direction, the points B
and B’ remain fixed, whilst the point D moves over the circle deseribed
about M, which passes through 0, B and B'.
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THE GENERAL ELECTRIC CIRCUIT.

33 Impedance 1n Series with Two Parallel Ciromts 34. Pressure Regulation
m a Power Transmission Scheme, 35 Compounding of o Power Trans-
rsnlsslon Scheme 38, Losses and Efficienoy 1 & Compounded Transmission

cheme.

383, Impedance in Series with Two Parallel Circuits. Having now
dealt with compound cremits conssting of a number of 1mpedances
connected respectively in series and m parallel, we may proceed to the
more complex case, 1n which one immpedance 18 n series with two
others connected 1n parallel.

Almost all the circwits met with 1o practice may be reduced to such
a_cirouit, provided the constants of tge circuit ave 1n fact constant
The case is so generally apphcable that 1t may be termed the General
Electruc Corcust

Such a case 1s met with, for example, when power 1s transmitted
over an inductive line to a recerver station, where two admittances are

joned mn paralle]l Fig 107 shows

. Wm a crewt of this kind, n which
EE z, ! we have the lime 1mpedance 7,,
4 %34 % W series with two parallel

4 B branches We may take the case,
’ b m which the admittance y, of
. the first branch and also the re-

" actance z, of the second branch

Fia 107 —Circult with Impedance in Serles with  remain constant, whilst the load
resistance r, 15 varied at will

The graphical process by which the current curve 1s obtained for this
cirewt, with constant supply pressure P,, may be summarised as follows

The combined admittance curve of the two parallel branches 18 first
obtamed (as in Fig 101, p. 91) by graphical addition of the constant
admittance ¥, and the varable admittance correspondmng to 2, and 1,

The total impedance of the circuit 18 now obtamned by adding the
impedance corresponding to 7, to the combined impedance of the
two parallel branches, obtamned by mnversion of the curve of ther
combimed admittance

The third and final step 1s the mversion of the total 1mpedance
curve 1 order to obtamn the admittance of the cwrewt, which mult-
plied by the constant pressure P, gives the current curve. This final
inversion would naturally be unnecessary, if 1t were required to
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determine the voltage required to mamtan a comstant current in
the circrut

This graphical process 18 analogous to the algebraic calculation with

complex quantities, n which we get the combmed admittance of the
paallel circuits , 1
V=taty

and the total 1mpedance of the complete eircutt

1 1
ammty=nt——

1
Ya %
Hence the total current 7= £l= §"P1 —
% 1
#+ T
Vot

The curent dagram (Fig 108) has been drawn for the following
2,=2—3b ohms, zy=17,—74 ohms,

7,=0 0033 +70 02 mho,

P, =1000 volts

values

Fra 108 —Construction of Current Diagram for Cireutt in +ig 107

Tako 1 em=0 05 mho, and mark off Py at a chstance %5 =04 cm

to, the left of 0 and %:0 066 cm above 1t

The vector 0P,
represonts the admuttance ¢, Draw PZI—’;=0+)5- a:12=5 em parallel to
the abscisss axis, and on 1t as diameter describe the aircle K’ to repre-
sent the admittance ,7_/,.+%l By the mversion of the eircle X' with

AC, a
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respect to O, we get the 1mpedance
1 _ =
17 1+2y
Yak= Pl
ot
The impedance scale 1s 1 cm = 8 ohms, hence the constant of inversion 18

I= 25

1
005.8
The mverse circle of X' 18 K

Starting agam from point 0’ and setting off —ES"—-O 625 cm to tho
right and 1—81= 0 25 cm downwards, we get the point O As 00" repre-

sents the line mpedance #, the eircle X", m respect to point 0, then
represents the impedance Yetween the supply terminals If we now
wish to have the admittance between the supply termunals to tho
scale 1 em=0025 mho, we must take the inverse of circle K with
respect to O with the constant of mnversion
1 =
T8 0025~
The mverse of K" is the circle K Sice the supply pressure P;=1000
volts, the circle K represents the current I; to &e scale 1 em=0026
% 1000 =25 amps
The pomnt P, corresponds to the load 7,=c0, and 1s called the
noload pomt of the system. The no-load current I, 18 given by the
vector OP,. The point Py 18 the shortcucust pont, and corresponds to
the load 2,=0  The short-circust current I, 18 given by the vector OFx
If 0, 18 the 1nverse point of the origin (' to the ratio of mversion 5,

then 00, corresponds to the current ‘:J’ 0, 18 thus the short-cireutt

I b.

pomt for the case when the receiver tormmals are short-cremted  Let
P be any pomt on the eiréle X, then the vector PO, represents a current
Py I _P-Ly P
™
Honce if we construct a new co-ordinate system with the origm 0,
and with the real axis passmg through O, and further choose the
pressure scale so that 0;0=P, volts, then n this new system
the vector 0P represents the receiver pressure P, (see Chap III
Sect 21) In this system of co-ordinates, therefore, the triangle 0,P0
is the pressure triangle of the installation The pressure drop m the
transmission line equals the algebraio difference 0,0-0,P At no-
load, the drop of pressure 18 0,0 - 0,P; From no-load to load, therefore,
the pressure falls 0, 7, — O,P.

%
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IMPEDANCE IN SERIES WITH TWO PA. EL CIRCUITS

The current I, m the constant admittance y,:\ ir@gp to tha—"
pressure P,. Whence "~ NGALORE
I =FZI =ﬁ1 e
L S
where I,,=I, 1s the no-load current and P, is the no-load receiver
pressure  From the diagram, we get
?, 0P .
=L [ =0P
P, 0,5, 0
Hence, 1n the origmal current scale,
(1) J—
I,==0P.
a 01 Po 1
To complete the diagram, we draw 1n the loss and power lines. For
the loss 1 the impedance z, we put
V=L =By,
where V, =0 18 the shortened form of the equation of the loss line (see
Section 23) This hine V;=0 15 the semi-polar of the origin 0, with
respect to the cirele K (Fig 108), and 15 constructed as previously shewn.
The loss 1n the parallel connected admittance g, is
V.=Fg.
Since P, can be here represented by the vector 0;F, the hne for
the loss /7, 1s the semi-polar of the pont 0; m respect to the circle K.
Writing V, =0 for the equation of this straight hine, we get
Vo= Pigy=B.Va,
where B, 18 a constant, and the co-ordinates of the pomt P are
mserted 1 the linear expression V,  Similarly, writing the equation of
the abscissa axis W, =0, the equation of the supplied power can be
written 1 the form W, = P,I, cos b, = AW,
where 4, 18 a constant In this particular case, 4, is sumply equal
to the supply pressure and W, 18 the watt current, or the ordinate
of the pomt P.
The power recerved by branch 2 of the parallel circuits 18
W2=W1—71_V..=W1'Vm
=A,W,=4,W,- BV, - BV,=A4,W,- BV,
Since, on the one hand,
B,V =Blvl +B.Va,
V,,=0 18 the equation of a straight line passing through the point of
mtersection of V; =0 and V,=0 Thus V,,=0 18 the resultant loss
lne of the current diagram
Since, however, on the other hand,
AMW,=A4 W, - BV,
then W,=0 18 the equation of the useful power lme of the circut.
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This hme W,=0 passes through the pomt where the resultant loss
Ime V,,=0 Zuts gﬂ: abscissa ga.xls W,=0 Agam, since the po!wae;{
ling W, =0 passes through the pomts %or which the power mn hhq o d
7, 18 z6ro, 1t i8 obvious that 1t passes through the no-load powt Iy m]l1
the short-crenit pomt Py, and can thus be drawn at once To find the
resultant loss e V;, =0, on the one hand, we have the pomt of mter-
section of the two loss lnes V, =0 and V,=0, and, on the other hand,
the point of intersection of the power le and the abscissa ax1s, and
from thus follows the construction for the determmation of the efficiency
as shewn 1n Fig 109 This figure 18 drawn for the same constants and
to the same scale as Fig 108

r:b @0y o

Fra 100 —Completo Current Diagram

Since the straight hines V,=0, V,=0 and V,,=0 must all cut at a
pont, the direction of the straight line V,,=0 can be found from

55 RE=5E 58,
sice the ratio of the mterceEts of the three lines on any horzontal
straight line 1s the same as that of the intercepts on the abscissa axis.

34 Pressure Regulation in & Power Transmission Scheme Until
now we have always assumed that the pressure at the supply termmals
was mawmtaned constant, and have determmed the pressure at the
recelver terminals for various loads In practice, 1t 18 often required
to maintamn a constant recever pressure, This can he accomphshed
by suitable regulation of the supply pressure If, by way of example,
1t is required to maintain a constant recerver pressure P, at the encF of
a transmssion line of 1mpedance =, then the pressure at the supply
terminals must be P, =P+ Iz

1 2TdM

We may take, by way of example, the case i which the load current
1y =Py = Py(g+b) 18 given by the curve X m Fig 110
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This curve K to another scale also represents the admittance curve

of the load due to the constant receiver pressure P, which 1 set off
along the ordinate axs.

Since e
Py z1<zl +1, 1)
P, 7 A
we get L. 14932
ge - Pg( %+ J z‘;)
This £y 18 the short-cireuit current in the line under pressure P, If
we displace the origm to 0; by making
0A-P.% and 40,=P,2
0‘4=P’b§ and A01=szsla

then the current %+_]l 18 given by the vector 0;P Hence, 1f we

Fra 110 —Prossure Rogulation of & Transmission Line

choose the pressure scale so that the lme 0,0 equals the coustant
recerver pressure P, the lme 0,P will give the supply pressure P,
corrasponding to the current vector [;=0P The rise of pressure 1s
thus BP

The supply pressure P, leads the receiver pressure P, by the angle
6, whilst the current J, lags behind the receiver pressure P, by the
angle ¢, Hence the phase displacement at the supply terminals 1s
¢ =¢,+0. If we draw a circle to pass through 0 and 0;, and with
1ts centre on the abscissa axis, then -

£P,0C=6 and LPOC=(dy+0)=¢,

We will now determine graphcally the loss and efficiency of the
transmission Line for the usnal case, 10 which the current curve 1s re-
presented by the circle X as in Fig 111, wath the receiver pressure P,
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The loss m the line 18 V=D,
and 18 represented as before by the loss hne V; =0, the semi-polar of
the circle X with respect to the origm O

The power given to the recerver circuit 18

Pl =Py,

where % and v are the co-ordnates of a pomt » on the circle X The
power line W, =0 18 therefore the abscissa-axis in this case

The supphed power 18

W =Wy+V,=Pp+I%, =Pp+ul+0%)1,

a
Fia 11
Since the equation of the circle 18
(=t (9- 1)t =
or u? + 9% = Jpu + 2vw - p?,
we get for the supplied power
Py = Poo-+ 2rypu+ 20,00 — 71p2 = AW,

where W, =0 1s the shortened equation of the power le

If now a 1s the angle this ne makes with the abscissa axis, we have
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Since the hne W,=0 must further pass through the intersection
of the loss Lme with the abscissa axis, 16 can at once be constructed
(Fig. 111) The power lme 1s perpendicular to the lne M.M. A

cirele described about M, as centre with radius 25;1 must pass through

1 .
the short-cirewt pomnt 0, and the power line W,;=0 and this new
circle cut the circle X 1n the same ponts.

To obtamn the efficiency of the system at any pomnt P on the current
curve, we now proceed as follows

Draw a line 0-100 parallel to the power hme W, =0 between tho
loss lme and the power line W,=0, jomn PS and produce to cub tl:ls
Lne Marlang off the line 0-100 nto ten parts to represent 10 %
20, up to 100 % efficiency, the efficiency at the pomt P may be read
off directly at the pomt where this efficiency Lne 18 cut by PS produced

36. Compounding of & Power Transmission Scheme. From Fig 110
1t 18 seen that the pressure-rige P; — P, only depends on the magnitude
and direction of the current vector I, and that P;, and consequently

F1a 113 —Compounding of & Transmission Line

P, - I, will he constant so long as the extremity I’ of the curient
vector J; moves over a circle described about O; as centre. But the
current curve K of the load 18 not a circle as a rule. It 1s possiblo,
however, to connect a machine to the receiver terminals—i e. in parallel
with the load—whose current 7, can be so regulated that the line
current vector J, = I, + I, describes a circle whose centre 1s at O,
transmission scheme 1n which this 1s the case 1s saxd to be compounded
The current 7, can be a pure wattless current Such a machine joined
to the receiver terminals for the purpose of giving or taking a wattloss
current 18 called a phase 1egulator

In Fig 112, curve K, represents the load (current) diagram for the
constant recerver pressure ;. The current 1s represented by

Iy=1I,(cos ¢y +) 8111 p;) = Py(ga +ybg) = Iy +7 1,
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0y 18 the short-crreutt pomt for the line of mmpedance 2
0d=PG=Ph,  40,=PJ3=Pg.

1 1
Let X; be the circle about 0, whose radius equals the constant supply
pressute P, then 7; 15 the "ine current, and consequently 7, 1s the
laggmg wattless current given by the phase regulator
a'ngl}.meglme curtent 7, possesses the same watt current 7,, as the 19M
current /5, and mn addition 1t has a leading wattless component I'y,,
which can be determined from Fig 112 as follows

Lt Pogs)* + (P, — L)'= P,

IIIYL=Pﬂbl - ‘/Pfﬁ— (P +1|r)=‘
The laggig wadttless current supphied by the phase regulator will be,
the: efore, L=I,+ P, —‘/PM P+ L) - . (88)

Dividing all through by P, and putting, as before, %:u, we get
1

bbb Gagr (580)

where b, is the susceptance of the phase regulator. We wmte -5,
because 7, 15 not the laggmg wattless current consumed by, but
produced %y the phase regulator Hence, s0 long as the right-hand
side of the equation 18 posttive, the phage regulator acts as a capacity

The wattless current produced by the phase regulator consists of
two parts  The one part 7y, 18 the wattless current of the load and
18 given by the current curve K; a8 a function of the watt current of
the load. The other part Ity is the leading wattless current which 1s
necessary for the me The latter 15 Iikewse giwven as a function of
the watt current hy the cwcle K, and depends therefore on the value
of the supply pressure Py, If P> Py, I, will be zero for a certan
watt current, and will lag at amall loads A part of the load wattless
current can then be suppled by the line current, and the current of
the phase regulator will be correspondingly smaller The wattless
ourrent of the phase regulator 1 always given by the homzontal
distance between the two curves XK, and f; If these two curves
cut, then I,=0 at the pomnt of intersection, Pagsing beyond this
pomnt, I, becomes negative, 16 the current guven. out of the phasoe
regulator is leading, or that faken by 1t 18 lagging—the same then
acts as an inductance and b, becomes positave,

With a fweu transmussion hine and given pressures P, aud P,, the
transmitted power has a maxmum which 1 given by the hghest
pomt B on the cirele K, At this pomt

Iy="Py, - -PJ-‘71='P«('1/‘1 “91)’

a

(59)
%’%‘&
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The same condition for maximum power is given by equation (58a),

since for larger valnes of g, the root becomes imagnary ~ In this case,

the wattless current of the phase regulator 18
Iy=Typ,+ Pgby - by=by + ;.

The maximum power 18

’7’,._;=P§yz=Pfu”ya=P§u’<y—;' _gl> . (60)

If the supply pressure P, is mamtamed constant, whilst the receiver
pressure Py 18 varied, we get different circles X, all of which have
the same radius, and whose centres lie on the straight hne 00, at
digtances from O proportional to P,

The highest pomnts B of these circles, and accordingly the watt
currents at maximum load, are represented by a parallel to 00,.
Thus, whilst P, ncreases as a straight lme function, the watt
current Iy, decreases as a straight lne function Hence thers 15 a

certain ratio u=% for which the maximum power, which can be trans-

1
mitted over a lme of given constants 1, and =, attains 1ts highest
value. This value of « can be found from the condition

AW e T
o, =Pi(, - 24)=0 o “=2_gll=g_,,l‘]'
For this maximum, therefore,
92=%_91=§1’ =by=b,+b;. (61)
The maximum power 1tself 18
2 P
=P, -1
W= P Sat= 3 (62)

and represents the maximum power which can be transmitted over the
given line at the given supply pressure P,

It 18 also of interest to dyetelmme the phase displacement at the
supply terminals of a compounded power transmission scheme  Fig. 113
represents the same diagram as Fig 112, except that the current
curve K, of the load and the load current /, have been omitted The
extremity C of the vector of the line current I, moves over the circle
K, described about O;  This circle 1s thus the current diagram of the
line current. The receiver pressure £, comncides with the ordinate axis

The angle P,0C 1s thus the angle of lead of the line current with
respect to the recerver pressure On the other hand, 1if we consider
0,0 as the 1eal axis of a new system of coordmates mn respect to the
ongn 0, then, as shewn, P, 18 repesented by the vector 0,0 and
P, by 0,C The angle by which the supply pressure P, leads the
recewver pressure P, 18 thus £ 00,C'=6 If we draw a cirele X to pass
through O and O, with 1ts centre on the abscissa axis, 1t will then be

seen that £00,C=,P,0D =16,
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and the angle COD gives the phase displacement ¢, at the supply
terminals. P
The radius of the circle K 18, as already shewn above, %11 Since

0,C=P,y,, the phase displacement at the supply termimals cannot become
zero unless

=5 P, z,
PySE o PeaSup=Jemh

Fia. 118 —Phaso Displacemont betwoen Curront and Pressuro at Primary Terniinals,
1

‘When the equality sign holds, the phase disp t only chsappears
for the one load where g,=g;. If the imequality sign holds, the phase
displacement 1n the supg[y circurt disappesars at two loads, which are
raphically determined by the points of intersection of the two circles
%1 and K Between these two load points the current in the supply
station leads—otherwase 1t lags
If 1t 18 requred to over-compound the transmission scheme, then
Pv 1, and 7, are constants, whilst the recerver pressure P, moreases
with ‘the load
If we put, for example, Py=2P,,+I,p7y,
where P,, 18 the receiver pressure at no-load and r, 18 a rosistance,
n this case, the wattless current 7,18 obtamed by an equation similar
to equation (58).
Ly= I+ (Pao+ It )by VP - (Pogy+ (rugy + 1) 1,2 (63)
Hence 1n an over-compounded system, when
IW=P1?/1‘P=.091=P1Z1‘P&&
. 199 +1 iy +z)1]
we get maximum power e ="Polyy=(Poo+ Iyt )1y

or 7V ne=Pay Py~ Pagry + (PIZI B ﬂ:’_l) 2"|r (64)
Twhy+ Tyt +4
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36. Losses and Efficiency 1 & Compounded Transmission Scheme.
Since the diagram of the line current n a compounded transmission
scheme 18 & circle (see above), we can represent the powers and losses
by straight lines, as shewn in Sections 23 to 25. Since, howeYer, mn
that case we started with the diagram for the supply circuit, we
obtamed the abscssa axis for thenirne of supplied power. In this
cage, on the contrary, we start from the diagram for the receiver
carcuit, and consequently get the abscissa axis as the line of the power
gven out.

The loss in the line 18 Vi=I%y,
and 18 represented by a loss Line which 1s the semi-polar of the origin
with respect to the circle. Denoting the co-ordinates of the current
curve K; m Fig. 112 by (u, v), and taking abscissae to the right as
positive, we then get the equation of the circle K,

1
(w=P)*+ (04 Pygy)= Pigfi = P’:;.”/?ﬁ

or WP~ AP+ 2nglfu=1’§yf<$ - 1)
The heating losses 1n the hne are therefors

(w+ %), =2Py ly?[zlu "1”"‘}—;’ (;1, - 1)] =DV,
where B, =2Pyg,
Pyl
and Vl=mlu—1-lv+?’(§—l)=0.

This latter 1s the equation of the loss hne  The power given out 18
Wo=Py,
and the power supplied,
Wy=W,y+V,=Pp+BV,
=2P gz~ 2Pyg 0+ Py + I’:’(a—lz - 1) g =A4,W,

The straight lme W,=0 15 thus the hne for the supplied pmvu;-

As seen from the form of 1ts equation, this line passes through tho

pomnt where the loss lme V,=0 cuts the abscissa axis »=0 In

order to be able to draw this Ime W, =0, we furthe: determine the

tangent of the angle u which 1t makes with the ordinate axis This 1s
AT

a=91 173 a, N

oo by
As already shewn, the pomt 0, 1s the pont of mtersection of Lwo

>
carcles, one of which has the radius % and the other f 3. These
2

=1
two circles cut onme another rectangularly m the orgin 0 and at



108 THEORY OF ALTERNATING-CURRENTS

the Foint 0,. In Fig. 114 the centres of the two circles are denoted
by M, and M,. As seen from this figure, the power lme W, =0 1s
perpendicular to the lne 77,0,, and 18 therefore parallel to the ne 27,0;.
The efficiency of the scheme can now be determined from the loss line
and the two power lines (see the construction m Fig. 114)

The efficiency of the line depends on the Lme constants 7, and 2;

on the ratio u==?3 and also on the watt current of the load, but 15

independent of th%a wattless current of the load. In practice, syn-
chronous machimes are used as phase regulators * As1s well known,
such machines yield a leading or lagging wattless current according

Fig 114

as they are over- or under-excited In the former case they act as a
capacity, 1 the latter as self-induction In addition to the wattless
current, tho phase-1egulator on no-load also requires a watt cwrent
to cover its losses, which form an additional load m the system
The phase regulator can also be used for other I%)urposes at the same
time, gf. as & motor giving out mechameal work or as generator for
the production of a watt eurrent

By means of the above diagrams, a whole series of problems on
compoundmg of transmission schemes can be solved. A comparison
of these diagrams with the load diagram of a synchronous motor with
constant excrtation shows the great similarity between the two.t

*For details of the use of synchronons machines os phase regulators, see
Arnold-ls Cour, Wechselstromtechnak, vol. 1v p 447
+Arnold-la Cour, Wechselstromtechnik, vol v p 418



CHAPTER VII

MAGNETICALLY INTERLINKED ELECTRIC CIRCUITS.

87 Magnetic Interhnkage between Two Circuts (The action of a Trans-
former) 88 Self-, Stray and Mutual Induction of Two Ciromts,
39 Conversion of Energy in the General Transformer

87. Magnetic Interlinkage between Two Circmts. Until now
we have mvestigated only the phenomena which occur in a single
closed cwrcutt  Since, however, the
EMF's 1 a circuit are generally due p
to 1nduction, as 18 the case, for example, / v N
m all electromagnetic machines and
transformers, 1t 18 of the greatest 1m- ,

portance to study exactly the relation G r
between two electric circmts  The ;:p
simplest of all electrical apparatus met [ C—

with m practice 18 the single-phase ; J
transformer, which consists of two ¢
eleotric cireuits—a cagnmary and a
secondary—magnetically lhnked to N A /
one another. In Fig 115 the prm- p_~ J L 5
ciple of a transformer of this type,
viz a mantle or shell transformer, 18
represented diagrammatically, whilst
Figs. 1160 and b shew photographs of such transformers Both
primary and secondary, which are insulated from one another, are
wound on the core m the centre, whilst the two outer cores or
mantle serve as a return path for the lux The single-phase current
18 supplied to the transformer on the primary side, and 18 withdrawn,
transformed, from the secondary side ~ Fig. 1160 18 a view with part of
the stampings removed, to shew the windings more clearly.

Fig 1170 shews how the field 1s distributed m such a transformer.
I 18 the primary winding and II the secondary As a rule, the
number of turns w, on the prumary 1s not the same as the number w,
on the secondary, although these may be equal ~ The chief part of the

Fio 115 —Dm{nml of a Shell Trans
[ormer
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flux passes through the lammated iron core, and thus embraces the
total turns of each winding  Another part of the flux 18 mterhnked
with some of the primary turns or with some of the secondary, but
not with both, whlst still another part may be interlinked with
many turns of the one winding, but only with few of the other

The magnetic force 1n the air gap for the section aa 18 represented
by the curve C'n Fig 1170 )

In developing the theory of the transformer, 1t 18 best to split up the
field into tubes of force Consdering a single tube of force 1nter-

Linked with w,, primary turns and w, secondary turns, then the flux
n this tube 15 proportional to wwy, + 14, where 3 and 1, denote the
currents 1n the primary and secondary windings respectively. If the
number of turns on primary and secondary 18 the samse, the currents
9, and 3, will be very nearly equal to one another, but will flow 1
oppostte directions

ow, since , |
G + g, = (1 + 19) Wae + 1y (W, — W)

or =t +15) 0y, + 19 (20 — 0,,),
the flux can be spht up mto two parts, one of which 1s proportional to
the magnetising current (1 +1,) and the other either to the primary

ot the secondary current, The first part of this flux 18 called the
mam fluz and the second the shay fluz.
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The flux of this tube induces an EMTF. m the primary winding
proportional to

dw,.(wt;f%%): d% {00+ 10) w0, 4 S0, (12~ )},

and an EM T in the secondary proportional to

a d .
w"(z‘mf};ﬂ"w“) =g {4 10 0, + e (0~ ) ).

Fro 117a —Diagrim of Tubes of Foroe in 2 Shell Transformer Fa 1170

From this, we see that the mam flux of every tube always mduces the
same BMF. m both primary and secondary windings, whilst the
1M F’s mnduced by the stray flux are proportional to the currents in
the respective windings. The stray flux has a large part of its path
1 air, and 18 therefore 1n phase with the current which produces 1t
Most of the main flux, however, has an 1ron path, the hysteresis of
which will cause this flux to lag (by an amount equal to the hysteretic
angle of advance) behind the magnetising current (3, +1,)

umming up the EM.F’s induced 1n each winding, we get, for the
primary circuit, the differential equation

PyJ2mm (ub+ ) =ity + 5,50 4 2

at (65a)

and for the secondary circuit

0= Po/2m (o640 + 1+ 520 1 w0, (650)
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where P, and P, are the respective primary and secondary termmal
pressures, .S; denotes the sum of the terlinkages with the primary
stray flux (that 1s, that part of the primary flux which 1s not mter-
linked with the secondary) produced hy umt current m the pumary.
Silarly for S, S; and" S, are called tho eogfhewents of shay wdnchon,
and are g _Ew]’(wh_: '").5:)
1 > ’
L, (66)
s,=z!'£»4w§—’”-=),
where R, 18 the reluctance offered to the tubo of forco which 1s
mterlinked with w,, primary and w, secondary turns ¥, 18 the
S Sn 1deal main flux, which 18 com-
1
4

P —.¢ Dletely mterhnked with both
' primary and secondary wind-

mgs and nduces an TMF n

7 7 both which 18 proportional to

the sum of all the mterlinkages
I 3 - sy Z(Puw,) of the mamn flux.
The above two differential
Fia 118 Otreuit of 1 equations (654 and ) apply
both to the transformer (F1g 115) and to the eirewut shewn Tig 118
In the branch 4 B, the current 1, +1,=1, flows, and requires between
the terminals 4 and B the pressure
o= w'lj’—"
T dt’
which 18 equal but opposite in durection to the RM F. - ¢ wdneed hy
the mam flux i the two circuits ThiISEMF , of course, has the same
frequency ¢ 1n both circuits, since they are embraced by the same flux
and fixed with respect to one another Sinco @, lags belund the

magnetising current 4, by the angle g—-lk,,, tho pressure ¢ leads the

magnetising current ¢, by the angle ¥,  Hence wo can thus write.
Ly =Bya=E(go+1ba)s

where tan y, =3-'

In this way we may replace the transformer by the emeutt represented
m Fig 118, and can treat the same analytically just as any other
cirowt having an 1mpedance 1n series with two parallel branches

Denoting 2we8; by z, and 2meS, by Ty We may then write the
above differentials as follows:

Pi-E=Ip —phm =Lz, -E- Py=Lyg -1y = Iy, (67)

where Ly=I,~L,=Ey,-1I,
and 2y =1, =%, ;2=1,—]n'2.
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When the secondary circuit 18 open, 1e when the transformer 1s on
no-load, I,=0, and the primary current I, equals the magnetising
current [, Since the resstances and reactances, and also the
magnetising current, of a normal transformer are usually very small,
1t follows that at no-load the secondary pressure P,=E will be nearly
e?ual to the primary pressure P;, assuming of course that the number
of turns on the primary 18 the same as that on the secondary, 1.e.

wy =Wy =1,

The currents and pressure of a transformer can be best shewn
graphically, as m Fig 119  Set off the main flux &, along the negative
direction of the abscissa axis,
then the EMF - F wmduced
by @, falls along the negative
direction of the ordinate axis
(smnce the mduced EMF lags
90° behind the inducing flux)
The flux 1tself, however, 1s
not i phase with the MM F
§or magnetising ourrent), but

ollows the same at the angle

g—lﬁn. This lagging of the

flux behind the magnetisimg
current 18 due to the hysteresis
and eddy currents, caused by
the continuous reversal of the
magnetisation 1n the core,
which 18 treated more fully » 4
m Chapter XVIII

The magnetising current I, Y
can be calculated from the in
crrcuit constants and set off 1n ’
the diagram Further, 1f the e

secondary current /, 18 known,
the secondary pressure P can
be found by geometiically sub-
tracting l?he secondary 1mpedance pressure Ipz, from the induced
EMF - F

Since the current J,—induced m the secondary ¥inding by the flux
&,—18 always directed so that 1t tends to weaken the mducmg field,
1t 18 obvious that a primary current — J, must be supplied to overcome
the reaction of the secondary current I, on the field, 1f @, 18 to be
kept constant. Consequently, the current supplied to the primary has
two components The one component 18 the magnetising current I,
necessary for producing the field, while the other component 18 the
compensating current — I, required to neutrahse the reaction of the
secondary current 7, on the main field Hence the primary current I,

A0 H

TF1a 119 —Voctor Disgram of the Currents and
Pressures in a Transformer
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is simply the resultant of the ourrents [, and — I, Agam, if we add
the impedance pressure Jz; to the pressure K, which 18 equal and
opposite to the EM.F. — E induced by the main flux ®,, the primai
pressure P, will be obtamned If we now turn the pressure tmangle
~ E, P, through 180° to the position E, — P,, we get a clear view of
the pressure drop from the primary terminal pressure P, to the
secondary terminal pressure — P, The pressure E often termed the
EMF. consumed by the counter-electromotive force —F, 15 required
for dnving the magnetising current I, through the circuit, and there-
fore leads the latter by the angle v, as shewn n the figure

The power EI, oo $=F%,

18 consumed by the iron losses in the magnetic cirewt, and 18 dissipated
m the form of heat
The phenomena which oceur 1n a transformer occur 1n every other
form of elettromagnetic apparatus, although n a somewhat modified
form. In every case, however, we have the secondary curent inducad by
the mawm fluz, and the comesponding compensating current whach combines
with the magnetsing cur ent necessary to produce the fluz to form the promany
current  The mawn fluz serves to hamsmat the power from the promary
sule to the secondary, yust as a belt hamsmads the power fiom ome pulley
to another
In the stationary transformer the power EI  cosy, 1s transmitted
from the primary circuit to the men flux Here, m the mamn flux,
the won losses £7, cos y, are consumed, so that the power transmitted
to the secondary circuit 18
EI,co8yy=EI cosy, - EI,cos,,
but since EI, cos y, is usually very small, nearly the whole power 1s
conveyed from the primary to the secondary
The frequency of both primary and secondary 1s the same The
only reason therefore for using a stationary transformer 18 to effect
a change of pressure as the power 18 transmutted from primary to
secondary  This 18 achieved by choosing different numbers of turns
for the primary and secondary windings  If there are w, turns on the
rmary side and w, on the secondary, then the EM.F. induced 1n the
tter will be w E
B="2p =2
Tw

since the flux @, induces the seme EMT i every turn The
secondary current 18 »
L= =ul,
w,
]

where I, 18 the compensating current in the primary winding  This
follows at once from the fact that the ampere turns of the two
currents J, and I, must be equal and opposite % 1s the ratio of
transformation, which 1 s stationary transformer 18 the same for
ourrents as pressures. In the equivalent circmt, where the primary
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and secondary cirewmits are electrically connected, all secondary
pressures must be reduced to the primary by multiplying by u, and
secondary currents by dividing by w. The powers remamn unaltered,

simce
E,
(BL)= (3 ul)=(BL)

On the other hand, the mmpedances must be converted mn the ratio u?
since E_E 1_E,

By these reductions the equivalent ewrcuit and all the caleulations may
be made 1ndependent of the ratio of conversion of the transformer.

38. 8elf-, Stray and Mutual Induction of Two Circuits Neglecting
the won losses in a transformer, the mamn flux at no-load can be
written,

&, =10,
n v
where w, =number of primary turns and R =magnetic reluctance
offered to the 1deal flux completely mterlinked with both primary and
secondary windings. The EMF induced in the secondary winding
18 then
ae, ww, d d

M =-u%’ 18 called the cogfhcient of mutual mducton between the primary

and secondary windings Introducing this coefficient 1nto equation
(65a) we get at no-load . p
p

P /2 sm(wt+ 0y g) =141 + (Sl -1-M1%) % =y +L %,
where L, denotes the total interlinkages of the primary winding with
the flux produced by umt current m this winding This 18 called
the coefficent of self+nduction of the primary winding. Between the
coefficients of self-, stray and mutual induction, there exists therefore
the following relation,

L=8+M2), . (68a)
2
for the primary winding, and similarly
w,
Lg=SZ+ME? (680)

for the secondary winding.
By multiplying these two expressions, we get

M= (L, - 8))(Ly~ ). (88c)
Of the flux produced by and nterhinked with the primary, the part
corresponding to M % 18 1nterhnked with the secondary, whilst the

pert corresponding to .5%1 15 mterlinked only with the primary
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In proctice, the ratio  “3—=—Lo=u

13 known as the leakage cogfliciont, & name given hy J Topkmson. w1~
always greater than unity, and represonts tho ratio hetween the total
flux nnfr the flux @, which is mteilmked with the secondary: ar,
other words, the ratio between the total and tho mseful fnx  The
flux which is only interhinked with one windmg s called sty flus
Both the primary and the secondary have their own stray fluses.

In electromngnetic machimmery, wo have nearly always to deal with
a mamn flux and a stray flux, or with corresponding niagnitndes,
viz the coeffictents of mutnal and of stray mduction. Thus 18 du to
the fact that these fluxes are actually presont m the machine, whilst
the fluxes corresponding to the coefficionts of self-mduction do not us n
rule exist, and consequently are not easy to caleulato. Morcover, the
former method of calculation has the advantage that all machines ean
be analytically replaced by equvalent electne creuits, sinee m the
equivalent encwmts the only constants which oceur are*

= 1

= o =2mcS, and  z,=3meS,,
2weM

s
)
Wy

On the contrary, the reactance 2rcly is not at all confined to ony
eleetric cirenit, but 18 distributed over two cireuts m which different.
curronts flow. Consequontly, with machwes, it is not com cwmont to
work with the reactance due to self-induction

In the case of mamns or other smular circmits however, where hittle
or no ion at all 18 present, the conditions aro different Ilere the
reaction of the currents i neighbourmg conductors s ofton so small
that the stray flux 18 larger than the mam flux In such cnses 1t
best to use t{e coefficients of self-nduction, and estimate as nearly as
possible, by approximate caloulations and oxperiments, the dumphig
offect of secondary currents m the neighbourhood or in the conductors
themselves

When a cirewt 18 wnfluenced by a elosed secondary et m its
neighbourhood, the differential equations (65« and h) nppear m the
following form:

.?’1=’17‘1"“Sllljlil%“‘ﬂ[b'uld_%l

d, ; .
w, 0t +ﬂf(d—;’=111-l+],l[’%1+]"[’1, (te)

dt
P R S AL 7 LT LSS AT L
etoagy My TG =t Lo+ A (65)
Instead of solving these two equations with the unknowns 4 and 4,
each of which would brmf us to a differential equation of the secomdl
degree for 3, alone or 2, nlone, wo may demoustrato the dampmg cflect
of secondary cirowts by the following sumpler considerations
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For the sake of simplicity, assume that the resistances 7, and 7, 1
the equivalent circuits are neghgibly small compared with the

— TS

Fra 120

reactances We then get the circuit shewn m Fig 120 The total
reactance of this eircuit 18

_ 1 2y
e LS ek Ry
=
Z, T,
5 (s
% A N
el 8+ wy  \uwy A )

%(ﬂ[+%s‘2) =2mc (Ll *"1;

Thus the secondary currents reduce the self-induction of the mam
conductor, and the greater the ratio of the mutual mduction to the
self-induction of the secondary conductor, the greater 1s this reduction.
When w, =w,, M 1s always smaller than Z,, and 1if we take, for
example, J/=3L,=}L,, then the total reactance of the main circuit

will be (3)?
z,=2meL, (1 - l,-) =2mcl, 3§,
T

1.6. some 6 % less than when the secondary circuit 18 not present
Taking 1nto account the resistances r; and 7y, and also denoting

@, =2mcLy and ,=2mcL,,
we obtan the total 1mpedance,
%

Ly

Z=2%+ =5+

1
Yat—
~2

o1, neglecting ¢.,, 2,=1, = Jiyy
1n which expression the resstance and reactance are given by the values

9,=1+ ails
7,
G=0y, — 5
“T R+,

Thus the secondary currents 1n neighbouring conductors and the eddy
currents 1 the conductor ibself cause an apparent increase m the

(69)
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reswstance and a decrease m the self-induction of the mamn circmt
This 18 also what one would expect, for example, 1n a round conductor,
the eddy currents are so diregted that at the eentre of the conduetor
they flow against the main current, and at the surface with the maimn
current. Owing to this unsymmetrical distmibution of the current
over the section of the conductor, the losses are of coyrse increased ,
and since at the centre of the conductor—where the self-induction
18 greatest—the current density 1s least, the total selfinduetion of
the conductor will be less than that calculated on the assumption that
no eddies are present We shall shew in Chap XXI how the effect
of the eddy currents on the circuit constants can be calculated

Lastly, 1t may be pomted out that formula (6? shews clearly
that the disturbing influences of the secondary and eddy currents
increase with the frequency of the man current and with the dimen-
stons of the conductor

89. Conversion of Energy in the General Tramsformer. In the
above section we have considered two magnetically-nterlmked electric
crrewts and have seen that the magnetio flux serves to transmit the
energy from one to the other If the primary and secondary circults
are i%xed relatively to one another, the total energy given out by the
Prlmary will be taken in by the secondary, neglecting iron losses.

n many cases, however, the two windings may be capable of motion
relatively to one another

For example, the primary winding may be fixed and the secondary
arranged on a rotating axis in such a way that the magnetic field
18 still linked with both windings This condition 1s obtamed by
placing the secondary winding in slots on the periphery of a laminated
cyhnder and the primary in slots on the inner surface of a coaxial
ring, mside which the cyhinder rotates. In such a machime the inter-
hinkages of the two windings with the rotating field pulsate with
dafferent frequencies ¢, and ¢,.

For the fixed primary winding, the frequency ¢, 18 proportional to
the speed of the rotatng field, while for the moving secondary, ¢, 18
}Jropomona.l to the speed of the flux relative to the rotating winding

n this case the total power given out by the primary will not be taken
in by the secondary.

If, for example, the main flux €, mnduce in the primary an EMF

B, = 4440w, $,1078,
having the frequency ¢,, and mn the secondary an EM ¥
Ey=4 44c,u,8,1078,
having the frequency ¢,
Then the two EM F’s have the ratio

By oy
£ qu
Since 1 this case also the compensating ampeie-turns of the primary
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arrcult must equal the ampere-turns of the secondary eircuit, we must
have m, Lw, =myIw,, where m,; denotes the number of simlar primary
orremts having the turns w,, and m, the number of similar secondary
crrewits having the turns w,  On transposmg, this becomes

w_ Myl
w, my1,
and combimng this with the above ratio of the E.M.¥’s, we get

myligly oy

m B, ¢, o (™0
‘We have here (E,I,)=_r(Ey],)=1,, as m the transformer diagram
(Fl% 119)

'he power taken m by the secondary circuit 18 therefore less than
that given out by the primary, mn the same ratio as the frequency
gfﬁ_the secondary current 18 less than that of the primary. The

111e1ence

(B, 1, —myEy1y) cos i, = 91\2—0371111?11,l cos ¥y
1

between the power given out by the primary and that taken in by the
secoudary must therefore appear m some other form, since energy
cannot be lost This difference does not appear i the form of
electrical but mechanical energy, and 1t 18 thus possible for the
eneral transformer to work also as & motor The power transmitted
rom the primary circut to the magnetic circwit therefore appears
partly as electrical power 1 the secondary ecwcwit and partly as
mechanical power. 'Bhe former (the electrical) part 18 proportional to

G=%_1_%
a o’
1.6. proportional to the velocity with which the secondary circuit
lags behind the primary, whilst the latter (the mechamcal) part 18
proportional to the velocity % ynth which the secondary crcuit is cut
by the main flux. o

Putting g =5y,
Wo
then Ez=sw—':’151, . (71)

or, with the same number of turns on the primary as on the secon-

dary,1e w, =w,

’ Y FBy=sE, (71a)
Assumng further that the number of primary and secondary circuits
18 the same, 18 7, =my, then

L=1,

E, sE ,
and ¢;=T:=ST:=%, (72)
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where 2, denotes the 1mpedance of the secondary circwt reduced to the
primary  Further, let z, denote the reactance of the secondary
cireuit at frequency ¢,, then

#=1g=J z’x3=1,—ng
1
Hence A=A T,
s s s 2
We may therefore replace the general transformer with relatively
movable primary and secondary circmits by an equivalent electric
arrewt (Fig 121), for, by reducing the secondary frequency to that

G Ty G Xy
-

R0 -4

Fra 131 —Equivalant Circult of the General Trensformer

of the primary, the contmuty of the transmission of energy remams
In the equivalent scheme, the power given out by the primary 1s
n2ar By, =15 0y,
Since, however, only the power  7,=I3*
appears 1n the secondary circuit as electric energy, the difference

;1/;=1:%_1:q,=1315@_1) (13)

must appear m the form of mechanical energy. To absorb an amount
of electrical power corresponding to the motor effect of the gencral
transformer, we may therefore employ a resstance m the secondary
circurt of the equivalent diagram, having the value

1s(% - 1) ohms. (78a)

Ths 1, of course, a completely non-nductive load  Hence, 1n spite
of the mutual cisplacement of the primary and secondary windings, wo
can represent the general transformer by a smple equivalent electric
cireurt, whose frequency and piessure are those of the primary, whilst
all the formulae deduced for the equivalent ciremt hold also for the
general transformer The ratio of conversion of the pressuies,
assuming the same frequency n both secondary and prunary, 1s

- B M
* E, w,
whlst the ratio of conversion of the currents 1s
I, mgw,
= 1,7 mguy’
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EN_E 1 K
and since (T,)‘de ATy Al

the ratio of conversion of the impedances 18

2

”.7‘:=mw;!

L
where w; and w, denote the number of effective primary and secoudary
turns

(74)

Fra 122.—Induction Motor,

The ordinary form of the general transformer 1s the asynchronous
motor, which cousists of a stationary laminated core, or stator, on
which the primary 18 wound, and a 1otating laminated core, or rotor,
which cairies the secondary windings  The two windings a16 embodded
1n slots 1 their cores and he directly opposite to one another, and as
near to the surface as possible so as to reduce the stray flux to a
mummum  Fig 122 shews the photograph of a modern nduction
motor, with the bearing shield removed
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Ezample  For P, =500 volts,
7, =15=1 ohm,
#; =5 ohms,
2,=2 5 ohms,
=0 002 mho,
b, =001 mho,
 the curves i Figs 123 and & have been plotted for the following
powers as functions of the slip s.
- KW

\
slip -; - - - ) ]
p 1u\q\fﬂ 44 42 ‘V df é a8 ﬂ!’ s 7
i

N

— N e
Fia 128a,
- The power supplied to the primary Wy=PI, cos ¢,.
. The primary copper loss Vi=I
The 1ron losses V,=E%,.
The power transferred to the secondary
W=w,-V,- Ve=El,cos,
- The secondary copper loss ¥, =I%,

6. The mechancal power W,=I§19(-sl--1>= w(l-s).

W0 L9

ot
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In Fig. 1235 the scale of the abscissa axis has been ncreased, 1
order to shew the curves more clearly n the neighbourhood of
synchronism.
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Fio 1928

As seen from these figures, the general transformer works as
motor between s=0 and s=1, 1e between rest and the speed at
which no EMF’s are induced m the rotor circuits This speed
(1e 5=0) 18 called the synchronous speed, being that speed at which
the secondary circutt 1s at rest relatively to the mamn flux, as the rotor
rotates synclmonously with the mam flux s 1s called the slyp, since
this ratio shews how much the secondary slips relatively to the man
flux,

From s=0 in the nogative direction the geneial transformer works
as a generator and supplies electrical energy to the mamns, and from
s=1m the positive direction 1t works as an electric brake, receving
both electrical and mechanical power, both of which are dissipated 1n
the transformer
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40, Transmission of Power over Lines contaming Capacity. For
transmitting alternating-current over long distances, overhead lines are
usually employed. The capacity
effects of such lmes are compara-
tively small, except at very high
7 pressures  Often, however, the
ba % current must be taken along cables
UTJ laxd 1 the earth over parts where
v overhead w1 es cannot be used, and
the capacity of these sections has
to be conmdered. A simple and
approximate calculation of the capacity effects i all such cases can be
obtained by assuming the total capacity of the conductors and cables
to be concentrated at the centre of gravity of the distributed capacity
‘We thus get the equivalent cirewmt shewn in Fig. 124, which can be
treated mn the same way as the circuit described in Chap VII By
way of example, we shall here consider the case where the load
current at the receiving end of the lme 18 chiefly used for driving
mnduction motors The current vector will then move over a curve
which will be approximately a circle when all the motors are uniformly
loaded  Let t.gus circle be represented by K, mn Fig 125 and the
power line by ;% -
By inversion of this eircle, we get the load impedance z,. To this
add the 1mpedance z,, and then a second nversion gives the admittance
¢, which 18 m parallel with g,. After adding y, and a further

Fu 124
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Inversion, we geb the impedance #, which 18 1n series with z,  Lastly,
by adding 2, to # and once more mverting, we get the load current m
the sup %y circmt, which 1s represented by the crcle X' All the
loss audp power lmes can be now drawn, but 1t will here suffice 1f

we merely shew the line PP, for the total losses and the resultant
power line PPy, from which the efficiency and maximum power of the
gystem can be obtained.

41, Oondenser Transformers In 1891 Boucherof proposed to use
condensers to transform from a constant pressure to a constant current
or vice versa Such transformers—known as condenser transformers—
were employed by Boucherot for series circuits—for example, for
tunnels or gardens lighted by arc-lamps or incandescent lamps
ser1es, 1n which cases this system can be used with advantage

Three systems proposed by Boucherot are shewn in Figs 126a-c
They are all for the same purpose, viz for obtamning a constant current
in the load circuit 4B independently of the load, when the supply

ressure P, 18 constant Conmdermg first the scheme shewn 1in

g 126a, we have 7 5

I - =
TR

N

and the total current

1,=1,,+12=E( ! +L)
To—JTy )%
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The supply pressure is therefore

1,
P1=E_1ﬂz,=E(1-g%2—%)

or .,P,=E(1-Tﬁ)—jzlfﬂ.

Choosing the reactances #, and z, equal, then the current in the receiver

errewt will be P P.

I=3=1 or [,=71
o z

That 18, with constant supply presswe P, the current I, mn the load
owreutt 18 constant, and 18 thus mdependent of the Joad resistance

, 2 B
' 1

B
——
H
7 j ot
¥ Z
r-—-..—,,_J
5 4. Ik 5 :

3

Tio 1260 Fia 1200

Fro 120¢

The total current 7, 18

1 1
4 =E<7z = J%; +-7?1>'

but E=1"lBp
-
79—, PP
hence II=ET:”J’1+]ZJ=:—L%{T,,—1(%—::,)}
b VA 5
or 1=V (@ 2)
Thus the total current 13 & mimmum when 2z,=2, In this case
L = *}ﬁ = P-{?

o5

When the load circuit is open (1e. noload) ry=c, and I; will
therefore be infinite , whilst when the load resstance 18 short-cireuted,
(1e 7,=0), ;=0 In other words, no-load n the load eircuit acts as a
short-circwit to the supply terminals, and conversely, short-circwit m



CONDENSER TRANSFORMERS 127

the load circuit acts as no-load to the supply ciremt  For this reason,
care must be taken that the ewcwt 18 not broken when a lamp 18
extingmshed This 1s effected by connecting choking coils 1 parallel
with the lamps, or by usng a small transformer for each lamp In
the latter case all danger of short-circuit 1s removed

Of the different schemes given above, that m Fig 126¢ 18 the best,
since here the ourrent I, 18 zero when the load cirewt 18 short-ciremted

(2,=0), mstead of J; ==1, as 1n the other two cases.

Recently the condenser transformer has also been used for producn,
pulsations of high pressure and frequency. If, for example, a pat
contaming mductance, resistance and a spark-gap
18 placed 1n parallel with the condenser (Fig 137), "
electric pulsations will be set up, provided the
self-induction L, 18 made large enough compared
with the resistance 2, When an alternating
pressure P, 18 applied at the supply terminals, a 4
large pressure will be set up across the gap and —
will give rise to a spark  The pressure then
falls 1mmediately, and the spark 1s extinguished 4
by the msing air warmed by iteelf. This, how-
ever, 18 scarcely completed when the pressure
again rises and produces a further spark In
this manner, sparking will continue, and the -
frequency c¢,—which only depends on the con-
stants of the receiver circmit—will be found to be the natural
frequency of the circwt, viz

=k \/_1__( 1y )’

*=2rV L0, \2L,
This frequency 15 almost mvariably much greater than that of the
applied pressure The oscillations m the recerver circuit produce
similar oscillations 1 the supply cirowit also. When the natural
frequency 13 much greater than that of the supply pressure, the oseilla-
tions disappear during the time the condenser 1s discharged

S8

-~

o—
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42, Transmission of Power over Lines contawning Distributed
Capacity. We now come to the most general case of the transmission
of power by alternating-currents We commence by considering the
physieal occurrences 1n the conductors and m neighbouring bodies

Let a constant alternating EMF act at the supply teiminals of a
long two-wire system used for the transmission of a smgle-phase
alternating current to the receiver eircwit which contains the load.
At any instant, every point m the line will have 1ts own defimte
potential. Regard the earth as having zero potential In aider to
give the lne 1ts potential, a certamn charging current 1s necessary,
and, since there are both conductors and dielectrics 1 the electro-
static field due to the line-potential, this charging curient will be
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dependent on the constants of these bodies, and may be quite con-
siderable. Moicover, eveiy conductor has imperfections 1n_1ts
nsulation, through which a quantity of electricity proportional to
the potential difference passes ~To this latter, we must also add the
escape of electricity into the mir—known as “silent or glow discharge”
(corona).

This potential—which varios from pomt to point along the lne—
requires a current dus to which an electromagnetic field 18 formed
around the conductor Moreover, this current 1s not constant at
every section of the conductor, but varies according to the quantity
of electricity required for charging, for imsulation leakage and for
discharge mto the air

The above, howaver, apphes only to what happens at any particular
mstant, for the apphied E M F: is not constant, but 18 a function of the
time  For the time boing, assume that the pulsating T M.F. follows a
sne law.

BotH' the electrostatic and the clectromagnetic fields vary with tho
time Owmng to the pulsation of the electrostatic field, energy 1s
consumed 1 the manlating media This causes a loss-current, which
18 10 phase with the potenfial difference at the respective pont  The
Sresence of forexgn bodies 1n the field causes an 1ncrease in theso

hsplacement currents, to this also helongs cleetiostatic influence The

displacement currents can be resolved into two components, one of
which 15 1 phase with the difference of potentinl, and the othor dis-
placed 90° from 1t.

The alternating electromagnetic field mduces EM F.’s both n the
line 1tself and 1n outside conductors. The & F’s induced 1 the line,
16 the EMF.’s of self-induction, can, under certamn conditions, cause
an_unequal cistrihution of the current over the cross-section, which
will cause an ncreaso in the ohmic resstance of the hine (shun-cflect)
The closed conductors lymg 1 the electromagnetic field act as trans-
former secondaries with the transmission line as primary Hence n
the closed secondaries current will flow which will react on the mamn
conductor (mutual induction).

These EM.F’s of mutual induction can also ho resolved mnto an
energy component in phase with the current, and an 1dle component
at 90" to the same Tho latter component decreases the appazent
self-mduction of the me Eddy currents can also be added to the
currents in adjacent conduotors

The electromagnetic field produces losses 1n magnetic bodies due to
hysteresis, these losses can be approximately allowed for by an
inerease 1n the ohmic reswstance, smce the field strength 18 nearly
pr(]):gortional to the current, so long as the field 1s weak.

Fig 128 shews a two-wiro transmssion schemo, reprosentng the
effects that have just been discussed above

Wo now malke the assumption, without which calenlation 18 dufficult,
that the conductor 18 umform, so that the constants of tho conductor
per umt length can be given. The caleulation of these constants 18
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complicated and 1nexact, since they depend on the frequency, the
pressure and the atmospheric conditions

Franke* and Breisigt have shewn, however, how these constants
can be determmed by simple measurements A conductor can be
repr d by four t which we may suppose to have been
experimentally determined

Since these measurements and calculations must serve as the foun-
dation m workmg out new mstallations, we shall briefly summarise
them here, and shew the influence which the constants exert

7, denotes the equivalent ohmic resstance per lalometre by which
the current / must be multiphed m order to obtain the pressure in
phase with the current This pressure drop 18 due to the ohmic
resistance of the lne and the watt components of the pressures
nduced by the resultant electromagnetic field

2, denotes the equivalent reactance per kilometre by which the
current J must be multiphed 1n order to obtamn the EMF’s which
the current leads by 90° These EM F’s are the wattless components
of the £ M ¥ ’s induced by the resultant electromagnetic field

“h :
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¢, denotes the equivalent conductance per kilometre by which the
pressure P must be multiphed 1n order to get the currents in phase
with the pressure These ourrents are due to the losses in the
msulation and the air, and to the watt components of the displace-
ment currents induced by the electrostatio field

b, denotes the equivalent susceptance per lalometre by which the
ressure > must be multiplied, 1n order to get the currents which
ag 90° behind the pressure These currents are the wattless com-
ponents of the displ t currents nduced by the resultant
electrostatic field

Wniting symbolically, we get

2= (1= )22y,
%=(g -0,
where /, 18 the single length of the hne in kilometres
Let tile pressure at the receiver terminals be

Py=Py/28m ot,

and the constants of the e and load, 16 g, and by, be given, we
can then calculate the pressure, the current and their phase displacement

*E T Z 1891, Heft 36 +E T Z 1899, Heft 10,
A0 1
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at any pomt m the lme When this 18 done, we shall he able to
find the load on the supply station i

At a pont P distant | from the receiver station, wo huve a pressuie
p=P/Ism (vt +) and a current ¢+=I,/2 sim(wi+y - ¢) .

Smee the sinusoidal termimal pressure, undet steady conditions,
always produces smusoidal currents and prossures thronghout the
whole system, 1t 18 not necessary to deal with momentary values m
this_case, so that, for the sake of mmplety, we will mtradnee ﬂu'-
symbolie expressions P and 7 and use these for the prelmnnary
calculations In the formulae deduced, we can then return to the
instantaneous values, where these asaist in explaimng the same.

Let I be negative when taken 1 the direetion of tho flow of eneruy,
and positive when taken 1n the opposite chrcetion , thei, in the element
dl of the conductor, the 1necase of current 18

ar_ o

=pb el
d.I—_Pllcll or o Pll
Further, the wmeease of presswe m the conductor-clement d/ due to

the current 7 is . ar e
=] Ry S
d.P—Il1 dl or al ]l,

By differentiating these two equations, we got

@wTanT e | . (75)

&P dlz %

and @B =ary,~F

These two equations are homogenaeous lmear differcntial ecuations
of the second order, and their indefimite ntegrals are

—1 —
P=4EVJ‘FJH+B€‘VMML
Ne( , Viml  viml
and I= '\/gf(zie "L Be m-"h),
3

where 4 and B are the constants of integration  These can bo doter
mied thus

At i=0, P=P, and /=7,
Substituting these in the above
Py=4+B

and Ryt -3,
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P+ 1, \/%‘
T
or = 9
P, —I,\/”—“
and B= o v,
Hence

ml vl (vt vt
p=3p, (™n “”"“tx)+y“/§‘.(e G VEE) L L(16)
y .

vt o sl  -vimat
and  1=3,(0y ) P, ‘/ng (5o _ ) o)

Substituting, for the sake of brevity,
C=i(€“”7‘—’_"+5'4/?/‘—“‘),
we can now measure the values of P, and I; ab the supply teiminals,
where =1, for the following two cases as suggested by 4 Frai

(1) At no-load, 1e. the recever terminals are open and the current
I, m the receiver circurt 18 zero,

I, Y €~/m_=';_5_{§_’—f;
P_m=%= ;u /w4 eV

¥ ean be called the apparent admittance of the conductor. Further,
the pressure at the receiver terminals at no-load 1s

P,
Pz=%’ . . e (78)

(2) At short-cucurt, 10 the resstance and therefore the pressuie
between the recerver terminals 1s zeio, 1€

P,=0
and I, e €00 — e~ Via '
P TNy, eVimiy -Vira

2 may be called the apparent impedance of the conductor. The short-
ercuit current at the receiver terminals 18

n=be . (19)

By the division and multipheation of z; and g,, we get
2 _ %

and zgy=1- (80)
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Then, by introdueing C, g, and z,, we get the equations for the
supply pressure and current

Py=C(Py+2cly)=CPy(l — £xp) +2e ]y

= %’ +2cl, . . (81)
and £y =C(Zy +yoPs) = CI(1 - 5x4,) + 9Py

= % +9P1, - . (82)
or Py=0(P,-%1,) } ] 83)
and I=C(I, - 4P

Since these equations hold 1n general for the pressures and currents
1 any particular part of the conductor, and the constants C, g, and =,
of this part are independent of anything that lhes beyond 1its limits,
1t will Ee seen that the equations are sufficient for calculating the
electrio conditions at any part of the line.

It 15 sufficient therefore to know the constanis 14, %, sy b or C, Yy, 2 and
the electrc condstons at any powmt of the conductor, mn order to be able to

lewlate the electric condutons for amy other pomi of the conductor The
three characteristic magmtudes of the conductor C, g, and z, are de-
termined by the short-circmit and no-load experiments.

The calculation of these three quantities can then be carred out

either graphically or analytically In both cases we start from &
We have

VP = ¢/ G-I ra-fraly = (AT
‘Working out the root, we get
AR — =iy = bftay
2Ap=giza+bpa
and Mt =N (gh + B) (r 4 23,
from which we get the following expressions for A and p
A=V @+ B0 +2) + (022} }

and BN+ B) (12 +28) - (904 — ba)}

The quantaties A and p depend only on the electric properties of the
hine per unit length and the frequency, and for a system with umform
conductors can be calculated once for all

Since b, 18 & capacity susceptance and y;= (g, ~b,)],, then b, 18 always
positive  p, whose sign 18 determined by the product 2Au, will then
also be positive as a

(84)



TRANSMISSION OF POWER 133

In caleulating the phenomena m long conductors, 1t is also useful
to know the following ratio

b Jyl‘—Jﬁ - \/Eﬁli(Wu-Wr),
S 24€ —jda N

where y, 18 a positive angle.

43, Owrrent and Pressure Distrbution in Lines with Umformly
Distributed Capacity. By means of the constauts A and g, the valuo
of the current and pressure along the line can also be calculated For
this, 1t 15 best to start from the equations

f—1 —1
P=de m"u,;_'_BE“/'/z“url

AT, pe-B-d
_ ., .
and I= '\/lﬁ( Ae‘/y’-:‘”_l _Be Vo)
%

= ﬁ(AE(A-JM)l _ BE-O\-JM)‘)’
R
and use the transformation
et _ M T _ EM gog (ul 7 810 pul)

We then get the following expressions for the pressure and cuirent at
any pont 1n the line

P=(4+ BeM)cos pul —j (A — Be~*)gin pl

and I= Eﬁ{(Ag\’_Bg‘”)cosp.l—j(z_le"‘+ﬂs'”)slnftl}
%a
The two constants 4 and B represent pressure vectows, and can
be written —
P2,
4= V'l 2 P etba
i 2
Py-af21,
and _B= 5 ¥ =PBENB,

Substituting these expressions mn the equations for > and 7, we get
P P d0-amtiby g, P~ (midliobs

= P‘s’\le =20l =) 4 PBE-AZE"("H‘V’E)

and I= ‘/gf: (P hmamlitoby _ P o= Ol o)

= \/ Ui ( P eMemTlul=bamMba= ) _ P Nllkbtbptithg -4l
N :
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Turnming now fiom the symbohe expressions to the momentary values,
the pressure will be
p=P,sm(ob +pl - ) + PreVam (b — pl — )
and the eurrent

1=P, ,\/Z{—:: Msinfwt+pl - 0 - (g~ )]

Y
= Panf 2 Moot - pl - - Hha= 0]
These equations shew that at any mstant both p and s vary along
the conductor after a sine wave If we consider the momentary values
at the end of the line and at a distance = from the end, 1t will be seen

that these have opposite values This shews that, 1n very lt;ng con-
ductors, at different pomnts the pressures oppose one another and the
currents flow 1n opposite di ections,
9.
Since the curients and pressures at pomts along the lme I==-

apart have the same phase, the length of the current and pressure
9.
waves is =~  From tlus 1t 16 fuither seen that the waves require a

® 9
complete period ( T= %) to tiaverse the distance —, and smce the
frequency 18 ¢ cycles per second, the speed at which the wave travels 18
omc w

P=—=—

B

Hence the cmients and pressures m long lmes travel at fimte
veloeities which depend only on the constants of the line

If we neglect the losses m the line, i e. put g,=0 and 7,=0, we have

p=nbg;=2rcN L,C;,

and the speed at which the waves travel will be

where L, and C, represent the self-induction and capacity of the lme
per kilometre
As will be seen later on, the speed at which the electric waves travel
along a conductor approaches the velocity of h%ht, w1z 300,000 km/sec
Thus the current and pressure waves pass along a long transmission
lne of 100 km m 1/3000 sec, 1e with a frequency of 50, durmg

30%_0=%) cycle, which corresponds to a phase displacement of 6°

between the momentary values at the two ends
The expressions for p and 2 are made up of two parts, one of which
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creases with the distance ! from the receiver termimals, whilst the
other decreases 1n the same direction

The phase displacement between these two waves at a pomnt along
the hine 18 ¥, — ¥, +2ul, 16. 1t 1ncreases with the distance from the
recelver terminals,

The second wave, therefore, can be regarded as the reflection of
the first wave, the pomt of reflection lying beyond the recerver
termmnals The second wave lags ¥, — ¢, more behind the first than
the lag corresponding to the time during which the wave travels from
the point m1 question to the recerver terminals and back.

It 18 also imteresting to note that the resultant pressure wave is
formed from the sum of the outgoing and the reflected pressure waves,
whlst the resultant current wave equals the difference between the
outgoing and reflected current waves

This 18 also clear, for at any pomt 1n the lme the pressures must
add, whilst the ourrent must be the difference between that flowing
towards the recerver terminals and the reflected current flowing back
to the generator

In addition, each current wave lags }(y,— ;) mn phase behind the
pressure wave producing 1t

Since the two separate waves move along the conductor like waves
on the surface of water, they can be regarded as progrsssive waves,
while the resultant waves are similar i character to a stationary wave,

(@) In the special case where the recewwer terminals are open and the line

losses neglgible, A=0, p=2re/IT,
P,
I,=0, P‘=P,,=?’l=4§P2

and ﬁ-«ﬂl’i: g,
2 VT L,

thus, at any pomnt in the line,
p=4Pysin(wt+ pl) + }Pysm (wf — pl) = Py s1n wf cos pl

C, . C,

d 1=}Paf 1 + ul) —sin (at - pl)] = P, S cos wtsm ul,
and 1=3}P, IId[sm(m + pl) — sin (wt — pl)] 2»\Z:emau: 81N pi
whence follows I=P, }% tan pl

‘d

In this special case, therefore, the resultant current and pressure
waves possess the same properties as stationary waves with nodes and
1oops well known 1n acoustics At the points

9.
1=o, T, 2 Sm ot
Kopopop
the current 1s always zero, whilst between these pomnts 1t pulsates
between & maxmum and mmimum At the first pomnts we have
nodes, at the others loops of the current wave

3
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The pressure wave which leads the current wave by 90° both in
3r b

space and time has 1ts nodes at the posibions l_%-l’, ?%:, §7—}:, , and 1t8

loops at =0, 7, 27 37

ow

b5
If the length of the line 18 /; =g 18 Fig. 129, then n this special
case, whete A=0 and I, 1s zero, no apphied pressure 18 necessary to

i P
7 7

Fia 120

produce large current and pressure wavos m the line, & condition
we have already denoted as 7 esswi ¢ 1esonance
It may also be mentioned that the ratio of the current to the

[%
pressure waves 15 the seme everywhero, viz. \/ L3

(b) We will also consider the opposite case to no—loa,d 1 the recerver
cireuit, namely that 1 which the reccwer fermmals are shob-cn custed and
the Tune losses nieg ghgible

A=0, p=2r/L0, P,=0,

1
Py=-P, "“\/;: Is,

hence =1, cos wism pl,

’L=Igsmult(}08[1[
and P=I.\/[—',fhmn,ul
G

In this case also we get & stationary wave, as shewn m Fig, 130,

1r21r 3

1 which the current loops occur at {=0, - etc, and the

3w br b o p
pressure loops at l=:~, 5 5 ote  For a conductor whose length 18
2 2w 2

¢ of the wavelength, no current will flow in the short-circwited
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conductor even with a large applied pressure at the termmals This
condtion corresponds to cur ent-1esonance

From the above 1t follows that statonary waves can only be poduced
with the 1ecewer cucut ether open o shovtcirowsied and megligible line
losscs  When one of these conditions 1s not fulfilled, the current and
pressure waves travel along the conductor at & speed approachmng that
of hght,n a vacuum

1th normal loads, therefore, 1t 18 best to deal with the outgoing and

reflected waves, and from the ratio between the amphtudes of these
two waves at the recewver termnals and therr phase displacement
(¥ — V), caleulate tho current and pressure waves over the whole line
At the recerver terminals, where /=0, the relation between the ampli-
tudes of the reflected and outgoing waves 1s

'-Ps_ ?“Is
WPy jy-ug

P, ‘P2+\/g;12 P,
g

or = 5 Loos(ha = ) +s (Yo~ )]

The formula shews also that the reflection 1s only complete when
P,=+P,and ¢,=1),, which 15 only the case at no-load or short-circuit

I z

Fro 180,

The kind of reflection under normal conditions depends both on the
load at the receiver termmals and on the line constants

For the case when the ratio of the remstance of the line to the
gelf.anduction 1s the same as that of the conduct to the capacity,

1e when "¢=%, then
Tz b,

Such a line 18 by 0. Heawsude termed daslorbwonless.
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Supposs, further, the load 1n the receiver circurt 18 non-inductive, then

FB"" L—‘ and Yy=y,=vp=0
© PrLag
T

Under these conditions, the outgoing waves are reflacted at the same
angle as they arrive at the receiver terminals The reflected waves
are weaker, however, the greater the load, and vamsh entirely when

-P:CL=I:L¢|

that 18, when the electrostatic energy due to the receiver pressure

equals the electromagnetic energy due to the recewer current and
stored around the Ime For this
special case where the reflected
wave vanishes,

= (P5+ Ia\/%,‘:)c” g (wb + pl),

1= (12+ P, ,\/g‘;)e“sm (wt + ul)

f I

z p B ING_

A and 7= i=NT

E i . Tomelins L+P, Zi 4
4 ﬂ @

[ It follows further that the angle
of phase displacement betwaen
ourrent and pressure is zero, 1e
cosp=1, at every pomt in the
lime, which distingmishes the pro-
gressive wave In the circuit free

V3 from disturbance from the station-

4 ary wave  We also see that the
phase displacement chiefly depends

on the phase difference 1 the

receiver cirowt and to a much less

extent on the relation between

the electrostatic and the electro-

magnetic energy stored 1n the fields

around the conductors at a given

Fic 181 load  If these two quantities of

energy are kept equal, the phase

displacement between the receiver station and the generator station
will not change much If the electrostatic energy preponderates, the
phase displacement will be less, and vice versa when tge electromagnetic
energy 1s the greater In designing long lines, therefore, 1t 18 necessary
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to see that these two quantities of energy are such as to give the
best conditions of working In Chap IX we shall see that the
efficiency of such a transmission line 18 highest when Pog,= I3, that 1s,
when the no-load losses with normal receiver pressure equal the short-

=

=

=2

<

Fio 182

cireurt losses with normal receiver current, and this 18 the case when,
as above, the power factor throughout the line 18 umty

In Fig 131 the values of I and P are set off both 1 magnitude and
direction along the polar co-ordinates for a power transmission line
with abnormal conditions The plotted pomnts correspond to ul =15
The pressure P, at the end of the line comncides with tl]ie ordinate axis
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The vector I, lags ¢, behind P, By projecting the radi-vectores of
thesc two curves on to the rotating time-line, we get the momentary
values of the pressures and curvents at overy point along the lme
These instantaneous values are represented m l?lg. 132 as functions
of the length of the hne for six different 1nstants of time taken 'y of a
complete period from one another.

From these curves it 1s clearly seen that the pressure and current
vary after a sme law along the lne, and at the same time we see how
the pressure and current waves progress along the line

44, Transmssion of Energy over Quarter- and Half-wave Lines.
We have just seen that very long lines with neghgibly small lino
losses have certain pecularities 'ﬁ:e current and pressure waves are
stationary when the receiver termmals are either short-circuited or
open We will now see how these lines behave when lne losses are
present

Quarter-wave Thansmission Lme We will first consider a line whoso
length 18 a quarter of the wavelength of the current and pressurc
waves. Such a line we can call a quarter-wave transmission line

Then A T

whilst A 18 not zero.
It then follows

£ =dpl) _ ENg (cos ply g 10 wly) =jEiM,’
and the constant (' of the line will he

(=gl ~-dh Al =Al
¢="* te =y ¢ +€—=—sm(]>\ll),
N 2 2
o Xl _ = -Jnh
whilst Corg=al=2
% 2
- Jijg Ly
w2
=~ \[Hicos g\
NELIZS
A =gy _ = =Ju, m
and Cyp= \/g' € ' : e ,\/@j cos (A1)
S 2 %

The pressure and current at the supply terminals will then be,
from equations 81 and 82,

Py=CPy+ Coply= — Pysin (9Ah) - ]1,\/;« co0s (A1)
T

and 1, = CLy+ Oy Py= — Iysn (7M,) — 3Py o | Yicos (JAL,).
%
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From this 1t 1s easy to see the influence of the load i the receiver
cirewtt and that of the lne losses on the load in the supply ciremt
If we put, for example, A=0, by making the line losses neghgible, then

% L,
P1=_112\/7j= ‘]Ia'\/g:!
Iy=—)Py :l= -15P, G

~3 Lﬂ

P, _ I L,
I, P Fx

Such a line therefore behaves like Boucherot’s condenser transformer,
converting a constant pressure mto a constant current, and conversely
Thus 1if we wish to increase the current in the receiver circuit, the
supply pressure must be raised, whilst 1f the receiver pressure 18 to be
raised, the current 1n the supply cireuit must be increased accordingly.
Since no losses oceur 1n the line, the supplied energy equals the recerved
energy, and smce, further, P,/ = — Pyls, the phase displacement n the
supply station equals that in the recerver station

xamining the effect of the lme losses on the load 1n the supply

station, these ocecur 1n the first two terms of the expressions for
Py and I}, viz in

and

Pysin gAl) and  Iysin (JAL).

Since AJ; 18 comparatively small, the sine can be replaced by the a.nﬁla,
and we get for the two loss components, PyjAl; and JyjM,  The e
losses are thus directly proportional to Alj, a quantity which can be
calculated as follows

A, A
=1yl ==
Ay A “y r2

Since QA =g@s+bia
and 2 = by,
then 2 ~tay %
wom b
(a9
Thus M= 1 (1¢+ b,)’

where b, 18 to be taken as positive Since we also put cos(JAL)=1,

then Py=y [Pz£<£+%'>+12 \/%]
and I‘=]I:I’§(;_:+%:)+'P’ \/%l]
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If the load in the receiver circuit 18 non-nductive, which 18 best in
z I@
such long transmission lines, and we ta.ke Ta_J 17, then s and
the phase displacement at the supply sl;a.tlon wﬂl thus be zem also,
1.e cos$=11n both the supply a.ng recerver stations

1000Filts /q;’r
qaSFR—_ T as / > 2
[ Julvanys
IR A G
® L »

N

\\

\
N\

»
e .
A
LA
” F » 0 .mn;ﬂf

2
Fia 183,—Load Ourves of a Quarter wave Transmisslon Line

In Fig. 133, the load curves of the supply and recewver stations of a
quarter-wave tranam]sslon line are shewn for constant receiver pressure,
and cos ¢ =

The xup}ﬂy pl‘essute mcreases rapidly along a straight lne with
mereasing load, whilst the supply current only increases slightly, but
also along a stmlght lime. The 1ncrease 1 current serves to cover the
line losses as they increase with the load This method of transms-
sion has recently heen fully treated by Stesmmetz, who 1illustrated 1ts
practical value for very long hnes. At 50 cycles, the length of the
transmission by means of the quarter-wave line 18 about

300000
£ % 50 =1500 km,
Halfwave Transmssion Lme Here the length of the lne equals
half & wave-length, 10 ply =,

whilst A 18 not zero.
It then follows that

Ol _ M

‘iu'(cos phyysnph)= -
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The hne constant 1s then

M-ty ~(-jwh A, AL
€ +e €'te
= 9 =- 9 = —cos(Aly),
A=)l —(A-Jpt
whilst (;'z‘r=\/ﬂE e '
s 2
_ \/Z Mi_ M
7
=) \/i" sin (JA;)
%
and 0o =1 AL am A1)

The pressure and current at the supply terminals are, accordingly,
=CPy + Cacly
= — Pycos (JAl,) +41, Za . on UM,
and 1,=CL+ Uy Py
= — Lcos (JAl,) +) P, gsm (5]

If the line losses were neghgible, 1.6 A =0, then we should have
P=-P, and I)=-1,
Consequently, the line behaves under steady working condations like

a lime y 1g 10 T nduct: or capacity Taling the
line losses into accounb and making the same agsumptions as above,
cos (JAl) =1
and a1 (JA) = gA =) ( g‘)
T

then =-Py- /\/§ ( .‘7:>

,1/1-4 z: b
and Li=-1,-P, ( + g')

zd 2z, b
which are quite obvious. At 50 cycles, the length of a half-wave liwe

18 about 320205%0 =3000 km The current and pressure vectors in

Fig 131 correspond to a half-wave transmission lmne where the
electrostatic energy predominates The current in the receiver circurt
lags, whilst that in the supply eircwt leads The losses i this line
are chosen unduly large, as clearly seen from the relation between
I,P,and I, P,
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45. Equvalent Circwit of & Power Transmission Scheme containing
Umniformly Distributed Capacity in the Line.

Fust Form of Equwalent Cucust  In Section 40, the total capacity mn
the hine was replaced by a capacity concentrated at the centre of
gravity We shall now shew that this 15 allowable i the case of a
uniform conductor, provided the capacity and the imped of the
equvalent cireurt are properly chosen.

~=—1000001 T
. e IL %5 .
. u-‘;'l"” 4.

Pro 184 .

Conader the circuit m Fig 134—we have the following equations
2C
1, =yoc(-.Pn +Izl _‘j‘@)
YoxC®
and 11=Iu+12=("yops+.12m+12’
or I, =C(Zy+ Pyyy)
Simlarly for the supply pressure *

2:C 20
+hpthre

2.0 ZK%C 202
) = ’+I“’1+0’+P"1+C’ I’1+0”

P=P,

or, putting 2zy,=1- 67”
Py=C(Py+ Iyzg)

Thus we get the same equations for the cirewt 1 Fig 134 as for
the uniform power transmission line with umformly distributed capacity
t;f equations (81) and (82)), and the effects of the latter can nearly

be simply deduced from the equivalent eircmt

The admittance g, of the equivalent ciremit 18

=(}%=QJ&(?/;'T‘—£-‘/E) (85)
%
and the mmpedance » is
JE«(;@ — V)
Cog Y%

RO, i, v e )

z=
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Second Form of Equwalent Circwst  The equivalent eircurt Just deduced
has the form of a three-phase star, as we shall see n Chap XVIL It
18 shewn there that every star-system can be reduced to an equivalent
mesh-system. Such a mesh-system 18 shewn m Fig. 135, Every

7=0Z

] 43747y
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umiform transmission line, therefore, can be replaced by a ciremt like
that in Fig 1356 The three hranches of this circuit have the constants

=02z,
C
Yo=VYa= ﬁ-_C’”"‘

To prove this we derive the following equations for the equivalent
eiroult
Il=IB+PE_.7/n+ [(12+Pg!/n)5+Pi]Vo

=Iy(1+24,) + Pay(2 +20a)

2
Here 1+ey.=1+22% l_i_a

(see eq 80, p 131)

Hence we have

L=Cly+(1+ ) Pyy,= C(L+ Piy,)
Similarly, for the supply pressure
Py=Py+ (I + Poya)z
=COPy+ Lz =C(Py+ Ly2s)

Wo thus get the same equations (81 and 82) for this circuit as those
deduced for the tiansmission line The following formulae serve to
determine the coustants of this equivalent eircmt

z=C:,=§J§((VE—s—1ﬂ), ’
% \‘

,\/y;’(e‘\/!E - (‘/’F) ¢ (87)
I
Va=13oh= g4y VTR
where, as before from eq 80,
oo

1-2g7
A0, R
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From this equivalent circuit, we see that every uniform transuns?ml‘
hne with inductance, resistance and capacity behaves hke a ll;j
p ng only and T provided that two equ
capacities are assumed to be mn paralldl with the load and the
generators respectively

If the current diagram of the load for such o lne 18 given
for a defimte P,, we must first add the constant current Py, to
the load current and mvert the current curve thus obtamed by the
rules already given, and then add the mmpedance # By a further
inversion and addmng the current 511_1/,‘, the diagram for the cm‘rm!t
at the supply terminals 1s obtained for a constant supply prosaure
P, One advantage of this equivalent eircuit over that deduced
above 18 due to the fact that only two mversions mio required
for the current diagram, whilst four are necessary m the other
On the other hand, 1f we have to find the pressure ciagram of
the generators from the load pressure chagram, the first form 18
preferable

- 46 Umiformly Distributed Capactby in Transformers and Alternating-
cwrent Machmes, Not only mn high-tenston transmission lmes, but
also 1 high-pressure windings of electromagnetic apparatus, dis-
tributed capacity 18 met with. Under ordmary working conditions,
however, this 1s chiefly confined to transformers for very high
pressures  In machimnes, distributed capacity only becomos dangerous
on switehing in and when sudden load vanations occur  Sice, for the
moment, we are only dealing with steady con-
ditions, we shall only deal hers with high-prossure
transformers

(a) Under steady working conditions, individual
; couls 1n the transformer windings assume potentials
considerably higher than that of the surrounding
; iron, which 18 usually connected to earth, as a
consequence of this, condenser action takes place
¢ between the high tension coils and the earthed
magses of won  The msulation of the wmdmg
and the ail or air act as dielectrics Assuming
that the mddle pomnt of the high-tension winding
of the transformer 13 earthed, we get the followmng equivalent scheme
for the distributed capacity m the transformer (I%lg 136), when the
capacity between the several parts of the winding 1s neglected As
1 the high-tension Imes, we denote the impedance per umt length of
the winding by s, —jz,,=1i—" and the admttance per umt length of the
windig by 1

e

AR a3 A gt

§
1

Y,
% “]bt=l‘1‘

In addition, we have hers an & E, mduced per umt length of
the winding ~ Denote the pressure at distance !/ from the earthed
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pomnt by P, and the current at the same pomnt by 7, then mn the
element dJ, the current nerease will be '

ar= ;P%_‘dl,

1

and the 1ncrease of pressure

ap= (E,, ¥ 1“1—") di,

1

where the first sign refers to the secondary winding of a transformer
and the armature windings of a generator, whilst the other sign refers
to the primary of a transformer and the stator winding of a motor.
By differentiating the last equation and ehmmating 7, we get

Py
e PT;'

that 18, the same differential equation as for transmission lines
The EMF. E,, induced 1n the winding from outside, has no effect
therefore on the form of the differential equation, but makes 1ts
appearance 1 the hmiting conditions ~ Simularly, by differentiating the
first equation, we have
@Iy U
=i FEp

which differs from the current equation for transmission lines
It 18 best therofore to start from the presswe oquation. The
solution of this 1s (see p 130)

vzl -Vigat
P=Ae h4+Be "4
The limits are 1=0, P=0,
I=l,, P=P,
and give 0=A+B8,
P1=A(e‘/ﬁl—e'ﬂ),
Py
hence = i Vit
Vit -Vyuull
€t h-e 1
and P=P,

V0 _ -V

Inserting this value of P in the equation

2 _ (4P
IT,_ ?(m‘ —E.z>y
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we get the following expression for -

B,

e yua£+ E-ﬂ/;vTa£+
I=3P S VW eVHEm T %

If no pomt of the transformer winding were connected to earth, then
any pomt I 1t might assume earth-potential, and from this both / and
P would then be calculated

In this connection 1t must also he remembered that the several parts
of the low-tension windmg m a high tenson transformer are statically
charged, snce they act as the second plate of a condenser, the first
plate of which 1s formed by the high-tension winding  These charges,
however, neutralise one another when the potential of the high-pressure
winding 18 symmetrically distributed with respect to the neutral pomt
If the mgh-tension winding 18 not earthed and 1ts potential 18 not
symmetrical with respect to the neutral pomt, the electrostatic charges
m the secondary windmg do not neutralise one another, and the whole
secondary windmg can assume a fairly high static pressure with
respect to earth, when the secondary winding 18 well 1nsulated fiom
earth When the low-tension windings of high-tension transformers
are not earthed, 1t 18 still advisable to earth their neutral pomt through
a prossure safety device, such as a water-spray, ete

Assume further that the winding 18 the secondary of a transformer
on no-load , then the current at the terminals 1s

5,=0,

Vytay e~V E.1
= o ke TR Sl
18 0=P), zde«ﬁ_€_~%+ o
Thus the pressure at the secondary terminals of a transformer on no-load,
which possesses distiibuted capacity, 18
P E,,Zl &ty Vi
10 "fzfz‘ nta— Vi
Let us consider the simple case when the resistance 7, and the
conductance g, of the winding are neghgible, then

Nipta=n(= ja0)(~joL)=joVLC
Bl _
and Pm=wj;z—gtanm\/LU
Since tan wa/LC is greater than wy/LC for values

of wa/LC less than Z,i, the pressure at the terminals

will always be greater than the E M F. induced m
the winding

() We now proceed s step further and consider
the capacities which exist between the several turns and coils, they

;wa AR

Fio 187
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act like shunted condensers to the winding elements, as depicted
m Fig 137 Let the condensers be denoted by the admittances
o= /b,,,=];—"’ per unit length, then the increase of current mn a winding

element will be @P
~z(PY Y ___)
ar= "(P L7t )

and the 1ncrease of pressure
ap = (B 17)
P < a+ ll

Thus we get the two differential equations for pressure and current,

yﬁ.) P S
() =P
Y%
P s T
or /2 1_1 Yo*a
B
U Y
Bz T h
d smilarl =1y ¥4
and similarly, dir y_‘,z: 1 +.1/..:.x
A 4

Since these two differential equations only differ from the former
by the factor "

4

Ya

1+T

1
mstead of 11/.‘, all the formulae deduced above can also be used for
this case, 1f \ve substitute 4, for

Thus the capacity C, between turns and coils acts ke an increase

m the capacity C with respect to earth In all the formulae, 1nstead
of g, we have

= Y _ Ye
U s 1100 (0amma)
LT

For the case when g,, and 1, are very small,

_ % _ wC
=y e~ 1-wile,
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and the secondary pressuie of the transformer on no-load

EJNT=w!LC, oJIC
p,=Bd o g .
Y o SRR BN/

So long as w?LC,<1, this expression 18 of the same nature as that
found without consmdering the capacity between the conductors
In transformers the capacity C, between the turns 18 usually much
larger than the capacity with respect to earth, although m high-
pressure machmes € can assume high values compared with C,

47. Distrmbuted Capacity mn Lightning-protecting Apparatus. The
multi-gap ightming-arrester of the General Electric Co of Schenectady
—as shewn m Fig 138—cousists of one or more series of metallic

z cyhinders or rollers msulated from one
) another, the first of which 1s connected
to the hne to be protected and the
last to ea1 th, erther directly or through
0000000 a resistance  When the line 18 charged
to a high potential by ];Ltgoaphe%e
oy s elactriaity, the rollers, which can be
A adadtads regardedya.s the elements of several
condensers 1n ser1es, all hecome charged
If now the pressure between two cylinders becomes greater than the
break-down pressure for the ar-gap between, a spark will jump across
and then across the other cylindeis, whereby the line 1s discharged to
a lower potential  If the potential of the line and also the charge of
the first cylinder be steady and
umformly directed, then all /5
the cylinders take up the same N
steady charge, and the pressure N
between the line and earth dis- g E\
tributes 1tself umformly over \ N
all the gaps, so that the poten- NI
tial across all the rollers can smw—— \{ \\\

be rapresented by the dotted

Fio 188

straight Ime I mn Fig 139 e

Smce, however, the metalhic 2w \\\\
cylinders possess not only \\
mutual capacity, but also, with

respect to earth, all the  gap.ce 2 ™ ﬂ )

cylinders do not take up the Fro 180
same chaige, but the charge on
the cylnders decreases towards earth, instead of the dotted straight
hne we get the fulllme potential curve IL If, mn addition to the
capacities, the conductance from cylimder to cylinder and from cylinders
to earth 18 conmdered, we get Fig. 140 as shewing completely the
circutt of the ightning arrester

(2) As this cirewt 18 simlar 1 character to the transmission hine
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m Fig 128, the equations deduced for the latter may also be
used for the mathematical mvestigation of the roller lightuing
arrester  Naturally the differential equations for the transmission
line are deduced for an alternating potential P; m the line and not for

T
(L |

EEN S EERRENE
R

a stoady one Since, howevel, an alternating potential occurs as
frequently as a steady, and further, since the differential equations
for the former can he suitably simplified for the case of a steady
potential, we shall start with the general differential equations for
an alternating potential

2 s
These are {rzi_lf= "i_‘:y'
. I s,
and s I ?l
1
Here U= (G =26y = (9. - JC)
2 1 1
and o = S
Lt (Gamgb0) (ga=g0C

where all constants refer to one 1oller and I therefore 18 expressed
as the number of 1o0llers by which the respective point 18 away from
the roller connected to earth., Usually C; 1s of the order 10~ farad,
whilst C, 18 about 35 of C;  As seen from these expressions, we have
neglected the small mductance L of the rollers, which 18 only of the
order 2 1078 henry, and consequently only begms to have an mfluence
on the pressure conditions when the frequency c=qi approaches
1 o

-, 16, about 35 millions
Zrm;

We can therefore neglect self-induction entirely, and thus obtam the
following differential equations
4P _ pgi=1ol
ar " g, —jul,
&I _ L ¢—)uC,
a1,

the order

and
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The solutions of these equations are

V"‘+Be «/ylt
JT%(A Vi g,

Inserting the himits

=0, P=0,
I=1, P=P,
we get 0=4+B
hl ﬂl
and Pi=de +Be

n,
N
NE
b, U
Jy,y, A[’: R e
\/ fy, Ez,
Yo _¢ Ya
(b) Consder first the simple case where the conductance g, bears the

same relation to the capacity C, as the conductance g, to the capacity
C,, then the ratio

hence P=P

and

uw_G_g

Ya 04 Ja
18 & positive real number, and

Vi A

The pressure, therefore, follows a curve independent of the frequency,
which also holds for a contmuous (steady) pressure

In Fig 139 the potential curve II 18 calculated for the case of a
roller ightming arrester, where C‘,—ILOOC and ;=50 cylinders  Then

c
L =——=2b
G ~/ 0

P=p*
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‘With the assumption 9 _ 9 the current will be
C Ca _ o

Vg,

I=P(ge-july fG€ “+e *

1 ) Alg, \/51 -;\/ﬂ_‘,
€ ed ' —€ c‘ '

It 1ncreases with the frequency, 16 with w.
For a steady (continuous) pressure, =0, and the current 18 &

minimum, =
N
Ja +e 123

€
I=PJgg. W \/7‘
w_ V"

The pressure between two cylinders 1s, 1n general,
EFN 1)

» =t zt
apa B p foe Tre
al NT, ,\/q - \/ G,
. Fdl‘ e h
This 18 greatest between the first two cylinders, that 18 between the
two nearest the e, and for the example 1 question appt oximately
7
equal to Pl\/ gl = ‘% If thus pressure exceeds the bieak-down pressure,
2
& spark passes between the first two rollers, and so on along the whole
series, for when the pressure breaks down across the first two, the
pressure between the second and third 1s mereased, and so on In
lightming arresters which consist of many cyhnders, 1t 18 often
observed that the sparks vamsh before all the rollers have been
passed Ths 15 due to the fact that the charge which the spark
carries with 1t becomes less from roller to roller, the decrease being
caused partly by the conductance to earth and partly by the capacity
of the rollers with respect to earth
From the foregoing, 1t 18 seen that—contrary to a popular view—
the distribution of the potential over the gaps of rolle: hghtming
arresters, uot only with rapudly alternating potentials, but also with
steady ufobentm.ls, 18 quite unsymmemcﬁ, and consequently the
potential curve 1 both cases deviates considerably from a straight line
(¢) We will now return to the general case where there 18 no definite
relation between the capacity and conductance Here the potential
does not always follow the difference of two exponential curves, but
under certain conditions the difference of two sne curves, whose
amplitudes decrease according to an exponential curve In this case,

13
'
e V¥ = Al = M(cos pl — g s1n pl),



154 THEORY OF ALTERNATING-CURRENTS
where A=/ 1 ( «/ M + 9:.9:;;:64}
TN 2ANGY T dieh
and p= J 1( G+l _gga+ b.l:.‘)
bl CINFY] 3, 2
= Gatba  gutls

There 18, however, a case when the potential curve follows nearly a
stmlght line, namely when ¥ 18 very small compared with g, , then we
3

put d_l{’J:O’ and therefore P=P, 7
This occurs when exther the conductance and capaoity to earth are
very small, or when the conductance from roller to roller 1s very large
This latter 18 the case when sparks pass between the cylmders, for then
the resistance of the air-gaps hecomes a mmimum, due to 1omsation of
the air  Consequently, across the rollers where small sparks pass, the
potentral curve follows a straight lme It ceases to be a straight lne,
however, wheie the sparks disappear—from this pont the curve
follows the general equation Thia phenomenon was first noticed by
Rushmore and Dubois,* and 1s represented m Fig 139 hy curve III
Usually the conduotance g, to earth i relation to the capacity C, 18
much smaller than g, to C;  Consequently, A, and with 1t the drop of
potential AP between the first cylinders, increases with the frequency.
z This explams why a potential at
- a hgh frequency discharges itself
across a voller hghtmng arrester
more eaally thau the same potential

?\gﬁSJOOTOOQOO at a lower frequency
ng?autmm | According to Rushmore and
Dubois, an 1deal hghtning arrester
14 tance, g 8
i shonld behave the same with all

Hugh Resestance | potentials idependently of the fre-

W quency This is the case with a

Fio 141 roller lightmng protector when the

potential curve follows a straight

lne  This can be obtawned, as 15 done by the GE C, by placing

several resistances of different values between the hne and the first

rollers, as shewn m Fig 141 By this meaus, y, 15 made much

cater than g;, and the potential curve follows a broken curve, which

oes not deviate largely from the straght lme I (Fig 139) The

same authors have also shewn that the discharge currents of low

frequency pass along the largest resistance, whilst the high frequency
discharge currents pass along the rollers

* Proceedings 4.1.E.E 1807
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NO-LOAD AND SHORT-CIRCUIT DIAGRAMS.

48 The No-lond and Short-ciremt Constants of an Eleotric Ciromit. 49 Deter-
nunation of the Pressme Rise in a Ciremit by means of the Short-enumt
Dusgram 60 Determination of the Change of Current 1 a Circuit by
means of the Nolond Diagram 51 Change in Phase Iisplacement
52 Maxininm Power and Efficiency 53 A Transnnssion Line 5% A
Single phase Transformer.

48. The No-load and Short-circmt Constants of an Electric Circmt

(a) Mawm Equatins of the General Cucwt In the previous chapters
we have discussed different kinds of electric circuits  firstly, ordinary
conductors containing reswstance and mductance , then, electiomagnetic
apparatus whose circuits are magnetically interlinked , and lastly,
cwemts contaimng umformly dwstributed capacity - Moreover, we
have seen how all these circuits can be 1eplaced by a simple ciremt
containing an 1mpedance 1n series with two parallel admittances
This naturally suggests that all ciremits are governed by the same
laws, which 18 actually the case, whilst to find these laws we have
but to apply the generalised form of Kirchhof’s Laws and the Law
of Superposition

In what follows 1t will be necessary to show the importance of the
no-load and short airemt constants of the general clectric circuit, and
this we shall do under the assumption that the Law of Superposition
18 always appheable, that 18 to say, the effect produced m a ciremt
by any cause 18 independent of any other causes which may he at
work at the same time m the ciremt Thus, a pressure produces the
same currents m a circuit whether other pressures are present or not,
or a current causes the same drop of pressure when other currents aro
Eresent a8 when 110 other currents are present Further, for the time

eing, we shall assume the apphed pressure P; 18 a sme wave

Fig 142 shews the diagram of a general circuit, which may contain
transformers, converters or any other kind of alternating-current
apparatus

Let the supply pressure P, act at the terminals PP of the cucmt,
whilst at the terminals SS at any part of the circuit suppose we have a
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load 77, We must now study the effect of this load—which depends
on the pressure P, and the current Z,—on the electric propertics of
the airemt The two vectors P, and 7, are at an angle ¢, to onc
another, so that the power 77,= P,l,cos $,

Fio 142

First let the whole circut be unloaded, and the termmals SS open,
and let the supply pressure P,, be 8o regulated that the pressure 7,
corresponding to the load /77, acts at the termmals SS

When this 1s the case, the installation is said to be on no-load and a
current I, will be taken hy the arcwt

‘We can then write Piy=CPy
and Iy=Pyoyy,

where all the quantities are to be taken as symbohe ¢ =Cje* 15 2
complex number expressmg the relation between the two vectors
P,and P, g, 18 a measure of the electric conductance of the circuit,
and can be called 1ts admitfance Thus

Yo=0o+1by=9,e™
1, is the no-load current of the circuit, and has the watt componeut

P,y9, and the wattless component P )b, The losses due to the no-
load current J; are then Wo=Phagy

We now connect the terminals SS by & conductor, whose resistance 1s
zero, and so regulate the supply pressure P; that the current I,
corresponding to the load 77, Hows between the terminals S§  Under
these conditions—known as short-cocust—a current I x 18 taken by the
eircuit  Symboheally, Lig=Cl,

and Pp=1I 2.

€, =Cye* ig, ko C}, complex and expresses the relation between the
current vectors Jix and J; =z 1s & measure of the apparent electric
resistance of the cirewt, and can be called 1ts wmpedancs.  Thus

Zy=1g —jlp= P

Pr 18 the short-circuit pressure of the circwt with respect to the
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termmals SS, and has the watt component I,y and the wattless
component J; z, The losses due to the short-ciremit current are then
Wg= 1‘11 Tx

Having considered these two extremes—no-load and short-circmit—
we now pass on to the normalload condition For this purpose, we
can start either from no-load, J, =0, and gradually mcrease the current
passing between the terminals SS, without altering the pressure P,
or from the short eircuit, and gradually merease the pressure P, at the
termmals SS, without altering the eurrent I, The pressure P, at
the termimals SS requires at the termmals PP a pressure vector z’,P._,
and a current vector Jy=P.y, Sumlarly the current 7, m_the
receiver ciremt SS requires at the supply terminals PP a current
vector Cpl, and a pressure -vector Pr=1 42, Now, smnce any two
conditions of the circwt are independent of one another, the load
condition can be obtained by superposing the no-load and short-crreuit
conditions  Ilence, when the ecircwit 18 on load, the pressure at the

supply terminals 1s
PPy Py=Pyg+ Py=CiPo+ I g2,

and the current Li=L+ 1 z=Py+Col,,
or, since Lg=0:l, and Py=CP,,
then Py=C\Py+ Colipy - (88)
and I,=Cyly + C, Py, (89)

These two equations are the chacf equations of the circuit, and by means
of them the conditions 1 the circwt for any load #,—P,, I,—can
be determmed As 1s seen from these
two oquations (88 and 89) every circuit
18 determined by four constants O,
C,, 9o and zg

It can be shewn, however, that a
defimte relation exists between these
fou magmtudes, so that only three
coustants are sufficient to determine
the characteristics of a cirewt  Consider the eircuit represented in
Fig 143 having the constants =, z, and y,—we can then calculate
the constants z, %, C; and C; for this circutt as follows

At no-load this circuit takes a current J;, where

Py, Py _

Fio 148

The receiver pressure Pg 18

B _ _ _M‘: Py =Ii'
Py=Pyy— I =Py, 1+29, 1+:.’y" ¢



158 THEORY OF ALTERNATING-CURRENTS

Hence, for this cirewt, Ci=1+27 (90)
and Yo= %’: (o1

At short cireuit the supply current 1
Lie=I+ Loatfa=Lo(1 +282) = 1:Cs
and the short-cireuit pressure

PA=123!+IIK‘?1=-.IIE(:)+2)=I]Kzly

whence Co=1+2y, (92)
and ’=x=-’71+£? ’ (83)
[

From equations (90) to (93), we get by multiplying =, and g,

A\l %A %
= (57) =7, * 50

C, -1 Cy,-1 1
L R L T S PR
oA Y/ XA
or Ci0a(1 - gozs)=1. . (94)

‘We have thus the relation between y,, 2, C, and C, Such a relation
might have been predicted, from the fact that the four constants
Yo, %> Cy and G oan be expressed by the three magmtudes z;, 2, and 7,

(b) Deter ton of the Constants of a General Cureuit by Measurement
Every eircutt can be defined by the four constants C, Cy, 7, and =,
and smce these can be expressed by three independent constants z,
%y and ¥,, 16 18 possible to replace every arcuit by an equivalent circutt
similar to that i Fig 143 The above relation (eq 94) holds for
this cireutt, and can therefore be applied generally

Hence CiC(1-y2)=1

18 the third chief equation of an electrie cirewt

From this we see that only three measurements are necessary for
determining the constants Cy, Cy, %, and 2

From equation (94) we get

ol |
#x =_i
I -1’

C.Cp= g]aﬂg(\hﬁ—%) =p,
i Py,

where 7, and J; denote the no-load and short-circuit currents for one
and the same supply pressure P,
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In Fig 144 let OP, be the no-load and OP, the short-circuit
current , then '

0,0,= L= L

B, LT, 008 () - @9)
Also i+ o=, 0PP,,
_ Tysn (o — by
tan (Y, + ¥y = o= I cos (¢ — ?ﬁx)' 96

57 3L,sm (o ~ by)
+ ¥
P, Licos (4 - )
From this 1t 18 seen that the greater the ratio of the no-load current
1, to the short-cireutt current I, the greater C,C, will be, the angle
(¥, + ¥4), on the contrary, depends chietly on
the difference (¢, - ¢x) of the phase-displace- 5
ment angles at no-load and short-airemt  If, 3
m addition to g, and =, erther €, =C;e™¥ or
Cy=C,¢™ 15 measured, the other constants

can easly be calculated from formulae (94) FERX
and (95).

In many cases 1t 18 1mpossible, and under 4 .
any conditions difficult, Lo measure C) and C, 0
directly, since they are hoth complex quan- Fio 144 |

tities  The ahsolute magmtudes of the same
can be found from the no-load and short-cireuit measurements,

P I
01=P—1;’ and 05:%:
The angle y, 18 the phase-chsplacement angle between the supply
and receiver pressures at no-load, and the angle y, 18 the phase-
displacement angle between the supply and receiver currents at short-
cireult
These phase-displacement angles are small, and consequently not
easy to measure When the supply and the recewver terminals are
a long distance apart, 1t 1s even 1mpossible to determine these angles
exactly by direct measurement Hence we shall shew how these two
angles can be sumply determuned by indirect measurement
rom the three chief equations, we get, by simple transpositions,

P - Lzg=CPy(1 - y,,.z,) =§:
or Py=Cy(P, - Lzy), (88a)
and II—P,_q,,=C’,,Ig(1—y.,z,)=C£,:
or L,=Cy(L,- Pyy) (89a)
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The two equations (88a) and (89a) are 1n every way equivalent and
analogous to the chief equations (88) and (89) Whilst, however,
by means of equations (88) and (89), 1t 1s possible to calculate the
supply current I, and pressure P, for a giwven recewer load (P,, Ip),
the equations (88a) and (89a) enable us to calculate P, and 1,
when the load (Py, Z;) at the supply station 18 known

Let the pressure £, act at the receiver terminals with the supply
cwrcutt open, then the current I, m the supply eweuit 18 zero, and
the current at the receiver termmals 18

I,= - C,Py,,
whilst the recever pressure Py=C;P, From the recewver terminals,
acurrent /o= — I,=C, Pyyy= Py gl %o="Paqy, Will flow mto the crrcurt,

and the pressure at the receiver teimnals 18
Pyy=CyP;

G _%
From this, we get - l_/;,
where g, 18 the admittance of the eircuit when the supply termmals
are open
If we now short-cirewt the supply termnals (P;=0) and apply the
pressure at the receiver terminals, the current will be

Lyx=Cl,
and the short-circuit pressure at the receiver termimals 18

1

O,
Pyp=— Py= CGI]51=IEK“§I—"=IE:5’A

¢ 18 the 1mpedance of the cirewit when the supply terminals are short-
circuited, and we have
¢

1_7K

A=_F

C, =k

Hence, from the three chief equations we have the following relation

G = I/u .

bt (97)
whence wo got  A¢=yy—Ya=cbx— =~ . (98)
or D=4 (¢r— P+ do— ) (98a)

From formulae (96) and (98) ¢, and ¢, can now be easily calculated
—for we have
i=3(t1+¥e+ DY)
and Yo=3(h +¥,-2¢)
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In order to determme C}, Cy, y, and zg, 1t 18 best to carry out three
of the following four measurements As a check, 1t 18 also desirable to
carry out all four.

1" 'Waith open recerver terminals, measure the supply pressute P, the
no-load current [, the no-load losses 7, and the receiver pressure P,

Then, smce y,=-+4% and ¢o=uos'1< 7 ), we can now find

Pl 0 IO Pl 0

Yo="0o+1by=Yoe™*.
Further, o =5
Pﬁ

2. With the recerver terminals short-circuited, measure the supply
pressure Pr, the short-circwit current [, the short-cirewit losses #
and the recerver current J, Then, smoe

x K

P, /W
:z,=rx and ¢“=c°sl<[’,l,‘>’

we can find Tp=1g—)Tp= g€ 0
Further, Cy= IL"
'IB

3. With the su%ply terminals open, measure the pressure P,,, the
current I,, and the power #; at the recewver termmals, and the
pressure }’l at the supply termmals. From the first three measure-

ments we get , . W
¢y =cos ( 7 ),
Pyglyy,

and further, Uun_li?ﬂ
2 P]
4 Short-circuit the supply terminals and measure the pressure Py,
the current I, and the power /7 at the receiver termmals, and the
supply current I, We then get

$emoos ()

(_Jux
and C,__z.

From the four phase-displacement angles ¢y, ¢x, ¢ and ¢x we get
the angle Ay 1n accordance with formula (98)

It often happens that the pressure acting on the supply circuit 1s
transformed before reaching the receiver circwt. In this case, Py and
I, m the above formulae denote the receiver pressure and current
reduced to the supply system By this means, the ratio of conversion
of the transformer 18 completely removed from all further calculations.

A0, L
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(¢) Cluef Equatwns of a Symmetrucal Cucurt. Consmdering agam the
crrewt represented 1 ¥1g 143 with the coustants 2, z, and y,, we see
from formulae (90) and (92) that

L‘,=1+z,y,,=1+z:y,=0

and Co=1+ay,=1+2y,=C
are equal when z =z,=z 16 when the circmt 18 symmetrical about 1ts
centre This holds generally, even for complicated circuits, and we
then get C3(1 - o) =1 (943)
or 2= !

1 =902

If 2 and y, are known, C'= C'e can be found from the relation between

%, 2¢ and C. The two magmtudes z¢ and y, can eamly be found by

measuring the pressure, current and power at no-load and short aircuit
We have

1

I,
C= = /\/ y 99
*/l“ynzxﬁos(%“fx) T —Iyco8 (o — $s) @9
Yo2e 810 (o — br) Iysn (do— ps)
tan 29 = = 8 100!
and 0 2P = e 008 (o ) " L~ Jo008 (o - bs) (100)
or, measured 1n degrees,
~ Iy sin (¢ — ¢x)
¥=2860 I~ I cos(do—$x)
For this symmetrical ciremit, the chief equations are
Py=C(Py+ Lzg), (880)
L=C(ZL+ Payp) (896)
and C¥1 - ypz)=1 (946)

These hold for the usuael cases met with in practice, for example
transformers, induetion motors and many power transmission schemes,

We shall now shew how the magnitudes Py, I, and ¢, obtaned
from the short-circwt diagram can be used for finding the percentage
rise of pressure, and the magmtudes P\, I, and ¢, obtained from the
no-load diagram, the percentage change of current in a circuit, whilst
both can be used for the determination of the change mn the phase
angle ¢.

49, Determination of the Pressure Rise mn a Oircuit by means
of the Short-cireuit Diagram. If the pressure P, at the recewver
terminals S 18 to remam constant from no-load to full-load, /7,, the
supply pressure must be varied accordingly This pressure variation
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18 best expressed as a percentage of the no-load pressure P;,. The
change 18 generally an mcrease, whence we define

PP
Tp,, 0100=¢7

as the percentage rise of pressure To calculate this for a symmetrical
cirewt with O = C,, we proceed graphically, as m Fig 145  Set off 7,

"u
A
! J‘ﬂ
'
B
?
4
4
Time b2
Fia 145

along the ordinate axis and P,=04 at angle ¢, to ;. Set off vector
AC= I,.z‘ at angle ¢, to the ordinate axis, where ¢, =tan™ 1 , then

O0C=P,+ Lty = 2i (see eq 881))

4
Th Py
en, simce 0d=p,= 0 =8
the percentage pressure rise e %, can be expressed thus
o PPy 0C-04
= 0=""__ 5
VA P 10 04 100

On AC as diameter describe a circle and produce OA to cut this
circle 1n P; then 4B =Tz, and BC=1Iy,

Let ' AP=p,04 and CP=v.04;
then, from Fig 145, we have
0004 =V kp+E - 1=V 2+ 2 405 - 1,

04
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and working out ths root,
_Eek v Apdpe e+ k) + (e
= A - s

_i'+f‘ (1 Ex+!§f)_

=tprt 3

2
When pe=v;,=09, the last term py=1gg, and 18 therefore
gonerally neghgible

If we write AP-"—”OA and bP—Tﬁ%OA

where u, and v, are not to be taken as ratios but as percentages, then
the percentage rise of pressure will be

ey =Bz e ~Pro100 = g+ X (01

200

The negative sign hefore . 18 for the case when the phase angle ¢,
leads and 18 greater than 1_";_ ¢r Hence, to determine the percentage
rise of pressure, we set off (Fig 146) 4C=1I,z; as a percentage of P,

P10 146.—Bhort-ciroult Diagram of &

Iymmatr mg!mﬂh for the
at an angle ¢, to the ordinate axis, describe & circle on the same as
diameter, and draw 4P at an angle ¢, to the ordinate axis we then get

in_latx gr_Lix
AB=—-1,2 100, BU=T,IOO
and the percentage pressure rise

«%=2dP+

§| 5

SR —
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This 18 & maximum when ¢y=¢,

When =0, e ="9%100 and v, = L8100

2 Pﬂ
: o _ Iy 1/ Lze\?
Thus, 1n this case, %= 100{7,"’5(?,

F1% 146 can be approxﬁ‘lately called the short-cu curt dwagn am

f we are not dealng with a symmetrical cirowt, but with the
general case, for which the constants () and €, may considerably diffor,
we substitute the actual receiver pressure P, Wit{ the phase displace-

ment ¢, by a fictitious pressure P;=%__P,, displaced from the recever
current 7, by the angle ¢, —Ay. Then, since, from equation (88),

P, G
Zvi=zvi1ps+ln’x=P;+Iz?m

the above formula (101) holds also for the r1se of pressure m the general

case, provided that we use Py= ),.% mstead of Py and = dg— Ay
mstead of ¢, m the short-circut dlggram Fig 147 represents the

Fia 147 —Short-chcuit Disgram of the General Circuit

short-cirewt diagram of a general arrcuit—in this I,z, 18 set off as o
percentage of P.

50. Determination of the Change of Current in a Circuit by means
of the No-load Diagram The pressure P, at the termnals SS
requires, as we have seen, a no-load current On account of this
no-load current, the load curremnt I, 1s greater than the short-circwit
current [;,  Starting from short circuit, let the pressure be gradually
mereased—then I; will also 1merease, and we have now to calculate
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the percentage increase of current m passing from shoit-circutt to
full-load This 1s,

J /, I“’ 100.
For a symmetrical circut,
Zl’ =1,+P,y, (see eq. 89b)
This equation also can be cxpressed graphically In Fig 148 set

Fia 148

off P, along the ordinate axis and I,=0D at angle ¢, to Py. Set off

further DF = Pyy i 86 angle ¢, to the ordinate axis, where ¢, = tan1-2,
80 that T

0F=' .
Further, smce 0D=1I,= C 2K
the percentage increase of current ; 7, can be wirtten
1= -—I" 100= 970D 15

0D
On DF describe a cirele and produce 0D to cut the circle 1 @, then
DE=P,b, and EF=_P,g,.
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Let: Dg=to 2o
© Dg= 1000D and FQ= 10001)
then the percentage increa.se of current 18 7

5 %= 0100 4 g8 (109)

100
The negative sign before p, 18 for the case when the phase angle ¢,
leads and 18 greater than Z—;— '

Hence, to find the percentage current ncrease, set off (Fig. 149)
DF= Py, as a percentage of I, at an angle ¢, to the ordindte axis,

4 J
Jﬁm
4
F1a 149 —No-load Diagram of a trical Cirouit for the Change
of Current.

describe a circle on the same as dinmeter and draw D@ at an angle ¢,
to the ordinate axis

Then we have D_E=P—ILII°IOO 5 E_F»:}%’ 100,
2 2

and the percentage increase of current
7%= I“IOO £DQ+ 1%, in
This 18 & maximum when ¢,= 0. When ¢,=0

Piby 0,

=L1g0 and v, =4
2

o= T,
Hence, 1n this case

Pogy . 1/Pg\E
//=1oo{ 2-"°+2(—}2-U) }
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We can appropriately call the diagram m Fig 149 the noloud
diagram

In an unsymmetrical circut,

I ¢ .
U;=I"+E’iPi‘%=I*+P"y“

Consequently the no-load diagram and formula (102) hold for any
circuit, provided we use Pg=%’*l’2 mstead of P, and ¢;=¢,-A¢

mstead of ¢, This1s done in tﬁe no-load diagram mn Fig 150, which
hoids quite generally.

accordingly

F1a 150 —No-load Diagram of the Genoral Circuit.

When the conditions are such that the results yielded by the short-
circuit and no-load diagrams are inaccurate, we can use an alternative
method, and find the pressure P; and current I, in the supply ciremt
by means of the load diagrams shewn n Figs, 145 and 148.

51, Change in Phase Displacement. The phase displacement be-
tween the pressure and current 1n a ciremit chan%‘ss a8 we pass from
the receiver terminals to the supply termmals. This displacement 18
determined by the vector Pr= 2.Ifz, of the short-circwit pressure and
the vector Jy=C;Py, of the no-load current. The angle of phase
displacement of the Joad at SS has been denoted by ¢, 1 the above—
similarly we can denote that at the supply terminals Pp by ¢,

Then b=k B B)=4(5 B

L

for the two vectors %1 and g are rotated through the same angle m

respect to the vectors P, and 7
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From Figs 145 and 148 we see that
E}> ( )'*‘{( Is)""t(lm g)

$y= byt dy+ Oy

or
In order to find the phase-displacement angle at the supply terminals
for a symme’cneal crewt, we must therefore caloulate t]llle two angles
Ady and A _
. PC
From I*’lg 145 we have  sin (A¢,)= 76
Denoting the ratio Qi{ —1—)— by a, we get
oc
a= 1= L
= e) T+4e
T+100
PC
and s (Ady) = Y %
‘We can express s (Adz) n the form of a series, thus
(Ad’/r) _ e
=100

s (Agg) =Ad, ~
(A¢") 18 negligible compared with A, , 80 long as Ad, =0 25, which

18 usun].ly the case where A¢, is expressed in circular measure, or when
measured 1 degrees we have
V0 130

Abe=105" =
1o Ag=0 573uxa=°fi3:‘

In a smular manner, from Fig 148,

s (Agy) = 01"

or, denoting ?)—D _Ls by B, we get:

1 1
A= 17T
100
05731/0

and Ay =0573v,8= o
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whenee the angle of phase displacement at the supply termimals 1

- r g Yo )
¢,_¢,+0573(1+E+1+j) (103)
In this formuls, v; and v, are to be taken negative when the points
P and ( respectively Lie on the ares BC and EF, this 1s the case when
the a.n%le of lag ¢, 13 greater than ¢ or ¢, respectively
In the case of the general unsymmetrical crreut, We must substitute
=y — Ay for ¢, 1n formula (103), where ¢; 18 the angle between the
imagmary receiver pressure P; and the recewver ourrent I,
It has already been shewn that Ay =y, — i, hence, for any arcut,
the phase-chsplacement angle at the supply termmals 1s
of V. 7
¢y= Pyt (g - P) +0 573 (1—1{-:+ﬁ}) . (103g)
52, Maximum Power and Efficiency. With constant supply pressure
P, and load powerfactor (16 Cos¢y=const), 1t 18 only possible to
transmit a certamn maximum power to the recerver circwit If we try
to go beyond this by mcreasing the load admittance 4y, the recewver
pressure P, will fall more rapdly than the recerver current I, will
rise, This maximum 18 naturally reached when the drop of presswe

12.2, in the cirouit 1tself equals the recerver pressure Po= E}J’ﬂ
From the equation !
P

| C
ﬁ:=6§Pﬁ+Iﬂ_zr= v;Inzz‘i'Inb’x;
1t follows that, when ¢, is constant, the power given out at the recerver
termunals W,=I,P,cos ¢,

18 a maxamum when the produet of the two absolute values %Iﬂzﬂ and
2
I,z 18 a maximum.  Since the sum % of these two vectors 18 constant,
2
the product of their absolute values 18 a maximum when they are equal
ence the condition for maximum power 18

[o
'a:.Pz“In_zx

o
or é,iz,:z,.

In this case the receiver current is
1
gl

C,
Z;i“s +25

I=
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The vectors zx and ] 2, are displaced from one another by the angle

= Gyt DY G
Hence the receiver current at maximum load 1s
I,= o
27 20,25 008 3 (pr— g+ AY)

and therefore ;0. = I3z, co8 ¢,=Ig%zx 08 ¢y
1
_ P} cos ¢,
20,Cy2x {1 +cos (g — b, +AY)}
Now, fiom Eq. 95, p. 159,
1 Iy—Iycos(py— ¢,)_

[ Is
Py{I— Iy cos (dy— bx)} cos by
Hence, W gmaz = 2{1+<:os(¢,u—¢g+A¢)} . .. (104)
Plﬂ PK

Sice P’,.=TYB and 2y =, the conditions for maximum power can

ﬁ )

be written © #uth constanmt smngly pesswe and load power-facior, we get

mazvmum power for the load, whose no-load and short-cucust presswes ars
ual

Proceeding further, we can now find the load power-factor cos ¢,
necessary for obtaimng the maximum power at the recerver terminals.
By differentiating Eq. 104, we find that this happens when

— {1+cos (px— bg+ Ay)} sin ¢y — o8 810 (b5 — o+ A¢) =0

or when —g=¢p, + Ay
Introducing this value of ¢, into the expression for /7;,.,.., we get
W - Ploosy
228 90 Cy2x(1 + 08 2¢b)
P P

= = PR | |
4C3zc08 ¢y 4037, (1040)

To find the eficiency of the general circwit, we calculate the power
W, supphed to the crrewt at the termmals PP and divide this mto
the power /7, taken out at the receiver terminals The supply power
18 most easily obtained from the real part of the product of 2, and the
conjugate vector of 7; The supphed power /7 18

Wi=Wy+ Wi+sPoly,
where Wy=Pogo=C3Pago
18 the no-load loss when P, acts at the receiver terminals, and
Wy=Dgrs=Coln e
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18 the short-circuit loss when the current m the recewver ciremt 18 7,
$=p C08 g +¢8IN Py,

_ I, +I,c08 ($o+¢x)
where P= I~ I,cos (¢, - ¢x)
_ Iysn(dp+¢r)
and T I~ Tycos (b~ x)
or 3=13008(¢n‘A¢)+I°°°s(¢°+¢“—¢“+Aw’

Ig — Iy cos (- dg)

and depends only on the kind of load, 1e. on cos ¢,
Smee the power at the receiver termimals 18

Wy=Iry,
we get the percentage efficiency
0= 1?100= (O (105)
1 4
W.J+FIK+WE¢1W3

Both at no-load and short-circwt the efficiency 1s zero, for n the
first case the useful current 18 zero and i the second case the useful
pressure  In the former case, the sum of all the losses 18 /7, and n the
latter .

Starting from no-load and keepmg the load power-factor constant,
the efficiency and the heating losses /7, gradually rise as the load 18
%Sgdu#y increased, whilst the no-load losses 77, decrease. When

x=W,, the efficiency will be a maximum, for, with & given loss
Wy+ We=const, the product W,WWy=C;Csgyr:Pil: 18 & maximum
when the two losses are equal. Thus we see

For o gwen kind of load wm a cucust, the efficiency is ¢ mazvivum when
the shovt-curcust losses corresponding to the load curent equal the no-load
losses corresponding to the load pressue

The maximum efficiency for a given load power-factor 18

Nsx o= - W’s 100. . (106)
2 0+&°—S¢;W2

Further, we find by differentiation that the power factor cosd,,
for which the efficiency is a maximum, occurs when

Wo=W,
and (Wo+ W) an y= 2/ s ¢y = — PoL,{psin (Ay) + ¢ cos (Ay)},

and the maximum efficiency 18 '
Nox 76 = Vs (107)
° " Wy{pcos (Ay) - gemn (AY)} + 2W cos?h,
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Considering equation (107) more closely, we see that the load current
I, at the absolute maximum efficiency 18 displaced 1n phase with respect
to the receiver pressure In general i1t will be found that I, lags
behind or leads P, almost as much as I, leads or lags behind P;

53. A Transmission Scheme. As an example of the application of
the no-load and short-airemit dxa'ﬁa.ma to a symmetrical crremt, we will
consider a transmission line 1s consists of a supply station where
the pressure 18 transformed up, the transmission lme and the recerver
station where the pressure 18 transformed down. We will assume both
supply and recewver transformers to have the same ratio of tran
formation .

(1) No-load measurements

P,=1000 volts, I,=100amps, #,=40 KW, P,=985 volts

(2) Short-circuit measurements

I;=1000 amps, Pr=250 volts, #z=80KW, I,=985 amps.

1000
We get: C,=0y=0C= 58?=1015’
Iysn (¢ - $x) o
=2%=573 . ° o TR =012
¢l+¢2 ‘/’ I:']ows(¢o_¢x)

4 B ¢
na g
F Po7?
400%
7 . %1% /B

Eww

Firas. 161a and ¥ —No load and Short-cirenit Disgrams of Transmission Line.

For a load current J,= 985 amps., the watt and wattless components
of the no-load current are, 1n percentages,

1 W,
o 0 9
lownZ=gg5 P, 4067,

Tows %=§—}3—5~/100E -402=9-31%

The no-load diagram 18 drawn m Fig 151a
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For a power factor cos ¢, =0 9 1 the receiver circuit, the percentage
current 1ncrease 18

2
1%= gt =T95%
At short~cirewit, the watt component of the supply pressure 1s
'P"V:,Tix: 80 volts
or 9-88%= 812 7 of the constant receiver pressure P,=985 volts The
wattless component 18
Py, =1/2502 — 802 = 237 volts,

corresponding to 241 9, of P, The short-cireutt diagram 1s shewn 1n
Fig 151> The per ge pressure mcrease with cos ¢,=09 18

V‘
=t =194 %

In the transmigsion scheme, the phase dusplacement between current
and pressure 1s increased by the angle

- Yo . ¥x \_
Ady+Adg=0 573(1+J+1+E)

Hence the supply phase-displacement is
by =g+ Adby + Apr=25° 85 +12° 365 = 38°1
and the power factor at the supply termmals cos ¢, =0 785

The efficiency of the transmission scheme is

_ PyIcosdy
1= Wyt Wyt sPyIy
s LxC08 by 41, c08 () + G — B5)

Iy —Ijcos (g — dbx)
4000 % 0 9+ 100 cos 111°-85
= 4000-100cossmy  ~0%45:
o _ 985 x 985 x 0'9
%= 40000 + 80000 + 0 945 x 985 x 985
873

e 9
== %

where

whence

54, A Single-phase Transformer. As a further example, we will
take the sngle-phase transformer, which represents the smmplest form
of all electromagnetic apparatus and machmes The no-load measure-
ments taken on a 50 K V.A sigle-phase transformer were

Pyy=5000 volts, I,=04amp, #,="1750 watts,
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and at short-ciremt
Lix=10 amps, Pr=250 volts, #y=1000 watts
Hence the no-load watt current 1s
_W,_ 150
o= E = 5000
and the no-load wattless current
Typ=~N13-I2,=~0 43 -0 152=037 amp

Tow1s 159 and Iy, 18 379 of the load current (10 amps ); from
these two magmitudes the no-load ciagram (Fig 152a) is obtamed
At cos ¢, =0 9 the percentage current increase 18

=015 amp,

o v 2672
J A=u0+2~0“0=2 97 +W=3 0%.
‘With normal short-cirewst current, the watt component of the primary
pressure 1§
e _1000_ 100 volts,

Pey=pt=r=
i.e. 29 of the normal pressure The wattless component 18
Py p=~Pi— P2 =/250° — 100° = 229 volts

or 4589 of the normal pressure  From these two values we obtam

Z

F1as 162z and b —No-load and Short-circuit Dingrams of 8ingle-phase Transformer

the short-cirewt diagram (Fig 1525) At cos¢,=09 the peicentage
pressure rise 18 . -
Y .
= pat =310+ 55 =384
The 1ncrease 1 the phase displacement between pressure and current
due to transformation 18

o o
_ "n/) ”KA)_ o
A¢0+A¢,_0573(A1 Loy 1ule) =528,



176 THEORY OF ALTERNATING-CURRENTS

The angle of phase difference on the primary side 18 then
by =6, +Ady+ D =25" 85+ 3 28=29"13
and the power factor at the primary terminals,
cos ¢, =0 871,
whlst cos ¢, =0 900

In Fig 153 the percentage increase of pressure and current and the
ncrease 1n phase displacement with constant pressure and current on

| B it _ o
_q’v —f = ——
/y‘/ Nl o
— ) _
e I \\\
b ~.
0 Ga——  [ead \\—vm“
RN PR R RO
R ~J
//L’?/ 3 _ I
== -
§ .
Fio. 168

the secondary side are also shewn as functions of cos, It 1s seen
that all three magmtudes vary most i the neighbourhood of umty
power factor, i.e. cos =10
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Diagram of the General Transformer

b6, Load Diagram of an Electric Oircuit As we have seen, the
no-load and short-circwt diagrams are well suited for imvestigating the
working of a short transmssion line or modern transformer %‘or repre-
senting the phenomena, however, which occur 1 a long transmission
line or in motors where electric energy 18 transformed into mechanical,
these diagrams are less suitable If we have, for example, a motor fed
from mams whose pressure 1s kept constant, we require a diagram which
will enable us to see directly how large a watt current and how large a
wattless current will be taken by the same at any given load. Further,
the diagram must shew, at the same time, the efficiency and speed of
the motor when working at this load and also 1ts overload capacity
‘We shall now shew how to construct a diagram from which all these
quantities can be accurately obtamed For this purpose we start
from the equations (88) and (89) of the general electric cirewt, viz

Py=C,Py+ Colizy
and I= C'gI, + C\ Pgyy.
From these, 1t follows
P,
P, —Iizg=CPy(1 - yope) = LT:’

and smce 12=1:J-9, the current 1n the supply ciremt will be
&
C,

¢ S v
2
I= CJE(T:E +?u>=(P1 - Il_zl{) 1- %;;
Y%
Put 1—% =4,0,Cy= Ya
2
and Ce 62=%’

Can(l-y2x) =
A O, M
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then the current ; can be written .
:I1=(P1"I1;¢A)(.yu+.'_lh)~ . . . .(108)
,,,,,, This equation shews that every
—==L0000000TT s crewt can be replaced by that
A shewn m Fig 164, smce equation
2 é 108) also holds for this circuit.
¢ e must now find, however, to
what the two parallel branches m
the original eirewt correspond To
Fo 16¢ —Hquivalent Otroutt of the the branch with admittance y, a
General Rleatrlo Girauit. power 7, 18 supplied, where
- - €08 (by + 2hy) _ 15 008 (g + 2y)
Wy = PyI, 008 (chy + 25) = PyI cos ¢, condy = W, cosdy
ie. the namch with admattance y, coresponds uwnth respect to power fo the
load curcuit wnth impedance z,.
To the second branch with admuttance y, a power /7, 18 supphed,
which, expressed symbolically, equals

P C,
W=t P, - L) =2 C,C= 2 Py
Vo= (P~ Li2x)y e 108 CgP:%

This corresponds to a loss which 18 proportional to the square of the
pressure  This loss includes such losses as ron losses and those which
occur 1n the dielectries of electrical apparatus and machmes Con-
sidering finally the path with impedance z,, we find m 1t the loss

w,= I:zx'

This 18 the copper loss 1n the cirewmt, and represents that part of the
electrical energy which 18 dissipated m the form of heat

I Quad. ﬁ ~§ W Quad, ,
N1

S

wnag values 4
L
1 Quad 1 guad & § }] .
Fi1o 166 —Diagram of the Bquivalent Circult in Fig 154

To find the current 7, for a given impedance z, we first of all
caloulate y, and g, and set off the same m a rectangular co-ordinate
system (Fig 155) The negative part of the abscissa axis 1s taken for
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the axis of the imagmary values By adding ¢. and ¥, geometrcally,
we get the resultant admittance y, Since the admittances ¥, and y,
are 1 series with the mmpedance z;, we first find the 1mpedance 2z,
corresponding to the admittance y,  Thus
Yo=gotsb =48

s S
% 7 9 J y: r —J%y
Adding now the short-cirewit 1mpedance zy to z,, we get the resultant
mpedance z The mversion of z gives the admittance g, which falls
in the first quadrant Finally, multiplying the admittance y by the
terminal pressure P,, we get the current I, in the supply circuit  As
usual, let the pressure vector P, fall on the ordinate axis, so that the
current vector 7, coincides Witill the admittance y Then the vector
OC not only gives the direction of the current 1n the supply arcuit,
but also 1ts magmtude to & certain scale

and

on 7
%Ae
R,

Fio 1566 —Construotion of Current Diagram

To determne the locus of the current vector /;, we first find the
curve traced out by the vector y, when the load =, 18 varied This1s

2
b= gf =Cote= g:y’J(&-HM'

Assume, by way of example, that the phase displacement ¢, in the
load cirowit 18 constant  Then the locus of the admittance

¥y =Cayd B2
18 & straight line K, (Fig 156) maling the angle (¢, +2¢,) with the
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ordinate axis  In order to draw the load diagram for this case, we first
set off the constant admittance
04 =y,=C\Copy=Ga+7b,

and draw through 4 a straight hme K, at angle (¢,+2¢,) to the
ordmate axis. ’J%ha admittance g, 18 then represented by the vector
OB drawn to this hne. Then, to find the impedance #, corresponding
to 9,, we find the inverse of the straight line K, with the origm O as
the centre of mversion  This 1nverse curve 13 not drawn 1n the fourth
quadrant, but m the first, since we must return to this latter by a
further mversion  Now, the inverse curve of a straight line 1s a circle
passing through the centre of mversion, thus, m this case, the nversion
circle is K7 and the centre of inversion 18 the origin 0. The centre
of K, lies on a straight line passing through the mnversion centre 0 and
perpendicular to the lime X, The radu-vectores of the aircle X from
O then give the impedance z, ~ We now add the short-cireut
mmpedance zx to z by moving the co-ordmnate system to the right
through a distance equal and parallel to z; The ongin 0’ of the new
co-ordinate system conse uentFy falls 1n the third quadrant Then the
vectors drawn to the cirele K7, or, as 1t 18 now, K7, from this new origim
give the total impedance z of the whole circuit ~ Finally, stll remam-
ng in the same quadrant, let K, with centre M on the line 0’3, be the
mverse circle of the eircle K7, with (' as centre of inversion Then
the vectors drawn from O' to this circle K represent both the
admittance g and to another scale the current 7, suppled to the lne
in magmtude and phase, when the vector of supply pressure P,
comeides with the ordinate axis.

The circle X 18 the desired current diagram, and on 1t lie the short-
oirewt pomnt Py and the no-load pownt Py. The former 1s the nverse
of the pomnt O, and the latter 18 obtamned by a double inversion of
the pomnt 4.

In Fig. 157 the final current diagram K 18 drawn to another scale.
All pownts on the upper part of the aircle, lying between Py and Py,
correspond to pownts on the straight line K, above 4, ie to load mn
the branch g, , while pomnts on the lower part of the eircle correspond
to pomnts on the straight hine K, below 4, i.e. 7, is then negative and
the branch works as a generator The ordinates of the circle K shew
directly the watt currents Ir, which the circuit takes 1n or gives out
By multiplying these currents by Py, we obtan the power consumed
m the cirouit.

The loss and power lmes are now found 1n the same way as above.
The line of supphed power 7, = P, I, 18 simply the abscissa axis The
copper loss may be written

Vx=ﬁ7t=vax;
where V;=0 is the equation of the loss-lne and By 1s a constant This
loss-lme 18 the semi-polar of the cirele with respect to the orgn, as
shewn previously The cistance PER from a pomt P on the circle to
this loss-line 18 proportional to the copper loss
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Consider the triangle OP,P. The two sides OP, and OP represent
the short-cirewt current I and the suppled current [, 1-esBecb1vely.

Let each side of the tmangle be multiphed by 2, then OPg=Ig%,
represents the termmal pressure P, and OP=Iyz the pressurc con-

sumed m z, Smece the three pressure vectors Py, [,zx and C’j form a
a 2
closed triangle, the lme PP will repiesent the pressure vectol ?,j to
the same scale of pressure This pressure causes a loss /), m the
branch whose admittance 18 g, = C;Cyy,-
As before, we can write

Vo= (%’)2575 BV,

where V,=0 18 the equation of the lossline  This loss-line 18 tangent
to the circle at the powmt Py and the loss 7, for a pomt P on the crclo
18 proportional to PS, the distance of P from this loss-hne.

b

W0

tnp)

w » wpw B 0

Fie 167 —Cwirent Dingran of Equisalent Circnlt in Fig 164

The power-ne can now easily be determmed Denoting /i, ~ 17,
by W, wohave g7 _ 4w, - BVo=dW,,
where we write W,=A4,W,
to obtamn symmetiical notation, W;=0 bemng the equation of the
abscissa axis

The lne W,=0 for the remammg power atter subtracting tho
copper losses, clearly passes through Sj, the pomt of mtersection of
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the abscissa axis with the Line of copper loss Vy=0 Further, smce
W, 1s zero ab short-cirewit, the power-lime W,=0 passes through the
short-ciremt point Py.

The power consumed 1n the branch of admittance y, 18

Wy=Wy~ Vg~ Vo=dW, -~ BV=AW,,

where BV=BNg+B\V,=V

denotes the sum of the losses, which are represented by the lne V=0
As the equations shew, this resultant loss-line must pass through S,
the mtersection of the two loss-lmes Vy=0 and V,=0, and we know
this pomt, smce we have found both these loss-hmes The resultant
loss-hne V=0 must further pass through the imtersection of the
abscwssa axis W, =0 with the resultant power-me W,=0  Ths
resultant power-line contains the pomnts for which the power m the
branch y, 18 zero, which only occurs at no-load and at short-cirourt.
Hence, the resultant power-line passes through the pomnts P, and Py.
From this we can find S, the Intersection of the power-lme W,=0
with the abscissa axis, and the resultant loss-lme V=0 can be drawn
through the points §; and S;.

In a branch of the equivalent cirewt, the supplied power, the losses
in this branch and the useful power, which is &e ference of these
two, can always be represented by three lines, which intersect mn a
pomnt It was shewn 1n Sect 25, that a straight lne drawn between
two of these lines parallel to the third is divided m the ratio of the
first two powers by a line from the pomnt of intersection of the above
three Lines to & point on the eircle  Such a line can, therefore, at once
be used to represent the efficiency or the percentage loss m a branch of
the equivalent eircuit.

In Fig 157 a hne has been drawn parallel to the abscissa axs
between the lmes Vy=0 and W,=0. A lne S;P then divides this

line in the ratio %, the ratio of the part nearest the loss-line to the

whole lme being W—V_‘_‘ v =7I;; and the ratio of the part nearest the
Wt Ve Wy
., _W,
power-line to the whole hne bemng VAT~ W Starting from the

loss-line V=0 and dividing the line drawn parallel to the abscissa axis
into 100 parts, the division where SzP meets this hine gives the
percentage loss 1n the branch 2,

o/ _ Vi _ Vx
p“/’—W,+ . 100—71 100
In the same way (Fig 157) a line 18 drawn parallel to W,=0
between V,=0 and W,=0, and the mtersection of this with PP gives
the percentage loss in the branch y,,
v,

o_ Va _V,
%= g, &y, 100= 75 100.
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To obtain the efficiency of the whole equivalent circmt, the
procedure 18 similar  Draw a line between W,=0 and V=0 parallel
to the abscissa axis and divide 1t mto 100 parts, beginnng at the
powerlme W,=0 Then the intersection of this line with §;P gives
the efficiency, Y w, w,

7 %= W.+V100_7471100‘
‘We will now consider the relation between the power 77, i the

equivalent cirewit and the power 77, consumed m the original general
crremt At the begmmng of this section we denoted the load-

mmpedance of this original crreutt by z,=%.
t]

Also o= 02y = Clypd o200
P,
and [b=(4_‘:y:=P2ng2= Col,.
Heunce W,=%:I,cos ¢y =Pylyco8 (b + 2¢,)
- _ €08 ¢,
and Wy=P,I,c08 ¢y = W’coa (Bg-+ 20
Therefore, the efficiency of the general eircuit 18
7=Z cosy __, OS¢y
T con (90 2) T con 9y + 24)
Since 2y, is usually a very small :méle, 7 18 only shghtly greater
than 7. 2y, 18 known, we can divide the horizontal between the
power-line W,=0 and the loss-line V=0 mto 100 005 6, equal

€08 (g + 21
parts and read off 7 directly nstead of »'. (4a+24)
As shewn above, the line P,P serves for reading off the pressure m
the receiver errewt for any load. The current I, in the receiver cirewt
can be obtaned just as easmly from the diagiam At any pownt P,

we have I,=0,7F,

which can be proved as follows
For any load, we have

I,= CE_IE=.11 - (A 'L{‘x)!/n
and at no-load 0=1,~ (P~ Izx)ya-
Subtracting the second equation from the first, we obtain
Culy=(1 +29a)(L; = I).
Simce %o+ 2p =70,

we have 1+2x0.= 1_—135 =0,Cs, -
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hence L=C\ (1~ 4y),
or, mn absolute values, I,=CP,P

This diagram, which enables us to completely investigate the
properties of any electric eirourt and to study the working of the same,
we shall refer to as the load dwegiam of the errcutt From 1t we can
find directly for any load the following values the current J; and
phase displacement ¢, 1n the supply circmt, the pressure P, m the
recelver circuit, the total power /#7) supphed to the circuit, the power
W, taken out of the circuit, ie the useful power, the efficiency 7 and
the percentage losses 1 the copper and 1 the iron and dielectrics

56. Simple Construction of the Load Diagram by Means of the
No-load and Short-ciremit Points It now remains to be seen how the
arcle diagram K admits of a simple constrnction o1 caleulation. Two
pomnts on the eircle—namely, the no-load point P, and short-cucwt

Fra 168.—Construotion of the Gircle Diagram.

pount Pr—are already known by experiment or otherwise The
perpendicular to the line joiming these two points passes through the
centre M of the circle In addition to this, the direction of the line
Py from the no-load pomnt P, to the centre M of the circle can easly
be determined as follows

In Fig 158 the straight lme K, ropresents the admittance ¢, +9,.
This line, as shewn above, 18 1nchned to the left of the ordinate axas at
the angle ¢,+2y¢, The correspondmg impedance 18 represented by
the cirele K;. The line OM; falls below the abscissa axis, making an
angle é,+ 2y, with 1t Then, after drawing 00’ equal to z; and
taking tf.\e mversion of the cirele K, to such a constant of inversion that
K, represents 1ts own 1mverse curve K, the ponts P; and P, represent
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gespectlvaly short-circmit and no-load m the circuit. Now, as shewn
ect. 48, p 159, LOPPy=1y +Yy=} L OMP,
Congequently the angle 8 which P,/ makes below the abscisss axis is :
B=cbg+ 2, = (Y + ) =y~ 29
=¢g_(¢1+¢z) -4y
=¢,- 0P P - Ay
Usually Ay=y, -y, 18 very small and may be neglected. When
¢, =0 (1e mnonanductive load) the rads P M makes the angle
0Py P, + Ay with the abscissa axis, and lies above 1t
1f the pont P, hes above O on the circle, the opposite sign must be
given to the angle OP,P, This 18 the case when the phase displace-
ment at no-load 18.smaller than that at short-cirewit

In Fig 159, for the sake of clearness, only those Lines are drawn
which are necessary for the determination of the centre M of the circle,

Fia 150 —Determination of Gentre of Circle

and are obtained at once from the short-circutt and no-load pomts,
when Ay 18 known or negligible, as the case may be

‘When ¢, and Ay are zero, the determination of the centre M of the
arrcle 18 greatly simphfied, as 18 shewn n Fig 160 In this diagram,
a vertical 18 drawn through the no-load pomt Py to eut the lme OPy
The centre of this vertical 18 the same distance above the abscissa axis
a8 the centre

From this construction the effect of disymmetry in the ciremit on the
position of M 18 clearly shewn The greatest disymmetry occurs when
2 =0,1¢ when ¥,=0 or —(y;+¢,)—Ay=0 and the centre hes at
Mgy, or when z,=0,10 =0 or — (4, +¥,) - Ay = — 2, and the
centre hos at M,

The centie M can also be obtamed by another analytical graphical
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method by using the line M0’ through the origin as well as the hne
bisecting P, Py at right angles This hne makes an angle a with the
abscissa axis, the tangent of which can be calculated from the following
formula, which 1s deduced from Fig 156

tana= L T (s — AY) + Iy p8in (g — by + Atp) + Lo, 008 (b — b5+ AY)
I cos (¢ — D)+ Iy 8 (Px — b+ AY) ~ Iy cos (pr—da+A¢)"

Fia 160 —8imple Detarmination of Oentre of Gircle when ¢o=0

In most cases C; and C, are very little different from umty and still
less from one another, and therefore Ay=y; — , 18 a very small angle,
at most 5°- Hence, neglecting this angle, we obtam the followmng
smple formula

fana= Lo g+ Iy s (b — by) +IDWL008(¢K_¢2)‘
Iz o8 g+ Ly, 81D (br — Pa) = Lo €08 (b — o)
For a non-mductive load, ¢, =0, and we have then,

Iy psin g+ Iy wy 08 by
I g+ Iy vy 810 ¢ — Iy 5y 008 g

- Iy s (o + ) .
I — Iy cos (¢ + px)

57. Load Diagram of a Transmission Scheme. As examples of the
appheation of the load diagram, we can consider first a transmission
scheme, consisting of a supply station where the pressure 1s transformed
up, a transmission line and a receiver station where the pressure 1s
transformed down agam,

The following readings are taken on no-load and short-circwt *

(1) No-load

P,=1000 volts, I,=325amps., 7 =40k W

(2) Short-crremit

P,=1000 volts, I, =3000amps, #,=900K.W.

tan a=
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The transmussion scheme works with a constant power-factor of
cos ¢, =0 95 1n the recerver crrcuit.
The load diagram 1s shewn 1n F1g. 161 drawn to a scale of

1 mm =60 amperes.

Fi1o 161 —Load Diagram of Transmission Lino

Smce such a scheme can 1n general be taken as symmetrical, we get,
by direct measurement from the diagram,
[
0'10,4=0’==}:_§i=1'12,
C=106.
The lne 0P, 50 mm 1n length, represents the primary pressure
P, =1000 volts to a scale of 1 mm=20 volts The receiver pressure
on no-load is

Pyy=20 C P,P,=20x 106 x 44 5 =945 volts,
At P the recerver pressure 1s
P,=20x1 06 x 327 =695 volts.
The short-circuit current m the receiver circuit 18
2x=C.PPr=106x 60 x 44 5 = 2830 amps.
68. Load Diagram of the General Transformer. The general

transformer, whose method of working 1s described in Section 39,
can be replaced by the equivalent ciremt (Fig. 121, p 120). 7, and 1,
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are the primary and secondary effective resistances, S and S, the
primary and secondary coefficients of stray induction of the trans-
former The constants 7, and 2,=2wcS, are both reduced to the
primary circmt

The usual case of the general transformer 1s the three-phase induction
motor The secondary power 7/, 18 here mechanical and equals

Wﬂ=1§1,(§ -1),
where 1 ‘G— 1) 18 the ohmic remstance equivalent to the load and

18 placed across the secondary terminals The slip s gives the relative
velocity of tho rotary field relative to the secondary windmg  Since
the loss in the secondary ciremt due to the rotor resistance 17, 18 I
the total power supplied to the secondary circuit 18 #7=1 ::—"

As all phases are alike m a polyphase motor, we need only con-
sider oue

The followimng measurements were taken on such a motor.
(1) No-load, 1 e. synchronism (s =0),

the load resistance 7, G - 1) bemng infimte
I,=101 amps.,, P, =110 volts, W =1465 watts
(2) Short-curourd, i.e. at rest or s=1, saince 7,(% - 1) 18 Z6ro

I, =105 amps.,, P,=110 volts, W z=4040 watts.

146 5
110x101

008y . 2040
=110 x 105

In Fig. 162 the no-load pomnt P and the short-circurt point Py are
drawn to tho scale 1 mm=2 amps For standard three-phase motors
we can put Ay =0, and further, since ¢,=0, we get the centre of the
circle hy maans of the construction in Fig 160.

The lmes of output W,=0 and of total loss V=0 can now be
determmed by means of I%Ig 167, and from these the efficiency 7 18
obtamed. ,

Ouly the shp s, from which the speed of the motor can at once be
determned, remais to be found from the diagram This 18

2
BT

n? w

Hence, we get [ =0132,

=035.
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where 77 denotes the power supphed to the secondary ciremt  Hence,
the ship m per cent 18 equal to the percentage copper loss m the
secondary winding, and can be represented 1n a sumilar manner to that
shewn mn Fig 157. The construction 1s as follows

Draw the loss-line V,=0 for the loss 7 =UI31,, and the power-line
W=0 for the power W supphed to the secondary cirewmit ~Since, as
we have shewn, the secondary current I, 1s proportional to PP, the
loss-line V,=0 18 tangent to the circle at the no-load pomnt P,

The power-line W =0 passes through the no-load powt Py, since at

this pont 7 =I§’s-“=0 (because I,=0), and through the pownt on the
arcle for which s=o0  Since this latter pomt cannot be determmed
experimentally, we will employ the following approximation

The Ime V,=0 for the primary copper loss I°r; 18 1dentical with
the losshme Vy=0 Neglectng the iron losses at short-circuit, we
have this equation for the short-cireurt pont,

W=V+V,=V,+W

Hence, 1f we draw a line P;C through the short-cirouit pomnt parallel
to the loss-lme V,=0, 16 a perpendicular to the hine OM, this lne 18

Fio 102 —Load Diagram of the General Transformor
dinided by the abscissa axis (Wf: 0) and the powerline (W=0) m

the ratio /7, W  That is, from Fig 162 we have
PiC = W:l= Ters I
P;D w Iir?x-I:»T, Tg—"h
Substituting g T+,
we have 2%y =,

e n
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Hencs we can find the powerline W=0 by drawing a line P.C
perpendicular to O and dividing 1t at the pomt D 1n the ratio :—‘
1

The line Py D 15 then the power-line W=0

The ship s, or the percentage secondary heating loss, 18 now read off
from the diagram by the point of intersection of the ray from P, and
2 line parallel to W=0

Drawmng the mage P, of the pomnt P, 1n the continuation of P,
the slip can be measured by P.F, where F 1s the point where P_P
produced cuts the loss-line V,=0 The scale of shp on the loss-lme
can best be found by determining the shp for any load-pomnt by the
first method and markng off the value on the loss-hne V,=0 Ths
construction for reading off the slip 18 clearly correct, smce the two
triangles P, P F and P,G'H are similar

The second method for determiming the shp s 18 accurate and
convement for small slips



CHAPTER XI

ALTERNATING-OURRENTS OF DISTORTED WAVE-SHAPE,

59 Pressure Curves of Normal Alternators ‘i_.’r'{) Fourer’s Series. 61 Analytio
of the

Method for the D

of a Periodic Function

62 Graphic Method for the Determination of the Harmomos of a Periodic
Function 63 Alternating-Currents of distorted Wave-Shape 64 Power

Yielded by an Alternatin,

g-Current of dustorted Wave-8hape 65 Effect of

with Currents of distorted

‘Wave-Shape on M

Wave-Shape 67 Form Faotor, Amphtude Factor and Curve Factor of

an Alternating-Current

59, Pressure Curves of Normal Alternators In the preceding
chapters we have dealt only with alternating-currents whose wave-
shape 1s a sime curve  Stiictly speaking, such currents are seldom met

with 1n practice, for modern
alternators would become
much too expensive, if they
were required to generate
purely sinusordal currents
with all kinds of load. Con-
sequently, we have to be
contented when the wave-
shape only deviates by a
certamn specified amount
from a pure sine curve
Some 15 years ago, the
question of the best shape
of pressure curve was
much discussed 1 techm-
cal circles Some mam-
tained that the peaked
curve, as shewn i Fig 172,
p- 199, was the most favour-
able for transformers, since
for a g1ven effective pressure

Fre 168 —Diagram of Alternator with Revolving
Armature

the hysteresis loss 18 then a mimmum, and the efficiency consequently
a maximum This 1s, however, doubtful, hecause every deviation of
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the current from a sme wave leads to an merease of the eddy losses m
both iron and copper  Others, on the contiary, maintamed that the
peaked curve placed the greatest stram on the insulation, smce for
a given effective pressure this curve shape has the largest amphtude.
Although many investigators at that time characterised this objection
as groundless, 1t 15 nevertheless upheld nowadays For hghting pur-
poses, the flat-shaped curve (Fig 172, p 199) was held to be the best,

- l
g
v !

Fic 164

since 1n this case the current remains longest m the neighbourhood
of 1ts maximum, and therefore yields a steadier Light

At the present day, however, such opmions are rarely advanced, the
prevailing opmion bhemg strongly 1n favour of the snusoidal pressure
curve In modern generators the greatest deviation from the funda-
mental 18 usually hmited to 3 to 5% In Fig 31 1t was shewn how a
purely smusoidal pressure wave can be generated The construction
of such a generator, however, 15 very uneconomical In order to employ
& strong magnetic field, 1t 18 necessary to hed the winding—in which the
current s to be induced—in 1ron, as shewn diagrammatically n Fig 163.
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This winding 18 fixed on a laminated armature and, 1n the case before
us, rotates 1 & multi-polar field The current 18 lod off by means of

(j‘a i)

F10 1056 —Diagram of Alt tor with Y A it

shprings and brushes Fig. 16418 a photograph of such an alternator
with rotating armature It 18 also possible, however, to have the
armature fixed and let the magnets rotate—mn which case we got

- I

|l B
_at

LN

[

Fia t168

the arrangement mn Fig 165, a photograph of which 1s shewn 1n
Fig. 166. The exeiting curient 1s led to the magnet coils through
A0, N
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shprings In this arrangement, which 1s especially adapted for
the production of high-pressure currents, the stationary armature 1s
also referred to as the stator

The pressure curve of these generators depends firstly on the shape
of the pole-shoe, and secondly on the armature winding If this latter
18 concentrated in one large closed slot per pole, the pressure curve
will have the same shape as the field curve This 18 represented m
Figs 167a, b, ¢ for chfferent kinds of loads. It 18 of especial interest to

>

A
N
N

.

S
A
v/

F1e 167 —Field Curvos of Alternator (a) Fra 108.—Pressure Qurves of Alternato
At Noload, b) w‘lth Non dnductive Load, u) At No-load , (b) with Non-inductive Load,
() with Ind\m vo Load )wlth Inductive Load

s
e
—

>

note the deviation of the curve at non-inductive load from that taken
at no-load. The no-load curve 1s symmetrical, whilst the curve taken on
load is distorted This distortion 18 of course caused by the armature
current, which reacts on the inducing field, and the dafference represents
the armature reaction If the armature winding 1s distributed m
several slots, the pressure curve will no longer follow the field curve,
but will approach a sine wave, as 18 clearly seen from Fig 168 These
curves were taken on the same machie and under the same conditions
as the above—except that the pressure of the whole winding was taken,
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whilst the pressures shewn i Fig 167 were taken from a single
concentrated coil

These last curves (for a distributed winding) are typical of the
pressure curves of modern alternating-current generators, and 1t 18
clear that they deviate very little from sine waves.

60. Fourier’s Series. As we have just mentioned, in practice we
have to deal with alternating-currents whose momentary values, as
functions of time, do not vary after a sine law, but according to some
other periodic functions In order to be able to carry out accurate
calculations with such currents mn a simple manner, 1t 18 best to
analyse such a pressure curve 1nto a sum of sine functions of different
frequencies The sine function possessing the lowest frequency 1s
called the first harmonac or the fundamental, and all other sme functions,
whose frequencies are multiples of that of the fundamental, are called
hagher harmonws.  Since Fourer was the first to shew that every
periodic function can be analysed into a series of sine functions, such
ser1es are generally termed Fourer’s Serses

Before proceeding to deduce the same, however, we shall first quote
a few 1ntegration formulae which will afterwards be needed

These are as follows.

g ° 0 when m=mn,
." sInme s ne div = {0 when m=n=0,]» (109)
- = when m=n>0,
where m and n are any positive mtegers

+
Further, j 08 ma s us de =0 . (110)

o 9r when m=n=0,
and ‘[ coswm:cosm:d:c={ = when m=n>0,+ - ... (111)
- 0 when m=n

In the mnterval, —= to +m, let f(z) be any continuous single-valued
periodic function, we can then express the same by the following
series—known as Fourier’s Series *

f(@)=a; cos z+b; s z+a, cos 22+ by s 2
+ +a,co8nz+b,mmuz+

The constant coefficients a,, @y, a3 and by, by, b, are determined

by multiplying both sides of the equation by cos (mStl:. and 1ntegrating

from - to +m, whereby all terms on the mght vanish except one
Thus, we get

+ -+
I [f(z) cosnzde=a, j cos?(nz)dz = a,m

or a,=1 r" (&) cos (nz) .
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Similarly, multiplymg all through by sin (nz)dz and integrating
between — and +m, we get

b, =; j‘h J(@) am (nz)da.

These two expressions for a, and b, can be somewhat transformed if
we mtegrate first from — to 0 and then from 0 to + , as follows

a, =; r’f(z) cos (nx) dz

.
-1 {r_“ () cos (na) da +j° 7(a) cos (n) dz}
In the first mntegral put = —y; then

[ s @ytam | s-goos(-mi(-s

=j:f< - ) cos (ny) dy

" ID (@) cos (na) dz = r (- =) cos (nz) da,
- [
mdwogest  a,= || [f(6)+f(~a)]con (na) o
TJo
Slmllla‘rly, b= I j' [f(@) - f(—=)] s (nz) da
TJo

Ezample 1. Find the value of + when the function ¢=jf(«f) traces
out the rectangular curve represented 1n Fig 169

Time

-l |
Fia 160 —Rectangular Altornating-Current Curve.

From wi=0to wi=m, ¢=1, and from wt=0 to wt= —m, 4= -1

A
Then, a, =}rj 1008 nwt d(wt) =11rj‘[I+( — I)]cos nut d(wt)=0
- 0
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-
and b,_=%-" 18 nowt d(wf) =71—rJv[I-(-I)]smm:td(mt)
-r 0

4 when n 18 odd.

0 when 7 18 even,
=
nar

4ITsinwt s 3wl s bol s nwd
Hence 1=;[T+T+T+,, n T :I

Ezample II. Find the value of ¢+ when the function = f(wt) traces
out the triangular (saw-tooth) curve shewn 1 Fig 170.

|
VR ¢ i,
4 T\_T‘.-TB

F1a. 170 —Triangular Altornating Current Curve
. 2
From ot= 0 to vi= 3 i= ;I(mt).

T 2
s wi= 0 wt=—§, z=_;I(mt)

T 2

P 5 » o= m 1= ;I(w—mi)
2

» mt=—g 5 Wi= -, 5=—7—rI(7r—mt)

Accordmgly,

10+
a,,=—J- % cos nuwt di
Tox
1 {I’ [Z ot + (-1 af)] cos not d(ut)
T Lo

+£[I(w—wt)+{—1(1r—wt)}] cos mutd(wt)}=0
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1+
and b,,=1—rj 1810 nwt d (wt) .

- %J" [ wt = (T ot)] s ot d(of)
0

+ %.‘7 [ (r - ot) - { - I(x - wt)}] 510 not d(wt)
2|
E
If we put ol =7 — ut,
then the last integral becomes
+ %J‘! (I ot + I of') sm (nr - not')y d(wt)
m™Jo

Fou all even values of =,
81 (nr — not’) = — sin not,
and for all odd values of ,
s (nr ~ nwt’) = sm not’,

Consequently, we get
b,= ;42- -[: 21wt sin not d(wt),

when 2 can only be an odd number, thus

b,,=8—I{ ~ ot cos nwt+ " Mt},‘r
w2 °
sinnZ
81 2
=m
87 81
re h=m h=-m g
811 811
h=mm h=-ngm
. 81 [smowt sm3wf  sinbet snTut
Hence f=— {T_ o *oog — 9 }

In this example not only the cosnwt terms vansh, but also the terms
sin nof, for which # 18 even

Tlus latter pioperty 1s common to every curve whose two halves with 1espect
to the alscussa aws are symmetrucal, 1.6 when the two halves comeide



FOURIER'S SERIES 199

when placed one above the other, as m Fig 171. O1, cousidering the
expressions,

1+ 1t
du=z [ Fa)cosnado=2 [ 1/(0) + (5 7) oanr] coanzd
T ox TJo g

1 j* [f(@) + f (& — ) cos ] s1m n;/zg/

a 1
an b,,=1—rj._"f(m)smmdz=; ,

- A
// \\\\ (; ' —_—
N ~  lal W
1 / '\\ ' # )
' i\ i [} x>
Lexr -3
S 3,
; m\
.
Fio 171 —Symmetrical Curvo with respoot to Abwcissn axls O
ONZ

we see for all even values of , siuce cos 7= + 1, that a,=0 and 3,=0, -=*
provided that F@)= —flo—m).

In practice, nearly all curves have this property, hence we can
always omt those terms whose frequency 1s an even multiple of that

Tsinwt

/\ Isnwt-§sin3wh)
/\/\ \/Hsm Jamu

Flu 172 —Effoct of Third Hurmonie on Wave-shapo
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of the fundamental. An exception 1s the pressure curve of homopolar
machines, which, however, are seldom used.
Considering again the expression

a,= 1 rwf(a:) cors;/mwk;:=l.r,r [f@)+f(-2)] cosméa:,
ks —r T 0

we see that a, 18 always zero when

f@)=-f(-=)

ie a, vamshes, and consequently all the cosme terms of the series
vanish, when the pressure curve is symmetrical about the orgn

lismuwt - § smSwt)

/\\ Ksnat- §snset)

Fio 178.—Effect of Fifth Hurmonio on Wave-shapo

The curves 1 Figs, 172 and 173 shew the imfluence of the mgher
harmonics on the shape of a curve. Pressure curves similar to those
shewn 1n Figs 172 and 173 occur frequently in practice

61. Analytic Method for the Determination of the Harmonics of

a Periodic Fumction If we are given a periodic curve taken by

eriment (erther by the pomt by point method or by an oscillograph)

and wish to analyse the same, 1t 18 not possible as a rule to express 1t

by means of a fimte series, so that the above method cannot be used
for determining the amphitudes a, and b,

If the curve 18 taken by the pomnt by pomnt method and_ 2m
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momentary values have been measured at equdistant pomts i the
whole period 2, then we start from the equation

=@, 008 wi + b; 81 wE + 0 co8 3wt + by s St + ...

and a; Ely the Principle of the Least Squares, whereby the constants
a, and b, must be so determined that (% wgmatet = % measrea)? 18 & MINIMUM,
1Le we must have

a(“uunum—im-‘umy:() -
and (% catentated — ¥ mawsurot)? =0,

und we get Just as many lmear equations as there are unknowns.
Denoting the 2m measured values by 4, 1y, 4 . i, then

2 2 4r 6 2m—-1)=
a "—L{f.l 008 o - +13008 5 +44€08 5+ Hlpmg008 o T = 1,,,,},

s 2 . % dr . 6w 2(m-1)=
1= oinsin g b s g bysin g b tpamm T T

and m general

0,=2 cosnzf+ i cosn41+ cosn,ef+ +1 s'n.g(m_l)’r i,
"= m| " am ™" am o T e Himma€0 2am "
_2 2r ., 4 6r 2(m-1)x

b,,-ﬁ{zlsmn%+1,sm'n.%+zasmnm+.. +1,,,_,smn—-2’—n——}

In order to impress this method more clearly on the memory, its
mathematical derivation can be considered from the following physical
conception, more familiar to electrical engineers.

An EMF. ¢,=cosnwi 18 induced in a circuit carrymg a current
represented by the curve

=0, OB wi + by BN wf + ag 608 Bwt + by 8in Bwi + ...,

m which we require to find the 2™ harmomec of the coswe terms All
the current harmonics must be wattless with the exception of that we
are cousidermng (the ™), and the mean power 18
W on =130t
On the other hand, the mean power 18 given by
o= egdt=1[ s cosnata
= —TLe,,z = Tjﬂt cos nwt df
=mean value of (zcos nwt).
Hence =2 x mean value of (2 cos nwi),

a’u
and similarly, b, =2 x mean value of (2 81n nwt).
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This 18 the same result as that just obtamed 1n another way
If we take, for example, 2m = 24, then the calculation can be carried
out 1 the following tabular form

Doeped Coeffiotents for Determinng the Amplitudes.

Valuea, ay by o b ay by o b,
n 0966 0259 0707 0707 0259 0966 -0259 0066
P 0866 05 0 10 -086 05 -086 -05
g 0707 07707 -0707 0707 -0707 -0707 0707 -0707
% 05 086 -10 0 06 -0886 05 0866
2 0259 0966 —0707 -0707 0966 0250 -0066 0259
25 o 10 0 -10 0 10 0 -10
y  —-0259 0966 0707 -07707 -0966 0269 0966 0259
5 -05 086 10 0 -06 -086 -05 0866
u  —0707 0707 0707 0707 0707 -0707 -0707 -0707
u  -0868 05 0 10 086 05 0866 -05
W~ -0086 0269 —-0707 0707 -0259 0966 0259 0966
n =10 0 -10 0 -10 0 -10 0

In the first column are the experimentally determined momentary
values, taken 156° from one another In the second column are the
cosine values, by which 1,, 4,  to 4, must be multiplied 1n order to
find @; ; i the third column are the sme values, by which 4, 2,, etc,
must be multiphed m order to find 4, ete , mn the next columns are
the coefficients for determining ay, by, a;, b; and a,, ;.

It has here been assumed that the given curve 1s symmetrical about
the abscissa axis, Whence 2, = — 4,41, %g= —tp4s, and 80 on If this 18
not exactly the case, the mean value between ¢, and 2,,,, must be taken
m order to get 3, Further, for symmetrcal curves, the orgmn can
always be chosen so that 2,,=0.

62. Graphic Method for the Determination of the Harmonics of a
Periodic Function. Instead of the above analytic method, we can also
proceed graphically, which 18 especially convenment when the whole
curve, and not onl{ a few points on 1t, 15 at hand  An example of
such a method 1s that given by Houston and Kennelly, El World, 1898,
which depends on the following theorem

“If an odd number w of half waves of a sine wave are divided 1nto
p sections by p vertical hines equidistant from one another, then, when
p>1 and p and w have no common factor greater than unity, the sum
of the areas in the odd sections equals the sum of the areas in the even
sections ” In the summation, all surfaces above the zero line are
taken as positive and below as negative

To prove this theorem, divide the abscissa axis of the sine curve
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from # to 2+ wr mto p equal i&lﬁs, draw the ordinates through these
ponts, and find the area of each section (see Fig 174)

rsmzdo;=cosa.-cos/3.

Now find the sums of the areas of the even and [meven sections, and

|
|
i
|
|
!
i

Fia 174

equate the difference of these two sums to zero, thus the following
expression F must equal zero

F=cosm—2eos(m+g>+2cos(m+‘>w—1)
P P

- +200s{z+(p—1)w—17"j—cos(x+w)

=eosm—"cos<m+wl)+2cos (x+,,w_n-)
P P

- *2co8 (a:+p—;—1 . %’r>+cosm

—2cos(az—u—m—>+2(:os(z—2w——’r)
? p

p-1wr
—...i2cos<m———2— —P—)

T T p—1wr
-=2cosz{1—2zzoswi+2cos‘.2w;]— .t?eosTT}

Multiply both sides by cos'";l; , then, applymg the formula

2 co8.¢ co8 § = o8 (Z+Y) +Ccos (z — ),



204 THEORY OF ALTERNATING-OURRENTS

all the terms on the right-hand side except the last cancel out, so that

we get wr 1 DNwr
Fcos ¥=2wszcos(‘£§——+§)

P

1
=2coszcos%"=0,

and, since p and w have no common factor greater than umty,
F=0.

On the other hand, 1f w=p, and we commence to divide the wave at

a pomt where 1t passes through zero, so that £=0, then
F=2p,

Le. equals p times the area of a half wave, which can also be seen
directly from Fig. 174

From this theorem we get the following rule :

A waveline, representing graphically a semi-period of an alternating-
current, can be expressed by

@, 08 z+ b, 810 & + ag co8 3% + by sin 8z + ...

In order to find the coefficient b, of the sine terms, starting from
zero, we divide the half wave-lengﬂ; into # equal parts and determine
—Dby some means or other—the difference F between the sums of the
even and the odd area-sections

Then, since J¥ equals the mean ordinate of the sine wave of amphtude

b, times 7, 1.e. equals b, 1—?_ T, we get;
=F

I

B

where 7 equals half the wave-length of the given wave

To find the coefficients a, of the cosne terms, we must agan divide
the half wave-length into @ equal parts, but we must now start at a
1
In
of the interval of the given half wave. In other words, the dividing
nes for the coefficients a lie midway hetween those for the coefficients b.
Then, as above, we get, from the cafference F, of ‘the sums,

quarter wave-length from the zero of the a* harmonic, ie at

This method 18 not strietly correct, smee 1n the surfaces measured
for one harmonic the surfaces of those harmonics are also included
whose frequency 1s a multiple of that of the fundamental This
maccuracy therefore oceurs as soon as we come to the ninth harmome

The surfaces can be measured with a planimeter In order, however,
to obtein greater accuracy, the following device may be used the
aress of the given polygons 4ABCDA and 4ABCDEA'A (Fig 175),
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which have to be measured, are divided mto equal even and odd
sections, which can be omtted without further ado, so that only small
surfaces remain to be measured, these are traversed in the proper
sense with the plammeter, and the result can at once be read off.

r/cr'
B/
\

£
TFia 176 —Determination of Arcas for inding Third Harmonie.

In Fig 175 the surfaces F and F, are obtamed directly by means of

a plammeter when we trace out the small areas fi, fa, _Z and fi, fay /i

respectively in the direction indicated by the arrows, since
F=fi~fo+f, and F=fi-fi+f.

After the coefficients @, @y, &, by, by, b, of the harmomics have
Deen found 1 this way, we can also determine the coefficients a, and &,
of the fundamental, by taking the plammeter over the whole surface,,
in the one case starting from #=0 and in the other z=; To obtamn
a, and b, however, we must not directly substitute the surfaces F
and F, as measured n the formulae for a, and b,, sice 1n addition to
the aren enclosed by half a wave-length of the fundamental, there 1s also
mensured the sum of the areas of all the harmomes withm this
half wave-length, ®

2
pA P

3

consequently, b= "2_€ - Z %
T
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Similarly, we get a1 = — wh_ t—:—;'eos (n- l)g
T 3

o7
—_mh, e o o
2r ©3 5 1T

In Fig. 176 the current curve of a homopolar alternator 1s shewn
This curve has been analysed by hoth of the above methods In the

N,
N\ T

Fic 176 —Analysis of Experimental Curvo into its Harmonica,

analytical method, the distance 2+, corresponding to 360°, has been

civided into 24 parts, thus one division equals 3—" =15 The equation
found 1m this way is “m

4= —387 cos wi + 99 9 s wf + 2 96 cos Jwi
— 3 54 sm 3wt + 257 cos bwt — 12 8 81n bwi
— 178 cos Twt+ 5 46 sin Twt
These harmonics are also shewn m Fig 176
The equation found by the graphical method 18 approximately the
same, thus
2= —3'82 008 wi+ 99 2 81 wf+ 2 94 cos 3wt — 3 29 s1n 3wt
+2+88 cos but — 18 4 sin 5wi — 1 98 cos 7wt + 5 79 sin Tuwi,
We thus see that the latter method is correct within one per cent.
of the amplitude of the fundamental wave
In drawing out the curve of the equation found analytically, the sme

and cosine terms of each harmomec have been combmed and set off
their proper position with respect to the other waves The amplitude
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2, and the phase angle ¢, of such a combined wave are found as
follows.
«t, cos not + b, sm nef =~/a + b s (nwt +tan~! %")

=1, 80 (ot + $,),
where a,=1,8m ¢,
and b, =1, cos ¢,

By this means, we get: for the equation of the curve (Fig 176)
1=100 810 (wf + 358°) + 4 61 s1n (3wt + 140°)
+13 06 s (5wf+169°) + 5 71 s (Twt + 342° 5)

63. Alternating-Currents of distorted Wave-Shape In Chapter II,
we saw that when a varymng pressure p acts at the terminals of a
crcuit contaiming ohmic resistance, self-induction and capacity, we
have, from Kirchhoff’s Second Law,

da" C
ldp du rdi, 1
La~—# I atIo
Further, we saw that, with constant 2, L and C, a sinusoidal pressure
always produces a sinusoidal current of the same frequency.

Since the pressure equation 1s linear, the law of superposition can
always be applied And smce the pressure always has the same
frequency as the current 1t produces, it 18 obvious that each pressure
harmonic of any pressure wave produces a current at 1ts own frequency,
independently of all other harmonics

Thus, when

P=p+Pg P+ .-

= Py 810 (0F 4 1) + Poyge 810 (B0b + ) +
then
1=1 41 +i5+

P ax (oL 1
=JE ‘L ,l,,,zsm{mf+lﬁ1-tan 1<1——m)}
1 +(w —w—g>
Py (3L 1
+ , A_’_fl_,gsm{ht-ﬁ-tp,—mn 1(%—5@)}+
\/1 +(3mL—m>
P el 1\)
+ - T 1 2Bm{mf+¢"_m l(-’l_-nm(,"l),l’ '
«/17 + (muL - —,)
ol

p=ia'+L(ﬁ+lIzdt

or



208 THEORY OF ALTERNATING-CURRENTS

Or, we can write
8= 1 e 8111 (0F + 5 — b)) + Ly une 810 (S0t + Y5 — )

+ o Ly 810 (0~ ), (112)
where the amplitude of the 2* current harmonic 18
Praax
L= L Ne .. (113)
2+ (anuL - m)
and ¢_=m-1("%_ﬁ) e e (114)

The phase displacement ¢, of the a'* harmonic 18 positive, zero or
negative, according as

nwl

AV

1
nwC
> 1

ol = —.

r L=
From this we see that each harmome of the pressure wave produces
1ts own ourrent, and further, from the law of superposition, all these
currents are entirely independent of each other.

The amplitudes of the currents do not all hear the same relation to
the amplitudes of the pressure harmoncs, since the impedance of the

th 1
2 harmonic !ﬁﬂ:=\/19+<mL-—1— 2=z .. )
imax nlC) ™" ’

degands on the value of n. Further, the phase displacement ¢, 15 also
a function of n, so that resonance cannot occur at the same time
with more than one harmonic Since this phenomenon, however, 18
frequently due to the higher harmonics, 1t 18 not sufficient to consder
resonance with regard to the fundamental alone, especially where
capacity 18 present in the systems

Smce the relations between a pressure and its current are different
for every harmonic both as regards magmtude and phase, the current
curve 18, as a rule, quite different 1n shape from the pressure curve
‘We will now shortly investigate the mfluence of 7, L and C on the
shape of the current curve

Conmder first the simplest case, when the ciremt contains only
ohmie resistance, then

Lme=Tom gng g0,

1.e. the current curve has exactly the same shape as the pressure curve
and 18 m phase with 1t. This can also be seen directly from the
differential equation, smee p=1r.
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If, on the other hand, the circwit contains hoth resistance and self-
nduction, then
Py

I =
= e
Hence the greater the value of n, the smaHer will be {»u= and the

nmax
greater ¢,, that 1s to say, the ligher harmonics are not so pronounced
1n the current curve as 1n the pressure curve, when the eircmt contains
ohmic resstance and selfanduction Thus the self-induction has the
effect of malang the current curve more nearly a sine wave

On the contrary, when the circuit contans resistance and capacity,
we have P 1

n s —tan-1(
el and ¢, =tan ( nmCh)

and ¢,=tan"! "—‘:{'

24"

T+ (w02
The higher harmonics are now more prominent in the current curve
than m the pressure curve, and the eurrent curve may become very
greatly distorted, when there 1s sufficient capacity 1n the eirewt.

64. Power yielded by an Alternating-Current of distorted Wave-
Shape. The power of an alternating-current of any given wave-shape
can be expressed by tho rate at which 1t develops heat 1n a resistance,

thus* 10
—Tj 2 dt
n

Putting 2= 1, SN (0f + g — b)) + T 0 810 (B0of + g — chg) +
and remembering that

0 when m=n=0,
T when m=n>0,

we sce that, i the mtegration of :%df, only those terms of 22 which
contain a sine squared yield a result differing from zero, and we get

T .
7. = G Tt D Lot}
0

Putting this power equal to I%, as before, we get for the effective

current, ;
1(7 1 2 a
I= 7 07:"”= §(Ihmu+1‘huu+]ﬂmnx+ )

- =VL+ L+ I+ (116)

From this 1t follows that each harmomic of the current curve pro-
duces 1ts own heating 1n the eircuit independently of the rest, that 1s,
the total heatmg losses m the cuont equal the sum of the heating losses due
to the several harmonacs

AQ o

+
SIN M 810 N A =

{ 0 when m=mn,
"
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Similar to the effective current, we can express the effective pressures
PN ppite AL Pr s Pt P
= TDP b= §( vmar + Pimae + Pouae + )

V) N 0 R L)
Further, we know that the power developed by a current 18

w=1(pid
=g pidt
If we substitute the values of p and 4 and take the product, then all

terms vanish on integration except those contaming a sme squared,
and we get

IV=%{P1mAxIlmncos¢1+Pﬂmlx1‘!mcoa¢l+ }
=PI ico8 ¢y + Pglgcos pg+ ... . . . . .(118)

‘We thus see that, with regard to power, all the harmonics are mnde-
pendent of one another,—each produces power for itself, whilst the
current of one harmome produces no effect with the pressure of another
The curent of any harmomc 18 wattless unth respect to the pressures of
other harmonics

‘We have now seen that all harmomics are i every respect inde-
pendent of one another, and the total power 1s obtaned by the
summation of the powers of the several harmonics

Thus, each harmonic can be treated separately by 1itself, and can
have all the laws and graphic constructions which have already been
deduced applied to 1t.

If we have a problem for a pressure curve of given shape, we
analyse this curve into its harmonics, and treat each harmomec by
1tself as in the previous examples In this way we find the current
and power of the harmonics, whence we get the effective current, the
total power and the efficiency In many problems where graphic
methods are used, it 18 possible to nse with advantage separate parts
of the figure for each harmonic

65. Effect of Wave-Shape on Measurements,

1. Measurement of Imduction Coeffiients In practice 1t 18 often
required to find the coefficient of self-induction of & eiremt of compara-
tively negligible resistance This 18 usually done by sending an
alternating-current through the ciremt and measuring the effective
pressure and current  Since, however, we have not always a smusoidal
pressure at our disposal, 1t 18 of interest to investigate whether the
coefficient of selfinduction can be determined from these two mea-
surements with sufficient accuracy when the pressure curve contans
harmonices.
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If p=Pyu s (0f + ) + Py 810 (B0t +hg) +
Priuse Prynas 3
then  g=—1% am(mt+\lz1—g)+3:u—]lam (5wt+ %—T)+
The effective values are then
P=JP+ P+
1 1 1
and 1= By B
By division, we get ~
15 1P
1+5 3+ 5+
[ SpiHdE 19)
of 1+54:1i:+ -
PR

From this formula we see that the pressure harmonics Py, Py, ete,
must be very large 1n proportion to the fundamental P, for the root
to differ appreciably from umty Hence, for practical purposes, 1t 18
generally sufficiently exact 1f we calculate the coefficient of self-
mduction L from the effective pressure and current as measured, thus

L=
.

neglecting the shape of the pressure curve If, for exawple, this curve
has a third harmome, whose amplitude equals a third of that of the
fundamental wave, then the quantity under the root 18 096 Thus
the error introduced by neglecting the correcting factor 1 but 4 %

If the ohmic resistance of the circuit 1s not neghgible, for the above
formula (119) we must substitute formula (124), given on p 221.

1. Measurement of Capacty (a) An analogous problem, namely the
determunation of the capacity of a circmt of low ohmic resistance by
measurement of the effective pressure and current, may, on the other
hand, give results which are far from exact, when the pressure curve
dewiates greatly from a sine wave

If P=Py 5 (0 + ;) + Py 8in (B0t + )+,
then 1= CoPy 0 510 (wt +¥+ 1";)

+ 8CwPy e, 81 <3wt gt @;_") +

The effective values are
P=JP}+Pot.

and I=0CJP+9P + 252+
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I 1+<%)2+(%>2+' 7. ... (120)

whence, by division,

TP 1+9<%)2+25(%>2+ .

Instead of the factors 31? %, -71—2 we have now the factors 32, 5%
72, ... under the root, which strongly affect the mfluence of the gher
harmonzes on the readings.

For example, 1f Py=3P,, then

I I I
0=J>«/0~555=H, 076 and not P

In this case therefore 1t 18 not sufficient to merely know the effective
values of the pressure and current, but the curve shape must also be
taken mnto account

(b) This, however, can be easily avoided m the following manner

series with the capacity we

1 eounecic an mductmchml L
TSI and a large resistance £, as m
Fig 177 The mduction coil

must be free from iron and

have sufficient stops to enable

us to regulate 1ts self-induction,

2 so that 1ts reactance z,=wlL
approximately equals the capa-

A
]

S M

Fia 117 —Conmcotions for moasurtug Oupactty ity yenctance 7, = =5 Wenow
vary the number of turns in the induction coxl untl the pressure P 18
practically zero  When mimmum pressure occurs, then we know that

resonance 1s present, whence
1
o= wl=g,

Of course, care must be taken that the resonance 18 due to the funda-
mental and not to a higher harmome We then measure the coefficient
of self-induction L for this number of turns without the resistance and
the capacity m ciremt, and we get, with fair exactitude,

=L
. .
1 I
and from ths C= mTL=mP,

By this means we ehminate all the disturhing influences of higher
harmonics 1n capacity measurements.
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56. Resonance with Currents of distorted Wave-S8hape If a pressure
ve contamnmg several higher harmomes acts on a circuit, partial
onance will exist under several conditions This can_be hest
istrated by an example Conmder the circuit shewn m Fig 178,
ich contams chiefly induc-

wce and capacity, partial L
omance will be caused by =Y "0‘0’59’0’0’6"—‘
s wave of frequency ¢, when =
s selfanduction 18 such that
1
L=n’m’(f
11¢e, if we vary L and plot the Fio 178

sctive current  as function of

s coefficient of self-mduction I, a wave-shaped curve 1s obtained, as in
3. 179, which 18 often called the 1esonance curve  The curve shewn 18
vwu for a pressure curve having the equation

=100 sin (vt + ;) + 30 sin (3wt + 1)
+ 16 s1m (Bt + ;) + 20 sin (7wt + )

T'he frequoncy of the fundamental 18 ¢= 50, the resistance 7 =5 ohms,
> capacity C'=>50 microfarads, while the inductance L was varied

Ldmp

8
/
: Y \.
ﬂ&,.m> S—— -
0 [Z 0.0 412 016 02 0.% 08 Li Heary

FIa 179 —Resonance Curve.

v 0 to 0'3 henry The maxima of the effective current occur at
> different values of L for which resonance 1s present The last and
satest maximum 18 given when resonance 18 due to the fundamental,
2 next to the third haymome, and so on
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Fig. 180 shews the several current harmonics plotted as functions of
the inductance Z In order to shew the effect of the higher harmonics
more clearly, the scale has been made larger than that of Fig. 179
‘We see that the maxima of the several current harmonics, which occur
at resonance, a1e related to each other in the same way as the amplitude
of the pressme harmonics. The curve of 2esultant current 18 obtained
by geometric addition of the harmonics With a larger mmductance this
curve almost coincides with the fundamental ~With a low mductance,

LAmp

Iy N9 _
1/ DA s B
WA Y ANE— =
AAN——T"
RN/ -
NS ~—d4,
7(%0”@1@ Harmi )

0 aw g ams 4w g5 goe g ow 4w @LHmy
Fia 180 —Resonance Curve,

however, it remamns higher than this and also higher than the
harmomes The angles , by which the harmomes are displaced from
the fundamental, clearly have no effect on the resonance curve

It 18, however, also nteresting to see how one current curve passes
into the other as the mductance of the choking coil 1s altered We
shall therefore consider analytically the case when

1
n=—r
oN L
18 an even number. This condition les directly mdway between two
resonance conditions, viz between that due to the (n—1)" and that
due to the (n+ 1)™ harmonic, for n, being even, can only represent a
transient stage and not an actual harmomie The prevailmg current
will therefore be
tyey F 041 =Lty 810 {(m = L) b+ o4, }
+ Ly max 810 {(1 + 1) 0f + 4}
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Assume I,_,=1I,,,=1,, then the current 7, can he wrntten
=y + gy = 20, ae BID ('mut + @) co8 (nwt - ‘—P"—;ﬁ)

This current 18 drawn out 1n Fig 181, for ¥, =v,=0 and n=4.

As is seen, it forms a sine curve whose frequency 18 a mean of those
of the two currents and whose amplitude varies after a sine wave.
The higher the periodieity of the harmonic, the more periods we geb

AWAWANAY
VARVARVARV/

AN ne
N YA

Fio 181

for every Eenocl of the man current. Hence, by the interference of
two neighbouring harmonies, a current 1s produced, which possesses the
same character as currents caused by surging.

If the amphtudes I,_, and I, are not equal, we still get a current
whose mean periodicity 18 #  The amphtude of this current, however,
does not vary between zero and a maximum, but only between a
mimmum and & maximum value, as seen from Fig 181

From the foregoing 1t 18 obvious that we cannot regard all pulsations,
such as those represented in Fig 181, as surging between free and
forced oscillations

B. Stasser and J Zenneck,* who were the first to draw attention to

* Annalen der Physik, Bd 20, p 760
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these even harntonics, suggest that the same should be treated as

mdividual currents They substitute for & large number of the uneven

harmonmes, even harmomics which change their direction at every half

eriod of the fundamental, Such harmonics are shewn m Fig 182

%y considerng the field curve (Figs 167a and b) of a generator on

nodoad and on non-nductive load, 1t

18 easy to see that the distorted part

of this field—due to armature reaction

—mduces even harmonics n the stator

winding. The armature reaction 1s

obtamned by subti acting the two curves

~ (Fig 167a and b), and the curve thus

\/ found 1s very similar to the second

harmome m Fig 183, while the field

curve 1 Tig 1670 1s 1tself very hike

the curve 1m Fig 182 printed with

Fia 182 a heavy lme Strasser and J

Zenneck call thess harmomics phase-

changing, suice they alter their phase by 180° overy half period of the

fundameutal Since, however, 1t 18 not easy to treat phase-changmg

currents and pressures nnalytically, we shall not pursue this method

of representation further ~All such phenomena can be quite well
explained by means of odd higher harmonics.

67. Form Factor, Crest Factor and Curve Factor of an Alternating-
Current. Since the effective value of a periodic current or pressure

—t —y

Fio 163 —Constuuction for finding Efectie Valuo of Poriodic Curve (Fleming).

is often required, and 1t 18 a round-about way to fist analyse the
gven curve mto 1ts harmonics, we shall now give a method (due to
Flemang) by means of which the effective value of a periodic function
can be determined directly

For example, find the effective value of the curve given i Fig. 183.
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Take some pownt on the abscissa axis as origin for the polar diagram of
this curve. ~ The area of the polar curve 1s then

T
2 'S
I:y—zd(wt)=;jo b,

where 18 the ordmate of the periodic curve
ow draw a cirele whose ares equals that of the polar diagram, and
denote the radus of this circle by 2, then

T

T
.R’vr:zj 2t

7)Y

2
or J2EB= T.l.o y2dt

=eftective value of the curve

The polar diagram of a sme wave 18 a circle, other periodic curves
gve other polar curves, which are more or less similar to circles The
cncle of the same area as the polar curve can easily be estimated by
the eye, when a plammeter 1s not available By this means we have
a sumple method for approximately finding the effective value of any
periodic curve

The ratio between the effective value of a periodic curve and the
mean value 18 often needed, and 18 known as the fom factor, since 1t
depeuds on the form of the curve The more peaked the curve 1s, the
larger 15 the form factor  For a pressure curve, the form facior 18

—
J%, pRdt
L (121)

T
%rp dt

0

fi=

For tho pressure curves (Figs 169, 170 and 172a) the form factors we
10, 116 and 1 11. The form factor of a sme curve 18

9

1. T 1
ﬁT;=m=1ll'

Another characteristic factor which 18 met with now and agam m
techmeal literature 18 the cest factor f,,* which denotes the ratio
of the maximum to the effectave value This 18 only of mterest for
pressure curves—serving as a measure for the stram put on the
msulation The maximum value of currents and pressures of given
curve-shape, on the other hand, has no direct relation to the iron and

* As suggested by Prof G. Kapp
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copper losses 1n electiomagnetic apparatus, and has therefore only
Iimited 1mportance mn practice.

S

_maximum value _ P __

= effective value /o T
"_I pdi
T},

and equals 2 for sme waves

A thud factor, which 18 of especial 1mportance for motors, 18 the
ourve fuclo _ effective value _P
7= gmphitude of fundamental - P,

P\2 | (P\?
= it} it )
\/“(P) @)
Smee only the fundamental of the pressure wave causes the eftective

transmission of power from the stator to the rotary field, the load
capacity of a motor depends chiefly on the fundamental pressuro

P
P = ;_;.
Hence the 1mportance of thig fuctor



CHAPTER XIIL

GRAPHIC REPRESENTATION OF ALTERNATING-CURRENTS
OF DISTORTED WAVE-SHAPE.

68 The Equivalent Sine Wave and the Power Fagtor 69 The Induction Factor
70 Graphic Summation of Equivalent Sme-Wave Vectors 71 Effeot
of Wave-Shape on the Working of Eleotric Machines and Apparatus.

68. The Equivalent Sine Wave and the Power Factor. It would
be possible, as already shewn, to represent graphically each one of the
harmomes by 1tself  Since, however, su(ﬁf a representation 1s not
very convement, 1t 18 simpler to proceed as with the power diagrams
and set off the apparent power PI at angle ¢ to the ordinate axis, so
that the ordinate equals the power PIcos¢ cos ¢ 18 called the powe
facto. This diagram can be drawn to any desired accuracy when the
pressure, current and power are known

In the previous load diagram (Ch. I Sect 12) the current and
E;esaure waves were simusoidal , 1 this case, however, the waves may

ve any shape whatever, thus ¢ 18 not the actual phase displacement,
but only imagary, bemg the angle between the smusoidal pressure
and current, which are equivalent to the actual pressure and the
actual current with respect to effective values, and yielding, therefore,
the same power This 1maginary smusoidal wave 18 called the equs-
valent sine wave, and 1t 18 with this that we usnally have to deal m
practice For most practical purposes this 18 sufficiently exact, but
m exceptional cases, e g Wwith condensers or with strongly-distorted
pressure waves (1e pressure waves which deviate strongly from a sme
wave), this method of calculation 18 inexact

‘We will first exammne what the actual sigmficance of the power
factor cos ¢ 18 The power 18

W=Plcosp=1I%,
where 7 18 the effective resistance of the circmit, hence

cos¢=§:

P} P L
Jﬂ + (le—- wia)g +12+ <3LuL - E&V)ﬂ ¥

=7 PPy .
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00524,1 + (fﬁ_ﬂ:)‘cosg% + (%)Jcosa‘d,b . _

Pﬂ 2 Pﬁ 2
() + () +
whete ¢, ¢g, b5, etc, as above, ate the phase-cisplacement angles of
the several harmomos.

or cosp= (122)

Since 7=P1°°s¢‘,
1
we can also write cos¢=cos¢1% e e (1220)
1

Both formulse (122) and (122a) have heen deduced on the
assumption that the effective resstance 2 1s mdependent of the fro-
quency , this 1 generally tru, but not always.

Let the eftective resistance for the fundamental bo 1y, for the thid
harmome ry, for the fifth /;, and so on, then, m this case, we got

I+ 1o+

cos=""""pr

Further, from formula (122), we have
sin ¢ =+/1 - cos’¢

o 2
sin®¢, + (‘%’) sy + ..
1

= e (123)
Pg\?
1+(7) + -
and Pem =~ P!, + P’ sy + Py’ + .,
or, simce Psm ¢, = al;,
‘ Pysin g = 3aly,

Pysm ¢ =bal;,
then 811 ¢=sm4>11_.£}~/lf—+_915+351§+7
1

This tormula 18 deduced on the assumption that s remaius coustant
for all harmomes, and that the reactance rises proportionally with
the frequency

It now remans to be seen how great 1s the error mtroduced m
the experimental determination of the effective resistance and effective
reactance of an sduciwe circmt by using a distorted pressure cuive,
when we caleulate with the equivalent sine waves

The power supplied to the circwit through which the effective
current 7 flows 18 always W=1Iu,

when the effective resistance 2 1s independent of the frequency , m this
case, therefore, the determination of » 1s independent of the curve-
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shape This, however, 18 not the case with the effective reactance z,;
for each harmonie of the terminal pressure
P="P 4Pl Py

produces a current with 1ts own frequency Thus

L= A - B

m N/ (3,5')2
1f the reactance =, 18 proportional to the frequency
I=VE+ D+ It
_1 [P 3P el .

= + +
AN 12428 124927

1
= :,E-JPf 8Py + 1 S e, +

But, Psin ¢ =~/ P2 sin’p, + P2 sin’h, +
Combimng these two last expressions, we get
Psmn¢  [Pieme, + 1P ain’d, + 25 Prsin’y +
By=—g— .
I Pisin$, + Pisin®p, + P sinpy +

Generally the harmonics of the pressure curve are not known, neither
are the constants » and 2, of the eircmit 1n question, consequently we
disregard the shape of the curve and calculate with the equivalent

values We then have Psm
T, =—I——-s

(124)

and mtroduce a small error by assuming the root equals unity. This
root 18 always somewhat less than umity, so that the approximate
formula already gives « somewhat too large The error, however, 1
not large, for example, for the strongly distorted pressure curve

P,=100, Py=10, P;=31 65, the root equals 0 943 when 7 =1, and
0948 when ;= 25, 1.e the error 1n this case is but 5 9]
If the cirewit has no inductance, but only resistance and capacity,
then the capacity reactance wall be
Pamn¢ [Ffemep, + 9P;sin’py+ 25 P; sinchy + 195
Ze =T s g T ) 2, T (126)
Plsinp, + ) sin’p; + P siny +
g0 that the root 18 not approximately umty 1n this case
69. The Induction Factor. In the previous load diagrams

(Chap I), the abscissa PIsim¢ represented the so-called imagmary
power When harmomes are present, however, the matter 18 somewhat
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different, for 1f we take the sum of the imagmary powers of all the

harmomes, 1e. W,=PLem ¢+ Plsingy+
this 18 not equal to PIsm ¢, but 1s always smaller, as will now be
shewn
awl 1
Simee bau¢“——1.——m=z—f‘

where z, 15 the reactance of the n** harmonic, then

008 ¢h, = 1 ro_rl,

" V1+tanth, NPt P

so that Wy== (P;l SIN ¢, COS ¢y + P3sin ycos y+ )

From the formula for sin ¢, we get

PIsin 4>=1E~/P§ s, + Pan’d,+  / Proosy + Ploosihe+
Hence f= PIZJD ¢
- P;sin ¢, P cos ¢, + Pysin ¢, Py00s ¢, + (126)

VPsin®g, + Posinpy+ v Pcosd, + P cos’y +
Agam, since  Pysin ¢, =3z];, Pysn¢y=5zl, ,
W _DPLsmé + P, Isin ¢y +
PI
P, I L+ 3 +515+
I

then fsmp=

=sin 95,
and smoe s ¢=sm 4),1,—‘;1«/]"‘,'+91§1:2515+ s
then f will also equal
7, L +3I5+500 +
=t = 126a
7= prainy INIE+9L2+ 2510+ (126)
If the circuit is non-inductive and contains only resistance and
capacity, the reactances of the several harmonics will he
z

z, 3 '5, ate,
and we shall get in this case
I I
2 5
w, I tgEEt -

f= -— (1260)
Plsm¢™ ]
\/I,+] +I +

Thas factor f 1s always less than umity
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Consider the sum of the real powers of all the harmomics, then, by
the defimtion of power factor, this must equal the actual power
PIcos ¢, which 1s also the case when we work the same out ~We thus
see that the power factor 18

cos¢=g, e e (127)
and that Fifing<amd . .. . (128)

fsné 18 a characteristic of an electric circuit, and 18 called the
wducton factor

This factor, however, has only significance with snusoidal currents
}n %ra.phlcnl representation, becanse m this case 1t equals mn ¢, snce

70. Graphic Summation of Equivalent Sine Waves. If we have
several circwits acted on by the terminal pressures P, Py and Py
%roducmg the effective currents Jy, Jy; and Iy, the apparent powers

1Ly, Pudy and Py Jyy can be set off i the power diagram at angles
¢1, buy ¢ to the ordinate axis, so that the ordinates of these vectors
represent the true powers #;, Wy and Win. Now arses the question:
Is 4 always allowable to sum wp these power vectors gaplwally? It will be
found that 1t 18 only permissible m certamn cases, as we shall now
proceed to shew

The ordinate of each vector represents the true power in its re-
spective circwit, hence the algebraic sum 77~ of the three ordinates

Wy =PI, cos ¢y,
W =PI cos ¢y,
W= Pryy I 1y €08 ooy
must represent the true power in the three circuits The same result
18 obtamed by caleulation, based on the fact that the imagmary
power /7, the three circwmts equals the algebraic sum of the several

Wiy TV /e
1m%7\$:3n:£ispl?¢;‘:rzm 1y Wy and /¥y

W=Wi+Wy+ Wi
=P1I; c08 ¢y + Pry I3y €08 by + Pryy Iy €08 hyyy
and fPIsmn¢= W= Wi+ W + Wiy
=fiPidism ¢y + fiy Py sin gy + froe Prr I 810 by
If the geometric summation of power vectors 1z allowable, the
following two relations must hold
W =PIcos ¢ =PI cos ¢+ Py Iy €08 dyr + Pryy Jygg €08 by

and } ;= PIsm ¢ =PrIisin g+ Pry Iy 010 oy + Py Iyg 810 by
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It 18 at once seen, that the first of these equations 18 1dentical with
the first of the two previous equations and 1s thus satisfied, on the other
hand, the other two equations—viz that for the imaginary powers and
that for the abscissae of the power vectors—do not always agree,
and we thus see that 1t 18 only allowable to add the power vectors
graphieally when

P, Iisin ¢+ Py 510y + Pryy Jypr 81 iy

=Plsin¢ =]~} P, I;sin ¢; +JffE PpIysin ¢y +f%" P Ty s ¢y
Thus the genﬁral condition for which 1t 18 allowable to add power
veetors graphically is

(f_fI)PIIl sin ¢r + (f—fn)PuInsln%
+(f~ fro) P T 8in =0 . .(129)

The general solution of this problem has, however, less interest than
‘the treatment of the two cases for which all the P’s are equal when the
three circuits are jomed m parallel and all the I’s are equal when
the three circuits are jomed 1n series  We then get, on the one hand,
the condition for which 1t is allowable to geometrically add effective
currents without considering the wave-shape, and on the other hand
the condition for which 1t is allowable to geometrically add effective

ressures, likewise neglecting the wave-shape That which holds for the
rst case, however, does not equally we applf to the second, con-
sequently the two cases must be treated separately
st consider the case of circuits of any kand connected 1n serees.
If the current J 1s constant throughout the whole eircwit, we can write
the condrtion for the geometric :ffdmon of power vectors as follows

(f=S)Prsm g+ (f = fu) Pusin dn + (f - frnr) Py 10 iy =0

This eqluatnon at the same time gives the condition for which 1t 18
permissible to graphically add pressure vectors, when the cirewits on
which these pressures act are mn series We shall not enter further
mnto this general problem, but merely consider the case for which 1t
can be directly seen that the above condition 1s satisfied This 18

the case when fefi=fa=Tu

and this is first the case when the ratio between 7, L and C are the
same for the three circuzts

Three such circuits can be called similar, since their diagrams are
always similar. That 1t 18 allowable to geometrically add the vectors
1n this case, which make the same angle ¢ with the ordinate axis, can
be seen without further demonstration

The second case when f=fi=fi=fi; (Form 126a), when the same
current J flows through the whole circuit, occurs when # 1s independent
of the frequency and the reactance & 1s the same function of the
frequency for all the circuits. Ths 1s the case, for example, when



GRAPHIC SUMMATION OF EQUIVALENT SINE WAVES 225

all the #’s are proportional to the frequency or when they all vary
mversely as the frequency

A special mstance of this second case, 1n which geometrical addition 18
also possible, 18 that for which the reactance of all parts of the circurt
except one 18 zero, we then have, obviously,
f=f., 5o that 2

Ism¢=1Igsmdo,

where I, and ¢, relate to the #** circmit

As an example of this special case, we can .-
take the diagram of a generator working on
a non-anductive circmit  Here we have two [z
pressures which are to be geometrically *
added, of which the one—the terminal pres- %
sure—1s 1n phase with the current, whilst
the pressure drop 1n the armature may have
any desired phase. We thus get the diagram ~
shewn 1n Fig 184, where Py is the terminal ¢
pressure and E, the EMF. mdnced m the gy 184 Diagramof the Etes-
generator ; P, 18 then the pressure drop mn tive Pressures of a Generator for
the armature cong=1

For circmits connected 1n parallel the terminal pressure will be the
same for each branch.

In Equation 129, Py, Py and Pr cancel out, and the condition for
the graphic summation of current vectors 1s then

(f-f) L r+ (f = fro) Iusin s + (f = frr) Frua8iD =0
This equation 18 satisfied when
f=fi=fa =fm

This 18 the case, firstly, when the circuits mn parallel are similar,
10 when all the circuits have the same ratio between 7, L and C, and,
secondly, when the conductance g of each of the parallel branches 18
independent of the frequency and also the susceptance of each path
18 the same function of the frequency This second case 18 only of
mathematical 1nterest, and has no practical importance, since g 18 nearly
always a function of the frequency, consequently the proof will be
omitted here

A further case, where the graphical addition of the currents 1
parallel crowits 18 likewise allowable, 18 that m which the reactance of
every circutt except one 18 zero, 1t 18 then easy to see that f=Ff,, and
thus Ismm¢=1I.6mné,, N
where I, ¢,, f, refer to the 2 circuit, which may possess both 1n-
ductance and capacity The proof for this 18 given on p. 311 1n the
description of the *three-ammeter method,” which 18 more convenient
for this purpose

To shew the effect of the higher harmomcs on the magnitude of the
error ntroduced by graphically adding the currents in parallel circuits,

AC P
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the values of f, cos¢ and cos¢, as functions of I gre given m the
following tables for the three pressure curves T

(1) P,=100, Py=3165, P;=10

(2) =100, Py=224, DP;=224

(8) P,=100, P,=10, P;=3165
7,; 18 the inductive reactance of the circwit with ressect to the
fundamental When this ratio 18 given, the corresponding smd,,
cos ¢y, Sy, cospy and so on can be easily calculated, and from
them the factor f, on the assumption that z, 18 proportional to the
frequency

TABLE (a)
Za_g
1
’%: 0 01 02 05 1 10
1 0874 0878 0805 093 0980 0900
S 2 0815 083 084 0021 00956 00918
3 0768 0776 0802 0898 0945 00909
11 0992 0¢70 0885 0679 0100
cosp 2 1 0989 0967 0865 0679 0100
3 1 0985 0958 088 0676 0100
cos ¢ 1 0995 0981 084 0707 0100

Table (a) refers to a circuit whose capacity 1s zero, whilst Tablo (b)
18 drawn up for a cirewit whose ratio of capacity z,, to reswstance 1 18
02, thus mn this case,

Zi_09, T.0066 and =004
r 1 9

i
o

06 \%\fz\\

04

02

0 02 04 06 08 10 12 14 16 18 2

A

Fia 185 —Assumption, x%=0
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TABLE (b).
Ta_03
1
- 0 01 02 05 1 10
1 0945 0521 0235 0838 0943 0009
/2 0048 043¢ 0237 0817 0938, 0918
3 0946 032 0273 0780 092 0909

1 093¢ 0992 0988 0928 0748 0101
cosgp 2 0984 0989 0985 0926 0748 0101
3 098¢ 0986 0978 0918 07456 0101

COS ¢y 0982 0995 1 0958 0782 01015

In Figs 185 and 186 the ratios f (curve I), cos ¢ (curve IT) and cos ¢,
(curve III) are plotted as functions of IT" for the pressure curve (3)

From the values for f i Table (b) and m curve I, Fig 186, 1t 18
cloar that there aie several circuits, which are not similar, hut whose

06 {— — D e ——
v §§
04 \—
02 —
0 02 04 06 08 10 12 14 16 18 2

Fio 186 —Assumption, J%=o 2

curronts can nevertheless be geometrically added without error, smce
the circuits have the same ratio f for the given termial pressure

When currents i parallel circuits are graphically added, the watt
component of the resultant of all the currents always equals the sum
of the watt components of the several currents, this 18 not the cuase,
however, with the wattless components, and the difference between the
wattless component of the resultant current and the sum of the several
wattless components 18

AlLy,=(fi=f)rom ¢y + (fa—f) Insin $yr + (finr =) I s ey
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Ezample Let pressure (3) act on three parallel errcuits with the
ratio i;l=o and ?=O 1, 02 and 05, of which the first takes the

current I;=100 amps, and each of the other two 50 amps, then
fi=01776, fy=0802 and f;,=0 898, whilst by calculation f=0 805.
Hence, 1 this case,

AT, = (0776 -0805)100 0173+ (0802 -0 805)60 0286
+(0 898 - 0805)50.0 526 =1 9 amps

The wattless component of the resultant current 1s 59 8 amps , the
percentage error &.\s extreme case 18 therefore,
19 ..wo
100 g5z =317%

From this example and from curve I, Fig 185, 1t 1s seen fhat for all
wnductve cu custs, whose 1 eactances ar e practically proportonal to the frequency,
o 18 allowadle to add the equivalent sme currvents graphwally. The addition
of equivalent currents o% other parallel branches, where the reactances
do not bear the same relation to the frequency, or whose resistances
vary with the instantaneous value of the current, can lead to con-
siderable errors Examples of such circuits are arc lamps, condensers,
polarisation cells (above the pressure for which dissociation occurs) and
m high pressure mains (in which the maximum difference of pressure
exceeds that for which dark discharge occurs)

In curves II and III, Figs 185 and 186, we see the effect of the
shape of the pressure curve on the power factor cos ¢, and 1t 18 seen that
this curve lies considerably lower for a distorted curve than for a sine
curve It 1, therefore, not allowable to replace a terminal pressure of
distorted wave-shape by 1ts equrvalent snusoidal pressure, and with
this calculate the current and power factor In practice, however, this

a1

method 18 often adopted, which, 1 the above example for zT=0 5,

gives cos ¢, =0 894 nstead of cos $=0858 Ths error, however, 18
too large to be neglected—and stall larger errors may be mtroduced
when we apply this method mn the calculation of circuits contamning
capacity or apparatus with similar reactances

71. Effect of Wave-Shape on the Working of Electric Machines and
Apparatus. In the mntroduction to the previous chapter attention was
drawn to the injurious effects of igher harmomes We shall now
1llustrate this by means of examples and curves

(a) Leghting ~ As already observed, the flat-shaped curve 1s the most
suitable for this purpose, because i this case the current remains
longest 1n the neighbourhood of 1ts maximum value  Consequently
we can work at a lower frequency with a flat curve, such as in Fig 187,
than with a peaked curve, like that shewn 1n Fig 188, before variations
m the mtensity of the light become noticeable. The Authors found
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fiom experiments carried out imn the dark room, that the hight of a
16 ¢ P. carbon-filament lamp for 110 volts began to fluctuate when the
frequency of the current fell below 23 3, whilst this only occurred with

A
/ /’\/’

Fia 187 Fio 188

the flat-shaped curve (Fig 187) when the periodicity fell below 20 cycles
per second.

With a 256 or 115 volt metalfilament lamp, the pulsations were
already noticeable with the above pressure waves when the fiequency
fell to 28'3 and 23 7 respectively This limit also depends on the
lamp pressure—the lower the pressure, the lower the frequency at
which flickering becomes noticeable

It has often been noticed 1n practice that arc lamps are inclmed
to be somewhat noisy when tEe pressure curve 18 very peaked.
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This humming noise, which 18 due to the pulsations set up 1n the arc
and the surrounding air, can be sufficiently damped, at a frequency of
50 cycles, by connecting a choking coil in series to suppress the
harmomies Fig 189 represents the pressure curve of a large three-
phase central station, where—according to a report by Herr C Zorawsk:
(ETZ 1906, S 607)—the humming became so considerable that
choking coils had to be connected 1n series ~Cholang coils, however,
tend to lower the total power factor of the system

(b) Transfomers Prof G Rossler (B 7'Z 1895, S 488) has ex-
permmentally nvestigated the effect of the shape of the pressure curve
on the drop of pressure 1n a small transformer of some K W, which
had comparatively high resstance and reactance The results of his
research are shewn by the curves m Fig 190 Curve I represents
the secondary pressure with non-inductive load when the peaked
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pressure curve ¢, (Fig 191) was apphed at the primary, whilst
curve IT was taken when the approximately sinusoidal pressure wave
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¢, was appled For a non-inductive load of 3 kW the peaked
pressure curve gave a pressure drop of 7 65%, whilst the sinusoidal

| -
I' TR \ ,
e, ” /L_\ \
4 S D .
Ve /AN 7
/ \
7 g "\ /
/ I
Eme—" \siv'\ﬂ__,

T T & =
0 20— 40_ 6080 __100. _120. 140180 200_220%
AN N /7¥‘

\\ _*_e}\ // /! \\
N N ‘—/’L I N
AN N/ 7/ AN
. V)
NG Vil
| T——
| . —
Fra 101

curve gave but 6 659 drop, thus about 13 9 less than the other
These experiments agree also with the calculations, which shew that
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the smusodal p1essure wave 13 the best with regard to the pressure diop m
hansformers, and also en mams With non- or nearly non-anductive loads
a pressure curve causes a relatively larger drop of pressure, the greater
the largest of the harmonics 18 and the higher 1ts frequency This 18
also to be expected, as any electromagnetic apparatus, such as a trans-
former for example, 18 designed for a certain defimte frequency, and
the more any other frequency deviates from that for which the
transformer 18 designed (1e. from the fundamental) the more un-
favourable should be the result

To find the influence of the wave-shape on the losses 1 a trans-
former, the Authors measured the no-load losses m a transformer for

A YAV
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the three pressure curves (Flg 192a~¢) and the short-circuit losses
for the three current curves (Fig. 192d—f) Tho results obtaned arc
shewn 1n the following table, which shews that the more peaked tho
curve the smaller the no-load losses, whilst the short-ciremit losses
increase the more the curve deviates from a sme wave

1 KVA SINGLE-PHASE TRANSFORMER
(a) No-load

Pressure Curve Fig 1922  Tig 1920 Fig 192¢

Py=volts, - - - 110 110 110
Ly=amps, - - - 0423 0 447 0452
Wo=watts, - - - 314 336 349
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(b) Short-ciremt

Current Curve Fig. 192d  Fig 192¢ g 192

Ig=amps, - - - 10 10 10
Pg=volts, - - - 744 7:38 805
Wx=watts, - - - 46 4 40 454

(¢) Induction Mots As 1n the case of a transformer, the Authors
have also measured the no-load losses for the curve shapes in
Figs 1934 and b and shorb-cireurt losses for those 1n Figs 193¢ and &
ma 2 HP three-phase motor The results are shewn in the following

AN AN
/\\/ /\/

Fru 193« Pia 1080
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Fra 108¢ Fic 108d.

table The noload losses remamn practically the same, whilst the
short-ciremit losses, and still more the short-circwit reactance, for
the same effective current are larger the greater the harmonics which
are present.

2 BEr THREE-PHASE MoTOR

(a) No-load.
Pressure Curve Fig 193¢ TFig 1931

Py=volts, - - - 112 112
Iy=amps, - - - 37 365
Wy=watts, - - - 156 162
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(b) Short-circuit.

Current Curve Fig 193¢  Fig 103d.

Ig=amps, - - - 10 10
Pg=volts, - - - 258 250
Wg=watts, - - - 204 198

Thus, the efficiency of a motor 1s also a maximum when the pressure
curve 18 a sine function. The same holds for the power factor and the
maximum power, for with a given applied pressure the short-circuib
current 15 smaller, when measured whilst the rotor 1s just set moving
This 18 due to the fact that only the pressure of the fundamental

P, =u_£ transmits power from the stator primary to the rotor secondary.

We thus get the same result as for a transformer, namely, the asyn-
chronous motor works best with a smnusoidal pressure curve This is
also true for commutator motors, for the flat-shaped pressure curve
18 bad for commutation, whilst the peaked pressure curve reduces the
load cagm.clty of such a motor

éd) ynchronous Machines If several sjylnchronous machines having
different pressure curves work in parallel, large currents of high
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frequency will flow between them, since the pressure harmonics need
not be 1 phase when the fundamental pressures are If the reactances
of the synchronous machines are very low, the currents due to the
higher harmonics can attain such dimensions that the working may be
sufficiently affected to cause the machwnes to fall out of step The
shape and magnitude of these currents are best illustrated by the
curves m Figs 194 to 197, taken at the Tlectrotechnic Institute,
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Karlsruhe, by D1 Bloch Figs 194 and 195 give the pressure curves
of the central station and of a 5 HP smngle-phase motor, whilst the
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curves m Fig 196 shew the currents i the motor
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By connecting a

large reactance 1 series, the current curves m Fig 197 were obtained.
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Here agamn the dampmng
harmomes 18 clearly secn
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cffect of the choking coil on the higher
The presenco of currents of high frequoncies
m synchronous machines can be hmited
by taking care that all the synchronous
machines working on the network have
the samo wave-shape at noload  Since,
howoever, the wave-shape varies with the
load, 1t 18 not possible to completely avoid
those nternal currents The bost means
for keeping them small is of couse to
have the pressure curves of all tho machines
as nearly simusoidal as possible and to give
the machines a switable reactance.

(¢) Cables and Condustors. The flat-shaped
pressure curve should of course place less
strain on the msulators and cable-insulation,

since for a given effective pressure the maxmmum pressure 1s then least.
On the other hand, this requires higher harmorcs, which may give rise



EFFECT OF WAVE-SHAPE 235

to resonance, under certain conditions Since such wave forms have a
disturbing effect; on the pressure regulation of a system, and are more
difficult to deal with analytically than pure sme waves, 1t 18 also
always desirable to use snusoidal pressures for transmission plants
The two pressure curves, Figs 194 and 198, are for a large electricity
works The latter represents the day pessure, the former the mght
pressure  As 18 seen, the higher harmomies are more pronounced 1n
the day curve than in the might curve, since the day load 1s more
inductive although small
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POLYPHASE CURRENTS.

72 Polyphase Systems 73 %ymmemon.l Polyphase Systems 74. Interoonneoted
g:?lyphue Systems 5 Balanced and Unbalanced Systems 76 Com-
parison of the Amount of Copper mn Alternating-ourrent Systems with
that 1n Continuous-ourrent Systems

72. Polyphase Systems. If three coils are arranged on the armature
of a generator (Fig 199), so that they are all displaced from one
another 1n space, the EM F ’s induced 1n these cols will be

P1=Prpy, sinwl,
D11 ="Priua 510 (0F — a),
P11 = Prrymag 810 (0f — :B)

These all have the same frequency ¢, because all the coils rotate with
the same velocity. But they are all displaced from one another in
. phase by the angle which the
—_ coils make with one another
,/“" \ ’ 1 space If each of the three
/ . colls acts on 1ts own circuit,
[// a current will flow n each
2 coll mdependent of that
N ( 23K S the other coils The three
currents together form a
three-phase current and such
[ a system of alternating-cursends,
J ¥ wm which several EMF’s of
the same fi equency and displaced
Jrom one another . phase pro-
duce currents which are also displaced from ome another, 1 known wm general

as a polyphase system

Externally, & polyphase generator appears the same as a single-phase
generator—only the stator winding 1s different In Fig 163 the stator
windmg of a single-phase generator 1s represented, and m Fig 165
that of a three phaser

Fia 109 —Production of a Polyphuss Current.



POLYPHASE SYSTEMS 237

Generally speaking, a polyphase system can be nvestigated by
sphtting up the same into 1ts several current branches, or phases,
the EMF acting in each of these current paths produces & current n
the system, which can be calculated independently of the .M F’s of the
other phases The currents produced by all the E M F’s must then be
superposed, when the phases are electrically connected The several
systems can be cla.sslﬁeg thus

(1) Into symmetrucal and uneymmetrical systems

éZ Into dependent or wnter ted and y"‘ dent systems.

3) Into balanced and unbalanced systems

The dependent or interlinked systems can be agamn split up mto
star-conected systems, ring-conmected systems and systems comprising
both of these two

73. Symmetrical Polyphase Systems. If a Tolypha,se system is
formed by n pressures, whose amplitudes are equal and displaced from

one another 1n phase by % period, the system 18 saad to be symmetrical,—

otherwise 1t 18 unsymmetrical Such a system can also be called a
symmetrical n-phase system, snce 1t has n phases In the case where
the pressures are sine functions of the time, the n pressures are repre-
sented by the following expressions

pr=Psmoi,
92
pu=Psm (mt - %},

2
Puy=Psimn (wt -2 -%—r),

,,-=Psm{mt-(n—l)2:}

If we sum up the momentary values of these n pressures we obtamn
the well-known result that the sum of the momentary values of the
pressures of a symmetrical polyphase system always equals zero

‘We can now deduce the various symmetrical polyphase systems by
substituting various values for n

N
AN

Fio 200 —Single-phage Two-wire System

Ezample 1  When n=1, p;=Psinof, and we get the single-phase
two-wire system of Fig. 200.
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When n=2, Ppr=Pemot,
Pr=Psm (0t -180%) = -

This gives the single phase three-wire system (Fig 201), where the
pressures are reckoned from the middle pomnt 0 When the two halves

E V2R R R
AN
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Fia 201 —§inglo-phnso Three-wire Systor

of tho genarator ars equally loaded, no ewrent flows n the nuddle
wire—consequently this wire can be made very hight
Egample 2 When n=3,
r=2Dswm o,

9
Py=2Lsm (mt - :‘;I)’

Pur=Psm (wt - %:D

This 18 the symmetrical thiec-phasa system, wheic the throe pressures
aro displaced m phase from one another by 120°, which accordmngly
rep esonts the symmetieal polyphase system having the least number
of phasos

FEzample 3. When n=4, we got the symmetrical four-phase system
Pr=Pam ol

Pu=2Lsm (mt - g),
Pur=Psm (ot -7)= -7,

3
Pry=Psm (wt - ,2”) = -y

Thus p; and pyy oceur m the same cwewt, and smluily gy and g,y
Consequently there are only two pressures, and these aro displaced 90°
from each other '

74. Interconnected Polyphase Systems Iu polyphase systems, each
of the phases may be made to form a closed system for itself—such
a_polyphase system then conssts of n entirely independent single-
phase systems, which have ouly to satisfy the one condition that the
frequency and the mutual phase-displacement of the EM.F’s of tho
several phases are always the same. The generators of the single-phase
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currents must therefore run mn perfect synchronism with one another—
which 18 most easily attamed by placing the several windings, 1n which
the E M F s are to be induced, on the same armature We can now go
a step further, and electrically connect the windings of the several
Eha.ses with one another, 1e 1nterconnect the phases In this case,

owever, the several phases will mutually affect one another, 1f the
system 18 not symmetrical both m respect to the induced EMF’s
and the load.

In the representation of polyphase systems 1t 18 usual to draw the
windings of the several phases displaced from one another by the angle
of the mutual phase-displacement

The phases can be connected 1n various ways with each other, only
care must be taken to have no closed circuits where the sum of the
induced EM F.’s 18 not zero, for such a cirewit would act as a short-
circuit 1n which an kM F 18 mduced , consequently a heavy current
would flow 1n the same

The systems generally met with m practice are the star-connected and
19ng-connected (or mesh-connected) systems.

The star system 18 formed by joning the starting pomts of all the
phases to a common pomnt This pomt 18 then termed the meufial
pownd, because 1 a symmetrical star-connected system 1t generally
attans the mean potential of the surroundings This pomnt can be
connected to earth, or to another neutral point, or imsulated, 1t 18
usual to regard the neutral pomt as having zero potential Between
the termmn%s of any phase, e g the 2%, we measure the phase pressure

Panlot -(z~ 1):';_;r , whilst hetween the terminals of two neighbouring

hases we have the lne pressure, whose momentary value equals the

ifference of the momentary values of the pressures of the two phases
mn question The momentmy value of the line pressure between the
terminals of the 2* and (z+ 1) phases 1s thus

p=Psm {mt-—(m— 1)2—"} ~Psin {wt—m2_"}
" n
=2Psm 7 cos {wt - (22~ 1)1—"},
w n
whence 1t follows that the effective line pressure is
P,=2sm ’E"P,,, (130)

where P, 18 the effective phase pressure

In the star-conmected system, the lme pressure equals the 1esultant presswe
of two adjacent phases and the lme current the phase curent

The 7ing-conmected system 1s formed by connecting the start of one
phase to the fimsh of the next, so that all the phases are jomed m
series  Accordingly, this connection can only be used when the sum of
the EM F’s of all the phases equals zero at every mstant, which 1s the
case with symmetrical polyphase systems having sinusoidal E.M ¥’s
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Current 1s taken off at the junction of each two adjacent phases,
whence the number of hnes equals the number of phases Then, m
accordance with Kirchhoff's First Law, the ourrent in cach lne cquals
the difference of the currents mn the two neighbouring phases In this
case, therefore, the line curzent does not equal the phase current, but,
since the currents n two adjacent phases are displaced from one

another by 27"', equals

3, =1sin {mt—(w—l) ?;——:r} —Ism {wi—-wgnz}

=2Ism %cos {mt— (2 - 1)1—nr} )
hence, for effective values,

a1, (1s1)

The hine pressure 1s here the same as the phase pressure

Hence, w the ring-connected system, the lme messure equals the phase
pressure and the line current the resultant curient of two adjacent phascs

In the following, all magnitudes referring to the lines are donoted
by the suffix  and to the phases by the suffix p

The most usual conneetions for a symmetrical three-phase sysicm
are as follows '

(a) Thiecphase Star System  Fig 20218 an independent throe-phase
system, where the phase current equals the line current and the phaso

LN ’

J %
MWW % \ a
a,
i
v —t 4
b -ty é
16 202.—Non-intorlinked Three phaso Fi1o 208 —Three-plhnse Star Systom
Bysten

pressure the line pressure By couphng the threo starting points
ay, 4y, ag together (Fig 203), we get the three-phase star-connected
system with four wires, which can be converted into a throe-wire
system by omitting the middle- or neutral-wire a, which carres no
current so long as the load 18 symmetrical The lne pressure mn
this system 18

P,=28m60°P,=/3P, . (132)
and L=I, oo . v . (133)
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(8) Three-phase Ruing System Fiig 204 represents the three-phase
ring system, or, as 1t 1s also termed, the ¢rangle- or delfa- (A) or mesh-
connection  Here we have

P, =P, (134)
and —25n60° 1, «/_I . (135)
Fia 204 —Tluoce-phase Mesh System an 206 —Combined Bystom fo Thrm: plinso

rrent (Dolivo von Doln o

Fig 205 represents a combination due to Dolivo von Dok owolsky
‘When n=4, we can have the following schemes
(¢) Independent Fowr-phase System o Twophase System This 1s
represented 1n Fig 206 We have
Li=I, and P,=P,

—_

&

¥ ' .

Fie 208 —Non wterlinked Four-phase Systom. Fio 207 —Four-phase Star Bystom

(@) Fourphaso Star System  Fig 207 represents the connections for
this system, 1n which

L=1I, .. R ... .(1386)
and P,=2gn 45 P,= q?P (137)
5 3 ? P
AV . 3 N
T
F1o 208 —Four plinso Mosh System F1a 200 —Two phnso Three-wire or Intorlinked
Two-phase Syatemn

(¢) Fowr-phass Bing System  This 18 shewn by Fig 208
L=.21, ... . (138)
and P=P, B N ¢ & 1))
Q
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(f). Interconnected Two-phase System  The scheme shewn m Fig 207
18 seldom used, but rather that shewn m Fig. 209, which 1s developed
from the former and represents one half of an nterconnected four-phase
system with middle wire This system, which 18 not symmetrical, 1s
usnally termed the unferconmected twophase system or the two-phase
thy ee-unre system. For this we have

P,=\2P, . . (140)
and I,=V2I,. .o (141)

(g) Seott’s System. 'To the 1nterconnected polyphase systems belongs
also Scoit’s System, shewn 1n Fig 210 Thus serves for producing & three-
phase current by means of a

4 ‘ ' two-phase winding If one-
phase has V3 as many turns

P as the other and the start of

this phase 18 connected to the

0 - - middle of the second, we get a
4 £ symmetrical three-phase pres-

P sure between the terminals 4,

Band ¢ Then the pressure
7 P between the termmals 4 and
§ " B and between 4 and C (Fig
Fia 210 —Scott's System 210) 15 (32 =1 times the
pressure between B and C' It 18 thus possible to produce a symmetrical
three-phase current by means of an unsymmetrical two-phase system
The phase pressures are

P,=0d=i BO=V3 P,
and P,=P,=0B=00=1BC=3P,
whilst the phase currents equal the hine currents

(h) Impefect Polyphase Systems These also belong to the nter-
connected polyphase systems, and consist of a main phase, together with
an 1nterconnected auxiliary phase These were all introduced in the
early mneties, when 1t was desired to retain the simplicity of the single-
phase system, and avoid 1ts deficiencies by the use of auxihary phases

The simplest of the systems 18 the wmperfect thnee-phase system
(Fig 211), which consists of two phases at 120° to one another The
auxihiary phase, which 18 chiefly used for starting asynchronous motors,
has a phase pressure equal to the distance of the pomt O from the hine
BC The starting torque 1s proportional to this auxiliary pressure P,,

P,=1}P,
When the two phases are symmetrically loaded, the currents in all
three lines are equal, but cisplaced 60° 1n phase from one another

Since this system does not produce a large starting torque for motors,
.28 just shewn, Steinmetz proposed a system, similar to Scott’s system,
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which 18 known by the unsmtable name of “monocychc system ”
This 18 a three-phase system, and serves to produce an unsymmetrical
three-phase current  Steinmets chose the auxihiary pressure 04
at the motors equal to ~/I of
the mam pressure BC, whereby
the motors recerve a symmetri-

45
¥
cal three-phase pressure The 3
auxihary pressure OA of the
generators, however, was only
chosen about a fourth of the , ,
'
3
E‘L

ressure of the main phase
he ratio of conversion of the
transformers for the main phase

18 therefore 7 of that of the

tr;maformers for the auxiliary  Fio 211 —Incomplote Throe phase System
phase

None of these imperfect polyphase systems, however, have justified
their existence, since they all need three wires, as m symmetrical three-
phase system, and there 18 no resson why this latter should not be
adopted and so completely utilise the material of both generators and
moto1s.

75. Balanced and Unbalanced Systems. In Section 11, we have
seen that the current

1=IJ/2sm (wt — ¢),
produced by the pressure  p=Pv/2 81 o,
yields the momentary power
W =PI{cos ¢ - cos (2w~ $)}

Since the mean power 18 W =PI cos ¢,
we have r=ml1- cos (2wt + $)
cos ¢

Although this pulsation of the power of a single-phase current, which 18
shewn m Figs 43 and 44 for any angle ¢ and for ¢=90°, does not
prevent 1ts apphcation for many purposes, e g lighting by means of
glow lamps, provided the frequency 1s chosen sufficiently high, 1t 18
just this property of the single-phase current which makes 1t un-
swtable for power purposes. On the other hand, a symmetrical
polyphase system —as will be shewn later on—possesses the character-
1stic that the momentary power of the whole system 1s always constant,
sonsequently such systems are used a great deal for motor purposes
Not only symmetrical systems, however, but also other polyphase
systems can develop a constant power under certan conditions, thus
1l systems possessing this characteristic are sa1d to be balanced, and all
sthers, unbalanced.
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The power 1n a polyphase system equals the sum of the powers m
the several phases. ~If the pressures y, yy, Py Of the several phases
produce the phase currents 4, %y, 4y, the momentary power will be

W =pyts + prytas + Proan +
and the mean power #7 =PI, cos ¢;+ PrJy;co8 by +

If now the n-phase system 18 symmetrcal with equally-loaded phases,
we have, e g, for the 2 phase,

Pea=P2sm (wt- 9 f’fb)

and 152 =1/2 s (wt—- ¢—2r g),

where ¢ 18 the phase displacement of the current m a phase behind 1ts
pressure  From this 1t follows that the momentary power of the
symmetrical #-phase system 18

W= i:’,,p,w==2PI'2:, sin (wt- 21r£) sin (wt—¢>—21r2)

=.PI{7Loos¢— i cos(2wt—¢—41r§)}=PIncos¢
T m,

W =nPI cos . (142)

Thus the momentary power 7/”18 constant for every symmetrical n-phase
system and equals n times the mean power of a phase
For the thiee-wne two-phase system (Fig 209) the pressures are

Pr=P2smot

and pn=P,3sm (mt - ;r)

If hoth pheses are equally loaded in regard to current and phase
displacement, then

y =TI 2 8m (ut - $)
and z,l=Ip~/§ sin (wt— ¢ —"25)
Hence,
W= °PPI,,{slu ot 810 (ot - ¢) + 80 (wt - g) sIn (mt —-¢- I)}

2
=2P,I,cos ¢ — P,I,{cos(2ut — ¢) + cos (2wt ~ ¢ — )}
=3P, T,cos ¢ =const

and the mean power W =2P,I,co8 ¢, (143)
or, since P,= % and I,= %,

then W=Pljcos¢ . . . (143a)
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We thus ses that the three-wire two-phase system belongs to the
balanced unsymmetrical polyphase systems
The power of a symmetrical three-phase system is, from Eq (142),

W=23P,,cos ¢,

or, since 1n a star system

P,=% and I=I,

and 1n & mesh system P,=P, and I,=%,
the power 1n any symmetrical and interconnected three-phase system 18
W =n3PLcos $.. . (144)

From formulae (136) and (139) 1t follows stmilarly that the power in
a symmaetrical interconnected four-phase system 1s always

W =4P,I, 008 ¢ =2/2P,],cos . (146)

Scott’s system also belongs to the balanced unsymmetrical polyphase
systems.

76. Comparison of the Amount of Copper in Alternating-current
Systems with that in Continuous-current Systems To transmit a
defimite power over a fixed distance electrically at a given maximum
pressure and efficiency, a definite amount of copper 1s essential The
higher the pressure and the lower the efficiency, the less the amount of
copper that will be required  Since the pressure must not excced a
certain limit on account of the danger to the msulation or the
employees, the pressure which enters into question here 18 tho
maximum pressure which exists between any part of the installation
and earth ~ If the neutral pomnt of the system is earthed, the limt 18
fixed by the maximum pressuro between a terminal and this pomt.
If the neutral pomnt 18 not earthed, and the whole system insulated,
the severity of the electric shock cansed by touching a terminal depends
on the pressure and the capacity of the system %f the pressures aro
high and the capacity considerabls, as 1s usually the case 1 transmission
Lines, the person touching the terminal may have to pay the death
penalty for his carelessness. For this reason, “live” machmes and
apparatus ought never to be touched unless the person has previously
msulated himself ageinst the pressure The nsulation of a non-earthed
system, however, must be kept stronger than that of an earthed system,
since 1n the former case the insulation must prevent the passage to
earth of all the energy stored in the system  For this 1cason,
earthed and non-earthed systems cannot well be compured, since the
msulation of the latter must be calculated with regaid to quite different
pressures
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Hence, we shall only consider earthed systems for the present, and
shall put the amount of copper required for a symmetrical polyphase
system with earthed neutral point equal to

100
cos?¢p
Further, we assume that the effective current density 18 constant in all
the conductors and that the pressure curve 1s sinusoidal  The section
of the currentless middle wire 18 chosen equal to half that of one of the
outers We then get the following results
(@) Symmetrocal Polyphase Systems with Eathed Neuhal Point Con-
mder first the symmetrical three-phase system We see that each of
the three phases carries the same current I at the same maximum
ressure P, over the same distance ! Let the section of a conductor
e ¢, then the copper losses per phase aie

le
=12 Islp,
g

ie with a given current density s they are proportional to the power
transmitted per phase,
pe= I Naslp
K= T e Al
7% Pl cosd Prsccos

and the total copper volume 18 8lg.
By means of a smgle-phase two-wire system or any symmetrical

polyphase system with n phases, the same power 3:/—3}’,,,,,[ cos ¢
could be transmitbed with the same percentage losses with the same
amount of copper. For 1n each conductor the current 1s ?LI and the

section of the conductor 18 reduced m this proportion Thereby the
current density s and also the percentage copper losses py remam
constant, whilst the weight of copper also remains unchanged

Hence, all symmetrical polyphase systems with earthed nevhial point and
the smgle phase two-wne sysiem are alke with 1espect to the amount of
copper 1 equa ed.

In practice, however, only the three-phase system has made headway,
because this requires the fewest conductors, and consequently the
least mnsulation of all the symmetrical polyphase systems

(b) Symmetrical Polyphase Systems with Eoathed Neuhal Wue Con-
sider first the smgle-phase three-wire system with earthed mddle wire,
which 1s theoretically a symmetrical two-phase system Since no
current flows 1n the middle wire when the load 18 symmetrical, then,
for the same section of outer wue as previously, the copper losses
remain the same as in a single-phase two-wire system The copper
required for this system, therefore, will exceed that required for the
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two-wire system by the amount required for the middle wire If we
therefore choose the cross-section of the mddle wire half that of one
of the outers, as mentioned above, this system will need 259, more
copper than the single-phase two-wire system, 1n order to transmit the
same power at the same losses The copper needed for the sngle-
phase three-wire system 1s accordingly

100( lxl)_ 125
cos?d 373/ cos’¢’

In & smlar manner we find the copper required for a three-phase
four-wire system 1s

100 - 1411 _ 1167
uos‘d:( 3 2)—00524:’
and for a four-phase five-wire system,

100 141 N\ 1125
cos ( 1 2)_00324:

(¢) Smgle-phase Two-wire Systems unth Earthed Outer Wue This system
can be regarded as one phase of a polyphase system with a neutral
wire of the same section as the outer wire  Consequently, this system
needs the same copper and has the same losses n the earthed wire as
1 the outer wire With the same section for the outer wire as the
total section of all the outer wires of a polyphase system with earthed
neutral point, we get double the losses 1 a single-phase two-wire
system with eart.heg outer wire, when the same power is transmitted
at a given maximum pressure To reduce these losses to those m a
polyphase system, we must double the section of the outer wire, and
consequently also of the earthed wire Hence, the copper required 1n
a single-phase system with earthed outer wire 18

100 . 400
cos"ci:(l +1) " cos’¢’

or, 1n other words, four times as much as that of a polyphase system
with earthed neutral point.

(d) Twophase Theewne System wnth Eaithed Muddle Wue. This
system can also be regarded as two phases of a polyphase system with .
a muddle wire of ~/2 times the section of one of the outers Conse-
quently, this system requires for the mddle wire

Vil

. 2T
times the copper of the two outer wires, and similarly, as mn a single-
phase two-wire system, the section of each outer wire must also be
ncreased in this case 1 order to transmit the same power with the
same losses The 1ncrease of section of the outer wires 1s, of course,
equal to the percentage mncrease of copper due to the presence of the
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middle wire, i,e proportional to (1 + Lz) The copper required m &

two-phase three-wire system with earthed nnddle wire 1s thus

100 (Hi)ﬂ_asu

cos?d \" " /3/ T oos?d’
or ahout three times that of a polyphase system with earthed neutral
point

(¢) Impenfect Thieephase System with Earthed Middle Wne In this,

the current 1 the middle wire equals that n each of the two outers
Then, 1n a similar manner to that of a two-phase three-wire system, we
get the amount of copper equal to

100 226
L0 8 =0
cos?¢ (1+05) cos?’

i.e. two and a quarter times as much as 1 a polyphase system with
earthed neutral pomt

(f) Contwuous-cunvent Thiee-wire System with Eanthed Middle Wue In
respect to the amount of copper required, this system 18 simlar to the
single-phase three-wire system. l}3111: n this case the maximum
pressure Py, equals the working pressure P and not ~/Z as much, as
m an alternating-current system. Further, in this case there 1s no

hase displacement between current and pressure, thus the percentage
088 18 slp
Pr=p— 100,

c?/ss? times that of a smngle-phase

2

three-wire system. Since, however, in a continuous-current system,

ie with effective current density

the current 1s cos times smaller, and since we can moreover choose
the current density ﬂ times greater than in a single-phase system,
08

n order to obtain the same losses, we must make the copper cross-
section 1n & continuous current system

cos $\? _cos®¢h

Va2
of that of a sngle-phase system, to obtan the same losses and to
transmit the same power at the same maximum pressure. Hence the
2

copper used m a continuous-current three-wire system 18 (#’ times
that 1n a single-phase three-wire system, 1!

125  cos?¢
e T—625

- a8 compared with él(:Toqs m a polyphase system with earthed neutral

pont,
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(9) Contunuous-current Two-wire System with Earthed Outer Wwe This
bears the same relation to the single-phase two-wire system as the
continuous-current three-wire system to the single-phase three-wire
system  We thus need

400  cos’d

cos?¢ 2
or t»:lce as much copper as a polyphase system with earthed neutral
pon

Summarieing the above results, we get the following table.

Continuous-current two-wire system with earthed middle
pomt, - - - - - - - - - 50

Continuous-current three-wire system with earthed mddle
wwe, - - - - - - - - - 635
Continuous-current two-wire system with earthed outer

=200,

we, - - - - - . - - - 200
Symmetrical polyphase systems and single-phase two-wire

system with earthed neutral point, - 03)25? 3
Single-phase three-wire system with earthed middle wire, - c}jﬁﬁ 3
Three-phase four-wire system with earthed middle wire, - 2—3%
Four-phase five-wire system with earthed middle wire, - z;ﬁ%i
Single-phase two-wire system with earthed outer wire, - uig’o 3
Symmetrical three-phase system with earthed outer wire, - £2P¢
Two-phase three-wire system with earthed middle wire, - %ﬁ
Imperfect three-phase system with earthed middle wire, - %

It 18 thus obvious that the systems with an earthed neutral point
are the most economical , then follow the systems with earthed middle
wire, which only need more copper on account of the partly ineffective
middle wire, and finally, the systems with an earthed outer wire,
which are very uneconomical To this class belong the distributing
systems of most modern ralway installations The advantage of a
three-wire system, however, 18 much reduced 1n this cage, since the
rails, which serve as return, remain unused in the three-wire system.
Since, moreover, the losses 1 the rals are very small in proportion
to the losses 1n the overhead wire, the total losses in the line mn a
two-wire system are not much greater than in a three-wire system
when the rails can be used as return.
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77. The Topographic Representation of Pressures. Whilst con-
mdering star systems, we saw that they possessed a junction—
known as the neutral pomt We make the assumption that this
pont possesses zero potential quite arbitranly, for 1t 18 not potentrals

but only potential differences that we
measure

£ /P' In Fig 212 let the three vectors OP;,
OPy; and OP,, represent the three equal
7 Tinalns phase pressul;les of a symmetiical three-

B

phase star system  Since the direction

of rotation of the time-line has been

chosen counter-clockwise, 0P;; must be

displaced 120° from OP; 1n a counter-

o1y clockwise direction, for the EMF of

ot ;mmmg&ms;::ém. })ha.se II lags 120° belind that of phase

As shewn m Sect 6,p 17, a vector

18 determimed m magmitude and direction by 1ts two components, that

18, by 1ts extremity, and a pomt 1n the plane represents the pressure

between & pownt i the system and the neutral pomt n magnitude

and direction. Moreover, we have seen that the line pressurs

equals the difference of the two phase pressures This difference P,

18 determined by the geometrical subtraction of the two vectors 0P,
and 0Py, and we get

Pz=6P1—0—Fn=m+o—P—x=ﬂn

whence 1t follows that the distance between the ends of the two
vectors gives the lhine pressure P, m magmtude and direction In
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gveueral, we have the following method of representation, as given by
tesnmetz and Berg and also by H Gorges m the E.T.Z 1898, p 164

If we take the potential at any pomt m a system as zero, the
potential of a second pomt (1e the pressure between this pomt and
the pomt at zero potentual) 18 represented 1 magmtude and direction
by a pomt i the plane. In this manner, each point of the system
18 represented by a corresponding pomnt 1n the plane, and smnce the
potential of a conductor varies from point to porht along 1ts length,
the same wall be represented 1n the plane by a curve, this has already
been explained on p 89, Sect 29 The shape of the curve, of course,
depends solely on the E M F’s 1 the conductor The curve may be a
straight line or other curve erther continuous or broken If there 18
no current 1n the conductor, the potential at a pont equals the sum of
all the E M F’s from the pomnt where the potential 18 zero to the pomnt
considered When no current flows in the conductor and no EMF.’s
are present, the conductor has the same potential everywhere, and will
be represented 1n the plane by a single pomnt  On the other hand, 1f

_’} o -l] P
A
% B b B ; .
- 1
4 %«J
Iia P,

Fio 213 —Symmetiienl Three phase System with Unbalauced Lond

the conductor carries the current I, the potential will be displaced
by the distance J1, owing to the ohmic resistance 7, m the direction
opposing the current, and by the distance Jz, owing to the total
reactance 2 =1,—2,, 1n the direction lagging 90° behind the current
The curve of potential along the conductor can be drawn pomnt by
pomt 1n this way, when we thus start at a pomnt with given potential

This method of representation 1s well adapted for showing clearly
the pressure relations m a {)olyphaaa system, whilst the distance
between two pomts in the plane of the co-ordinates gives directly
the effective pressure between the two corresponding pomnts n the
system. From Fig 212 we see at once that the line pressure of a
three-phase system equals /3 times the phase pressure, smmlarly,
from Fig 215, 1t 13 obvious that, 1n an 1nterconnected two-phase
system, the line pressure at no-load equals /2 times the pressure of a
phase, and so on

For the first example of this method of representation, we shall
consider a three-phase system mn which the current producer 1s star
connected and the current consumer mesh connected Let only two
phases of the A system be loaded, the third being left open (Fig 213).
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If the system 1s unloaded, the three equicistant ponts Prg, Prrg, Prxo

Fio 214 1 Threo-phase System with U Losad

(F1g. 214) represent the three potentials at the terminals of a sym-
metrical star system, provided that the potential of the neutral pomt

F1o 215, —Unsymmetrical Two-phase Three-wire Bystom with Balanced Load

falls 1n the centre of the circle 0. Now let the phases I and II be
equally loaded , the currents I; and Iy, =1I; are then represented by two
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equal vectors making the same angle ¢ with therr inducing EM®’s
Py Pryyo and PrPry,.  The current Jyy; flowing 1 the third phase 1s
the geometrical sum of —J; and —I;. On account of the currents
flowing 1n the phases, the noload potentials at the terminals Pyy, Pr,
and Py, are shifted to Py, P and Pry, where e g Pr,Py= Iy 18 1n the
opposite direction to J; and PiP;=1I;z lags 90° behind the current,
thus Py, P; equals J;z, and so on. From this we see that a symmetrical
three—Fha.se system with unsymmetrical load has no longer an equi-
lateral pressure triangle, as Py PryPry, on noload, but n this case
an 18osceles (unbalanced) triangle Py Py Py

As a second example, consider an unsymmetrical two-phase three-
wire system with symmetrical load SFlg 21B). Prg, Pyo and 0 give
the terminal potentials at no-load [; and Iy are the phase currents,
whilst I, (the current 1n the middle wire) 1s the geometrical sum of
—I;and —I; On account of these currents, the potentals Py,, Py,
and O are displaced to the pomts Py, Py and 0;. Since the pressure
triangle Py Py 81 18 not rectangular, we see that even with symmetrical
loading, the mterconnected two-phase system 1s not exactly balanced.

78. Graphic Calculation of Current in a Star System

Method I In the previous section, for the sake of simpleity, we
agsumed that the load current of the several phases was known both 1
magmitude and direction  Strictly spealang, this 18 seldom the case
In practice, however, 1t 18 often possible to estimate the currents in
the several phases with close approximation, and from these determie
the pressure drops in the different phases by the above method

If, however, we have to treat an unsymmetrically loaded system
with large pressure drops 1n ﬁenerators, mams and transformers, 1t 18
necessary, under certamn conditions, to calculate these more exactly
than 1s possible by using the above method. For this purpose we turn
to the following problem

To calculate the currents and pressures in a star system, whose
generators and load admittances are all star connected e EMF’sm
the several phases are known, also the resistances, reactances and load
admittances

‘We assume as before that the neutral pomnt of the generator possesses
zero potential Then at no-load the terminals of the various phases
have a potential corresponding to the M F’s induced in these phases.
These E M F ’s may have any desired shape and strength  Assume, for
the present, that the potential of the neutral pomnt of the load 1s
known , the potential difference consumed 1n each phase 18 then also
known This 18, namely, equal to the potentials at the terminals of the
phases at no-load, less the potential of the neutral pownt of the load
The current 1n any phase then equals the potential difference consumed
in that phase divided by 1ts total impedance If the current 1s
thus found n magmitude and direction, the %Jo‘oentml at any pomnt of
the system can be easily deduced by the above method Thus the
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pressure drop from no-load to load can be simply determined for each

hage

P The knowledge of the potential of the star pomt of the load wnll thus
sumplify the whole problem, for each phase can then be b eated wmdependently
of the 1est

fThe determimation of the potential of this neutral point, however,
offers some difficulties, which can be best overcome as follows As

_y'

Fia 216 —Polyphaso Star-conneoted Gonerutor

example, consider the star system shewn in Fig 216, the EMF’s
induced per phase can be represented by OPy,, OPry, OPrpy, OPry,
and 0Py, (Fig 217) The pomnts Piy, Pro,  Pyo give the no-load
potentials at the terminals of the generator ~The total admittances of
the five phases can be represeuted by g;8;, g0y, and s0 on  In these,
the resistances and reactances of the windings of the several phases are
also considered. At the ends of the pressure vectors, set off the con-
ductances g of the several phases parallel to the ordinate axis, and
from the ends of these the susceptances 4 1 the horizontal direction
In this way the admittances ¥ appear as lmes which are displaced from
the ordinate axis by the phase-cisplacement angle ¢ of the several
phase currents We suppose the problem to be solved, and O; the
neutral pownt of the load eircuit to be found, the effective ¥ M F’s of
the several phases are then represented by the vectors 0Py, Oy Py,
and so on, whilst the phase currents are displaced from their respective
EMF’s by the angle ¢ From Kirchhoff’s First Law, the sum of the
currents 1n all the phages at any instant must equal zero, if all 1n
the same scnse with respect to the neutral pomt are taken as positive.

Consider now, for example, the effective EMF Pip=0,Py;, 1
phase III with the current 7y, lagging ®;; behind 1t We then lmow
that /in=Pmyn Choose the time-line parallel to the abscissa ax1s,
the momentary value 18 then

iy =21y €08 gy = N2 Prip €08 aggg.
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From O, draw a normal on t0 y;; this then makes an angle apy
with 0;Pyyo, and the shortest distance of the pownt O; from 7y is
0/Procosary.  Imagine iy to be a force, then, neglecting the factor
/2, the moment of this force with regard to the pole O; 18 represanted
by the momentary value #y of the current J;; The condition that
the sum of the currents 1n all the phases equals zero at any instant is,
therefore, the sum of the moments of all the forces y with respect to
the pomt O; must equal zero, or O; must lie on the resultant of all the

ﬁ%%/'// Z

Hr

%

Fra 217 —Determination of Potentinl of Load Sta1 Point

forces . If the time-lime rotates with the angular velocity o, the forces
y must also rotate with the same velocity, so that the lnes g always
remain normal to the time-hne and the momentary values of tho
currents proportional to the moments of the forces y with respoct to 0,
Imagme now that the whole diagram O1Pyg Py Pinio Prvo Pyo 88 a rignd
system at the termmals of which the corresponding forces y act, wo
know then, that if the forces be turned through equal angles about the
points of application, the resultant of these forces wall likewise turn
through the same angle about a fixed point This centre of the system
of forces must comcide with O; in order that the condition “the sum
of all the moments 15 zero” 1s satisfied From this the construction
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for the pont O; follows at once by ﬁnchn%the resultant of the forces y
m two directions (e g at 90° apart) The pomt of intersection of
these then gives the potentwal Oy a_});:e load star pownt.

In Fig. 217 the momentary value of the current Iy 18 positive, and
the momeunt of the force 4;;; with respect to the middle point O; of the
pressure must therefore be also positive The moment of the admit-
tance, which represents a current, will be also called a current moment
n what follows The momentary value of the current I; in Fig 217
18 negative, and equals

ty=n/21; cos a;= — /2], cos (180 - o;)
= — /2y, Py cos (180 —a;)

V2 Py 08 (180 ~ @) equals the moment of the force y; with regard
to ; This moment, which acts 1n a clockwise direction when taken
negative, gives the momentary value of the current I; with 1ts corre-
s?ondmg sign (disregarding the factor /2) From this 1t follows that
all current moments acting 1n a counter-clockwise direction are to be
taken as positive, and all acting 1n a clockwise direction as negative
This positive sense of the current moments 1s due to the direction of
rotation assumed for the time-line, with which the former agrees

In Fig 217 the currents I; and Jj; lag behind their respective
pressures Py and Byy; in phase ; nevertheless the susceptances by and by
must be set off along the positive direction of the ahscissa axis, when
the conductances are set off along the posmtive direction of the ordiate
axis, for the whole construction to be correct The current Jy; leads 1ts
pressure Py, so that b;; must be set off 1n the negative direction of the
abscissa axis  This defimte direction for the admittance forces y anses
from the chosen direction of rotation of the time-hne.

After we have thus determined the potential of the neutral pomnt of
the load system and knowing the effective EMF’s and pressures m
each phase, we can find the current 1n each phase The currents cause
a drop of potential 1n the windings of the generator and in the line,
which causes a displ t of the potential at the recerver terminals
This displacement equals I# i the direction of the current and Iz
normal to 1t, as already explamned If the E.MF’s and loads m the
phases are not all the same, the pressures at the recciver cirewmit may
duffer considerably.

The above method for finding the neutral pomnt was first suggested
by Kennelly, Elec Wold and Engmeer 1899, p 268

In the special case of a symmetrical star system whose phases are
symmetrically loaded, the neutral pont O; of the load comncides with
the neutral point O of the generator, which can at once be seen from
gymmetry The same current flows 1 each phase, and the no-load

otentials, Pry, Pro, Prmo, and 80 on, at the receiver terminals are
isplaced by the same amount, the system remains symmetrical and
balanced

If we have a star system with neutral wire, the neutral point O; can
algo be determined by the above method. For this purpose 1t 1s only
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necessary to imtroduce a foroe y, at the pomnt O correspondmg to the
admittance of the neutral line, 1n order to conmder the influence of the
neutral wire on the potential of the pownt 0;. When g, 18 equal to
zero we have the system in which no neutral wire 18 present,—while
for the case y, equal to mfinity, O; and O have the same potential.
The poimnts are then short-cirewited, so that the current and drop of
pressure 1n any one phase has no effect on the loads m the other phases.

The conversion problem treated by Kennelly m the above-mentioned
paper 18 of interest, for 1t also shews how, by suitably choosing the

Fra 218a F1a 218b Fia 218

Fia 218a~¢ —Dingram of Bymmeh-lcg '.l'hr:.aphm BSystem supplying Two phass
fun enf

77 !
SN
F=7
+
=873 Z
F1e 210a. Fio 2100 Fia 218c

F1o 210a-¢ —Diagram of an Interlinked Two-phase Bystem supplying a Balanced
Three-phase Qwrent e

three load resistances of a symmetrical three-phase system, the same
can be made to deliver a two-phase current The conductances of the
three load resstances (Fig 218a) must bear the ratio 1 1 273
Fig 2180 shews the pressures of the various phases, of which 0F;, and
OPyn, are perpendicular to one another Fig 218¢ 18 the diagram of
the currents

Conversely, a 8 etrical three-phase current can be taken from an
terlinked two-phase system, by making the load resistances of the two
phases equal and 1n the ratio 1 . (1 ++/3) to the resistance of the neutral
wire (see Fig 219a) Figs 2196 and ¢ shew respectively the pressure
and current diagrams for this arrangement

A0 R
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79. Analytic Calculation of Current n a Star System, The graphic
method described mn Section 78 for the determination of the middle
pownt O; of the pressure 18 not always convement, especially 1n the case
of a star system with a neutral wire, for the latter has usually & much
greater conductance than one of the loaded phases

Further, the admittances are often nearly parallel, so that graphic
summation 18 inconvenient and inexact, unless the resultants of the
forces y are found by means of the force and vector polygon, as 1s
customary 1n graphic statics

‘We shall, therefore, first shew how the currents and the middle point
0; of the pressure of a star system, with and without neutral point, can
be analytically determimed.

Method I ~ The mno-load pressures Pig, P, etc, of the several
phases, which equal the induced M ¥’s, will be denoted in general
by Py, for a phase and the admittances of the phases by y Then

E(Pxn'—Pu);’!=Io=Pq?/n:
where P, is the potential of the middle pont 0, of the pressure, 7, the
current 1n and g, the admittance of the neutral wire KFiom this
2(Proy) =Po2(y) +—Pn:1/na
where 2(Pyoy)=Tox=Ti+ Ity + Iy, ete
I,z is the current which would flow 1n the neutral wire if the two
neutral points were connected by a wire with zero remstance, whilst

I, I, ete, denote the currents in the phases under this assumption
If these currents are calculated, we have

Lix  _;  2(g)+0,-1{Z(0) +b,}

P,= =
CE@+p RO+ P+ {Z0)+0)
If P, 18 known, we calculate

Tro=Poyy,
T1o=PYn, and 8o on
Finally, Io=Pop,
where I+ Ino+ Dime+  +Dy=1ox

The phase currents are also easy to find, for
Iy=Proyr - Poyy=I; - Iy,

Simlarly, In=1Iy - Iy, ete

Let us take any given star system, and supposing first that the two
neutrals are connected, as m Fig 220, caloulate the current distribution
—for wnstance, for Py=0 We have then

Li+In+...=Iy

Secondly, we will suppose the current 7, distributed over all the

parallel conductors 1n the systems in proportion to their admittances,
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by putting the phase pressures Pp,, Pr,, etc., equal to zero and
caleulating the currents I, fi;;  /, as if only P, were present (see

F:,%szl)
e have here, therefore,
I+ Igg+ oo+ Dy=Iox.

The phase currents are then obtamed by superposing the two current
distributions in Figs 220 and 221.

e &

oo
ANDE N

4L

Fio 221,

To take a practical example, we will go through the calculations for
a star system Let us take a three-phase generator, star connected,

002 ohm
=0 08 ohm
X+0 2 ohm
0+08 ohm
=008 ohm
X%+0'2 ohm
[0 030hm
. X=0 2 ohm omfhm % 1oad
¢
002 ohm
Fro 292

feeding a hghting network with a phase pressure of 100 volts The
lamps are connected 1n star, as shewn m Fig 222  ‘With full balanced
load 1n the network, the current per phase 1s 100 amps The armature
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winding of the generator has an effective resstance of 003 ohm and
a reactance of 02 ohm per phase The maims between generator
and recerver have a resistance of 002 ohm per phase, whilst the
neutral line possesses a resstance of 008 ohm, the self-induction of
the mains and 1ncandescent lamps 18 neghgibly small.

Fia 228

We shall determine the distribution of current and pressure in the
system, assuming that the first phase 18 fully loaded, the second
working on § full-load and the third on half-load In all the three
Eha.sas of the generator, the same effective B M F of 100 volts 18 nduced;

ence the no-load potentials of the four terminals of the generator are
represented by the pomts 0, Py, Py and Py, (Fig 223) The first
phase of the load network has a conductance of 1 mho or a resistance
of 1 ohm, the second phase $ mho or 1'333 ohms, and the third phase
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1 mho or 2 ohms To these resistances must be added the resistances
of the three lines and the phases of the generator, so that we have
7=105, ;=02 or ¢,=0922, 5=01755;
=138, a3=02 or g,;=0710, &,=0103,
=205, 2;=02 or gy ;=0484, b;=00473,
and 70=008 ohm or g,=125 mhos
The 1mpedance between the neutral points 18
1 £gm= o+ g1+ gu+ g —1(by +b1+bu+bggL
9o+ 91+ gre + gru)? + (Bg + by + by + byr)?
=0 0684 -20-001562 chm
‘We calculate now:
I =P =100(0 922 +70 1763)
=922 +y17 55 amps ,
Iy =Py =(-50+786 6)(0 710 +70 013)
= —44'4 47564 amps.,
Lip = Pryoyur=(— 50 - 786:6)(0 484 +70 0473)
= -201-7443 amps.
From this we find
Lox=27"7+729 7 amps,
Py= (00684 —70 00162)(27 7+739 7)
=194+)1 99 volts.
This difference of potential produces the following currents .
I y=Pyy;=1 44 42 18 amps.,
Ziyo=Poyy =117 +71:61 amps.,
ZTi0=Poyin =085 +71 06 amps,
Iy=Pyyo=24 22 +24 85 amps.
Fally, we get
Li=I1-I;p=—-9076+,15 37 amps ,
Tu=1Iji~ Iy,= — 45 57 +754 79 amps ,
T =Tty — Lo = — 20 95 - 745 36 amps
The absolute values of the phase currents are
I;=92 amps, I;="715amps, I;;;=49'8 amps
The current /; causes an obmic drop in the armature winding and

lne Iy1 = 1,0 05 opposing the current, and an inductive drop J;z=1,0 2,
perpendicular to the current, as shewn 1 Fig. 223. Due to these two
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pressure drops, the potential across the lamps in phase I is dwsplaced
from Py, to Py, and the lamp pressure 18 now 0, P; mstead of the no-load
pressure OP;, From Fig 223 the lamp pressure of the three phases

are 0Py =1; x 1 =92 volts,
0,Prr= Iy x 133 =95 volts,
0, Py = Iy x 2=99 6 volts,

thus shewing the effect of the out-of-balance load

If all phases had heen equally loaded with 100 amperes, the lamp
pressure would have fallen to 93 volts i each phase.

80. Graphic Oalculation of Current in a Polyphase System

Method II. As well as the analytic method 1n the previous section,
the following simple graphic method can also be nsed We will
describe 1t m connection with a symmetrical three-phase star system
with phases loaded unsymmetrically and without neutral wire

Fia 224 Fio 225

In Fig 224, the no-load ufrassuras Py, of all the phases are drawn
n the sume direction, viz along the ordinate axis Iy, Iy, and Iy are
the currents which these pressures would produce 1f the neutrals of the
generator and the load were directly counected. Smece all the no-load
pressures are equal 1n magmtude 1n a symmetrical system, the currents
13, Ij; and Ji; 1 such a system will be proportional to the admittances
%1, ¥u and g of the three phases. To the same scale, the vector
04 =L+ I+ Iy represents the total admittance y=y; +yn+ym be-
tween the neutral points.

In Fig 225, the currents Iy, I and iy are drawn at their correct
phase angles ¥, ¥y and Yy; to the no-load Bressu.res Pryy Py and Py,

Finally, we draw Fig 226, 1 which the currents /;, /i and [y,
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are geometrically added, giving the cwrrent Zyr=I; + Iy + Iiy, which
must flow between the neutral pownts, from the load to the generator
The current , « 18 now distributed among the several
phases 1n proportion to their admittances by drawing

on fox & polygon smilar to that formed by the Jeo
currents I;, Iy and Ijy on 04 m Fig 224 Iy, (4
Iy and Iy, are the components of Z, m the Ton %o

different phases By drawing parallel lines, we add
I; and -1, together in Fig 225, and thus ob-
tain the resultant current 7; m phase I Similarly
for the other phases.
‘We have determined the phase currents without Fio 226
finding the potential of the neutral pomt O, of the
load. This can now be found at once, for the potentaal differences must
be proportional to the currents they produce  Thus, for phase I,
Wm . 0_1)10"11, oI,
Y
0,Pyy= Tx{
Stmilarly for the other phases,

— I,
01P110=1'-—:::Pm)

Py,

— I
01P1m)=7frﬁpnw-

If we strike off arcs about the points Py, Py and Pry, with these
radn m Fig 225, they will all eut m the pomnt 0;. This 18 the muddle
pomnt of pressure m the
load For each phase we
get a pressure triangle
gmilar to the current
triangle for the same
phase

The direct determina-
tion of the pownt O, 18
most easily done by the
construction m Fig 227
Here agam

Pxn(1/1+Z/11+ )
=Pyy=1
18 represented by the
vector O4  Further,
PI.W: + Pro¥Yn+
=L+In+ =Ix
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On the other hand,

I 1 I
A,,=ng=ml’n or ﬁ=ﬁ;—n,

ie. if we rotate the co-ordinate system of the pressures so that the
direction of Py, comeides with that of Z, then P, lies in the direction
of 7., and 1t 1s only necessary to construct the fourth proportional mn
Fig 237 to find the pomt 0,.

81, Conversion of a Mesh Connection mnto a Star Oonnection Of
the different ring-connected systems, mesh connection 18 almost the
only one which has found favour 1n practice, consequently we must
study this connection more especially

In the previous section was shewn how the neutral pomt of a star
connection can be easily determined, and the calculation of the
currents 1n a star system thus reduced to the treatment of simple
conductors. In order to obtam the same simplieity for a mesh
connection, the following method due to Kennelly (Electrical World,
vol. 34, p 413) for converting a mesh connection nto an equivalent
star connection—with respect to the outside circuit—may be used

Fra 228a Fia 2280
Fio 228 —Mesh Bystem and its Equivalent Sta System

Fig 228a represents a mesh system with the 1mpedances sy, 2y, 2z
1n the several branches Lot the equivalent star connection (Fig 2285)
have the impedances 2,, 2, and 2,. Now, mn order that the mesh can be
replaced by the star without altering the conditions in the exteinal
circutt, the impedances between the three termmals 4, B and C of the
star must equal the 1mpedances between the angles 4, B and C of
the mesh We have thus the followmng symbolic expressions for the
1mpedances

211 (21 + 211)
2, + 2= o
T it mtan
2x(oyp +7n1)
B +z,=
P st et o
27, = “(mt =)

2+ 2+ 2m
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Multiplymg each of these equations m turn by -1 and addmg,
we obtain

- Arfm
* st e
i
%= (146
*Tatem et (146)
21211

21+ 21+ fm s
Substituting the complex quantities for z;, zy; and #zy m these
symbolic formulae and sphtting up the expressions z,, z, and 2, mto
their real and imaginary components, we get the resistances and
reactances of the equivalent star connection expressed m terms of
those mn the mesh connection

_(' 11 =J%u) (1111 = Jrr)
11+ T10 1 0r = (Br + Ty + Bayr)

= (711 = J0r) (1 111 = 1)

1o = )%=

1 =92
- (750 = Jorr) (' m = J%anr) (1 +2)
73+ q?

=! (raa? 1 = Buune) +2 (e + )
2

- ?ﬂumm +11m®y) = 2 (117 111 — Trraar)
22

In a gimilar manner, we get also

(1?1~ Ba®y) + (@ +1 o)
2

1y =)=
- d” m?r+ P12p) = (0l ¢ = Lrnr)
2 !

100y g = 0) + (13200 +1120)
2

To= =

_ "'("J}'ﬂ +111%) = €(1 171 — Trlyr)
J— 2

Conversely, 1f a star connection 18 given, we can substitute for this a
mesh connection

In this case we assume that the admittances of the star are known,
whilst the admittances of the mesh are to be determined

If the two systems m Figs 228a and b are equivalent, they will still
be equivalent 1f we connect like cirewits between two like terminals m
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both They will therefore be equivalent when we connect a circwt of
1mpedance z=0 between 4 and B m hoth, e 1f we short-circmt A
and B In thus case we have

_ Vet
By byt
If we connect B, C and C, 4 in turn i the same way, we also get
_ Valtst ¥
Y+ Y :ll,,+1/b+ll,’
_ Uty
ym'i'%—%_*_%_‘_yﬂ'
From these three equations, we then get
o W
Tt nr
= W .o
Yu Vat T+, (147)
_ tbhs
Ym Yattot¥

From the last three expressions, which can also be expressed as
complex quantaties, the equivalent mesh connection of any star connec-
tion can be calculated

Fio 229 —Graphical Transformation.

This problem of conversion can also be solved graphically In
Fig 229, 07, 0Zy and 0Zy; represent the impedances z;, zy; and 2,
of a mesh connection m magmtude and direction

To determme now the impedances z,, z, and 2z, of the equivalent
star connection, we first draw the vector OZ to represent the resultant
mmpedance 2=z+2;+2y, and then construct the trangle 0Z,Z;,
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smular to 0Zy;Z Then 0Z, 18 the required impedance z, 1n magni-
tude and direction, for the following geometrie relation 1s fulfilled

Za_  *m

#r zantam

thus satisfying Eq. 146. The construction for z, and 2, 18 exactly
similar,

The graphic determmation of the admittances of the equivalent
mesh from the admittances of the star 18 quite similar to the con-
struction of Fig 229, as shewn by Eq 147

Ezgmple Let g:=1, gn=% and gz=2% mho, or 1;,=1, 1,=1333
and 7;;=2 ohms.

Find r,=2,, 1,=2, and 7,=2,

_ twtm _ 133.2 266
1"_7'1+”r(+7m_1+1'3d+2—m_0614 ohm,
or 9,=1'63 mhos,
__tuh _ 2 _ 5460
s Pt intim L33 0 462 ohm,
or 9,=2'16 mhos,
_ tm 1383
and %=yttt £33 0308 ohm,
or g,=3'28 mhos.

Thus & mesh connection whose phase loads gy, g;; and gy are mn the
ratio of 4 3-2 18 equivalent to a star connection whose phase loads
7, 9. and g, bear &e ratio of 4.3.2, whence 1t follows that the
mfluence of unsymmetrical loading 18 no greater in a star system
than 1 a mesh gystem.

82. Conversion of Star and Mesh Connections when EM.F.’s are
Induced 1n the Phases. Until now 1t has been assumed thatno EM F’s
are induced 1n the phases which have to be
transformed from mesh to star and vice
versa, If such EMP’s are present, we
have to proceed precisely the same as
before, considering, e g, Fig 230, where
the paths of the mesh connection possess
both E M T’s and the impedances 2, 2;; and
21, we can first 1magme a condition
where no current at all flows, on account
of the EMF’s in the star system maim-

taning equlibrium i the former—as B z, ¢

can actually occur with generators working  Fio 230 —Transformation of &
el Mosh System where EMF's are

n_paralle induced in the Phases

1f the EM F 1n one or more of the phases
of the star connection 1s now altered, currents at once begin to
flow, and these currents will depend only on the impedance of the
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whole system and on the amount by which the EMF.’s m the star
system are varied, suice 1t 18 quite 1mmaterial which EM.T’s mamtam
the equilibrium ~ Hence 1t follows that the mmpedances of the star
system which 1s equivalent to the mesh system remam the same

I, '

L

I,

o

Fia 281

whether EMTF’s are present in the branches or not, As regards
the conversion of star connections 1t 1s therefors 1mmateral whether
LM F.'s are present or not

As an example illustrating the complete procedure, we can tako
a gystem in wflch both the generator and the load are mesh con-

Fio 282

nected, as shewn m Fig 281 We first caleulate tho 1mpedances
of the equivalent star connections, and then find the sum of the
admittances in each phase and draw the pressure triangle for the
generator on no-load (Fig 232) At each corner of this triangle,
we then set off the admitfance of the corresponding phase as & force
The centre of these forces 1s then the neutral powt O; of the load, and
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the distances of this point from the angles of the pressure triangle give
the EMT’s of the phases. These, multiphed by the respective phase
admittances, give the line currents (equal to the phase currents), which

make angles tan™!- with 0,7, These currents cause a displacement

of the potentials from the angles of the pressure triangle which 18
drawn for the terminal pressures at the generator on no-load. The

Fia 288

displacement of each angle 18 equal to the corresponding phase imped-
ance of the equivalent star connection for the generator multiphed by
the line current The displacement Jr opposes the current n direction,
whilst Jz lags behind the same by 90° By this means, we get the
three new angular ponts Py, Py, Pry, giving the pressure triangle of
the generator on load (see Fig 232).

In Fig. 233 the three lines I,, I, and I, represent the three line
currents It 18 often useful, however, to know the currents in the net-
work, 16. 1n the branches of the mesh These can
be found for the generator by taking the geometrical
difference Py Pyy of PPy and Pyo Py, and divid-
mg this difference by the impedance 2y of the
branch connecting them (Fig 234) If the currents
of the load triangle are required, we must first
construct the pressure triangle for the pressures
at the terminals of the receiver. The sides of
this trangle are the phase pressures, and each Fro 2%
such mde divnided Ly the mmpedance of the
respective branch gives the current in that part of the load triangle

We have thus completely solved the given problem without knowing
the potential of the neutral pomt of the equivalent star system for the
generator—this point 18 unnecessary for the construction




270 THEORY OF ALTERNATING-CURRENTS
Example I The load admittances of the mesh system are all alike

1 every respect [
Then, since = — B
2+ 2n+2m
and ===
we have 2 =%=2=13

1e. a mesh connection with equal impedances 1n all the branches can
be replaced by a star connection whose phase impedance equals one-thud
of the phase 1mpedance of the mesh connection, That this 15 80 18 clear,
for with star connection, the pressure per phase 15 /3 times smaller
and the current +/3 times greater than in the equivalent mesh con-

nection , consequently the star impedance must be %=% that of the
mesh 1mpedance 3y

Example ITI In three-phase systems several star connections are
often jomed 1n parallel Smce the admittances of the several branches
of the stars cannot be directly added when the load 18 unsym-
metrical, each star must first be replaced by 1ts equivalent mesh  The
admittances of the various meshes are simply added for each branch,
which 18 allowable, since these admittances are all i perallel between
the same two termunals. Consequently we get one resultant admittance
for every path, and the resultant admittances of the three paths form
a single trangle, which 18 equivalent to all the equivalent parallel
connected stars This triangle can further be replaced by an equivalent
star, whereby 1t 13 seen that several different star connections have
been reduced to a sngle equivalent star. In a similar manner 1t 18
possible to treat any desired load on a three-phase system.

83. Symbolic Calculation of Current in Polyphase Systems In a
s))-:\mmemcal polyphase system with z phases, the EMF p, mnduced 1n
the 2™ phase 18

p.=~2Psm {mt —-(z-1) 2;—;
omr o
=2P {sm wf cos (¢ — I)-n— - cos wf 81 (z - 1>7}’
or, symbolically,

o O
P,=P {cos (z- 1)7 +j8m (- UW

=pde- 1)2_:?'
Since py=+2ZPsmot, 16 symbolieally P, =P, and since also

2 2w o
&n =cos;+]sl ;—L=3/I=e,
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we can write for the E M F ’s mnduced m the several phases,
P=P,
Py=Pe,
P,=Pe,
P,=Pe!
Congider first the interconnected four-phase system (Fig 235), whose
generator 18 star connected, whilst the load admittances form a quadr-

lateral. In this case 1t 18 best to start with Kirchhoff’s Laws, which
state that the sum of all the currents at any junction 1s zero, and that

F1a 286,

the sum of all the EM¥’s m a closed cirewt must be zero Up to
the present there 18 no graphical solution for such a system,
congequently the symbolic method 1s used for treating this Kpuhculsr
case—which seldom finds practical appheation Applying Kirchhoff’s
First Law for the five junctions 1n the system, we have

Ix+.1d_.1a =0,
Iutl, -1, =0,
-.Im“'.I)‘Ie =0,
Ivt+l -1 =0,
and L+ Iu+Im+Ig=0

Since the last equation can also be obtained by addition of the other
four, we need not consider 1t further

Smularly, applymg Kirchhoff’s Second Law for the five closed
circwits m the system, we have

Px‘.Pn—Irﬁ'l—Inz,.'l'Inzn =0,
Py - Py - In#n — Loy + Tu#m =0,
Py~ Py~ Imf"m =L+ Iyoy =0,
Pry— P —Iyery - Lazg+ ir - =0,
and I,,:,,+I,,zb+l,z,+],_z,, =0

The last equation can lhkewise be obtaned by adding the other
four, and can therefore be omitted.
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If, in the pressure equations, we now replace the phase currents
Iy, I, Iy and Iy by the line currents Z,, Z,, Z, and I,, we get the
following four linear equations with the four unknown currents Z,, Z,,
Z, and J,.

Pr—Py~IL (42 +m) + Lo+ L =0,

Pn—Pm—-_1},(.’.:u+z,+zm)+f,zm+1,,:u =0,
Py~ Prv = L (2 + 2, +2y) + Latry + 1,2 =0,
Pry =P~ L+t m)+ Lot Loy =0

From these we find the currents,

=3 1=2 1=0 wa 20
where
= (=r+ 2+ 201), 21, 0, %
D= 2 = (5u + % +2m), 2111y 0
0, %1, = (Rur + 2+ 21v)y 1y
29 0, 21vs = (ary + 2+ 21)
0, 2y = (o 2+ 219)s v
_ %, .0 %1y, = (v 2+ )
= (2 +2, +2m), 11y 0, 2
2, - (2 +2%+2m); 2, 0

18 the determinant of the above four equations, whilst D,, D,, D; and
D, can be found from D when the coefficients of the unkmowns Z,, Z,,
I, and I, are respectively mterchanged with regard to the constant

terms,
Py-Py, Pp-Py, Py-Py and Pr-P;

When the four currents I,, I,, I, and I, have thus heen determmed,
the four terminal pressures,

Lz, La, Lz, Lz,
and the four phase currents,

'.[l) '.Iﬂ! II": IIV1
can be easily found.

The problem 18 accordingly solved, and for the solution we have
only used the simplest means This method of symholic treatment,
however, yields a result which has very httle meaning until we
work out the determinants, and then from the symbolec expressions
come back to the complex. The final result 1s thus always long and
compheated

In practice we usually meet with the independent two- or four-
phase system and the two-phase three-wire system The former
can be calculated both graphically and analytically in the same way
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a8 a sm%l&pha,se system The two-phase three-wire system can be
best analytically and graphically treated by calculating the neutral
gomt of the pressure V‘})e shall, however, treat this case here sym-
olically, and” by means of an exam})le explain the operations with
complex quantities somewhat more fully In Fig 215 a two-phase
three-wire system, with equal currents 1n the two phases, was graphi-
cally mvestigated, and 1t was found that the drop of pressure i the
two phases was unequal. If we conmder the same system on the
assumption that both the phases have equal load admittances, we
find that 1n this case also the pressure drops are different Thus the
two-phase three-wire system 1s always unsymmetrical with respect to
pressures and currents, even with symmetrical loading
In oider to shew this, let
P, = P=EM T mduced 1n phase I of generator,
Ppo=jP=EMT induced in phase IT of generator,
I =current 1n phases I and II,
I,=current m neutral line,
2 =1mpedance 1n phase lines,
%, =1mpedance 1n neutral lne,
y =load admittance of the two phases
P; and Py =terminal pressures between the phase terminals and the
middle wire
‘We have, then, L+ Ig= -1,
where all currents leaving the neutral point are taken as positive
Li=yP; and In=y,Pm
Pr=Py-Liz+ Loz =P - Li(z+2) - Inz
and Py =P~ In+ Lozy=)P - In(z+ =) — I,
or P1{1+1l/(z+%)}+.7/50-Pu=Py
Puyzo+ {1 +y(z+m)} Pu=1P,
_ 4y(etm)-pm
T (gl
p_ Y {l+Gtz)
T {4y (et )} - (920)
Take, for example, z=2+/2, then
14 (1707 -0707y)yz
T+ 34142+ 2 4147
1+(1707+0707))y2
and W) 43 414y + 2 dldgitt
For further similar caleulations, see Stemmetz and Berg
AC 8

whence P,
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The dissymmetry of currents and pressures 18 due to the fact that
the reaction of first leading phase m such a system on the second
lagging phase differs from that of the second upon the first Hence,
such & system 18 not to be recommended for current distribution—
rather it 18 preferable to use the independent two-phase system, whose
pressure regulation 18 Just as simple as that of an ordinary single-phase
system For power transmussion, however, the terconnected two-
phase system 18 often used, since 1t necessitates only three wires, one
of which can be earthed In this case 1t 18 customary to use two
concentric cables with unmsulated outers

84. Graphic Representation of the Momentary Power 1n a Polyphase
System. In Fig 45, p 36, the momentary value of the power,

m=PI {cOB (¢, = ¢o)+am [gmﬂ' (4’1 +y- %)]},

of an alternating current 1s graphically illustrated This method of
representation, however, 18 not suitable for polyphase currents We

therefore set off the momentary power as a vector, at an angle (wt— g)
to the abscissa axis * =

Putting PIcos(¢,—py)=Plcosp=W
and F-Gitd) =t
_ sin (20t — )
then w= W(l + - cos )

will be represented by a closed symmetrical curve, the so-called power
curve, whose centre 18 & pomt of the fourth degree Smce the power
of each phase 1n a polyphase system varies with double the frequency
of the current, the total power mn a polyphase system can also be
expressed by an expression of the following form .

w=W{1+esn (20t -y)}.

el7 18 here the amphtude of the doublefrequency power Returmng
now to the rectangular co-ordimates  and y by putting

w=v22+y? and tan (wt- g) =:—£,

we get the following equation for the power curve
(2 + %)% — W 2(22 + 92 + 2exy)2= 0,
which 18 a curve of the sixth degree

*See Steinmetz and Berg, Alternating-Ourrent Phenomena
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In this equation, put
Wene = (1 + &) 7 = maximum power,
Wy = (1 — €)W =munnmum power,
= W+ Wt
Taserting this 1n the above equation of the power curve, we get
(22 + 92)8 — 3 { Wyuax (% +9)% + Woara (B — 9)*}2 =0

as the final form of the equation for this curve, whose mam power axes
810 Way and ,,, 'The TAtI0 Wy : W, 1§ often referred to as the

balance factn of the system In Figs 236 to 239 the power curves
of the most 1mportant alternating-current systems are given

(N /7
N

Fia 236 —Single phaso Systom on Fio 287 —Singlo-phase Systom on Non-nductive
Inductive Load, ¢=00° Lood, =0

then W= Winax + Winin and _ Wipnx = Witn
2

Fin 288 —Inverted Throe-phase System on Fio 239 —Inverted Threo phaso Syatem
Non-inductive d on Inductivo Load, $=60°

The single-phase system with non-inductive load (10 cos¢p=1) has
the following power equation
w=W{1+sm (20t - ¢)},
or, SINCe Wyey =27, wu,=0 and e=1, we get, n the rectangular
co-ordmate system, (@ +12° - P2z +y)4=0

The power curve 1s shewn  Fig, 237
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As 18 obvious from the above figures, the power m an alternating-
current system 1s completely characterised by the two mamn power
8X08 Wy, and w,, All symmetrical polyphase systems with n=3
give arcles for the power curves when symmetrically loaded ~These
systems therefore transmut the power quite umformly, and for this
resson have almost completely ousted all other unbalanced alternating-
current systems for power purposes

.



CHAPTER XV

NO-LOAD, SHORT-OIROUIT AND LOAD DIAGRAM OF A
POLYPHASE CURRENT.

85. No-load Diagram 86 Short-oiromt Diagram 87, Load Diagram.

85. No-load Diagram. (Percentage Current Varation) When a
symmetrical polyphase system 18 uniformly loaded, each phase behaves

Fia 240 —No-lond Diagram

i the same way as m a sm%}e-phasa system Hence the no-load
diagram derived for the simgle-phase circuit can be directly applied for
the symmetrically loaded polyphase system
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In practice, polyphase systems are almost exclusively met with, the
chief amongst these bemg the three-phase We shall therefore now
derive the no-load diagram for a symmetrical three-phase star system
with unsymmetrical load and with the noload currents in the three
phases equal

The no-load diagram enables us to determmne the percentage change
of current from the recerver terminals to the supply terminals This

Fio 241

percentage current variation 1s nearly equal to the current vanation at
the receiver termunals from short-circmt to load when the current in
the supply eircuit 18 mamtained constant.

If the system 18 unsymmetrically loaded, we must first find the lne
currents Jfi, Iys and Ipg, by geometrically adding the three load
currents Iy, I, and Iy, The pressure triangle (Fig. 240) 1s then
drawn for the pressures at the receiver terminals, as an equilateral

triangle—this 18 not quite correct—and the no-load currents —Q’IOO,
110
and 80 on, are set off as percentages of the hine currents at an angle ¢,
to the phase pressures Pro, and so on With the no-load currents as
diameters, we describe circles and obtain the varations of the three
hine currents as we pass from the receiver termials to the supply
terminals, thus, ]

V1o

ix%=il‘1n+m:

2
o+ V1o
wm = * pmo+ 555
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]
o v,
and hnA=iF!uo+§%%l

In Fig 241, 1n the same way, the no-load diagram 1s represented for
a three-phase network, to which several unsymmetrical transformers
are connected of the kind shewn m
Fig 242. The load 1s symmetrical
a.ui mductive, with a power factor of
09 Smnce the no-load currents in the
several phases of the unsymmetrical
transformers vary considerably, we
get large differences i the diameters
of the circles (see Fig 241).

86. Short-circuut Diagram  (Per-
centage Pressure Variation) The
short-ciremt diagram enables us to
determine the percentage change of the Fia 242 —Throe-phase Transformer
supply pressures when the pressures
at the recerver terminals are kept constant from no-load to full load
This percentage variation nearly equals the change of pressure which
takes place at the recerver terminals when the pressures at the supply
terminals are maintained constant.

‘When a symmetrical polfrphase system 18 umformly loaded, each
phase behaves as m a single-phase system Hence the short-circuit
diagram of a symmetrical three-phase system can be found directly
from that of a single-phase

‘We have here, however, three pressures at the receiver terminals,
‘whose directions are represented by the three sides P, P, P,y of an
equilateral triangle \ghau the load 18 umiform, the line currents I,
Iy and Iyyp will all be equal and make the same angle ¢, with the
phase pressures Prg, Pr, and Pr;y  Each of these line currents causes
a dlsplpa.cement of the potential at the supply terminals by the amount
L2y m passing from mno-load to full load Hence we set off the
1mpedance pressures

Loze
7, 100

ab angle ¢, to the line currents, as a percentage of the pressure P,
at the receiver terminals On this, as diameter, we describe a circle
and find the distances p; and v, given by the three terminal pressures
1n these circles  Ip2; 18 here the short-eiremit pressure per phase, and
consequently equals P,, when the load 18 umform, where P, denotes
the termmnal pressure at short-circurt The direction of each terminal
pressure cuts out lengths py and v from two circles We thus get
the percentage change of pressure at the supply terminals, on passing
from no-load to load
(v +ve)?

eaf=eaYy=00%=tpgtpx+ 900
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If the three-phase system 1s unsymmetrically loaded, we fiist deter-
mine the line currents I;y, Jys and Jypa, a8 shewn m Fig 243, by
geometrically adding the load currents I 5, Ine and Ice

The short-ciremt diagram, Fig 243, 13 drawn for an unsymmetrical
non-inductive load In this figure, therefore, the load currents comeide
1n direction with thew respective terminal pressures s, £y and Pea

Fio 248 —Short cfrcuit Dingram of a Throo phare Systom

prnn
PI

the Ime currents, as a percentage of the pressuie at the recerver termimals

On this as diameter, we describe a circle, and so obtain the percentage

variation of the pressure at the supply terminals. For phaso B this

variation 18

The 1mpedance pressures

100 are then set off at an angle ¢, to

Vprz+V, 2
(2] % =Hpix — Ppuix + ('QIK—%OHL“‘) 2

and simlarly for the other two phases

87. Load Diagram. With umform loading, each phase of a poly-
phase system acts just as a single-phase system Hence we can apply
the load diagram for swgle-phase currents directly for polyphase
currents, 1f we carry out the calculations for each phase and afterwards
multiply the power per phase by the number of phases.
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The relations, however, are not so simple when we come to deal with
unsymmetrical systems or systems unsymmetrically loaded, since the
curients 1 the different phases mutually affect oue another, but not all
m the same way Since systems with a considerable want of symmetry,
or with very unsymmetrical loading, seldom oceur m practice, we shall
not treat such systems exhaustively, but rather satisfy ourselves by
shewing how the load diagrams for such systems can be constructed

(@) In star systems, 1t 18 best to find the neutral pont of the pressure
for different loads. If this pomt does not alter much with the load,
the pressures between the termunals and the neutral point can be
regarded as constant, and the load diagiam for each phase 1s con-
structed 1n the usual manner and the several powers summed up. If
all the diagrams have the same conductance, they can be replaced by
an equivalent diagram, whose pressure I equals the root of the sum of
the squares of all the phase pressures Py, Py, Py, and 8o on, 16

P=vPi+Pot Pin+ ..,
and the current 7 1n the equivalent diagram Doars the same relation to
the phase currents.
I=NL+ T+ I+
An mterlinked four-phase system, where one double-phase 1s dis-
placed 90° }Dhnse from the other double-phase, but 1s of different

magmitude, yields aint equivalent diagram, for example, 1f both phases
feed circwits of equal conductance y  The equivalent pressure 1s then

P=JPix P
ang the equivalent current
I=NIi+I%

If the two phases supply circmts, however, whose conductances are
different, but with simlar diagrams, the equivalent diagram can also be
found for this case, 1f we take the pressure

Poqfp2Yy pr i
Y

In '/
and the current I=\/If—7/—+I§‘I—y~,
Y1 Yu
where the conductance y of the equivalent diagram equals the root of
the product of the two phase adnuttances y; and yy, ie

y="¥n.

The same also holds for an m-phase system, if we wrte for the
equivalent admittance .
9= Ym
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The equivalent pressure 1s then
i Y ;I_m:
P= P§§+P§,?+ +7, 7
and the equivalent current,

aY 1Y 3 Y
I=qL .’/x+I"yu+ '+I”‘y,..

Since these ratios of conductances are the same for all loads, we
can calculate them for any desired load—e.g no-load—and substitute
them 1n the formulae

(8) In ring systems, the phase pressures generally remaim constant for
all loads, and on this account the formulae that have been deduced for
star systems may also be applied for ring systems

ws @y R w3

Fic 244.—Load Diagram of a Threo phase Induction Motor

(c) As an eaample of a symmetrically loaded three-phase system, we
will consider the load diagram for a 76 H.P three-phase asynchronous
motor at 580 rpm and 50 cycles Measurements were taken at
“no-load and short-circuit, and the following mean values were obtamed
for each of the three phases

No-load
P, =289 volts, [,=21 amps, W,=10KW.
Short-ciremt
=61 volts, I;x=80 amps, #ry=172KW
From this we get

coa¢o=}f7l7—}0=0165, $,=80°30'
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The short-cireuit current at full phase-pressure 18
P,
Io=1,,5+=319 s
w=Lup amps
W
P LS IlK

From these the load diagram per phase is drawn m Fig 244 to a
scale of 1 em="75 amps, together with the power and loss-lnes, 1n
accordance with the constructions given i Sect 58

For the maximum power (2,,), the diagram gives

and CO8 = =0352, ¢z=69°20"

Supphed power ;=53 3 K.w,

Efficiency 7="73%, 0(0(10(- %

[Dutouieii
from which Womx=0"72 8 633=115K W.
for all three phases, or
' 15 5w
0746

With this scale, we find for the full-load power of 75 HP (pownt P)
I=80 amps., =89 9, cos p=0'9, s=3'9.

The maximum power for ¢,=0, Ay ~0 15, from Formula 104,
P, {IK—IoGOB (o~ ¢E)}

2(1 +cos ¢by)

_3289(379-21.0981)
B 9(1+0352)
=116 8w or 154 HP.

Wamax =M



CHAPTER XVI

POLYPHASE CURRENTS OF ANY WAVE-SHAPE.

88 Higher Harmomos of Current and Pressure mn Polyphase Systems.
89 Polyoyolic Systems

88, Higher Harmomics of Current and Pressure m Polyphase
Systetas. As with a single-phase current, so also with polyphase
currents, each harmome (fundamental and higher harmomcs) can be
treated separately, and just as the resultant E M F. of the fundamental
waves of two phases 18 found by geometric addition, so also harmonics
of the same frequency can be summed up, only the angle at which they
act 18 diflerent for the several harmonies The harmomes of the same
frequency 1n an n-phase system form a pressure polygon of n sides, and
the laws deduced for this will apply quite generally The effoctive
pressure between two pomnts and the effetive current mn a conductor
are likewise found, as before, by taking the square root of the sum of
the squares of the effective pressures or currents of the several fre-
quencies The total power of the system 18 the algebraic sum of
powers of the several harmonics

In an unsymmetrical system, there are such manifold varations that
1t is preferable to treat the harmonics of symmetrical systems only
Particular unsymmetrical cases can then be studied for themselves.

As an example of a symmetrical n-phase system, we shall examine
that which most frequently occurs in practice, viz the three-phase
system

The phase pressures m the three phases are as follows:

P1= P,y V2sm (at +y)
+P,;N/Zsin (3wt +¢,)
+ Ppon/Tsmn (Bot+ ) + ...,
Pu="P, /28 (ut + 1 - 120°)
+ P,/ s1n (3wt + 5 — 3.120°)
+ Pyyn/28m (Bot+ - 5.120°) +
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Prr=P,Zsm (b + P, — 240%)
+ Py Iem (Bub+ -3 2407)
+Pyn/Zam (ot + ;-5 2407+ . ,
or, working these out
Pr =-P,,1ﬁ sin (wé + )
+ Pygn/2 s (8wt + )
+P,2an (Bot+ )+,

Pr=P, V280 (0t +y; - 120%)
+ P, W28 (3wt + )
+ P2 on (Bt + - 2409 +

Prr= Py N2 8 (0b 4, — 240°)
+P,y/2 81 (3wt + 1)
+ P,/ 8 (But + 1 ~ 120°) +
From this 1t 18 seen that every harmonic whose frequency u
multiple of the third harmonic 1s equal in all the phases, 16 at ¢
mngtant these T M ¥.’s have the same magmtude and the same direct
with regard to the neutral point, whilst all the other harmonics of
three phases are displaced at 120° to one another, and can theref
be treated as ordinary symmetrical three-phase currents It m
be observed, however, that the order 1n which the phases follow
another is not always the same as that of the fundamental, eg
the fifth harmonic the order 1s 1, 3, 2, where 1, 2, 3 18 the or
of the fundamental
From the momentary values p;, py; and py; of the E M F.’s mducec
the three phases, the momentary values p,, p, and p, of the
pressures of a star system can be found Thus

Pe=P1—Pn
=3P, V2 e (ut + 4 + 30°)
+V3P,n/Zsin (But + 5~ 30°) +
Pa=Pu—Pm
=38P,V sin (ut +y, ~ 90°)
+/3P,5/28in (5wt + 5+ 90°) +
and Py=Pm—Pt
=3P, /3 em (ut + ¢, - 210%)
+/3P,5n/2 810 (Bot + 15 — 150°) +
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If the timo ¢ 18 reckoned from another instant, e g wf'=wt+30°
VOB VBP,Tsm (of + )
~N3P, ;25 (Bot' + )
- V3P, s (Tut +4) +
Pu=r/3P, A3 5m (of + 1, - 190°)
~/3P, /2 en (But + ;- 240°)
—BP, N2 (Tut + 1, - 120°) +
and 2, =3P, ~/2 s (uf' + i — 240°)
—3P,;/28m (50 +; —120°)
~ 3P, N2 em (Tuf +yy - 240°) +
This way of expressng instantaneous values of the lme pros-
sures agrees with that of the phase pressures, excopt that instead

of P,, we have v/3P,,, mstead of Py, 0, instead of P, and P,
—~/_3?.P,,., and v/3P,,, and soon  Hence, 1f we 1eckon from the time ¢,

where wf =t +30°,

1 a three-phase system, we get the following expressions for the
effective Line pressures of the several harmomes in the system,
P,,=~/§P,,, an=0: Pu=‘N/§Ppm } (150)
P;-,= -~/§P,7; sz=0; Py = +~/§P,u
A star system with the phase pressures P,;, P, Py, etc, 18
equivalent to a mesh system with the phase pressures P, P, I,
ete, if the star system 1s regarded as laggng 30° behind the mesh
system
The harmomcs of the third order have no effect on the pressuro
between the termunals (in a star system), for these have the same
direction 1n the several phases and neutralise one another m respect of
the outsde terninals  Hence, the effective terminal pressure will be

Pl=~/-Pfl+P?u+-P;l7+ s
=3B+ Pot Pt ),
whilst the phase pressure 1s
BBt Pt Byt Pt
whence we get the ratio

b_vs 1;(%)2%%)5;

»1

= (161)
B G
al E2
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»

For example, if P,,=100, P,,=3165 and P,=10,

P, T 1+(01)2 )
then eLISWE = =
P,=V3 N1 4 0 3165+ (0 1 =3 09541655
If Py, P, P,;, ete., are the effective values of the several harmonics
n the phase pressure of an mterconnected two- or four-phase system,
we get the effective values of the lme pressures in a sumlar way
to the above

Py=v3P,, Py=-+2P,, Py=-~3P,, } (152)
’ Ppy= +~/§qu, P1n='\/§Pgn: Py = _ﬁpplla
whence P=2P, .. ... . (168)
Further, the momentary value of one phase pressure 18
P,=P, V2 em (0t + ;)
+P,an/2 8 (B0t + 1)
+P,yn/2m1n (But + ) + ..,
whence the momentary value of one line pressure 1s
Py=Py, N2 mm (ot + )
+ P2 min (3ot + )
+ PiyN3mm (5ot + )+,
whero of = ot +45°

From this 1t 18 easy to find the momentary values of the remaiming
phase and line pressures

To find the currents due to the several harmonies m a three-phase
star system, the pressure triangle can be drawn for each harmome, and
the pressure of the load star pomt found for each triangle. The
triangles of the third, ninth, and so on, harmomes come together
at a pomnt which 1s also the star pomnt of the load, and 1s displaced
from the neutral pomnt of the plane of the respective harmomics
by an amount equal to the phase pressure. Hence, 1n & symmetrical
three-phase star system, there 1s a difference of potential between the
star pomnt of the generator and that of the load equal to the effective
EMF. of the harmonics of the third order This potential cifference
can only produce a current when these two mneutral points are
connected, whereby this PD can equalise 1tself along the neutral
wire. Consequently, 1 a three-phase system without a neutral wire,
only currents of the first, fifth, seventh, etc, order can flow, and only
pressures of these frequencies will exist at the terminals On the
other hand, 1n a symmetrical three-phase system with harmomics of
the third order, currents of these frequencies will flow when the
neutral pownts are connected (Fig 245)
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We have thus the general rule A symmetiical n-phase star system
without a neutral line acts like a system on no-load with 1espect to all
harmomes of the u# order, for currents of these frequencies cannot
flow 1 the outer wires nor can thewr corresponding pressures act
between the same. If 218 a prime number, or only divisible by some

T

®

Fra 245

power of 2, 1t will be found that all the other harmonics 1n the n-phase
star system act like the fundamental, 1f we disregard the order 1n which
they occur. When n 18 not a prime number, the phase E M F s of the
harmomes, whose order have a common factor with m, will partly
comeide  For example, with n=9, we shall only get three different
triple harmomes, since the nme-sided polygon reduces to a triangle.

]ljf the three phases of a symmetrical three-phase system are mesh con-
nected, the sum of the three momentary & u ¥ ’s will not equal zeto, but

PrPr+ P =3Pg/2 am (3t + ) + 3Py/Z s (Jut + Vo) +

Such a system, therefore, with harmonics of the third order, does
not satisfy the above requirement, that the sum of the E M.F’s of the
phases connected m a olosed ciweurt

equals zero These EMF’s of the third,

ninth, ete , harmonics will always produce

a current m the megh (16 even on no-load)

7 and ouly m the mesh Under certan

> conditions this current may reach a

SYPTp considerable value The mesh connection
i acts like a short-ciromted generator with
Fio 26 respect to these harmomcs, and Just as

the terminal pressure m such a cage 18
2ero, 80 also these harmonics cannot have any effect on the pressure
between the outside terminals If the mesh 18 opened at any pomnt
and a voltmeter 18 mserted (Fig 246), the effective pressure

WE+F+

will be measured, which may be denoted as the wméernal Pessure

In this connection an internal current 1s produced which can be
measured by mserting an ammeter in the mesh  Wath a star connec-
tion the mternal pressure produces no current Thus the harmonics
of the third order do not send any currents through the outer wires
and exert no pressures at the termmals This holds generally for
the harmomes of the #™ order m a symmetrical n-phage system.
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89. Polycyclic Systems. In an alternating-current installation
which has to provide simultaneously light and power, the selection of
a suitable number of phases and frequency often presents considerable
difficulties  One condition for the proper working of all known means
of electric highting 18 & high frequency ~ On the other hand, both single-
and polyphase motors, together with rotary converters, work hetter,
and have a greater overload capacity, with low frequencies

For a pure power supply, a polyphase system 1s preferable, whilst for
lighting—on account of the better pressure regulation and smmpler
mstnllutlon—smil&phase currents are more suitable

Moreover, with regard to the pressures, the conditions for power are
different from those for hghting™ The hghting pressure, on which the
cost of the network mains depends, must be chosen low to meet
the requirements of the lamps used at the present day , the pressures
for motors, however, can with advantage he chosen much greater
than those commonly met with for hightng

On account of the sensitiveness of electric lamps to variations mn the
network pressure, 1t 18 advisable to keep the pressure drop in the
network and the generator much smaller 1n 1nstallations giving both
hight and power simultaneously, than s necessary with one giving
power only Consequently, in the former case the amount of copper
used 18 greater, and therefore the cost of the network and the geneiator
18 1neroased

The object of the polycyclic system, therefore, 18 to sumultaneously
transmit electrical energy by means of currents at different pressures
and frequencies thiough one and the same conductor, and to distribute the
same without them affecting one another  For this to be possible, 1t 18
of course necessary that the currents of different frequencies should
have no mutual eftect on one another

Consider a symmetrical three-phase system (Fig 247), then, assuming
smusoidal currents of equal amphitude, no pressure will exist between
the neutral points 0 and 0, ence, considering such & star system

\g
3

Fio 247

(man system) as a whole, we can use the same as one conductor for

conveying other currents between 1ts neutral points, by connecting, for

example, & source of supply @, 1n the conductor 00, = These currents,

which flow through the phases of the mamn system 1n the same sense

and phase, and superpose themselves on the currents already existing

m the main system (mam currents), produce no detectable motor or
AC T
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1nductive effects mn the generators, motors or transformers i the mam
system This superposed current may be an alternating-current of any
frequeney or a continuous current The two currents, the thiee-phase
current and the superposed single-phase current produced in generator
@, (F1ig 247), are entirely mdependent of one another, and the super-
posed smgle-phase current will flow along the conductors of the mamn
system 1m the direction shewn by the arrows (Fig 247), just as 1f the
three-phase currents were not present
Instead of a three-phase system, a single-phase system might have
been used as the main system,
¢ as shewn by Fig 248, for a
single-phase system can always
be regarded as a two-phase
% system with 1ts phases displaced

v

@ at 180°
D F. Bedell has shewn how
$ currents—especially direct cur-
) Fio 28 rent—can be 1ntroduced and
drawn out at pomnts having the
same potentral 1 a power-transmission scheme without affecting the
currents which already exist

It 18, however, easy to see that the superposed alternating-currents—
ntroduced at the neutral point—must cause a large inductive drop of
%ressure 1n the generator and transformer windings, and, for this reason,
edell’s arrangement for introducing and withdrawing the superposed

current has not met with practical success

Fio 249

The Authors, together with Prof E Arnold, however, have overcome
these dlsadvanta.%es m Bedell's arrangement and worked out a poly-
cyche system. This system 18 based on the application of hifilarly-
wound choking coils, and on the introduction and withdrawal of the
superposed current by means of special transformeis and generators
Owmng to the apparently complicated scheme of connections, however,
this system has never been used 1n practice.

Ag an 1llustration of the complete arrangement of an installation for

, transmutting and distributing polycyclic currents, the scheme shewn
Fig 249 can be used In the double generator @ and £ having
one armature and two pole systems arranged 1 the relative
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positions shewn m Fig 250 to one another—the three-phase current and
the superposed smgle-phase current are smultaneously produced The
single-phase current, which 1s the third harmomic of the three-phase
current, 18 superposed on the mam current m such a way that the
maximum momentary pressure between the return £ and the remaining
condugctors of the transmission line 15 as small as possible. At the
receiver station, the three-phase current 18 transformed mto two-phase
current by means of two single-phase transformers connected as n
Scott's arrangement, this being hetter for a polyeyclic supply network
than & three-phase current on account of symmetry.
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The superposed alternating-current produces no flux in the two
transformers, and can therefore be withdrawn at the point O; m the
primary of the transformer 7, In the transformer T, the superposed
single-phase current 1s transformed, and since the secondary winding 18
connected between the two conductors a and b of the two-p{ase system,
mcandescent lamps can be connected directly between the two wires

Taking an uninterlinked two-phase system as the main system, the
weight of copper 18 66 7 9, of that required by a single-phase system,
when the same total power 18 transmitted over the same distance with
the same effective pressure between the conductors and the same
percentage loss, if we take the power of the single-phase current as
EO’F of that of the three-phase.

he polycyche system, therefore, may become important mn cases
where power and light have to be distributed by the same network and
the hgﬁtmg load is the less of the two. ‘We then combime 1n the one
network all the advantages of independent networks with different
frequencies, without introducing any compheations whatever into the
scheme.
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90, Systems of Units and Standards On the basis of tho work of
Gauss and Weber (1833-1852), the Commuttee of the British Association
on Electrical Standards was able, in 1869, to draw up a practical
system of electrical umts which could be derived from the absolute
gystem of magnetic umts At the International Congress held in Paris
1 1881, these units were demgnated as the ohm, the volt, the ampers,
the coulomb and the farad

Since these practical units can only be derived from the fundamental *
units of length, mass and time of the 0@ s system by means of very
elaborate and expensive measurements, which distmetly belong to the
region of physics, the need arose for standards of the above electrio
units which would remamn practically constant and could be easily
reproduced As such standards, approximating as closely as possible
to the units derived from the abso}iute 0 &8, system, and suitable for
use both 1n practace and at law, we have

The Internatwnal Okm equal to the resstance of a column of
mercury 106 3 cm long and 1 sq mm section at 0° C and weighing
14 4521 gm

The Internatwonal Ampere equal to the constant current which, when
passed through a mlver voltameter, depomts silver at the 1ate of
1118 mg per second.

The remaming umts can be then found from these two The
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following two umts of elechuc pressure (so-called standard cells) are also
used, however

The Clark Cell  The pomtive electrode 1s mercury and the negative
amalgamated zinc The electrolyte consists of a concentrated solution
of zinc sulphate and mercurous sulphate The pressure between the
terminals of this cell, on open-cirewmit, at &° C, 18

14292 - 0 00123 (£ — 18) — 0 000007 (£ — 18)* volts
between 0° and 30° C.

The Weston o Cadmaum Cell This cell differs from the above
only 1n having cadmium and cadmium sulphate instead of zinc and
zine sulphate  With a saturated solution of CdSO,, the pressure
between 10° and 30° C is,at #* C,

1 0187 - 0 000035 (¢ — 18) — 0 00000065 (£ — 18)* volts.

The Weston Co make a cell m which the CdSO, solution 18 saturated
at 4° C Such a cell has a pressure of 10190 volts, almost inde-
pendently of the temperature

91. Measuring Instruments The standards described m the last
section do not, as a rule, admit of direct use 1 practice, the methods
of measurement bemg somewhat roundabout For practical purposes,
therefore, spacial mstruments are used, which perrmt of measurements
bemg made directly by noting the position taken up by a pomter
capable of moving over a scale Such mstruments must of course be
first calibrated or standardized by comparison with the above standards

Generally speaking, these instruments have a movable system which
carties the pownter, and a fixed system to which the scale 13 fastened
The electric measurement, then, depends on the mechaimcal force set up
between the two systems For the measurement of continuous currents
and pressures, the fixed system may consst of a permanent magnet and
the movable system of a coil through which the current flows, but for
alternating-currents and pressures both the fixed and movable system
must consist of eouls  In the older iorswn wmstruments (e g Siemens and
Halske's Torsion Galvanometer and Torsion Dynamometer) the action
of this force 1s always measured for one and the same position of the
movable system, the latter being brought mto its zero position by
means of a spiral spring, the force then varying directly as the angle of
torsion In the current balance also (Kelvin balance), the movable
system 18 kept 1n 1ts original position, the magmtude of the force being
determimed by weighing.

In general, for one and the same relative position of the two systems,
the force varies ether directly (when the fixed system conssts of a
magnet) or as the square of the electric magmtudes heing measured.
Let «, therefore, denote the angle through which the spiral spring of
the torsion mstrument must be turned, or the static moment of the
counter-weight 1 the current balance, the electric magmitude = to be
measured 18 erther given by

- z=ka or s=kwa.
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The advantage of these instruments hes m the fact that their reduction
factor k, or &, can be determmed once for all by a smgle measurement
(cahbration), and remains constant. A disadvantage of this arrange-
ment 18 the necessary hand adjustment of the torsion spring or weight,
which makes 1t 1mpossible to take such measurements rapidly, whilst
for the measurement of quickly varying currents such instruments are
out of the question ~ For this reason, the instruments used in practice
at the present day are so arranged that the movable system with the
pomter moves away from the zero position, and takes up a position
corresponding to the magnitude of the electric quantity being measured
In such struments, even when the controllng force (which tends to
bring the needle back nto 1ts zero position) 18 proportional to the
deviation of the needle from the zero position (as can easmly be
obtaned by using springs), the readings nevertheless no louger follow
the simple or the quadratic law, because the force between the two
systems changes with thenr relative position  Such instruments, there-
fore, must be calibrated at as many pomts on the scale as possible,
whilst intermechate pomnts can be obtained by mterpolation (graduation)
For measuring alternating-currents, only mstruments can be used
which obey the law of squares, for 1t 18 only m such nstruments that
the direction of movement does not alter with the change i current
direction Provided, then, that the mass of the moving parts 1s
sufficiently large and the frequency sufficiently great, the deflection of
the instzument will remsin practically steady in a position corre-
sponding to the mean turmng moment acting on the movable system

92. Electrostatic Instruments (The Electrometer) As first pomnted
out by Lord Kelvin, electrostatic mstruments can be made for absolute
measurements, but 1 practice only those graduated by comparison
with standards are used, and these chiefly for measuring pressures
In prmmciple a static voltmeter can be consdered as a small air-
condenser, of which one 18 fixed, and consists of one or more
plates, whilst the other—the needle—is movable, and also conssts of
plates and carries a pointer The fixed part of the istrument 1s made
up of one or two systems of plates msulated from each other, called
the quadiants. If there 18 only one fixed system of plates m the
nstrument, one terminal 18 connected to 1t and the othor to the
needle The force exerted between the plates and the needle 1s
pr?ipomona.l to the square of the pressure existing between the charges,
and therefore to the pressure at the terminals, whatever the wave-
shape and frequency If the instrument has two fixed sets of plates,
one termumal 18 connected to one of these and the other terminal to
the needle and the other set of plates, so that the force acting on the
needle 18 approximately double that in the former case

Electrostatic mstruments are well adapted for measuring high
pressures, because they only need an extremely small current The
capacity of such instruments 1s of the order 0 00001 microfarad

Fig. 261 shews an mstrument for 60 to 120 volts, made by Hartmann
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and Braun. In oider to obtain sufficient force in the case of this low
pressure, several needles and pairs of quadrants are used (multi-cellular
mstrument) For the purpose of damping, the movable axis carmes a
metal disc at the bottom, which turns between the poles of a horse-shoe
magnet

or pressures of more than about 10,000 volts, the plates with the
opposite charge to the needle are completely embedded 1 rubber, to
prevent sparking from one to the other In instruments for pressures
under 10,000 volts, a separate spark-gap 1s provided, of which the

Fra 251 —Mult cellular Voltmetor (Hartmann and Braun)

contacts are at a smaller distance from each other than the smallest
space between needle and plate, so that all sparks are kept away from
the needle. In order that the quantity of electricity passing shall not
De too great, double-pole high resistances are connected 1n series m the
form of tubes filled with hqud

Static voltmeters can also be used for different ranges of measure-
ment by connecting 1n series two or more condensers, and placing the
voltmeter 1 parallel with one of these If the condensers are similar,
the reading on the scale must be multiphed by the number of con
densers he turng of the condensers, however, 13 80 _elaborate, that
the scales are usually calibrated separately The dielectiic of these
condensers 18 micanite This arrangement can be used with good
results up to 40,000 volts Dividing resistances are also employed 1n
a simular manner
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For laboratory purposes the 1struments a1e provided with horizontal
scales ; for switchboards, on the other hand, vertical-scule mstruments
are more geuerally employed.

Recently, electrostatic wattmeters have also beon mtroduced, which
are very useful m the lahoratory. The chief advautagoes of these are
as follows :

1 Accuiato readings can be obtaned even with low power-factors

9 They are espocially smted to hgh presswios, because they do not
possess any high nonanductive 1esistances.

3 There 18 not so much danger of overloading the mstiument as
with an ordary watbmotor.

4. Tho construction 1s cheap and simple

The arrangement of the mstrument 18 exactly the samo as the
quadrant voltmeter.

Denoting the potential of the needle by 7,

» » » first quadimnt by ),
and » ” second quadrunt by 7,
the defiection a of the neodlo 18 given by

P
b= (2= 2) (2, - Pl ’),
where L 18 a constant.
Putting Py-P=P, Py,-P,=D+AD
m accordance with Fig 252, for an altornating current we must sub-

stitate the momentary values Pyv/Zsmnot and ALN2 s (of + ) for
L and AP, where ¢ 1 the phase

Load displacement.  hotweeu current and
2 # prossure. Hence we obtwn for the
: V4 - menan of the deflection «, by mte-

gratmg over half a perod,

P
o %ﬂ < — ka=(2/AP cos §+AL%).
~ J

Smee AP? 18 noghgibly small
comparod with the first term, and
AP s proportiomal to the curient

# ¢ flowmg through the non-nductno
Deneralar romstance I, a 18 eloarly proportional
to 2PIB cos ¢, that 18, to the power

Fra 2062 Plcos "’.

93. Electromagnetic Instruments Those mstrumonts depend on
the action between a coll carrymg an clectric eurrent and a magnet

In mstruments for moensurmg pressure (wolfmefers) the col 1s con-
nected 1 series with a non-incuctive resistance across the terminals
of the pressure to he moasured , whilst 1 those for measwimg currents
(ammeters) the curront to he measured, or a proportional pmt of 1t
flows through the coll  Smee 1t 18 not good to allow heavy currents to
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Pass through the moving coil, 1t becomes necessary to use calibrated
Tesigtances (shunfs) m parallel with the ammeter
. {a) If the magnet 18 permanent and 1ts strength 18 not appreciably
influenced by the current m the conductor, the force 1 a given relative
Position of coil to magnet will be directly proportional to the current
msequently, such mstiuments are only suitable for continuous cur-
rents  Usually the magnet 1s the fixed part and the current-carrying
co1l the movable (e g Weston and Deprez-d’Arsonval mstruments)

Fio 268 —Moving-coll Instrument (Hartmann aud Braun)

’,

Thg. 253 shews the internal ariangement of such a moving coil
instrument by Hartmann and Braun 2 18 a horse-shoe magnet with
two pole-shoes P turned cylindrically A sohd softaron cyhnder E
of smaller diameter than the bore of the shoes 1s placed between them
concentrically, and m the space hetween £ and P the rectangular coil
S 10tates, to which the cuirent 18 hrought through two spiral springs,
wlich provide at the same time a retarding force The 1ron core and
coil can be pulled out bodily, and they are shewn i this position m
the figme Swce the field m the gap 1s practically constant, the scale
divisions are nearly umform A heavy damping effect 1s obtaned by
making the frame, on which the coil 18 wound, of metal
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(b)) In some electromagnetic instruments (known as soft-iron mstru
ments) a small moving soft-ron magnet 1s employed, magnetised by
the current 1n a fived coll In such imstruments the quadratic law
only holds approximately, because the magnetism 1n the 1on 1s not
exactly proportional to the current in the coil, and also because of the
screening effect of the eddy currents set up m the 1on, which vary
with the frequency These instruments, therefore, read less with
alternating-currents than with direct, and cannot be calibiated directly
by means of continuous current Such an mstrument must he gradu
ated by comparing 1t with another alternating-current instiument,
which can be calibrated or graduated with direct current, the com
parison bemg made when connected to the actual system

In spite of these mnconvemences, such mstruments are nevertheless
often used 1n practice on account of thewr cheapness and simpheity
Moreover, they can he made very sensitive, that 1s, to cousume vory
ittle power

94. Electrodynamic Instruments The prmeiple on which these
mstruments arc based 15 the action between two coils earrymg olectuic
currents In electrodynamc m-
struments for measurmg prossure
and current, the two coils—the
fixed and the movablo—are gener-
ally connected m series TFig 254
shews a Toswn dynamomcter by
Siemens and Halske The movable
col consists of a rectangular copper
frame of one turn, and 18 poerpen-
dicular to the fixed coll It 1s
suspended by means of a thread
and a spiral spring from the torsion
head at the top of the mstrumont
One pointer 18 carried by the head
and one by the coil, and hoth of
these pomnters must stand at zero
when no current flows through the
wstrument  The current 18 led to
the movable coil through mercuiy
contacts The mstrument shewn
has two fixed coils, the number
and section of the turns on cach
beng different, thus mereasing the
range of the mstrument When
n use, the movable coil 15 held 1n 1ts zero position by rotating the
torsion head Smce 1 this constant position, the torque 18 propor-
tional to the square of the current, the angle through which the head
18 rotated 18 a measure of the square of the current Heuco the
mstrument 18 suitable for both contmuous and alternating-cmiients,

Fio 254 —Torston Dynamometer (Siemens
and Halske),
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and m the latter case measures effective values mdapen‘&!gg’g\ ye-
shape or frequency < al
or measuring pressures, the two coils are made of several QRE -

fine wire A variable non-inductive resistance 1s placed 1 ser?::nx%fthuw
the nstrument, which can therefore be used over a wide range If

the self-mduction of such an mstrument 1s neghgible compared with the

ohmic rewstance, the current will equal the pressure divided by the
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Fia 265 —Diroct 1onding Bleotrodynamio Voltmoter (Weston)

resistance  Hence the mstrument can be used directly to measure
pressures If there 1s a selfinduction L present, the resistances for
alternating and contmuous currents will have the ratio

NAERTI 2
,
r

where 7 18 the total chmic resistance 1n the ciremt (cols + resistances)
Hence, 1f the mstrument has been calibrated for direct current, the
readings must be multiphed by the above correcting factor when alter-
nating-curient 1s measured The readings m this case depend on the
wave-shape and frequency, since w occurs 1n the correcting factor

(a) The newer electrodynamic mstruments for measuring pressure
and current are made direct reading by reading off the position of the
pomter fixed to the moving coll Since the action between the two
couls under these conditions obeys no smple law, the scale must be
graduated by companson with a direct-current_imstrument Fig 256
depcts such a direct-reading istrument by Weston for measuring

essue
7 The rotation of the moving coil due to the action of the current 18
always such that the total self-anduction L of the two coils (i series)
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18 mereased Hence, m this case, the correcting factor

Ji -:wL "

not quite constant  For practical measurcments, howover, this source
of arror 1 the pressure dynamomoter 1s quite neghgrhlo

F1o 256 —Elootrody namo Ammeter (8icmons wnd Hulsko)
.

In Fig 256 an electrodynamic mstrument by Siemens and Halske

for measuring currents 18 shown
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Fa 257 —Counections of an Lloctro-dymimie Amctor
(8lemons and Halsko)

The movable coil 15 mounted on

pvots and controlled by
spiral sprngs, which also
serve to convey the current
to and from the coil, as m
tho pressure dynamomoter
and  tho  electromagnetic
Waeston mstiument  Since
only a very small eurrent
can be conducted through
the springs, tho fixed and
movable coils in theso m-
struments aro connected m
parallel.  Iig 257 shows
the diagiam of conneetions
for such an 1mstrument

S8 denotes the fixed and s tho movablo col 7, 18 o plug for short-
owromtig the iwstiument The two plugs 2, and P, servo to vary
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the range of the mstrument, thus with P, plugged, the range of the
mstrument may be double that when P, 1s plugged The current must
be distributed 1n coustant 1ati0 between the two parallel branches,
mdependently of the heating This 18 achieved by malking the resis-
tances I, Ii, and 1 of material whose temperature coefficient 18 very
small In order that the mstrument can be graduated with direct
current, the distribution of the current hetween the two coils must be
the same with alternating-current as with contmuous Consequently
the time constants, or the ratio

_ ohmic resistance
apparent self-mduction
1n the two branches should be the same The apparent self-induction

of a coil equals the pure self-induction of the same plus 1ts mutual
induction relative to the second coil, hence, for the fixed coil,

L=L+M,
and for the movable coil
L=+
In order that the time constants may be equal, we must have therefore
B_L_L+M
1L L+ M

where I and 1 are the ohmic resistances 1n the two branches

In this case, however, M 18 variable, smce the relative position of
the coils varmes In the neighbourhood of the zero position on the
scale, } 18 negative , whon the coils are perpendicular to one another,
M equals zero, and for larger deflections 47 18 positive Hence this
condition can only be approximately fulfilled by making M small—
this, however, caimot he carried too far for mechanical reasons, for the
change of M corresponds to the energy expended 1n the movement of
the pointer  Another means is to make L, and /, small 1 comparison
with B and 7, m which case these magmtudes, and consequently any
change 1n the same, have but little influence on the current distribution

NIR+ol} JIP+ol? R
,\/43?"27:! N LR ) R

This 18 the means usually employed, and although such ammeters
have comparatively large losses, they are, nevertheless, very valuable
for accurate lahoratory work owing to their exact and convement
readings

(b) A special class of electrodynamic mstruments 18 known by
the name of Induction wnshuments. Currents are produced in the
movable system by the electromagnetic induction of the fixed system.
Fig 258 shews the arrangement of a Siemens and Halske induction
mstrument It 19 based on the principle, due to Ferraris, of producing
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a rotary field by sphtting up a single-phase current mto two perpen
dicular components The lammated 1ron ring @ carres the poles ec
and ff Betwecn the latter, there 1
the Iammated ron cylnder ¢ In the
gap there 18 a movable alumimum
drum 4, to which the pointer of the
mstrument 18 connected, and this
drum tres to follow the rotary field.
If the mstrument 15 to be used for
measuring pressures, sufficent non-
mductive resistance 18 connected
series with the winding on the pole
¢6, to bring the current approximately
mto phase with the pressure hemng
measured The winding of the pole
ff forms the branch S of the hridge
Fio 8. arrang shewn m Fig 269 The
pressure to be measured acts between

A and C, whilst between C and B a chokmng coil of mmpedance Z,
1s connected By switably adjusting the two equal resistances 77
and the resistance 7, of the budge, 1t can be arranged that the
two equal currents m the paths SS are displaced 90° m phase from

Fia 260 —C of Induction

the pressure acting across 4C In Fig 260 the vector diagram
of the scheme 18 shewn The total current 7 produces the pressure
drop BC mn the choking coil. Pressure 4B 15 made up of 4D and
DB on the one side and of A& and EB on the other Smce the
pressures across diagonal paths of the bridge are equal and similarly
directed, their vectors form a parallelogram ~ This 18 also the case with
the currents in the four paths. Further, we have Z, perpendicular to
AU Smce branches 77 and 7, are non-inductive, we have also Z, || 4K
[| DB and 1, || DE  ¢,18 the phase-displacement of the current m the
coils SS of the mstrument e diagram only holds for one frequency,
and only for this frequency will the mstrument read correctly For
the same reason, the readings also depend on the wave-shape, and
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the mstrument must be calibrated with an alternating-current having

the same wave-shape as
that which has to he
measured

Induction 1nstru-
ments made by several
firms are based on the
production of a rotary
field having a very local

and veryunsymmetrical ~J

dwtribution  Fig 261
shews the arrangement
of such an instrument
An alumimum dise S,
carrymng the ponter
of the imstrument, 1s
capable of moving be-
tween the poles of the
horse-shoe magnet A7
The current to he mea-
sured 18 sent through
the windmg 77 The
pole surfaces of the
magnet are slotted, to
take the coils w In
the latter, currents are *

Fia 260 —Vector Disgram

I4

4

induced which react on the resultant field hetween the pole surfaces,

Fra 201

&

of
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80 that at the mght pole tip (hence mside the coils 1;;) the field 1s
laggmg with respect to the field m the left pole tip  We thus get a
local rotary field moving over from left to right, so that the disc S
tends to turn 1n the same sense

To the category of electrodynamic mstruments also holong the
wattmeters m general use for measuring power These, however, will
be dealt with 1n a separate section .

95. Hot-wire Instruments The heating of a wue by a current 1s
proportional to the squaro of the effective value of the latter, and 18
mdependent of the frequency o1 wave shape Hot-wire mstruments—
m which the heatmg of a wire 18 measured by 1ts extension—were
first mtroduced by Casdew

Fig 262 represents such an instrument, as made by Hartmann and
Braun The extension of the comparatively short wiro % causes the

pomter to move over the scale,
as the figure shews The axis
of the pomnter 18 provided with
an alummium dise, which moves
between the poles of a strong per-
9 manent magnet, thus preventmg
the nstrument from oscillat-
mg The system 15 mounted
on a plate, made up of biass and
won 1 such a way that 1t has
the same coefficient of expansion
as the wire In this way 1t
hecomes entirely mdependent of
the temperature variations of
the surroundings  An adjustin
serew 18 connected to one en
of the wire, for the purpose of
bringing the pointer to zero when no current 1s passing

These mstruments are made both as volt- and ammeters As volt-
meter, a current of about 0 22 amp flows through the hot-wire to give
ghe lxgmmum deflection, which corresponds to a pressure drop of

Vol

For higher pressures a resis made of constantin wire 1s con-
nected 1n series, which, up to a range of 400 volts, 18 made part of the
mstrument, and for still higher voltages 1s contained 1n a separate box

A pressure drop of 3 volts 18 much too high for ammeters, and con-
sequently thicker hot-wires are used and several connected 1n parallel
m such 1nstruments, so that the drop 1s 1educed to about 0 26 volt
The wires would become too thick, however, for currents above
4-5 amps, so that m this case a shunt of constantin strip 18 placed
across the hot wire For currents up to 100 amps these shunts are
made part of the instrument, but above this range they are kept
separate

F1o 282 —Hot wire Instrument (Hartmann and
Braun).
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In spito of the disadvantage of a high current cousumption, the
hot-wire mstrument possesses many advantages Firstly, the heat
produced 1s 1ndependent of the wave shape or frequency, and secondly,
external magnetic variations have no effect, because thers 18 no magnetic
field or solenoid piesent They can therefore be used for either
continuous or alternating-currents, and can be calibrated by means of
continuous current

Voltmeters for over 10 volts can be protected by fuses renewable
from the outside, hut for lower pressures such protection 18 1mpracticable
on account of the high resistance Ammeters can be protected from
mjury m a simple way by an automatic short-circmiting switch

The hot wire wattmeter has not yet been made practicable It 18
based on the formula (1) = (1= = dat,

where 4 18 proportional to the current to be measured and ¢ to the
pressure By arrangmg two hot wires m such a way that the added
curreut (2+1') flows through one and the subtracted current (z—7')
through the other, with the pomter to indicate the dufference of the
heating of the two wires, au mstrument for measuring the power of a
cireurt 18 obtained

96. Wattmet All wattmeters—z ¢ 1mstruments for measurmg
power—used 1n practice are based on the electrodynamic principle

T Tl r
L

P

.

Fla 208 —Wattmoter Oonnsotions for Low Pressures and large Currents

Of the two coils of the wattmeter, the fixed ono 18 connected 1n series
with the cireuit, and 18 thus traversed by the main current, whilst the
movable col 18 connected 1n parallel with the cirewit whose power has
to bo measured The connections are shewn m Fig 263

Suppose, for the time bemg, that the terminal pressure p follows a
sine wave, thus P,

max

p=P,smoet and P= %,

2

and the main current 1= 810 (wE — @),

P,
where Lope=—— "™
\/ N ARAY
1%+ (w mL’)
L 1
and #=t (- 35)
A0 U
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Similarly, the current 1n the shunt coil 18
¥ = Lot (0l = §),

’ Py
where L= NO
and @' =tan™! ELT

1

The torque acting on the movable coil 1s proportional to the produ
of + and ¢, assuming that the coil 18 always held 1n the same positac
by a torsion spring The reading a, wineh 18 proportional to tl
torston of the spring, 18 therefore proportional to the mean torque

Then, 1f %, 15 a constant,

ko= %,ru' dt
0
s =1II"cos (¢ - ¢')

P .
g @ %)

=I£ cos (¢~ ¢') cos ¢’
The power to be measured 18, however,

.—.%J‘:pzdt= Pleos b
Substituting PI from the first equation, we get

Tk | 8P
W=k cos (¢ - ¢') cos ¢
,  1+tan’’
1 +tan ¢ tan ¢’
By suitably choosing and arranging " we can make tan ¢'=
small, so that

=k

ol/
L

very

W =lky’a=constant x reading
When we have a terminal pressure whose wave 18 not sinusordal, bu
=P80 (0 + ) + Pyypesin (B0t +95) +
we get, as shewn by Prof H F Feber, n the official report of the
Frankfort Exhintion, 1891,
+ P.Iyc0s by | Lol cos g +
Wb’ 1 + tan’ P,Icos ¢, ' Pl cos ¢,
1+tan ¢ tan ¢’ 1+ Pyl cos ¢gcos’py 1 +tan ¢, tan ¢
DPy1ycos ¢, cos’p; 1 +tan ¢, tan ¢;

The phase displacements ¢ and ¢’ apply to the curient ciremit and
pressure cireurt respectlvely
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The first correcting factor 1s

: 0,

1+ tan%g’ 1 = {fm Eﬂiio’
= = 3 =Y
l+tandptand’— 1 —tanptan ¢’ < . tan$<0

The second correcting factor 18 always greater than umity, but even
for very distorted wave shapes 18 only about ry3yy greater, and can
therefore be always put equal to 1  Hence, for any wave,

W=ka' (154)

1- mnl¢ tan ¢’
The measured power /F” 1s not exactly equal to the power given to
the ciremt, but somewhat greater, smce the heating loss '—,1 m the
pressure coil of the wattmoter 15 measured with 1t Hence the true
power 18 ”,_1:_)’3, where 1’ 1s the resistance of the pressuie coil
At any stated voltage, 1t 18 a very simple matter to determme the
error —- experimentally, hy noting the wattmeter 1eadmg when the

load eiroutt 18 opened 8o that the true power 18 zero

I
I
. rLC
P | — rL

Fia 28¢ —Wattmetor Connections for High Pressures und Small Curronts.

The wattmeter can also be counected as shewn n FFig 264. Hero
Iikewise the power measured 18 too great by the amount 74", lost mn
the current coil of resstance 2”

If m the above cirewmts we have power produced and not power

consumed, the above losses 727" and ) must he added to the measied

power /7 1n order to find the power produced m the cueut.

To obtain minimum error, the formor schemeo of connections should
be nsed for small currents and luge pressures, and the latter for low
pressures and large currents When powas at lngh pressuies arc
measured, a resistance must be placed 1n series with the shunt ciremt,
to keep the potential difference between the two coils of the wattmeter
as small as possible, as m Figs 263 and 264

In addition to the earher wattmeters with torsion springs, several
firms, ¢ ¢ IVeston and Swemens & Halske, make mote convenient mstim-
ments m which the wmovable coil (together with the pomter) changes
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1ts position relative to the fixed coll From this 1t follows that these
d.lrect-readmg nstruments have not a umform scale, and must con-
sequently be calibrated by experiment

The Weston mstruments for smaller powers have a compensatuig
ool wound over the current coil and carrymg the current flowing
through the pressure coil, so that the curients oppose one another 1
the two fixed corls The number of turns of the compensating col 18
chosen so that the power 18 measured directly

For direct connection n high pressure ciremts, wattmeters of the
type due to Lord Kelvin are specially suitable

97. Direct Measurement of the Effective Values of the Several
Harmomes The wattmeter, however, can also be used for other
purposes than the measurement of power For example, with two

Fia 265 —Connections for Dircct Measurement of the Effoctive Valnos of tho Severnl
Harmonies in a Cireuit,

wattmeters the effective values of the pressures and currents of the
several harmonics n any wave can be messuied directly For this
purpose we must have auxiliary sinusordal pressures at our cisposal
at frequencies of the first, third, fifth and seventh harmonies

The current under 1nvestigation 1s sent through the curent coil of
one of the wattmeters, whilst the current co1l of the other wattmeter
(which must be made for small currents and high pressures) 1s con-
nected n shunt  The pressure coils of both wattmeters are cormected
to the cirewt m which the sine-wave pressure 18 produced

In Fig 265 H, and H, represent the current coils and N,, N, the
pressure coils the voltmeter 7 measures the sinusoidal pressure P,
1 the auxihary circut whose frequency can be adjusted to that of the
first, third, fifth or seventh harmome

From Section 64 we know that only currents of the same froquency
can act on one another electrodynameally, and that this action 18 a
maximum when the two currents are m phase If we then wish to
mensure the magmtude of the fundamental, we mduce the auxihary
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current at this frequency and vary its phase untl 1t 1s 1n phase with
the maim current, the reading on the wattmeter 1s then a maximum
Let /7, watts denote this maximum reading and P, the value of
the auxihary pressure read on voltmeter 7, the effective value of the
fundamental of the current 1s then

/A
L=pt

To determine the effective pressure P, of the fundamental current,
the phase of the auxihary current 1s vared until the powmter of the
second watbmeter shews a maximum Denoting this maximum reading
1 watts by 7, and the pressure of the auxihary cucwt agan by Py,
the effective value P; of the fundamental of pressure will be

r=0a,
Al

where 4 18 a constant depending on the resistance &

Wo can also measure the phase displacement ¢, hetween the funda-
mental pressure P, and the fundamental current I, This 1s best
done hy adjusting the phase of the a.ux1ha.r}‘7 current until the needle
of the first wattmeter shews no deflection ~ Starting from this position,
the angle through which the phase of the auxihary current must be
altered to bring the deflection of the pomter of the second mstrument
to zero then gives directly the phase angle ¢, between P; and I;.

If we arrange the auxliary pressure to have the frequency of the
third harmonie, we get 1 a similar manne: the effective pressure and
current of the thud harmonic, viz

Vs W,
P,= 7. and I,—P“,
where 77, 15 the maximum power on the first wattmeter and ¥ on the
second, \\?lnlst P,; 18 the effective pressure of the auxihay current at
this periodicity ¢ 18 found 1n the same way as ¢,

By this means, the effective values of the currents and pressures, and
also themr phase displacements, for the several harmonies can be found
directly, and an msght 18 obtamed nto the action of the same.

In most machines, the magmtude of the several harmomcs 18 of
moie mterest than thewr phase displacement, and 1n such cases
the above method 1s sufficient for thei mvestigation In other cases,
¢g arc lamps, msulation testing, transformers on no-load, where the
shape of the pressure curve and not the magmtude of the several
harmomes, 18 the important part, the above determuation of the
harmomes one by one 1s not sufficient For this purpose, the oscillo-
graph can be resorted to—for this nstrument shews the complete
curve at a glance

98. Measurement of Power by Means of Three Voltmeters or Three
Ammeters In addition to the measurement of power by wattmeters,
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two other methods may be mentioned, Viz the thiec-voltmeter method
of dyiion, Swinburne and Swinpner and the thiec-ammeter method of
Flemaing '
The former can be cairied out asfollows I

(see Fig 266) 1 1s a mnoninductive !

resistance m series with the circuit whose
power 7/ 18 to be measured Smce the
pressure Py 18 m phase with the curtent il P,
I, P, and Py can be geometncally

(A
o T
‘! r 14 P, 1
B I
4
W10 200 —Connections for tho Thioe-Voltmetol Fio_207 —Prossure Dhysun of
Mothod Tinoo-Voltmotw Motliod

added, mdependently of thewr wave shape TFig 267 1s the vectoi-
diagram of this arrangement, wheie Py 18 the resultant of 7y and Py.

The power due to Py 18
W =Py Icos ¢y

P,
=Pn71005¢n

=§1;(P:‘P?”P31)‘ (155)

This method 18 of no practacal use hecause, unless tho power consumed
m the mserted resistance 18 fairly laige, the 1esults are very maceurate

The second method, the three ammeter method, 18 also of little
1mportance, but nevertheless 1s gn*efemble to the above, smce the full
pressute 18 apphed to the load cremt, the nonanductive resistance
beng placed m parallel with the latter (see Fig. 268) The dingram
18 shewn m Fig 269, and the proof 1s as follows

From the diagram (Fig 269) we have firstly
W =PI, cos ¢y =11,I1; co8 by

=5(I8-I-1%). .(156)
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Secondly, denoting the momentary values of the pressure and
currents by p, %, 4 and 1, we get, ndependently of the wave shape,

o=utug n=t

The momentary power mn branch II P
18

W= Py =Ynl,

a_ 3, 2 .
and smee =11 + &y + 24y, I,
7,8 3 =
theu w=g(lh-%-%), -
i
e @ - 4
%
r: v 4
P I
4 % 1
- )
|
Fre 208 —Covnnectlons for tho Thiec-Ammotor F16 209 —Current Diagraum of Threo-
Mothod Ammeter Method

hence the mean power 18
T
W=-H wdt=" (I~ I~ I%)
B 3

This 15 the same as the previous result, from which we see that the

diagiam m Fig 269 18 correct
1om this 1t follows i general that the graphical addition of the

cuirent vectors of parallel circuits 18 allowable 1if all these circuits
except one have zero reactance

A method for experimentally examming the admssibility of
geometiically adding eoffective EMF’s of any wave shape has been
giveu by Bedell i the Elec Wald, Vol 28, No 3

Let L, and Py he two pressures of any wave shape, and let P, be
therr measured sum, whilst £, 1s their measured difterence (see F1ig 270)

Then wo must have

)2 1 T 2
P= T (P +pu)?dt
0

T
and Pomg | G -porat
0



312 THEORY OF ALTERNATING-CURRENTS

whenoe, by addition,
P+ Pi=2P+2P;
or Ph=}(F+Fi-2D),
te Py 18 the line coutammg the ceutre of gravity of the triangle whose

sides are P,, P, and 2P;, or, m other words, 4CD must be a straight
line 1f 1t is allowable to add P; and Py geometrically

¥ p/J
2 ‘ z
Fia 970 —Experimont showing Low Prossures oan bo added

By meaus of this proof, we can shew 1t 13 allowable to add 2y and
Py, geometneally, 1f we measure Py, Py, P, and 2,

Instead of the three-voltmeter method for
measuring power, the following method can
also be used. To measure, for cxample, the

power W =PyIcos dy
Since the pressure Pi=I1 (Fig 271) 18
phase with the current 7, we have

1 T,
W=71,r_»uidt=7j Db gy
0

i
7

k)
0
By subtracting the above expressions for I

and P2, we have
1 T
Pi-Pom g [ (oot - (u-pt)

4 T
= “Tj Prondl,
o

2 _ pt
- thus W':'L—NE‘ (157)
Fie 271 —Diagram for meas 4
urtug Powor by means of Two . Thig method has recently been recommended
by various writers for cases in which ¢y 18
large , but even m such cases 1t 18 very mexact For measuring the

power 1n circuits with large phase displacements, 1t 18 advisable to
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have special wattmeters with scales only % to } of those for the
ordmary wattmeter For example, if a wattmeter 18 made for 60
amperes and 100 volts, the torsion spring governing the movable coil
can be set (1¢ weakened) so that the mstrument has 1ts maximum
deflection at 2000 watts mstead of at 6000 One may also use the
ordmary wattmeter and overload the pressure coil, but ths must
naturally only be done for short periods

99. Measurement of the Power mn a Polyphase Circwtt. In a
symmetrical n phase system which 18 symmetrically loaded, we found

m Chap XIII that the power mn each phase s 71—1th of the total power.

From this 1t 18 obvious that the power i such a system can be
measured by a wattmetor mserted m any one of the phases The
same also holds for a balanced two phase three-wire system, smee i this

Y AT
P
Bl I }
1
o TS
I B
¢ , + 4
A *
»
Ifia 272.—Mensuroment, of Power in n Bulnuced Thioo- Fia 278

phaso Systom by meaus of 1 Wattmater

case also the two phases produce equal power This measurement can,
however, ouly be made £rectly when the system 18 mdependent, or 1
the case of a star system, when the noutral point 18 available, so that the
pressure coil of the wattmeter can be counected up  To carry out the
meunsurement for a rug system, the latter must be opened at some
powmt m one phase and the current corl of the wattmeter mserted,
whilst the pressuie col 18 connected across this phase

In cases where only the n termmals of the n-phase system are
available, we must proceed otherwise A method suitable for this case
was given by Bohun-Eschenburg m the £ 7'Z, 1896, p 182 The
current coil 1s connected in series with one of the mams, and the
pressure coil between this main and an artificial neutral pomnt O,
made by means of 1esistances, as shewn m Fig 272 for a three phase
system

If the resistances 7' hetween the two pomts 4 and B and the pomnt
0, are chosen oqual, the neutral pomt 0, m the equilateral pressure
triangle (Fig 273) will fall on the normal from C'on 4B, consequently
the pressure 0, 1s displaced by the phase angle ¢ from the curient
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In the current coil of the wattmeter. If the pressure hetween two
wires 18 interlinked, the power 1 the system 18
W=31I"Icos¢
In the pressure coil, however, we have not the pressure 3P§ but £,
consequently the reading must be multiplied by the ratio k== In

the pressure triaugle (Fig 273), the powt 0 18 determmed Dby the
method for finding the pressure of a load star pomnt, p 254, and, hence,

E__n_§+1

7

B
Now ¢+n=3P, smce a sde of the triangle equals PJ3
£ 3PF
Hence 1 I’
3P 241’ 7
o T =32 = kiyy

and the power 1 the system equals
TV =k, x measured power.
If we make 7 =1', we got
k=223
"
and W =3 x the measured watts.

If a polyphase system 18 not quite symmetrical, or 18 unsymmetiically
loaded, the power 1n the several phasos may differ cousiderably For
this 1eason, such a system
¥ canuot be regarded as bal-
anced, and the total power
4 can only he ascertamed 1
. [ the same way as for any
4 ! I other unbalanced system, as
A the two following methods
l shew

¥ Pe (@) For the ordinary
_ N method of measurmg the
e Syt vy soenn of T Wobhaoatis " C DOWer m1any 1-phase system
: with # wires we need only
n -1 wattmeters, for any one of the # conductors can he regarded as
the return for the % —1 currents, since the sum of all the currents
the system equals 0 The current coils of the n -1 wattmeteis are
all connected 1n the same way 1 the # — 1 lines, and the pressure coils
between their respective lines and the line where there 1s no wattmeter

Fig 274 depicts the connections for a three-phase system
From the several wattmeters, different powers will be obtained,
should any of these be negative, the wattmeter must be reversed and
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its power prefixed by the negative sign, the algebraic sum of the
powers thus measured gives the total power m the system

If the power of a symmetrical three-phase system 1s measured with
two wattmeters, the phase displacement of the currents 1n the system
can be found from the wattmeter readings

Let the three phase-pressures be

p1=PJIsmot,
Pr=P/2sm (vf - 130%),
D= P2 sin (wi — 240%),

and the currents, ty=I/2 50 (0t - ¢),
ty=I/Zsm (0f - - 120%)
Then Wy =(Pr~ Prr) s
and Wy = (Pre = Prrr) fxss
whence Wy =3 PIcos (¢ - 30%,

Wy =n3PI cos (b + 30°)
For $=60°, 7, =0,

_Wh-Wy 5
tan ¢ = W Wu‘/?’ (158)
The above assumes sine waves for both curients and pressures, and
that all phases ate equally loaded
(h) The second method for measurmg the power m any n-phase
system consists 1n using # wattmeters, each line contmniug one, the

V4

Fia 275 Fia 270

Moasmoment of Power in an Unbalanced Thiee plse System by means of
Throe Wattmotos

pressure coils can he connected hetween their 1espective lmes and the
neutral lme  If no neutial line 18 present, all the ends may be joined
to a neutral pomnt  In the former case, when a neutral wire 18 present,
each wattmeter measures the power m 1ts respective phase In the
latter case, the sum of the readings equals the total power, but the
several readings do not, in general, ropresent the power n the several
phases  Consider, for example, a three-phase system without a neutral
wire (Fig 275), and let 4 BC, (Fig 276), represent 1ts pressure triangle,
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with 0, as the middle pomt of pressure in the load The pressures of
the three loads are P, Py and Py, further, if O, 1s the middle point
of pressure for the piessure couls and their resistances and 0,0, 18 equal
to P, then the momentary values of the thiee measured powers are
wi=(Pr =~ ),

Wiy = (Prr = Pe) sy

Wiy = (Prrr — Pa) baurs
hence Wy +Wyp + Wiy =Prs + Prutar + P l,n.u
which proves the correctness of the measurement

100. Measurement of the Wattless C t of an Al ng

Current When we wish to determme the wattless component mn any

crroutt, the pressure, current and power factor, cos ¢=£, will serve for

finding s ¢, from which the wattless current can be calculated At
low powei-factors, however, the 1esults thus obtained are not accurate

“ "

©®

/
[
o g w0 s

Fio 277 Fia 278,

As seen from Fig 277, mn which sm ¢ and cos ¢ are plotted as functions
of 1-cos¢, a small error m the reading of the instrument, that 1s,
m cos ¢, causes a large error i sin¢. If, for mstance, the power
factor cos =0 99, and umty was read off the mstruments (which only
amounts to an error of 1), the wattless curtent of 14 % would have
escaped notice  Especially 1n cases where condensers and synchronous
motors are used to raise the power factor to unity, 1t 18 advisable to have
mstruments which enable the wattless current to be accurately measured

Of the various methods which have been publshed, only a few
which have found therr way nto practice wall be described here

(i(z‘z The principle of an mstrument by Hartmann and Braun 15 given
mn Fig 278 The coll 4B 18 traversed by the current ¢=Jsin (wf — ¢)
and produces a field =&, sm (wi—¢) A current + = I’ sin wf 1n phase
with the pressure 1s sent through the coil D, whilst a current

’ g T
7=I'"sm (wt— §),
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at rght angles to the pressure, 1s sent thiough the coil €, which stands
at 90° to D

‘When D 1s displaced through the angle « fiom the field, the torques
exerted on the coils are

8 = g%i 8111 @ CO8 ¢,

8, ={>+',I—slu¢cosa

The movable system will come to rest at such an angle that 8,=3,,
1¢ tana=tan¢ We measure therefore tan ¢, which function, m the
neighbourhood of unity, 18 as sensitive to changes of ¢ as sin ¢ 1tself

18 1nstrument 1s of great use as synchionwser, for 1t serves to denote
phase equality and synchronism when paralleling When a current 18
sent through 4B, proportional to and 1 phase with the pressure of a
generator (or bus bars), and a current i phase with the pressure of the
other generator to be paralleled through D, and a current at 90° to this
pressure through C, then the position of the movable coils will give the
phase difference between the pressures of the two generators

In large generators, n paralleling which 1t 18 highly important to know
the exact mstant of phase equality, this mstrument 18 of great service
The methods of synchromsing by means of lamps or phase voltmeters,
since they are not very sensitive, may give rise to heavy rushes of
current on switching on. This mstrument was first largely used i the
power station at Niagara Falls

It may be further mentioned that neither the angle between C and
D nor the phase displacement between the curronts m these cols needs
to be exactly 90° So long as there 1s a space and tine angle, the
strument will respond to phase displacement

(b) The principle of displaciug the current m the pressure coil 90°
from the pressure 1n an ordinary wattmeter can also be used to measure
the so-called 1maginary power, or with, a constant pressure, the wattless
current Then the mstrument will give the value PIsimn ¢ mstead of
PIcos$ By comnecting a large capacity im series with the pressure
coil, a phase displacement of about 90° can easily be obtaned

(¢) We have still to deal with the appheation of wattmeters as phase
mdicators n polyphase systems

If all the phases of a three-phase system are balanced and the
pressute 18 & sme wave, we can obtam the phase chsplacement by two
readings on one wattmeter from Formula 168, p 315,

W=y
tan =3 ym iy

Provided we do not alter the sensitiveness of the mstrument we
need not know the constants but merely note the readmgs

The GEC of America have made mstruments with two pressure
coils (F1g 279%, the pointer then takes up a position corresponding to
the phase displacement The scale 13 calibrated on test and reads cos ¢
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Such mstruments should only be mstalled, however, wheie a
knowledge of the wattless cmiient 1s cssential

Fressure Cord AMMLQJ w Fressure (ol

F1a 279 —COonnections of Powe: faotor Meter (G B Q)

The phase meter of the AEG édue to Dolivo von Dobrowolsky)
18 based on the principle of the mduction mstrument (see Fig 258)
Here, however, the one-coll system must he traversed by a current m
phase with the pressure  The displacement of 90° mentioned on p 317
18 not necessary. The mstrument reads PIsmé¢, or at constant
pressure, the wattless current 7sin ¢

All mmstruments, however, which are based on nduction effects have
the disadvantage that they are largely influenced by frequency and
wave shape

101. Determination of Wave Shape of a Pressure or Current by
means of Contact A and Gal t To determine the
nstantaneons values of a ramdly

B VAryIng pressure or current, care

:,Ill[l’l[l]llllI . must be taken that only one and

the same momentary value acts on

P the mstrument—this 18 attainable

) with Joubert’s disc and contact

| / d\ apparatus  For every revolution of

“»  the rotating contact apparatus, the
1 g PP

c same momentary current 18 tapped

off once The arrangement of the

K-A contact apparatus and the measure

g T ment of the current thus tapped off

may be accomplished m various
ways, only two of which, however,
will be glven here The one 18 a
zero method, and 1s specially suitable

for accurate work, whilst the other,
due to Blondel, 18 more convenient
and needs loss time

Fio 350 —Dotermination of Prase The 210 or compensation method 18
Current, Curves by th Zero Method  g1ven m Fig 280

G 18 the generator from which a

current 18 sent thiough the remstancos 7, and 7, Parallel to the resis

tance 1,, the contact apparatus K-4 a.nd1 a galvanometer aie connected,
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together with the part ¢-d of the wire a-b which 18 connected to a
battery B If the contacts cd are shifted along the wiue until the
galvanometer shews no deflection, the pressure over the part ¢4 equals
the required momentary value That 1s, the momentary value being

mea.sured=a—6x p, where p 1s the pressure across the whole wire a-b

The galvanometer must be a rather heavily damped Depres-galvanometer
with a long period of oscillation and high sensitiveness

Blondel's method as used by Siemens and Halske m conjunction
with a synchronous motor 1s very convement for practical work, smee
the apparatus can be used anywhere Fig 281 shews the scheme

The pressure, whose curve 1s to be found, 1s applied to the terminals
K, and K, By means of the contact apparatus K-4, which 1s driven
by a synchronous motor runmng from the mans being tested, the
condenser C 18 charged each time contact 18 made and discharged n
the next mstant through the galvanometer G, whoge throw 1s thus

=K,

T = B
r o
C

MV
Fia 281 —Determination of Pressure and Fra_ 282 —Determination of Pressure
Cutront Uurves by Blondel's Method. and Owront Curvos Ly menus of a
Milli-voltmotor

proportional to the respective inomentary pressure A well-damped
mlh-voltmeter can also be used to measure this momentary pressure,
but 1t 18 found that the deflection 18 not proportional to the momentary
value, so that the scale of the mill-voltmeter must be calibrated hy
means of a direct pressure applied at the termnals K, and K,

This brings us to the third method, shewn i Fig 282, mn which the
capacity 18 omitted and a sufficiently large deflection of the milh-
voltmeter 18 ohtaned by mtroducing a small resistance  Of course, 1n
this case, the mstrument will be largely overloaded during the period
of contact, which, however, 18 too short to cause damage

Care must be taken that the mstrument 18 disconnected before the
synchronous motor 1s switched off, because otherwise the motor mght
come to rest i such a position that contact was made continuously,
which would result 1n burmng out the mstrument To obtan steady
deflections, a 1ange of about one-third the scale should not be exceeded
Greater deflections are unsafe owing to the large currents broken at
the contact-maker The good adjustment of the contact spring 1s of
especial value, sice the presenco of small sparks makes accurate results
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mmpossible  For this 1eason, only a part of the pressure should be
used m takmg the pressure curve

The method of obtaunng the ecurzent cuive 18 siular to the above,
the current being passed through a suitable non-mductive resistance
and the pressure curve taken at its termmals It 18 desiable to
calibrate this also with direct current Deviations from the propor-
tionality up to 20 9, may occur through vamations m the contact
resistance at the contacts, and 1t 18 therefore advisable to clean the
contact disc with swatch o1l

In the above methods 1t 1s chiefly the sparkimng at the contacts which
vitiates the accuracy of the curves This diffienlty 18 completely
overcome by Owens' differential galvanometer* (Fig 283)

ES

-FS

Fra 288 of A cuiront

for
Curves (&. B Owens)

The alternating current to be measured 1s sent through the two outer
fixed coils and a direct current through the two inner ones or vice
versi A synchronous motor, driven by the current under considera-
tion, carries a contact-maker, which periodically closes a direct-current
circuit contamming the movable cols  The four fiaed coils act on the
movable turns only when the circuit 1s closed Hence, 1f the direct-
current flowing 1n the mner fixed coils 18 varied, the momentary value
of the alternating enrrent, which only flows m the moving coils at the
moment the circuit 18 closed, can be compensated, so that the cotls do
not deflect A calibration 18 here necessary, m order to know what
relation the direct current bears to the momentary values of the
alternating eurrent

For exact measurements the arrangement of the contact apparatus
shewn 1 Figs 284¢ and b and devised by G Schade 18 very useful
In this arrangement, there are no rubbing surfaces, but contact 18 made
by pressure The time of contact 18 very small, so that rapid changes
1 the curve can be accurately measured.

The mstrument consists of the contact-disc S coupled to the shaft of

*Amer Inst of Hlect Eng 1902, p 753
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the machine, a segment T' and the shding prece of ebonite G which can

Fio 2840

be shifted over this segment

cam n; The wires a and b are
connected once m every revolu-
tion, when n, comes underneath
fi  fy 18 thus hfted until ey
makes contact with Jfy In the
next instant the circuit between
a and b 15 broken, due to f, and
Jy bemg raised together, thereby
shifting %, from 1ts position To
prevent m;, from making further
contact, a second cam n, behind
ny 18 provided This i{eeps Js
raiged until f; returns to 1ts
original position

102. The Oscillograph  The
pomnt-by-pomt methods just de-
seribed for delimeating alternating-
current curves have many great
dsadvantages In the first place
they require much time, and
secondly they are often inexact
Powt-by-point methods are, of
course, out of the question alto-
gether when the successive waves
are not identical In this cage,
mstruments known as oscillographs

A0

@ carries the contact springs /i and f;
sulated from 1t and the control springs f, and f,

S carries a contact

ey

37 ‘

) Xtdalon 2

Fia 2840 —Contact-mekor for determining
Alternating current Ourves (@ Sehade).
X
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can be used for taking such curves, especially as they have been much
mproved of late years In Vol XXVIIL (1899) of the Jowrnal of the
Inst. of Elec Enguneers, Duddell and Marchant described an oscillograph
constructed according to a suggestion by Blondel. The following 18 a
summary of this description

In Fig 285 the instrument 18 shewn diagrammatically In the
narrow gap between the poles NS of a powerful electromagnet are

N

S
Q)

Fio 9285 —Disgrammatic View of Oscillograph

stretched the two parallel sides Il of a metal strip which passes over a
small disc S At the bottom the strip 1s fixed at b, and above 1t
presses agamnst the bridge ¢ The current flows up one side of the
strip and down the other Owng to the electromagnetic action
brought nto play, the one conductor will be displaced forwards and
the other bmﬁwards, whereby the small mirror d, fixed to the two
conductors, will be deflected through an angle, which, for small
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deflections, will be proportional to the current flowing through the
strip  An oscillograph should fulfil the following conditions

I The tune of natural oscillation of the conductors I must be very
small compared with the perod of the alternating-current bemng
measured

2 The 1nstrument must be damped so as just to prevent the
movement becoming oseillatory

3 The apparatus must have a neghgible self-induction

4 The sensitiveness must be sufficiently large

The requisite damping 18 obtamned by surrounding the conductors
and mirror with o1, the case for the ol being formed by the pole-faces
for the sides, a brass plate for the back and a lens for the front

In order to observe the movements of the murror, a ray of hght is
reflected from 1t by means of another rotating mirror, or by suitable
arrangements, the moving ray of hght can be photographed

Actually the instrument 1s provided with two strips, each strip
occupying a separate space in the magnetic circuit, so that the
pressure and current curves can be taken simultaneously In addition
to this, between the two movable mirrors there 15 & small fixed mirror
The ray of light reflected from this fixed mirror then gives the zero line

—

Fio 286 —Duddell and Ma chant's Oscillograph

Fig 2860 shows & front view of the instrument The front part,
together with the lens, 18 removed and placed on the left at a,
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The glass tube b fixed to this part 1s for mserting the damping ol
The optical system of the apparatus 1s shewn i Fig. 2860 0 1s the
oscillograph with the two vibratory mirrors s, and s,, whilst s, 18 the
fixed mirror and ! 18 the lens The beam of light 18 supphed by
the direct-current arc lamp lantern L

The light passes through a system of lenses and a vertical sht d
1(ts.bout; 1'6 mm wide). ’%he sht d 18 about 270 cm away from the
ens 1

The photographic plate 1s dropped through an arrangement at §
During 1ts motion (vertical) the plate passes a horizontal sht some
6 mm wide, through which the light from the mirrors falls on to the
plate The vertical distance of the case, which holds the plate, above
the slit must be chosen so that the mean velocity of the plate 1n moving
over the shit 18 640 cm per sec  For bringing the plate to rest after

Bt
4 "'E@L

Fia 2365 —Arrangemont of Oscillugraph 0

passing the slit there 18 a braking arrangement which acts by pressing
a spring agmnst the back of the plate The plates are brought to
and taken from the apparatus by means of hght-tight bags and
wooden cages

In front of the sht there is a cyhindrcal lens C' whose axis 18 hon-
zontal This serves to concentrate the hight coming from the vertical
sht d and to produce a sharp point of hight at S R 1s the rotating
mirror driven by the small direct-current motor 3/ A strip of film
can be used 1nstead of the plate to obtan a continuous photograph of
the curve

In order to observe the curve continuously, a white plate 1s fixed at
8 exactly behind the faling plate The rays reflected from the small
mirrors §;, s, and s; then fa.llpon the white screen, and the wave-shape
can be observed in the rotating murror at the same time as the
exposure 18 taken

he Cambridge Scientific Instrument Co constructs such an oscillo-

graph 1n which the time of natural vibration of the strip 1s less than

gy second
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The maximum permissible current for these oscillographs is 0 1 amp
Usually, however, the desired amphtude of the wave can be obtamed
with a considerably smaller current

Fia 287

A further great advantage of the oscillograph 18 that the shape of
the curve can be mspected before 1t 18 photographed

Fig 287 shews an oscillograph on the same prineiple, made by
Siemens & Halske

103. Braun’s Tube The cathode rays, emitted 1 an exhansted
tube from the surface of the cathode where the current lines from the
anode strike, are diverted by a magnetic field into a plane perpendicular
to the direction of the lines of force In a rotary field of constant
strength, therefore, the cathode rays will describe a comcal surface
Since a cathode ray causes chalk, Balman’s lummous pamt and
many other bodies which 1t meets to %low brilhantly, the magnetic
field can be represented by means of a lummous curve, which can be
photographed ~ If the vector representing the rotary field fluctuates
periodically, the luminous curve will be the polar diagram of this
vector This method 18 very sensitive, and can bo so arranged that
even fields of {5 ¢ Gs umt can he detected.

If the field 18 merely alternating, the ray will only be diverted n
one plane, and will swing with the frequency of the current The
luminous line thus formed will represent a curve on a umformly
revolving mirror  The curve can, however, be also seen directly on
tho screen, when the cathode ray 1s given a umform velocity perpen-
dicular to the plane i which 1t swings, by means of a variable auxiliary
current  This auxibary current can be obtaned, for example, by
means of a contact C' (g 288) moved umformly along the wire 4B
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The current traversing the coil § will then he nearly proportional to
the time  This 18 most easily obtamed by placing the wire 4B on the
periphery of a disc revolving synchron-
| Iln y ously with the alternating-current, whilst
I C remams stationary In this way
¢ corresponding pomnts of the current
curve always fall on the same part of
the luminous screen, so that the curve
Ky on the latter appears stationary and
Fra 268 can be photographed

,

104. Measurement of the Frequency of an Alternating Current
(¢) To measure the frequency of an alternating-current the effects of
resonance may be used, because these phenomena always depend on the
frequency, no matter whether we are dealng with the resonance
between a current and a
tuning-fork or with electric
resonance
Fig 289 shews a steel
fork vibrating under the m-
fluence of an alternating-
current magnet. In such an
apparatus resonance occurs  Qf— _
between the alternating mag-

>
netic field and the fork, when <{
the natural time of vibra- T=>
tion of the latter 18 an exact -~
multiple of the frequency of it
the current If either 1s <(
altered, the vibrations dis- TS

appear, together with the g ——
note given out by the fork

Inthe B T Z,1899,p 873,
an 1mstrument of this nature
for finding the frequency 18 Fia ﬂi?b;?éﬁﬁ’ﬁumﬁi%ﬁ%':';’c‘é‘éﬂ‘ﬁé gltuigg&sllriug
described by E  Stockhart.
The chief part of the wstrument consists of a softiron tunmmg-fork
carrying weights which can be moved along 1ts limbs to vary the time
of vibration  Between the ends of the fork there 18 a soft-iron core
wound with a coil through which the alternating-current 1s sent. Each
of the movable weights carries a pownter which moves along a fixed
scale, from which the frequency of the current 1s read off directly. To
take the measurement the weights are displaced until the note given
out becomes loudest

In the ETZ, 1901, p. 9, Kempf-Hartmann described a different
method for directly measuring the frequency. The mstrument has
32 steel tongues (smular to that m Fig 289) having different natural
periods of vibration, all of them being fixed m a ring with therr free
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ends pointing upwards By turning a screw the tongues can be passed
across the poles of an electromagnet As soon as the tongue corre-
sponding to the frequency of the current enters the field, 1t commences
to give out 1ts note The frequency 18 then read off directly on the
scale The loudness 1s 1mmaterial , the vibrations of the tongue can
even be observed through a glass plate—and the adjustment is made so
as to obtain the maximum amplitude of vibration

With these acoustic instruments 1t 18 posstble to determine the
frequency to within about one-fifth of a whole period.

Figs 2900 and b shew Frahm's frequency measurer ¥ A series of
springs f, made from spring steel as used for clocks, are adjusted for
different periods of vibration and fastened to a common bar s. This
bar 18 connected to the plate » by means of two steel springs bb (called
bridges), so that 1t can move somewhat about 1ts longitudinal axis

ol

I Ly | |
R 7

[ S

Fla 200a Fa 2005
Fralon's Froquency Mensurer

On this bar also a flat piece of ron a 18 fixed, which forms the
armature for the magnet m The magnetism of this latter 18 alternately
strengthened and weakened by the current whose frequency 1s being
measured—the current being sent through the coils ¢  The bar,
together with the springs attached to 1t, are thus set vibrating synchron-
ously with the alternating-current, and the particular spring whose
natumlﬂ%yenod of vibration harmonises with thie motion 1s set swinging
to a sufficient extent to enable the motion at the head  to be distinctly
observed

(h) A black dise, having a white line drawn on 1t racally, 18 used
for the stroboscopic method of measuring the frequency. The disc 18
mounted on the shaft of a motor and 18 Iit up by an arc lamp workmg
on the alternating-current being investigated

The hght of the arc lamp varies periodically with the frequency of
the current, and when the speed of the stroboscopic disc 15 equal to this
frequency, the white line will always be 1lluminated in the same place
and appear to be at rest If the speed of the disc 1s less than the

*Seoc I T Z, 1905, p 264
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frequency, the line will appear to rotate i the opposite direction to
the disc, and 1if greater, in the same direction

This method of measuring the frequency 18 smilar to that for
determimng the slip of an mduction motor, which 18 treated fully mn
Wechselstromtechnak, Bd V., Part I, Sect 74

105. Instrument Transformers In the measurement of very heavy
currents or high pressures, 1t 18 often not possible to connect the
1nstruments directly 1n the respective cirowits, for mstruments suitable
for these extreme values of current and pressure would become hoth
expensive and impracticable, whilst such instruments mn connection
with high pressures could not he used without danger In such cascs,
therefore, 1nstrument transformers are used

In Fig 291, T’ shews the connections of a pressure transformer for
measuring the pressure across the bars 8§ I, 18 a current transformer
for measuring the current flowing 1n the line L

s ) s J J

1 } . 4 l ] A
00000000 7 % 00000000
(o000 1% d
9 ﬁ% ¥ "
%
7
L L
Fia 201 —Oonnections of Pressure and Fia 202 —Connections of Wattinctor with
Curront Transformars Instrument Transformers

As a first approximation, where the various losses 1 the transformers
are neglected, the pressures will be directly proportional to the numbers
of turns and the currents nversely proportional, thus

W , Wap _ 1,
P1:1‘0‘;Pn=71.1)ﬂ; 1125312=E12
Usually the mstruments are provided with scales to read tho primary
values directly
If the mstrument transfoimers are connected to a wattmetor, as
shewn 1n Fig 292, and again neglecting the losses, the powol supphed
to the line L will be

where /7" 18 the reading of the wattmeter

On load, the pressme transformer works as on no-load, for the
voltmeter current must be very small The current transformer, on
the other hand, 1s practically on short cireutt, for the terminal pressure
of the ammeter 13 very small

‘When the range of a voltmeter 1s 1ncreased by placing resstauco n
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series, that of an ammeter by placing reswstance 1n parallel, the losses
mcrease as the range 1s enlarged On the other hand, mstrument
transformers allow of extreme values of current and Eressure being
measured without causing larger losses than exist i the mstruments
on their normal range, when the losses 1n the transformers themselves
are neglected

(@) Pressme Thansformer  To mvestigate instrument transformers,
we start from the secondary values of current, pressure and impedance,
reduced to the primary, and write

1Yy 1= - ﬂ)i
L=ph, B3P, 4 (wg o
From eq 88, p 157, we have for the pressure transformer,
P, I,
Pi =0, +0, 1_):le= Ci+ Compr s

where y, 18 the admittance of the voltmeter reduced to primaiy
Further, as shewn befors,

Cy=1+2%,,
Cy=1+29.,
mmnt 3

G2

g1 10 the equivalent errcmt (Fig, 293) 18 the short-circmt 1mpedance

measured between the terminals 1-1 when the terminals 2-2 are short-
crrcurted  Let z,, denote the short-circuit impe-

dance between 2-2 when the terminals 1-1 ame » o
short-cireurted. o !
121
&
I.‘
1
g
Fio 203 —Equivalont Citcuit of Prossuro Trnnsformer Fio 204 —Piossure
Dingran
Then Co1=Cizga,
P,
j)‘: =0 (142zem)=(1+ zg!/u)(l + 2xeYs)
=1+e—)¢, . (169)

where ¢ 15 the percentage pressure rise in phase with P,, and ¢, tho
percentage pressure rise leading F; by 90° (Fig 294)
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Since ¥, must be kept very small, 1t 1s sufficiently accurate to put

j,—?;z 1+21Y0+25aYs
=1+a%+(a+z),
and €=01(g, +g.) + 2 (b, + ) +w.+zsbu),}
&=y (Bs + b,) — 1aby + 2190+ 9.) + Zage

Since the 1maginary part of this expression 18 very small compared
with the real, the ratio between the effective values of the pressures
can be written

(159a)

%:1+r,(g,,+g.)+z1(b,,+b.)+rng.+z,b., . (160)

or, if the current taken by the voltmeter 1s very small, ie g, 1s very

small, then P,

pal+ngatml, (160a)
2

The pressure transformer should be constructed, therefore, so that
1+#9, 18 as near unity as posmble, that 1s, 29, 18 as small as possible,
for in this case the pressures are as nearly as possible n proportion to
the numbers of turns Further, ths 18 also advantageous when the
transformer 18 graduated, for then the changes of g, and z,5, are least
affected by vamations n the saturation and frequency On the
contrary, the secondary resist 15 and react; %, have no effect
when the voltmeter current 1s small

The conductance g, 18 due to the hysteresis and eddy losses 1n the
wron, Whlst the latter part 1s imdependent of the pressure, the part
due to hysteresis varies inversely as the 0-4th power of the pressure
Owing to this decrease 1n the hysteresis conductance with mcreasing
pressure, the deviation in the secondary pressure 1s greater at low
pressures than at high To make this error as small as possible, the
primary resistance 7, must be as small as possible

The susceptance b, varies mversely as the permeability with varying
pressure It is therefore large at low pressures, attains a mmnimum
at an induction B="7000 to 9000, and then rises agamn  With low
pressures when the mduction 1s below 7000 to 9000, 4, changes 1n the
same way as g,, and with increasing pressure causes an ncrease 1n the
secondary pressure compared with the primary At higher pressures,
the merease of b, acts agawnst the decrease of g,, and tﬁe ratio of the
pressures will be more constant

‘With changing frequency ¢, the hysteroms conductance varies n-
versely as ¢® Hence, qualitatively, the same changes occur as with
varymg pressures

(0) Current Tramsformer From eq 89, we have for the current
transformer

T, P,
j;= G+ €y T:%I =Cy+ Ciyp2
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Here z, denotes.the impedance of the ammeter, reduced to the

primary. Also
1/01'=%7a; and ?/nn=%zﬂ

ivhere Yoa 18 the no-load admittance between the secondary terminals,
ence

I
7:=04.(1 +%0320) = Cat+9ata =1+ (ma+24)7,

=144y .(161)

Here 1= (rg+14) g0+ (T +2,4)0, .. (162a)
18 the percentage increase of currentin phase with J,, and

u=(a+70)b~ (T 2a)gs - (1625)

Since the imaginary part 1s here very small compared with the rea

18 the percentage current mncrease lagging 90° behind Ia (see Fug 295%
we can write '

I,
T]:l‘*(”i"’“).‘/n"‘(mﬂ‘f‘@)ba (163)
2
From this 1t 1s at once seen that the primary
impedance of the current transformer has no effect on & Ed
the measurements On the other hand, care must be s
taken to keep the secondary resistance and 1eactance w

as small as possible—)just the reverse of a pressure i
transformer ~ It 1s therefore 1mmaterial where the
primary coil 18 arranged , often the bus bar 1s merely
led through an iron ring, thus making one turn 1n 1
the primary winding. To make the effect of changes
m g, and b, as smal%aa possible, the impedance of the
ammeter z,, reduced to primary, must be kept as low ]
as posstble Thus the apparent volt-ampere con- Fio 206
sum}];tmn of the ammeter should be kept very small,
s0 that the current transformer 1s practically on short-circuis

To make g, and b, as small as possible, the induction must not be
made too low Since the mduced EM F. 18 very small, only a small
ron section 18 required

Since the EM F 1ncreases as the current rises in the same way as
when the pressure increases 1 a pressure transformer, the secondary
current increases 1n proportion to the primary current, owing to the
decresase of g, and b, Fig 296a shews the increase of this ratio very
clearly for a current transformer made by Siemens & Halske The
abscissa ax1s represents the current in per cent of the range of the
nstrument, whEst the ordinates shew the percentage deviations of
the current ratio from its mean value. The cuives 4, B and C are for
different 1mpedances z, As eq 161 shews, the secondary current
decreases for larger z, At the same time the effect of changes 1 g,
and D, 18 1ncreased, so that the lower curves B and C rise more rapidly
than the upper curve 4
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As mentioned m connection with pressure transformers, a decrease
1n the frequency ¢ must act i the same direction as an increase 1n z,

+1
4
o AT —— g
e
[ p/ [ ./ %
%4.’ g “ ’W’gl 0}"1&(11["!”]1”;‘0 )
I
X —¢
a\_1 4//——-"
'3
Fra 206a and b

This 18 clearly seen 1n the curves D and £ (Fig 296b), which are taken
for frequencies of 50 and 25.

Sc) aﬁzttmetev Transformers  For the measurement of power, current
and pressure trausformers are used As before, let y, denote the
secondary admittance of the pressure transformer and z, the secondary
1mpedance of the current transformer Further, we will let the suffix
V denote the constants of the pressure transformer, and the suffix 4
those of the current transformer The primary and secondary powers
are then represented by the vectors,

Wi=BL, Wi=RL,
where J; and I; denote the conjugate vectors of 7, and 7, Wo have
then 7,_P1L ,

’p?n=}7 7= G+ Ca”xlyv)v(os*' Ci¥or2a)s

24g
= CiCa(1 + 2xayr)r (1 + Yoas).s-
The symbols marked * denote the conjugate vectors Introducing
equations 158 and 161, we get further

w7
womLrege)(l+i-y v) (164)

=l+eti—)(a+u)

If an ammeter is placed 1n series with the current coil and a volt-
meter 1 parallel (or in series) with the pressure coils of the wattmeter,
we can at the same time measure the real part 7, of the secondary
power and also the secondary current and the secomiary pressure P,

We then get: Wy=Wy+) Wy,
where Wa=N(LPy - W2
Similarly, if we write Wy =W, +) Wy,
we have Wy =(1+e+ )Wy +(g+ )Wy, } ) (165)
Wu=(1+et )Wy~ (e + )WV,



INSTRUMENT TRANSFORMERS 333

If tho secondary phase displacement is small (se. #y, small), the
primary power #, to be measured 18 found by increasing the reading
W, by the percentage pressure drop and percentage decrease in current.
The measurement of the primary imaginary power #;, or primary
phase displacement is then inaccurate, because the term —(e+ )7,
may be large

1th very la.r%’e phase displacements, the 1maginary primary power
W1 18 obtaned by 1ncreasing the 1maginary power /7, measured in
the secondary, by the percentage pressure drop and current decrease
The measurement of the real primary power /7, 1s then naccurate,
since the term (g + ) /73, can be comparatively large.

106 Electricity Meters. The energy consumed 1n & circutt 13
4 =fpzdt=fPIcos¢dt.
If the pressure remains constant,
A=Pf]cos¢dt.
If I and ¢ are constant,
A=1Icos¢ f Pdt
Funally, 1f the momentary power is constant, then
A =PIcos¢afdt.

Corresponding to the above equations we can distinguish between
watt-hour meters, ampere-hour meters, volt-hour meters and electricity
meters Simce 1t 18 difficult to construct instruments to respond only
to the watt component of the current, ampere-hour meters are not
largely used with alternating-currents, e shall therefore deal
chiefly with waii-hour meters %‘hese work partly on the dynamometer
prneiple and partly on the laws of mduction. We can distinguish
between motor mefers where the current to be measured 1tself causes a
movement, the speed of which 1s directly proportional to the current,
and pendulum melers where the alternating action of two couls carrying
current 18 made to influence an already existing motion The latter
possess the disadvantages of being compﬁcated, on account of the many
axes and moving %arta, and that of bemng continually 1n motion and
therefore always subjected to wear ~Moreover, the permanent control
possible with the motor meter 18 an advantage which must not be
under-estimated  Thus, whilst the motor meter 1s more reliable
n working than the pendulum meter, yet the induction meter, in
which there are no current leads and rubbing contacts, has a still
more certan action As an example of the pendulum meter we shall
consider the 410n wait-hour meter

Ths wstrument 1s provided with two pendulums, each possessing a
pressure coil  Under each pendulum a coil carrying the lme current
18 placed, and connections are made so that the one pendulum 1s
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accelerated, the other retarded If the pendulums swing synchion-
ously when no current 18 flowing, and operate a counting device which
only records the difference of their swings, then the readings will be
approximately proportional to the current flowing

The time of oscillation ¢ of a pendulum of length 7 18

t=1r«/§,

where ¢ 1s the acceleration due to gravity ~When cunent flows
through the cols, we can write

] 7
=7 and fy=m,[——
=T N7

If the pomnter on the indicator moves one division when one
pendulum has completed N swings more than the other, then one

dvision will correspond to N 1_”“# seconds, and the consumption per
divigion, or the so-called consba;t o% the strument, 18

_ by PI
K= HN%OO <1000 kilowatt-hours
NPIt ¢

o =1000 x 3600 g;’

where the higher powers of % are neglected

That these mmstruments read correctly for alternating-currents 1s soen
directly, when we remember that the dynamometer action depends
only on the watt component of the current. Agsinst the disadvantages
of the several axes and moving parts, these nstruments have many
advantages, since they are imdependent of the frequency and wave-
shape, and further are very sensitive and possess no permanent magnets
whose magnetism can vary with age

Motor meters have been constructed in many forms and placed on the
market They consist, m principle, of one or more fixed current coils,
an armature to which a current proportional to the pressure 1s supplied
and a damping device, usually conssting of a dise of alumimum or
copper which revolves between the poles of & permanent magnet If
the nstrument 18 to read correctly for alternating-currents, no iron
must be present Since a large resistance 1s placed 1n series with the
armature, the mduced ¥ MF 18 small compared with the network
pressure, and the current 1n the ‘armature 18 practically proportional
to the pressure  The torque will therefore be proportional to PI, and
the power to PIyn, where 7 18 the speed of rotation

In the damping device EM.F’s are induced directly proportional to
the speed, so that the power consumed i the dise 18 proportional
to the square of the speed.
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Since now—neglecting losses—the power taken must equal that
supphed, then Plswn=0'n’ or the power taken from the lne 1s pro-
portional to the speed of the motor Hence a counting device coupled
to the axs of the motor can be made to read the power directly
The prmeiple of the motor meter 18 only free from objection when
the pressure coil 18 entirely nonanductive A phase displacement y
between pressure and current in the pressure coil changes the formula
W =PI cos ¢ 1mto (
_ cos (- )
W =PIcos¢cosy cosp
where Y =tan™! ‘% ,
L= coefficient of self-induction

= romstance } of the pressure coil

Since, however, the arrangements necessary to eliminate this error
make the mnstrument too costly, they are only provided in standard
meters In general, when the phase angle ¢ 18 not too large and the
resistance 1n series with the pressure coil 18 sufficiently hgh, the
aceuracy is not maternally affected, and a correction becomes unnecessary
for practical purposes.

The error due to friction loss can be eliminated by placing sufficient
turns on the current coil and sending through them the current in the
E'I;Jessure coil until their mutual action can just compensate for this loss

e friction losses, however, do not remain constant—after a time they
may decrease with wear, and then the meter may come to possess the
worst possible fault 1 the eyes of the consumer, viz the 1nstrument
rotates when no current 18 bemg supplied

Consequently, artificial friction resstance 18 often added, the magm-
tude of which 18 large compared with the original, and remains constant
Moreover, these artificial resistances have the advantage of bemng
adjustable They can be provided in
various ways, but a complete descrip-
tion would take us too far here One Pressure Cod
practical device consists 1n allowing a

pmn on the revolving axs to strike
agamnst one or more springs at every
revolution
Induction meters, from their principle,
are only applicable for alternating- =
currents Like the induction instru-
ments for measuring current and Current (ol

ressure described above, these also

epend on the alternating action of Fio 207
two magnetic fields—displaced from

one anoti‘:ar in phase—on a closed revolving conductor (Fig 297) If
the line current I flows through one coil and a current ¢ proportional
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Eunng explains this phenomenon as bemg due to the retentive
powers of the magnetic molecules, when they are arranged so as to
form groups The sphtting up of these groups takes time, 1t beging
with the molecules on the surface of the wire, which are less closely
held together and therefore more movable, and moves gradually
inwards Waith fine wires there are relatively more movable surface
molecules, consequently, 1n this case the combinations of molecules are
disturbed much more quickly

By plotting the magnetic mnduction B as a function of the magnetio
force E, we get the static magnetisation curve of the material—which 1s
found most accurately by means of a ballistic galvanometer

Smce .[H dl=0 dmw,
the ampere-turns per cm-length will be
aw=%”=0 8H
0 o 77 150 m_
73000\ P S
10000 -\ ///‘
LT
| AN Jm—
N -
w 12000 | Se
-§ so000 ! 27N
/ RN
§ sm / Ny
6000 | \\
wn | \
1 /
Mﬂl o
!

% 32 6 6 80 u B 22 u N
| | | b= Ampereturns per can ——
0 wm ww s w——p

Fra 800 —Mognetisation Ourve fu Irun Stampings

For practical purposes, 1t 18 more convenient to plot B as a function
of aw mstead of H = Such a_magnetisation curve for iron stampings 18
shewn in Fig 300 by curve I; curve II shews the permeability

_B_ B
F=H~ T2
as a function of B.

If the magnetisation of the iron is taken through a eycle by um-
formly varymg the magnetising force between the two values — H,,,
and + H,,, B can agamn be determined balhstically and plotted as a
function of H or aw
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Instead of an 1ron ring (or toroid), the Hopknson’s yoke (Fig 301)
can be used  The test-bar S 18 here clamped at both ends to a soft
wron yoke J having low mag-

netic reluctance, thus forming a ~
closed netie circuit ( J
i t ; : -
Since the 1nduction does no N T P Een |

depend alone on the effective
magnetising force H at the
moment considered, but 1s also
dependent; on the magnetic n-
duction at the previous moment ! )
—the latter property being due Fic 801 —Hopkinson's Yoke
to the retentivity of the iron—-
the cyche magnetisation curve for iron is a closed curve, the so called
hysteress loop H, (Fig 302) The curve in this case is obtaned by
static magnetisation.

Since the nduction m 1ron 15—as shewn—a many-valued function
of the magnetasing force, a magnetisation curve—such as is represented

+B
mmE_
/”—7 /7
— e _
// 4/
Y /
’ /7
/ /
) /'
/ /
/ / -
/ /
/ /
-aw / J +aw
/ / J—
/ /
/ f
/ /
/ /
4 /
/ /
’ /
4 7
- /
s s _
-B

Fie 803 —Hystorests Loop

n Fig 300—can only give one value of induction for one magnetising
force, which depends on the means by which 1t 18 measured

Ususally such curves are taken on the halhstic galvanometer by
measuring the throw on the galvanometer when thg current 1s reversed.
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After a few reversals, this throw remains constant whilst the mduction
changes from & postive value to the samo negative value The
measurements are taken for various field strengths by starting with the
lowest magnetising current and 1ncreasing the latter step by step, and
determining the throw on the galvanometer for each step after a certam
number of reversals Previous to taking the measurements, the 1ron
should be demagnetised as completely as possible It 18 1mportant to
start with the small inductions and gradually increase to the higher,
for a lmgher magnetisation wipes out the after-effect of a smaller
magnetisation more easily than vice versa

a%l?e magnetisation curve taken 1 this way (the so-called rsmg
magnetisation curve) represents—as 18 seen—the locus Jor the peals of
the statswe hysteresis loops of the non.

The area of the hysteresis loop represents a loss of energy, for,
according to the defimtion of the potential energy for electiic curient
(see p 15), the work done 1n a unit of time 18

w

10

where 1w denotes the ampere-turns nterlinked with the flux &  If the
ring (Fig 299) has a constant section @ and a moan length I, then

d® ergs,

w aw aw
-1—0d4>=EZQdB=—1—OdB v,
where 7= Q. l=volume of the iron ring 1 ¢cm3
The work done during one period 18 accordingly

aw !
VLy Wap~v W,

and the hysteresis loss wn ergs per second for one cm®
aw 1 .
W“_L, Td8= 4WL' ds, (166)

and 15 thus g oportional to the a1ea of the hysieresis loop 11,

Formula 166 18 deduced on the assumption that the magnetisation
of the iron sample 18 umform, and that the magunetic force is duo
solely to the electric current It 1s easy to shew that this formula
holds quite generally,—for instance, m the case when yarious
1nductions ate present 1n the several parts of the iron and magnotising
forces other than those due to electric currents act on the iron. In
this case, however, the loss 1n each part of the iron must he determmed
by 1itself Further, 1t must be noted that the energy loss due to
hysteresis may not only be supphed by electric currents, but also hy
external mechanical forces, as 1n generators

If a test piece 15 magnetised cycheally between equal positive and
negative values of the maximum induetion, 1t 15 found that the shape
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and area of the hysteress loop varies with the maximum nduction
The nature of this change 1s shewn m Fig 303, which represents a
hysteresis ourve (due to Ewing) for annealed piano wire ~Here the
induction 18 always varied from one value to a somewhat greater value
of the opposite sign.

Btiom

B--tiovo
Fio 808 —Hysteresis Loops, Plano Wire (Ewing)

If we plot the areas of the hysteresis loops divided by 4, taken at
different maximum 1nductions, as a function of these latter, we get a
curve which represents the work mn ergs per cycle and per em?® due
to the hysteresis of the iron i terms of the maximum induction
Fig 304 shews such a curve as given by Ewing for soft iron plates
It 18 seen that the loss increases more rapidly than the induction.
Stesnmotz has given the following empirical equation for the curve

A,=1B" ergs (167)

n 18 called the hysteresis constant. For soft, annealed dynamo
plates 7 varies from 0 001 to 0 003,
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If ¢ 18 the frequency at which the iron 18 magnetised, 2 e. the number

e
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0 2 4 6 8 w £ # 168
Fio 304 —Hysteretic Bncrgy per Oyole as Function of the Induction

of complete c(:lyules the magnetisation passes through per second, the
effective loss due to hysteresis will be
W, =ncB"® ergs per sec.
=7cB'®10~7 watts
The loss per dm® 18 77, =7cB"*10* watts (167a)
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Fra 805 —Hysteretic Loss for One Cyole per Sccond for Diffoent Kinds of Iion

In Fig. 305 curves are given which represent the hysteresis loss per
dm® for one cycle per second 1n watts, 1 ¢
Wy=nB'10-,

ag function of B The curves are calculated for n=0-0012 and
7=0-0016
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‘When we multiply and divide by 1000*®= 63100 1n formula (1670%
we get the following expression for the hysteress loss per dm3, whicl
18 more convenient for calculation ,

¢ B 18
= (631n) 155 (m) watts

] B 11
~on(155)(togg) "otts < - o (168)
where o, =6317

The ahove expression has been developed on the assumption that
the hysteresis loss per cycle 18 mndependent of the rate at which the
latter 18 completed. More recent experiments, however, shew that
this 18 not quite true.

In comparing the magnetic conditions accompanying static magnetisa-
tion with that due to alternating-current, the first difference we may
mention 18 the eddy curents set up 1n the iron in the latter case
When the magnitude of the induction 18 rapidly varied, EM.F’s are
nduced m the won which give rise to currents whose directions are
such as to tend to hinder t%:le pulsations of the flux This has the
effect of reducing the flux for a given magnetising current, or for a

iven flux a larger alternating-current 1s required than when the same

ux 18 produce(f by continuous current In addition to this, the eddy
currents produce a loss m the 1ron which 1s proportional to the square
of these currents.

109. Magnetisation by Alternating Current. Let the pressure

p=~2Psn ot

be apphed at the terminals of the winding on the iron ring shewn mn
Fig. 299,—then a current will flow, through the winding. This current
18 called the magnetising current, and excites a magnetic flux € 1n the
ron which induces an EM F. 6 1n the winding,

()
where o= — -
If 7 denotes the ohmie resistance of the winding, then we have
pte=u

If we choose the relations so that 2 and = are both small, we can
write with close approxamation,

d(wd)
Tdr

p=-e= =2Pam of,

whence wh= -2 Ei- wt=ﬁ£sm (wt —E)
© @ 2,

_P -
@=J3;—wsm (wt-§>
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From this we see that when the apphed pressure p varies 1n & sine
wave, the flux @ also obeys a smne law  The flux, moreover, 1s seen to
lag 90° 1 phase behind the applied pressure The maxmmum value of
the flux 18 o JP_QP_ P

me =N w9 w4 ddow’
where the pressure P 1s measured n absolute umts ~ When the
effective termmal pressure P 18 measured m volts,

8
ax = 454—1%0 maxwells, (169)
P=444cw®,,, 1078 volts (170)

The induced EM ¥ E 18 numerically equal to the terminal pressure
P and directly opposed to 1t 1n direction, thus E lags 90° behind the
flux ®.

‘We will now consider the case when the apphed pressure 18 not
sinusoidal, but 18 merely some periodic function of the time—the only
assumption we now make 1s that momentary values taken 180° apart
are numerically equal and of opposite sign ~ The pressure curve waill
then only possess odd harmonies In this case the flux curve also will
have no even harmones, that 1s to say, instantaneous values taken half
& period apart are hkewise equal and opposte  Since, 1 general,

o en®®
R
or pdt=wd®,
or, again, Q:%Ipdt,

the curve for the flux @ as a functidn of the time 18 the integral curve
of the pressure curve with regard to time If we integrate pdi over a
semi-period and choose the hmits so that the integral becomes a
mazvmum, then we denote

9 (1
Tj: PaAt=P,

a8 the mean value of the periodic pressure—and this passes through
a positwe half-wave m the time from ¢ to t+§, where T' denotes the
time of a complete period. Denoting the magmtude of the flux at
time # by 2., and at time t+7 by @, then

I1
2w

18 the largest increase the flux can pass through in a semi-period

B~ Ba= 5 = P,
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Further, since from the above
[ [

miu = T Fmaxy

then &, 18 an absolute mimmum and @,,, an absolute maximum of
the flux. Then, we get 71
s =T Pras
where the pressure 18 measured in absolute umits  Since T-% we get
P =4ow®,, 1078 volts, 17m)

which s quate independent of ihe wave-shape. On page 217 the form
factor of an alternating-current curve was defined as the ratio
fo= effective value P
°" mean value  Prgn
For any wave-shape, therefore, we have the following expression :
P=4f cw®,,, 1078 volts (172)
For a sme-wave f,=111, and by substituting this we get
formula (170)

110. Magnetising Current with Sinusoidal EMF We agamn con-
sider the magnetisation of the 1ron ring shewn n Fig 299, and assume
a sinusoidal pressure 1s applied at the terminals of 1ts winding We
shall take the pressure drop in the winding to be so small that 1t 18
allowable to assume the induced & M F. at any

mstant 18 equal and opposite to the mmpressed B...12000
voltage Then, as already shewn, the flux

must also follow a sme law  Now, to produce +10000
this flux ® we need a magnetising current vl /
which alternates periodically with the induc- /g /
tion 1 the core. y |

At any pomnt of the sinusoidal flux curve [ vetie

or induection curve we can find the respective 2000 I

o
momentary value of the magnetising current _, _, [,

from the hysteresis loop. We have shewn above 02 % Ay

that the area of this loop gives a measure for 2000

the energy which 18 necessary to magnetise the I -4000

ron through one cycle This energy, which N

has to be supplied from outside by the primary |

no-load current, 1s converted 1nto heat i
The curve of magnetising current, which we )7 om0

get from the hysteresis loop by calculating for -
s sinusoidal flux, 18 not smnusordal and 1s
unsymmetrical with respect to 1ts maximum Fra 306
ordinate In Fig 306 a hysteresis loop 18

represented, whilst Fig 307 shews ¢ the curve of induced EMF., @ the
corresponding flux curve and 3, the curve of the magnetising current,
which latter 18 obtained from Fig 306.

-12000
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The curve of the magnetising current 2, can be split up nto a first
harmome 4, and a curve 4, which contains the higher harmomes  Let
the effective values of these two curves be I, and I, respectively

| e
Fie 307 —D

of Current with S Prossure by
‘means of Hystoresls Loop

‘We draw the curve of apphied pressure p= —¢ and analyse the sinu-
soidal curve 3, mnto a component 4, in phase with p, and a component
4w, Which lags 90° behind the nppheg pressure Since the current
curve ¢, 18 wattless with respect to the sinusoidal applied pressure, the
component %, Wwill represent the total watt component of the mag-
netising current, and the hysteresis loss 18

W=P Ly,
where I, , 18 the effective value of the current 2, ,,.
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The wattless component of the magnetising current 18 made up of
the wattless component of the first harmonic /; ,, and of the effective
value of the higher harmomes I; These components can therefore be
substituted by an equivalent smusoidal current whose effective value 18

Tp=NI}y,+ 1}

The total magnetising current can now be replaced by an equivalent
sinusoidal current whose effective value 18 I Written symbolically,

I=Iy+)Ip,
where Ip=1,p.
Thus I=NIZ+ I8 =NI2 +I2, +I% .(173)

Graphical Hy, the magnetising current can be represented as shewn in

Fig 308 Here P the apphed pressure 1s set off along the ordinate

axis, while the flux ® 1s set off to the left

along the abscissa ax1is  The component WP
ﬂ =1 = I w

18 set off 1n the direction of the pressure
and the wattless component
OB=IWL=JII’WL+I:

m the diwrection of the flux The
smusoidal current J, which 18 equiva- ¢ =
lent to the magnetising current, 18
given m magmtude and direction by
the veotor OC

If we measure the consumed power
W, the effective pressure P and the
effective magnetising current J, the vector of the equivalent current
can be at once determined, for

W =PIcos(90 - a)=PIsina=Ply,

Fio sos.—mng;m gf Magnetising
rrent

F
Ema.—PI,

_w
w=p

)

The angle o, by which the equivalent snusoidal current of the
magnetismg current leads the flux, 18 called the hysteretic angle of
advance I

The ratio P =y

I
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18 the admattance of the magnetiing winding  Simularly, the wattless
component of the magnetising current 18
Iy, =Icosa=>0bP,
and the watt component of the same
Ip=Isma=gP,
where b denotes the effactive susceptance and g the effectwe conductance
The hysteresis loss 1s then
W=gP2
If we calculate the effective remstance and reactance corresponding
to g, b and y from formulae 37 and 38, p 65,

9 9

r==

iy

b b
ET AR
then r represents an effective resistance which 18 imdependent of the
ohmic resistance of the winding This effective resistance equals the
ohmic resstance which the magnetising winding would have if
the hysteresis loss /77 were consumed in the winding by the mag-
netising current /,

2.6 W=I%
w
or T=.I—“’

and the effective reactance is

P
”'\/ (I) -

If wo assume—as above—that the ohmic resmstance of the winding
18 neghgble, then P, I and 7 represent the measured values.

In the above we have neglected the effect of the eddy eurrents
Thege can easily be taken into account expermmentally, for with a
sine-wave pressure the flux and along with 1t the eddy currents vary
after a mmne-wave The eddy currents increase both the magnetismg
currents and the losses, and cause an increase both in the wattless
component and 1n the watt component of the sinusoidal part of the
magnetising current  Consequently, nothmg is altered 1n the caleu-
lations and considerations as given above, when these eddies are taken
mto aécounty and the same digmms can be used for the experimental
values obtamned with alternating-currents The analytical treatment
of eddy currents will be found m sections 111 and 112. .

In Fig. 809 the curve B represents the induction m dynamo plates
of average quality in terms of the momentary values of the ampere-
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turns per cm length of the magnetic path. Curve AT gives the
mazumum mduction 1n terms of the gfective value of the ampere turns
per em for smnusoidal magnetisation, curve AT, shews the effective

value of the first harmonics, 4T, the effectave value of all the bigher
harmomes

m‘,’;, 020 % 08 100 AT
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My —Ze==—" f e
o e ET
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0 ‘ 20 © o AT
Fro 809 Ourves for Armab a8 Funotion of 4T per om

111. The Eddy-Ourrent Losses mn Iron. When iron 1s magnetised
by means of alternating currents, eddy currents are always set up 1n
the ;ron  Suppose a surface to be taken through the iron perpendicular
to the direction of the induction, and let a closed curve be drawn in
this surface, then along this curve an EMF 18 induced equal to the
rate of change of the enclosed flux The currents thereby set up flow
1n a direction such that they oppose any change in the mam flux, and
dissipate themselves 1m heat corresponding to the emergy they take
from the magnetising current If the reversals 1n the magnetisation
1n the 1ron are caused by the movement of the latter in the field, the
loss will be supplied by the mechanical force causing the movement
In some cases, the losses are partly supplied from electrical and partly
from mechanical sources of power

The most effective means of reducing eddy currents consists in
laminating the wron  The laminations must run parallel to the lines of
nduction

In what follows, the eddy-current losses will be calculated 1n each
case, on the assumption that the induction 1s umformly distributed
over the whole section.
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Let the 1ron be made u‘p of wires, and the induction, whose maximum
value 18 B, be umformly distiibuted over the section of the wire. In
a ring of radius 2, the mnduced EM F will be then (see Fig. 310)

‘ E,=4f.cBra? 10~° volts,
where f. denotes the form factor of the EM.F wave

For a length of wire 1 cm, the resstance of the ring of thickness
dz 18 9

oz
PTxdw
where p denotes the resistance per em® of the iron expressed in ohms
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Fra 810 —Path of Eddy Ourrents in Fra 811 —Path of Hddy Currents
Round Wire. in Iron Stamping

The heating loss 1 the ring 18 then
dz 1
Bl g =82t 713 Badn 107 watts

From this we get the heating loss per em length,
3 %a 2B 107 watts
thus pér em$, W, =% %c“ f2B%® 107" watts
For the volume 7, measured 1n dm® and ¢ 1n mm, we have

_1107%, ¢ fB\?
W,—Q T(dm ﬂ‘)ﬁ\)) 7V, watts
T00 1000,
For soft iron, p=5 107 to 10~5 ohms,
whence a,=01 to 0'5.

=¢,(d ¢ JB )EV,watts )
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Next, let us assume the 1ron to be made up of thin plates Fig 311
shews a section through a plate perpendicular to the lines of induction

In a sheet of current 1 cm long, at distance z from the centre line
of the plate, an E M.F 15 induced

E,=4f,.c B %.107® volts

The resstance for 1 cm depth of plates (measured perpendicularly
to the plane of the paper) 18 ﬁ ohms. The loss 1n a sheet of current
1 om long, 1 cm deep and of thickness dz cm 18

E:‘%”J—If‘oe PBYAdr 10 watts

For the whole thickness of the plate the loss 1s

A
de 4 ¢
. | s 80 _2C 3,101
2uE=P 3Py"‘,B”A.lO watts

The loss per em? 18 therefore, when A 18 measured in cm,
w,=§%’f,“B'A’ 107 watts . ... .. .(17B)

For a volume 7, 1n dm® and for A in mm, we have

_410%, ¢ fB\?
Wa=3 T(Am 1ooo> V. watta
~ou(al JBY
_v,<A s 1‘0%) V, watts, (176)
]
where :r,=§ 07 18 the eddy-ourrent coefficient of the plate.

If we substitute p=5 105 to 1075 ohms 1n the above, we get
o,=0267 to 133

112. Effect of Eddy Currents on the Flux Density and Distribution

m Iron. In a piece of ron

of circular or rectangular

section (Figs 310 and 311)

let @, denote the pulsating

flux which the magnetising

current 1,, would produce 1gs

alone when no eddy cur- )

rents were present This

induces an EMF 6, in the

shaded circuit, which—for e S0

a sinusordal flux variation— ~

can be represented by a vec- 1,

tor lagging 90° benud the 6

flux vector, as in Fig 312. Fie 812 —Reactlon of Bddy Ourrents
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The EMF e, produces an eddy current 1,, which 1n 1ts turn produces
a flux represented by @, m Fig 312 The eddy-current eircut
thus Sossesses nductance corresponding to the flux @, and s, lags
behind e,,.

The resultant flux of &, and ¥, 18 @, and we see that the effect of
all the eddy currents 1s first to cause the resultant flux @ to lag behind
the magnetising current s, 1n phase, and secondly the flux 18 reduced
from @, to ®.

Both the weakening and the lag of the induction 1s greatest in the
middle of the 1ron, and decreases towards the surface, where 1t 1s zero
Oberbeck and J J. Thomson have made calculations to determine the
weakening of the induction 1n 1ron cores due to eddy currents (not as
above, due to a single eddy) These calculations shewed that the
weakening in very thin wires and plates can be entirely neglected,
whilst with thicker plates the weakening rapidly increases with the
thickness. This 18 best seen from a short calculation In a circuit of
radms 2 (Fig 310) a maximum EMF 2mc®,10~® volts is induced, and
in a circuit of radius £+ do the maximum EM.F 1nduced will be

2me(P, + 2mzB, da) 1078 volts.
Hence 1n the outer aircuit the EMF per cm length 1s larger by the
amount dE,=3m¢B, ds1078 volta.

In order to get the mnduction B, from this, we must find a further
relation between E, and B, This 1s obtained from the fundamental
principle of electromagnetism, which states that the induetion B,
ncreases from the radius # to the radius « +dz by the amount corre-

sponding to the MM.F of the current in the circular mng  The
maximum value of this current 18

E,
=7 da,
where p is the specific resistance of the iron  The increase n induction
corresponding to this current 18
dB,=04Iu=0 41r’-;E,dz,
where u denotes the permeability of the wron Passing to symhohe

values and talung the phases of the different quantitiés mto account,
we get the two equations

dF,=)2rcB, dz1078
and dB,=-04qr’;fE,dz
Substituting E, from the second equation nto the first, we get

a8, ~
=10 8#’0%10 8B,
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This is & homogeneous linear differential equation of the second
degree, whose solution 1s

B =Ae“/'” m%m:z +B€-A/-joa.=e“-:m-sz.

A and B are two constants which have the same value 1n this case,
since B, has the same value, but of opposite mgn, at diametrically
opposite pomnts at the same distance . Putting further B,=B,,, for
%=1, ve at the surface of the cylinder, we get

B==A(€~/-jo ortek108s JENEYS m‘fm—ez)’
Bue=4 (6“/"" srtel0-er E'“/'” s ),

whence by division -
o ©
»,/ -0 Bn%c=10-8z -J-Jo 8l lol-Gz

B,=By. BRI
- EJ-mm%m—nr + G-J-;o m%w—u:
Since /"W -7 = &(cos 7 -9 BN )
and we write for brevity 12(-)1; A []’l—(’;'p =X (177)

the mduction B, can be written
=Dz 4 -1 -NAz
mox (1-f)Ar 4 g=(L-))AT
or B =B (:”+s'*—")coaz\:v—](e’v‘°—e'*—")sm)\:c.
£ I (M e X) 008 M — (A — e=AT) g1 A1

B.=B

By comparing this expression with the formula on p. 133 for the
distribution of the pressure along a long line, we see at once that the

nd from the surface to the interior of the eylnder follows a
sme law
The length of a complete wave 18 found from
=9 o _IL
Az=2r o X %
10p
Over such a wavelength the phase of the induction passes through
360°
4B, E,
Since eyt f \

the eddy currents are propagsted m the won according to the same
exponential law as the induction.
A0 %
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For an 1ron plate (Fig 311) the same differential equation for B, 1
obtamed, and consequently the same flux dstribution over the section
A
ag m acyhnder In this case z and 1 =7 do not represeut radu, but

the distances of the respective pomnts or surface from the centre of the
plate .

Fig 313 shews the magnitudes of the flux distribution over a plate
for different thicknesses of plates at c=100 An 1dea of the alteration

SSK\» A0 __—
08 \ ///
TN /1
o EQ‘B \ S—ath )
s 04 \\\ //
AN /
N

o T
1 080604020 02040608 1
Ratio 2 to
Fio 818 —Di of foross for 100 Cycles per Rec

m the phase of the induction throughout the plate 18 obtamed hy
remembering that the wave-length for ¢ =100, u=2000 and p=10-% 15

L, 10¢ =0224 cm=2 24 mm
«/E_Jo 1x100%x2000x 100 -
10p

Thus at the centre of & 2 mm plate the mduction 18 displaced
262(1 =160 in phase from that at the surface The mduction B,,, at
the surface only corresponds td the effect of the external ma, notising
forces, which we suppose m this case 10 act umformly over the whole
length of the cylinder or width of the plate. If we ascertan the
greatest mean value B, of the flux denmity which can oxist at any
mstant, this must be less than the mean value of the amplitudes of the
induetion at the different sections, as found from Fig. 313 In Fig 314,
the ratio of the mazximum mean value B,,,, to the maximum mduction
B, 18 plotted as function of the plate thickness for ¢=100 From
the figure 1t is clearly seen that with a plate 1 mm thick only about
65 7 18 utihsed, and with § mm plate about 959 The 1 mm plate
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therefore would only 1ncrease the flux in the ratio of 55 to 47 6 with
the same maximum inductton This agrees with J J Thomson’s
statement that a thick plate does not conduct an alternating flux of
100 cycles any better than two thin plates each of } mm thickness,

i -~ -

" \\' -

07 \

06 \
i?gﬁ AN B
4 .
s 03 ~

o -

L

01 T

0 02040508 1 12 14 16 18 2
Thackness of Plate m ™|,

for Differont of

TFra 814 —Ratio of to Moan
Stampings at 100 Oyclos por seo

ne the total permeznce of a thick plate at this fraquency only equals
that of the two outside layers of 3 mm each For this layer a simple
formula can he obtained, which gives fairly accurate results for plates
of lgh permeabiity When A 1s very large, e~** can be neglected
compared with ez, Then we get

A
re=z

2
B = ZL=0 B.dz

222
2

ZJ' =Nz
A Jpo T a-m
€

2B,0x (1 _ E-ﬂ—m%) ~ B

“(L-g)ra = A
(1-7)A3
Coming hack to the absolute values
B =t
Virg
or 2 B %}f,
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whence it follows that the thickness of the equivalent plate, mstead of
A ly §= 1 _10* [bp
sonly 8=sop =5 A5 o

For ¢=100, p=2000 and p=10"° we get 8= 0253 mm, which agrees
with Thomson’s investigations, It 1s also clear that the induction
rapidly decreases towards the mnterior since €A% =e-%7=0 0019, where
218 a wave-length, 1¢ the amplitude of a magnetic wave 1s reduced to
a two-thousandth of 1ts value for every wave-length completed towards
the 1nterior of the 1ron

For the eddy-current loss 1t follows that at & given mean value
Boews the induction 18 increased on account of the unsymmetrical
distribution of the flux In electromagnetic machines, however, such
thin plates are used that the induction 18 almost umformly distributed
over the whole core, whence 1t 15 admussible to calculate the eddy losses
by means of formulae 174 and 176.

113. Effect of the Frequency and Other Influemces on the Iron
Losses. If the induced effective EMF E 1 an electromagnetic
apparatus 18 constant, then

L
¢B= 5. ::b‘ =constant
Now, from equation (179), the eddy-current loss 18 proportional to
E108\2
2 —
@87~ (g (r8)

From this 1t follows tiat the eddy-curient loss 15 propartional to the square
of the effectivs induced E M F ndependently of the fiequency and wave-shape
of the latter

This only holds, however, up to a certamn value of the frequency,
when the mduction becomes unsymmetrically distributed over the
section

The hysteresus loss 18, from equation (167), proportional to

1o (cB) 7 108 )” B
o= ‘(wQ, 7 (1r9)

From this we see The hysteresss loss s wmwversely pioportwonal to the
0 6t power of the fiequency

The greater the frequency the gmaller the hysteresis loss (for the
same pressure), and up to a certan limit this holds for the total iron
losses As the frequency imcreases a point 1s reached heyond which, on
account of the unsymmetrical distribution, the eddy losses increase
faster than the loss due to hysteresis decreases

Further, 1t 18 held that, in addition to eddy currents, there are yet
other differences between static and alternating magnetisation Maz
Wien hes attempted to shew expermmentally, in Wuedomanns Annalen,
Bd. 66, that the so-called magnetic mertra or mscosity at rapid reversals
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causes a decrease 1 the permeability and an increase i the hysteresis
loss per cycle at a constant maximum 1nduction  Thus, a sumifar effect
18 ascribed to magnetic mertia as to eddy currents To prove thus,
Max Wien took care to make the eddy losses quite neghgible i every
Tespect, whilst the experiments were undertaken throughout with
sinusoidal E M F.’s and very different frequencies From Figs 315 and
316, based on Max Wien's experiments, 1t 13 easily seen that the flux

Fie 816 of the Loop due to ing Froquency

at rapid reversals cannot quite follow the magnetising force, conse-
quent, { the hysteresis loops under these conditions appear different
from those taken with slow changes

At the close of his paper, Max Wien wrtes as follows on the
relation between magnetic after-effect and mertia “Whilst 1nertia
becomes noticeable with flux variations compgeted within yo55th of a
second, the magnetic after-effect does not begin before a lapse of
several tenths of a second (Klemencic-Martens). This after-effect 1s

eatest for weak fields, where the differences of the permeabihty and
%;sberems loss at the various frequencies are scarcely noticeable
These differences attain their greatest value at maximum permeability,
at which pomnt the magnetic after-effect vamshes On the other hand,
there are several analogies between the two phenomena—chiefly the

. .
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dependence on the diameter of the wire magnetised and the decrease
with the hardness of the iron ”

Lake magnetic inertia, other magnetic phenomena can also be ex-
planed by Ewmg’s molecular theory

Fia 816 —Widening of the Hystercsis Loup due to Incieasing Froquency

Vabratwon decreases hysteresis loss. This 18 especially so with soft
won and weak fields

The convietion is now fairly general that the hysteresis loss depends
much more on the physial nature of the won than on the chemacal
Pressure ncreases the hysteresis loss and decreases the permeability,
even when the force 18 removed

Mndey found that a pressure of 270 kg per em? caused an increase
of 20 % 1n the hysteresis loss ; on removing the pressure, the loss sank
to 1ts original value

In one and the same plate, the hysteresis loss varies from pomt to
pomt, and this varation may amount to 28 9%  Near the edge and

rpendicular to the direction 1n which the plate has been 10lled, the
f;zs 18 greatest, and 1n the mside portion parallel to this direction the
loss 1s least

Layers of oxulation on the plate, which have a low permeability, lead
to an ncrease 1n the hysteresis losses Iron plates are unnealed to
reduce hysteresis loss  The latter, plotted as a function of the
annealing temperature, gives a curve shewing that mimmum loss
occurs at 950°C. When we come above this annealmg temperature
the loss curve rises rapidly At higher temperatures the plates may
stick together and be destroyed .
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Up to about 200° C, the hysteresis loss is almost mndependent of
the temperature, whilst between 200° and 700° C. the loss decreases
from 10 to 20 %

‘With contmuous heating, however, the hysteresms loss increases—this
process 18 known as agewng The higher the annealing temperature,
the more pronounced does this propert{ shew 1tself

The curves 1n Fig 317 were taken by 4 H Ford on four different
transformers of 1 to 2 X.w  The transformers were fully loaded during
the whole of the experments  Ford maimtamns that agemng can be
reduced by rapidly cooling the red-hot plates.

w0 s

100

S

5
* Duration. of Test in Days
Fia 817 —Agoing of Tron.

Mauermann * mvestigated a number of plates with respect to ageing,
some of which were annealed at 700-750°C and the remainder at
950-1000° C  Those plates which were annealed at 950-1000° C
shewed a noticeablo 1mncrease 1 hysteresis loss after one week’s heatin,
at 56° C, whilst the plates anncaled at the lower temperature shewe:
hittlo change  After bemng heated at 77° C for a fortmight, the latter
plates still shewed httle change, whilst the mcrease for the plates
annealed at the higher temperature remamed about the same

Consequently, on account of agemg, 1t would seem that the annealing
temperature should not be too lgh

The mvestigations of a committee on Hysteresis appointed by the
Verband deutscher Elehtotechmker gave the following results (% 1.7
1904, p 501)

1 After lymg n the temperature of the laboratory for some months,
some transformers shewed a higher loss coefficient t than on entering ,

*ETZ 1901, p 861 + Total 1ron loss 1n 1 kg at ¢=50 and B=10000.
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on the contrary, the loss coefficient of the testing-transformer, kept at
the temperature of the room, shewed no change duiing the 2} months’
continuous experiments, so that 1t appears the loss coetheient got worse
at the begmming when the iron was brought mto the laboratory
temperature and then remained constant

2 Only one plate shewed no signs of ageing—all the othors shewed
a tendency to this, which was more marked with the 0 35 mm plates
than with the 0 5 mm , n general, the agemg 1s very small (3 to 8 %),
with the exception of one plate, which was found to he non-homogeneous
on delivery ~In this case the loss mcreased 25 7

3 Marked ageng, on the other hand, was observed 1 the alloyed
plates, and was found to be larger m those with 27/ Al (33 7/) than
1n those contammng 1% Al (16 %)

4 An mcrease m the loss due to hysteresis was always the cause
of the loss coefficient becoming worse (v getting worse by 47 7),
whilst the eddy-current loss 1 general remamed constant and m the
alloyed plates rather decreased (12 to 177) The figures obtamed
from static methods—in so far as could be expected from the un-
certatnty of the separation—agreed m general with thoso obtained hy
wattmeters

From recent experiments by D» E Kolben, on the mfluence of
sihicon on the agemng of won, 16 appears that this phenomenon of ageing
disappears rapidly as the amount of siicon 1nereases, until with iron
contaimng 3 5 % of sihicon 1t vamshes almost entirely

The wave-shape of the presswie, like the frequency, has no effect on the
eddy-current loss at low and moderate frequencies At ugh frequencios,
however, the eddy losses are larger when the pressure curve deviates
from a sine wave, because the higher harmomics cause larger oddy
losses than the fundamental. From formula (182) 1t 13 seen that the

hysteresis loss varies inversely as

' the 16 power of the form factor
) Simce peaked pressure curves have
% L the largest form factors, the
Ny hystevesis loss 18 smaller fo1 such

w0 than for flat-shaped curves This
N follows also from the fact that the

N maximum 1nduction B 1s propor-

& S~ — tional to the area of the pressure
S~ eurve, whilst this area 1s mversely

- proportional to the form factor for

& the same effective valuo  Conse-

quently, the maximum induction 18

1 24 "” 4 7% 1nversely proportional to the form
Fio 318 —Influence of tho Form Fnetor ou 1ACtOT and tho hysteress loss to
Hyatoresis Lossos the 1 6 power of the form factor

To give an 1dea of tho mfluence

of the wave-shape on the hysterosis losses, the latter have been calcu-
lated for varous form factors as a percentage of the hystoresis losses
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for a smnusoidal pressure, assummng the apphed EMF. constant i
every case The results are plotted as a curve 1n Fig 318

It seldom occurs that a pressure curve has a form factor greater
than 13 to 135, with such a wave shape the hysteresis loss will be
reduced some 259  Such highly peaked curves, however, are a
cdisadvantage 1n other ways—especially on account of the heavy stram
placed on the msulation In addition to this the eddy losses are
creased with peaked curves, so that they are not so efficient with
regard to the iron losses as mdicated by Fig 318.

114. Flux Distrmbution in Armature Cores. In most electrical
machines the iron 18 not continually magnetised and demagnetised
in diametrically opposite directions,
but the induetion often remaims more
or less constant, whilst 1ts direction
rotates Such a magnetisation occurs
m the armature of the foui-pole
dynamo m Fig 319. A rotating
induction of this kind can always
be spht up mto two components
perpendicular to one another.

To determine these components, we
start with the assumption that the
nduction at the surface of the arma-
ture 18 sinusoidally distributed,—a
field thus distributed 1s called a sine-
wave field To calculate the flux
distribution 1mnside the armature, we Fia 310 —Flux Distribution in Fom-pole
can suppose that magnetic charges Armaturo

exist on the surface of the armature, the density of which I :4%

varies after a sme wave These magnetic masses exert magnetising
forces H 1n the interior of the core, m accordance with the law of
maguetic potential—these forces cause the magnetic mduction B.

R Rudenberg* has calculated the components of this induction from
differential equations of the magnetic potential, on the assumptions
that the permeabiity 4 of the plate 1s constant at all ponts and
1n all directions, and that the distribution of induction is not affected
by eddy currents.

In polar co-ordinates, the radial component is

b= 11 (A4r? = Br")cos pe,
and the tangential component
bg= - 11 (417 + Br~?)sin pep,

*E 7% 1905 and R Rudenberg, Enerqe der Wabelstrgme  Sammlung electr
Voitrage (Stuttgart), 1906



362 THEORY OF ALTERNATING-CURRENTS

where p 18 the number of pole-pairs i the machme and 4 and B two
constants  These are obtamed fiom the hmiting conditions for the
mside and outside radius

1) 1=1,, b,=0,
(2) 1=r,,  b=B,cosps,
agsuming & sie-wave flux distribution B, mn the gap

1=
Hence follows A=B, "..1" N
- (_‘)
T
2 l+p
and B=B, A

()1
7y
If we change, and 7, these formulae hold for machines with rotating

poles. In Fig 320 the flux distribution in the machine m Fig 319 18
shewn, as calculated by Rudenberg from the above formulae.

£

v

Fia 820 —Flux Distribution in Fom polo Armmtwme

From the formulae 1t 15 seen that the induction at every pownt of a
revolving armature 18 made up of two components, one of which vares
with cospé and the other with sinpé  If the 2p-polar armature
revolves at n revolutions per minute, E.M F’s will be induced 1n the
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armature conductors at & frequency #p per mmute or =" cycles per
second Further 60
Qrn

$=5'b

where 7 13 the time 1n seconds taken by the armatwe to rotate through
the angle ¢, hence

9
p¢=:g?t=2wd=mt

The two components can therefore be expressed thus
b,= B, 08 wt,
by =By sm of,

and the resultant induction can be represented by a vector OB revolving
ahout 0, as m Fig 321

The angular veloaty of this rota-
tion 18 vanable, and 1ts average 18 w
The oxtremity B of the rotating
vector moves over an ellipse (elliptic
mduction, elhptic rotary field). Near
the external surface of the armature,
B,=B, and
Rrdard

Be=gm B
hence, for 1,=0, or when p 18 very
large, at the surface where r=1,,
we have B=By=B, Fig_ 821 —ltopresentation of Radial and
:1“ the nternal surface of the armature, where 2 =1,, then B,=0
an T+ppp-1
By=033 "%

Whilst the radial component always decreases from the outeide to
the mmde surface of the core, this 18 only the case for the tangential
component when the number of poles 18 greater than two  The
ellipses, after which the mduction varies, become flatter the deeper we
go nto the core At the mterior surface 1t becomes a line, because
the induction here varies in diametrically opposite directions, as m a
transformer core The ellipse only becomas a circle . the theoretical
case when the nside diameter 1s zero, and only the mduction at the
outside layer of such an armature follows a wmform rotation like a
circular vector (perfect rotaty field) —Assummg that the molecular
theory of magnetism conesponds to the physical phenomena 1 iron,
we see that the molecules have the tendeucy to rotate when the
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armature 10tates, the mean velocity corresponding to the fiequency of
the ® M ¥ ’s mduced m the armature winding

If the field m the gap 18 not a sme wave, the flux curve can be
analysed by Fourier's Series nto 1ts fundamental and higher harmomes,
aud the calculations repeated for each field By superposmng the
mductions due to the several fields, we get the resultant flux distribu-
tion 10 the armature Naturally, the fields with the largest numbers
of poles penetrate the least distance mnto the core.

f 18 very large or equal to o, the equations assume the followmy,
forms when rectangular co-ordmates are wtroduced The tangenti
component becomes

(o5t
b,=\4de +Be " /sm-uz,
T

and the 1adial by= - (As;v—Bs-;y)cos’;rw,

when 7 18 the pole-pitch and 4 and B two constants which ae found
from the two imiting conditious

) y=h  5=0,

@ y=0, b=Bioos e

‘Woe then get A= "B' ,
€3;11_1
B__‘BL _

1—5-2:—""

Ty 18 the core-depth. Thus, 1n the first formulae, h=7,=1, and 7= e

The last formulae give an msight mto the flux distribution n the
laminated pole-shoes of a contimuous or alternating-curront machme
with open or semr-enclosed slots m the armature On the mean
mduction B;, a magnetic wave, with 1ts maximum value B, opposite
the teeth and 1ts mummum value — B, opposte the slots, 18 superposed
(Fig 322)

13
At a depth y= -?% =7, the magnetic waves havo practically vamshed,
since they are here reduced to

r'=¢""=0 0435,

1e 4% 9 of their origmal value
The two assumptions on which we have hased all our calculations,
v1z. that the permeabihty 18 constant throughout, and that the eddy
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currents do not affect the flux distribution, are not always quite true.
Since, however, the permeability incieases towards the interior, the

Fro 822 —TFlux Pulsations in the Gap, due to Blot-openings

induction mmde will be somewhat larger than that given by the
formulae The eddy currents have just the opposite tendency, and

strive to keep the flux to-
wards the exterior Tigs
323 and 324 shew the dis-
tribution of the flux m
a smooth-cored and m a
toothed armature These
pictures of the lines of force
are reproduced from photo-
graphs taken by W M
Thornton * carried out by
the method due to Hele-
Shaw, Hay and Powell, The
method 18 based on the fact
that the fundamental oqua-
tions for the magnetic lines
of force agree with the
funda.mentafr equations for
the flow in two dimensions
of an 1deal—s e. frictionless
and mcompressible—flnd
A perfectly frictionless
flud does not exist, hut
1t 18 sufficient to take an

* Blectrscian 1905/06, p 959

Fia 824 —TFlux Distribution in a Toothed Armaturo
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ordmary liqwd flowmng m a very thin layer between two parallel
surfaces By foremg a coloured hiquid 1n strenks between two parallel
glass plates, Hele-Shaw and others succeeded m producing stream lines
which agreed with the lnes of force 1n a magnetic field o coloration
of the hqud was obtamed by forcing an anilme dlye mto the hqud
from a tube contanmng a large number of fine holes at small equal
distances from one another—thus forming sharply-defined stream lines
of extraordinary regulanty

Further, 1t can be proved that the velocity of the fluid under like
conditions varies with the cube of the thickness of the layer Ths
fact gives a switable means for producing a mechamcal analogy for the
various permeances of the several parts of the current path. The parts
of the one plate which 18 to represent the sir-gap are covered with a
layer of wax, and the other plate 18 brought so near to this that only

Fia 826

a munmum gap 18 left between them ; if, for mstance, this gap was a
tenth of that ab the part not covered with wax, the *permeability ”
would be reduced to a thousandth The hquid used was glycerine,
which was led 1n at one pole and out at the other As shewn by the
photographs, the paths of the ““lnes of force” correspond exactly with
those obtaned from compheated caleulations

In the calculation and construction of diagrams of the lmes of force
16 18 best to make several pictures of the lines of force by estimation,
split these up mto tubes of force and calculate the permeance of the
tubes  Smce the path of the lines of force 18 always such that the total
flux is a maximum, the diagram giving the greatest permeance can he
taken as the best It 18 often we%l1 to draw m the equi-potential lines
of the flux, and from these obtain the position of the lines of force
This 15 only advisable, however, 1n cases where the equi-potential lmes
can at once be drawn more easly and accurately than thoe lines of force
If we have now the figure of the lines of force —as, for nstance, hetween
the pole surface and armature surface 1n Fig 325—and have found
that this possesses the largest permeance, we then Pass on to caleulate
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exactly the flux between the pole and armature surface The permeance
A, of a tube of forco 18 3
e

h=gRe .
where 0, 18 the mean width and §, the mean length of the tube of force.
The breadth of the tube perpendicular to the plane of the paper 1s
assumed to be 1 cm  If the magnetic potential glﬂ'arenee between the
pole and armature surface 18 4 /5, the flux n the tube 1 question

will be 5
. =WZS, AW,
and the flux density at the armature surface
& _0AWs . (180)

"4, 0895, °
smce the tubes always enter the won at mght angles If the flux
density has to be found at a point in the gap, then @, must be divided
by the part of the equi-potential surface at tlIJ’e place in question, which
18 cut by the tube of force In this way, the flux i all the tubes and
the flux density at any pomt can be found with fair aceuracy

116. Iron Losses due to Rotary Magnetisation. (a) The eddy
curront losses 1 the won with rotary magnetisation are obtamed by
sumply adding the losses produced hy the two components of the
mduction.

If the iron 18 magnetised by a pure rotary field, then B,=B;=2B,
and we get Just double the eddy losses obtamed with a lmear
alternating magnetisation to the same value B

NS=200

Fia 820 —Distribution of Eddy cmrents due to Rotating Magmetisation

Starting from the formula in Section 114 for the flux distribution,
LR Rudenberg has analytically investigated the eddy currents m
revolving armatures and obtaned the mterestmg result that the stream
limes of the eddy currents are 1dentical with the hnes of force of the
magnetic field oxcept at the boundary surfaces where the currents
are reversed. The current distribution 1s illustrated by Fig. 326
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For the eddy-current losses, Rudeuberg obtamed the same formula

as above .
¢ B...M..>~ V., watts.

W,=c (A o T

Here B"‘"‘=1rlhB' 18 the mean tangential induction m the neutral

zone where 5, =0 Only the eddy-current coefficient for rotary
magnetisation 18 larger than for linear magnetisation, and, as seen from
the followmg formulas, depends largely on the armaturo dimensions
For a rotating armature, we have
x h\?
1+ (1 - -)
VE

Te=F T l_<1_,:&)25

P,

(181)

“ =%2 T (182)

and for hollow armature cores such as stators,
ne
1+I—) +1
Ly < pr (183)
o
6 T (1 7 1) -1
pr
In Fig 327 the values of o, for different numbars of poles are

Cyp=

plotted as functions of g All these curves start from %2 for g =0,

corresponding to alternating-current magnetisation Bi-polar rotating
armatures have the lowest eddy-current coefficient and hi-polar stator
cores the largest These formulae are deduced under the assumption
of umformly distributed induetion over the width of each plate and for
constant permeability x  Theso assumptions are only partly correct,
g0 that the eddy losses are always somewhat larger than those given
Dy the formulae These losses are further increased by the filng, ete,
done 1n building the core, so that the experimental values of the eddy-
current coefficient usually lie hetween 5 and 10, and 1n continuous
current machines may be still higher. This 18 largely due to the fact,
that 1 addition to the eddy losses in the armature plates there are
also the further losses m the pole shoes, due fo the teeth passing over
A sumilar effect 18 produced 1 an mduction motor These losses must
of course be separated, as will be shewn m the latter part of this
section
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(b) With respect to the hysteresis loss due to rotary magnetisation
(so-called rotary hysteresis), not many mvestigations have been made.
As shewn, the 1ron moleculos 1 & revolving armature strive to rotate
at a frequency ¢ corresponding to the mean angular veloeity w, but are
prevented from following the magnetising force by the friction between
them and the neighbourmg molecules rotating 1n the opposite direction.
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Consequently, losses occur here which @ 01 are not necessarily equal
to the hysteresis loss due to alternating magnetisation, for m this case
the magnetising force does not alter 1n direction but only 1n strength.
The most recent researches, however, shew that the hystercsis loss
with rotary magnetisation has about the same value as alternating
magnetisation for low mduction up to about 10,000 At higher -
ductions, on the other hand, the hysteresis loss 18 somewhat smaller than
with alternating magnetisation ~Various writers have even asserted
that the rotary hysteresis loss reaches a maximum at flux densities of
16,000 to 20,000, and then at higher values falls off very rapidly to a
very low value It has been attempted to explain this phenomenon hy
means of Ewing’s molecular theory, but neither the explanation nor
the experiments seem to be free from objection o hystorcsis
losses obtamed with alternating magnetisation in formula (168) are
therefore generally used directly for rotary magnetisation also, and
calculated for the mean tangential induction }i’,,,‘,,.,,=l B,

wh
AU 24
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(c) Losses in Pole Shoes 'Whth a slotted armature the induction over
the surface of the pole shoe 1s not constant, but varies along a wave
corresponding to the teeth and slots When the armature revolves,
the maxima and mmima of this wave move over the pole shoe, so that
at any pownt in the latter the induction pulsates at a frequency corre-
sponding to the number of teeth Z moving across the pole per second.

a consequence of this, eddy currents are induced 1n the shoes having

the frequency ¢,= 0l and penetrate to a depth 4, where the induction

18 constant The direction of these currents 18 such as to damp the
oscllations of the flux, that 1s, they exert a screemng effect and are
therefore chiefly confined to the surface of the shoe , below the surface,
they are rapidly damped out

If the pole shoes are laminated, the eddy-current loss due to the
teeth can be calculated from formula (176) for p=co. It must be
remembered, however, that the gap density B, must be replaced by the
amphtude B, of the flux pulsations at the surface of the shoe and the
pole pitch = by the half slot-pitch The depth of the laminations 1s

taken as f,—', for if they were deeper, this would have but httle effect

on the calculation, since the magnetic waves—as shewn—are practicall
damped out at this depth  Thus, m a pole shoe of length I cm, widt!

bom and depth ;—10111, the eddy-current loss will be

6 B, \? bl
Womeu (85 71000) 3000 ™4
B,
since Boan= ?"
wh
Here _a? T _ 1‘ T 8
" 778 oy 7h 6 lankz G
T
and the frequency o= 1000 )

A
where v is the peripheral speed of the armature in metres per second
Ingerting these values

watts

Pum (o ) s

1000/ 200022

T v B, \?
- 107, (A 15 1063 B wasts (184)

where 7, b and ¢, are m cm and A 1n mm
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The hysteresis losses are approximately

o ( B\
W»—"»m(m) 3000 "ot

o v [ B, \'*
= 6w 10(7o6m) B et

In this formula, as 1n the earher, the flux distribution 1s taken as
constant over the whole plate  For most pole shoes, however, this
does not hold, partly because the plates are often 1 mm or more thick
and partly because the frequency ¢, lies between 500 and 15600 The
thickness 8 of the equivalent layer of a plate i a pole shoe, where
¢=1000, p=10"% and x=2000, 18

10t e 1
8= 5= 107 =008 mm,

thus bemg much less than half the thickness of the plate In such
cases the values obtamed from the formulae are too low It 18 seen,
however, that 1t 18 extremely 1mportant not to use too thick plates for
pole shoes It 18 therefore of interest to calculate the eddy losses mn a
sohd pole shoe and compare these with the losses in laminated shoes
For tEls calculation we shall use the method given by Rudenberg in
the £ T Z 1905, p 182
The magnetic wave entering the shoe will agamn be represented by

2
A
In each element at the surface of the pole shoe and parallel to the
axis, the E M F induced per em length 18
,=2b,1078 volts,
where v 18 the peripheral speed of the armature m m/sec This EMF.
produces an eddy current near the surface ‘

b, =B, cos 2.

Co _

b,
U 2 =10 am;
> P
In section 112 1t was shewn that the eddy currents are propagated
1n solid 1ron 1n accordance with the exponential funetion €=y, where
2 fop
104V 105
a constant depending on the 1iron, and y the distance of the pomt m
question from the surface
Hence the general expression for the eddy currents can he written

!.‘,,=EB,,5'W cos 21-2710"’
P 4

Wo take now the expression 7,p dv, which répresents the loss due to
eddy currents n the element of volume dv, and mtegrate over the
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surface of the pole shoe #,/ It 18 convement to extend the mtegration
with respect to y to co, but the magnetic waves do not extend even
a wave length 1nto the iron, we then get the total eddy-current loss n

a glot pitch .
"
w'..rdzrdyj deitp
0 0 0
\ LY o
- n =20 0082 —2 .
ﬂdejdyLdzPlOlge cos 7 7,
®Bt 1
hence v,l),,=/]10m§1 e

Integrating over the whole polar arc b, instead of over a slot piteh #,,
we get the total eddy-current loss

B bl
W,= JT08 2 watts
= *B, 5 bl watts,
8 Ll
1088mp 10p
and with c,:l—(;g”,

RN AVON 5
W"“Eo;(ﬂ)oﬁ) (E) plwatts, . (185)

where b, / and # are m cm and v 1n m/sec
As seen, this expression differs considerably from that for laminated
shoes. They are 1n the ratio

72 o\ — 66A% [opp
l_ﬁtT'(ﬁ) AW p =7t N 1o,
to one another

For A=05 mm, # =2 cm, v=20 m/sec, p=2000 and p=10"5 this

ratio hecomes
&x@ﬂJ 20 x 2000
2 2x105x 10

2

=0116

In this case, therefore, the losses in the lammated polo shoes are little
more than one tenth of those m the sohd pole shoes To ohtan this
result, however, the plates of the laminated shoes must not hhe more than

28=0 16 mm, for c,‘=l(:ﬂ= 1000 cycles per second

1
Since these thin plates are not practicable, the eddy losses m the
actual laminations will have a value between the above
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116. Testing and Pre-determination of Liosses in Iron Stampings.
For mvestigating 1ron, the apparatus should be arranged so that the
malguetm eircut 18 entirely composed of the sample to be tested.

n the standards of the Verband Deutscher Elektiotechmker the arrange-
ment shewn 1n Fig 328 1s proposed for the tosting of iron plates

30>

o
15
B

LJ

Fro 828 —Apparatus for Testing Tron Stampings.

The magnetic circuit 18 made up of four cores each 500 mm long,
30 mm wide and at least 23 kg i weight The several plates are
meulated from one another by tissue paper The cores are held in
position by wooden clamps and at the junctions separated by a 0 156 mm
strip of presspahn  Special care 18 to be taken that the cores are strictly
1n line, correct position being detected by mimmum noise and mumimum
magnetising current The exciting coils are wound on presspahn spools,
on each of which thoere are 150 turns of wire of 14 mm? section

The stampings—according to these mstructions—shall be taken from
a sample of four lots weighing at least 10 kg From the total losses
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measured by the wattmeter, the loss m the winding 1s to be deducted
1n order to obtain the iron loss 77, From formulae (168) and (176),
the total 1ron losses are '

T e/ BA\" ¢ [BY\
W= Wyt W= a,m(m> +a_(Am4_1000)]V, (186)

The coefficients oy, and o, can he found by experiment, hy testin,
the sample at a constant mduction B with alternating-currents an
variable frequency ¢ For this purpose we have only to mantain the
excitation of the generator constant and vary 1ts speed, for then the
E M F. varies In proportion to the frequency and the flux remains constant.
The losses measured by the wattmeter are then divided by the volume
of 1ron to obtam the loss per dm® These values divided by their
rest})eotwe frequencies ¢ are plotted as functions of the induction B,
and must—according to the above equation—give a straight hine

The 1utercept of this straight line on the ordmnate axis equals

kL (i ”, whilst the height of a pomnt on the straight hne above

100 \1000,
this pomt of intersection with the ordinate axis 1s
' A f.B\*
“’"(W 1000) :

In Fig 329 the above-mentioned lines have heen determied for
05 mm dynamo plates at the induetions B =6000, 10,000 and 15,000,

14 wates and the values of o;, and o, cal-
e culated from the same are given

u P This method of separating the
pd hysteresis and eddy losses 1s

" Bt based on the assumption that

v Py Ggit the hysteress loss per cycle 18
Pl G T independent of the frequency

“w | This 18 not, as we have seen,

strictly correct, for the same

] /,L - ncreases somewhat as the

- =" B 100w — %ﬁ frequency 1ncrenses  Conse-

w = b quently, by this method of
co separation  the eddy-current

Wle _,_.-——F_-‘m—;j‘_' loss will appear somewhat
o - *¥ greater, and the hysteresis loss

. Gz somewhat smaller than 18 actu-
¢ ® » ¥ W &Geks ally the cuso But m any case
F1a 820 —Sepaintion of Iron Losses by Froquency the method enables us to see
Mothod

R what part of the losses 18
proportional to the frequency and what part to the square, which
15 of importance for pre-determining the losses and obtaining
the coefficients o, and o, expenmentaﬁly Further, we have seen
that the eddy currents—especially at high frequencies—cause a non-
umform diwstribution of the wduction over the section of the plates.
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In consequence of this, the hysterems loss will be further increased
with mereasing frequency, which appears as an crease of the eddy-
current coefficient o, 1n the above separation This coefficient, therefore,
will generally be found consderably greater when determined by this
means, than when 1t 18 deduced from the thickness and permeance of
the plates If the paper between the plates does not msulate properly,
or if a direct path for currents from plate to plate 13 made durmg
erection or construction, as 1s often unavoidable in practice, the eddy-
current coefficient may be stall further considerably increased

The total loss i watts m a lilogram of ion at an induction of
10,000 and frequency of 50 1s called the specific loss of the 1iron
Assuming a specific gravity of 7 77, the iron tested m Fig 329 has a
specific loss of 4°1

According to Ewing, the best result obtamed by him was from iron
having the following composmtion

Carbon 002 % Phusghorus 0029
Silicon 00329, Sulphur 0003 9
Traces of manganese Iron 999326 7,

This 1ron ages considerably, however By adding 3 % of silicon or
alummium 1t has recently be found possible to produce an iron, m
which the hysteresis loss 18 less than that of the best Swedish 1ron
This wron 18 also considerably less affected by agemng. The permeability
of such an alloyed 1ron 1s, however, lower than that of ordinary iron,
and likewse 1ts mechanical strength

Simce such alloy plates have 4 to 5 times the electrical resistance of
ordinary plates and therefore smaller eddy losses, they are particularly
suitable for transformers and other electromagnetic apparatus with large
1ron losses and poor cooling.

For the specific loss the Bismarck hutte—whose plates are largely
used m Germany at the present day—guarantees

Ordwnary glates - - - 36 watts per kg
06 to 07 Y Sihcon Alloy - 382 ”
30t036Y » - 18 »

The composition of alloy plates is usually as follows
Carbon 0:03 %, Phosphorus 001 ‘Z,
Silicon 3479, Sulphur 004 7/,
Manganese 03 7/, Iron 9629,

and they have a speaific resistance of 0 5 ohm.

117. Calculation of the Magnetising Ampere-turns with Continuous.
and Alternating-Ourrent. To calculate the ampere-turns 1n a magnetic
crewit excited by direct current, we divide the magnetic circuib mto
parts made of the same material and having approximately a constant
induction  Starting, for example, with the value @, of the flux m the

first part, we find the induction B, = Ql’ where @, 18 the mean section
1
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P,
of this part Similarly, the induction at another part B,=g‘-'=cr, %1,

where o, denotes the leakage coefficient of the part & with respeot to
part 1. 'We now need the magnetsation curves of the respective materials
These curves give the inductions B for the different mater1als as functions
of the ampere-turns aw per cm length of the magnetic path  Such curves
are determined by the above-mentioned hallistic measurements, or
by means of some form of permeameter, and take no account,
therefore, of the effect of hysteresis The error hereby introduced 1s
usually not considerable In Fig 330 the magnetisation curves for the
commonly-used magnetic materials of avemge quality are Elvsn
The permeability of good cast steel 18 independent of the amount of
carbon present up to 025 9, of the latter. Above this value the steel
becomes harder both mechanically and magnetically and 1ts permeability
ra%dly decreases
et af), afy, etc, denote the values of the ampere-turns per cm
length, as given by these curves, for the mductions B,, B,, etc, 1 the
several parts, then for the whole magnetic cicuit we have the total

ampere-turns AT,=at L +aty Ly+.

where L, Ly, eto, denote the lengths of the several parts

If we carry out this process for a number of values of the flux @,
we get a curve shewing ¥, as a function of 47, (cp magnetisation
ourve or no-load characteristic of machines)

The calculation of the magnetic circuit with an alternating flux, as
1n the case of transformers or mmduction motors, 18 quite similar

Here we have usually the mazwmum value of the sinusoidal alternating
flux exther given or assumed, whilst the effectzve value of the magnetising
ampere-turng or current 18 to be calculated Further, this effective
value has to be split up mto an energy or watt component aud a wattless
component If the magnetic aircurt 15 made up of several parts, tho
roblem cannot be solved accurately, uuless we have the hysteresis
oops for the several inductions m ﬁy:a various parts, From these the
hysteresis loop for the whole magnetic path could be calculated pomt
bﬁ' pount and the curve of magnetising current found, simlarly to that
shewn 1n Fig 307,

Since this method 18 much too roundabout for practical purposes, 1t
18 better to use the following approximate method

On a test-ring of the particular material, as shown 1n Fig. 299, with
various apphed pressures P, the effective current / and consumed
watts /7 are measured. If the pressure 1s sinusordal,

* P 108
Foe=
and the maximum 1nduction

P 108

B=444m9’
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where @ equals the section of the material The effective value of the
magnetismg ampere-turns per cm length of the ring 18
Iw
I_l_’
where L, 1s the mean length of the 11ng
Further, the watt component of the magnetising current 1s

al=

w
IW=T’
and the watt-component of the corresponding ampere-turns per cm
length 18 a Iaw Ww
"L, PL,

The wattless component of the magnetising cwurent and of the
corresponding ampere-turns per cm length of the magnetic path are

Iy =NTFZTE,

A e
Al =L 7 =EJP—I,“,=~/aﬁ—at,",,

In Fig 331 the values of afy and aty, are plotted for cifferent values
of B at 50 cycles per sec The curves are taken for iron plates of
varlous qualities and thicknesses, curves I and II bemng for dyunamo
plates 05 mm and 035 mm thick, and curve III for alloy plates
033 mm thick

To calculate a magnetic circuit for alternating-current, the procedure
18 sumilar to that for a circmt excited by continuous current  After
the circwt has been divided into parts of the same material and with
approximately constant inductions B,, B,, eto, then, by means of the
curves, we can get the watt ampere-turns A7, for the whole circuit

ALp=dbp Ly +atyely+ (187)

and likewise the wattless ampere-turns
ATy = by + Whpyale+ . . (188)

The resultant ampere-turns are then
ATA=\/(ATNV)A+(ATkIVL)E © e (189)

By this method, we not only take wto account the effect of magnctic
hysteresis, but also the influence of the eddy-current losses on the
magnetising current.

e calculation of the watt ampere-turns 18 quite accurate, sice
these are suusodal and give the total waits lost 1n the ciremt

W=I,P=1I,444cw®,, 108
=AT, p444c P, 1078 watts
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The calculation of the wattless ampere-turns m the whole eircwit by
summing up the wattless ampere-turns in thesseveral parts 18 not quite
exact, since these components contain higher harmonics which have
different relations to the fundamental m the several parts This
method, therefore, gives a somewhat too high value for the wattless
ampere-turns, especially when strongly saturated iron 1s in series with
feebly saturated or with air.

s " Uy

/e
11

0 o 30 w 5 0__ oy
Fia, 381

The error can he reduced somewhat by splitting up the ampere-turns
aty, mto a fundamental af,, and a component @i, comprisg the
higher harmonics  The latter 1s found fiom the equation

aty=n(@bys)? — (ahy i)

In Fig 332 the curves for at, , and at, are calculated for laminations
of the material used for curve I, Fig 331

Similarly, as 1n the above, we can now calculate from the curves for
the whole magnetic circuit

ATl y=atp, L+ atyeLy+
AT =0y WL.L1+M1W,L3+ o
ATp=aly Li+atys Lo+ .
whence AT, =~af, , +at,
and AT =NAT:, + AT2 =N AT+ ATS, o+ AT3, . (190)

At the present time, plates with low losses are usually used for
static transformers, which make 1t possible to work at hgh densities
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In these special plates, however, saturation 18 usually reached com-
paratively early, so that the magnetising current quickly becomes
distorted  On this account, 1n the diagram of such transformers, the
magnetising cwrrent cannot be conswdered smnusoidal, and therefore
cannot be added geometrically to the smusoidal load curient m the
ordary way , but, as shewn above, the smusoidal part of the wattless
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Fio 882

component of the magnetismg current must first he added directly to
the wattless component of the load current and then the components
of the higher harmonics at 90° to these geometrically added, m order
to obtam the total wattless component of the primary current supphed
to the transformer By means of this accurate procedure the wattless
component of the primary current will appear smaller than the sum of
the wattless components of the magnetising current and the secondary
load current, which 18 usually the one oalcu]itad The error mtroduced,
however, by the latter simple method 15 generally neghgible

118. The Magnetic Field in a Polyphase Motor. For the sake of
simpheity we will consider the actual case of a symmetrical two-pole
three-phase nduction motor. The stator coils of the three phases are
displaced from one another by 120° m space To the three phases the
following symmetrical pressures are applied

Pr=P 8 (w0l + ),
Pa=Py.an (ot +¢-120%),
Prr = Py 810 (b + ¢ — 240°).
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These pressures produce the following fluxes, which are mterlinked
with the windings of the three phases

&= - D, c08 (wi+),
Py = — D, c08 (i + ¥ — 120°),
and By = - P, co8 (0 + Y~ 240°)

These fluxes are displaced by 120° in space, whilst n time they
succeed one another after one-third of & complete period

The resultant flux 1n a direction z, which encloses the angle z with the
perpendicular to the coils of the first phase, can therefore he written

P, = ~ Py, co8 (wi+ ¢ —2).

Suppose the direction # rotates with the angular velocity o, then we
can write p=1y+ o,
and we get D, = - P, c08 (¢ - 7), .(191)

ie the fluz along an aws 1evolving with the angula: velocity of the cument 18
constant  Such a field 1s called a rotary field

If we take the imtial position z,=4, 1e. so that the flux at the
mstant £=0 18 & maximum 1n the direction #,, then ths direction
corresponds with the maximum flux at every mstant

Hence, wn a polyphase motor we have a constant flux rotating with a
constant angular velocty o, the direction of flux comeiding with the
perpendicular to the coils of each phase at the mstant when the
pressure of the resEectlve phase 18 zero  The flux distributes 1tself 1n
the gap 1n practically a sme wave over the armature perrphery

To caleulate the magnetising current 1n each phase, the effect of all
three phases 1 producing the common rotary field must now be taken
mto account. Consder, for example, the nstant when the flux 1s a
maximum 1n the first phase, then the resultant magnetising ampere-
turns along the perpendicular to the coils m this phase are a.lgo a
maximum and equal

AT =2weos 0° 4 2w cos 120° + 27w cos 240°,

and this 47T,,, has to produce the maximum flux density B, mn the
gap along the perpendicular to the first phase w equals the number of
turns per pole and phase Since the magnetising currents are practi-
cally wattless, 2, 18 & maximum, since the phase pressure 18 zero at this
moment Hence, we have

9
AT =w [I,,,,, cos 0° sin 7—: + 1,0 c08 120° 510 (7—; +§ )

o 4
+ I, €08 240° 510 (g + 3,,-)]
= I 0x w (€0820° + c082120° + 0% 240°)

=3,
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that 18 to say, the magnetwsing current per phase required to produce
the rotary field mn a three-phase motor 1s only 2 of the current required
to produce an equal alternating field by means of a single phase

'or an m-phase motor we fhould have

2 -1
ATy = mw(coa‘0°+cos?%+cosﬂ%+ +cosg2("n )W)

n
=5 a0 (192)

Hence w an n-phase motor, the magnehsing current wn each phase 1equued
to produce the rotary field 1is only % of the magnetismg current 1equu ed to

produce a cor esponding alternating field.
In a two-phase motor, where n=2,

AT = Toxw

In this motor the total flux 18 produced by one phase when the flux
18 & maximum along the perpendicular to this phase  Suppose the two
phases of the two-phase motor produce
alternating fields b; and by, of the same
maxmum density B;, which are dis-
placed by 90° both 1 space and time,
then, as shewn in Fig. 333, these combine
to produce a rotary field of constant
intensity B, From the above it 1s clear

N 1
& that to produce a rotary field, twice as
many ampere-turns are needed as to
produce an alternating flux  Whence 1t
follows further, that a smgle-phase
Fia 988,

mduction motor at no-load (1e. runmng
hght) takes twice the magnetising
current that 1t takes at rest, smece ab
rest an alternating field 15 produced, and when runnmg a rotary
field. .
If the three-phase motor 18 wound for 2p poles, the rotary field will

again move over a double pole-piteh 1n & pertod,—thus through ]llth of
a rovolution  Hence the rotary field mn a 2p-pole motor moves  times
more slowly than 1n a bi-polar, 16 at the speed 2 With the sume

magnetic reluctance per umt-tube of flux, the 2p-pole motor requres
p times the magnetising current that the bi-polar takes, smee there
are p times as many fields to produce
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THE FUNDAMENTAL PRINCIPLES OF ELEOTROSTATIOS.
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119. The Electric Field (a) By the term “electric field ¥ 1s under-
stood a space where electrio forces can be observed The electric field
has several properties i common with the magnetic field, though in
several pomts, on the other hand, there 18 a marked difference ~For
example, the total quantity of magnetism in a magnet 18 always zero.
‘With bodes 1n electric flelds this 18 not always so, a body, for example,
may contain only positive electricity, in which case 1t 18 said to be
positively electrified or charged. Electrically-charged bodies produce
n therr neighbourhood an electric field, which becomes weaker the
further we go from the charged body The repelling force exerted on
one another by two small bodies carrying the charges ¢, and g, 1 ar
or 1n vacuo can be calculated from Coulomb’s Law -

K= %z, . L(193)

where 7 18 the distance 1 e¢m between the bodies If the charges are
expressed 1n electrostatic umts, the force K will be given in dynes.
In the electrostatic system of umts, therefore, the electric quantity or

charge has the same dimensions (LI}M k.’l"l) a8 the magnetic quantity
1 the electromagnetic system of units If we have an electric charge
+1 1n an electric field, 1t will be acted on by the mechanical force f
This force f 18 termed the electruc fiold-stiength, and has the same

dimension (L'*M*T‘U as the magnetic field-strength i the electro-
mainehe system of units

s m a magnetic field there are magnetic hines and tubes of force,
sinularly 1 an electric field there are electric lines and tubes of force
An electric hne of force 18 defined ag a lmne such that 1ts tangent
at any pomt comncides m direction with the field-strength  The
number of umit tubes of force passing through a surface of | cm?
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perpendicular to tho direction of the force 1s taken as numerically equal
to the field-strength at the respective pomt

(b) Every point m a constant electric field possesses a potental At
any pomt m the field the potential 1

p:Eg, L(194)

where g denotes the electric charge of a pomt at the distance 7 from
the pomt consdered. The summation has to be extended over all the
electric charges m the field

If we calculate the work 4 done when the electric charge +1 at
distance 7, from the charge g, 18 removed to ifimty, we have

A={%n =J" Gar=(-8) =B-p,
r=r " 12 /e T !
The work 4 1s thus equal to the potential of the charge ¢, at a
dstance 7, Simece this work 15 independent of the path s over which
the umit cfmrge 18 conveyed, the potential will be

P=j:ms=j: —fds

By differentiating, we get: the field-strength 1n the direction s

ar
fi=- R .(195)
equal to the fall of potential in this direction. From this, the potential
dafference between two pomts 4 and B 18

J: ]
P,—P,=Jf,ds
4

A surface perpendicular at all pomts to the direction of the field-
strength, and hence the locus of all points having the same potental,
18 called an equi-potental surface The earth’s potential 18 usually
taken as zero, and 1n this case the potential of a pomt can be caloulated
as the work done m moving positive unit charge from earth to the
point considered

(c) Gauss and Green’s Themem The total flux ¢ leaving a closed
surface F' 18 equal to 4= times the sum of the electric charges ¢ msido
the sphere  This theorem can be directly deduced from Couloml’s

Law  Symbolically
¢=J fudF=4nZy, (196)
r

where f, 18 the normal component of the electric field-strength, duected
outwards, on the elemental surface dF, and the integral 1s talken ovor
the whole closed surface F'

Insude a solud conductor, mantasmng equubbrium, the clectiac field-tiength
J 15 everywhere zero  Thus if the closed surface 18 placed mside a con-
ductor where f=0 everywhere, then Zg=0, 1e o elechacaly can ernt
nsule a charged conductor. The electricity mside the conductor mutually
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repels 1tself to the surface, where the total electrical charge of the
conductor 1s therefore located The guantuy of electrucaty per umit of
surface 1s called the swi face densuty o of the electric charge

On the element of surface d#' the charge 18

dg=odF.

If a closed surface—as shewn m Fig. 334—is placed very near to
the elemental surface dF, then as the electric field-strength imside the
conductor 18 zero, and from Gauss’s Theorem we have

If,,dF:de= 4nSq=dro dF
or f=dnc . (197)

Hence the electric field-strength at a pont near the surface of a
charged conductor 18 4 times the surface density From this 1t follows
that tho surface of a conductor forms an equi-potential
surface, and that the electric lincs of force leave the
surface perpendicularly when 1t 18 positively charged,
and enter perpendicularly when 1t 18 negatively charged. £, £0
The positive and negative charges form the termin of
the tubes of electric force £0

(d) The olectric field-strength at a pomt m the
surface of a conductor 18 not equal to the field-strength fo
at a pomnt just outside

Just outeide the surface, both the electric charge Fia 834
o dF and all the other electric charges on the conductor
oxert their effect , hence we can put f,=f, +/,, where the field-strength
fy 18 due to the charge cdF At a pomt on the surface, the charge
odF oxerts no force f,, so that the resultant field-strength here 1s
fo=fi At a pomt just mnside the conductor the charge o dF exerts
the force ~f,, directed mwards, sinee the pomnt 1s on the opposite side
of the surface element Since the electric feld-strength 1nside a con-
ductor 18 zero, then f,=f, - f,=0, 16 fi=f,=21f.. Consequently, the
electric field-strength at a pomt on the surface 18

fy=1f,=2mc

In a field of this intensity there acts on every umt of surface having
the surface density o, the mechanical force

2 2
Eefg=tmr=fole, (198)
which 18 always directed outwards, and 18 known as the electrostatic
tension  Its presenge can be observed by electrifying a soap bubble,
which grows larger.7aad finally bursts
If the conductcr 18 a sohd body and the electrostatic tension becomes
too high, the conductor will discharge 1tself into the air. At ordinary
atmospheric pressure and temperature, such a discharge occurs when
K =400 to 500 dynes This tension corresponds to a mercury column
of 03 mm .
AC B
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The distribution of the surface density o over the surface 1s usually
non-umform  On a conductor removed from all other conductors, 1t
only depends on the shape of the surface, the density at any point 18
mversely proportional to the radius of curvature at this pont The
greatest density, therefore, 18 at pomts and edges of the conductor, so
that the discharge occurs first 1n these places

(e) Electric conductors are not only charged with electricity by
direct contact, but also by electrostatic induction If a conductor 1s
brought mto an electric field, then negative charges will collect on the
part of 1ts surface where the lines of force enter the conductor and
positive charges where the lines of force leave. The algelraw sum of the
chaa ges of electrcsty thus poduced 18 always zero.

To protect a body aganst static mduction 1t can be enclosed 1 a
conducting cover No lmes of force enter the hollow space, thus tho
conducting cover acts as an electric screen agamst all external electric
forces 18 property 18 employed in electrostatic measuring instru-
ments. In the mterior of a hollow conductor, no electricity can exist

120. Capacity. By the capacity C' of a conductor 1s understood
the ratio of 1ts charge @ to 1ts potential P, hence

Q=CP (199)

Smee the potential P=Eg, capacity has the dimension of a length

in the electrostatic system of umts
(a) If the olectric charge @ 18 concentrated at a powt, then the
electric field-strength at a distance p 18

%
and the potential P at the pomt in question 18 found from
e
and 18 ’ P= —Ifdp= —J‘D—gtlp=g+consb
Since P=0 when p=co, the constant disappears, and the potential 1s
@

P

Since P=constant for surfaces at the same potential, p 1s constant
for such surfaces  Hence the equi-potential surfaces are spheres abont
the charged point as centre Considering the space enclosed by one of
these spheres when the enclosing cover 1s metal, then the whole chauge
() passes to the surface without the electric field bemg affected m any
way For, from Gauss’s Theorem, the total flux ¢ through the several
equi-potential surfaces 18 not altered , this 1s

¢ =drQ=4mplf,
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and the surface density on a spherical surface 1s therefore

ol @ ¢
4w 4wp? 16ar2p?
The potential at the surface of a
sghere of rads r and charge @ 18
thus

r-g (200) qa1

Hence, 1 follows that w aw the
capacty of a spheie equals s 1adwus
Inside the sphere the potential 1s every-
where zero, irrespective of whether
the sphere 18 hollow or sold

Congider a straight Ime of nfinite
length (Fig 335) with the charge @
ser umt length The field-strength

ue to 1t at a pomnt distant p from
the straight line 18 Fio 895

=+3 =+7 a4y
f=.r ;lecosu=r EQL(L’L:“. 291({5“&1:%2 (201)

a? z @

a=-3

3

as-3 P

The potential at this point 18

P= —dep= —Ig—;‘?dp=const ~2Qlog,p

The equi-potential suifaces also satisfy the equation p=const here,
16 they are cylinders about the straight line as axis. Suppose agan
an equi-potential surface to be metallic, then the charge ¢ will pass to
this metal eylinder, without affecting the electric ﬁel% The electric
flux for the length 7 of the cylinder 18 1n this case

bp=4mQl= 41rp1; 1=2mplf,

and the swface density 1s

f_20_4@

Tdn " Imp 3mp 8l

Tho potontial and eapacity of an mfinitely long cylinder cannot be
expressed m fimte teims, smee there are no imiting conditions for the
constants  Later, however, we shall return to special cases

Lastly, we can conmder an mfimtely large plane with the surface
density o, the field-strength at a pomnt near the plane 18 f=2u0,
smeo half of the 4mo lnes per umit surface go out perpendicularly
on the one side, aud the other half on the other de On the surface
1tself f,=0
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(b) To calculate the caphaclty of a hne, 1t 18 best to proceed as
follows We start from the assumption that the conductor has a
certan charge @, and caleulate 1ts potential by finding the work
necessary to bring +1 charge from mhmty or earth to the conductor
The path along which this 13 done 1s, as mentioned, immaterial

. As an example, we shall calculate mn this way
the capacity C of a cylinder of diameter 21
(Fig 336) and len?.h ! surrounded by a co-axial
earthed hollow cylnder of mside diameter 212
The hollow cylinder has zero potential, and the
potential of the internal cylmnder 18 the work

ooy
— f dp, which 18 required to convey umt charge

=z
from the outade cylinder to the mmde. For a
very long cylinder we had

9
Fio 888 f= :P—’
where @ =charge per umt length , hence

=1
Pr=r —?dp= - 2Q(log,? -10g,1r’)=2()10g,{—',,
p=R

and the capacity C' of the two cylinders 18
ot (202)

In a smlar manner we find the capacity of a spherc of radms ¢
concentrically surrounded by a hollow spheie of mnside radius 2 Here

= 1.1 R-1
- ‘L=J*"*’=Q(F‘F)= ER
R ;
Hence the capacity C'= o_ B This may bo very different 7
P R-r F

from the capacity of a sphere removed far away from other

bocies The charge on the inner surface of the hollow

splliere equals the charge @ on the surface of the inner
ere.

R s

[AVNSSUNRRRSNNNINENNNY]

ANIR

If a surface F having the charge @ placed opposite to an l
earthed surface at a distance 7, the field-strength between
the two plates 15 everywhere constant (Fig 337), when the g, sy
surfaces are large compared with the distance r» The
direction of the field 18 normal to the plates, and 1ts strength 1s

f= 47m_=41r@

£ (203)
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At the surface of the charged plate the field-strength f; 1s only one
half, since here only the charge of the earthed plate can produce a

component of force , thus
’ fo=2mc= #
The potential of the chaiged plate 18

=0
e[ 8

and the capacity of the pair of plates
09_F (204)

Such systems of two conductors having large surfaces a small distance
apart are called condensers, the two conductors being termed the plafes
of the condenser Condensers are used for collecting large electric
charges by means of moderate potential differences,

In'all practical condensers, the plates are so near together, that they
always receive the same charge, which depends only on the potential
difference applied to the plates, and 1s wholly independent of external
mfluences such as the presence of strong electric fields or other
condensers  UJsually the plates are made of tin-foil, whilst the dielectric
consists of paraffin-wax paper or thin mica sheets Recently, mgh-
pressure condensers with glass tubes and metal plates—similar to
Leyden jais—have been placed on the market

The capacity C of a condenser s numerically equal to the charge @ which
collects on one plate when ot 15 1aised to umié potental, the other plate bewng
em thed, or 1n other words, when the potential difference between the
plates 18 umty If several condensers are placed in parallel, each
assumes a charge proportional to its capacity and to the common
potential difference, and the total charge of all the condensers equals
the sum of the charges of the several condensers Thus the capacity of
condensers wn parallel equals the sum of the capacites of the several condenser s,
when these are mndependent of one another If several condensers are
placed m series, they will all assume the same charge ¢, and the
potential difference P between the first and last will be divided
between the several condengers 1 mverse proportion to thewr capacity

Thus
! P=P +P.+P R Q. @ Q
1ToaTe [N ANTA C

whence 1t follows that the reciprocal value of the capacity of several
condensers 1n series equals the sum of the reciprocal values of the
capacities of the several condensers

c) We have seen that when other hodies, e g tho earth, are in the
neighbourhood of a conductor, the capacity of the latter alters Every
body at zero potential which 1s brought mto the electric field of the
conductor 1n question raises the charge of the latter, and thereby
1ncreases 1ts capacity.
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Maxwoll defined the capacity of a conductor as the ratio of 1ts charge
to 1ts potentual, the potential of all neighbourmg bodies being zero, as
when they are earthed If there are several conductors le, K,, ete,
with charges @, @,, etc, 1n the electric field, the potential ab any
pomnt equ:ﬁs the sum of the potentials assumed by the same pomt when
each conductor receives 1ts charge separately whilst the others remain
uncharged 'We have thus a superposition of the electric effects.

If the first conductor K, has the charge @,, winlst the others remain
uncharged and nsulated, the potentials of the conductors K;, K,
will be respectively

Puly Py P, ebe,
where 2,,, Py, etc, are constant magmtudes depending only on the
position and dimensions of the conductors  These constants are known
s polental cogfficients If conductor K, 18 charged with the quantity @,
whlst the others remain msulated and uncharged, the conductors will
have the potentials

Pa1@ay  Pas@ay Peals, ctC

Hence when the conductors have simultaneously the charges @y, @,,
ete their potentials will be

Py=p1, @+ P Q2+ Par O + ]
Py=p1s@i+ ot Py + J . (205)

From these equations, we get
Gi=cn P+ Pyt e Prt ]
Qe=caPr+GaPat e, Pyt J’ (206)

The magmtudes ¢ are functions of the magmtudes p, and like the
latter are determined by the position and dimensions of the conductors
The magnitudes ¢ are called capacity cocfherents, when the two sufixes
are the same, or smply, the respective capacities Thus ¢, 15 the
capacity coefficient or the capacity of the conductor KX, ¢,, tho sunilar
coefficient for conductor K, and so on The magmtudos ¢, wheie the
two suffixes are dufferant, are called the mutual capacity cocfherents of tho
respective conductors, In this case ¢,,=¢,,, Thus ¢, 13 the mutual
capacity coefficient of conductor K relatively to conductor A, and
80 on

From the last series of equations, 1t follows 1he capawly o the

wpacity coefficient of a conductor 15 equal to the quantaty of electi ity possessed
by the conductor when s potential equals umaty, the potental of all other
conductors bemng zero

The mutual capacily coefficient of a conductor K, 1elatwely to a condudtor K,
equals the quantity of electrucaty whach collects on Ky when all other conductons
except K have zero potential whilst the conducton K, v honght to unsd
potental
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If the conductor K, is charged positively whilst the remamng
conductors 1n the field are earthed, the lines of force from conductor K;
pass mto these conductors and away to earth. Obviously, Lines of force
cannot come from the other conductors, since no point at a lower
potential exists 1 the field Consequently, there can be no positive
charge on any of the other conductors. The sum of the negative
charges on the earthed conductors, therefore, can never become numer:-
cally greater than the positive charge on the conductor K,  From this
ot 18 seen that the mutual capacity coefficients must always be negate (or ze10),
and that the sum of the mutnal capacity coefficients 13 numerwally smaller
than (o0 at the most equal o) the capacity cogfhicrent

(d) To determne the capacity coefficients experimentally, the method
gven by Professor Schleiermacher* can be used with advantege
All conductors except the z are earthed, and the capacity of
the @ 18 then measured, from the above defimition this equals the
coefficient ¢,,  Smmilarly, we proceed with all other conductors,
whereby c,,, equal to the capacity of the %™ conductor, 18 obtamed
If now all the conductors with the exception of the z** and y™ are
earthed, whilst these two are jomed 1n parallel, we shall not get the
capacity c,.+¢,,, as would be the case with parallel-connected mde-
pendent condensers, but a capactty ..., since both conductors mutually
affect one another. If we form the system of equations (185) for the
two conductors z and y under the assumption that all the remaimng
conductors are earthed whilst they have the same potential P, then

Q=0.P+c,. P,
Q,=¢,,P+c,,D,

and Qe+ Qy="Priyy
By elimmating @, and ¢, from these three equations, we get
Coy=Cya= — Crzt Oyy = Clovn) (207)

2

If gy =Ceq+0,,, a8 1 1ndependent condensers, then c,,=0, which
mdicates that the two conductors # and y mduce no charge on each
other

It follows further that the three capacity coefficients of two con-
ductors can be determined expenmentally by three capacity measure-
ments For three conductors six capacity measurements are necessary
and for n conductors (1+2+3+  +n) measurements 1n order to find
all the coefficients

If one of two conductors acts as a screen to the other, as 1 two
concentric spherical shells, then the hnes of force go partly between
the two opposing spherical surfaces and partly hetween the exteinal
spheical smface and the outmde space The latter lines are only
present, howcver, when the outer conductor 18 charged Hence the
outer conductor possesses a capacity equal to the capacity of the

*E T Z 1905, p 1043
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mner sphere ncreased by the capacity 1t would have 1f the mternal
conductor were not present With two spherical shells with radu 1,
and 1, and R, and R, respectively (Fig 338), the
capacity of the inner shell 18

158
R -7

b=

and of the outer shell,

_ _ 11 5
Ga=t+By= gt Iy

From this the mutual capacity coefficient 1s

_ el
Ga= a“_Ri—h’
and Cnagy =219+ C1y F Goa= o — 0, =17y

If the outer shell 1s charged, a charge will collect hoth on 1ts mmer
and on 1ts outer surfaces, when the iuner shell 1s earthed On the
surface of the inner sphere there will then exist the same charge as on
the wmner surface of the larger shell.

(e) The formulae (206) for calculating the capacity are meonvenient
m many practical cases Thus in transmission lnes, for example, 1n
which there may be several conductors supported by the same poles,
each conductor can possess a different potential In this case 1t 18
complicated to calculate the charge on a conductor from formulae (206)

ence we define 1n general #he cffectwe capacity of a conductor as the
1atwo between ols charge and s potental.

Sice the effective potential of a conductor depends on the potentials
of the other conductors, both the capacities and potentials of the other
conductors must always be given The capacity of a conductor can
then 1n general be found in the same way as above, by calculating the
work done m moving umt positive charge from earth to the surface of
the conductor.

In calculating this work, not only the charges on the conductor, but
also all electric charges in the field must be taken mto account

By way of example, the relation existing between the effective
capacity and the capacity coefficients will now be shown m the caleu-
lation of the charging current of a doubleline of a smgle-phaso
altornating-current system with earthed neutral —The potentials of
the two limes with respect to earth are p, and p,, where

D= —Py= % P s 0
The charges are

1
G=C1121+ Gy Py = (01— €ay) §Pmn5111 wl,

1
G2=CgePy+C1aP1 = — (632~ C19) EP,._sm o,
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and the charging currents

11=%=(cn - c,")gP,mcos wt=§01 P, cos wt,

=%’= —(Cgp—€19) L—;P,,_, cos wi= — %’ Cy Py cO8 0,

where C=c,~c¢;, and Cy=¢yy—¢;,, the effective capacities of each of
the two conductors

If the neutral pomt of the system 15 not earthed, the same current
2y = —13=1% will flow 1n the conductors and

= (611 = 631) 01 10 008 0E = wC} Py ,,,, COS 0,

= — (Cag — C10) 0Py s €O8 0= — W Cy Py 10 COS w0,

whence O( P yuax + Pyyyay) CO8 0 = %}l - %2;= 3 (Cl’l + Cl’)’

or P, cos mt=1<(%+cl,g)=é,

where C1s the effective capacity of the double-line  Since
1 1.1 1 1
U=C_’l+ﬁs=¢n‘°n C1a=Ca

it follows = (e =19)(Cas = 019)

G117+ Cop— 2014

In calculating the effective capacities, however, 1t 18 not necessary to
first determine all the capacity coefficients, but the effective caggmiiy 18
caleulated for the actual conditions, as will be shewn i Chap XX

121. Specific Inductive Oapacity Until now we have assumed
that the conductors are surrounded by ar. If some other insulator
(solid or flud) other than atmospherc air 18 brought hetweon the
plates of a condenser, 1t 18 1nvarably found that the capacity of
the latter 181ncreased Even i air the capacity 18 somewhat—although
very little—greater than m a vacuum

() The ratio of the capacity of a condenser, in which the space
between the plates 18 ﬁlles with an 1nsulator, to the capacity of the
same condenser when this space 13 occupied by air (or 15 a vacuum) 1s
defined as the speefic mduchwe copacity of the respective msulator
Since the msulator 1n this relation 15 often called the dielectric, the
above ratio 18 frequently roferred to as the duelectie constant of the
particular dielectric

In what follows, we shall denote this constant by e

‘With ordinary gases, ¢ differs only very little from wmity, and can
therefore be taken as unity for all practical purposes
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All solid and hiquid drelectrics have dielectiic constants greater than

umty

In the following Table, the dielectric constants for sold and hqud
dielectrics m common use are gven The values vary within
farrly wide hmits—owmg to the fact that the mateials were of
different composition and were nvestigated under different physical
conditions

Ether - - - - - 34417
Ethyl-alecohol - - - - 243274
Amyl-alcohol - - - - - 15
Amlne - - ‘- - - 71
Benzine - - - - - - 19
Benzol - - - - - - 2334
Methyl-alcohol - - - - - 327
Ohve-ol - - - - - 3—316
Ozokent ol - - - 216
Paraffin ol - - - - 19
Petroleum - - - - - 2
Rapeseed o1l - - - - 147
Castor o1l - - - - 453
Carbon disulpiide - - - 17—27
Turpentine - - - - 22
Water (distilled) - - - T6—82
Xylod - - - - - - 24
Ebomte - - - - - 2131
Ice - - - . f- - - - 30
heavy, easily fusible - - 20—b0
Glass{hght,ydlﬂicult tofuse - - 50—100
Mica - - - - - - 5070
Rubber - - - - - - 235
Vulcamsed rubber - - - - 2535
Gutta percha - - - - - 30-—50 (usually 4 2)
Impregnated paper or jute - 43
Colophonum™ - - - - - 25
Manilla paper - - - - 18
Marble - - - - - - 60
Paper mmpregnated with turpentine - 24
Paraffin - - - - - - 23
Porcelamn - - - - - - 53
Shellac - - - - - - 275
Sulphur - - - - - 40
Silk - - - e 16

As the temperatuie icreases, the dielectric constant cocicases
Thus 1f ¢, denote the dielectric constant at %, then at £° we have

e=c +a(fy-t)
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For the following substances the values of a are
Mica etween 11° and 110°) 00003
Ebomte ( , 11° , 68) 00004
Glass (., 17° , 60%) 00012 to 0002
Benzol and Toluol 00035
In the case of some media, the dielectric constant depends on the
strength of the electric field
(b) If € 18 the specific inductive capacity of the dielectric, the
potential difference of a condenser 15, for the same charge, only

% times that of the potential difference 1 air

Since (from Eq. 195) 8
P,—P,=| f.ds
~Pu= [

1t follows that the strength of the electric field f 1 a cielectric, for
a given charge, 18 only < times as large as m air  Two electric charges

¢, and gy, when situated 1 a dielectric, repel one another with a force

_1a4
x-4p . (208)

If wo represent the field-strength in the dielectric by hnes of force,
the number of lines leaving positive umt of clectiicity 18 46—"'

Between two parallel conducting sla.tes with the surface charge o,
and separated by a dielectric, the field-strength 18
_d4mo P 9,
el (209)
where 7 denotes the potential difference between the plates
The force acting on wmt suface of exther of the plates 18

2we? ¢ P2

foa-=_€__ &7 (210)
If the surface densities o are given, the attraction between the plates
18 therefore mversely proportional to the dielectric constant On the
other hand, for a given potential difference, the attraction between

the plates 18 directly proportional to the dielectric constant
The capacity for ' cm? of the effective surface of a system of plates

m a plate condenser 18 F

C=e et (211)

where ¢=dielectric constant of the dielectric,—that 13 € times greater
than m air
(c) Gauss’s equation (182) for a closed surface suirounded by a

delectric will be
EI fodF=dn3y (1960)
r
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We shall now consider the boundary surface, F, between two dielec-
tries T and IT (Fig 339) having the dielectric constants ¢ and ¢,
The positive duection of the field-strength 7 1s assumed to be from
daelectric I to delectric IT
r It can be deduced from the prineiple of the
e conservation of energy, just as m the case of a
Ny magnetic field, that the tangential component f,
of the electric field-strength 13 continuous 1n
passing through the surface F. Let f,, and fi,
denote these taugential components at two points
very near to one another, but on opposite sides
of the boundary surface, then

fu:faz

Now consider the normal components f;,, and f,, of the electrie field-
strength at two such pomts Imagme an oextremely short eylinder
placed perpendiculaily to the surface F with the pownts at the centres
of 1ts end surfaces (see Fig 339) These end surfaces arc parallel to
the element dF of the surface conmdered and both have the same
area as dF  Let o be the surface density on the element, then

&fandF - f,dF =4we dF ,
& fon—efr,= 40

If the su1face 18 uncharged (o =0), then

I

Fia 830

fm_ € k)
fsn LY ( )

Thus, 1 passing from one dielectric to the other, the normal com-
pouents of the electric ﬁeld—strenlﬁﬂl vary mveisely as the dielectilc
constants of the two dielectrics Thus
we have an analogous law for electric
lines of force to that for magnetic
Simlarly, termim of the electric lines
of force oceur at the houndary surfacc,
which appear to gwve electric charges
to the surface

Fig 340 represents the transition of
electric lines of force from one medium
I to another medium IT having double
the dielectric constant One half of
the hnes terminate at the surface, the
other half pass out at an angle which Fro 840
18 mchned to the normal, such that 1ts
tangent 18 twice that 1 medum I A horizontal plane a—b cuts
the same number of lines of force per nmt of suiface m both media
A vertical plane ¢—d 1 medium I will cut twice as many hnes per
em? as a vertical plane e—f 1n II.

AN
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At the boundary surface of the two insulators theie will be an
apparent electric surface charge, whose density o, will be given by the
following equations

afon—afin=0,

Jon—frn=4m0,,

6 —€ 1
wh = — fi=
ence o, o Sin

g—¢ 1

6 4 fon

Let an msulator be brought mto an nsulating medium of smaller
dielectric constant, then where the electric lines of force enter, there 1s
an apparent negative, and where they leave, an apParent positive
surface charge Such an apparent electric charge 1s called the mfluence
electinuty of the msulator It corresponds to the magnetic surface
charge of paramagnetic substances, and vanishes as soon as the msulator
18 removed from the electric field It disappears also when the m-
sulator 15 divided mto two parts while mn the field, the one part
contaiming the é)osmve and the other the negative aplpareut charge,
and the individual parts are removed out of the field. The same
holds also for the magnetic surface-charge

On the other hand, a conductor retams 1ts charge in the latter

case
(d) By the term wduction fluz through an element of surface dF, we
mean the magmtude d=cf.dF, @13)

where f, denotes the electric field-strength normal to the elemental
surface  The ratio i

b= gp=s . (214)
can be defined as the snduction or polarisation 1n the direction normal to
the surface element dF at the place consdered In arr or vacuum the
induction coincides with f,  In dielectrics, b 1s always greater than f.
From positive umt charge there are always 47 1induction lnes
leaving and into negative nmt always 4 lines entering, no matter
whether the charge 18 placed m ar or in some other msulator.
Induction hines only start and fimsh at actual electric charges, and not
at apparent charges on insulators In passing through the boundary
surface between two insulatois, the normal components of induction
remamn continuous, whilst the tangential components are m proportion
to the dielectric constants Thus we have

byy=bay
b, ¢ } . (215)

by &

At such a boundary surface no mduction lmes will terminate,
provided there 18 no actual electric charge on the same
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(e) Let two conducting plates M7, and M; (Fig 341), charged with
+Qand - @, be separated from one another by msulators of different
delectric constants ¢, €, € and of thickness 1,,

- 7, 73 The density of the charge 1s

=

<
NN\

=

o=

F

where F denotes the effective surface of a plate
The mduction between the plates can he taken as

ANy
'
~

PP constant, 1 b=dro
Smce the electric field-strength 18 mversely pro-
nrn portional to the dielectric constants, we have
—_ b b b
—T— f1=?: fz=€: f5=? (216)
Fia 841 ‘ 1 8

Let P be the total potential difference between
the two plates, and P;, P, and P, the potentinl differences hetween
the several boundary surfaces, then

P=P1+P2+Pg=b(ﬁ+:—:+%:—)=41ro'(’—.‘ +f3+?“>

€ a 9 %
The capacity of the system per umt of effectrve sumifaco of a plate
18 therefore 1
= (217)
ir (’_1 + Ty ﬁ)
a 9 9
Putting 4my_ 1 by _ 1 dmy_1

q 0’ o 0 6 Gy
whete €, C, and Cy reﬁresent the capacity per cm? for cach of the
dielectrics at the given thicknesses, then we have

1 1.1 1

v=—671+~672-+6;, (217a)
1e the capacity of a condenser, whose diclectric consists of soveral
parts, equals the resultant capacity obtamed when the capacitics of
the several parts are connected m series
The potenrla ifferences Py, P,, P, between ¢ X
the several boundary surfaces equal the 4 |__I . A,
terminal pressures which act across the "_L c ,I_‘ ’
several condensers (', C; and Cy whon P 18 ! e
apphed at the terminals. Hence the con- Fra 82
denser (Fig 341) can be replaced by the connection shown ny Fig 342
Let C; be the capacity whon we have air between the plates, then the
ratio between the capacities 18
C_nytaptay _ 7
Gyt 1 s 7

9 9 % 9 9 §
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Thus the capacity 18 mereased by mtroducing @electncs mto

the field
bﬂcT"—/
R

If we make e,=¢;=1 and 1,+174=19, 16 we place
3 =€ 3 +Tg=1g P &LORE»
-

of thickness 7, between the plates, the remainder of the
arr, then for tﬁw same charge @, the field-strength in the air remems--- -~
the same as if the whole space were filled with air The potential
difference between the plates 1s reduced to the value

P=d (’—1 o)
TC o +7°)
which 1s 4#0(1 —El ) times less than that exasting when the plates

are separated by s The mtroduction of the dielectric of thickness 1
has the same effect as if the plates were brought nearer together Ly

the amount 1
(1 - —) .
€

For the same potential difference between the plates, the electric
field-strength 1n the air 15 mereased in the 1ati0

7

r_q L
" bt
The capacity of the plates mncreases in the same ratio when the
dielectric 18 mserted  The electric field-strength 1 the nserted

dielectric 18 1 times that m the ar, and 18 thus
€
12
o

times the field-strength 1 the air before the dielectric was introduced.

‘When a conductmng plate of thickness 7, 1s placed between the two
plate conductors, wo have only to msert ¢, =co 1 the above equations
The two charged plates hehave in exactly the same way as if they
wero brought neaier together by the amount 7,  Provided the mserted
plate 18 nsulated, its position between the charged plates 18 quite
1mmaterial, as 1n the case 1n which a diclectric 18 mserted

122. The Energy in the Electric Field. Similar to the magnetic
field onergy 32, the energy requred for the production of the
electric field 1s,

A=320P=§(Q L1+ QuPy+ QL+ )
=;2(J’HQ?+]’MQ§+ )+ (21201 e + @@+ ) (218)
=%(C“P?+C‘£2P:+ Y+ (P Pet oy PP+ )
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If the charged plates are mnsulated so that their charges remain
constant, the work done by a displacement of the plates in the field 1s
equal to the energy lost by the system due to the cisplacement The
forces exerted by the field on the plates tend to move the latter, so
that the energy i the field is a mmimum

If, on the other hand, the potential of the plates 18 kept constant,
as 18 the case, for example, when the plates are connected to galvanic
batteries, the forces acting on the plates tend to displace the latter,
so that the energy of the field 18 a maximum In this case, the work
done by the forces due to the displacement in the field equals the
mcrease of energy m the system Both the mechanical work done
and the wcrease of energy m the fleld 18 taken from the batteries to
which the system 18 connected

The equation for the energy of a system of conducting plates holds
good independently of the dielectric in which the conductors may he
situated

(a) If two parallel plates have a surface density o and a potential
difference P, then the emergy per cm? of the mternal surface of
erther of the two plates 18

}oP.

The constant electric field-strength m the space between the plates 1

P
=%
where 7 18 the distances between the {)Iatea
If the space between the plates 18 filled by a dielectric whose constant
15 ¢, then o
Lt TN (197a)
and the energy per unit of volume of the diclectric 18 accordingly

1cP
5"7=e£_;. veeen e e eennees (219)

This equation holds quite generally for a field £, m any delectric.
For a given clectric field-strength (or potential ditference) tho energy
1n the dielectric 18 thus proportional to the dielectric constant

Since the mduetion -

=fe,

1t follows that the expression for the energy 18
o _ e

=g . (219a)

For a given mnduction (or charge) the energy m the diclectric 1s
mversely proportional to the dielectric constant
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The two surfaces of the plate condenser are attracted by a forue
fo=tof=toT

per em? and exert a pressure on the dielectric equal to the energy per
umt volume stored up 1 the same We thus see that the stored-up
energy 1n the electric field (like the stored-up energy in a magnetio
field) causes a mechanical stramn between the respective bodies. From
this follows that the energies of the electric and magnetic fields do
not reside m the magnetic and electrio charges—as 1ndicated by the
formula from which they are calculated—Dbut, as first pomted out by
Maxwell, in the media of the fields

(b) From the law of mmmum field-energy 1t follows that a small
uncharged conductor, exerting no perceptible influence on the field
distribution 1n the neighbouring space, tends to move 1n that direction
m which the field-strength 1ncreases

An uncharged conductor in & umform field does not experience any
resultant transverse force, nevertheless 1t stiives to set 1tself—just
like a prece of 1ron 1 a umform magnetic field—so that 1ts longitndinal
axis comncides with the direction of the electric field. This 18 due to
the fact that unit volume of the body in this position can embrace the
greatest number of limes of force and neutralse the same

The following method, which 1s often used to represent electric
Iines of foree dm,gmmmumeally, 18 based on this phenomenon. It is
similar to the representation of magnetic Lines of foree by means of
1ron filings  If an msulating hqud 18 mixed with an msoluble powder
possessing a greater dielectric constant than the liquid, and the whole
18 placed m an electric field, the powder will set 1teelf i lines which
run parallel to the electric lines of force

A pomtively charged conductor 1 a umform o

field 18 acted on hy a resultant force along the
positave direction of the field, smece m this -
direction the field 18 strong and 1n the opposite MMQ’“

direction wesk  When a movement oceurs m
this direction, the space m which the field 1s —\
strong 18 reduced and that 1 which the field "
15 weak 18 mereased, so that the total energy in
the field decreases (sce Fig. 343) Fio 848

(¢) The 1nsulator also, Iike the conductor—
1 conscquence of the prmeiple of mmimum energy 1 the field—tends
to embrace as many induction lines as possible when 1t 18 surrounded
by a medium of smaller dielectric constant

If 1t has a longitudinal shape, 1t tends to set 1tself with this axis
parallel to the electric lines of force If the fleld 18 not umiform,
it tends to move m the direction mn which the field- strengbh
nereases

When an msulated sphere 18 brought mto a umform field n a

necium having half the induction capacity of the sphere, then we get
AC 20
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a dstribution somewhat as shewn mn Fig 344 Lines of force an
1nduction hnes are drawn full, whilst induction Imes alone are shew
dotted

%/—/—; - ; ]
—
—

PR
%

F1a 844 —Spherical Insulator in & Medium Fia 845 —8phencal Conductor in Electre
with smallm Dielectric Constant. Fiold.

In comparison with this, the mfluence of a conducting sphere on a
uniform field is shewn 1 Fig 345  All lines of foree and induction
termmate at the influenced charges on the surface of the sphere

123. Electric Displacement

(a) By the electric displacement at a pomt n a moedium we mean
a vector whose absolute value 18

)
Ry Ry . (220)

and whose direction coinerdes wath that of the electric fiold-strength f.
Just outsde a charged surface of a condnetor wath surface density o
the displacement 18 J=0, . (221)

and 18 directed outwards 1n the case of a postive charge or inwards
1n the case of a negative charge.
Inmde a conductor 7 =0, smce here f=0
In passing from one dielectric ¢ to another e,, the normal com-
ponents of the electric displacement remam constant, provided there 18
no real charge on the boundary surface
n _'nf»u . (232)

- &,
Imy=Jne=— =0

On the other hand, the tangential components are different, for

Jn =Slf7;:] ) .7m=%§:“2 .
and since Ja=fe=fo
then n_a | (223)

Jn & *
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For eclectric displacement, therefore, the same law of discontimuty
holds as for electiic field-strength and electric mduction

A umt tube of electric displacement encloses 4w umt tubes of
electric mduction, and 18 directed from the positive to the negative
unit charge

The displacement flux through a closed surface F1s, from Gauss's law,

¢=IF;,,11F=£;If,f1F=zq, e (220

where 27 equals the quantity of electricity enclosed by the surface.

(b) An :}lecmc difference of potential can only produce a constant
electric flux, 16 a continuous-current, m metallic conductors, whilst 1t
places the dielectrics m a state of stramn which can be regarded as an
elastic displacement Consequently a continuous current cannot flow
m a cremt 1n which a condenser 18 connected, when once steady
conditions are reached, that 1s, when the charging current ceascs
With alternating-currents 1t 18 different, because here the condenser
18 always being charged and discharged, whereby the dielectric is
subjected to chsplacements pulsating to and fro with the current
Hence, m an alternating-current cirowit with a condenser, the charging
current of the condenser will flow Maxwell designated the currents
m the condenser as dusplacement currents, and asserted that such currents
obey the same laws as ordimary electrc curvents, except that no heating
losses occur 1n the dieléctiic This not only holds for the displace-
ment current in the condenser, but also for all the other displacement
currents m the dielectrics of the electric fields The magmitude of the
displacement current 4 18 the quantity of electricity which conveys
umt quantity to the surface normal to 1ts direction at the instant
the polarisation of the dielectric occurs Consequently, the displace-

electric flux _ electric charge

ment curient c'll—(;) has the dimension s

me time
1e (LEM i1"‘-‘) 1 the eléctrostatic system of umits If the displace-
ment current 1s to be treated like an ordinary current, 1t must be
expressed 1n electromagnetic unts In this system, current has the

dimension (L¥27¥7-1)  The ratio of the current 1 elactrostatic units
to that m electromagnetic has therefore the dimension (LI'-!), that
18 the dimension of a velooty  The value of this ratio has been
expeumentally determined, and 1s approximately 3 x 10 cm/sec
This agrees with the velocity of hght » i a vacuum, which Maxwell
sxplaned on the ground that electiic charges must move at very high
\’BFOGItleS in order to exert the same effect on magnots as ordinary
urrents

From this 1atio v hetween currents m the two systems, 1t follows
shat the practical umt of curient

1 ampere=01cas electromagnetic umt
=3.10° c a8 electrostatic umts (225)
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The same ratio exists between the umits of electric quantity m the
two systems
1 coulomb=01cas electromagnetic ums
=3 10°0Gs electrostatic umts .. (226)
The ratio between the umts of potential 1 the several systems of
umts can be found by considering that the expression for the energy
consists of the two factors, electric quantity and potential, 1 e the units
of potential must bear to one another the mverse ratio to that of the
units of electric quantity
‘We have thus
1 volt=108 ¢ 6.8 electromagnetic units
=37 0.6 8. electrostatic umts, ... . (227)
or 1 o 8. elactrostatic umt =300 volts
For the units of capacity, we have.

1 coulomb 3 10°

1 volt o
or 1 mierofarad =9 .10 ¢ ¢ § electrostatic units

1 farad =

=9 10U electrostatic umts,  (228)

=9 klometres, Coe

10 a sphere of 9 kilometres radius has a capacity of 1 microfarad
For the displacement flux m the electro-magnetic system of umts,
we have the expression

¢=J-%’f -= I fF, . (224a)
d¢

and the displacement curient is 1=

(c) Starting from the hypothesis that the displacement current obeys
the same law as the ordinary current, Maxwell developed the equations
for the distribution of the electric and magnetic forces, and the pro-
pagation of their varations m space It will only be mentioned here
that Maxwell’s equations can be dedunced from the fundamental law

of electro-magnetism,
im =I gd,
o

where C] 18 a closed curve mterlinked with the current 4, and from
Maxwell's fundamental law of electromagnetic induction
After mserting the electric field-strength, this 18

—{fl—f=ﬂ=.|.a'ﬁd,, . ) (230)

where C, 18 a closed curve embracing the flux ¢. This method of
dedueing Maxwell’s equations 18 that given by Galileo Ferraris * One
deduction from Maxwell's equations 18 that the electric and magnetic

* W Tafthche Grundl der Blek Dol
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forces move m vacuo with the velooity of light.

405

The electric and

magnetic forces form an angle of 90° and are both transverse to the

direction of propagation, they travel by means
of oscillations Just like heat and hight waves
As a strict consequence of Maxwell’s equations,
we have the followmng hypothesis due to
Poynting  “The direction 1 which energy
travols through an electromagnetic field 1s
always perpendicular to the directions of the
magnetic and electric field-strengths Through
eaci umt of ares of the plane normal to the
direction m which the energy 1s propagated,
the ‘}ummty of energy passmg per sccond 18
equal to the area of the parallelogram (Fig 346

dvided by 47 ”

o

Fio 848

) .
whose sides are measured by the electric and magnetic field strengths,

From Poynting’s hypothesis, the energy m a transmission Iine 18 not

con

progngated m the conductors, but m the surrounding dielectrics The
uctor does not represent a chaunel along which the energy travels,

but a spaco 1n which a part of the encrgy converges and 1 which this

part 18 conveited mto heat



CHAPTER XX.

ELECTRIC PROPERTIES OF THE DIELECTRICS

124 Conduativity and Absorptivity 125 Enorgy Losses n the Dielectiic
126. Inﬂne};me of the S;l:aclhe Inductive Capacity and Conductivity of the
Dieleotrie on the Distmbution of the Kloetrio Field-stength 127
Dieleotria Strength,

In Chap XIX, mention was made of the difference mn dielectires m
respect of therr inductive capacity Other electrical properties aro
also possessed by duelectrics, and as these properties aro important in
practice, they will therefore be shortly dealt with here.

124. Conductivity and Absorptivity.

(a) When the two conductors of a cable or the two plates of n
condenser having either a sohd or fluid dielectric are connected
thiough a galvanoweter with the termmals of a continuous-current

machine of constant pressure, 1t 18 found that a

r large current flows at the first nstant, thus

—”""' charging the condenser ~This charging curient

4 __#  does not smk 1mmedately to zeto, but decrcases
» comparatively slowly, until after a farly con-
—WM— siderable time 1t reaches an almost constant and

Fio 847 usually very low value The explanation of

this 18 partly that the dielectrics have acertam
small electric conductunty, due to which a current of conduction 18 added
to the chargmg current The conduction of the diclectrics may he
purely metallio or accompanied by electrolysis The latter effect 1s
avorded as much as possible on account of damage done to the msulution
Regarding the conductance of the dielectric as constant, then an actual
condenser can be replaced by an 1deal condenser with a perfectly
msulating dielectric and a parallel-connected ohmic 1esistance Such an
equivalent scheme 18 shewn m Fig, 347, which can be used for calculating
the time of discharge of a condenser when left to 1tsclf, 1e complotely
nsulated. The chscharge takes place m accordance with the cquation

i
7=Qe, .. .. .. (231)
where @ 18 the itial charge and £ 1s the time of discharge m seconds.
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The conduct of the dielectric generally mcreases with the
temperature and with the electric tension. Media, which retamn their
cherical composition at high tempeiatures, such as glass, porcelamn,
otc, become comparatively good conductors when rased to then
melting temperature An witeresting appheation of this phenomenon
1s the Nernst glow lamp  The chelectric forming the glowing filament
of the lamp 1 this case consists of maguesia—the latter 18 warmed up
by a special attachment, whereby the conductance increases to such an
extent that an appreciable current begins to flow through the filament
which bings the same to incandescence

Dacelectracs have wm gener al a negatwe temper atwre cofficient

Further, the resistance of dielectrics depends largely on the electric
conditions (thus on the strength of the electric field)—decreasing as
theso become more strigent

The following table gives the specific resmstances for sevoral msulat-
mg materials at ordimary temperatures, and for average electric
condrtions

Mutorinl “",?L".ﬂ.‘f:;.’,i?;‘;"“ P e
par cm/em?

' y ... Tx10° 0
Gutta-perehn { 045100 o4
‘Wies insulated with Gutta-percha - 02x 109 24
Puo Rubbar - - - - - 10 9x 108 24
Vulenmsed Rubber - - - - 15x10° 15
Tupor impregnatod with Turpentine - 3x10° 15
Juto impregnated with Tuipontine - 11 9%x10° 15
Shellte - - - - - - 9x10° 28
Parafin wax - - - - - 24 x 10°
Mos - - - - - - - 0084 x 10°

The effect of the temperature on the insulation resistance of a
tiansformer (curve ) and of dry cloth (curve B) 18 shewn 1 Fig 343
With the cloth the resistance mcreases at first with the temperature
wntil the mowsture has boen driven out, and then for still ligher
temperatures 1t falls agam to a valuc of only a few megohms

(b) Prof Schleiermacher* has proposed the use of the same ex-
pressions for the currents due to conduction as used hy Maxwell for
the charging currents, when several conductois at cifferent potentials
are placed m the eloctric field These conduction cuirents for the
soveral conductois are

y=0nPrg, Lot s Pyt o,
. =01 P1+ 025 Pot Gas bt
. . s

*E T Z 1905, p 1043
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where the coefficients with like suffixes g,,, 7,5, g4 denote the ratio

of the conduction current to, the potential above earth, when all the
other conductors are earthed The coefficients with unhke sufhxes

Hogolm
"

“ N,

\
Y. \
o

N

—_— N
n o w 0 & wm ® w607
Fio 848 —Relation between und T

4, for Tronsformor, B, for diy Cloth

correspond to the mutual capacity coefficients, defined as follows
.y donotes the ourrent flowing from conductor y to conductor 2, when
the former has umt potential: and all other conductors have zero
potentral The expermental determiation of these coeflicients 1s
quite similar to that adopted for capacities
To determine g,,, all the conductors except the 2 are earthed,
and the ratio of the conduetion current ¢ of the z conductor to 1ts
potential P 18 measured
2
J2:=p

In the same way g,, 18 determined for the y* conductor and g,
for the 2™ and y* together ~Then 1t follows

ezt Gyw = ixsn (232)

Fzy=Yy== — =

(¢) The slow fallmg off of the charging cuirent with time 1s not
explained by assuming a constant conductance for the dielectric, but
must be considered m connection with the phenomena which occur
when a condenser 1s discharged
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If the two plates of a charged condenser are connected through a
galvanometer, at first a large current will flow, which gradually begins
to sk, and only after some considerable time vamshes altogsther
If the connection 18 broken after the first rush of current and made
again after some time, another but weaker rush of current will ensue
m the same direction as the first The condenser can thus give
several such discharges, which gradually become feebler and feebler
Tlus phenomenon 1s due to the resudual charge n the dielectric. The
explanation of the phenomenon was first given by Maxwell ~Accord-
g to him, the residual charge 18 due to the heterogeneous nature
of most dielectrics

Fig 349 shows a section through the dielectrie of a condenser,
whose plates are 4 and B Assume the dielectric consists of the
layers D and D', having different properties As shewn on p 398,
such a condenser can be replaced by two condensers C' and (' con-
nected m series (Fig 350) If the dielectric D’ 1s not a perfect

4
J I A (AR
n | Il
J) ,
B e
Fio 840 F1c 860

msulator, we must suppose an ohmic resistance »” to be connected m
poanllel with the condenser €' Fig 350 thus gives the equivalent
scheme of the condemser 1 which the dielectric D 18 a perfect
msulator.

Whether the above mentioned action of the several layers of
a dwlectric 1s the sole cause of the residual charge or whether
other mfluences, e g chemical action (smular to that 1n an_electric
accumulator) are at work, 18 not yet certain  Certamly very
heterogencous dielectrics have sgecla.lly large residual charges, but
even quite homogencous liqud dielectrics appear to shew traces of
the same

Smee transnussion lines and all electrical apparatus subject to high
potential difterences act as condensers, the formation of residual
charges (or the so-called absophwon of the dielectrics) must not be left
out of account when working with high pressure currents, otherwise
sor1ous consequetices may follow  If for example a cable or transformer
18 cisconnected from the high-piossure terminals, the disconuected
apparatus should bo first connected to earth before 1t 18 touched A
single earthing, however, 18 not always sufficient, since charges may
afterwards collect and may give da.nﬁerous shocks Special attention
should be given to carthing where high direct-current pressures are
concerned, smce the habiity to remdual charge 18 greater i this
case
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As a practical case 1 which all parts of the dielectric possess con-
ductance, the cquivalent scheme shewn mn Fig 351 may be taken
According to the above, a residual charge should not oceur when the
ratio of the dielectric constant to the electric conductivity 18 the
same at all pomts m the dielectric

e
r

Fia 851

125. Energy Losses in the Dielectric

(a) The energy loss n a dielectric placed m a constant field
18 given by the leakage current If, however, the electrification 1s
alternating, as for mstance 1 a condenser to which an alternating
pressure 18 apphed, the losses ate m general much greater than those
corresponding to the msulation resstance. The cause of these
additional losses has not yet been thoroughly investigated It may be
due to the absorptivity of heterogeneous dielectrics, discussed 1n the
previous section * In the dielectric represented m Fig 350 a loss will
oceur when an alternating pressure 18 apphed, but not with a contimuons
pressme Also 1n the scheme m Fig 351, the loss 1s groater with

alternating-current than with contiuuous when 72 7le when the

ratio of specific inductive capacity to resistance of the seveial parts of
the chelectric varies These losses are often supposed to be due to
what 18 called dicleciric hysierests—of a smilar nature to magnetic
hysteresis

Steinmetz t found for practical condensers made of paraffined paper,
with tin-foil plates dred m a vacuum-drymng oven and steeped i
paraffin, that the losses at constant frequency 1mnecicase with the square
of the pressure, which corresponds to a constant conductance g for the
condenser Swnce the dielectric constant, and with 1t the capacity or
the susceptance b of the condenser, 1s—under normal conditious—
mdependent of the pressure, the phase displacement of the charging
current remains constant, at a given frequency If the thickness of
the dielectric of a condenser be increased, the curtent remamns the
same for the same electric field-strength, whilst the prossure increases
1n proportion with the thickness The loss then 1ncreases m propor tion
with the thickness of the dielectric, so that the phase displacement of
the chargmfg current remams constant for the same frequency Thus
for a given frequency, every dielectrio has a constant phase displacement
Stemnmetz found for the ahove paper condensers, cos¢=0 0038 to
0 0068, according to the frequency.

*Hess, L' Eclawrage Blectr 1895, vol 4, p 205
+ Bl World, 1901, vol 37, p 1085
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For the power factor of the charging current m electiic cables, we
have the followmg values

001 to 00265 for paBer and jute cables,
002 to 004 for rubber cables,
003 to 007 for gutta-percha cables

(b) The capacity generally cecieases somewhat as the frequency
e eases, which 18 eamly explamed by the action of the heterogeneous
nature of the dielectric mentioned 1n the previous action

In the scheme m Fig 350, for example, let the capacity for cou-
tnuous charge be C, cﬁen for rapid charge and discharge 1t will be
o In a paraffined paper condenser 1t was found by Eisler * that
the capacity was 25 mfs. for continuous charge; 2 15 mfs for ¢=18
cycles, and 2 01 mfs for ¢=45 oycles

The decrease of the effective capacity of condensers with increasing
froquency must be specially noted m measurements It follows also
that the dielectric constant of a dielectric will vary with the frequency
at which the dotermination 18 made To elminate absorption phe-
nomena as far as possible, such determiations are often made with
velX high frequencies, as with Hertzian waves

t constant pressure, the losses 1 the dielectric mcrease with the
fiequancy The energy absorbed per cycle usually mcreases at first as
the frequency 18 increased, attains a maximum, and at higher frequencies
may decrease. Hisler found an 1ncrease of 17 % 1n the losses per cycle
from 18 to 45 cycles In the expertment of Stemmetz mentioned on
p 411, tho loss por cycle increased up to a frequency of ahout 100, and
began to fall at higher frequencies

Sice the couductance ¢ of a condenser 1s always small compared
with the susceptauce ), we can write

Py
g g ¢
8= s S b Pt

Since C only vares shghtly with the frequency, the power tactor
will vy m the same way as the losses per cycle

Thoe mconstancy of the losses per cycle 1s explained by many as a
land of viscous hysteresis, or the same phenomena may be deduced
fiom the equivalent scheme for non-homogeneous dieloctries (Fig 361)

126. Influence of the Specific Inductive COapacity and Conductivity
of the Dielectric on the Distribution of the Electric Field-strength

() If layers of various duelectrics are placed between the plates of a
condonscr, then—provided no conductance 18 present—the distribution
of the clectric ﬁol%-streugth will vary nverscly as the dielectric con-
stants Thus a umform Held can by this means be made non-umform.

* Zewachr, f Elehtr 1895, H. 12, p 345,
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Conversely, & non-umfoim field can he made moie or less mmform by
the use of various dielectrics

Considermg a long conductor of radius 7 (Fig 352), having potential
P and surrounded by a co-axal, conducting eylnder of radius I and

|
~T7

Fia 862.

potential zero, then at distance p from the
axs, let the dielectric constant be ¢ The
electiic mduction at this distance 1s, according
to Gtauss’s theorem,

@

_4rQ 5
b= =2y
where @=electric charge per em length of
conductor.
The electric field-strength 1s therefore
_b_2 9,
== . (233)
10 1f the dielectric constant e 18 constant
throughout, the field-strength will vary m-
versely as the distance from the axis of the
wire, as the figure shews The variation of

the potential P=r —fdp 18 shewn by the
p=F

second curve P If, however, we wish to keep
the electric field-strength constant, an msul-

ator must be used whose dielectric constant 1s mnversely proportional
to the distance away from the axis of the conductor. This can be
obtamed by using various insulating materials 1n several layers.

Moreover, 1t follows from the integration to the hmit R, that air-
bubbles and other irregularities m the insulating material are to be
avoided, both in compound and solid cables With stranded cables,
on account of the small radws of the single wires, the maximum
electric field-strength 18 25 to 409, greater than with sohd cables
or lead-covered stranded cables

On p 401 we have seen that

rticles of a dielectric having a larger

dielectric constant than the nelg]ggourhood, tend to move 1n the direc-
tion m which the field increases In a hqud or semi-hqud dielectric,
such particles would assist m formmg a umform distribution of field,
whieh 18 of importance, as will be shewn later in connection with the
prereng strength, and this property can be utilised 1n cables

(b) The distribution of the electric field-strength 1 only determined
by the dielectric constants when no conductor 18 present, or when the
field 18 alternating so 1apidly that the conduction currents are negli-
gible compared with the cisplacement currents ~ Otherwise the specific
1esistances determine the distribution  In a unsform and constant field,
the electric field-stiength dustributes dself accodmg to the specific 1esisiances
of the several layers of the dulecthzc If & constant potential difference
be apphed at the termunals 4 and B m Fig 351, the pressures P and
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P of the condensers U and ¢’ will have the ratio of 2 to 7', and are
dependent of the magmtudes of the capacities C and C*

In a non-umform field produced by a direct pressure, a coustant
electric field-strength can be obtamed by giving to each part of the
dielectric a speafic conductivity, proportional to the induction 1n
the field at the respective pomnt F 1g 352, for example, the con-
ductivity of the dielectric at any pownt 1s mversely proportional to the
chstance of the pomnt from the axis of the conductor Use 18 made
of this m the msulation of cables by saturating the inner layers of the
mgulation with a iqud of higher conductivity than the outer *

N
1
|

4 =

M W)////;//—//(///A -
P 858 —Wull {nsulntor for High-tension Lincs

In some cascs an approximately umform distribution of field-strength
throughout the dielectric may be obtamed by an arrangement due to
the Siemens-Schuckert-Werke  The insulator 18 composed of thin
layers separated from one another by a conductor (tinfol) Fig 353
shews a leading-m tube for high-tension alternating-current made on
this prmeiple  The tinfoil 18 shewn by full lines and the msulating
layers dotted

dy=diameter of wire,

ly=length of the mner layer of insulation,
d,=dwmeter of the hole 1n the wall,
1,=length of the hole 1n the wall

For a sheet of tin-foil of length 7 and diameter d, we have
li=1dy=1d,

The layers act therefore, neglecting electrical leakage, like a number
of condensers of equal capacity connected in series, and each layer
takes up the same pressure

Moreover, with this type of leading-m tube, the harmful discharges
hetween wall and wire cwsappear With the ordmary leadngin

*0°Gorman, “Insulation of Cables,” Jowrn. Inst B E 1900, xxx. p 608
1R Nogel, Elekir Bahnen und Betriebe, 1906, p 278
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tube, as shewn m Fig 354, large surface discharges occur, and are
unavoidable even with very lonﬁi msulators The following con-
sideration will make this clear. ch element of the conductor with

I\\\\\\\\\\\\\\\\\\\l\\\\\\\l
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Fio 864 —Wall-dnaulator for Low-tension Lince.
1ts msulation forms a small condenser, of which the primary plates are
metallically connected by the conductor and the secondary plates

are connected 1 series thiough the surface resistance, as shewn dia-
grammatically in Fig 355 If 1 18 the surface 1emstance per umt

Fia 805 Ofrouit of Wall-insulat

length of the msulator and C the capacity, the potential along the
whole surface 18 dstributed according to the same exponential law,

e(-)Az _ e-(1-Daz

Pe=P (234)

n accordance with which the potential 15 distributed over a long

alternating-current cable without conductance or self-mduction when

one end 18 earthed In this equation A=ﬁ =+/imeC, and the slope
of potential (—lg 18 & maximum near the end of the insulator, where

z=1 The slope 18 here almost independent of the length of the
msulator, so that surface dwscharges always occur, even with long
msulators, when the slope of poteutial 18 high, relatively to the
surface resistance » per ums length When the leading-m tube 18
of the form shewn m Fig 353, on the other hand, the pressure 18
distributed according to a straight lme over the whole surface of
the 1nsnlator, and no harmful surface discharges can oceur until the
pressure 18 sufficient to produce a spark over the whole surface,
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(¢) To detcrmine the electiic field-strength, 1t 15 hest to use the
same mothods as for magnetic fields, viz that of drawmg a diagram
of the hnes of forces and thence calculating the field strength f,
for ench pomt, equal to the electric flux dé of the tube of force
divided by the section dF of the same at the pomnt conmdered

Thus ,,=%, where e 18 the dielectric constant.

As starting-pomts 1 drawmg out the lines of force, we can apply
the law of ciscontinmity to the hhes passing from one medm’ to

A\\\\\g///A
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Fio 800e. Fia 350,
Fra 350u to d —Lines of Forco m Thioo phase Cables (Thornton).

another and the law of maximum field-energy According to the
latter, the lmes of forco between conductors of given potential arrange
themselves, so that the displacement flux between the conductors 18 a
maximum  Owmg to the small values of the dielectric constants
compared with the magnetic permealnlity, 1t 18 much more difficult to
draw electric lines of force accurately than magnetic, when mnsulating
matonals of different dielectre constants are present in the field For
this 10ason Hele Shaw’s method of representing the hnes of force by
stream lines between two flat plates, as described on p 365, 18 very
uscful 1n this connection From such figures 1t 18 casy to determine
smply the clectric flux 1 each tube and thus obtamn the feld-
strength at cach pomt  Figs 356a to d shew the diagrams for two
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three-phase cables, taken by W M Thornton and O J Wilhams *
The dielectric constant of the conductor is assumed fimtely large,
and the space between the plates where the aonductors are 1s there-
fore made as large as possible At the places where the msulation 1s,
the space between the plates 15 made directly proportional to the cube
root of the dielectric constant The flud 18 gedP m and out at the
places where the conductors are, and the quantity of flmd for each
conductor 18 made proportional to the pressure m that wire at the
moment considered gs o and b shew the field when one wire has
26r0 j)otentml and the other two the potentials iJ—-}’P,,m Figs ¢
and o shew the field when one wire has a potential P, and the
other two the potential —3P,. The sheath of the cable has zoro
potential 1 all the figures. As 18 clear from the diagrams, the field-
strength alters from point to point, and at every pomnt varies with the
time

127. Dielectric Strength If the pressure between two insulated
conductors (electrodes) 1s gradually raised, various discharge phenomena
occur within the dielectric and aloug its surface, and finally the
%?ssnre 18 equalised by a sudd®n dmcharlge through the dielectric

e chelectric 18 then said to be pierced If the dlaict.mc 18 hiqud or
gaseous, all traces of the passage of electricity immediately vanish, a
solid daelectric, however, will remain pierced at the place where the
dlscha.rge occurred  If sufficient electric energy 1s supphed to the
electrodes, the break-down will continue 1 the form of an arc, even
with comparatively low pressures.

The pressure between the electrodes at which the break-down
oceurs, 18 called the mercing pressure ' This latter depends on the
material, the distance of the electrodes apart, and on the distribution
of the electric field 1n the dielectric (shape of the electrodes) The
length of time durming which the pressure acts on the dielectric has
also a consderahle eigmt on the pieremg pressure For a very short
time the imsulation can often withstand a much lgher pressure than
continuously The prercing pressure of a dielectric for a given distance
between the electrodes 18 a maximum when the field 1s umiform, as
for stance, between two parallel plates at a sufficient distance from
the edges, in which case the maximum field-strength 18 a minmum
Between two pomts or between a pomnt and a large plate, the electric
field 18 very varied, so that i this case the piercmg pressure for a
given dstance 1s smaller

Between the edges of two parallel plates the electric lines of force
are curved. The electric field-strength near the surface of the dielectric
18 consequently mcreased and on the inmde decreased Smnce the
maximum field-strength m the dielectric 18 thus increased, the hreak-
down between two such plates generally occurs at the edge For this
reason, high-pressure condensers are often made so that the dielectric
18 thicker between the edges of the plates than elsewhere

* Engneering, 1909, p 297
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In the case of alternating currents, prereing depends chiefly on the

amphtude of the wave of pressure

The dielectric strength of an msulating material can be small even
when the specific resistance of the same 1s high and vice versa Dry

air, for ‘example, 18 a very good
1sulator, but compared with most
solid and lquid insulators its di-
electric strength 18 very small

The piercing pressure usually in-
creases somewiat more slowly than
the thickness of the 1nsulating
medum  With thin layers, how-
ever, the converse may be the case.

Fig 357 shews by way of example
the piercing pressure for mica as a
function o? the thickness of the
same, taken from experiments made
by Stemmetz The amphtudes of
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Fia 857 —Break-down Pressure for Mica

the prossures are given m Iulovolts and the thicknesses 1n hundredths
of amm * In ths case an alternating-current at 150 cycles was used
Since the material shewed much heating, the pressure could only be

apphed for } minute

n the following Table, due to Steinmetz and Dr Baur, the piercing
pressures for 1 mm thickness of various insulating materials are given

Diolectric

Miea - -
Micanite - -
Paraffined Plates
Paratfined Paper

Dry Wood Fibre -
Hard Porcelam - -
Oiled Linen
Presspahn -
Leatheroid - -
Vuleanised Rubber -
Red Vulcamsed Fibre
Asbestos Paper -
Vuleamsed Asbestos -
Transformer O1l -
Melted Paraffin - -
Bouled Ol - - -
011 of Turpentine
Insulating Varmish
Lubricatmg O1l -

“ac

Ploveing Pressurc
for 1 mm thickness

58000

about 35000

*E T Z 1893, p 251
2o

30000

13000
13000
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The figures represent average values taken from experiments with test
Bleces of various thicknesses and, on the assumption of proportionality
etween thickness and piercing pressure, are reduced to a thickness
of ] mm Since, however, 10 relation exists between the thickness of
the imsulating material and the piercing pressure, the values can only
be taken for plates about 1 mm thick
Insulating o1l under high pressures gives a straight lme merease of
the piercing pressure with the distance hetween the electrodes For a
mineral transformer o1l with plate electrodes, the alternating pressures
+§ and - g, at which breakdown occurred, were found, for sparkmg
distances d greater than 5 cm, to be
P=124000 + 90004

With very unsymmetrical distribution of the electric field the
plercing pressure 18 much less Between an earthed plate and a
pomted electrode at potential 2, 1t was found for the same o1l as above

P =37000+7000d.

If the spark gap ¢ 18 given 1n cm, the effective pressure will be m
volts. These pressures can act on the o1l for about 5 minutes without
causing a break-down. If the pressure 18 quickly raised, much higher

ressures can be reached before the oil breaks down—m such cases,
owever, the results are generally 1rregular

The brealing-down strength 18 considerably weakened by moisture
in the case of both sohd and hqud msulating materials Oils are
dried for this reason erther by heating, or by treating with quicklime
and such like Hygroscopic solid substances must be dried m a
vacuum oven and impregnated with varmsh of some kind, so that
they cannot absorb moisture from the air

The breaking-down strength of an insulating material 1s 1n general
reduced when mechamcal stresses are simultaneously apphied

With most sohd and hquid msulators, the duration of apphcation of
the pressure has a considerable influence on the nsulation resistance as
well as on the dielectric strength The dielectric strength usually
decreases considerably for the first few minutes, while the 1nsulation
resistance mcreases A well-dried machine usually has a very high
msulation resstance at the beginmng when cold At first the -
sulation remstance decreases very rapidly, even after the temperature
has become constant, and often reaches a mimmum after seveial days’
work, after which 1t slowly recovers during a still longer time
Measurements of nsulation on machines and apparatus should there-
fore be carred out after the normal temperature rise has been reached
1 the process of its work

The temperature has little effect on the dielectric strength, provided
that the same is not sufficient to bring about chemical changes n the
material. This is, however, often the case even at comparatively low
temperatures
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If the dielectric consists of several layers of different materials
perpendicular to the lmnes of force, the electric field-strength dis-
tributes 1teelf—as previously shewn—over the several materials
according to their respective specific resistances when the pressure 18
constant Wit constant presswe therefme, wm order to use the several
materls to the best advantage, the duelectric strengths of the matsiials should
be poportional to their specfic 1esistances

If the pressure 18 alternating, the electric field-strength distributes
tteelf over the insulating substances inversely as their dielectric con-
stants  Hence, with allernating-curient apparatus, w order to use the
wnsulating inateral to the best advantage, the dwleciric shengths of-the several
materials should be inversely as thew dielech w constanids

. In the construction of 1nsulators for high pressures, attention must
be paid not only to the dielectric strength of the insulating material,
but also to the phenomena at the boundary surface of two dielectrics
For example, if two conductors at a large difference of pressure are
supported 11 air by solid msulators, 1t 18 not sufficient that the distances
between the two conductors, 1n air and through the insulator, corre-
s[{lnond to the pressure, but 1t 18 most 1mportant of all to see that the
chstance apart measured along the sw face 1s sufficient.

£,

s d

Fro 8568

Sparling may easily occur through the collection of moisture and
durt on the surface  Moreover, 1f the capacities of the two electrodes
are different, the electrode with the smaller capacity produces surface
discharges 1n the form of rays, which assist the sparking between the
electrodes  Also, the capacity of the two conductors under pressure
with regard to a third insulated conductor can influence the piercing
pressure hetween the two former conductors to a less extent For
example, 1f two electrodes %, and L, (Fig. 358) stand on an insulating
plate J under such a pressure that sparking does not yet occur, and an
msulated conducting plate P 18 brought to the other sde of the
dielectric J, surface discharges occur between the two electrodes and
sparking taked places from one to the other This phenomenon 1s
siular to the surface discharges with leading-n tubes Sparking
oceurs with a still smaller pressure when the plate P 1s connected to
ono of the electrodes The surface discharges are then seen only about
the electrode not connected to P, mn the form of rays In order to
obtam the largest possible distance over the surface with the smallest
distance between the electrodes and still avoid sparking, bell and
petticoat insulators are used

In accordance with the standards of the Verband deutscher Elektro-
techniker the dielectric strength of electric machines and transformers
should be tested for one minute when they are warm
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The testing pressures should be

‘Working Pressure Tost P1cssure

Under 40 volts
40 to 5000 volts 24 times working pressure, but not less than 1000 volts
5000 to 7500 valts -

7500 volts above working piessure
7500 and upwards - Twice workmg pressure

At; least 100 volts

The delectric strength must be tested between windings and frame
and between electrically separated windings In the latter case,

with
windings of different pressures, the highest must he used as the
test-pressure.
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CONSTANTS OF ELECTRIC CONDUCTORS

128. Resstance of Electrio Conduotors 129 Self- and Mutual Induction of
Electrio Conductors 130 Self- and Stray Induction of Coils mn Air
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Cables 134 Cupaaity of Coils n Air and m Iron 135 Telograph and
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128. Resistance of Electric Conductors. Most conductors consist
of copper. With continuous currents and alternating-cunents of low
frequency, the current 18 umformly distributed over the section of the
conductor  If I denotes the single length of the line 1n km and g 1ts
section 1n mm? and p=0016 (1+00047"), the specific resistance of
the copper, then the ohmic remstance of the whole lIne is

1 =%’ 1000 ohms
The heating loss m the line 18
2
I%= qlgp% 1000 = 1000p7s2,

whore /"= 2ly denotes the volume of the lme 1n dm?, and s the current
density m amperes per mm?

Of late yecars bare alummium conductors have also been used for
transmission hnes, An aluminium hne with the same ohmue 1 csistance
23 copper will have a diameter 1 3 times,

a section 169 times,
a weight 0513 times,

larger than the copper lme The aluminium wire, however, has only
065 times the tensile strength of the copper According to circum-
stances, sometimes the alumuum 1s cheaper and sometimes the copper

In the followmng table the specific resstances and weights of the
matorials most commonly used are given The specific resistance 1s
for 1 metro length and 1 mm? section If this 18 required for 1 cm
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length and 1 cm? section, as 16 occurs 1 many formulae, the values
given m the table must be dinded by 10¢ The specific weight 18

glVBIl n gms per cubic em

Speciflo Reslstancs _ Incienso of
&t 0° du ohms

TResiatanve per
pet m/mm? 10 i‘n *ls

Silver - - - - - 0015 036
Copper - - - - - 0016 040
Gold - - - - - 0021 035
Alummnmm - - - 0027 040
Zmo - - - .. 0 056 039
Platmnm - - - - 0090 024
Tw- - - - - 010t0013 046
Niokel - - - - - 010012 04to03
Lead - - - - - 019 037
Pure Iron - - - - 0 096 05
Wrought Iron and Mild Steel 010 05
Iron Wire Conductor - - 0125 05
Cast Steel - - - - 020 04
Alloyed Stampings - - - 0 54 —
Cast Iron - - - - 100 01
Brass (30 , Zmo) - - - 0065 to 0085 012 to 020
Manganm - - - - 041t0045 0 001
Constantin - - - - 048 0003
NickebnI - - - - 041t0043 024
German Silver - - - 03610038 027
Rbeotm - - - - 047 021
Kruppm - - - - - 084 007
Retort Carbon . - - 13 to 100 008 to 0 02

Specifio
Woight

88
88
87
855
81
23tol9

The specific remistance of oidmary fresh water 18 about 10* ohms
For hquds and electrolytes the lowest specific 1esistances a0 those
given in the following table,* along with the corresponding solutions.

. P i Seae
HNO, - - 186104 297 1185
HOl - - - 189,10 188 1092
HSO, - - 14510% 304 1224
KOH- - - 19810 280 1274
NaCl- - - 170 10° 250 —
MgSO, - - 217 10 170 1183
7080, - - 226 104 235 1286
CuSO, - - 2710 181 1210

* Dewtscher Kalendar fur Elektrolechmker von Uppenborn
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The reswstance of the earth, i so far as 1t affects electric railways
and earthed nstallations, 18 very variable It not only depends on the
nature of the soil and on the weather, but chiefly on the arrangement
of the earthing plates or rals The highest value that has been
observed for the earth’s resistance in the case of ralways s 02 ohm
per km It may, on the other hand, be also nearly zero To
obtam low contact resistance, 1t 18 advisable to have several parallel
plates placed at some distance from one another and sunk as
deeply as possible, so that they come into contact with underground
water

The contact resistance of a plate 18 proportional to the speamfic
resistance of the soil surrounding 1t, and inversely proportional to
the mean lmear dimensions of the plate Let » denote the contact
resistance m an unhmted medium having a specific remstance p

Then for eircular plates of diameter d, 1'=ﬁ,
r P
for square plates with side d, 1= P ars

for oylindrical clectrodes of diameter d and length I,
21
r= % log, (E )

129. Self- and Mutual Induction of Electric Conductors,

(a) In the determination of the self-induction of conductors, we shall
first start with the case of a single-phase system The two conductors
which serve as the outgoing and return lines are assumed to be fixed
to poles and parallel to one another over the whole length We
suppose that the two conductors are connected by wires at both ends
mstead of by the actual apparatus, so that we have to determmne the
self-induction of a rectangular loop

For the time heing we assume that the current 1s distributed
uniformly over the section of the conductors, and further that no
ferro-magnetic bodies are present in the magnetic field produced by the
current 1n the conductors It 18 therefore allowable to superpose the
magnetic fluxes produced by the current flowing in each of the wires
As shewn 1n the introduction, the current flowing 1n each conductor
produces a magnetic field, whose lines of force are circles round the
condugtor.

The field-strongth H at a pownt P at a distance p from the axis of

the wire 18 (Hal MALE
= lei =length of lie of force’

or, when the pomt P lies outside the wire,
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and, when the pomt 2 lies mside the wire,

B omp " =@y

From this we get the diagram of the field-strength for the plane 4B,
as shewn m Fag 359

Froa, 860 and 800 —Magnetic Feld of Two wite Sysiem

If there are two conductors serving as outgomng and return lines,
the current produces a field for each of the two wires Supeiposing
these fields, we get the resultant field-strength of a double lme, as
shewn mn Fig 360 The shaded surface serves as a measure for the
flux per em length interlinked with the conductors

Smce, however, the total current 18 not interhnked with the whole
flux, we must take this mto account.
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The energy suppled to the magnetic field during a time nterval df 18
dd=3(m.2)=La()

Here w, (or w,, smee mn the calculation of Z, 2 18 put equal to
1 ampere) denotes the current wnterlinked with the tube of force ®,
From Formula 27, p 41, we get the following expression for the
coefficient of self-induction Z,

2,
L=3 (%,) 10-8= (,&,) 10~ henry,

where the summation 18 to be taken over all the tubes of force in the
field Since, however, the field 18 produced by the superposition of
two equal fields, it 1s sufficient 1f we 1ntegrate the tubes of force 1n one
field and multaply the result thus obtamed by 2

‘We calculate first the sum for the space between the wires The flux
m this part is mterlinked with the whole current mn the conductors,
hence w, 18 here unity, and the sum 18

=a =a p=0a
5 =3 v.=2f _, iHn
d d =%

p=q =y
where d = diameter of wires
and . a=distance between the axes of the wires

By assuming the hmit p=a, a small error 18 introduced, which, how-
ever, 18 neghgible for small values of a

=l P=% 0 2dp RI
Hence > (P..) =21J P =0 4llog, (E ),

p=3

= 9,
*S (@,.)=0 921 log, (%‘)
d
P=3
For the nterior of each wire we consider only that field produced by
the current m the wire 1tself, and since here

vz="'_'°z 1=J12_,
O]
d
P=g

,d i, \
wehave » 3 (w,zb,,)=2_[ 1Hw,d =zr 18,5 dp
p=0 p=0 p=0 (5)
a0
2 8 9
02%dp_ 0.5 20 _o11

el

ol
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Hence the coefficient of self-induction of a double line 18
l 20
L=io‘8[° 92 logy, (ﬂ +0 1], . (235)

and 1ts reactance
el

LI
o=l = 20 [o 92 1og,n(i) +0 1}

where ! 15 measured m cm. If / 18 measured in kilometres, the
reactance 18 el %
o= [o 9210g,0 (37)+0 1] ohm, (236)

We have seen that the magnetic field mside a conductor 18 not
constant It follows from this that the current hnes in the conductor

|
-\

B
L U R SRR ittt b i

Fio 861 —Bffect of Earth on the Self induction of a Conduotor

do not all have the same wductance, and that when the alternating-
current 18 of high frequency the current 18 not uniformly dstributed
over the section of the conductor We shall return to this i Section
131.

(b) In a system in which only one overhead conductor 18 used and
the earth acts as a return, the self-induction of the former can be
ascertained from the following consderations

In g 361 the hines of force of the magnetic field represented are
thoge produced by the current flowmg m the two condunctors 4 and
B’ It1s clear that perpendicular B, passing through the middle point
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of the lne joung the centres of the two circles, represents a line of
force The flux above 18 interhnked with the conductor 4 and that
below with the conductor B’ If we now substitute for the conductor
B’ a surface-carrying current (for 1nstance, the surface of the earth) B,
then this will have no effect on the diagram of the lines of force and
equipotential surfaces above B, so that the self-induction of the con-
ductor 4 remains the same and that of the conductor B vamshes,
since the radius of B 18 mfinite From this 1t follows that as regards
self-induction the earth 1eturn acts like a conductor which is the
ims?e of the first conductor with respect to the earth’s surface

If a denotes the distance of the conductor from the surface of the

earth, then the summation 2(w,®,) must be extended from p=% to

p=2a, and smee we only have one conductor the coefficient of self-
induction will be L da
m[o 4 (7)+0 05] .(@s)

(¢) We have still to mvestigate the mfluence of a current in a
conductor on the neighbouring conductors of other circumts If, for
example, there are four conductors on the
same pole, of which 4 and B belong to
one circwit and C and D to another, then
some of the tubes of force of the magnetic
field produced by the currents m 4 and
B will be imnterhnked with the loo
formed by the conductors € and D, an
will therefore induce &M F’s mn the latter
conductors It 18 simplest, however, to
calculate the effects of the two fields due
to the current in 4 and due to the current
m B separately and afterwards to super-
pose them

The magnetic lines of force produced
by the current in A are conceutric circles, Fro 802
whence 1t follows that the mutual induc-
tion coefficient of the conductor 4 and the loop formed by ¢ and

D 1s =
My—er= pZ‘(ﬂh‘I’z =1ék 0 46log;, (EL)
p=uz

%y

In the same way we find the mutual mduction coefficient hetween
the conductor B, and the loop CD equals

Moo= "3 (0,8,) = 0 46 1og,, (4
n—on—PE‘:(wz x)_ﬁn 0g10<b:)

Smee the currents m 4 and B are equal but of opposito direction,
the mutual mduction coetheient hetween the two cireuits 18

! a. b ! 7a,h,) .

Mup-n= 108 046 <1°gw E: - logy, i) =108 0 46 logy, Kéz;) (238)
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Tf the eireuit C.D consists of one overhead wire with an earth return,
then a, and b, are to be taken as the distances of the conductors
A and B from a conductor situated symmetrically, with respect to the
earth’s surface, to the conductor ¢ Accordingly a,=0Jg, and we get
for M,;_c, the sumplé expression

l a,
Mipo= 108 046 1°g10 (Zf)

In general, the mutnal induction between neighbourmg couductors,
(a8, for example, between telephone wires on the same oles as a
. transmission line) 1s made as small
A D as possible  This 18 done by cross-
RS, a = 1ng the wires 4 and B or by placing
"R 2 the telephone wires symmetrically
= with respect to the eonductors
F\W&:j%” llzsesas2em) and B, for u}chm cﬂge we got

by=byay and M, on=
IL “ 2d n an ummterhinked two-
. phase system, which 18 the system
AN usually employed for two-phase
1 @ transmission, the best arrangement
c B for the wies 1s that shewn m
e K Fig 363 The mutual mduction
| coefficient between the two phases

1 thus case equals

i b
g Mipop =530 46 logye (%3) =0,
[~ smee a,=a, and b, =b, The two
Fio 868 phases are entirely méependant of
one another as regards inductive
action between the wires, and the resultant coeficient of self-1nduction

for one phase 13
l 20
L= 0 [0'92 logyy (7) +0 1]

(e) If the three conductors of a three-phase system are symmetiically
arranged, 1¢ placed at the three angles of an equilateral tiiangle
(Fig. 364), then equal currents flowing 1n hnes II and III will mduce
the same EM F m phase I.

Since now two wires can always be considered as the return for tho
third, the coefficient of selfinduction of a phase with the above
sﬂmmetmca.l arrangement of the wires 18 independent of the load 1n
the several phases and equals

L=-LT04610g,(22)+005 239
—m[ 0510(7')"' ] (239)

suce here for one phase only the single length has to be considered
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If the three wires are not symmetrical, but arranged m a straight
e, as shewn 1 Fig 365, the current 1n the middle wire cannot exert
any mductive effect on the two outer wires and conversely. The
coefficient of self-mduction of the middle phase 18, therefore,

l 2a
L= [0 46logy, (7> +0 05],

while with a symmetrical load 1n all three phases the coefficient of
the two outside phases 1s

1 %
Ln=1—0,[o 4610g,, (7)»,0 119].

To make the coefficients of self-induction of all the phases equal
with this arrangement, each of the three phases may in turn occupy

le——8 i a—s
! | i
FoB &
m.:l!*:efc\“w'ﬂ“ [ }‘ AT =S
I
N
| ll
A
Fia 804 Fia 806

a third of the length / as the mddle phase. In this case the coefficient
of self-ainduction of each phase will be

l 2\ 2 2a
I=gh [o 4610g,y (%) +3 logo ()+o 05]

1 20
-1 [0 46logyy (%) +0 096] (240)

(f) With concentric cables the conductor formmg the core 18 a
complete cylinder, whilst the other 1s a hollow concentric cyhnder

This arrangement of the two conductors as one cable used to be
almost exclusively used and was most convemient for manufacture
The capacity of the outsde conductor of such a cable, however, with
respect to the inner conductor, 18 go large that in recent years stranded
cables, 1n which the conductors lie side by sido, have come more nto
use If each conductor 1s amanged in & cable by 1tself, an iron sheath
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should be avoided, because the latter would consmderably meroase the
selfanduction of the conductor Simnce the iron covering 1 ouly re-
quired for giving strength to the cable, stranded cables with several
conductors are largely used

For stranded oa.%ales with two and three conductors we get precisely
the same formulae as for a double line and a three-phase Ine Hence
with a double-line cable,

_ 1 20 R 235
L~m|:0 9210g(7)+0 1} (235a)
and 1 a three-phase cable, for each phase
l 20
L=t |:o~4s 10g50 (71‘) +0 os:l. (2390)

‘When cables are provided with an 1ron sheath, the hines of force outside
the conductor close through the covering, whereby the self-mduction
18 mecreased The eddy-currents produced in the won covermg hy
these lines of force are however so small that no heating 18 pro-
duced 1 the covering when the load 18 symmetrical, and only very
little heating when the load 1s shghtly unbalanced

130. Self- and Stray Induction of Coils 1n Air and in Iron

(a) Of all corls the smplest 18 the eircular coil formed by a wire of
circular cross-section (Fig 366) Its coefficient of self-induction 18

L &, d
=1—0-,,[o46(1+1e45 F;)10,.;,‘,E+037—,?-0163:1, (@41)

or, 1f the value of '[% 18 not too large,

I L
L=W|:0 £6log,y 40 163:|

This can only be determined by means of a complicated integration

Fia 807

Another smmple coil 18 of a circular wire wound m the form of a
rectangle of mdes ¢, and a,  Since the coefficient of self-mdunction per
unit length for two parallel round wires of diameter 4 and istance
a apart (ILq 286) 18

17T, 2%
L= m[o 921og,, (37) +0 1],
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and snce, further, two conductors at right angles can exert no 1
ductive action on each other, the coefficient of self-induction of tl
rectangle, shewn 1n Fig 367, 1s

2
L= T%T“ |:0 92a, log,, (27“2) +0 92a, log;, (%") + (@, + ag) const]

By accurate calculations this constant 1s found equal to —-0%
mstead of +0 1, which might have been expected , hence the coefficier
of self-induction of a rectangle equals

2 2

I=g [o 92a, log,, (Tf‘*) +0 924, logy, (%) ~094(ay +a5)

or approximately
a,+a 2(e, +a. 0461, 1,

L2092 l:logm ey ta)_ 2]: e [logw (Z) -0 2], (242
where /, 1 the mean length of the co1l

If the circular or rectangular coil 18 not formed of B AN
wire of eircular section, but say of rectangular section, 9/ \
the calculations may be carried out with sufficient /
accuracy by taking the diameter d as the diameter of /
a arcle having the same periphery as the section of I\ % Y
the conductor (see Fig 368) This, however, 18 only | é’
permissible when the section 18 not too flat

If the circular coil consists of several (w) turns, as 18

(24

| E—

shewn n Fig 369, the formula becomes Fia 308
_wll, 1, e
L‘W[O 461og, (d) -0 163:|, ) Q4

where d, 18 the diameter of a circle of equal periphery to the coil an
l,=7D 15 the mean length of the coil. It 18 assumed 1n this formul
that J, 18 large compared with d,

L, v
:‘——D-f-——-i . i - W e
s o]
* 4 I !. T iaSuteraa]
- g, N [
Fia 869 Fia 870

Fiom the above formula it follows duwectly that the coefficent of sel
snduction 15 1 oportwmal to the squane of the numbe of turns

Treating a rectangular coil with w turns (Fig 370) in a similar way
we have

2 2 2
L=% [0 92a, log,, (%.’«) +092a, logl(,(di.”) -024(a,+ %):I

0 4612 I,
S04 [1oglo ( d;) -0 2] . (944
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If such a coil 18 lad on a flat 1on surface, the coefficient of self-
mduetion 18 approximately doubled, hecause the magnetic reluctance 18
practically reduced to half.

R T,

Fio 871 —Magnetic Field of an Armature Coil

This 18 also approximately the case, even when the iron surface 18
cyhndrical, because the lnes of force always pass into the iron at
right angles, the surface of the 1ron forms an equipotential surface.

gF] 3%1 shows the distribution of the Lines of force for a coil of
arcular section half embedded m an won cylinder The lines of

force are dotted for the case in which the
s [ rrxemret - eyhinder 18 made of non-magnetic material.

) Hy= From the distribution of the lines 1t 18 clear
{ frorooxooroorooon that the introduction of the iron cylmder
. A + 1nto the field of the coil reduces the mag-
Fro o2 netio reluctance to half and thereby doubles

the self-induction
The field-strength 1n the middle of a long thin coil of diameter D
and length I, (Fig. 372) 18

Denoting the section of the coil by q,=ED’, the flux through the

middle part of the coil equals approximately ¢H,,, at the ends of
the coil, however, the flux 18 somewhat smaller, so that all the w

turns do not embrace the same flux q,g,,,w 18 a measure of the flux-

mterlinkages with the col, where the fn.c'tor k, 18 greater than 1 and
takes mto account the decrease m flux at the ends of the coil
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Hence we obtain the coefficient of self-induction L of such a coil,
equal to the sum of the flux-nterlmkages for »=1 ampere,

'
L= 1% 68k,
k, depends on the dimensions of the coil, especially on the ratio

(245)

q—' The greater this ratio, the nearer %, approaches umity. If b/ is
very large, Oqﬁ 18 the magnetic reluctance of the sylndrical coil and
O'g;cl 18 the magnetic reluctance of the effective flux, which 1s con-
sidered to be mterhinked with all w turns.

(b) When dealing with the coils in electric machmes and trans-
formers, 1t 18 not usual to calculate with self- and mutual induction,
(as mentioned 1n Chap VII, p 116), but wath the mamn and leakage
fluxes, or the quantities corresponding to these, 1e the coefficients of
mutual and leakage induction It would carry us too far here to
calculate all the coefficients occurring 1n machines and transformers ,
and therefore we shall confine ourse%ves to pointing out the methods
by which they may be calculated

Tig 373 shews the distribution of the Imes of force mn a smgle-phase
ron-core transformer with a cylindrical winding. I denotes the
primary cous and II the secondary Both embrace the main flux,
which 18 produced by the difference between the primary and secondary
ampere turns  The leakage lines, of which the primary are inter-
hnked with part of the primary winding and the secondary with part
of the secondary winding, are squeezed between the primary and
secondary coils, n which currents flow 1 opposite directions. The
leakage coefficients S; and S, are given by the summations (p. 112)

A
'wu(’wu"wﬂiju)
8,==2

1 R

'z

)

Wy
)
which extend over all the tubes of force interhnked with the primary
and secondary turns respectively
In general, 1t 18 only necessary to know the sum of these two
coefficients, and this can easily be approximated as follows
For each limb of the transformer,

.1
S+ 8= 1%
where w, 18 the number of primary turns per hmb, §; the secondary
leakage coefficient reduced to the primary and B, the effective magnetic
reluctance of the space between the two windings  This reluctance can
AcC 2n

2
% henrys,
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De expressed m the same way as the reluctance of a cylindiieal coil
(Bq. 245), .

=08k,
where g, 18 the section of the effective flux between the pmmnrzy
and secondary winding, /, the mean length of the two windings and £,
s factor which takes mnto account the maguotic reluctance of the

Fia 878 —Leakage Fiold of Transformer with Oylindrieal Winding

leakage flux outmde the space between the two windings, and the
decrease 1n_the leakage field at the ends of the wmdings  Denotug
the rachal distance between the two windings by A, the dopth of the
prmary and secondary windings by A, and A,, and the periphiery
Dbetween the two windings by U, we have

q= U(A + A—’—;—A3>

A
The presence of —31 and %‘ m this expression 18 due to tho fact that

the mtegmholn has to he carried out for the mterhukages of the tubes
of force E(%) and not for the tubes of forco = G;,i) The result of
. x
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this 18 not the mean of A, and A, but a third of their sum Hence
the sum of the leakage coefficients of the windings per Iimb is

U (A + 'A’—';-A?
8+ 8= T 08, henrys (246)

The strength of the leakage field 1tself for a section 11 the middle of
the windings 1s shewn by curve €' Fig 373

Fio 874a.—T.eaknge Field of Thieo phaso Genorator

Prof G Kapp has determined experimentally the values of %, for
several transformers , 11 modern transformers k, lies hetwoeen 0 95 and
105 In order that no local leakage fields may exist i the trans-
former, care must be taken that the two windings are as far as

possible alike 1 shape and arranged
symmetrically with respect to each
other.

The armature coils of eloctre
machines are nowadays nearly always
placed m slots In this case 1t 1s of
advantage 1n calculating the leakage
coefhicient to spht up the leakage lines
mto three groups

1 Lines 4 (Fig 3874a), which
entirely pass throuih the slots

2 Lmes B, which pass hetween the
tops of the teeth

3 Limnes C (¥rg 374l), which are
closed round the coil-euds outside the
1ron

Inaddition to the leakage lines, there

A A AAAA
L LGN
[} (4 «*
(3 ) %
> «*
[38) <
) <
o 0L D

Fia $746 —Lonkago Fleld of Coll onds

are also the lines D of the man flux, which pass through the armature

cotls and produce mn them the EMF of mutual induction

The main

flux of a polyphase generator, as shewn in Fig 374a, 1s produced by
the resultant of the field and armature ampere-turns
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As was pomted out m Sect 118, p 382, the resultant ampere-turns

of an n-phase armature winding having « turns per pole and phase, and
n

having a current of maximum value 7,,, 18 equal to 5/, @, this MM F.

rotates 1 synchromsm with the field, and 18 displaced from 1t by a

ﬁg—ﬂ___':\
G

ey %
| )/

Wb B J)} __%_J
Fmn 874c Fio 874d

certain angle ¥ This angle 1s 1dentical with the mternal phase
displacement ¢ of the armature current, 1f the anglo of a pole-par
18 Just equal to 2r

Using the same method as employed ahove, the leakage coefficient of
an armature coil can be written
S— 1

10 R
where R, 18 the magnetic reluctance of the effective leakage flux,
nteilinked with all the w, turns i a slot It 15, however, moro
convenent for our division of the
leakage lmes to write
1
= 2N, + 21N, + 21,0,

where A, 18 the permeance of the
leakage field acioss the slot for
1 em length of iron, A, the same
for the leakage field across the tops
of the teeth and A, for the corl-onds

H - or overhang [ 1s the length of
) — the won and /, the length of the

Fa 876 —Slob Feld overhan
In Fag 375, the leakage linos 4

passing through the slots are conmdered, and curve C' shews the
strength of the leakage field The permeance A,, calculated from this
distribution of the leakago lines, neglecting the magyetic reluctance 1
the 1ron, 18 given by

==v(g)2 dz + 15_+ 21“ +—7(4‘

7/ 08y " 08y 08(1,+17,) 08,

71 2l 7

=195( 4l Mo _4) 247
! (31-s+1a+r1+73+r‘ (247)

A=

=0
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.. 7
Here we have again 5:- and not o0 because we 1integrate ovor
8

s, .
the interlinkages of the tubes of force 2}”—,‘, 18 (;) ax
For the leakage lnes B we take the distribution as hemg two
quarter-circles and the straight lines jommng them, us shewn m
Fig 375  From this we have

N :n;n iz
27 )0 08(mz41y)
23 w(ty—1;)+ 2, wt,) 248
) 87l_log,,,[ o, :,_ 092 1°g"'(fl (248)
The ntegration 1s here taken to the Immt #, which it 18 hest
to put equal to the slot-pitch, smce all the tubes of force outside
this it usually embrace several slots To estimate these corrcctly
necessitates complicated constiuctions, into which we shall not enter
further
To calculate the leakage lines C, 1t 18 hest to consider the two
cotl-ends as comprisimg one rectangular coil (Fig 374c), whose por-
meance 18 equal to

A=0 46[log.n(zl") -0 2] (249)
Hence the leakage cocfficient of an armature coll 18
S= 5;“(‘)’: (A + D+ 10 honrys, (250)

where A, A, and A, can he caleulated from the above formulae

If two sumular coils, belonging to different circuits, lie side by side in
the same slot (F1g 376), the currents i them are mutually inductive
The coefficient of mutual mduction M of two such coils
18 equal to the leakage coefficient S, assuming the dis-

|
tribution of hines of force mn Fig 375, 25
The distribution of the lines of force, however, will ho |
quite another thing 1f the eurreuts in the two coils are A4
very different from each other, and especially 1f they are C
ogposltely directed In this case M 18 somewhat smaller =
than § Fio 870

The above formulae for the calculation of the leakage
coefficients of armature coils do not of course give quite aceurate values,
since the lines of force are not distributed along the assumed geometric
hnes, but always choose com?llcated paths, for which the magnetic
permeance of the leakage fields 18 & maximum  For this reason
experimental values are usually somewhat greater than calculated

131. Increase of Resistance, due to Eddy Currents in Solid
Conductors In the previous section we have seen that the magnetic
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field 10 the mterior of an electrio conductor 18 not constant, from
which 1t follows that the current lines do not all possess the same
self-induction  On this account the distribution of a high-frequency
alternating-current over the section of the conductor 18 not umform,

2
but such that the variation of the potential energy L% 18 as small as

possible For this reason the greatest current-density 1s obtained m
that part of the conductor m which the magnetic field 18 strongest.
Lord Kelvin first demonstrated this ph 1on, which 15 known as
skin-effect
Its action produces an mcrease 1n the remstance and reduction in the
self-induction of the conductor When the field in a wire 18 due to
the current in that wire alone, the curient-density 1s dependent on
the distance of the pomt consdered from the axis of the wire The
current-density is greatest at the surface and least at

tho axis
(a) We first calculate the distribution of cwrrent
v over the section of a round wire, n which cass the

approximate equations are similar to those for the
distribution of a rapidly alternating magnetic flux m
a round 1ron wire

Let us consider the element of the wire formed hy
a cylinder of thickness dz at a distance z from the
axis (Fig 377) et the maximum current-density he 7, and the
magnetic field-strength #, This ncreases from the mside to the
su.l‘%:ce by the value

Fia 877

a,

9
,=0 4wl dmady_ 0 4rZda,
2
while the induction, assuming constant permeability, mcrenses hy
udH,=dB,. On the outside of the cylinder a smuller EMF E, 15
acting than on the mside The ncrease in the EM ¥ E,, assummg a

phase displacement of 90°, 18
dE,=2mycB dz1078 = 2myepl[,dz1078 volts

This 1ncrease 1n the pressure requires an inciease in the cutrent-

-5
t ]

density, according to the equation /,=

L= ‘ZT""=  met H 1078 vols

, equal to

d,
Hence }Za:"g = - 2mje

&@10~s
p d

dH,
dz

=-0 8#’-’76:—:Im10‘9.

Substituting now the value of , we have

&L
dz'l
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Introducing (in the same way as for the distribution of induction in
ron wires) 2 —
i [ 26
T 104 \/10;1’ @81
d*I,
i
The solution of this equation 18
I,= Ae®-DA" 4 Be-(-Niz,

where 4 and B are equal, smce the same value 18 obtained for I, for
both +2 and —2 Hence

we obtain

J,= A[1 D7 4 =~ (1-DAx]
At the surface of the wire, where z=1, the cmrentrdeuslty 18 a
maximum ""n_A[Ea -Dar +€_a J)AT]

(1=-DAz 4 —~(A=DArz
_ € +e€
Theiefore L=1,. -DN 4 ~A-n

(252)

The current-density therefore decreases from the outaide to the inside

m a curve hike the induction m an won wire To determmne the

effective resistance of the wire, the mean of the squares of the current-
et

densities | 722rzdz must be divided by the square of the mean of
x=0

R r 2
the current-density Z,2mxdz |. The real ratio of these two

zes0
quantities gives the ratio % of the effective resistance 7,y to the ohmic
resistance 7

sor
-\. IDmrzds
&=0

[Crome]
z=0

Since this ratio can only be determined by tedious calculations, the
result of exact calculations 18 here shortly given For low frequencies,

7

Hence k= 7#’ = (real part).

we have for copper wire (/.L= 1and p=0017x 10“49%

k=1+07%0 —o40( 2 Y
=1+ (1000) 4°(1®o>’

for aluminium wire (;:.= 1 and p=00285 x 1074Q 91;)

cd? cd?
0
k=1+0 5(1000) -005 (1000
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for thin 1ron wires (,:,= 1000 and p=010x 10'49%)

cd?\? cd?\*
k=1+2(%5) -335(f5)>
where the diameter d of the wire 1s expressed 1n crn

For medium frequencies 1t 18 best to use the table calculated by
Hospitaher, which gives the values of % for different values of cd?
This table apphes to copper wire with p=0017 ohm To obtam the
ratio for wires of other materials, the value of ¢d? must be multiphed

by £0 017, and the value of % corresponding to this new value of cd?
found from the table

cd? L od? 13
0 10000 1520 18628
20 10000 1880 20430
80 10001 2280 29190
170 10258 2710 33937
300 10806 1820 30956
470 11747 7500 37940
680 13180 17000 55732
920 14920 30000 7 3250
1200 16778
(b) For very high frequencies and conductors of magnetic material,
_ o m
— 10tV 10p

reaches such high values that 6=** can be neglected compared with ¢
The current-density Z, can then be written

1-Nrz _ _ .

Lp= s a-Dm =Zuax d-ane=n (253)

This, hke all the previous equations, serves not only for round

wires, but also for bars of rectangular section For such a bar, 2

denotes the distance from the middle of the har and 27 = A 1ts thickness

For very lngh freq or permeahlities, the mean current-density

1n & bar 18

=4
=3[ rere )
z=0

U [_a-ms], 4
- x [] @ J)AE]: max
(1-pra (l_m_g_

A
or PLune=(1=1)A 5 P (264)
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When we remember that pl,,, denotes the pressue-drop per cm
length of the conductor, due to the ohmic resistance and to the field
wn:im the conductor, we see that this pressure-drop, based on the
mean current-density e, or on the current AZ,., flowing in the
conductor, 18 composed of two equal components. One of these com-
ponents is mn phase with the current and represents a 1esstance-drop,
while the other leads the current by 90°, and therefore becomes a
reactance-drop Each component 18 equal to $Ap Hence the same
reswstance would be obtained, if the current in the conductor was

divided 1nto two layers each of thickness %, since these layers would

have an ohmic resistance of Ap per cm length For this reason it 1s
said that high-frequency currents only penetrate mnto the conductor to

o thickness 1 or that an outer layer of the conductor of thickness

A
1_10¢ [i0p
8“"=X_ N o em ... (265)

carries the whole current  The effective resistance of the conductor 1s
equal to the resistance of this outer layer, and at the same time this
18 equal to the effective reactance of the conductor, due to the field
within 1tsell  This reactance, however, 18 usually negligible compared
to the reactance due to the field outside the conductor

The same result 18 obtained for round wires, where only an outer

cylindrical layer of thickness 8,,,=)% serves to carry the current. For

this reason copper tubes are also used as conductors for very high-
frequency currents They not only possess the advantage of utilising
the copper better, but they also have a smaller self-induction. Such
tubes are used, for example, mn switch-gear, and especially for the
connections of lightning protectors. The thickness of the conducting
layer 18 as follows

For copper conductors (p =0017x 10"49%)

10¢ [10p 65
=g NG =7 O

for alumimium conductors (p =0028x107¢Q :%)

8, 83 cm,
ot = "= 3
Ve

for 1ron conductors <,u= 1000, p=010 x 10740 %)
10t (Top_05

ot = - =7

o - ¢m
2 Noep e
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For reilway rails we obtam 84=01cm=1 mm. at 25 cyeles If U
18 the periphery of the rail in mm, the effective resistauce per kilomotre
length at 25 cycles 18

01x10% 100
la= U= ohmas.

At 15 cycles the resstance 18 VI3=4/06=0775 times us large,

Le. /A ohms,

The effective reactance of the rails, due to the field within them,
18 of course equal to the effective resistance.

(c) If the wires lie near one another as m cablos, ther mutual
induction affects the distribution of current 'The highest current-
density here occurs i the parts where the wnes are near togethor, and
the skin-effect may become very consderable For this case wo can
use the formulae given by Prof G Mie (/Wwd Aun 1900) for non-
magnetic wires at %;w frequencies  The ratio for twin-copper cable 1
approximately

1=1 +[o-7o+s 5(%)?(%)’_ [o 40432 (f,l;)j (lgl;o '

and for alumimum cable

A\ edB \? d N/l \t
k_l+[0 2+30(51) ](wTo) ~[005+41(ﬁ) J(m ,
where @ denotes the distance between the axes of the two conductors.
For conductors of magnetic materal the distanco betwoen the wires
has Iittle effect on the current distribution, and 1n this ease the same
formulae may therefore be used as for a singlo concluetor.

If the reactance of a cable, due to the field within itself, forms a
considerable part of the whole reactance, 1t 13 also Y to correct
the coefficient of self-mduction at high frequencies. Instead of 01 m
formula 2364, we have to put for copper cables

01 {1 - [o 364+112 (%)2] (1'(’)‘1—0’0 2+[:0 994+ 45 (%)J (1‘%@)*}

and for alumimum eables

d\27/ cd? \? 4N/ ed® \9
- SV (A 9 Iy
01 {1 [o 125+40(5) ](1000> +[o 021+57(5) ](1000 }
If the conductor 1n the cable consists of sevoral small wiros more or
less msulated from each other, the skin-affect 18 considerably 1educed,
due to thus sphtting up the section.
Prof Mie has given the following formulae for rapid oscillations, m
the same place as the above The ratio % for copper wires 18

pe_ 28 1QJE+1+&Ja’—d3)(d’+_aJ@2)
oyt 1000 "8 2(a2 = )8
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and for aluminum wires

2 099 cd? +_l_+(a—~/a?—ﬁg)(d’+a~/a9—d”)
JE—a& ~NI10007"8 2/(@T = qeyp -

whilst the coefficient of self-induction approaches the value

0-92 a++ai = 3
L=Wloglo< d ),
a3 the frequency increases.

(d) In a coil conswsting of several turns, the distribution of the lnes
of force of 1ts field 18 stall more complicated
than with one or two wires, so that the cal-
culation of the effective resistance 18 much
more difficult In order to keep the imcrease
m resistance as small as possible, the conductors
should be made of flat copper strip, arranged

//
m such a way that the longer side of the section /
comcides with the direction of the leakage

limes Further, turns which he m different /

k=

leakage fields should not be connected in
pmllgel, since heavy local currents might ensue,
producing an apparent increase 1n resistance

Messrs Field * have exhaustively treated the
dustribution of current-density for coils m slots
and the mcrease 1n resistance due to fields .
occastoned by the presence of the teeth ~Only 47 i

the mamn points and the result of these investi- 7
gations will be given here
Let us consider two bars placed one above
7

the other, as in Fig 378, and agamn assume
that the leakage field traverses the slot 1n "rf“

W
straight lines, and that the magnetio reluctance //
of the iron can be neglected compared with z
that of the slot Then 1t follows that the /

current-density 7, does not vary mn the breadth K
of the slot, but only m the height. The |

field-strength increases with the height o ac- | %
cording to the following law e 25—
aH,= 0 41!";.21,113 Fio 878

In the upper surface of the element of conductor of thickness dz,
whioh we are conmdering, an EMF 18 mnduced, which differs from that
mduced on the lower surface by dE,, equal to

A, =2mjepH, dz 1078 volts,

* Transactions A I I B 1906 and Proceedings I X & 1906
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which causes an alteration n the current-density of
ar,= - 2@0’51{,@ 108

Hence, from these two differential equations we obtain

d27, pdH, #04dm _

= = 2meE 22 1078= —2mct V™2 1 108

iz qcP T 10 nycp T 110
I,

or

- 2,49 -8
ol 081"0’”81210 )

which differs from the equation for wires m ar on p 438 only m the
factor :_’ If we substitute
8

A o,

A=i5 Tom
we have I,= Ad=Daz | Be-(-Dra
p_dL_ _p(l-pA, —a-
and H= T d= T I ~(4-nrx_ a1 J)u)

To determme the constants 4 and B, we have the followmg two
limits '

Furstly, for =0, . 0 dw(n-1)Ln,m,
= ]

3

Where I, denotes the maximum current per conductor, and (n — 1)
18 the number of conductors m the slot underneath the conductor
considered The conductor consdered 15 therefore the ! from the
bottom, and (n—1)Le,m; 18 the maximum current-volume lying
beneath this conductor
The second limit 18, that the maximum current m a conductor 18
equal to -
J. Lrgdz =T,
z=0
By means of these two limits we can first determme the constants
4 and B and then find the rati0 & of the effective resistance to the ohmie

e

pler_ Je=o

]

A B Feld has given the following formula for this 1ati0
he M_én(n —1)(cosh M - cos M) (sinh M1 — gin A1) + (sinh 201 + g1 2)2)
cosh 27 — cos 2A1 ’
(266)

4 (real part).




INCREASE OF RESISTANCE 445

and this 18 shewn m Fig 380 for difforent values of A» By moans
of these curves the ratio % for each turn of the armature coil can now
be found, and thus the mean increase i 1cmstance of all the turns
easily determmed Fig 379 shows the curient-density and phase-
displacement with regard to the man current as functions of the

&

\ / 1o0°

/ -

a Q@ qs q6 Qs i 9z 4% 0f a8 70
F1a 870 —Cwrent Dousity and Phase in two A Lt C

height of bar The curves were caleulated by A B Field for the two
conductors shewn i Fig 378 at 256 cycles It will be noticed that
great variations oceur 1n the current-density ~For tho lower conductor
1t 18 a maximum at the upper corner, while for the upper conductor
1t 18 & mimmum 1n the middle From this, as well as from the curves
n Fig 380, 1t 18 clear that the increase in remistance 18 much greater
for the conductor near the armature surface than for the other

As for wires 1n aar, the skin-effect has not only the ecftect of 1n-
creasing the resistance of armature coils, but also of decieasing ther
gelfainduction This 15 due to the fact that the current 1s driven
upwards 1n the bars, so that the path of the lenkage field acioss the
slot 18 not straight, as shewn wn Fig 375, but passes chiefly hetween
the bars and throngh the highest and lowest paits of the hais If
many turns are arranged above one another in the slot, the distortion
of the leakage field 18 not so marked, since the condnctors ave very
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thin and the leakage field varies from the bottom to the top almost
according to a straight-line law.

If there are only a few large conductors i the slot, 1t 1s advan-
tageous to lamimate them parallel to the lines of force or to make them

Zs 25 2% 2z 20 78 7 7

‘ S B

~/, )
; L S
075>l
7! A// é - -’-LL{—"">
2 9z 9% 46 a8 70 72 113
ar -
F1a 880 —Curves for Inorease of in C

of pressed cable. In many electric machines, such as continuous-
current machines, and to a still higher degree 1n rotary converters, the
wave-shape of the currents flowing i the armature couductors 1s very
dufferent from a sme wave In such cases the current must be resolved
mto the fundamental and higher harmomecs, and the losses on the
ratio & calculated for each of these currents If these ratios are %,
kg, kg, ote for the currents I}, Iy, I, ete, then for the effective current

I=JB+DB+D+



INOREASE OF RESISTANCE 447

the effective ratio 4 1s obtamed from the equation
kD =k I+ kI3 + R+
_ L\ T\? T\

Hence b=h(7) +h(7) +h(7) + .

These considerations and formulae for armature coils can also be
used 1n many other cases with close approximation, so long as the
leakage lines run parallel to the surfaces of the conductors, and the
path of the lnes of force 18 not apprecla.bly altered through unsym-

metrical distribution of current Such cases occur 1n transformers
and 1nduction coils, but here the paths of the lines of force must be

taken 1mnto account in choosing the ratio :_2-

(e) Besides the eddy-currents induced 1n electric conductors by fields
within them, there are also currents mduced by external fields, which
however, do not result 1n an apparent increase in resistance, but only
m a production of heat 1n the conductor For these currents the for-
mulae may be used which were developed for the eddy-currents i ron
wires and plates It will be best to demonstiate this by two examples.

On the surface of a smooth armature there 18 a copper conductor of
breadth A and thickness 2 (Fig 381) The mmature%ms a dhameter 1)

and pole-piteh 1-=1LD and rotates with a peripheral speed of » We

%’
will consider the field 1 the air-gap as P
being dlstnbutrf‘dh smusoidally over  the e E
pole-pitch . en the field-strength at Y -
any pomt 1n the conductor at any moment /‘W 4.1 %

can be oxpressed by . ! X
b= B,smn (wt - a.) Fio 881

-

The middle of the conductor, where #=0, then falls m the middle
of the neutral zone of the magnetic field, where /=0, at time {=0
In an element of the conductor at distance  from the middle, an EM F
per em length 18 induced equal to

e,=vb 1070 volts,
where o is expressed m metres per second Hence the current-density
n this element 1s
L ST AL -
z,—; 10 +C’-—p10uB,sln<wt _ra'>+6'

The presence of the constant C' 18 due to the fact that the sum of

all the mternal currents induced mn the conductor 1s equal to zero

Therefore 3 A
0= 1,dz= —~ V5 2cosmtsm§;+0A,

z=-3 p’;‘: 100

from which €' can he calculated and placed m the expression for 1,.
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Hence the current-density 1s

sn
i,=:1—1(g)'u }—Zicosmtﬂin(wt—’—:m) .
=)

To find the loss 4, per unit volume, we integrate over ﬁpi—z%

obtam

and

4B 2 amg(fé>

Td (*“tide, _ 7B 72
w~=.‘.07' r:—ézlzp—m ) (IA)! '
2 L T3

Developing the sme mto a sertes and neglecting all terms of the
higher orSers, we have

9
Further, putting 10011=%n=5‘ggn =2r¢ and expressing A m mm,
T
for a form factor of f,=111 =37 the loss per dm® 18
4107, o fB Y ast
=3 (Aﬁﬁ f000) "ot (257)

This formula corresponds exactly with the expression given on
p 361 for the eddy-current loss 1 iron plates It holds only so long

Slot Fielda

as the eddy-currents do not apprecably affect the distribution of the
Imes of force

If the armature bars Lie 1n slots, & M F’s are also induced 1n them by
the main field These EMF’s are due mainly to the lmes of forces
passing between the surface of the pole and the sides of the teeth,
which are chiefly present with large open slots and a small ar-gap,
as 18 shewn m Fig 382z

The field-strengths of the slot-leakage field can be resolved into
radial and tangential components, the tangential component mainly
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induces harmful eddy-currents m the upper conductors  Strongly
saturated teeth also raise the field strength in the slots If the slots
are very deep and the teeth only strongly saturated at the root,
the lmes of force pass between the sides and bottom of tho slots
(Fig 3820) They mduce eddy-currents in the lower conductors, and
n this case the 1adial as well as the tangential components determme
the magnitude of the eddy-current loss

The eddy-current loss can be determined in this case also by formulae
simular to those used for a smooth armature It 18, however, much
more difficult, to determine, as the caleulation 18 much more com-
plicated, and can only he approximated.

1" Watd

42 - o
7 ——
# T gy

40 i —

a9 .  —
o H—

a8 P S
- L
a1 — /éV

2000 B,y —v 3000

LR

1000
Armatare
I p/g w

Fro 888 —Eddy Currents in Armature Conductors

Dr Ottenstemn* has determined the order of magmtude of this loss
by a long series of careful experrments, and has found that maximum
tooth-densities of 24-25000 can be employed before large losses occur,
due to the lines of force hetween the sides and hottom of the slots
In Fig 383 the loss per ecm? 1s plotted for different slots and different
arrangements of the conductors in the slots as a function of the 1deal
maximum tooth-density B;, (1e the tooth-density calculated on the
assumption that all the lines of force pass through the teeth, which

* “Das Nutenfeld in Znhnarmaturen und die Wirbelstromverluste i massiven
Armatur-Kupferleitern ”  Sammlung elekirotechnischer Vortruge, Stuttgart, 1003
Ao, 2F
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is not actually the case with highly saturated teeth) ~From tlus figure
1t 18 clear that the lmes of foree hetween the pole-face and the surfuce
of the slots may give 11se to very lugh losses

The highest loss of 1 watt per cm? occurring m the cuu ves corrosponds
to an effectave current-density s,, which 18 obtamed from

sap=10.

If p=002 18 inserted for warm coppel, the loss of 1 watt por em?
corresponds to an effective current-density 5,=+/60 amp/mm?, a valne
which far exceeds the usual mean density m armature bars It 1
therefore advisable, when the copper armature hars lic 1 open slots,
as 1s usually the case m direct-current machmes, not to huve the
conductors too near the armature surface, that the aiwr-gap should not
be too small compared with the breadth of slot (16 not less than 3),
and that the maximum tooth-saturation 1s not too high (1.e. not above
25000 on full load) In large alternators with open slots the armatino
bars near the surface should be lammated tangentiully m ordor to koop
the eddy-currents induced by their own field withmn permssible limits,
and the same bars should be laminated radially, morcor to destroy the
eddy-currents mduced by the mam field Smco this 18 not possible m
practice, the bars 1n the neighbourhood of the surface wre erther mada
of stranded cable, or they are sunk very decp m the slots und at the
same time lamimated tangentially

132 Leakage Fields and Electrodynamic Forces due to Momentary
Rushes of Current. During 1ecent years, commercial requuementy
have led to the building of very large power-stations with lurge mmnts
At first all the machines were connected to the swume hus-hwr system
and therefore to the same network, since no apparont 1casons wero
forthcoming why the usual practice for small units should he departed
from It had not been considered that with large vmts workmmg to-
gether on the same network, when a short-ciremit ocenired anywhere
In the system an 1mmense amount of energy would nct on tho shoit-
circuit, and therefore give rise to enormous rushes of civent  These
rushes produce great mechamcal as well as electrical forces, and often
lead to destructive explosions 1n the automatic circuit-Inenkers, which
are provided to cut out the faulty part from tho iest of the nel-
work In the followmg section some formulne will be given for
calenlatng the mechamgcal forces due to such momentmy rushes
of current To determine the mechameal forces, howover, tho dis-
tribution of the leakage fields at the momont of short-ciremt, must he
Imown, and for this reason the strengths of the lenkage fiells will he
calculated together with the mechamecal forces

To illustrate the forces which act between straight conductors, Fig
384 shews the switchboard of a 6500 volt motor, destroyed by a short-
cremt  The motor was connected to the lwge uctwork of the
Manchester Corporation power-station, and tho tigiie was supplied by
C L Pearce, Esq, the chief engineer  All the cables were well Thang
between msulators at s distance of about 125 cm apart  The figmo
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shews clearly how the outgomng and return cables of the same phase
were repelled from each other, and the cables of different phases
attracted The insulators @ and ) were broken and the msulating
plate J made of asbestos board was out clean through  The thin
cables, which were for the most pait bent, normally carried 10 amperes,
but as the following caloulations shew, must have carried a very much
higher current during the short-cirewt It 1s clear that the bending
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Fio 884 —Hffeots of u Bhort-circult on the Cablo Qonneetions of & Bwitchboard

of the cable was greatest near the angle-iron carrymg 1t on account
of the magnetic field-strength being greatest there Also, we may
conclude from the figure, that the bending started near the angle-
wron, and after the wires had first approached this place the motion
proceeded further downwards

(a) We first calculate the repelling force between two parallel con-
ductors, serving as the outgoing and return lines  The force must be
repulsion, since the currents 1 the two conductors are oppositely
directed It can also be said that the wires tend to move 1n such a
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way that the selfinduction of the loop formed by them becomes as
large as possible, since the magnetic field-energy 15 then a maximum
The wires therefore tend to move away from each other Parallel
wires carrying currents i the same direction have the opposite effect
From Ampere’s law the repelling or attracting force hetween two
parallel wires per cm length 18 equal to

K= 2131

9

3981000 100 48 = 10+ & (258)
where 3, and 4, denote the currents 1 the wires 1 amperes and a their
chstance apart m cm  This formula 18 amplified when we consider that
one conductor produces a magnetic field of H =12'(—% at the position of
the second conductor, and that the mechamical force on the second
conductor, from formula (7a), 18 %ﬂ dynes If the two conductors carry

the effective current J, the maximum force per cm length 18
412
K= 2% kg
Substituting n this /=10 amperes and ¢ =12 5 cm, we have
_ 4x100 _ 82,
T126x 1087 108 8
For a length of 100 cm the force 18 thus only about %‘% kg,
and to obtan a force of 1 kg, the rush of current must therefore
0
inerease to !392—= 175 times 1ts normal value.
Considering further that each cable mn Fig 384 was repelled from

one side and attracted from the other, 1t still requires %mmboub 12
ay
% - e
—y, | e i 77 I
—Y, Z

Fia 885 —Fiold Intonsity of a Long Thin Conductor

times the normal current to exert a force of 1 kg on a cable 1 metre
long. This caleulation shews clearly that very considerable rushes of
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)
current are met with in networks of large systems Short-circuits 1n
such networks act almost like dynamite explosions, 1 that the forces
which occur are sudden shocks, acting momentarly This accounts
for the great: damage so often done to the windings of generators and
transformers

In order to calculate the mechancal forces actng on the coils, we
shall first consder the field-strength H, produced by a long flat con-
ductor f‘lg 385)

For this purpose we divide H 1nto a component H,=H sin « perpen-
dicular to the conductor and a component H,=H cosa pam.lleFto the
flat side of the conductor If the conductor, which stands perpendicular
to the paper, 18 very thin and carnes the current z dy 1n the element dy,
then the field-strength produced by this element at the pomt P 18

Ndy
dH= Tor
and 1t8 components are
_ 2udysma Ndycosa
dH,= 100 and dH,= 10

Integrating over the whole conductor, we now obtain, since
1de=dycosa and di=dysmna,
the two resultant components

). 9 o
H,=jwsll1u=ﬂjdl=2log:§=0 ~L61,10gm:—2 woer +(269)
1 1

o )7 "1
2d, %
and HFITJ cos a=ﬁjdu=0 (e - ay) (260)

1 18 here the current per cm
breadth of the conductor If the
length of the conductor is not
very great, but considerable with
regard to the distance of the pomt
P, the two components Hq’, and H,

Y
180%
v 18 the angle 1n degrees which
the conductor subtends at the
pomnt P If the conductor 1s not
very thin, the components I,
and H, (Fig 386) must be deter- Fia 880
mined i)y a double mtegration

H,= _”211‘3 & cosa= L% (ag - a;) dz

must be multiphed by where
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Since tan a1=!—% and tan “z=gj (Fig 386),
=n 9 - i
we have H,= 10 tan ‘(?) —tan 1<i1ﬂ da,
whence
2% o
H,= ﬁz) [””z(ﬁa =By) =5 (e; ) +1 15y, Iug,,,(’;—:) - 1 15y,logy ;l)}

(2600)
where + denotes the current-density per cm? and 4, 1, 5, and y, are
expressed in cm  In the same way we have for 17,

)
Hz='12_é l:%(“z = Ba) = ey = By) +1 16, logm(q‘.i) -1 16x,log, (;’:):',
259a)
and the resultant field-strength 18
H=JH+H}
If the conductor 18 not veiy long, the factor 1%0 must he added to

this  This formula also holds for a coil-side consisting of several tmns,
m which case ¢ denotes the curient volume per cm?, and the lengths
are expressed m cm As a first approximation, the field-stiength

can also be written 20(25 - 2,) (%0 — 1)
- o= 9
H= 10/ ! (261)

where 7 denotes the distance of the pomt consmdered from the centro
of the coil

(b) Consmdering two coils placed over one another, as m Fig 387,

then 1f they are counected i series

to oppose each other (o1 1f erther coil

VA = s 18 short-cncwted on itself), the two
N WA = iy colls will be repelled by a momentar

2 rush of current The lenkage field,

Fia 887 —Two Mutually-repolling Cotls  Passing between the two coils, tends

to spread out as much as possible and

thereby exerts a strong repellmg force on the upper col Ths

repellmg force can be caleulated from the abovo formulae for the
field-strength  The field-strength 18 approximately equal to

_w
" 10a
and the repelling force
g (w)H _ 2(w),
=l =" ke
whero /, 18 the mean length of the coils, uw the ampeie-tuins and « the
distance between the coils from centre to centre
The leakage field 1n all electric maches and tiansformers stiives
to attain maximum field-energy, just as do the two cols m Fig 387

(262)
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Since the leakage field 18 squeezed between the primary and secondary
windings, and always tries to expand as much as possible, the
wimndings are driven apart by momentary rushes of current, 1f they are
not fixed secuiely enough Rushes of current which exert these
forces are chiefly due to short-circurts 1n the secondary ciremt, that 1s,
1n the stator ciremt in the case of alternators In this case the field
winding 1s the primary and the stator wind-
g the secondary Besides this, mechanical i

forces also occur 1n machines and apparatus
between the several coils of one winding
carrymng the same or pioportional currents
These coils ueed not belong to the same
phase

In a transformer in whick the coils of
the primary and secondary windmngs are
sandwiched hetween one another, as m Fig
388, the leakage fields are squeezed between
cach primary aud secondary coil, so that
these mutually repel one another

It has even happened that the coils
themselves have heen blown apart The 5

- RNNSNNNN

mechameal forces acting on the upper and
lower coils are of course the largest, since —
mn the neighbourhood of the yole the Fio 88 Zfoaton of tauustormer
permeance of the leakage field is greatest

To determne the repelling force hetween two coils, we must first make
a calculation of the field-strength produced by one coil at the position
of the next coll On account of the great magnetic permeance of the

1on core, this 18 not 21—2 , but almost double this value It must of

comse be considered that the rushes of current ocour so rapidly, that

the ion partially loses 1ts permeance owing to the eddy-curients

induced m the plates This remains, howover, so large on the sides

where the leakage lnes cuter the 1ron parallel to the lammations, that

the field-strength here must be put equal to %:Tq:, while on the sides
2uw

where the leakage field enters at 11ght angles to the plates, 102 must he

used The mean field-strength 18 therefore somewhat smaller than
Suw
10a
hecomes somewhat smaller during a momentary rush of current
than under steady conditions Denoting the effective value of the
momentary short-ciremt current by I, and the number of turns of
the outer coil by w,, the maximum force by which the upper and lower
coils are pressed against the yoke 1s

For this reason the short-circuit reactance of a transformor

- 6 (1 0,)2,
Ko = ,(--&)T) ke (263)

mux = P
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if all the coils have the same ampere-turns If the coils in the middle
have double as many ampere-turns as the two outer coils, the force 1s
approximately double as large as that given by the formula The
formula 18 not very accurate, because of the very great difficulty in
calculating I,

In transformers with cylinder windings, shewn 1n Fig 373, the field-
strength produced by one winding at the position of the second can be
calculata(f from formulae 259 and 260 It only interests us here to
find the maximum field-strength, which occurs at the middle of the
windmgs Here H,=0 and

2uw
H=H,=157 (2= ),
or if 48 =%} denote the effective ampere-turns per cm length of the

winding, the maximum field-strength 18

24/248
Hyp= ~/1_0 (03— 0y)

Hence the foree exerted outwards on a coil of w, turns per cm length

of col 18
4A48Iw,
K=" (0g - ) kg (264)

If the coil 18 circular, the force, distributed umformly over the whole
coll, exerts a bursting action on 1t. If, on the other hand, the coil 18
rectangular, which 15 usually the case m large transformers, the long
sides of the rectangle tend to bend out, so that the shape becomes
elliptical

Mechanical forces do not only, however, act between the primary
and secondary coils on the same core, but also the outer coils on
neighbouring cores are mutually attracted, since currents flow m the
same direction 1n the adjacent coil-mides These forces of attraction
can be calculated from the same formulae

In addition to short-circuits, rushes of current also occur n trans-
formers when they are switched on to the network These rushes aie
heavier, the more strongly the iron 1s saturated In this case the
secondary circuit 18 open, and therefore carries no current, the primary
coil then tends to move towards the posmition of highest reactance. For
this reason care must be taken w1t£ eylinder windings that the coils
are at equal distances from the two yokes, while 1n all transformers
the upper coils must be well fixed relatively to the yoke, so that they
are not drawn agamst the yoke on switching n

(c) The argument for generators 18 simular to that for transformers.
The primaiy and secondary leakage fields strive to press between the
stator and field windings and to drive them apart Hero the field
winding 18 fixed so well on the mner rotating member that 1t cannot
be displaced  For this reason the repelling forces tend to drive the
corl-ends of the stator winding away from the field system Forces of
repulsion cr attraction also occur between the coil-ends of the several
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phases, according to the direction of current in the phases at the
moment of short-ciremt If a coilend 18 very near the iron, 1t 18
usually drawn agamnst the wron With the arrangement of the coil-
ends of a three-phase gencrator shewn m Fig 389, the coil-ends of
phase I are usually bent outwards by the leakage fields between the
stator and field windings, while those of the second and third phases
are mutually repelled ~To caleulate the

repelling force on phase I, 1t must be o %‘ y'rg
|

borne m mind that at the moment of

short-cirewmt the main field cannot sud-

denly vamsh despite the demagnetismg |
effect of the stator current and that a

greater current 1s induced 1n the field co1l,

which strives to maintan the field In |

this way a large primary leakage field |

e}x;osses love; to t]:;le polg-shoa, :.lr]d benid‘s 3
the coill-end of phase I outwards 0

determine the foI:'ces present 1t 18 neces- Kk)/////////////////
saly to kuow the momentary current n
the field coils as well as the magmtude
of the mamn field. If this momentary
exciting current is known to be 1,,,, the magnetomotive force ,,, %, — aw,,
acts on all the tubes of force between pole-shoe and yoke, where aw,,
denotes the ampere-turns necessary to send the flux through the field
system The feld-strength about phase I can be calculated approx-
mately by drawing the lines of force, and we have

Fio 880 —Section of Throe-phase
Generator

_ sty = O,
HE=""g

The maximum mechanical force per cm length of the coil-end 1s theu

_ Htgnuua W,y _ oW, — QW
K="100 = "0snor

where 2,,,,, 18 the effective momentary short-circuit: current in phase I
and w, 18 the number of turns m the coil-end Since 4,,w, may 1n the
case of large machines attamn a value of 100,000 ampere-turns at the
moment of short-cirewit, while 2,,,, 4t the same time reaches a value of
150,000, we have

Tanas @, K, (265)

£ 10 x15%100_ 1500
= osiler To8l €

Thusif 1=36 ecm, K=52kg If the pole-arc of the machine 1s 60 cm
and the length of the coil-end 80 cm, we can reckon on a force on the
coil-end of about 60 + 80

527", " =3600 kg

Evidently very considerable forces may oceur m large machines

For this reason the arrangement shewn i Fig 389 1s not used, and
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when possible, the coil-ends are arranged n two P]anes, as shewn m
Fig. 3900 The coil-ends are now so far 1emoved from the field coils,
that these have httle effect. In this latter winding there are chiefly
repelling forces between the coll-ends, since at any moment the eurrents
are almost always oppomtely directed in the two planes In the part
of the coils running axially, where they come straight out of the slots,
the same direction of current oecurs m groups, so that attracting as
well as repelling forces are here present. The latter a1e the laigest, since

Y

Fra 890 —Current Distribution in tho Coil onds of Tlneo-phnso Gonerntor

the leakage field between the coils 18 the gieatest, where the current
changes 1ts direction  In order to make the repelling forces hetween the
coil-ends of the several phases harmless, they must be fixed as firmly as
possible, and further, care must be taken that the coil-ends wre
sufficiently far from the won It 18 possmble to ealculate the ficld
strength of the leakage field, which one coil produces wheie the other
18 situated, for various pomtions. To caleulate 1t accumately, the for-
mulae on p 454 must be used, but we can write as an approximation

PR
H="0"
Yamax w
Yt 2 (L )? ;
and =" 10 10T = alee e .(206)

Thie holds for the moment when the current 15 & maximum m one
phase and half as large in the other two For g,,,,w,= 150,000 and
a=10 cm, we have

295 x 101

K= Tox 10" = 225 kg per cm

‘With an active length of 60 cm, the total force on a corl-end hecomes
K=1235x60=1350 kg,

which 1s certainly a considerable force It 1s clear from the foregomg
that 1t 18 of the utmost importance to keep the momentury short-
orewt current 1n electric generators and transformers as small as
possible. This, however, 18 not possible without allowng an undue
fluctuation m pressure, due to alterations m the working load In
this matter, as so frequently happens 1n practice, a compromise has to
be made between two evils
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133. Capacity and Conduction of Electric Cables

(a) In order to begin with the simplest case, the capacity of a con-
centric cable (Fig 391) will first be calculated The two conductors
may be considered as the plates of a condenser conssting of a par of
cylmders  Denoting the electric charge of the mner conductor by @,
1ts potential by P, tﬁe dielectric constant of the dielectric between the
two conductors by ¢, the diameter of the inner conductor by d and
the msde diameter of the outer conductor by 2a, formula 202 (for the
capacity of a par of cyhnders) gives the capacity
of the concentric cable per umt length (1 cm) m 28—
electrostatic units, thus J

€

Qe
C_P_:Eg(‘%i)’

or for the leugth 7 n kilometres and ¢' m electro-
magnetic units

u—D_.}

0= L d10° b——2A——
9x10%, 1 2u Fia 301 —Soction of &
=log\ Coucentric Lablo

Simes capacity 18 usually measured m miciofarads (mfd), where

1 m.fd=% times the electromagnetic unit, we have

v 1 d1010m

Ly ———p< ML
9% 10 210g<%>

. d 0 02424l

T 9% 2x2 3loge (%) " logn ("—j)

The susceptance J, due to the capacity of a cable 18
by=2mcC,
where €' 18 the capacity measured m practical umts (farads) The
cupacity susceptance of a concentiic cable 1s therefore equal to

.
p=ame 202 e L (268)

20
10°log;o (7)

Deuoting the eftective alternating pressure between the conductois
of the cable by I, the capacity gives rise to a wattless chsplacement
current

Lyy="Lby,

or

mfd (267)

which leads the presswie by 90°
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Since the msulation between the conductors 18 never perfect, and on
account of the dielectre hysteresis, a current in phase with the pressure
also flows mto the cable. This watt-current 18 equal to

Loy="Lyy

Of this we shall calculate the part due to imperfect insulation, 1e.
the conduchion-curient Pg, g, 18 the electric conductance, or the
reciprocal of the resistance, betwoen the two conductors, and 1s called
the conduction of the cable It is given by

1 ﬂ"p,,!lz_ o (3_4)
‘q_“__[zﬁi:lrpl_mlog ]

_ 2wl ,
pilog (%)

where p, 1s the speafic resistange per (g% and 7 18 the length of the

or 5 (269)

cable m cm Substituting ! m Lkilometres and as 18 usual p, m
cm
megohms per o have
. nl10° _ 0272
"= 2\~ 2
23 x 104p,1ogyy (_aﬂ') pilogy, (7“)

., however, 18 strongly affected by the junctions m the surface at
the ends and connecting-pomnts of the cable, and therefore w a networl
wnih many banches the conductamce g, 18 much greater than the value cal-
culated from the above formula

In the above calculation it 18 assumed that the msulation between
the two conductors consists of a homogeneous material with a constant
dielectric constant ¢ If this 18 not the case, the calculation becomes
very complicated, for the dielectric must then be considered as several
condensers 1n series with different insulation resistances The capacity
of the cable m this case may be approximated as follows

002427

=g_]10gm(gx> + Lloga(§) +. .+ L1og (37)

where d, 18 the outside diameter of the z' layer of insulation. Simi-
larly the conduction is approximately

0272}
oo ) mvs(E)r +n(E)

'

mid,  (270)
o= mho (271)

In addution to the capacity between the two conductors, the capacity
betiween one conductor and earth must be considered.
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If the mner conductor 18 disconnected while the outer still remains
under pressure, the capacity of the outer conductor (Fig 391) with
regard to earth 13 00249

logi, (%)
If the mner conductor 18 earthed, the capacaity of the outer conductor,
with regard to the mner and to earth, 18

mfd.

002424 1 1
C'=00242¢ ogs (27:) +logm (2—54)

If, on the other hand; the outer conductor 1s disconnected, the
capacity of the mner conductor, with regard to the outer, 18 1n series
with that of the outer with regard to earth Hence the capacity of
the mner conductor with regard to earth 1s

__ 0 0242¢ _ 002424
logie (%w ) +logy, (%) - logie (27‘4)

This 18 much smaller than the capacity of the outer conductor with
regard to earth
urther, the capacity of the inner conductor with regard to earth,
when the outer 1s earthed, 18

mfd

00242¢l
= o &
logy (7)

(b) We now proceed to calculate the capacity of an air-hme in a
gystem, using the earth as a return
In Fig 392, the electric lines of force (current curves) z and the
equipotential surfaces y of the electric field are shewn as they are pro-
duced by the conductors 4 and B charged with equal quantities of
electricity, but of opposite sign  The curves 2 and y represent only
the intersections of the current and equipotential surfaces with the
plane of the paper The electric resmstance of any element of a tube
dy
of force 18 proportional to i
By means of a mathematical transformation,* we can now replace the
diagram m Fig 392 by another simpler geometric diagram, m which
each elemental tube of force has exactly the same resistance as the
corresponding tube 1n the original system
The capacity and conduction are thereby unaltered, and their calcula-

c fd

*Steinmetz, £ 7' Z 1893, 8 477
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tion 18 considerably sumphfied Denoting the new system of current
and equipotential curves by v and w, then, m order to satisfy tho
ahove condition, we must have
du_dr
v~ dy
As 18 well known, this condition 18 fulfilled by any equivalent
transformation from one plane to another, any transformation hemg

Fia, 892.—Ourrent and Equi potentinl Ourvos of Two Parallel Conductors

called equivalent or equiangular, when any two curves of the one
p};.ne make the same angle as the corrosponding cnrves of tho second

ne
P We have already had recourse several times to a tiansformation of
this kind, namely inversion, or, as 1t also called, transformation hy
reciprocal radu. Simce the problem can be solved very simply with
this transformation, we make use of 1t here

If a conductor 4 18 given, as above, with the earth sor vig as retmmn,
the system of currentlmes and equipotential curves given by the
circle 4 and lime B (the surface of 316 earth) may he transformed mto
another equivalent system We may, for example, convert the circle
4 and the lne B (Fg 393) mto two concentric circles  To do thus,
we mark off the mversion centre 0, the perpendicular to I drawn
through the centre of cirole 4, and further choose the mversion
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cosfficient 1 such a way that circle 4 corresponds to 1itself and line B
to o circle concentric with 4. We then have

0l JTE,
and 0T*=I=0P 0P,
where 7 1s the constant of 1nversion

/Aé"
R i
a
P

B
0
Fro 808
© MP=a 15 the height of the conductor 4 above the earth, m'=62—l

1ts radius and O = R the radus of the large arcle.

- ]
Hence ()T*=E‘—<g) =I=(R-a)2R
or R-2Ra + (g)z =0,
2
that 1s, R=a+ \/aa - <g)
If d 18 neghgible compared with a, then
R =2a,

that 15, the capacity and conduction between a conductor at a height a
above the surface of the earth and the earth are the same as between
the conductor and a concentric cylinder, of which the rads R 18
approximately double the distance of the conductor from the earth
The capacity 1n this case 1s therefore

00242¢l _ 00242¢l

C= o P\ = s
2R 2 _
log;, (7) logyo Qf’t“/;l}_a‘"iz
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or very closely
v ¢=2 024:;’ mid, (279)
logy, (7)
and the conductance for determining the conduction current 18
N 02731
= (213)
pilog (7)

(¢) In calculating the capacity of a double hne, where the two
oconductors are arranged near
v i A one another as overhead lines
A | B 9. or placed underground, either
R o ¢ w together m one cable or as

M,T0, " 'P R\OjiMy/*  separate cables, 1t must De
\{j ! 7 remembered that the earth af-
! i fects the electric distribution

! ! ‘We shall first conmder the

q’ simple case, 1n which the eftect
Fro SMa of the earth on the capacity of
the double hnoe can he mne-

) glected If the two conductors

! are represented by the circles

! 4 and B 1 Fig 394a, we
I
1

| | know that the line U0 per-
— pendicular to the hne joimng
[ 1 the centres of 4 and B re

1 presents an equipotential sur-

o face of zero potential The

Fro ‘340 electric field between con-

ductor 4 and the surface 00

and between conductor B and the surface 00 can therefore each be
replaced (Fig. 394%) by a condenser of capacity

002434
e

and of conductance o= o272l

pilogi <a, + ;2 _l)

Connecting these two equal condensers in series, we obtam a capacity
and conductance equal to half of each condenser The capacity of a
double lne, neglecting the influence of the earth, 1s therefore equal to

O 0 0242¢l . 00242¢ mid 274)
s () e (O
2logy, 4 2 logy a




CAPACITY AND CONDUCTION OF ELECTRIC CABLES 465

and the conductance equals

h= - 02721 = 02 (275)

2p,10g;o (a+J$2;Liz) - 2p:logu (?’;)

From this we come to the conclusion, as Steinmetz first shewed, that
an earth-return, as regards capacity and conduction, behaves hke a
conductor symmetrical to the overhead line with respect to the earth,
whose distance and potential are the same below the earth as the air-
hne 18 above 1t The conductor, equualent to the earth, s therefore the
wmage of the over head-line wn the earth’s sus face

In Fig 392 are shewn the electric hines of force and the equipotential
curves of the electric field of a double hne  All the lines of force are
arcs of circles, which, 1f produced mside the conductors, 1ntersect at
the pomts 0; and 0, It 1s further known that

— 2 CR—
0Ty (§) - () -

The physical meaning of this 1s that the electric field produced by
the charges on the cylmdrical conductors 4 and B 18 the same,
as 1f the charges of the conductors were concentrated on the straight
hines O, or 0,, runmng parallel to the axis of the conductors

‘We can now determine the capacity of a double line 1 the same
way as for a concentric eylnder (p 387) Thus we calculate the work
done m moving umit postive electric mass from the surface of a
conductor to the neutral zone This work 18 equal to the potential of
the respective conductor, and 18 equal to half the pressure between the
conductors The foice acting on umt positive mass at the point P

(Fig 3%4a)18 1 20 1/-929\ 1 20) 1 ( 20 )
2@+2(0?)_"(p 0,05 - p
Multiplying this equation by dp and ntegrating from p=1,0, to
p=00,, we obtain the work for half the pressure equal to

€ €

_20,,, 00, 30, 00, 20, RO,
= e R, R0, B Ry,

It follows from Fig 394a, that
B0, = 00, - B0=} (o= d* +a - d)

and R,0,=00,-R0=4(Wa®=d? - a+d),
B0, JiE-d+a-d_a+Va -
ther EMtE el =- —_—
and therefore R0, Ja*-d‘-a+d d

Hence the capacity of a double lme per cm length, 1n electrostatic

units, 18 .

=4Iug (a+~/d-’——:_d_j)’

NI

d

Ac 2a
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which formula corresponds to the previous oues In this case we have
moved the point P along the central lme 0;0,, but since the potentral
dufference between R, and 0 13 independent of the path of P, the same
result 18 always obtamned, whatever the motion of  From this 1t
follows, 1n general, that the work done by the electric chaige of a sharght

Twne Oy, when wiat mass s moved fiom R to S, 1 proporhonal to 10g%§§

To determwne the capacity of a double lne, taking the earnlh’s
mfluence mto account, we substitute for the earth, two equivalent
conductors 4’ and B, formmg the mages of 4 and 5 m the earth’s
surface If 4 and B have the charges —@ and + ¢, then 4’ and B’
will have the charges + @ and — @ respectively

To obtain the effective capacity of the double Lne, mecluding the
effect of the earth, we calculate, as shewn on p 392, the work done
mn moving umt positive mass from the earth to the swrface of the
conductor B The work doue by the charge on 5 1itsclf 18 equal to
(cf Fig 394) 20, 00

o 1)

Ztlog ==*»

by charge - .—log —!,

by charge B’ - qT log ==

and by charge 4’ +-—E—locr —

Sice the dieleotric constant 18 here equal to 1, the total work equals

0, _, RO,
P =20 (log 22 LUy
5 Q(°°Rﬂol 13,0.'_.)

= [li)g <€l‘+_~/gﬂf) - log ("/4/“' + a-’):l

“w

—log

The capacity of the double lme theiefore equals
002421

C= —
a+var = d? A%
2 loga (“*V5 ) -og 14 ()]

(d) To deterrune the capacity of the conductors of a three-phase
system, we proceed m the same way, by moving umt positive mass
from one conductor to the neutral The work done n this way 18
equated to the phase-pressure £, If conductor I, from which the
mass 18 moved, has the charge @sm of, the other two conductors wall

mfd (276)
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have chaiges @sin(wf~120°) and Qmmn (wf-240°) The work doue
(Fig 395a) 18 therefole equal to

ksl

P, —-Q 8 mtlovg—g+ sin (wf — 120°) log %
+~Qsm (wt - 240° )log 0“
= 20 sm of log =2 O,F
€ 11;‘1 .
@: !
Rl

Fia 806a. Tia 8050

Neglecting the effect of the earth, the capacity per phase of a three-
phase Iine 18 9
O= 002 4 zl mfd
Io,
gmo -Rl
If further, as 1n the case of overhead lines, the distance a between
the wires 18 very great compared with their dinmeter, the capacity may
be written with close approximation

o= 00242 g @)

e

The capacity of the mams of a three-phase system can thus be
considered as three condensers connected 1n star, each of which has
the capacity C

Since three-phase concentric cables introduce dissymmetry into the
system (and possess a higher capacity), cables for thiee-phase work are
almost always made stranded ~Each phase of a concentric cable has a
different capacity to the others

With stranded cables the effect of the earth on the capacity of each
phase must be considered This can be done approximately mn a
sumple way. In Fig 396a, the arcle 4 represents the conductor of
one phase, and the circle B, the surface of the cable-sheath This
system, consisting of two eccentx;c arrcles, 1s replaced by mversion by

2a2
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a system consisting of the circle 4, which corresponds to itself and the
straight lime B'. e have
0T _01*
OPj=w=-""—.
Y0P D
The system conmsting of the circle 4 and the straight lie B’ 1s
agan replaced by an equivalent system, consisting of the circle 4 and
1ts 1mage B” with respect to B. The crcle B” has the opposite
electric charge to 4, that1s — @ s ¢ Carrying out this transforma-
tion for each phase, we obtain Fig 3960 Assuming, for the suke of

Fra 800a. Fia 300h

simpheity, that O, comeides with M, 0, with M, etc, the capacity
of each phase becomes
00242

B IR, /A

logy, == - log =2!

v A )

00242¢ m
oo, s I,
" LR, IR,

‘We have thus reduced the capacity of a threo-phase cable with
separate conductors to that of three condensors of capneity €' connected
n star

() In a two-phase system, without connection between the phnses,
it 18 found that the two phases are independent of each other as
regards capacity and conduction, the same formulae therefore hold
as 1n the case of a smngle-phase system The capacity of cach phase
of a four-phass system (Iig. 397a) 18 obtamned from the equivalent
arrangement shown m Fig 397). For phase I III and phase II IV,
the capacity 18 the same, and equals

0o 002424

i, irE, ™

IR, MR,

1Ogm
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For an nterconnected two-phase system, two concentiic_cables are
frequently nsed, of which she onter conductors are earthed and serve

Fia 897a Fia 8870

as the middle wire The capacity of such a cable can be determined
by the above methods,

(f) As already mentioned, conduction alone 15 not a measure of the
losses m cables and conductors TLosses are also present in the
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lelectric, which are mnch greater than those due to conduction, and
ot like an increase of the latter Usually the losses in cables are
stimated by assuming some defimte power-factor This was given
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on p. 411 for different cables It 18 evident that this method can
only give approximate 1esults, smce the powei-factor of a cablo vailes
with the temperature, and to a certan extent with the frequency
Fig. 398 shows the variation of the power-factor as a function of the
temperature fiom tests carried out by Dr P Human * It might be
thought that the varation of the power-factor 15 dne to the varation
of the snlation 1emstance 1, 18, however, 15 not the case, for
the curve 1 m Fig 398, giving the msulation resistance, falls very
1apudly with increasing temperature, while the power-factor does not
show a corresponding increase, but rses only for the lower tem-
peratures and then falls as the temperature mcreases e power factor

Hatt ‘ -

9500 I
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[ =T
o & v » 3 w @ &
Frc 800

of a cable, therefore, bems no duect 1¢elaton fo s insulatuom 1esstance  In
addition to a sufficently high msulation resstance, 1t 18 usnally
required of & good alternating current cable that the power-factor at
temperatures up to 50°C must not rise appreciably ahove the value
measured with the cable cold, also the 1atio between the capacities
measured with continuous and alternating currents at any temperatwe
must not be very different from umty

With bare overhead conductors also, the losses are considerably
greater than those due to conduction The extra losscs lere are
due to the passage of current over the insulators, and to the

* Elektr, Balmen und Beirsebe, 1906, 8. 518,
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dielectric losses 1n the 1usulators and n the other electric fields In
damp weather a part of the electricity 1s also conducted directly by
the moisture and ramn. With high pressures, this latter loss may
become very large, 1f the erutical pressure 13 exceeded

Fig 399 shows the relation between the loss of power between two
wires m air, at distances of 38, 656, 89 and 127 cm apart, and the
effective alternating pressure, bemg the results of tests carried out
by C F. Scott and R D Meishon The diameter of the wires was
4’1 mm The losses are taken over 1 km couble hne It 1s seen here
that the critical pressure occurs at about 50,000 volts, since the curves
bend sharply upwards at this pomt The losses for other lmnes can
be estimated from these cuives A double lme of 82 mm wires,
250 cm apart at 100,000 volts pressure, for example, will have approxi-
mately the same losses as one of 4'1 mm wires, 127 cm apart at
50,000 volts.

134. Oapacity of Coils in Air and mm Iron The capacity relations of
coils m electric machinery and apparatus aie very complicated It 1s,
however, possible to arve at simple practical formulae, 1f we calculate
with the capacity between elements of the conductor, as well as
between the conductor and the earth
Theoretically this 18 not quite free from e
objection, but since an approximate formula !

18 better than none at all, we shall now

proceed to obtamn such an expression For

the sake of brevity we shall denote, in the P -
following, the expressions deduced on p 390
for the mutual capacity coefficient by the 0
term “capacity of a conductor-element ” E%“

(a) Firstly, the capacity of a conductor-
olement will be calculated with regard to the
neighbourmg turns In Fig 369 a circular
co1l of flat copper strip 1s shewn. Such coils
are frequontly used Each element of such
a coll possesses capacity with regard to all
the other turns of the coil, but only the = b
capacities of the adjacent turns are of 1m-
portance If the msulation between the Fio 400
turns 18 thin compared with the thickuess
of the stup and has the dielectric constant ¢ the capacity of an
element of length 1 cm and breadth b em equals

NN
w m@
s’k—

A TENY
LY

C= f—;_’ electrostat nmts= i 16631
m which each element and the adjacent turn 1s considered as a plate-
condenser with a thickness of msulation of 7+ This fomula for the
capacity of an element also holds for the case in which the coil 1s wound
with flat copper strip on edge If the coil consists of several layers of
rectangular bais wn'i n turns per layer, as shewn m section 1 Fig 400,

1070 mfd, (279)
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then we estimate first the capacity of an element with regard to the
adjacent turns 1n the same layer, which has the value

bie
A b U -0
61—11 3‘110 mifd,
and then the capucity of umt-length of a layer with 1egud to the next
layer, which 18 approximately

bogy -6
Cy= T3 7210 mid

If the coil 18 wound as numbered 1n Fig. 400, the mean pressure
between two adjacent layers 18 % times as great as that hetween two
adjacent conductors Since, howevet, on the other hand the capacity

of a conductor with regard to the adjacent layer 1s only qlb times the

capacity between two layors, the capacity of au element with regard
to the next turns can be written

Cy=0,+C, . (280)

The capacity with regard to the turns on the other mde 18 naturally
of the same magmtude. For several coils ananged near one another,
the above formulae for the capacity of an element hold very closely.
This holds not only for round coils, but also for other shapes, the
chief requirement for the accuracy of the formulae 18 that the distances
r, and 7, are small compared with the breadths &, and b, These
formulae can even be used for stator coils with sufficient “accuracy
Somewhat smaller values are obtamed for the capacity with 1ound
wires than for rectangular, with equal thicknesses of nsulation 7,

and 1

(b)gThe caleulation of the capacity per element between coil and
earth appears more difficult  For this 1eason we shall here also 1estiict
owrselves to a mean value and Fut the mean capacity of an element
with regard to the earth equal to the total capacity of the whole
winding with regard to earth divided by the total length of winding
This has the advantage that magmtudes that can he dnectly
measured are used m the caleulation,

In u machme with Z slots of periphery U and length I, the capacity
of the whole winding with regard to earth 1s
ZUle . _

0;11.37-,10 Smfd ..... . (281)

where 1 18 the thickness of the slot msulation (1 e, the distance hetwoen
copper and iron) and e 1ts dielectric constant The capacity 15 not
much ﬁreater than that given by the right-hand side of the formula,
smee the coil-ends have very httle capacity with regard to earth

With transformer windings and choking-coils, the capacity with
regard to earth 18 more dufficult to caleulate and depends so much on
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the shape of the surface, that general formulae are too naccurate and
have therefore no value The capacities of these windings can be
caleulated m any particular case with some accuracy, however, by using
the formulae for plate and eylinder condensers

(¢) Losses, like those 1n the dielectrics of cables, also occur 1 electric
machines, but still fewer measurements of these are available than of
the foregomng Skinner measured the dielectric losses 1n two 5000 X W.
generators made by the Westinghouse EI Mfg Co , Pattsburg, for 11,000
volts maximum and 256 cyeles These values are plotted 1n Fig 401

8000 Watt

/%
= Vot
v 7 8 7 * 0 24 28x90°
Fie 401

a8 a function of the test pressure. The lower curve ./ was measured
on one machine with the winding at a temperature of about 21° C and
curve B on the other machine with the winding at about 31°C.
At 25,000 volts the maximum loss was 0021 watts per em® of
msulation, and this was not sufficient to raise the temperature of the
msulation appreciably m 30 minutes

Dr P Holhtscher * measured the dielectric losses on two machines
made by the Lahmeyerwerks, Frankfurt, for 500 H#P and 400 Kk w,
10,000 volts, 50 cycles These are shewn by curves 4 and B
Fig 402 This test shews that the losses increase practically pro-
portionally to the cube (mstead of the square) of the pressure, which
may be due to a certam extent to a discharge of electricity from the
coil-ends at higher pressures Dr Holht.sc%:ar found further, that
the losses increase proportionally to the frequency Also the test
shews that the capacity increases with the pressure, 1e with the
electric field-strength , this corresponds to an mncrease mn the dielectric
constant The slot msulation of the machines consisted of micanite

*E T Z.1903, 8 635
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tubes, and tests upon these gave the figures shewn m Fig 403,

the dielectric constant imereasi,

other at normal pressure to about 5 at double pressure

Wat
000

=7
e

from 28 1 one case and 22 m the
On the
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Fia 402

other hand a variation of frequency shewed no appreciable effect on

the dielectric constant.
Care must also be taken m

electric machimes and transformers,

that the electric field-strength 18 at no place so gieat that the msulating
material 18 mjured thereby, an effect which may happen even 1f no
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appearance of glowing can be seen

With transformers for very high

pressure, m which one winding 18 made of very fine wire, a well-
rounded metal plate 18 often placed hetween coil and msulating
material, to protect the msulation from too strong an electric field

.
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Besides this, care must be taken 1n the choice of msulating material
i high tension machines, to see that they can withstand the mechamical
forces of attraction between the copper and ron, which form the two
plates of a condenser For this reason soft materals should always
be avoided

Up to the present no msulating material has yet been found which
can wholly withstaud continuonsly the simultaneous eftects of heat
and electro-mechamcal stresses, as well as the chemical eftect of the
mtrates formed 1n high tension machines Most msulating materials
change their structure in time, nevertheless, they still come up to the
requirements, because 1nitially they have been rated very liberally

135. Telegraph and Telephone Lines. As 18 well known, the trans-
mssion of signs m telegraphy 1s effected by means of umdirectional
currents, obtamned from any source The telephonic transmission of
speech on the other hand makes use of alternating-currents, induced
m the secondary windings of mduction coils The differences i the
construction of the lines, especially of cables, 18 due to this difference m
the kind of current For the same reason the ifluences of power
cables on telephone and telegraph hnes aie different

(a) Telegraph lmes  Air-lines are usually made of galvamsed 1on
wire of 3 to 7 mm diameter or of 3 mm bronze wire  Cables placed
underground usually contam many wires, and are msulated with eithe:
gutta-percha or jute and paper The strands of gutta-percha cables
are made up of several (up to 14) twisted copper wires 07 mm
diameter, while the wires of cables with fibrous nsulation are 15 mm
diameter

Submarine ¥ables are always made with a single core, msulated with

utta-percha and heavily armow ed against the great mechanical stresses.

he resstance of these cables varies between 2 and 6 ohms, the
msulation resistance between 500 and 1250 x 10¢ ohms and the capacity
between 0 2 and 0 15 mfd, per km length  'With overhead conductors
and short cables, which require only very small charging cumirents,
the current at the 1eceiving station follows 1mmediately on the closing
of the ewremit by the key, and up to 1000 words of five letters can
be transmitted per minute  With long submarie cables, the charging
current 18 so great, that an appreciable time elapses before the cable 18
fully charged, and the rush of current 1s noticeable at the 1ecerving
station 1th long submarine cables, therefore, the chargmg waves
are used as signals The numbe: of possible signals,1e current-waves,
per minute depends chiefly on the capacity and the resistance of the
cable, and only to a small extent on the conduction and self-induction
As a first approximation the product (1C) of resistance and capacity
per km length of line seives as a measure of the signalling-speed of
u telegraph lme With undergiound cables the gieatest signalling-
speed 1s obtawed, when the outside diameter over the sulation of
cach conductor 1s 165 times the diameter of the bare conductol
Taking mechanical strength mto consideration, however, the outside
diameter 1s made 2 to 4 times the bare diameter
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(b) Telephons lines ~ Air-ines are usually made of sihcon-bronze wire
15 to 5 mm 1 ciameter, according to the distance Recently, also,
for very long lmes, double lmes are
\L frequently used to eliminate external
disturbances When several double hines
’ are fixed to the same poles, they are
arranged as shewn in Fig 404, as
suggested by Chmstiani In this way
adjacent double lines do not mnduce any

AN currents 1 each other
Telephone cables consist of many con-

ductors and are usually msulated with

4 I/ paper  Since the capacity must be as
/Z small as possible—in modern double-line

@ cables 1t should not be more than 005

v

N mfd per km—the paper 1s either per-
/ forated or arranged n such a way that
\ﬂk @ there are air-spaces round the conductors.
e On account of the capacity, the diameter
of the wire 1s chosen larger, the longer
< , the cable 18, and the usual diameter ranges
¥4 from 08 to 20 mm Telephone ocables
are laid either 1n iron tubes or cement
Wz troughs. In order to further eliminate
the effect of the capacity in very lon,
| lmes, small induction coils are connecte
1n the lines at certam distances as sug-
goested by Pupmn, or the selfanduction
_ of the lne 18 1ncreased by wrapping 1t
Fuo 40 ofrg‘ghh]:ﬂ‘;:zd?i::n 0emet ound wath won wue The da.m?;ng of
an alternating-current 1 a long hne 18
proportional to ¢~*, wherq the damping-factor
a0
. *=3L,;
and t=1//L,C,

18 the time the current takes to traverse the length 7, of the line
Hence we have

b G M:JE_E [ GJE 282
d=FNLtING " aNL AN T (282)

where B 18 the total remstance and @ the total conduction of the
telephone lLine, while C, 1s the capacity and I, the self-induction per
-km length To make of and therefore the demping of the telephoue

currents as small as possible, we must have the following 1elation
between the four constants of the line

/L

Ld Cl’
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which 18 also the condition for a hne free from distortion (p 137)
Smce the selfanduction of an ordmary telephone line 1s smaller than the
value given by the formula, Pupin’s coils are connected or the line
18 bound with 1ron wire, 1n order to rase the self-induction artificially.
In this caleulation the constauts of the line 2,, L,, g, and C,, measured
with continuous current, will not serve The frequency of the
alternating-currents, occurring i telephony, varies over a farly wide
range. Usually 1000 cycles per second 18 reckoned as & mean value,
and hence the constants of the line are measured at a frequency of 1000
(c) Effect of powen-curcuats on telegr aph and telephone lines.  If dpower and
signalling lines run close togsther, the heavy currents may disturb the
weak currents. These disturbances are of different kinds and are
due erther to (1) direct conduction of current, (2) electromagnetic in-
duction, or %&) electrostatic mduction To avoid dwrect conduction
of current, both lines must be carefully insulated With electric
ralways in which the rails serve as return, 1t 18 desirable on this
account to use double lnes for parallel telegraph lnes, i order
to avoid as far as posmble a transference of current, due to the
prossure-drop 1n the rails
The pressures nduced m the low-current lmes by the electro-
magnetic fields of the heavy currents are usually small, and can be
calcnlated from the formulae on p 427 To make the EM F’s induced
by electromagnetic induction harmless, 1t 18 of advantage to cross the
feeble-current lines on every third or fifth pole
In general telephone lnes are dlEtﬂ!‘beg by static charges These
can be calculated from the formulae given i Section 134 as the
product of the electric potential and the mutual capacity of the line
These charging currents, however, can easily be ehmmated from
telephone lines, by leading them to earth through a special choking-coil
connected hetween the two hnes, The terminals of the choling-coil
are connected to the two telephone lines and the middle point 15 earthed
The choking-coil offers a high nductive resigtance to a current from
lne to line, whilst 1t provides only a very small mductive resistance
from the hne to earth Such a choking-coil cannot he used for
telegraph lines, since m this case the current 1s continuous and can
therefore pass through the chokimg-coll to earth without any hlgh
resistance By using high-pressure continuous current (120 volts) for
telegraphy, the disturbance from electrostatic charging currents can
he made almost entirely harmless

.
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