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PREFACE

THE present volume is intended to serve as a text-book of that part

of the theory of alternating-currents and the allied branches of the

theory of electricity, which are necessary for a complete study of

heavy electrical engineering. In the first chapters the phenomena in

alternating-current circuits are treated at length For the calculation

of alternating-currents the symbolic method has been chiefly used,

because this is the simplest and forms the best connecting link with

the practical expressions for the watt and wattless components

Alongside the symbolic method, however, the graphic has also been

systematically developed by substituting the corresponding graphic

constructions for all analytic operations Thus, expressing the well-

known KvtcJihoff's Laws symbolically, the equation of any circuit

appears as the simplest possible analytical expressions, and these

formulae at once supply the graphical method for the complete

solution of the problem In this way not only can every problem be

expressed mathematically in the simplest possible manner, but also

we have the great advantage that the result obtained by the graphical

solution shews stiaight away the behaviour of the circuit under all

conditions

In the following chapters the measurement of electnci currents, the

magnetic properties of iron and the electric properties of dielectrics

are fully dealt with In the last chapter the constants of electng

conductors and circuits are calculated

The work has been carefully translated by Dr S. P Smith,

Lecturer at City and Guilds (Engineering) College, London, and late

Chief Designer at the G-eneral Electric Co
,
Witton

,
in addition,
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assistance.
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INTRODUCTORY.

1 Continuous Currents 2 The Magnetic Field 3 Eleotromagnetism. 4. Elec-

tromagnetic Induction 5 Energy, Work and Power 6 Complex
Quantities

IN this introductory chapter, only the more important laws governing
electi omagnetic phenomena will be summarised The electi astatic laws

referred to in the later chapters will be found discussed in Chapter XIX.

1. Continuous Currents. If an electric dvffenence of potential (PD)
exist between the terminals of a conductor, in which there are no
electromotive forces (EMtf.'s)" active, a cuiient will flow along the

conductor from the higher to the lower potential If the potential-
difference is maintained constant, the current-strength will also be

constant

Ohm was the first to prove that, with constant temperature, the

current-strength in a conductor is directly proportional to the difference

of potential at the terminals of the conductor

The ratio of the terminal pressure p to the current * is defined as

the electric 01 ohmw i esistance of the circuit

Thus , =. . .... (1)
%

The ohmic resistance ? of a uniform conductor of constant cross-

section is directly proportional to its length I and inversely proportional
to its cross-section q, or

j

p is called the specific i eszstance of the conductor

In the electromagnetic system of units, t has the dimension

, / E MP. \ j /T rr-i\
i = dim f

--T = dim (LT
-1

),

Vcurrent/
v '

and is measured in ohms

Thus, ohm= --1*
- =-S = 10* o as units.

'

ampere 10 1

A o. A
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the several parts of the circuit equals the algelxaw sum of the E.M.F.'s

actmg vn the circuit.

If we consider the phenomena in an electric conductor from the

electrostatic standpoint, then the current i corresponds to the passing
of a quantity of electricity * per second from a point at potential P^ to

a point at lower potential Pz
. By moving unit positive electric charge

from potential P, to P
2 ,

the work done by the electric forces is Px
-P2 ,

hence the work done when current ^ flows for time t is

This energy is converted into heat. The work done in unit time is

thepowei (w), whence
w = i(P1 -P2)=*V. . . (3)

This law was first demonstrated experimentally by Joule, and reads :

The amount of heat produced in a conductor by a constant ewrent vn, wnit

time vaiies dviedly as the resistance of the conductot and as the squat e of the

cwnent flowing in it.

If a constant current i flows in a circuit in which an EMF.
e produced by a battery or generator is acting, the work done

per second equals ei, and we can say in general that in any part of a
circuit where the E M F e is present and a current % is flowing, the

power w = &i will be given out When e and i have the same direction,

this energy must be supplied from the external sources which produce
the current. When, on the contrary, e and i oppose one another, work
will be done by the current and can be used outside in the form of

mechanical or chemical energy, and so on

2. The Magnetic Field. The space in which magnetic actions can

be observed is called a magnetic field. Without forming any special

hypothesis about the nature of magnetism, it is nevertheless possible

to speak of a quantity of magnetism, or of magnetic masses which can

be regarded as mathematically definite quantities, the magnitude of

which can be determined by the forces they exert. Like magnetic
masses repel, unlike attract one another.

Though actually there is no such thing as free magnetism, it is

often convenient to substitute for magnetic fields, magnetic masses

which are assumed capable of acting at a distance For instance, the

field of a long bar magnet can be replaced, with close approximation, by

imaginary magnetic masses situated at two points symmetrically placed
with regard to the axis of the magnet These points known as the

poles of the magnet are from 0-8 to 85 of the axial length apart
The force exerted by two magnetic masses, each concentrated at a

point, on one another, is expressed by Coulomb's Law,

where i is the distance between the two masses and / is a coefficient

depending on the system of units and on the medium



4 THEOEY OF ALTERNATING-CURRENTS

In the electromagnetic system of units (CGS system) aud for a

gaseous medium or vacuum, /= 1 The mechanical force K has the

dimension dim (K) = dim (LMT~2
),

and is measuied in
cm^ in absolute units.
sec-'

The ivnit of mechanical foi ce is the dyne, and is defined as that force

which gives unit acceleration to Unit mass
The practical unit of force is a kilogram weight, 1 kg = 981000 dynes

The dimension of the product wz^mg is

dim. tti^ig
= Ki 2 = dim (L

SMT~2
) ,

consequently magnetic mass has the dimension

Unit magmtic mass is defined as that mass which, when placed in air,

exerts a force of one dyne on a similar mass at a distance of 1 cm
In general, the points in a field where magnetic masses appear

to be concentrated are designated poles Unit

magnetic mass in a magnetic field is acted on by a

mechanical force H This force H is defined as the

field-sti ength or -tnt&istiy, and has the dimension

dim. , )
= dim. \j

V magnetic mass /

By a IWA offace is understood that line the tan-

no" s -Line of Force Senfc to wluc]l at any Point coincides in direction

with the field-strength at any point (Fig 3)

Lines of force can be represented by means of iron filings strewn on

Pio 4. Field of Bar Magnet

a sheet of paper placed in the plane of the field The filings then

arrange themselves in lines which approximate in direction to the lines
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of force Fig 4 is from a photograph taken with a bar magnet, whilst

Fig 5 shows the lines of force

of a horse-shoe magnet
Constant magnetic forces

have a potential, which, at any
point in the field, is given by

P-S("),
- (5)

where m is the magnetic mass
of the field and i the distance

from the point considered
The summation is taken for

all the magnetic masses pro-

ducing the field.

A surface which, at every

point, is perpendicular to the

direction of the field is

called an equipotential swface
Such a surface is the' locus of

all points having the same

potential.
The element of magnetic flux

passing through a surface-

element is the product of

the surface-element df and

the normal component Hn of the field-strength, that is (Fig 6)

d3> =Hn df=H cos a df,

U -i TT UrP
and Ja. n

=
-jj

If we split up any desired surface F into surface-

elements and take the sum of the fluxes passing

through the several elements, we get the magneto

flux $ passing thiough the surface F ,

FIG. 6 Field of Horse-shoe Magnet

Fio. 6

or,

A magnetic tube of face (Fig. 7) is defined

as the space which is bounded by lines of

force passing through a closed curve C
If we draw a number of surfaces thiough

any point in the tube, then the same

flux will pass thiough all sections which

the tube of force makes with these sur-

faces , for, in an infinitely small tube, for any section, we have

d$ =Hndf= H cos adf=

Fid 7 Tube of Force
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where dfn denotes the section which the tube cuts on the equipotontial-
surface at the point considered

Gauss and Green's Theorem can be deduced directly from Coulomb's

Law, and may be written. The total numbei of lines of foice 3? passing

through any dosed swface F equals 4=ir times the sum of tlw magnetic masses m
within that swrface From this it follows the flux has the same
dimension as magnetic mass

r
I A/ f/T - CD 4<>p i m i /R\
1 -* ' ji f " / ^ ** TT* J\ lib)* . ( \J I
I J \ 1 VI
J r

Since no flux can pass through the boundary of a tube of force,

it follows, from Gauss and Green's Theorem, that the flux passing

through any section of a tube is quite independent of the position
of the section, "i e the flux inside a tube of foice is constant A. tube

enclosing the flux $ = 1 (a as units) is defined as a unit tube of foicc,
and any tube of force may be said to contain a certain number of unit

tubes. In a strong field, the unit tubes have a very small cross-

section. The field-strength at a point denotes the number of "unit

tubes of force of like section which pass through a square centimetre at

the place in question
The above properties of the magnetic field hold in general for

a homogeneous medium, as for instance a vacuum If a body be

PIG 8. Weakening of Magnetic Field duo
to Introduction of Diamagnetlc Body

Pro 9 Strengthening of Magnetic Field duo
to Introduction of Paramagnetic Body

brought into a vacuum where a magnetic field exists, the field in th<

body and its neighbourhood will, in general, change m shape anc

strength If the field is weakened, i e if the tubes of force are widenec

out, the body is called dm/magnetic (Fig. 8) ,
if the field is strengthened

i e. if the tubes are contracted, the body is called pat amagnetic (Fig 9)
whilst if the field becomes strongly concentrated, the body is said to bi

ferro-magnettc
The magnetic conductivity of a substance is called its permeability

and is denoted by /*

When a body is brought into a magnetic field, it is said to b

magnetised by induction, and the ratio
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is called the magnetic induction or the flux density. d<b is the flux passing

through the elemental section dfof. an equipotential surface in the body.
In a ferro-magnetic substance situated in a uniform field, take two

cylindrical cavities, whose axes lie in the direction of the magnetic
force. The one cavity (Fig 10a) is a narrow canal, so long that it may
be considered as a tube of force, since the lines of force are parallel to

the axis. If we bring unit magnetic mass into this cavity, in order to

test the magnetic conditions, it will be acted on by a force equal
to the field-strength H at this point ; this force is much smaller than

H
H*4TI-B

PIG lOo. FIG 106

Field strength and Induction inside a Ferro-magnetio Body

the above defined induction B
,
whence it follows that the magnetic

force inside a ferro-magnetic substance or a magnet is not the same

as that -rf m a vacuum, but is defined thus :

df
The magnetic foi ce, m field-sto engtli, at a point inside a magnet is the face

which acts on unit magnetic mass when placed at this pomt, when the same
is taken in an infinitely thin cavity cut in tJie direction of the Imes of

magnetisation
The second cavity (Fig. 106) is an infinitely thin crevasse perpen-

dicular to the direction of the magnetic force. The unit mass,
when brought into this crevasse, will be acted on by the force J?,

although the magnetic force inside the magnet is, as shown, only H
In order to explain this phenomenon, we imagine the two end-

surfaces FJT and Fs to be respectively charged with north and
south magnetism These magnetic masses exert a force on the unit

mass at point P, which can be calculated from Coulomb's Law
Denote the magnetic density of the two charges by +7 and I

Then the force exerted on P by a surface-element df is /. This can
r2

be split up into two components one in the direction of the magnetic
force, and the other normal to it Component forces normal to the

magnetic force obviously neutralise one another, whilst the resultant

in the direction of the magnetic force is

/cos <f>
= Id<a,
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where f?u> is the solid angle subtended by df at P Summing up tl

components of all surface-elements of the surface F# in the direction <

we get p&
Ido=

when the surface Fs is large compared with the height of the cylindoThe same result is obtained by considering the surface Fs ,
so that tf

resultant magnetic force of the two surface-charges is fal, and )

resultant force on the unit mass in the crevasse, we get

where / is defined as the intensity of magnetisation I is also_as abo\
assumed equal to the density of the surface-charges assumed to OXN
on the boundary surfaces F^ and Fs .

The magnetic permeability is

B
<*
=
%>

and has the dimension of a number
Consequently the 1

magnetic induction B and the field-strength j

have the same dimension. The unit of this dimension in the electn
magnetic system of units is called a Gauss
A distinction must be made between the H-fiux and the '-fliu

The .S-flux, i.e the flux due to induction, which passes through
closed surface F, is independent of the magnetic nature of the raoclim
in which the surface is taken, that is, Gauss' theorem is, in general

or, in other words, the -flux remains cotistant in wiping fioin m
medium to amth&r.

Take two points close to the boundary surface between the tw
substances /^ and Jf

3 (Fig 11) Thoi

v
since the U-flux remains the same in passin

"a* from one medium to the other, wo have

-* or

If Ih^to, then Hn^IIn^ that is, 7

passing fiorn one medium to the othci, tl,

components of tlie magnetic force, taJcen 1101 HU
to tlie boundary surface, are

, ,
The tangential components of the ma*

netic force are continuous in passing from one medium to anothei
that is,

-"4,
= ^^,

whence ^ _
/*!_

is in passing f,<m one medium to awthei the tangential component* of t/,

Js-Jtux ai e discontinuous.
J
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From Fig. 11, tano^/z,
tan a

1 ft

Hence, in "passing fi om one mediwn to anoth&r the

aie discontinuous In substances of high permeability therefore, like

iron, the tubes enter and leave almost perpendicularly to the surface.

In order to treat magnetic problems mathematically in spibe of the

discontinuity of the ZT-tubes, we assume the boundary surface between

the two bodies to be replaced by magnetic surface-charges from which
tubes enter and leave Where the flux passes out of a medium of

higher permeability, e g iron, these magnetic charges have the
positive

sign (north-pole magnetism), and where it enters a medium of

higher permeability, the negative sign (south-pole magnetism). Such

imaginary charges are called poles

3. Blectromagnetism. A magnetic field is most easily produced by
means of an electric current Owsted was the first to discover that

an electric current acted on a freely-suspended magnetic needle by
tending to bring the same into a direction perpendicular to that of the

current According to the elemental-law of Laplace, the mechanical

force K exerted by a current-element on the magnetic mass m at a

distance v is mids /*
]=. sin (/>. . (7)A

,2
v \ '

This force has a direction normal to the plane passing through the

element ds&ud the mass m (Fig 12a) Conversely, the current-element

is acted on by the magnetic mass m the opposite direction

/
/*

/ V
Fia 12a. Fia 12k

Electromagnetic) Forces

Every electric current produces a magnetic field, which surrounds

the conductor in which the current flows, and acts on all magnetic
masses in the neighbourhood , conversely, every conductor which

carries a current is acted on by a mechanical force when brought into

a magnetic field. This force is expressed by

where < denotes the angle between the current-element ds and the

direction of the field H (Fig. 12fi)

As mentioned above, the field at any point due to a current-

element is perpendicular to the plane passing through the element and
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the point considered The dnectwn of this field can at once be found

from the following rule
.1 * ., ,.

Place the palm of tJie right hand along the conditctm so that t/ie fingers

point m the dvectum in which the ounent is flowing then the thumb points

in the duection of MM field-strength
H at the point P (Fig 13)

If the conductor (Fig. 126) is movable, it would be displaced by
the force K' m the direction as given by following rule

Place the left hand along the conductor so that theflwi enters the palm of

the hand and the fing&i s point in the dwectwn of tlie cwrent the thwnb

will then give the diiection in which tJie conducts will tend to move.

This rule can be used for determining the direction of rotation in

the case of a motor.

Vl

Fia 18. Determination of Direction of Field

due to Electric Current
IG 14 Magnetic Fiold produuod
by Current In a 8trn4gnt AVlro

From formula (7) it is clear that the hues of force produced by a

straight-line curtent (Fig 14) are concentric circles, lying in planes normal

to the conductor, and that the field-strength H at any point i cm away
from the conductor is 9,

H=-.
r

For a Gwculai civrient (Fig. 15) the field at the centre is

where R = radius of the circle.

From this we can express the dimension of current

in electro-magnetic units,

i= dim (length x field-strength)

Fia. 16

.and in the same system of units, unit current is

that current which flowing in a circle of unit radius produces a,

field-strength 2ir at the centre. An ampefie is ^ of this unit.
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At the centre of a long soleiwid (Fig. 16), the strength of the

field is i

TT 4:1TIW
Jj. =

:

,

where w = no of turns of the solenoid and z= current in each turn,
measured m absolute units.

L
FIQ 16 Solenoid

When - is small, the field-strength may be written
Li

-, 4:7riw

and is nearly constant at all points inside the solenoid When, the

current is measured 111 amperes, we get

jj.
4:inw 1 25iw vwH= ~T- =

-L osi ;

iw is called the ampa e-turns of the solenoid, and is of late referred

to as the magnetomotive face
*

This formula is stall more exact if the solenoid be closed (Fig 17)
to form a ring
The work done in carrying unit quantity

of magnetism, placed inside this ring,
round one complete turn of length L
against the force H

t
is

EL = kiriw

If the unit quantity is moved over any
closed curve C, the work done is equal to

the sum over the whole circuit of all the

work-elements Hdl, i e.

f
Hdl

J a FIG 17 Simple Magnetic Circuit.

This summation is called the hnwntegial

of the magtietw fence H over the curve C, and ts eqital to 4?r times the sum

of all the anvpei e-turns hnked with the curve C

Thus, [Hdl
=Qmw (8)

Jo
Of recent years, it has been customary to start fiom this as the

* This must not be confused with the obsolete conception of magnetomotive
force (M M F ), which is used to denote 1 25iw, i e

M M.F. = 1J amp. -turns
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damental law of electromagnetism and not from the differential

ation in formula (7) ,
the former can he deduced from the latter.

jet the toroid in Fig 17 have an iron core, and let a current

s through the coils, which are wound evenly on the core Then at

points equidistant from the axis of the ring there will be on account

symmetry the same magnetic force ; and, corresponding to this

je H, there will be the induction B. Hence the tubes of induction

duced by the current are concentric and have their path inside the

5 The whole body will be magnetically neutral to all other

les, i.e. there are no poles, and is therefore termed a dosed magmtw
wit.

Magnetic circuits as a rule have not a constant section as in the

3 of the above ring, and have not the same material throughout,
-hat the permeability vanes from point to point.

Consider, however, one tube of induction of a magnetic circuit we
>w that the flux &x in the tube is constant, and piactically sym-
jically distributed over the small surface fx ,

then

B
ce #=-

/*

3iice it follows that

i f TT 77 f_= Edl=\08 J ]

IW

are Ex is called the magnetic lesistance m icluctaiice of the tube of

je under consideration

he magnetic permeance of the tube and has the dimension of a length
several tubes are interlinked with the same ampere-turns, the

meance of all the tubes can be added and the reluctance II of

total magnetic circuit with which the ampere-turns iw are

srlinked is

e total flux in the circuit is then

X. -OJL ^ VW

ampere-turns
reluctance v '

e electromagnetic unit of flux is called a webei Formula (9) is

alar to Ohm's Law for electric currents From this formula aud
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the fact that tubes of induction possess constant flux, it follows that

Kirchhoffs two laws hold for magnetic circuits

:

i-

f*

Fio 18o. Fio 18&

Oouiparlsou between Interlinked Magnetic Olroults and Interlinked Electric Circuits.

Fig 18a shows two interlinked circuits for which these laws hold,
the magnetic circuits corresponding to the electric circuits of Fig. 18&

4. Electromagnetic Induction. When a conductor forms a closed

circuit in a magnetic field which is varying, an E.M F will be induced
in the circuit. This phenomenon, discovered by Fai aday, is known as

electromagnetic indiufaon On the basis of Faiaday's researches, Maxwell
formulated the fundamental law of electromagnetic induction, which

experience has completely verified This law can also be developed
from the fundamental laws of electromagnetism and the principle of

the conservation of energy Maxwell's Law is as follows

The E M.F. e vnduced in a dosed conductor eqiials the tate ofcJiange of
the flwx

<> which is interlinked wdJi the conductor C

Thus
at

(10)

The current produced in the circuit C by this induced E M F is called

an induced current, and the field which induces the E.M.F. is called the

inducing field. The change of flux can take place in various ways,

eg. by a change of field-strength, whilst the conductor retains its

position, or by a change of

position of the conductor in a

constant field In the first case

the direction of the current is

always such as to oppose the

change in the field-strength
hence the negative sign in

formula (1,0). By means of

the hand-rule, we get the direc-

Fio Ida. Fio 196tions of the induced H.M F 's as

in Figs. 19a and b for increase

and decrease of the field-strength In the second case the E M F is

induced by a relative displacement of the conductor in the field

When only a part of the conductor is in the field it is easier

to determine the induced B M F by means of the elemental-law of

electromagnetic induction Such a law cannot be proved, and it must

suffice that from this the fundamental law can be deduced
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This elemental law is as follows

If an element ds of a CM cuit be moved in a magnetic field, an EMF
le induced equal to the flux cut by ds in unit time, i e

de= -'
dt

(11)

To determine the positive direction of the induced K M F the following
hand-rule is convenient .

Place the right hand in the <magnetic field so that the jinx enters tlie palm
and the thumbpoints in the

dwection in which the con-

ductor nwves the fingcns
will tJten point in the dn oc-

tion of the induced EMF
(01 of tJie CMDcnt), as in,

Fig '20

Often the circuit U is

not a simple curve, but
consists of several turns,
some of which do not

embrace the total flux

In every case, the E M F.

induced in a turn is pro-

portional to the change
Fio. 20 Determination of Direction of E M F Induced In a

*
c a - -

Conductor by Motion In a Magnetic Fiold. in that turn

Hence, to find the total

EM.F. induced in a circuit or coil, the sum 2(^Kwx) of all the intor-

linkages of flux and turns must be taken , thus, in general,

dt
...(lOa)

that is, the E.MF induced in a ciicuit equals the tate of change of the

numbet of intet linkages of the flux with the di cant

E M.F has the dimension

dim e = dim
V time

The absolute unit of electromotive force is that E M F which is

induced in a circuit when the number of mterhnkages is altered by
unity in unit time The practical unit has been chosen equal to
108 times this absolute unit, and is called a volt

, hence

..-^^lO-. volts.
at

5. Energy, Work and Power. Every mechanical system of forces

possesses a certain potential energy. Such a system always tends
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assume a, position of equilibriumj in which the potential energy
11 be a minimum When the potential energy is decreased, work is

ne by the system , when the potential energy is increased, energy
baken from outside, i e work is given to the system
Electromagnetic forces also possess potential energy, which can be

iermmed from the fundamental law of electromagnetism The
uential energy of an electric current i interlinked with a magnetic
d 3* independent of the current is -

4*3?, where $ is the flux inter-

ked with the current i, the direction of the flux

rig the same as that of the flux due to the

rent (Pig 21) If the conductor carrying the

rent ^ is displaced, or the field is varied, so

bt the interlinked flux changes from
x
to 3>

2 ,

i forces exerted by the field on the current

1 perform an amount of work A equal to the

i,iige of potential energy in the system
rhu8' ^ =(*,-*!). FIO si

According as ^>
2
is greater or less than 4,

,
the energy of the system

;reases or increases, and the work is done by the field forces or

,inst them.

f the current is kept constant and the flux varied, the work done
the field on the current in the time-element dt is

I the power exerted by the field at this instant will be

=
-jt=i'-3tat Oil

W=-ei, (12)

are e is the E.M F induced in the direction in which the current

f the flux < is increased, i.e. if d& is positive, an E M.F e will be

.iced which will tend to weaken the flux by opposing the current

is w is positive and work is done by the field This is the case of

otor On the other hand, if the flux <
is decreased, an E M F will

nduced in the same direction as the current i and the power w is

ative The work is thus done against the field, and we have a

srator. We thus see that the eminent and induced EMF have the same

ition in a genei atm and opposite directions in a motoi

rom formula (12) and from section 1, it is seen that the work
>lud to a circuit in the element of time dt is always

dA = eidt ... (13)

re e and i are to be taken positive when they have the same
ction.

current and E M.F. have constant magnitudes, as is the ease

L continuous currents, the supplied power is
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If the circuit is not a simple one, as in Fig, 21, but has several

complicated branches, then the potential energy of this system is

-Si{S(.*J},
where 2(wx<&x) denotes the number of interlinkages of tubes of force with

the current i. The product of GUI rent and interlmkages 2(w1
.4>

a.)
must

be taken for each current of the system and the sum of the whole found

If the circuit is movable in space, the electrodynamic forces which
act on it tend to make the potential energy of the system a minimum

Conversely, if the circuit is fixed in space the distribution of the flux

will be such that the number of interlmkages of tubes of force tends to

become a maximum
When the flux of the magnetic field is not independent of the current in

the electric circuit, but its reluctance constant, then the potential energy
of such a system is _ 12* {2(10$.,.)}

The simplest form of such an electromagnetic system is an electric

circuit together with the magnetic field produced by the current in the

circuit The energy which is necessary for the production of the mag-
netic field of the circuit is equal to the potential energy with opposite

sign Let us calculate this energy. The variation of the energy in the

time dt is CIA = -eidt= trfSfa.*.)

If the reluctance of the field is constant,
< is proportional to i, and by

which is the magnetic energy of an electric circuit with constant

reluctance. Substituting in this formula the relation I Hdl= hnwxt the

energy of the field
p_
er unit volume is expressed by

'

I ml

which is quite analogous to the expression for the work of deformation
in a purely elastic body This formula for the field energy per unit

volume holds quite generally for all mag-
netic fields

If an iron ring with an air gap, as shown
in Fig 22, is magnetised by means of a
continuous current, the energy supplied to
it will be ^(wx^x), which will be stored
in the magnetic circuit This energy exerts
a force on the magnetic circuit, which strives
to reduce the reluctance of the latter. In
the present case this could be accomplished
by decreasing the air gap. The magnetic
charges which we can suppose to exist
on the boundary surfaces possess opposite
polarity and attract one another Thus

the force of attraction between these two surfaces stresses the whole
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ring like a spring, which condition only ceases when the current, and
with it the magnetism and stored energy, disappears.
The attractive force between the two surfaces Q may be easily

calculated The magnetic charge on a surface exerts a force of 1-irI on
each of the IQ units of the opposite surface Consequently, the force

of attraction is _

or, if we put B ^

then Z-
Power has the dimension

dim (power)
= dim. (E.M F x current)

= dim

The practical unit of power in the G s system is a watt

Watt= volt x ampere = 108 x 10"1 = 10r units of power in the electro-

magnetic system
The unit of work in the electromagnetic system is the erg

I erg
= 1 cm dyne ,

and the practical unit is the joule

1 joule = 10r
ergs

Thus the power of one watt corresponds to one joule per sec The

engineer's unit of work is the kilogramme-metre (kgm) or the foot-

pound (ft -Ib
)

Since 1 kg= 2 205 Ibs =981000 dynes

or 1 Ib = 453 kg = 444000 dynes,

and 1 metre = 3 28 ft or 1 ft = 30-5 cm.,

then 1 kgm = 981000 100 ergs = 9 81 joules

and 1 ft -Ib = 444000 30 5 ergs
= 1 355 joules.

The practical unit of power is known as a 1m se-powen

The horse-power m the metric system as used on the Continent is

1 P s = 75 kgm per second = 75 9 81 = 736 watts
,

and in the English system,

1 H P = 550 ft -Ibs per second = 550 1 355 = 746 watts

The unit of heat is the calm le, and is equal to the mean amount of

heat required to raise the temperature of unit mass of water by one

Centigrade degree
The small or gm-caloiie is equivalent to 428 kgm ,

thus a gm-calone
is equivalent to 4 2 joules or the power of 4'2 watts for one second.

The large or kg-calmie is 1000 times as large as the gm-calone

6. Complex Quantities. It is well known that any given positive

or negative number can be represented by a point in the abscissa-axis

&Z, by taking the direction from the origin towards X as positive
AO. B
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negative real values
positive real oaJuei

and the opposite direction as negative. We can extend this system of

representation by letting the complex number a +jb, where j
= \T-l,

be represented by a point
in the plane of the co-

ordinates, which is obtained

by setting off the distance

b along the ordinate at a

X (ab
> in the JT-axis, b being set

off in the direction of the

P"-axi8 when it is positive
and in the opposite direc-

tion when it is negative
Thus every iwrribei

,
whether

teal en imaginary, has a corre-

sponding point in the plane

of the co-oidinates (Fig 23^,
conversely, every point in

the plane of the co-ordinates

corresponds to a definite

number.
In the following, symbolic

expressions for complex
quantities will be denoted by placing a dot below the letter Thus, in

Fig. 23, let a = rcoacj> and

where

Pio 28

tan < = -.,^ a
r =va2 + 62 and

then the symbolic expression for the point X is

X= a +jb = r(cos <j> +j sin <)
= re^

1

,

where e = 2 71828 is the base of natural logarithms.
i is called the absolute value of the complex quantity A", and equals

the length of the line joining the origin to the point X. < is defined

as the argument of the complex quantity, and is the angle the vector OX
makes with the axis of positive real values Positive real numbers fall

on the axis representing positive real values, i e to the right of on
the abscissa-axis (see Fig 23), and have the argument zero, whilst

negative real numbers fall to the left of on the abscissa-axis and have
the argument T.

Similarly, positive imaginary numbers have the argument ^
and lie

on the positive ordinate-axis
, negative imaginary numbers have the

argument -jr-
and lie on the negative part of the ordmate-axis

2>

Two complex numbers which have the same absolute value and
whose arguments are equal but of opposite sign are called conjugate
numbers, as, for example, a+jb and a-jb Two conjugate complex
numbers correspond to points in the plane which are the images of one
another with respect to the axis of real values
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We must now extend our conception of complex quantities and see

how the same can be subjected to the process of calculation This

extension can be so effected, that complex magnitudes can be calculated

by the same rules as those which govern the operation of real magni-
tudes, and the fundamental laws for real magnitudes can be taken

as special cases of these rules. For this purpose, we deduce the

following formulae

ADDITION AND SUBTRACTION.

X=al +jb1
and Y*=a2 +jb3

.

i
s
a

Let

Then

Both X and Y represent a point or a vector in the plane of the

co-ordinates r

Let a point P in the plane of the co-ordinates be represented by two

complex expressions, e.g. P= a+jb= c+jd, then we must have

a= c and b = d,

for the point P has only one abscissa and one ordmate Hence every
complex equation such as a +jb = c +jd can always be split up into two
real equations This is due to the fact that, strictly speaking, .;

is

merely a symbol or index, which serves to distinguish between ordmate
and abscissa magnitudes in analytical expressions
From the above Theorem of Addition, it then follows directly that

when JT=a
1 + ;&1 ,

Y=a2 +jb2 ,

and Z=XY=a+jb.
Hence Z is represented by a point whose co-qrdmates are the sum

of the co-ordinates of X and Y.

As seen from Fig 24a, the radius-vector Z is the geometrical sum of

the vectors X and Y , or, in other words, Z is the resultant of the two

components 'X and Y
Z

Y

Fio S4o Addition Fio 24& Subtraction

The point Z is obtained by drawing a line from the point X parallel

and equal to OY, or, m other words, starting from the one component X,
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the sum Z is obtained in the same way as when the second component Y
is found by starting from the origin

Similarly the diagram in Fig 24Z> represents the process of

subtraction.

MULTIPLICATION.

Let X= rt
T +.;51=r1 (oos ^ +j sm 0^ = i

l
e
3*1

,

and Y=a2 +jb2
= l

>
2 (GOB <f>2 +j sm 2)

= ?o

Then Z=XY=a^ -
b^bz +j (a^ + b^)

or = 1
1
?'

{ (cos ^>j cos 02 sin ^ sin
</>2)

+^(sm ^cos 2 + cos 0i sin 0g)}

= 7 ^o {008(0! + 2) +J 8in(01
+ 2)}

that is, the multiplication of two complete iiumbens zs effected by multiplying
the absolute magnitude of the one by that of tJie oth&i and taking tJie sum of
theii arguments
The product of two conjugate complex quantities is a real quantity

and equals the sum of the squares of their absolute values
,
thus

As seen from Fig 25, the product of two vectors can be regarded as

formed from one vector by multiplying the absolute value of one vector

^ 1[

7

/ 7TO/ /SO-if

V

Fia 26 Multiplication

by that of the other, and at the same time turning the former vector

through an angle equal to the argument of the latter vector Such an

operation is called lotation in geometry, for the vector Z is considered
to result from the vector X by rotating and by increasing X by an
amount given by the second vector Y= i gefo The rotation is counter-

clockwise when <
2 is positive and clockwise when <

2 is negative.
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Let the value + 1 be set off along the abscissa axis aucl join 1 Y.

Then the triangles 01Y and OXZ axe similar, for we have

OX 0\'

that is to say, tJie product Z is formed fiom one of thefoctois, e.g fiom X,
in tJie same way as the second factor Y is formed fiom wiity

DIVISION.

The operation of division is the reverse of that of multiplication, as

seen from Fig 26, that is, the division of two complex nwnbeis *s effected by

dividing the absolute magnitude of the one by that of tlte othe> and taking Hie

difference of then ai guments
The denominator of a complex quotient is made real by multiplying

both denominator and numerator by the conjugate quantity of the

denominator, for example

or

=^ (cos (</>!
-

2) +; sin (^ -

INVOLUTION

From the formula for multiplication, we get

Z=Xn
=(a+jb)

n=
{i (cos <+; sm <)}"

=
r"(cos n^ +j sin TI^)

= r
ne^

Hence, to raise a complex nwmler to any power,
we must iaise the absolute value to that powei and

multiply its argument by the index

*Fig. 27 represents this operation We
have thus, for example,

Fio 27 Involution
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EVOLUTION

Hence, to find tlie toot of a complex number, we take the loot of tlie absolute
value and divide the argument by the index

It may here be Doted that in complex equations it is always allowable
to substitute -j for +j, provided all terms in the equation are similarly
treated. For example, to calculate Ja +jb, put

then also \/a -jb = a-j/3

Multiplying these two equations together, we get

By squaring the first equation,

or

whence

and

Since b=2a(3, it is seen that a and f3 have the same sign when b is

positive and unlike signs when b is negative Hence

{ $ (N/o2TP + a) dr; ^(N/^TP -
a) }

Since the above theorems apply equally well to real numbers, it is

obvious that they are therefore quite general.
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7. Sine Wave Currents The simplest alternating-current is one
whose momentary value can be expressed as a function of the time

by asme wave, eg. 4= J 8in 2max

where 1^^ is the amplitude of the current, T the time in seconds the cwtrent

takes to pass though a complete cycle ot peiwd, whilst =}= c represents the

number of such cycles the current passes through in one second, and

FIG 28. Sinusoidal Variation of an Alternating-Current. ^

is called the frequency of the current. Fig. 28 shews such a current,
which obeys a sine law, drawn as a function of the tune
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With polar co-ordinates, the sine curve is represented by a circle

(Fig 29), whose diameter OA equals the amplitude JmEX OB is the

momentary value, whilst </>
is

called the phase angJe of the

current The point B moves
over the circle twice in a cycle ,

consequently, o> = 2irc repre-
sents the angulm velocity of

rotation of the straight line

OB
The current passes through

zero when

whence the phase of the current

is given by

Fio 20 RepiMentation of a Sluusoldal Ounent by ,
<

,

Polar Co ordinates
fry
= n *

(T\$
j
of the current are given by the

magnitude and direction of the vector OA, the latter represents the

current completely. Its momentary value is obtained by projecting
the vector OA on to a straight line OB rotating about in a counter-

clockwise direction with the velocity w. The rotating line 013 is

therefore called the time hue
This method of representation rests on the assumption that the

alternatmg-current is sinusoidal } consequently, the same can also be

Fio 80 Production of a Sinusoidal E M F

applied to an alternating EMF which obeys a sine law Such an
E M J -can be produced by the uniform rotation of a rectangular coil

about its longitudinal axis between the poles of a magnet, as depicted
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in Fig 30 The poles are assumed to be sufficiently large, so that the
field in which the coil rotates is quite uniform
At the instant considered, the flux passing through the surface F of

a turn is (Fig 31)

3? =EF COB at
,

A
and since the induced E M F is mvsssMssssssss^/s

e ~ ~

the EMF. induced in the turn will be

j.
at

n-,,
HF(aSW<j)t H

$
Fio SI Production of a Sinusoidal

E M F due to Rotation of a Goil lu a
Uniform Field

Now HF is the maximum flux em-
braced by the turn during a revolution,

denoting this by $,, we get

e = 2n-e<i niluc sin (at

The embraced flux & is a maximum

when <ot = Q and is zero when <t = ^

The EMF. induced by $ is, on the contrary, zero when u>t=Q, and

reaches its maximum when ^t =
-^.

It is thus apparent that the

induced EMF is a minimum when the coil is interlinked with the

maximum number of lines of force, i e. when the coil is perpendicular
to the field

This is also in agreement with the pievious statement, that the

induced EMF vanes directly as the rate of cutting of lines of force,

PIQ 32

for, when the number of interhnkages is zero, the coil is vertical

(
i e ut = ^ )

and cuts the lines of force at the maximum rate
,
con-

sequently, in this position the induced EMF is greatest In Fig 32,

the flux <, and the EMF e induced by it, are drawn as functions of

the time With rising $, e is negative ,
and with falling *, e is
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positive; in other words, the EMF. curve is the differential of the
flux curve, with the negative sign prefixed.

If, instead of one fcurn, there is a coil composed of several turns all

m the same plane, the induced E M F. will be

If all w conductors in a coil-side are so near together that the same
flux 3>max is embraced by each turn, then

e = sm (at

Since the field-strength H, the sum of all surfaces 2.F of the turns, and
the angular velocity o> are constant, we can write

If H, F and to are in a s units, then e and E will also be in absolute

units. To reduce to volts, we must write

10-8

A cycle in this case corresponds to a revolution of the coil, and the

frequency c equals the number of revolutions per second.

The direction of the E M.F induced in the coil at any moment
can be found from the hand rule on p. 14, and is represented by the

arrows (Fig 30)

8. Summation of Sine Wave Currents. In Fig 30, all the turns

of the rotating coil lie in the same plane, and the E M.F 's induced in

the several turns all reach their zero

together and all attain their maximum
together In this case, the E.M.F 's

are said to be ^n phase with one

another.

If the turns are in different planes,
but arranged about a common axis,

as in Fig 33, the E M F 's induced in

the several turns will no longer have

the same phase, but, in respect to

time, they will be displaced in phase

Denoting the E M F induced in coil I.

Fia 98

then the EMF induced in coil II

will have the same frequency as the

E M.F. induced in coil I
,
since the

angular velocity w is the same in the two cases, but its phase will be

different , thus, _ ; am -

where < is the constant angle by which coil II lags behind coil I.

Thus the E M F 's of coils I and ft. are displaced from one another by
the angle <, which the coils make with one another in space, whence
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the angle <j>
is called the angle of phase-displacement between e^ and e

z

The negative sign before <$> denotes that e2 lags behind, or reaches its

maximum after &v
Again, the plane of coil III. is displaced from that of coil I. by the

angle ^ in the direction of the sense of rotation. The E M.F. induced
in coil III can then be written

which means that coil III. reaches its maximum EMF (or its zero)
before coil I attains its maximum EMF (or its zero) by an amount

corresponding to the time taken for the system to rotate through the

angle </>
Thus e

s
is said to lead e

l} and the angle ^ is called the angle

of lead, in the same way as the angle $ above is called the angle of lag

FIG 84

In"order to obtain the i esultant EMF. induced in the whole coil, the

algebraic sum ot the inomentaty values of the E M F J

s in the several

turns must be taken In Fig &, the instantaneous values of the

three EMF'S %, e
2
and ea ,

and their algebraic sum e, are plotted as

functions of the time

We often require the resultant of several E M F 's or currents of

different phase This can be most readily found graphically. The
several momentary values e

1}
e and e

a
are obtained by projecting the

coiresponding vectors -SlmBI , ZU1U1.

and E
amtt3.

on the rotating vector or
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time line, in accordance with the well known theorem tJie

of the i esultant (i e the geo-meti ical sum) of s&v&i al vector f, oil a sti aiglit

hne eqiials the sum of thep ejection* of the several vecto) s mi the same hiie

From this it follows that the sum of several sinusoidal B.M F 's,

which are represented in amplitude and phase by means of vectors, is

85 Fio 36

given by the resultant of the vectors of the several E M r 's (Fig 35)
*

In a similar manner, the sum of several alternating-currents flowing to

or from a point (Fig 36), i e the resultant of several parallel currents,
can be found by determining the resultant of the vectors of the several

currents, as in Fig 37.*

*= ^max sin
(tat

us

sin sin

From Figs 35 and 37 it

is seen that the amplitude
of the resultant EMF. or

current is not equal to the

algebraic sum of the ampli-
tudes of the several com-

ponents, but depends on
the phase displacement of

the latter, so that the geo-
metrical sum must always
be taken

-%o
BY

9. Mean, Effective, and
* Maximum Values of Sine

Wave Currents. Since an

alternating-current is continually changing its direction, its mean value

taken over a whole number of cycles is zero Thus, such a current

*In Fags 35 and 37, the vectors denoting the amplitudes of the B M B1

'a and
currents are for the sake of clearness denoted by JSlt Ilt etc , instead of by
ivjmax) -vinifti) etc
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cannot be used directly for charging a battery, nor can it produce any
injurious electrolytic effects when flowing as an earth current

The mean value of an alternating-current is always understood to

be the largest mean value which can be obtained during half a period.

."'- "^^

.>\*D,J

FIG 38

Consider the sine curve shewn in Fig. 38, representing

dt

Then the largest mean value is

2 f7 fl-jr \
1 /,, = /^smf^n

i Jo \- /

T 2Jm,
f-r

:=0

Thus the mean value of a sine cwve IB

^ mean -^ ra
TT

(15)

The mean value, however, is not of great interest in dealing with

alternating-currents or pressures, for the power does not depend on
the mean values From Joule's Law, the work done in overcoming
the resistance i of a conductor by a current % in time dt is

whence the mean heating effect is

wheie /eff
is iised to denote the cunent-sti ength which a contimious-ffivn ent

must have in oid&r to produce the same heating effect as the alteinatmg-cument

Thus /.,= A/4 t2^ (16)

This is called the effectwe value (or, in accordance with eq (16), the

root-mean-square or R.M.S -value) of the altBrnating-current

lISc Lib

621.31913 N131

B'lore
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This is shewn in Fig. 39 as a function of the time.

Fin 80 Effective Value of Alternating-Current.

The ourve i2 is also a sine wave, but varies with double the frequency
of the current Further, i2 does not oscillate about the abscissa-axis,

but between zero and 7^, so that

whence

or

1 rr T
a

f3 _ x
I *2J4 J-mnT.

*Bfr
=

707/

effective value = ampl *ud-e
.

(17)

From eq. (15) and (17), it follows,

/Q

The factor 1 11 is called the farm factor of a sine curve

Similarly for the E M P.

. (I8a)

On p. 26 it was seen that the maximum EMF induced in a coil

of w turns is.

(19)

10-8 volts

From eq. (I7a) it follows further that the effective EM P will be

10~ 8 volts.
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Again, amce

it follows that
-8 volts.

(15a)

(20)

This last formula can also be simply deduced thus during
one

complete cycle, the flux 3> passes from its zero to its positive maximum
value $m and then sinks again to zero thus in half a period the flux

changes twice similarly, in the negative half-period, the flux also

changes twice, so that in a complete period T the flux *mut changes
4 times

,
hence in a second, the flux variation is

4*"""

whence formula (20) follows directly
Smce we have made no assumption in deducing this formula as

to the way in which the flux vanes, it is obvious that the formula (20),

i e the value of - maan ,
is independent of the shape of the B.M F curve.

In practice the effective value of an alternating-current or pressure

plays the most important part Consequently, in what follows we
shall deal almost exclusively with effective values, and in the diagram-
matic representation, the vectors will denote such values. If we require
the momentary values from such a figure, we have only to multiply
the projections of these vectors on to the rotating vector by ,/2 In

general, we shall denote instantaneous values by small, and effective

values by large letters, whilst maximum or mean values will be denoted

by the suffixes max and mean respectively.

10. Symbolic Representation of Sine Wave Currents. In place of

graphical representation of vectors, it is possible to proceed analytically,
as in Mechanics, by resolving each

f

vector into two components along'
axes perpendicular to one another

One axis the abscissa-axis coin-

cides with the rotating vector OB
(Fig 40) at the instant t = Q

Now

Jsimf

FID 40 Representation of a Sinusoidal
Current by two Vector Components

= ^27(008 <f>
sin (at + sm <f>

cos tat
),

where 7, as above explained, denotes

the effective value of the current

Thus the momentary value of a sine

function always equals the sum of

the momentary values of the two

components into which the vector of the sine wave can be resolved

As seen from Fig 40, the current i is completely determined by the

co-ordinates 7 cos < and 7 sin < of the point A
Just as a complex number can be represented by a point in the plane

of the co-ordinates, so a point in the plane of the co-ordinates can be
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represented by a complex number Thus the point A (Fig 40), am

consequently the current / represented by UA, can be determined fror

/= / cos <
-
jl sin <,

where the vertical co-ordinate is taken as the real axis and the hor

zontal as the imaginary (Fig 41) This method was first introduce!

into electrical theory by HeMidltz and Bayleigh.
In the expression for the momentary current,

4= ^/27 sin (wt + <),

</> is the phase angle, which shews that the current passes through it

zero value at the instant L= -i ze - before the instant t= Q. Th
0) to)

greater $ is, the earlier the current passes through its zero, le th

greater the lead If < is positive, then, as shewn in Fig 28, the tim

tf must be set off along th

J negative direction of the tim

axis In a similar mannei

~2^d in the vectonal representa

jynua tion of the current in Fig 4C

/ a positive phase angle <

\ _ jutf must be set off from th'

Vr real axis in the negative direc

tion of rotation of the tim
line In the representatioi
of this current i by means o

/Qua ffQua complex numbers,

/= /(cos < j sin cb)
= Ie~&

Fia 41

therefore the phase angle n

also + <
, hence, with negative sign, we always obtain a positive phas<

angle, and wee v&isa

The system of co-ordinates used m this figure can be regarded ai

formed from the co-ordinate system in Fig 29, which is the on<

generally used in Mathematics, by rotating the latter through 90

in the direction of rotation of the time-line Hence, m representing
sine wave currents symbolically, we set off the real values along
the ordinate-axis and the imaginary values along the negativ<
direction of the abscissa-axis

- The current vector can be given either by its magnitude and phase 01

by the components of the vector along the two axes The symbols

expression I implies these two components, so that the vectoi if

completely determined from this symbolic expression
In what follows, we shall denote effective values by simple capita

letters when they merely denote magnitudes, and by capital letters

with a dot underneath when the effective value is a vector,

representing both magnitude and phase This method was applied

by Stemmetz, who has been chiefly instrumental in shewing how
technical alternatmg-curient problems can be treated symbolically
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If the vector OA_iB moved through 90, in the sense of rotation

of the time line, to OA' (Fig 41), the co-ordinates of the point A' are

/cos(0-90) =

and - / sin
(<f>

- 90) = I cos <

Thus the complex expression for the vector OA' is

/' = / sin <+.;/cos <

=j {/cos cf> -jlsm <}

We thus see that multiplying a complex or symbolic quantity by j

corresponds to moving the vector OA through 90 in a counter-

clockwise direction Similaily, multiplying by -.; corresponds to

rotating the vector 90 in a clockwise direction

In order to find the components of the resultant of several currents,
or E,M F

J

s, we determine the algebraic sum of the several components
along the two axes, or, when we proceed symbolically, we can add
all real terms together and all the imaginary terms together Thus,
for example, the sum of the cuiients

is =

This complex equation can be replaced by two real equations (as
shewn in Section 6), namely.

and b = b + 6

Until now we have always spoken of the time-line as revolving ; it

is possible, however, to suppose this fixed, and let the plane of the
co-ordinates rotate about the origin This must then rotate in a clock-
wise direction* with the angular
velocity (o, and the projection of a

vector rotating with the plane on
to the fixed vector represents the

momentary value of the sinusoidal

magnitude represented by the vec-

tor revolving with the plane It is

easy to see that tJie mutual position

of the vecto) s, also their position with

respect to the co-ordinate axes, is the

same whether we have a rotating time-

line and fied system of co-oidinates pia 43

and vectors, or a fixed time-line and a

rotating system of co-ordinates and vectors Since it is customary to

imagine the whole diagram, i e the plane of the co-ordinates and the

* Tlus direction of rotation is opposite to that adopted, since these drawings
were prepared, by the International Committee for Electrical SymbolsAC c
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vectors fixed in regard to it, as rotating, this method will also be used

m what follows, and the arrow will represent the rotation of the

diagram which is always clockwise. Of two vectors, that one always
leads which is first m the clockwise direction. Thus, in Fig 42,

/! is leading 7
2 by the angle ^.

11. Power given by Sine Wave Currents. It has been shewn

on p. 15 that the work done in an electric circuit in tune dt is

dA = ei dt,

where e and ^ denote respectively the E M.F. and current in the circuit

at the moment considered

Writing e = *J%E sin
(<ot + fa)

and a= J2I sin (tat + <

2),

where J and I are effective values, the momentary value of the

power will be
*"" ~

e =
)
sin ((a

- < - cos

From this it is seen that the instantaneous value of the power is a

function of the time, and varies as a sine function about the mean

Pio 48

value ^/cos((jf>1 -jf)2) with double the frequency of the current or

pressure (Fig. 43) Hence the mean value of the power during a

complete cycle, i.e. the mean m effective pouw, is,

(21)

where <j>
=^-^ = phase-angle between the pressure E and current I
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The product El of EMF and current is called the apparent powei,
and is often referred to as the volt-amperes ,

cos </>
is equal to the

power-factm , being the factor by which the volt-amperes El must be

multiplied in order to obtain the tru& pow&> WTO. watts
As we have just seen, the power surges to and fro in the circuit at

one instant it is positive, at another negative. This surging will be a

minimum when <j-02
= <is zero, or oos< is unity, i e. when current

and pressure are in phase, for in this case, and in this case only, the

momentary value of the power is never negative (Fig. 39). In other

words, although the power is transmitted from the generator to the

line in the form of pulsations, the line never returns power to the

generator. The greatest amount of surging will occur when

i e. when cos $ = 0, for now the mean value of the power is zero, and
the power merely surges to and fro between generator and line, but

Pio 44 Periodic Variation of Pressure, Current and Power when 4t=fa-fa=fKf

no actual transmission of power occurs (Fig 44). In this case, the
area of the positive part of the power curve equals that of the negative
part.
The momentary power can be shewn diagrammatioally by setting

off the constant magnitude

ElCOB (^ - <

2)
= ElCOB

<j>

on the ordinate axis from to
0^ (Fig 45), and describing a circle

about
0j

with radius El Then, if the radius of this circle rotates
with uniform velocity 2<o m a clockwise direction, the momentary
power ei will be given by the ordinate drawn from the end A of the
radius El on to the abscissa-axis passing through 0.
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At the moment t = Q, the radius El has the position O^A its

component along the ordinate-axis is -
EIcoa(4>l

+ ^,i) and along the
abscissa-axis - EIsm (<^1 + 2 )

Eleettf

PlO 46

Jfina Ejsin<ft,

Fid. 46

Using the graphic representation of Fig. 46 for B M F 's and currents,
and resolving the vectors into components along the axes, we get

and

Since also

e =J1E cos
(jbj

sin tat + J2E sin^ cos orf

i= ^/2/cos 4>z
sin tat+ ,/2/sm <

2 cos u>t

PP= Elcos fa -fa)
= jEIcos ^ cos <

2 + AY sin^ sin <

2 ,

we see that iAe resultant power equals the sum -of the pow&rs of the several

components oftJie vectms From Fig 46, it is also seen that the power
equals the E M.F. multiplied by the projection of the current on to the
E M F

,
or equals the current multiplied by the projection of the E M F

on the current

12. Symbolic Representation of Power. If E M.F and current are

represented symbolically, we get the following expressions for these

magnitudes (see Fig 46)

E = Ecos^ -jE sin ^ = Ee~\
1= /cos

</>2 -jlsm 2
= Je ''*,

where e denotes the base of natural logarithms E and / are absolute

magnitudes, whilst - ^ and - $2 are called the arguments of the

complex quantities To multiply two complex quantities together, we
take the product of their absolute magnitudes and the sum of their

arguments (see Section 6) Hence the product of the complex
expressions for current and pressure is
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From this we see that the product of the complex expressions for E
and I merely gives the complex expression for that part of the

momentary power which varies after a sine law of double

(Fig. 45) and has no
relation to the actual

power
In practice, however,

it is not the momentary
power we require, but
the mean value El cos <,

the apparent power El
and the power factor

cos
<f> These are especi-

ally important when we
come to deal with curves

of any desired shape
For this purpose, it

is best to set off the

apparent power El as a

vector at angle $ =^ -

vnaff oabus

FIG

ordmate-axis (Fig 47) The pro-

jection of this vector HI on to the ordinate-axis then represents the

effective power .ZWcos <f> Choosing again the oiclmate-axis to represent
the real and the abscissa-axis the imaginary values, we get the follow-

ing symbolic expression for the power vector .

(El) = El coa < -j

We can suppose the power vector to be formed from the EM.F.

vector, by simultaneously moving the latter through the angle <
2 ,

m the counter-clockwise direction, and multiplying it by the current

/. In other words, the power vector is obtained by multiplying the

EMF vector by Je^. Hence the symbolic expression of the power
vector is obtained by multiplying the EMF vector by the conjugate

vector /' (
=

If?**) of the current vector J. The vector I' = Ie3^ is the

image of the current vector /= /e~^ about the real axis

Let E**E*-*i =E-E
and

Then

!=/<

(El} =
! -.7/2

=
(E, -jE2 +;/,)

Hence the effective power is

and the so-called ifwgvwny pow&i (Elem^) is

(22)

(23)
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In this method of representation, the imaginary power is positive or
negative, according as the current leads or lags in respect to the E M.E

,

and is zero when the two are in phase If we had proceeded otherwise,
and called the imaginary power positive, when the current lags, the
power vector would have been obtained by multiplying the current
vector by the conjugate of the E.M.F. vector
From the foregoing, we see that the symbolic ewpiession foi the pow&r is

obtained by multiplying the symbolic expression fa the presswe vector by the

symbolic eoypiession for tJie image of the cunent vector with lespect to the am
of real values

The above introduction of the image in the complex expression for
the power depends solely on the manner in which the E M F

, current
and power vectors are expressed, and has no physical relation to the
expression for the momentary power.
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13. Self-induction. When a current flows in a conductor, a field is

produced encircling the conductor The flux &x produced by a

current i flowing through a conductor of wx turns is, from equation (9)

where JRa is the reluctance of the magnetic path of the flux <., inter-

linked with the wx turns

If the current changes in
strength

or direction, the flux <. changes
in the same sense, and along with it the stored-up energy

"" ' ^ '

Consider any conductor, for example a loop

(Fig. 48). If the flux embraced by the loop is

varied, an E M.F. e, will be induced in the con-

ductor, which, in accordance with the law of

induction, is expressed by

_'~~
dt

~
dt

e, is called the cornier- m lack-E M.F. of self- F> -aaif-induotion of
*

, a doll

induction

Since the same current i flows through each of the turns,

d
fl =- ât

where the sum of all fluxes produced by the cuiient i is to be taken

In general, we write
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where L = . (25)

The factor L is called the coefficient of self-iiuiiidwn of the circuit, and

has the same dimension as magnetic permeance, viz. the dimension of

a
length.
With constant reluctance Hx ,

the flux 3?t will be in phase with

current i, in accordance with equation (9) If the current vanes smu-

soidally, the flux and B M F will also follow a sine law, and since the

induced E.M.F. e, lags 90 behind the inducing flux 3>x ,
it will also lag 90

behind the current, and we get the curves for <,., * and e, as shewn in

Fig 49. p, is the external pressure applied to the coil, and is equal and

Fid. 40.

opposite to the E M F ea The reason e, has the opposite sign to d(Li),

is because the induced E M.F always tends to prevent any alteration

in the current strength Thus, in a circuit where the current is rising,

the counter-E M F will oppose it, and the current will be tetaided in its

growth On the other hand, a falling current is always acted on by a

couriter-E M F which tends to keep the current constant, and so lowers

the rate of decrease Thus, in an electromagnetic circuit, self-induction

seeks to prevent any change of current, just as with matter, ineitia

tends to prevent any change of velocity.
The energy ilA supplied to the flux during time dt is

dA= -

If the coefficient of self-induction L is constant, it follows that

the electrical work which must be expended in raising the GUIrent

from to & (excluding heating losses) is

A=' .(26)

This work which is often referred to as the electromagnetic eii&igy in

the circuit will be given out again when the current sinks from i to
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zero The coefficient L is measured in absolute units (cm) the

practical unit of self-mduction is called the Hewry, and is chosen equal
to 109 times the absolute unit

On page 12, the leluctance of a thin tube of force was defined as

8dlH
-xof _dl

i,

so that the flux in the tube can be found directly by dividing the

ampere turns interlinked with the tube of force by the reluctance Rx .

Thus, Iix is not measured in absolute units, but in units ^ of the

absolute, hence

-Sfo*.) 10-8
foray, . (27)

where . is the flux due to 1 ampere. In calculating L, we may
use the following definition The coefficient of self-niductton L of a cvicuit,

in absolute wilts, is measuied by the ivwribei of intetliiikages 2 (<.;.) which the

conductor inakes with the flux prodiiced by a cwient of 10 amperes (i e. by
one absolute unit of current).

14. Capacity.* If an E M.F. is applied to the plates of a condenser,
a charge will be taken by the latter. The relation between the acquired

charge q and the pressure p at the terminals of the condenser is

where C is called the capacity of the condenser If we make pe =l,
the capacity will be numerically equal to the electric charge which
must be supplied to the condenser in order to raise the potential
difference between its terminals to unity.

If during the time dt the pressure is increased or decreased by dpa ,

the increase or decrease m the charge, i e the quantity of electricity

passing along the conductor, will be

dq = i dt,

where i is the current m the conductor.

Henee C

If the pressure at the terminals of the condenser is altered, the

current in the conductor is proportional to the rate of change of

the pressure

* For further information on condensers, see Chap XIX
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On the other hand, if the rate of change of the current i m the

conductor is given, the pressure at the condenser will be

'idt

Hence the energy supplied to the condenser during any time element
will be

ft*

If the current varies periodically, the condenser will be periodically

charged and discharged The energy stored-up in the condenser

during charge is given up again during discharge, that is, the charge of

the condenser surges to and fro in the circuit.

Assuming that the charging current follows the sine wave

then the pressure taken up by the condenser will be

In Fig 50, the curves of current i and pressure pa are shewn The
curve pa representing the pressure consumed by the condenser is

seen to lag 90 behind the current This is to be expected when it is

Fio. 50.

remembered that the pressure rises so long as the current is positive
and reaches its maximum when the current passes through zero. The

pressure curve which coincides with the charging curve q is the

integral of the current curve.

As the practical unit of capacity, a condenser may be used whose
terminal pressure rises one volt per second when the charging current

is one ampere
The practical unit of capacity equals 10~ absolute units, and is

called a farad since this unit is very large, it is usual to use the

ymoiofatad, which equals one-millionth of one farad or 10~ lfi absolute

umts
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15. The Pressure Components in a Circuit carrying a Sinusoidal
Current. If the current ^ tJ2Ism(at flow along a conductor having
the ohmic resistance ?, the instantaneous value of the pressure will be

pr
= ir= ^27? sm tat =J2Pr sin at,

where Pr
= Ii

The pressure curve is thus a sine wave in phase with the current
curve

This is not the case when the circuit possesses self-induction. If the
current /-> T .=

x/2/sin(uc

flow in such a conductor whose ohmic resistance is negligible, the

pressure at the terminals will be

p,
= L-r = JSIiaL cos (at

at

=
N/2P, COS (at,

where P, = IwL=Ix,.

Here the terminal pressure p, leads the current i by 90 Instead of

the resistance, we employ xt
= <aL=%ircL in calculating the effective

pressure
If the conductor possess both resistance and self-mduction, the sum

of the two respective pressures must be applied to the terminals at any
instant The terminal pressure is then

Pt =Pr +P,= N/2-fr sin tat + jZIx. cos wt.

Substituting, \A 2 + o? = V? 2 + (wL)
2 =

z. ,

.= - = sin (b,

)
2

*.

<aL X,
and tan <, = =

,

we get pxl
=

\/2.ZJ3, sm wt cos
<f>, + *J%Is, cos tat sm <,

or ptl
= v2-PIf sin (<ot + $,)

The effective value of the terminal pressure is thus

P = Is

and the pressure leads the current by <,

If a condenser be connected in a circuit, the piessme at its terminals is

fidt
P=\-n'
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The current is again taken to be

Then = --^ cos at= \f2P. cos ut*

The eifective coiidenser pressure is therefore

P- 7

^-^'
and this pressure lags 90 "behind the current

Lastly, if the current i flow m a circuit in which resistance, self-

induction and capacity are all connected in series (as shewn in Fig 51),

'IT
Fid 61 Electric Circuit having Resistance, Self-induction and Capacity in Series

the momentary value of the terminal pressure equals the sum of the

several pressures pr ,pt and pa. Thus

[idt

r sm tat + ( (nL cos <t .

^
.

V/ i \ 2

i* + (tL
^j

=z
}

i

wL ^wo

we get p = fjllz sin (at + <) = J2P sin
(ta

The pressure wave is also sinusoidal in this case and has the effective

value

This pressure leads the current by the amount

1

, , _,
w ~

IOC
CD = tan x

r
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16. Differential Equation of a Simple Circuit. The differential

equation of the pressure, developed in the previous section for a circuit

possessing resistance, self-induction and capacity (as shewn in Fig 51),'

This represents Kirchhoff's Second Law in its most generalised form

Multiplying all through by ^ dt, we get the energy equation

.

L>

This tells us that during any time element the energy supplied at

the terminals of the cncuit equals the sum of the energy consumed in the

several parts Differentiating the pressure equation with respect to dt,

we get the differential equation of the current

which holds f01 any pressure p
In the previous section it was shewn that a sinusoidal current

requires a sinusoidal pressure at the terminals of the circuit when

i, L and C one constant From this the converse follows, tJiat a sinu-

soidal p^essuie can only produce a sinusoidal cwtient Hence, we shall

not consider the general solution of this diffeiential equation, but only
that for the case when the conditions have become steady, a state which

is reached soon after switching in For a sinusoidal pressure at the

terminals

we get in eq (28i) j-^
=J2jP cos wt

The special integral of this equation is then

j j. i / tuj^ -" \ I /n(\\sm uf-tan J

(----TT) (
29

)
2

I

The current is thus a sine wave, but is not in phase with the

pressure

Equation (29) can also be written

r
P

wheie -i imu

= amplitude of the cu/went ,

and * =

= angle ofphase displacement
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The angle of phase displacement < 1S positive, zero or negative

according as

When ^ is positive the current lags behind the pressure, whilst it

leads when < is negative

When .-- (30)

the current and pressure are in phase,
ie ^ = 0,

and the current attains its maximum value

When this occurs the self-induction and capacity exactly neutralise one

another, and this condition is generally termed "Kesonance
"

Since m this case the inductance and capacity are in series, we refer

to their resonance as pressure lesonaiice'* in contradistinction to

cunent resonance, which is used for parallel circuits Using effective

values of current and pressure, we get

17 Graphical Representation of an Alternating-current Circuit.

In Section 16, it was seen how the solution of the differential equation
can be avoided if we *tart from the current We shall now see how
this method leads to a graphical solution A sinusoidal current is

assumed as given, and we calculate the terminal pressure P From

eq (28) the momentary value p of the terminal pressure is .

Thus the applied pressure p can be split up into three components,
which are respectively necessary to overcome the ohmic resistance, the

counter-E.M F. of self-induction and the condenser' pressure When the

*This frequency ia not the natural period of oscillation of a circuit containing
considerable resistance, for in this case

Only when the resistance of the circuit is negligible is the natural period of

oscillation equal to the period of supply, when
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current i is known, each of these three pressures can be calculated.

In Fig 52, the current curve is drawn

i= 7^/3 sin (tat
-

<).

In phase with the current is the curve vr, which represents the pressure

necessary to overcome, or the pressure consumed by, the ohmic resist-

Fia 52 Periodic Variation of the K.M F.'S In a Circuit.

ance of the circuit. This curve ir is also a sine wave, since r is

constant

The pressure p, required to counter-balance the back-E M F of self-

induction e, is

This curve p,, which must be a sine wave, with sinusoidal current, is

shewn in Fig 52 leading the current by 90 whilst the counter-E M r

e, (not shewn) lags 90 behind the current

The pressure pa required to charge the condenser is

\dt IJ2
sin

Thus the curve pa is also sinusoidal and lags 90 behind the current

By summing up the three sine curves 11, p, and pc we get the

resultant sine curve p, which leads the current curve i by the angle
< (Fig 52). Thus the curve p represents the pressure applied to, or

consumed by, the circuit

Now, since sinusoidal quantities can be represented by vectors, it is

possible to represent the phenomena in an alternating-current circuit

graphically (see Fig 53) The current vector 7 is drawn at an angle
< to the ordinate-axis, which is taken to represent the applied pressure
P Since the diagram is taken as rotating right-handedly, and the

current is lagging behind the pressure P, the angle < falls to the left

of the ordinate-axas. The pressure Ir consumed by r is in phase with

7, and must therefore be set off along 01. The vector representing the
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pressure required to overcome the self-induction is given by

and leads the current by 90 x, is called the inductive reactance of the

circuit It has the dimension of an ohmic resistance, and may therefore

be measured in ohms
When L is given in henrys

and c in cycles per second, x, is

obtained directly in ohms

^=S2 (irVnms--
(
3T )

\N
Then Ix, is set off 90 in advance
of/
The vector representing the

pressure Pa used to charge the

condenser is and lags 90
(DO

behind the current Capacity
Pieactance % is analogous to in-

ductive reactance and is defined

Fia 68. Geometries Addition of Pressures iii a
^ 11

Circuit X
e
=

j=,
= -z pf

This is measured in ohms when c is given in cycles per second and C
in farads. The capacity pressure Pa

= Ixe is set off 90 behind /, ie
in the opposite direction to Ix,. From this we see that inductance and

capacity act directly against one another, and give the resultant

component jx= j//^
_ x \

or X = K.-X =iaL (32^' " uC v '

i is called the resultant leactance or simply the teadance of the circuit

When x,-xa , then x =
and resonance occurs In this case the current depends only upon the

resistance i in the circuit and the angle < is zero, that is, the current i

is in phase with the pressure p
Returning to the general case, we see that the vectors /? and Ix

combine to form the resultant P (see Fig. 53) along the ordmate-axis,
at angle <f>

to /
Thus

or /= (29a)

where s =vH + a;
2 is called the impedance or apparent resistance of

the circuit, whilst x
tan

</>
= -

and
.__

^

cos
</>
= - = power factor.
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When P, i and x=x,-ffa are given, I can be at once found by
drawing a semicircle on _P_ as diameter, setting off the angle < and

dividing the intercept of 01 on the circle by i

As a rule, the applied pressure P is split up into the two components
Ii and Ix at right angles to one another Ii is called the resistance

pi essui e and Ix the i eactance p essw e. The effective value of e, is - Ix,

and is called the cowntei-EMF of self-vnductuni , similarly

- Ii = counter-E M F of resistance,

-Iff,= inductance,

-/:= capacity,

and - Is = impedance (or total counter-E M.F.).

From the diagram in Fig 54 due to Bedell a/nd Cielwie may be

seen how the current is affected when the constants r and x = x, xa

are altered, whilst the pressure P is kept constant. From the pressure

WattCummt

'A WatOoK, Current

Pio C4 Ciment Diagram of a Clicult with Variation of one of the Constants i or t

triangle of Fig 53, the two similar triangles OBC and ABO can be

deduced by dividing each side of the piessure triangle by ? in the

one case and by v in the other Thus

AB = - and ~BC=*.
x t

Hence the current / is represented by the vector OB. If x is constant

and i varied, the point B moves over the semicircle on OA from
to A as ? decreases from oo to

,
that is, on the line ABC the point

A is fixed so long as a is constant, whilst the point C moves on the

ordmate axis when i is varied ,
thus the phase displacement <

changes from to 90
AC D
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For x positive, OA falls to the left, and for x negative to the right

of 00
If ? is kept constant and x varied from zero to + co and from - oo

back again to zero, then B moves on the circle on 00 starting from 0,

passing through and coming back to C _
When x= Q and r constant, / has its maximum equal to 00, and

the two pressure curves p, and pa (Fig. 52) have the same amplitude
A curve which represents the variation of one magnitude as a

function of a second is generally called a diagram of the first quantity ,

thus Fig 54 is a ciment dwgiam.

18. Examples.

1. Given the terminal pressure P applied to a circuit possessing

resistance, self-induction and capacity of the following values, in series

with one another,

P= 100 volts
,

? = 20 ohms ,

L = 159 henry ,
0= 50 microfarads.

To determine and to shew graphically the current /, the phase

displacement <f>
and the pressures Pe

and Pel across the condenser and

impedance ,
= \/?

2 + a^ respectively as functions of the frequency c

At a frequency of 60,

x,
= 2-n-cL= 27r50 x 1 59 = 50 ohms

1 1x10
and

2*,,
= = Kn _ = 63-8 ohms

2n-50 x 50

Hence x = x
t xa

= - 13-8 ohms, and the total impedance in this case is

#= N/^Ta;2 =W202 + 13 82 = 24 15 ohms,

whence the current I is

y
=
-^-^=-0-64

and ^.= -32 40',

P
fl

= 2xa
= 4 15 x 63 8 = 264 volts

The impedance zt is

?= \/202 + 502 = 538 ohms,

Psl
= Ist

= 4 15 x 53 8 = 223 5 volts

In this way, J, <, Pe and Pfl are calculated for different frequencies,

and are shewn plotted in Fig. 55

The total reactance of the circuit is zero when the frequency c is

c = \== ,

l
- =56-5- WO 159 x 60 x 10-
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At this frequency $ = and / is a maximum. The pressures P
and P,, nse until the frequency has approximately this value, and then

fall off .Poniax occurs somewhat before and Prlmax (and Pxtmn )
somewhat

after the frequency corresponding to maximum current
2 Let the terminal pressure, resistance and capacity remain the same

as in 1, and the frequency be kept constant at 50 whilst the reactance

x, is varied Fig 56 shews the current I, the phase displacement <

and the pressures P and Pta as functions of x,.

Amp.

\
\

t9 49 69 it W)_ M " '' HI ohm

/
f

'

I

'/

FIG. 6?

When x,= xa
= 63 8 ohms the current reaches its maximum value,

which is the same as in 1, whilst < = In this case Pflmttr and P, mttx

both occur at this same value

3 r is varied whilst P, L and C have the same values as in 1 and
c = 50 By means of Fig 54, the current / and phase displacement <

can be found for different values of ? These are shewn plotted in

Fig 57

19 Resolution of the Current into Watt and Wattless Components.
Instead of resolving the pressure P into two components, the current /
may be resolved into two components along co-ordinate axes, one of

which is in phase with the pressure P

Now, ^
*

= -
{ cos (tan"

1-
)
sin tat - sin ( tan

-1 -
) cos tat \z V \ V \ V J

. X \
-5 sin tat - -= cos tor .

8* J
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For the sake of simplicity, we write

= 9 = of the ai cwit

and =
^
= b = smc&ptance of the cii cuit.

( 33)

(34)

$ r* + x*

%___x
sfl~~'

Conductance and susceptance have the reciprocal dimensions of a
resistance and are measured in mhos.

Thus we can write the current i= ,J2P(g sin (at - b cos (at), that is, the

current vector OB in Figs 53 and 54 is represented by two components
Pg and Pb From Fig 58, we see

tan
<f>
= -,

and further,

where -= admittance of the circuit. (35)

Fio CS Current-triangle FIG 69 Current triangle

Eotatmg Fig. 58 in a clockwise direction through the angle <, we get

Fig 59, which is analogous to Fig 53.

If it is required that the current in a circuit shall remain constant

whilst g and b are varied, the pressure must be correspondingly altered

both in phase and magnitude
From Fig 60

(analogous
to Fig. 54) the pressure P = OB can at once

be found If b is constant and g varied, the point B will move over

the semi-circle described ou OA, where OA = r. Wheii b is positive,

A falls to the right of 0, and to the left when b is negative. If g is

kept constant and b altered, the circle described ou OC is the locua of B
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Of the two current components Pg and Pb, only the component Pg,
which is in phase with the pressure, does work. Consequently Pg
is called the watt componeiit of tJie cwrent, or, simply, the watt eiwrent

WaUlasfivuun A

Fia 60 Pressure Diagram of a Circuit due to Variation of one of tho Constants goil

The power is then written

W=P.Pg = F*g. . .. (36)

The second component PI of the current is called the wattles*

component of the civnent, or, briefly, the wattless current

On p 52 we saw that the momentary value of the current equals the

algebraic sum of the momentary values of the two current components
From the foregoing, we now see that the effective value of the cuireut

equals the geometrical sum of the effective values of the watt and
wattless components of the current

Hence, in general, for any circuit containing constant reactances

and energy-consuming apparatus (resistances), the impressed sine wave
K M F can always be resolved into two components, viz into the watt

component Ii which is in phase with the current, and the wattless

component Ix which leads the current by 90.

Similarly, the current can be split up into the watt component Pg in

phase with the pressure, and the wattless component PI which lags 90

behind the pressure
' Thus the constants of a circuit can be written

watt component of pressure _ ,_ g

current g
z + bz

=
effective resistance in ohms, (37)
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wattless component of pressure _ _
current

~ ~

=
effective i eactance m ohms, ....... ...... (38)

watt component of current _ _ ?~ ~
2

pressure i
2 + a;

=
effective conduda/nce in mhos,

wattless component of current _ , _ a;

pressure

~
~t z + x2

=
effective susceptance in mhos,

pressure /- 5 1^ =z=Jrz + x2 = -
curreut y

=
effective impedance in ohms,

current _ _ 1 _1
pressure ^ z + x2 %

=
effective admittance in mhos.

When several resistances and reactances are in series, it is simplest to

use i, x and a, for m this case the corresponding pressure components
can be added directly
On the contrary, when we are dealing with parallel circuits, it is

more convenient to use g, b and y, since the current components can

then be added in accordance with Kirchhoffs First Law.



CHAPTER III

ANALYTIC AND GRAPHIC METHODS.

20 The Symbolic Method 21 Rotation of the Co-ordinate Axes 22 Inver-
sion 23 Graphic Representation of the Losses in the Impedance in a
Cu oiut 24 Graphic Representation of the Useful Power in the

Impedance in a Cirouit 25 Graphic Representation of Efficiency

20, The Symbolic Method. Let the instant of tune t = be chosen

ao that the current vector / coincides with the positive direction of

the ordinate axis We then get the vector

diagram shewn in Fig 61 If all real values

are set off along the positive direction of the

ordinate axis and all imaginary values along
the negative direction of the abscissa axis,

we get as already shewn a system of co

ordinates similar to that generally used in

Mathematics, when the Tatter system is

rotated through 90.
The E.MF vector P is given by the co-

ordinates Ii and IK of the point A, or,

mag values / symbolically

FID ei In order to investigate the meaning of this

expression for the general case, where / also

is complex, we consider the product of the two complex quantities

1=1 COB <

2 -.//sin <
2
=
/(cos <

2 j sm <

2 )
= Ie~^

LHCL si ^ ? ~*
joe
^ # (cos <p ~j sin ^p ) ^ z&

The product of / and z IB

Iz= Is(co8({ba + <b} 1 8in(<b-, + d>)\

This product is represented by a vectoi which leads the current

vector by the angle ,
and has an absolute magnitude equal to the
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product of the absolute values of the two complex quantities This

vector coincides with the pressure vector
;
hence we can write for the

symbolic expression of the pressure

P=h, (39)

where the symbolic expression of the impedance z is

z = r-ja ... . (40)

Conversely, the symbolic expression of the current / is

i-~

It is now possible to carry out all the operations of calculation with
these symbolic expressions m the same way as with real quantities,
and when the calculation is finished, the complex quantities are simply
substituted for the symbolic
The complex expressions can then be changed into the real

expressions of the momentary values We have above :

and P~/3 = /*

Then the corresponding momentary values are

* = -fmax sin (^ + <

a)
= J2I sin

(<at + <f>z )

and p =Pmax sm ((at + 2 + <)
-J2P sin

While the momentary values show directly the amplitude, frequency
and phase of a current, the complex quantities only show amplitude
and phase, and no more represent the fiequency than the graphical
method It is therefore evident that no chied mathematical relation

can exist between the momentary values and the complex expressions
The symbolic expression

P = Iz = I(i-jx)

shows that the pressure can be analysed into two components, Ii in

phase with the current and Ix leading it by 90
The negative sign m a = f

i -jx is due to the fact that the figure has

been rotated in a clockwise direction if the sense of rotation were

reversed, the minus sign would then become plus
Instead of calculating symbolically, we might also proceed graphically

Like the representation of complex quantities, the graphic representa-
tion is also a purely symbolic method, in which the vectors can be

added, multiplied, or divided Up to this stage, we have only used

vectors to denote current and pressure In order, however, to carry
out all operations graphically, it is also desirable to represent impedance
and admittance by vectors In Fig 62, the vector OU, with the

ordmate ?, and abscissa .1, represents the impedance
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Fid 02

If now the cuneut is given by the vector 0~B, the pressure vector OA
will be found by turning the current vector through angle_<,

and at

the same time increasing it in the ratio s If -we set off OD equal to

unity, the two triangles 0(JD

and OAB will be similar, so

that the pressure vector can

be regarded as formed from

the current vector, in the same

way as the impedance vector s

is formed from unity

Further, assume the current

I to vary after some definite

law Graphically this means
that the locus of the extrejmty
B of the current vector OB is

a ceitaiu line. For example, let this line be the curve K m
Fig 62. Then the pressuie vector P = lg must also obey some

definite law The locus of the extremity of this vector OA will be

a curve K
lt

which is found by multiplying all vectors of curve K
by the constant impedance z = z<--to. The curve K must be similar

to the curve K, for this graphical multiplication can be considered

us effected by the curve K being moved through the angle <

about the origin 0, whereby curve K' is obtained, and then all

the vectors of K' are increased in the ratio z By this process, a

point B on curve K becomes point A on curve K^ For any two
such corresponding points as A and

,
the triangle OAB must have

OA
the same shape, since the angle BOA =

<f>
and -= = s are constants

OB
Hence the curve K-, can be regarded as being traced out by the angle
at A of the triangle AOB, whilst the latter moves about 0, without

change of shape, and with its third angle B always on the curve K
If the curve K is formed from a system of straight lines and circular

arcs, its corresponding curve K^ admits of a veiy simple geometrical
construction.

To multiply a straight line we multiply a point on the same, but

keep the angle constant which the vector from this point to the origin
makes with the straight line A circle is multiplied by multiplying
its centre and the radius, or its centre and any point on the

circumference _
Let the moment of time t= be so chosen that the pressure P = OA

falls on the positive direction of the ordmate axis (Fig 60) Then
we can write symbolically

J=Py = Pg+jPl . (39a)

and
-

y

m which expression the current is given m terms of two rectangular

components, one of which is in phase with, and the other at 90 to,
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the pressure Fig. 64 shews that the current vector is formed from
the pressure vector in the same way as the admittance y is formed
from unity Whilst the extremity of the pressure vector moves over
the curve K (chosen a circle in this case), the extremity of the current
vector describes the circle 7sf

t
In Figs 62 and 64 it has been tacitly

Pio 68 Pio. 04.

assumed, that P, I, z and y are all diawn to the same scale, that is to

say, 1 volt, 1 ampere, 1 ohm and 1 mho are all represented by the
same length, e.g 1 mm for only m this case are the triangles OCD
and OBA similar

In graphic multiplication, it is to be 'noted that the lotatwn of the

multiplied vectoi must be clockwise a\ cownter-dockwise, according as the

argument of the second factot is negative m positive.

21. Rotation of the Co-ordinate Axes It follows directly that

in Fig 62 the curve K-^ which represents the pressure Pl acting at

the terminals of a constant impedance Si
=

?i Pi and is similar

to the curve K of the current vector I can be obtained by graphic

multiplication At the instant t = 0, the current and pressure vectors

coincide, but are otherwise chosen independently of one another The
scale of the pressure curve depends on that of the current curve K
and of the impedance zr If the impedance scale is chosen so that

1 cm = 2
l ohms, the vectors representing the pressure Pl

will be of the

same length as those representing the current The pressure curve X
l

is then obtained by simply rotating the current curve K through

the angle <^>1
= tan~ 1 -l m a clockwise direction

Instead of revolving the vectors, the co-ordinate axes can be moved

through the angle <
x
in a counter-clockwise direction If the current

curve is drawn so that 1 cm = m amperes, this same curve, with

respect to the new axes, will serve as the pressure cuive to the

scale 1 cm = ,m volts

Rotating the co-ordinate system means that zero time for the
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pressures occurs ^i T seconds earlier than that for the currents This

process is shewn in Fig 65.

Consider now, the special case of a constant terminal pressure P
acting on the circuit, in which the current I is represented by the

curve K Set off the terminal pressure P along the real current axis

The pressure P = J^ consumed in the line impedance ^ is represented

by the current curve K with respect to the new co-ordinate axes To
obtain the dnection and scale of the new real axis (or the pressure

axis), we draw the current vector Is for the case when the load is

short-circuited, and the only impedance in the circuit is s
l

This

is called the shmt-ciicuit cwiient, and is expressed by

and has thus the direction of the real (or pressure) axis in the rotated

co-ordinate system.
Now, wo have just seen that 1 cm represents ^ times as many volts

in the new co-ordinate system as amperes in the original system
Hence, if IK is set off in the

original system, this same vec-

tor will represent the terminal

pressure P in the new system
both in magnitude and direction.

This direction coincides with

that of the real axis of the new

system, since we have taken the

terminal pressure as real, i e. as

having no component along the

imaginary axis

The load pressure P
z
which

remains after subtracting the

pressure P^ consumed in the

impedance z from the supplied

pressure P is

P2
=P-Plf

and is thus given in the new
co-ordinate system by the distance of a point A on the curve K fiom
the short-circuit point PK (see Fig 65) In other words, the curve K
m the new system is the locus of the apex of the pressure triangle,
whose two base angles are situated at the origin and the short-

circuit point PA respectively
In many cases it is advantageous to take the opposite dnection

of the vectors as positive in the new system of co-ordinates This
is effected by rotating the co-ordinate system through the angle

^ + 180 in a counterclockwise direction, and removing the origin
to the short-circuit point Px (Fig 66) Such a diagram is known

ofcurrent

Fio 06
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ofeumnt

FIQ. 60

as a bipolai diagram is the pole for currents and PK the pole for

pressures
In Fig 64 it was seen how the current curve K^ similar to the

given pressure curve K could be formed by multiplying the latter

by a constant admittance

yl
= gl +jb1

. Here also it

is not necessary to draw a

new curve, if we rotate

the co-ordinate system as

above The axes of the new

system are moved through

the angle <, = tan"1-! m
ffi

the direction in which the

figure rotates, whilst the

current scale in the new

system is 1 cm =yl
m am-

peres, where 1 cm =m volts

m the original system
An important case is the

determination of the press-
ure curve Koi the supplied

pressure P when the current / is to be constant at all loads. Let K
t>e such a curve in Fig 67. Apart from other conductors which may
be present, let there be a path of constant admittance yT

. For the time

being, suppose all other paths except y3
to be cut out of circuit The

pressure necessaryto produce the
constant current Iwould then be

Vi 2/i

P can be called the no-load

pressure, and coincides with the
axis of real values in the new
system Moreover, since a dis-

tance represents y^ times as

many amperes in the new system
as volts in the original, the no-

load pressure vector P in the

original system gives the mag-
nitude and direction of the
constant cunent J in the new
system.

When the other branches are in circuit, the current in them is

^2
= -* ~A>

and is represented in the new system by the distance of the point A
on the curve K from the no-load point P (see Fig 67) Hence the

\vnaff values

ofpresswe

Fin 67
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pressure curve is the locus in the new system of the apex of the

current triangle, whose two base augles are at the origin and the no-

load point P respectively.

By displacing the origin of the new system, to the no-load point
PQ

and turning it through 180, we get the bipolar diagram shewn in

Fig. 68, where is the pole of piessures and P of currents

IQuad IVQuati

I Quad
ttQuad

Fid 08 Fio 60.

22. Inversion. In Fig 69 the vector 00 represents the impedance
2, and OE the corresponding admittance y = I/z They both make the

same angle < with the ordinate axis In this method of lepiesentation,
resistance and conductance are set off along the ardinate 01 teal axis, and
leactance and susceptanw along the abscissa or vmagvnaiy axis The two

,
triangles ODG and OED are

K similar when & and y are

drawn to the same scale

If we set ofM' =
alojng

the impedance vector 00,

then, between the points
E', which is the image of

E in respect to the ordinate

axis, and C theie exists the

simple relation,

00 OE~' = z y=l
Two such points are called

wweise points with respect
to the origin 0, which is

called the centie of inversion

In general, if two curves K and K^ are such that the product of the

lengths OA and OA
1
cut from a straight line passing through a fixed

PIQ 70 Inversion of a Straight Lino.
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point is constant, le OA.OA-^- const =1, the one curve is said

to be the inverse curve of the othei, whilst I is called the constant of
ww&iswn and is the inversion centre A and A

l
are called corresponding

points The inverse curve of a straight line is a circle passing through
the centre of inversion (Fig 70)

Proof Since triangle OA 1
B

1
is similar to triangle OBA,

then

thus, for any hue OA,

OB^OB OA
,

OA

Conversely, the inverse curve of a circle which passes through the centre

of inversion is a straight line

Pio 71 Inverse of a OTrclo.

inverse curve of a circle, which does not pass through the centre

of inversion, is a circle (Fig 71), and the centre of inversion is

similarly situated in respect to each of the circles

Proof. W
l
.W=OB

l
''OD

or OD OD^OB.OB^OA OA^I.
If both circles coincide, so that the circle is its own inverse curve,

then the constant of inversion is 1= OA*.

The theorem is equally true when the point falls within a circle,

for the proof is quite independent of the position of The point
then falls inside the inverse circle also

It may be noted that when the point A moves along the curve K in

a certain sense, the point A on curve K corresponding to A on curve

K will move in the opposite .sense

If the two curves cut or touch at point A, the inverse curves will

also cut or touch at the corresponding point A l

If the two curves cut one another atA at a certain angle, the inverse

curves will also cut at the same angle at A^ In order to shew how
inversion may be applied to the solution of alternating-current problems,
consider a circuit along which a constant alternating-current 1 is flow-

ing, the terminal pressure P must then be varied as
the_oircuit constants

are varied, and the end A of the pressure vector OA will describe
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some curve K (Fig 72) The abscissa of any point on the cmve
represents the wattless component and the ordmate the watt component
of the corresponding B M F.

Since the shape of the curve is independent of the current-strength
and also holds for 7=1, the vector OA will also represent the imped-
ance ss to another scale. With symbolic representation the impedance

sm < =z= r jx= #(cos </>

is given by a radius-vector of length z making angle
-

</
with the

veal axis. Since yz=I, the curve K^, over which the end A- of the

b

Wattles Current

so

Wattless Pressure.

Pio 72

admittance vector y moves, is given by inverting the curve K over

which the end A of the impedance vector z moves
h ff

From the relation - = - it follows also that the two radii-vectores
9 i

y and z have the same direction, when conductance is set off along the

ordinate and susceptance along the abscissa (see Fig 72) If the radn-

vectores of the admittance curve are multiplied by a constant pressure

P, the vectors OA
l
will give the current in the circuit to a certain

scale The ordinates then represent watt currents and the abscissae

wattless currents The admittance
y, corresponding to the impedance

Z = S i IS I I

Hence, the admittance vector y will lie m quadrant I when z lies in

quadrant IV and vice versa, or, if z lies in quadrant III then y lies

in quadrant II and vice versa Thus we see that the vector y cannot

coincide with the vector z if the same system of co-ordinates is used
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for admittance and current vectors as for impedance and pressure

vectors

The direction of the ^/-vector is the image of the 2-vector with

lespect to the ordinate axis Hence, if we wish to apply graphical
inversion to alternating-currents, we must in ev&iy case substitute tfte

mveise CM-VB K-^ (obtained by inversion of the curve K} by its image K\
with respect to the ordinate axis

In practice, however, the process of inversion can be simplified as

follows If the admittance or current curve of a circuit is desired,

and we wish to derive the same

by a single inversion of the im-

pedance curve, then, instead of

drawing the impedance curve

itself, we draw its image with

respect to the ordmate axis, the

desired admittance or current

curve is then obtained directly , , ,

by inverting this image --- / \J
The process can be best illus- Valdets Garmt L ^ *0

trated by an example Given a \. >/

simple circuit with constant react- !

ance x in series with a variable -
x "

-\

resistance r. The impedance curve \

w then a straight line K parallel FlQ 78

to the ordinate axis and displaced
from the same by a distance x (Fig 73) The image of this straight
line about the ordinate axis is K'. The inverse curve of the straight

line K' is the circle K-, of diameter - This circle, whose centre lies on
1

the abscissa axis, is then the admittance curve, and when all vectors

are multiplied by the pressure P, we get the current curve This

agrees with that in Fig 54, but has been obtained in another way ,

p
both circles have the same diameter

x

Similarly the impedance or E M F. curve can be constructed by a

single inversion of the image K' of the admittance curve K For
a circuit with constant susceptance b in parallel with a variable conduct-

ance g, the curves K and K' are straight lines parallel to the ordinate

axis (Fig 74). The inverse curve K
1} representing the impedance

curve, is a circle of diameter r,
whose centre lies on the abscissa axis

b

By multiplying all the vectors by I, the same pressure diagram is

obtained as in Fig 60, for both circles have the same diameter r .

b

It often happens that two inversions must be made in order to

obtain a desired diagram
In this case it is not necessary to draw the image of the inverted
AC K
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curve, for if the first curve lies in quadrant IV the inverted curve

will lie in I., and the curve obtained after the second inversion will

fall again in quadrant IV Hence, since both the curve from which

we start and the curve we
obtain he m the same quadrant,
it is more convenient to carry

K\ | K' out all the operations in the one

quadrant, whereby the figures
are also clearer

Senera^ therefore we pro-
^ foU w8 Adcoiding as

an even m an odd number of
i J VtMeisfivsfun mv&isions must be carried out in

order to obtain a particular

diagram, it is desirable to start

from tiie actual diagram, or its

I image.

Fla r4 Of the two curves which

represent the impedance and
admittance of a circuit by polar co-ordinates, the one is always the

inverse of the other. The constant of inversion I depends on the

scales for y and z

Since the ratio of inversion is a function of 'the scales, after drawing
the first magnitude to a convenient scale it is possible to choose the

constant of inversion I so that the inverse figure will also be drawn
to a suitable scale. This is illustrated by the following example

In Fig. 72 let the admittance y be set off so that 1 cm = TO mhos
Then, if we wish to have the scale of the impedance # such that 1 cm
equals n ohms, we get ^-, ,^ >b y=m OA

1 mhos,

z=n OA ohms.

Then yz=fmOA^ OA = \.

Hence, the constant of inversion is

1=52 OZ= (42)1 mn v '

If Fig 72 is drawn for currents and pressures to the scales 1 cm
=m amps

= n volts, and / and PQ denote the corresponding constants

of the circuit, we have

I=m. OA
l
=P

Qy amperes

and P=n.OA=I^z volts,

whence iwQA 6)^
1
= J P ^=/ P

,

and the constant of inversion is

1 = 02. 02,=^ (42)1 mn ^ '
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t Before leaving inversion, the following theorem may be mentioned

If we home two figwes in which any point and any wide of the one

coivespond to a point and a cit de of tlie other, then it is always possible, by
im&sion and multiplication, to convert one system into the other

From this it follows that, by means of the foregoing methods, every
locus which is a straight line or a circle can be deduced from other loci

which are straight lines or circles

Since the inverse of a circle is a

circle, in carrying out the inver-

sion of circles, instead of proceeding
point by point, it is simpler to

calculate the co-ordinates of the

centre and the radius of the new
circle

Example Given a circle K of

radius JR (Fig 75), the co-ordinates

of whose centre M are v and /A to pIO 75,

calculate the radius I? and the

co-ordinates /*' and v of the centre M' of the circle 1C, which is to be
the inverse of K for the constant of inversion I Drawing the common

tangent OTT' to the two circles, we have

OT
and 0l

By aid of the similar triangles OM'S', QMS and OTM, OT'M', it is easy
to shew that

(
j v

v = v -= =1

r x r -^ _

so that the new circle is determined both as regards magnitude and

position
Two circles which are formed

from one another by multipli-
cation and rotation correspond

point for point with respect to

the origin of the co-ordinate

axes, for we pass from two

corresponding points A^ and
A

z (Fig 76) of the two circles

to two other corresponding
points Bl

and Bz by rotating
the vectors about through

76 the same angle a.
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The locus of the sum of the corresponding vectors of two corre-

sponding circles is also a circle For when the circle IL is formed

from 7T
T by multiplying by a constant k and rotating through a constant

angle ^, we have, for corresponding vectors, a
:
and a2 of these circles,

a3

Hence, the resultant vector,

is always proportional to
ct^

and displaced from it by a constant angle,

and consequently moves over a circle

If two circles correspond in respect of two points on their

circumferences, the locus of the sum of the vectors of corresponding

points is also a circle.

Pio. 77.

In Fig 77 let K and Kz
be the two circles and D

lt
_D

3
two

corresponding points If A^ and A% are likewise to be corresponding

points, we shall then have

The point M is obtained by adding OM^ and OM
2

. Setting off

MA' equal and parallel to

A A
then A is the sum of the two points A-^ and A% In the same way,
D is the sum of the two points P:

and D
z ,

where the angle DMA = a.

The sum of the two circles K^ and K^ is thus the circle K,
whose radius is /

rf nD D *R=VJj* +^ + 27^2 cos 8,

where S is the angle between two corresponding radii of the circles

i
and JT2
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23. Graphic Representation of the Losses in the Impedance in a
Circuit. If a current / is transmitted over a circuit whose hue

impedance is z = i -jx, the energy con-

sumed thereby is V=I%
t. We shall

now shew how this energy F", which
is dissipated in the form of heat, can
be represented graphically for the case

when the current diagram is a circle

Let p. and v be the co-ordinates of the

centre of a circle whose radius is E, and
u and v the co-ordinates of a point on
the circle (Fig 78) The equation of

the circle is

or
Pio 78

The heating losses are

where, for the sake of brevity,
p2

pu + w -^ = V

Now V = is the equation of a straight bne, whilst u and v represent
the co-ordinates of points on it

The yolo/r of the current circle, with respect to the origin 0, has the

equation
s= 0.

From this, we see that the straight
line V = is parallel to the polar
and bisects the distance between

it and the origin Hence the Line
n

V = j.u+w- = OiB called the s&nu-

Fro 79

latter can be drawn at once.

polar of the circle with respect to

the origin
To construct the semi-polar V = 0,

draw a circle on OM as diameter,

where M is the centre of the current

circle (Fig 79). The circle on OM
cuts the current circle in two points
which lie on the polar, so that tbe

The semi-polar V = is then the line

drawn parallel to the polar to bisect the distance OP.
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For any point on the semi-polar, we have

2

V = p.u + vv - ^ = 0,

where u, v are the co-ordinates of the point
For points u, v which do not lie* on the semi-polar, the expression

for V can be found as follows

Let the straight line J (Fig 80) have the equation

S+I-l-O
a b

Further, p a = b- *Ja? + b*,

Hence the equation of the straight line

/may also be written

A parallel straight line II at distance P
from the origin has the equation

For a point w: ,
v
1
on the straight hue II,

Hence the equation of the straight line I may also be written

b (u,
- uj + a (v

-
vj + (P -p)N/osTP =

Introducing now into the equation of straight line 1^ the co-ordiuates

MJ, B
I} of a point on straight line //, we get

(P -p)^/tfT& = ANjeflilfl

Returning to the previous case
3
we see that the linear expression

for any point u, v m the plane has a value which is proportional to

the distance of this point from the straight line whose equation is

obtained when we put the linear expression of the co-ordinates equal
to zero The factor of proportionality is Jfjf + v2

,
and equals the

distance of the centre of the circle M from the origin

For any point Al corresponding to the current / on the circle

(Fig 79), we thus get the loss V in the impedance,

V= IV= 2? V 2? . OM .

where A-^N is the distance of A-, from the semi-polar,
we shall call the semi-polar the loss hne.

(43)

In what follows
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If the circle represents the current due to a constant terminal

pressure P, then for the point Al ,
the total supplied powet W is

W=PIcos < =P x ordinate of point A .

Until now, it has been assumed that the current scale is unity, so

that 1 cm corresponds to 1 ampere. If the current scale is

1 cm =m amps ,

then the loss V is

V=I*r=2m*rOM A~N watts, (43a)

and the supplied power W is

W=Pm x ordinate of point A .

Hence the ratio of the scales for loss and power is

If the origin lies on the circle, then the loss line V = coincides

with the tangent at this point For the case when the origin lies

within the circle, as in Fig 81, the

pole P of the orjgin is found by
drawing a perpendicular through 0,

and where this perpendicular cute

the circle, drawing tangents to meet

at P in MO produced^ The loss line

V = then bisects OP at right angles
as previously Thus, every point has

the same loss line as its pole.
If the pressure P between two

points in a circuit is represented by
a circle diagram and we wish to

find the loss consumed in a constant

admittance y= g+jb between these

two points, we get the same construction as above, for the loss in

the admittance is y= piq

where P2 can be represented by the distances of points on the circle

from a loss line V = 0, just as I2 above Hence, for a point A- on

the pressure circle whose centre is M, the loss is

O; .. . . (44)

FIG 81

where is the origin and A-Jtf the distance of the point on the circle

from the line V =

24. Graphic Representation of the Useful Power in the Impedance
in a Circuit. With constant terminal pressure P, the power supplied
to the circuit is

W=Pv. watt component of current = P v,
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where v is the ordinate of the current curve The difference between

the supplied power W and the heating losses V, which we shall call

the useful power Wly
can also be represented graphically Thus

r- /V = Pv - 2rV = 2? f v - V^
\2r )

where V= fJM+ W - ^

Substituting in the same way,

PW =

'2?
and

then W = is the equation of the abscissa axis of the system of

co-orduiatea. Then
JF=2r(W-V)

where

is the equation of a straight line passing through the point of inter-

section of the loss line with the abscissa axis.

In general, for any point whose co-ordinates are u and v, the

expression for W
l
has a value proportional to the distance of the point

(u, v) from the straight line W1
= 0. Denoting this distance by A^N,

Hence the difference W- between the supplied power W and the losses

V is given by the distance of the respective point on the current circle

from the straight hue W
a
=

This line W
l
= will be denoted

as the powei hnc of the diagram
The equation of the power

line is obtained by subtracting
the equation of the circle

p
-L V= Q
1

from the equation of the current

curve

Fin

Thus the power line passes

thiough the intersection of these
. , -,

,

tWO Circles and Can 06 COn-

structed, as ui Fig 82, provided
the current curve and resistance r are known

82. Ropi esentatiou of Useful Powei with

Impodance in Series
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For a point A^ on the current curve,

and the power W^ = 2?W
1
= 2?MM

l A^N,

or, for the current scale m
t

A^N watts

(45)

(45a)

The points of intersection of the power line with the current circle

have a definite physical meaning, which we shall now consider. As

already shewn m Ch II p. 49, the circle about centre M^ with
p

radius would represent the current diagram for the case when only

the resistance i and a variable reactance x are in the circuit. This
must hold for the points of intersection between power line and
current curve, for these points he on
the circle about centre Mlt as proved
At these points, the total supplied

power is consumed in the resistance

i, and the useful power is therefore

zero One case when this happens is

when the applied pressure is short-

circuited through the impedance a

(short-circuit point), and the other

case when the load in series with the

impedance # is wattless (no-load point)
The power scales for the diagram

can be determined as follows Let the

current curve be drawn to such a scale that 1 cm along the ordmate

of a point corresponds to mw watts. Then for a point Pl
the supplied

power (Fig 83) is

W=m* . P^NV =mvF\0 sm [WWJ.
The power line passes through the points where the supplied pressure

equals the losses. If the point Pl
lies on the power hue W

x
=

0, we
have also w= y=m^, =mj$xn [W,V],

where mv
= the scale of the losses. Hence

m
E __sm[WW1]

PIQ _

Smce the loss line V = also passes through the points where the

useful power W^ equals the supplied power fr, we get for a point P,

(46o)

inv sm [WV] = in
vi
sm [V^V],

m
Hi _sm[WV]

7?iw ~sm[W1V]'
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where m
Wl

is the scale for the useful power Hence we get the following
rule for determining the power scales of the diagram If two pence) s ate

measured by the perpendiculai distances of a point fi om the fion espomhng

straight lilies, tlte scales ate inversely proportional to the sines of flic aiigles,

which the tespective stiaigM lines make with the Imo far whidi the two

nwasuied pmc&s aie equal Since the perpendicular distance of a point
from a straight line always remains proportional to the length of the

W-tf

Plo 84 Flo 80

line drawn at a constant angle to the straight line, the following Eule
will at once be apparent (see Fig. 84). If hoo poweii, me inwminl

lij
the distatices of a pwnk from tlw corresponding stiaujkt lines in flic diicrtioii

paiallel to that line fan which both tlw measured pawns are equal, then {Jw
two powers mil have the samo scale.

Thus in Fig 84, for a point P,

If the loss does not occur in an impedance in series with tho load,
but, as is shewn in Fig. 85, in a constant admittance y = ff+jl> con-

nected in parallel with tho loud,
the useful power is

'/

Let the pressure vector P move
over the circle K in Fig KG,
which has tho equation

#

and set offtho current /= /along
the real axis , we can then write

FIQ 80. Roprasentation of Uaafnl Powoi with
Admittance In Parnllol.

where

2'
whUst V = is the equation of the semi-polar of tho pressure circle
with respect to the ongiu, or the loss line



USEFUL POWER IN THE IMPEDANCE IN A CIRCUIT 75

Further, v= W,

and W = is the equation of the abscissa axis.

We iiow proceed precisely as above, and put

From this we see that with a constant current / the equation

represents a straight line This is the y&mn line of the circuit

The power line must pass through the points of the circle K for

which the output W^ is zeio For these points gl = 0, and consequently
the whole conductance between the terminals equals g. Now all

pressure vectors for a circuit with a constant current /and conductance

g he on the circle drawn about M-, with radius I/'2g in Fig 86

Hence the power line W
x
= passes through the point of intersection

of this circle with the pressure circle K.

For a point A l
on the pressure circle K,

Wn A
l
N=MM

l

A^N. (47)

and A
:
are set off to the pressure scale 1 cm = n volts,

l A^N watts (47a)

and the output

If the points M,
then

25. Graphic Representation of Efficiency. Let a straight line

(Fig 87) from the point P pass through the point of intersection S
of the three straight lines

W = 0, W,=0 and V = 0,

then for all points on this

straight line SP the ratios

between the several powers
remain constant, which fol-

lows at once from the

graphic representation of

these ratios.

From this it is seen that

the efficiency of a circuit

can be shewn_as in Fig 87

The line EF is drawn

parallel to the line of

supplied power W = be-

tween the power line Wx
=

Fio 87

and the loss line V = This line EF
is then divided into 100 equal parts, as shewn
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For a point P on the current (or pressure) circle, the percentage

efficiency 17
is given by the point P, where PS produced cuts JEF

Proof. For every point P on the line SP, we have (Fig. 87)

V

Thus

the pressure acting on the two terminals of a circuit is altered,

without altering the circuit constants, the current alters in proportion
to the pressure, and the ratio between the powers in the several parts
remains unaltered.

Hence, the method deduced above for determining the relation

between two powers in a current-circle diagram holds even when the

pressure changes its value. In like manner the analogous method is

applicable for a pressure-circle diagram when the current vanes
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SEBIES CIRCUITS.

26 Circuit with two Impedances in Series. 27. Example I 28. Example II
29 Several Impedances in Series.

26 Circuit with two Impedances in Series As an example of two

impedances in series, we have the power transmission line represented
in Fig. 88. Since this case is one of the simplest and also of consider-

able practical importance, we shall investigate it fully

1

* "V

FIG 88

The pressure Pls
which is applied at the supply terminals, is consumed

by the resistance and reactance of the line and the load at the receiver

terminals Since the pressure required to overcome- the E M F of self-

induction of the transmission line leads the current by 90, whilst the

pressure consumed by the ohmic resistance of the line is in phase with

the current, it is obvious that, with constant supply piessure 1\, the

pressure P2 a* *ne receiver terminals depends to a large extent on the

phase displacement of the load The receiver pressure P2
can be

resolved into two components, the one Jr
2 ,

in phase with the current,

and the other Ja2 , leading the current by 90, where rz and x
2
are the

constants of the receiver or load circuit Conversely, the cunent /
can be resolved into two components, one of which A0a is in phase
with the receiver pressure and the other P2

6
2 lags 90 benmd it.

Assuming the current / to be given, we can find the receiver

pressure P
2
from its components JTr

2
and Ix

z , similarly we can find

the pressure drop Iz^ in the line from its components /7 1} J^ P
:

is

the geometrical sum of these two pressures (see Fig 89) Fig 90

follows at once from Fig 60
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Since rj and a^ are constant, the pressure In, will be constant so long
as the current remains unchanged Let &

3
DO kept constant in the

receiver circuit and g2 varied, then extremity P of the vector P
2
will

move over the semi-circle on AB = r-. If gz is maintained constant

_
and i

3 varied, the locus of P is the circle described on AC=
9<i

The assumption of constant current / is of much less practical
interest than the case of constant receiver pressure Pz

or constant

supply pressure P^ ,
which we shall now discuss.

H\ Ja>, WaftleuErasure

Fins 80 and 00 Pressnro Diagrams of Two Oiroulta In Berles.

Since all the vectors in Fig 90 are directly proportional to /, we
can

sup_pose
the diagrams to be drawn for the case /= 1

,
then the

vector UP will represent the total impedance s in the circuit

From Fig 89 it is seen that
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or, by transformation,

P =- l P a. (4:8)2

where a =

The current is then

j_ Pv _ P Jy*~ 'M
and the power at the receiver terminals,

/iT
2
=P

2
x watt component of current

If the susceptance 5
2
and the supply pressure P

1
are constant, the

power Wz will have a maximum value The value of g*, for which
the power Wz in the receiver circuit is a maximum, is found by
differentiation

, that is,

or, since the reciprocal of Wz
will then be a minimum, we can put

( M =A/(1+7 i^ + a;
i
&
2)

2 + (^2-'*A)2
\ ==0

dft\aW ^2^- ^3 J

This occurs when gz
=

'^ffl+(
b
i + b

z)'

2
-

(
49 )

p 1

In this case =2= a= , ^,p
i ^aW+^i)

and the maximum power transmitted is

pa
(50)

Since, in general, the power transmitted to the receiver circuit can

be written
3̂
= I*

2 watts,

and the total supplied power

the efficiency 17 is given by 7
? % = 100-

2-
r % ,

or, since ^% = 100- %,

7*

it is obvious that the efficiency will be a maximum when -l is a

minimum. TZ
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The ratio
i

a 9*

has its mimmum value (with constant auseeptance /;) when

i.e when 9%
=\

Hence the maximum effia&ney is

100 100
(51)

1+, ^1 1+2' 1&2

'ft

27. Example I. A load, having constant ausceptance Z>2
and

conductance gz variable with the load (eg asynchronous motors), is

fed over a long transmission line, which has both ohmie resistance

9 ohms

Fio 9L

and self-induction. In order to better illustrate the effect of these

constants on the receiver pressure P?) they have been chosen larger
than would be the case in an efficient installation

We are given (see Fig 91) :

Pj = 2000 volts ;
r
x
= 2 ohms

,

2^
= 50 ohms, J

2
= 0'05mho.

Determine first how the receiver (or load) pressure ?2
and the current I

depend on the load, and secondly, find the efficiency rj
and the power-

factor cos <j of the system.
A simple solution of the problem can be obtained by the graphical

method of inversion and rotation of the co-ordinate system, whilst at

the same time we get a clear insight into the working of the system
In Fig 92 the circle 7f

a
is the image of the impedance of the system

for the case when gz is varied The impedance scale is 1 cm = 5 ohms

Thus OA
l=^=~ = \ 076 cm,

1111^1"Bl
=
5r ==

50~05
= 4cm<

i> i/i)
ki \j \}<j

The current curve for a constant pressure ?., at the supply terminals is,

as already explained, the inverse curve K of the image K-^ of the

curve representing the total impedance between the supply terminals
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The constant of inversion must now be chosen so that tlio current curve

is drawn to a suitable scale Let 1 cm = 50 amps ,
then for two

corresponding points P
l

and P, which be on the impediuieo mid

current curves respectively,

--
"50 60 a

=
*'

0^ .OP = 8 = constant of inversion

In this way the current curve is obtained as circle 1C with centre

M Consider the points A and B which lie on this circle The

Pio 02 Current Diagram of Circuit In Fig

vector OA represents the current when gz
= GO or ra

=
0, that is,

the current when the receiver terminals arc short-circuited (i c A is

the short-circuit point). The current represented by OA is theioforo

/.=-1 =.

The vector OB represents the current when <72
= 0, or 1

2
- GO

,
th.at is,

when the load is purely inductive and possesses" only the"suscepfcauco l>
2

(i e B is the no-load point) The no-load current is

_
For any load resistance

2 ,
the vector W gives the cuirent / both

in magnitude and phase displacement ^
A c.
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The pressure P2
at the receiver terminals is most simply represented

by the method given in Sectioii 21, in which we assume a new co-

ordinate system with origin at A and real axis passmgjjhrough
We

then choose the pressure scale so that the distance AO represents the

supply pressure Px (see Fig 93)

Fia 68

Thus AO- I =.^1,^"50^ 50 s/
whence the pressure scale is

1 cm = 50.?!
= 50 . 5 38 = 269 volts.

For any load point P, the vector AP gives the receiver pressure Pt

in the new co-ordinate system, whilst the drop of pressure 7^ in the

line is represented "by the vector PO The pressure drop is given by
the arithmetical difference of the primary and secondary pressures,

ie. at no-load by

on load by AO-AP = PO.
The increase of pressure-drop from no-load to load is AB-AP= Pr

E'.

The wattless component of the load current with respect to the

receiver pressure is IPb-Iz
Hence the watt component of the load current is

^IK /~ /I7
=/~j^S2! (I* ~ 1

At no-load, -^=0 and /=/ ,
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whence = 7 -ft^ (IK
- 7

)

Subtracting this last equation from the previous one, we get

whilst the wattless component IWL of the load current vanes in mag-
nitude and direction proportionally to the vector PA, the watt

component Iw thus vanes proportionally to the vector BP.
In the previous chapter, the loss line of the diagram was shewn

to be given by the semi-polar of the circle JT, in respect to the ongin,
whilst the power line passes through the short-circuit point A and
the no-load point B. Accordingly, the efficiency 17 will be represented
as shewn in Fig 92

The point on the circle K
}
for which the transmitted power is a

maximum, is given by that point on the circumference of K which is

at the maximum distance from the power line At this point the

vectors (IK -I) and (/~/ )
are equal iu magnitude, hence we must

2

*
+V

InL b2 value of ;62 t

The condition for maximum power is therefore

This is the same condition as that previously deduced (eq. 49,

p 79) in another manner
From the diagram, we can now measure off the several magnitudes

P
3 , /, 77

and co8<^, and plot the same along rectangular co-ordinates

as functions of the useful power /F
2

This is clone in Fig 94

In the above example, we have

ffi^-rv and b
i
= vv>

hence foi maximum power

gz
=

-Jgl + (Jx + &
2)2
= 232 mho,

p?
whence ^ =

,n a
,

. \
= ^29A rf

-'(ffsfr T" 7 !/

The maximum efficiency occurs, as shewn above, when

<72
= &2

= 005 mho,

-that *.%- 1+̂ A-^-8S%
As seen from the diagram and curves, for every value of the load

Wi there are two values of P
2 , f\

and cos^. The curves are drawn
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for positive values of the conductance </2 ,
i e for points on

circle which lie above the power line For this part of the c

the transmitted power is positive Points of the current dia

dL -3

4 n Ann t nn nnnn
Tu^ TODTwu fcwuu i

' T

,*j
i / --' c- ^ -- A
/ - /'^.-'

"
. "11 S )

s . -/- ,
- ^' /

^- " / ,-' ,--' s
\ S ^-'' .I-*""' .'

i/ 7--'

'

^-''"t.

l ,^' _ - - '
*

i i i i i

n n n ft [rff ',

'"
I Load

u w u w"
50 100 150 200 250KW

Fio 94 Load Ourvea for Circuit In Pig fll

which lie below the power line correspond to negative values of g3

this region the supplied power is negative, ie the machines in

receiver station act as generators The curves for negative va

of g2 are not shewn m Fig 94, since they possess but little inte

for us here.

28. Example II. We now consider a power transmission scht

in which the line has resistance and inductance, while the power-fa
cos ^g of the receiver circuit remains constant at all loads For
a system, the formulae deduced on p. 79 can be applied althoug]
this case the variable is not gz

but y2
We can write, therefore,

P2
= api==

P
i

*/( 1 + Tj^/g
COS

2 + %$% su:l $2)
2

"*" (^iVz COS <^2
~ r

il/2
Slu 4

and since I=P$2 ,

P! =V{P2 + /fa cos
2 + #! sm <

2 ) }
2 + ^(^ cos 2

-
9^ sm

From this we get

P
z
= VP? - /^KJ cos 2

- r
x
sm

a)
2 -

/(? :
cos <

2 + 12^
sin

2)
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It follows from that equation that the curve of the receiver terminal

pressure Pz as function of the current is part of an ellipse
The power in the receiver circuit is

/cos <
2 {vP?

-
72(3^ cos <

2
- r

x sm <f>2 )
2 -

I(i l
cos $2

COS <

2 + "l + 2
Sln 02)

2

^Sz COS $2

j
cos $2 + o^ sin <

2 )

The maximum power transmitted occurs when -T 2 = 0.
dz

z
This is the case when

+ S + 2*
2 (
r
i
cos <k + ^i Sln 0a)

~ *
s {

2*2 + 2 ( i
coa 02 + i

sin ^>2)}
=

,

thus when
^5,
=
^, (52)

that is, whence the impedance of the receiver circuit equals the

impedance of the transmission line.

Substituting this value for 2 ,
we get the following expression for

the maximum useful power

2umx
~

2 (^
- 7

x
cos

</)3 + a^ sin ^>2)'

Assume the same line constants as in previous example

P! = 2000 volts
, rj

= 2 ohms ; ^ = 5 ohms
For the sake of comparison, we shall develop the diagram for the

following three cases

cos <t>z
= 0'9, current lagging

cos <#4
=

1, current in phase.

cos <a' = 09, current leading

In Fig 95 UAi is the image of the impedance 2
T ,

drawn to the scale

1 cm = 2 ohms
Draw the thiee stiaight lines A", K'( and K'" through the point A-^

at angles 0^, <a and </>2 respectively to the vertical These straight
lines are the images of the sum of the impedances 24 + s

2 for the three
cases under consideration By the inversion of the impedance curves

K'i, K" and K'" we get the three circles K', K" and K" 1

,
which are the

current curves of the system The current scale is chosen so that
1 cm = 75 amps If P

t
and P are two corresponding points on the

impedance curve and curient curve respectively, then

OP= I= 20Q0 ^ 200

75 75 g 75 2 0?
a

'

consequently the constant of inversion is OP^ OP= 13 3.
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The circles dan be still more simply determined if we remember that

they must all pass through one common short-oircmt point A and

through the origin of the co-ordinate axes Consequently the

centres M', M" and M'" of the circles must all Iie_on
the line which

bisects OA at right angles Further, the hues OM', OM" and OM"'

make angles $,, & and $[* respectively with the abscissa axis For

FIG 06.

the case &= (non-inductive load), the centre M' falls on the abscissa

axis The receiver pressure Pz is

whilst the short-circuit current IK is given by the vector OA For
a point P on the current curve, the current (IK

-
/) is represented by

the vector PA When we choose the pressure scale so that the length
AO represents the supply pressure, P1

=2000 volts, then the distance

AP from the short-circuit point A to the respective load point P on
the current curve gives the receiver pressure P,. It is seen that the

drop of pressure is greatest for inductive loads. For non-inductive

loads the pressure drop is not so large, whilst for capacity loads there

is a pressure rise at small loads, provided </>2 >^>1
.

At no-load, the power-factor cos t^1
of the system approaches the

value cos< 2 ,
for in this case the effect of the line is negligible. As

the load increases, the effect of the bne reactance begins to make itself

felt, and the power-factor cos
</>x

falls as the inductive or non-inductive
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load rises Ou the other hand, with capacity load, cos^ nses until

o-3

M<rir>
Ann onnn I 1 Tt '

, "tuU *tUU UUu . ____ I
- ---' ___ __-^2'

---- - ., I

** - J _- ~~ ~~ ~"" ~~ ""^~^ ~- _ - F "s"

"".....**

<*

,. ^**^

_n _n n ojft^-T Load

SO 100 150 2UO 250 3UO 350KW
Fia 06. Load Cuivos for Loading Power lector at Hecondiiiy Terminals.

it reaches unity, as the load increases, but falls again when the load is

further increased

Bt50"50"20e-WC

u "
50 100 150 200 250 K.W

PIG 87o. Load Cuives for Unity Powoi Factor at Secondary Terminals

All the circles have the same power line OA with different scales

The maximum power is obtained when the extremity of the current
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vectoi lies midway between and A on the current curve At this

point the vector of the pressure drop in the line has the same length
as the vector of the pressure in the receiver circuit } thus,

I^-jfej, ie % = 2
2 ,

as shewn previously by another method
Each curient curve has its own loss line, which is the tangent to the

circle at the origin The efficiency for each kind of load is found in

the usual way (see Fig 95)
In Figs 96, 97, 976, the curves for P2 , I, TI and cos<

}
,
as taken

from the diagram, are plotted as functions of the load It is seen that

,

I n^-'" I Load
" " w u

50 1UO 150 200KW

Fio 97& Load Ourvoa for Lagiybig Power Pactoi at Secondary Terminals.

the maximum power is greatest for the capacity load and least for the

inductive Here also, as in Example I., for every load there are two

corresponding values of each of the respective magnitudes. Of
these two values, that which lies on the full-line curve is the usual

one it corresponds to the point on the current curve which lies

between the origin and the point of maximum power
Points on the current curve lying below the power line correspond

to the case when the receiver ciicmt works as generator This part of

the diagram has not been plotted in the rectangular co-ordinates

29. Several Impedances in Series If several impedances, with the

constants r
lt a^, ?

3 ,
a:
? ,

?
3 ,

a;
3 , and so on, are connected in series,

the resistance of each impedance will require an E M F^ component in

phase with the current, and the reactance an E.M r. component which
leads the current vector by 90
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To dnve the current / through the circuit, a terminal pressure P
IB required P ./(, ,

-
;jBl) + /(, , -^) + /(,

-

where i
(
=

and a
t
=

The total impedance of a cii cmt consisting of several vmpedaiices in set ws is

equal to the geomehic sum of these impedances, or, expressed symboh-

+ . (54)

Fig 98 shews the graphical addition of the E M.F 's necessary to drive

the current / through the several impedances Since the current is the

same throughout the whole circuit,

the same result would have been 1
1

obtained by summing up the imped-
ances of the circuit.

Assuming that each part of the

cncuit is uniform, i e ? and x are

uniformly distributed over the re-

spective portions of the circuit, and
also that one terminal of the circuit

has zero potential, then the polygon

OA^AyA^ and so on, illustrates

the distribution of potential in the

circuit The potential at any point
in the circuit is given by the dis-

tance of the corresponding point P
in the polygon from the origin, and

the phase displacement of this _
potential from the current / equals the angle 4> which the vector OP
makes with the ordinate axis The difference of potential between

two points P! and P2
in the circuit equals the distance between the

two corresponding points on the polygon The straight line P^
gives this potential difference both in magnitude and direction.

Fio 98



CHAPTER V.

PARALLEL CIRCUITS.
t

30 Circuit with Admittances in Parallel. 31 Current Resonance
volant Impedance of Two Parallel Impedances

32 Eq

30. Circuit with Admittances in Parallel. We shall now cc

sider the case in which a pressure p = J2P sin <ot acts at the termim
A and of a compound circuit having two parallel branch

(Fig 99). We denote t

currents in thesetwo branch

by / and /
2 . These can

resolved, as shewn abo\

into the components Pgot
I

and Pg2 ,
Pb

2 By setting (

these components, as m Fi

3ot> ^ ^9A 100, we get the currents

and I
z ,

and hence the

geometric sum, the resultai

current I
I

. Let P, g an

\ be constant
,
we can the

FIO on circuit -with TWO Admittances m Pamiioi represent what takes pla<
in the circuit when

grz
or

is varied by the diagram m Fig. 101 (cp Fig. 54} If au is kept coi

stant, whilst ? is varied, the locus of I
:
will be the semi-circle O^Bs

Conversely, when ?
2

is con-

stant and 33 varied, the

current vector will move over
circle 0-JiC The semi-circle

lying
to the right of Ofi Pg,

applies to the case when x
2

is a capacity-reactance.
If several admittances

having the constants glt
bl3

ffz> &&} 9$> b% } and so on, WaKlut Current

are connected in parallel, the

pressure P applied at the ter- , ._, , . ,,r
-, n j Fia 100 Qeometrlo Addition of

minals will send a current Parallel circuits
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through each admittance, which can be resolved into a watt com-

ponent Pg in phase with the pressure and a wattless component Pb

Wattless Current

Fiu 101 Current Diagram foi Two Parallel OIL cults

lagging 90 behind the pressure Hence the cunent flowing in the whole

circuit is

where gt
= gl + gz + //, + . .

=

whence it follows, that the total admittance yt of a aicwit mth seven al

admittances connected ^n parallel equals the geometric sum of these admit-

tances
; or, expressed symbolically,

31. Zero Susceptance. If two circuits are connected in parallel,

one of which contains capacity and the other inductance, the current

in the former will lead and in the latter

lag in respect oi the applied pressure

Consequently the wattless component
of the resultant current will be less

than the wattless components of the

currents in the branches If the watt-

less currents in the two branches are
__

,

equal but Of opposite Sign, the resul-
FlQ 102 -circuit for Current Resonance

tant current will be in phase with the

pressure, and the total susceptance will therefore be zero In such a

case, lesonance is said to prevail 111 the circuit, and, in distinction to

pressure resonance which we have seen (p 46) takes place in series

circuits resonance in parallel circuits is called current i esonance *

We can write the reactance of the two circuits in Pig 102 thus.

1

*As explained for series circuits, this condition can only truly
be termed

" Resonance
" when the resistance of the oscillatory circuit is negligible
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The condition necessary to give equal and opposite wattless currents in

the two circuits is z. ?,

or

If we draw OA e =OA, = be = b,m Fig 103, the above condition for

resonance is fulfilled as soon as the extremity Ba of vector ya
falls on

the vertical through A
, and the extremity , of vector y, on the

vertical through A,, for then the resultant admittance y=OD
coincides with the ordfuate axis The circles 011 OA'e and OA', are the

loci of the images of the impedances z, and z,

Via 108 Diagram foi Zero Busoeptonea.

When r
i
e
= 'i

i
= Q

t we have the same condition for zero susceptance in
the parallel circuits as for zero impedance in the series circuit (see
Sect 16) We then get

^L = J

Vo-i '

(55)

When i
c
= / =

/j ^ 0, the total susceptauce becomes zero in two casos

CASE 1. When .=a;c=a1 ,

r 1

(56)

In this case the resultant conductance of the two branches is

ff
=

ff, + ffc,

or, since
ff.~g.-9v

ff-tyi

equals double the conductance in one branch.



CASE 2. When

CURRENT RESONANCE

/ \ J-'

93

(
56a)

This case is shewn in Fig 104. The resultant conductance of the two

paths is here

Now, since

we get also

7
? + *!_ 7

1 1_1~hl ~ ~'
1 '

Pin 104 Diagram for Zero Busaeptanco Independent of Frequency

The resultant resistance between the terminals is therefore

1

equal to the resistance in one branch

This latter example of a circuit with zero susceptance is of special
interest as the effect is independent of the frequency

32. Equivalent Impedance of Two Parallel Impedances. If the

two impedances x^ and z2 are connected in parallel, and we write

symbolically .

^
-t

%\ ^ ""~
ffn == j

\
yi

2
y2

then the impedance of the parallel circuit is

where

or

1 1--- 1
-,

(57)
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This expression is similar to that for the resultant resistance of two

ohmic resistances joined lu parallel
The impedance a can be determined graphically in a simple manner.

In Fig. 105, let
/T
-
rOA=z

1
and OB =

st^

Then 02 r-s
1 + s

3
= '.

Make A ODB similar to A OAC

~
00

~
'

Hence the required impedance z is given by the vector OD.

Fro 105 Graphical Construction of Equivalent Impedance fur Two Panillel Impodimoew

This can also be proved as follows If we write equation (57) in

the form
^ __% = i = **~* = *!<-*'~ ~~ ~

'

then, for the absolute values, we have

and for the angles

or

From this we see that the construction of Fig. 105 is correct

The point D can_also be found from the following construction

(Fig 106) Draw OM
Z
and OM^ perpendicular to the impedances

z2 and
isj.

Determine the points A' and
',
which are respectively

the_ images_of points A and E with respect to these perpendiculars
and OM

l
Then we have

A OAB' similar to A OA'B similar to A BCO,

whence LOABr

=L.ECO=LJDAO,

The desired point D therefore lies on the two lines Aff and
i e. D is the point where these two lines cut
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For the case when the impedance 3% is altered in amount but not

in phase i e its dn ectiou remains unchanged the point B moves
on a straight line through and B Thus LOBG=LODA remains

FIG 100 Impediuioe Diagram for Two Parallel Impedances.

constant The point D then moves over a circle described about M%
as centre and passing through the points 0, A and A'. Conversely,
if ,?o is constant and % alters in value but not in direction, the points B
ancf B' remain fixed, whilst the point D moves over the circle described

about M! which passes through 0, B and B'.



CHAPTER VI

THE GKBNERAL ELECTRIC CIRCUIT.

33 Impedance in Series with Two Parallel Circuits 34. Pressure Regulation
in a Power Transmission Scheme. 36 Compounding of a Power Trans-

mission Scheme 36. Losses and Efficiency in a Compounded Transmission

Scheme.

33. Impedance in Series with. Two Parallel Circuits. Having now
dealt with compound circuits consisting of a number of impedances
connected respectively in series and in parallel we may proceed to the

more complex case, in which one impedance is in series with two

others connected in parallel.
Almost all the circuits met with in practice may be reduced to such

a circuit, provided the constants of the circuit are in fact cmistaiit

The case is so generally applicable that it may be termed the Geneial

Elediic Circuit

Such a case is met with, for example, when power is transmitted

over an inductive line to a receiver station, where two admittances are

joined in parallel Fig 107 shows
a, circuit of this kind, in which

i .1 i jwe jlaye ^ jme lrape(Jance ?i>

in series with two parallel

P % e *p
branches We may take the case,

^>f> > m which the admittance ya of

the first branch and also the re-
' r ' actance x% of the second branch

FIO lor
-circui^wia^im^d^in

Series with remam constant, whilst the load

resistance r
2
is varied at will

The graphical process by which the current curve is obtained for this

circuit, with constant supply pressure P-, , may be summarised as follows

The combined admittance curve of the two parallel branches is first

obtained (as in Fig 101, p. 91) by graphical addition of the constant

admittance ya and the variable admittance corresponding to a^ and i
z

The total impedance of the circuit is now obtained by adding the

impedance corresponding to a^ to the combined impedance of the

two parallel branches, obtained by inversion of the curve of their

combined admittance
The third and final step is the inversion of the total impedance

curve in order to obtain the admittance of the circuit, which multi-

plied by the constant pressure P
1 gives the current curve. This final

inversion would naturally be unnecessary, if it were required to
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determine the voltage required to maintain a constant current in

the circuit .

This graphical process is analogous to the algebraic calculation witn

complex quantities, in which we get the combined admittance of the

paiallel circuits 1

and the total impedance of the complete circuit

1 1

y'

JJ
Hence the total current 1=-^-

The curieut diagram (Fig 108) has been drawn for the following

values
KI
= 2 -36 ohms ,

s2
= r2 -;4 ohms,

yn = 00033+;002 mho,

^ = 1000 volts

Pio 108 Construction of Current Diagram for Circuit In Hff 107

?> = 4 cm
Take 1 cm = 05 mho, and mark off P' at a distance

to,
the left of 0' and ^ = 0066 cm above it The vector 0'P'

represents the admittance yn
Draw P[F'f = 75^ ^

= 5 cm Parftllel to

the abscissa axis, and on it as diameter describe the circle 1C to repre-

sent the admittance ya + - By the inversion of the circle K1

with
* Za

AC.
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respect to 0', we get the impedance

The impedance scale is 1 cm = 8 ohms, hence the constant of inversion is

I=oonr 2B

The inverse circle of K' is K"

Starting again from point 0' and setting off - l = 0625 cm to tho

right and ^
= 25 em downwards, we get the point As 00' repre-

sents the line impedance #,, the circle K", in reapect to point 0, then

represents the impedance between the supply terminals If wo now

wish to have the admittance between the supply terminals to tho

scale 1 cm = 025 mho, we must take the inverse of circle K" with

respect to with the constant of inversion

I=
8 0025

= 5 '

The inverse of K" is the circle K Since the supply pressure Pl
= 1000

volts, the circle K represents the current 7j to the scale 1 cm = 025

x 1000 = 25 amps
The point P corresponds to the load ?

2
=GO

>
an(^ la called the

no-load point of the system. The tw-locul cwireiit J
10

is given by tho

vector 01J . The point PK is the sliort-cwcuii point, and corresponds^
the load ?

2
= The short-cm cuit cwirent /]z is given by the vector UPK

If Oj is the inverse point of the origin 0' to the ratio of inversion 5,

then 00^ corresponds to the current l O
l
is thus the short-circuit

%
point for the case when the receiver terminals are short-circuited Let

P be any point on the circle K, then tho vector P0
l represents a current

_ _ T
^

l
~

l̂%l -
z
1

" l
~

^ ~^
Hence if we construct a new co-ordinate system with tho origin 0^

and with the real axis passing through 0, and further choose tho

pressure scale so that
1
=P

1 volts, then in this new system

the vector 0-^P represents the receiver pressure P
z (see Chap III

Sect 21) In this system of co-ordinates, therefore, the triangle 0-fO
is the pressure triangle of the installation The pressure drop in tho

transmission line equals the algebraic difference 0-^0
-
O^P At no-

load, the drop of pressure is 0^0 - T
P From no-load to load, therefore,

the pressure falls 0^ -
0-^P.
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The current J
tt
in the constant admittance

pressure P. Whence
P P

I --*! =^J-L a p -"-flo "D 0-

where /
no
= / is the no-load current and P^ is the no-load receiver

pressure From the diagram, we get

* O V/T-t T y-T^rS

Hence, in the original current scale,

T _ v+
fl P

~<9P x

^l-M)

To complete the diagram, we draw in the loss and power lines. For
the loss in the impedance g

l ,
we put

Fi-Tk-^V!,
where V

t
= is the shortened form of the equation of the loss line (see

Section 23) This line V
1
= is the semi-polar of the origin 0, with

respect to the circle K (Fig 108), and is constructed as previously shewn.

The loss in the parallel connected admittance ya is

P>*k.
'

_
Since P

2 can be here represented "by the vector O^P, the line for

the loss Vn is the semi-polar of the point O
x
in respect to the circle K.

Writing Vn
= for the equation of this straight line, we get

Fa
= Plga = S,yn ,

where Ba is a constant, and the co-ordinates of the point P are

inserted in the linear expression Vn Similarly, writing the equation of

the abscissa axis W
1
=

0, the equation of the supplied power can be

written in the form j^P^cos^-^Wj,
where A

l
is a constant In this particular case, A-^ is simply equal

to the supply pressure and Wj is the watt current, or the ordinate

of the point P.

The power received by branch 2 of the parallel circuits is

Since, on the one hand,

-Bfc.Vta-

Vj,,
= is the equation of a straight line passing through the point of

intersection of V
x
= and V = Thus V

1<1
= is the resultant loss

hue of the current diagram
Since, however, on the other hand,

AjNi=A^-B, nVla ,

then W2
= is the equation of the useful power line of the circuit.
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This line W2=0 passes through the point where the resultant loss

line Vln
= cuts the abscissa axis W

}
= Again, since the powei

line W = passes through the points for which the power in the load

r
2

is zero, it is obvious that it passes through the no-load point,1
and

the short-circuit point Ps ,
and can thus be drawn at once lo imd tno

resultant loss line V10
= 0, on the one hand, we have the point of inter-

section of the two loss lines V
1
= and V = 0, and, on the other hand

the point of intersection of the power line and the abscissa axis, and

from this follows the construction for the determination of the efficiency

as shewn in Fig 109 This figure is drawn for the same constants and

to the same scale as Fig 108

FIG 100 Complete Current Diagram

Since the straight lines Vj
=

0, Vn
= and V^= must all cut at a

point, the direction of the straight line V10
= can be found from

=sas

since the ratio of the intercepts of the three lines on any horizontal

straight line is the same as that of the intercepts on the abscissa axis.

34 Pressure Regulation in a Power Transmission Scheme Until
now we have always assumed that the pressure at the supply terminals
was maintained constant, and have determined the pressure at the
receiver terminals for various loads In practice, it is often required
to maintain a constant receiver pressure. This can be accomplished
by suitable regulation of the supply pressure If, by way of example,
it is required to maintain a constant receiver pressure Pz at the end of
a transmission line of impedance a

l9 then the pressure" at the supply
terminals must be n _p , r

We may take, by way of example, the case in which the load current

/!
= P$= Pz (g +jb) is given by the curve K in Fig 110
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This curve K to another scale also represents the admittance curve

of the load due to the constant receiver pressure P2
which is set off

along the ordinate axis.

Since

(P
\

2

j
is the short-circuit current in the line under pressure P2

If

*
we displace the origin to O

l by making

OA =pA and AO^P^
*i "i

-p _
then the current + Il is given by the vector OiP Hence, if we

Pin 110 Pressure Regulation of a Transmission Line

choose the pressure scale so that the line 0^0 equals the constant

receiver pressure P2 ,
the line O^P will give the supply pressure Pl

corresponding to the current vector /j
= OP The rise of pressure is

thus RP
The supply pressure Pl

leads the receiver pressure P2 by the angle

6, whilst the current /
t lags behind the receiver pressure P

2 by the

angle <
2 Hence the phase displacement at the supply terminals is

<

x
= <

2 H-0. If we draw a circle to pass through and 1S
and with

its centre on the abscissa axis, then

LP
I2
OC=0 and LPOG=(^+8) = ^1

We will now determine graphically the loss and efficiency of the

transmission hue for the usual case, in which the current curve is re-

presented by the circle JTaa in Fig 111, with the receiver pressure P 2
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The loss m the hue is Jrl =Pr1)

and is represented as before by the loss line V
1
=

0, the semi-polar of

the circle K with respect to the origin
The power given to the receiver circuit is

where u and v are the co-ordinates of a point P on the circle K The

power line W2
= is therefore the abscissa-axis m this case

The supplied power is

= P
z
v + 7%

j

Pia 111

Since the equation of the circle is

or

we get for the supplied power

where W
a
= is the shortened equation of the power hue

If now a is the angle this line makes with the abscissa axis, we have

tana: 2^1
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Since the line W
1
= must further pass through the intersection

of the loss line with the abscissa axis, it can at once be constructed

(Fig. Ill) The power line is perpendicular to the line MrM. A

circle descnbed about Mr as centre with radius ^ must pass through
i

the short-circuit point 0, ,
and the power lino W:

= and this new

circle cut the circle K in the same points.
To obtain the efficiency of the system at any point P on the current

curve, we now proceed as follows

Draw a line 0-100 parallel to the power hue Wx
= between the

loss line and the power hue W
a
=

, join PS and produce to cut this

hne Marking off the hue 0-100 into ten parts to represent 10%,
20 %, up to 100 % efficiency, the efficiency at the point P may bo read

off directly at the point where this efficiency hne is cut by PS produced

35. Compounding of a Power Transmission Scheme. From Fig 110

it is seen that the pressure-nse Pl
- P2 only depends on the magnitude

and direction of the current vector 71} and that PI}
and consequently

Fia 119 Compounding of a Transmission Line

P
l
-

7'g,
will be constant so long as the extremity P of the curiont

vector /! moves over a circle descnbed about O
l
as centre. But tho

current curve K of the load is not a circle as a rule. It is possiblu,

however, to connect a machine to the receiver terminals i e. in parallel
with the load whose current 7 can be so regulated that the lino

current vector /
t
= 2

Z + / describes a circle whose centre is at
1

. A
transmission scheme in which this is the case is said to be compounded
The current / can be a pure wattless current Such a machine joined
to the receiver terminals for the purpose of giving or taking a wattless

current is called a phase i egulatoi

In Fig 112, curve K
2 represents the load (current) diagram for the

constant receiver pressure P2
. The current is represented by

/a
= /a (coa & +j sm <k)=Pt(
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1 is the short-circuit point for the lino of impedaiice ^

0Z--P.5--PA, ^i-P.Wtf.^ a?

Let K^ be the circle about
:
whose radiua equals the constant supply

pressure Pls then /
x

is the line current, and consequently 7 is the

lagging wattless current given by the phase regulator
The line cunent 7, possesses the same watt current Iw as the load

current /2 ,
and in addition it has a leading wattless component I'n ,

which can be determined from Fig 112 as follows

The lagging wattless current supplied by the phase regulator will be,
Before,

/r
,

. . (58,

Dividing all through by P8 and putting, aa before, =
a, we get"

-fa + g*)*, . (58)
where & is the acceptance of the phase regulator. We write -
because /. is not the lagging wattless current consumed by. but
produced by the phase regulator Hence, so long as the right-handside of the equation is positive, the phase regulator acts as a capacityine wattless current pioduced by the phase regulator consists of
two parts The one part IWL is the wattless current of the load and
is given by the current curve ^ as a function of the watt current of
the load. The other part I'm is the leading wattless current which is

necessary for the line The latter is likewise given as a function of
the watt current by the circle JT

lt and depends therefore on the value

waf r
PP7 PT^f/1

IfV P
V
J m11 be zero for a ce^n

watt current and will lag at smau loa^s A part of the load wattless
current can then be supplied by the line current, and the current of

8

IT ^ ^ b
i

6 correaP dingly smaller The wattless

, ^v
86

J
eSulator ls ^ays given by the horizontal*

cut n %
and

* If

if"
at the P 1Dt of Int r^ction. Passing beyond thism8 neSatl7 '

le the c iTent ^HM 0,/of the phase-the some

a given transmission line an

=--

pressures P and P

(59)
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The same condition foi maximum power is given by equation (58a),
since for larger values of g2

the root becomes imaginary In this case,
the wattless current of the phase regulator is

The maximum power is

. (60)

If the supply pressure P1
is maintained constant, whilst the receiver

piessure P2 is varied, we get different circles X
1 ,

all of which have

the same radius, and whose centres he on the straight line 00l
at

distances from proportional to P
2

The highest points B of these circles, and accordingly the watt

currents at maximum load, are represented by a parallel to 00r
Thus, whilst P

z increases as a straight line function, the watt
current 2W decreases as a straight line function Hence there is a

p
certain ratio a = -/r ^or which the maximum power, which can be trans-

M
mitted over a line of given constants

?j
and C

15
attains its highest

value. This value of a can be found from the condition

01

For this maximum, therefore,

ff2
=^~

The maximum power itself is

and represents the maximum power which can be transmitted over the

given line at the given supply pressure Pl

It is also of interest to deteimme the phase displacement at the

supply terminals of a compounded power transmission scheme Fig. 113

represents the same diagram as Fig 112, except that the current

curve 7(T
2 of the load and the load curient /

2
have been omitted The

extremity C of the vector of the line current 1^ moves over the circle

/sTj
described about O

l
This circle is thus the current diagram of the

line current. The receiver pressure P2 coincides with the ordinate axis

The angle P2
00 is thus the angle of lead of the line current with

respect to the receiver piessure On the other hand, if we consider

0^0 as the leal axis of a new system of coordinates in respect to the

ongm QI, then, as shewn, P
2

is repiesented by the vector 0^0 and

P
l by 0^0 The angle by which the supply pressure P

1
leads the

receiver pressure P2
is thus L 00

1
C= Q If we draw a circle K to pass

through and
1
with its centre on the abscissa axis, it will then be

seen that = Lp^D = L&,
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and the angle COD gives the phase displacement ^ at the supply

terminals.

The radius of the circle K is, as already shewn above, i Since
x
i

Oj6'= P,^ ,
the phase displacement at the supply terminals cannot become

zero unless _p p _ x, ,

^i<-^ or = a
x
l

Fia. 118 Phase Displacement between Currant and Pressure ut Primary Tornilnaln,

When the equality sign holds, the phase displacement only disappears
for the one load where

ff->
=

g^.
If the inequality sign holds, the phase

displacement in the supply circuit disappears at two loads, which are

faphically

determined by the points of intersection of the two circles

1
and K Between these two load points the current in the supply

station leads otherwise it lags
If it is required to am -compound the transmission scheme, then

Pj, ?! and x, are constants, whilst the receiver pressure P2 increases

with the load

If we put, for example, P
ii
=P

2iQ + Iwrw ,

where P^ is the receiver pressure at no-load and i-
iy is a resistance,

in this case, the wattless current 7 is obtained by an equation similar

to equation (58).

4)
= I^L + (Ao + Irf IP) *i

- /^M - f/Wl + (
r
wffi + l)/nT

a
(63)

Hence in an over-compounded system, when

we get maximum power

Or ^uim: = PZ I

=
(Pa, + I]vi .)

IJF

(64)
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36. Losses and Efficiency in a Compounded Transmission Scheme.

Since the diagram of the line current in a compounded transmission

scheme is a circle (see above), we can represent the powers and losses

by straight lines, as shewn in Sections 23 to 25. Since, however, in

that case we started with the diagram for the supply circuit, wo
obtained the abscissa axis for the line of supplied power. In this

case, on the contrary, we start from the diagram for the receiver

circuit, and consequently get the abscissa axis as the line of the power
given out.

The loss in the line is P\
=

I^>\ ,

and is represented by a loss line which is the semi-polar of the origin
with

respect to the circle. Denoting the co-ordinates of the current
curve KI m Fig. 112 by (11, v), and taking abscissae to the right as

positive, we then get the equation of the circle K^

or M + V _ aP

The heating losses in the hue are therefore

where ^
and Vl=^_
This latter is the equation of the loss line The power given out is

Jr
a
=P&

and the power supplied,

The straight line W
1
= is thus the line for the supplied power

As seen from the form of its equation, this hue passes through the

point where the loss line V
:
= cuts the abscissa axis v = Q In

order to be able to draw this line W
:
=

0, we furthei determine the

tangent of the angle a which it makes with the ordmate axis This is

tana

As already shewn, the point 0^ is the point of intersection of two
P P

circles, one of which has the radius 2- and the other 2 These
2?

1 2a;*
two circles cut one another rectangularly in the origin and at
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the point Or In Eig. 114 the centres of the two circles are denoted

by Mr and Mx . As
see_n_from

this figure, the power line W^O is

perpendicular to the lineMrOv and is therefore parallel to the lineMxOr
The efficiency of the scheme can now be determined from the loss line

and the two power lines (see the construction in Fig. 114)
The efficiency of the line depends on the line constants ?

T
and a^

p
on the ratio a = -=2 and also on the watt current of the load, but is

VL

independent of the wattless current of the load. In practice, syn-
chronous machines are used as phase regulators

* As is well known,
such machines yield a leading or lagging wattless current according

Fio 114

as they are over- or under-excited In the former case they act as a

capacity, in the latter as self-induction In addition to the wattless

current, the phase-iegulator on no-load also requires a watt current

to cover its losses, which form an additional load in the system
The phase regulator can also be used for other purposes at the same

tune, e g. as a motor giving out mechanical work or as generator for

the production of a watt current

By means of the above diagrams, a whole series of problems on

compounding of transmission schemes can be solved. A comparison
of these diagrams with the load diagram of a synchronous motor with
constant excitation shows the great similarity between the two.t

*For details of the use of aynclironous machines as phase regulators, see
Arnold-la Cour, Wechselativmtechmk, vol. iv p 447

t Arnold-la Cour, Wechselatromtechnik, vol iv p 418
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MAGNETICALLY INTERLINKED ELECTRIC CIRCUITS.

37 Magnetic Interhnknge bet-ween IVo Circuits (The aotion of a Trans-

former) 38 Self-, Stray and Mutual Induction of Two Circuits.

39 Conversion of Energy in the General Transformer

37. Magnetic Interlinkage between Two Circuits. Until now
we have investigated only the phenomena which occur in a single
closed circuit Since, however, the

i: M F.'S in a circuit are generally due
to induction, as is the case, for example,
in all electromagnetic machines and

transformers, it is of the greatest im-

portance to study exactly the relation

between two electric circuits The

simplest of all electrical apparatus met
with in practice is the single-phase

transformer, which consists of two
electric circuits a primary and a

secondary magnetically linked to

one another. In Fig 115 the prin-

ciple of a transformer of this type, _
viz a iiumtle or shell transformer, is former

represented diagrammatically, whilst

Figs. 116a and b shew photographs of such transformers Both

primary and secondary, which are insulated from one another, are

wound on the core in the centre, whilst the two outer cores or

mantle serve as a return path for the flux The single-phase current

is supplied to the transformer on the primary side, and is withdrawn,

transformed, from the secondary side Fig. 1 16i is a view with part of

the stampings removed, to shew the windings more clearly.

Fig 117ft shews how the field is distributed m such a transformer.

I is the primary winding and II the secondary As a rule, the

number of turns w^ on the primary is not the same as the number w
2

on the secondary, although these may be equal The chief part of the
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flux passes through the laminated iron core, and thus embraces the

total turns of each winding Another part of the flux is mteilinked

with some of the primary turns or with some of the secondary, but

not with both, whilst still another part may be interlinked with

many turns of the one winding, but only with few of the other

The magnetic force in the air gap for the section aa is represented

by the curve G in Fig 1176

In developing the theory of the transformer, it is best to split up the

field into tubes of force Considering a single tube of force inter-

Fra 116o. FIG. 1106

linked with w^ primary turns and w^ secondary turns, then the flux
in this tube is proportional to W^ +Wkj where Zj and % denote the
currents in the primary and secondary windings respectively. If the
number of turns on primary and secondary is the same, the currents

!
and *

2 will be very nearly equal to one another, but will flow in

opposite directions

Now, since

or =(ij

the flux can be split up into two parts, one of which is proportional to
the magnetising current (^ + *,) and the other either to the primary
01 the secondary current. The first part of this flux is called thea

and the second the stiay flux.



MAGNETIC INTERLINKAGE BETWEEN TWO CIRCUITS 111

The flux of this tube induces an E.Mr, in the primary winding
proportional to

^]a(w* + Wj_) d f. . ,

dt
=
dt{(^

+ ^)w^w^ + ^w^(w^

and an E.M F in the secondary proportional to

dt

Pro llTfl Diagram of Tubes of Force In a Shell Transformer Fro 1176

From this, we see that the mam flux of every tube always induces the

same a M F. in both primary and secondary windings, whilst the

K.M F 's induced by the stray flux are proportional to the currents in

the respective windings. The stray flux has a large part of its path
in air, and is therefore in phase with the current which produces it

Most of the main flux, however, has an iron path, the hysteresis of

which will cause this flux to lag (by an amount equal to the hysteretic

angle of advance) behind the magnetising current (z: + z
2 )

Summing up the EM.F'S induced in each winding, we get, for the

primary circuit, the differential equation

. (-1 "^1 ^"A //?K_\= I,?
1

, + OT ~jj +Wrr , (boa).11 1 fir sir '

.3?-r, (654)

and for the secondary circuit

= P J2sm(
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where P^ and P
2 are the respective pnmary and secondary terminal

pressures , S\ denotes the sum of the mterhnkages with the primary
stray flux (that is, that part of the primary flux which is not inter-

linked with the secondary) produced hy unit current in the pumary.
Similarly for Sz S

l
and *S'2 are called the coefficient* of i>tiui/ induction,

and are , .

1

(GG)

f*

where RK is the reluctance offered to the tube of force which is

interlinked with wlx pnmary and 2%. secondary turns $A is tho

S^rt S r ideal mam flux, which is com-

f> 'TfifiJTRRP 4- nffiVW8^-r~S pletely interlinked with both
~~~ ^ pnmary and secondary wind-

p,
ings and induces an B M F in

* both which is proportional to

the sum of all tho Intel-linkages

g
- -i-' 2(*tMB) of the main flux.

Fio 118 -Equivalent Circuit of . Transfonnor
T
^

fl^ tWO differential

equations (65^ and b) apply
both to the transformer (Fig 115) and to the circuit shewn in Fig 1 IN

In the branch AB, tho current l
l
+^2

= ^
lli flows, and requires between

the terminals A and B the pressure

which is equal but opposite in direction to the E M F. - c induced by
the mam flux in the two circuits This E M F

,
of course, has the same

frequency c in both circuits, since they are embraced by the same flux
and fixed with respect to one another Since $A lags behind the

magnetising current ia by the angle
~ - ^, the pressure c leads the
l

magnetising current %n by the angle ^ Hence wo can thus write .

tan i = -
ffa

In this way we may replace the transformer by tho circuit representedm Fig 118, and can treat the same analytically just as any other
circuit having an impedance in senes with two parallel blanches

Denoting 2*-fl& by ^ and 2ircS2 by afc we maj& then write tho
above differentials as follows :

-?
z
z
z , (67)

where
^i
=^-/2

= #&,-/2

and ='- = -



MAGNETIC INTERLINKAGE BETWEEN TWO CIRCUITS 113

When the secondary circuit is open, i e when the transformer is on

iw-load, Tn^O" and the primary current /
x equals the magnetising

current la Since the resistances and reactances, and also the

magnetising current, of a normal transformer are usually very small,
it follows that at no-load the secondary pressure P$ =E will be nearly
equal to the primary pressure Plt assuming of course that the number
of turns on the primary is the same as that on the secondary, i.e.

The currents and pressure of a transformer can be best shewn

graphically, as in Pig 119 Set off the main flux &h along the negative
direction of the abscissa axis,

then the EMF -E induced

by. 3^ falls along the negative
direction of the ordmate axis

(since the induced E.MF lags
90 behind the inducing flux)

The flux itself, however, is

not in phase with the MMF
(or magnetising current), but

follows the same at the angle

g-^n . Thls ^BS^S ^ khe

flux behind the magnetising
current is due to the hysteresis
and eddy cunents, caused by
the continuous reversal of the

magnetisation in the core,

which is treated more fully
in Chapter XVIII
The magnetising current Ia

can be calculated from the

circuit constants and set off in

the diagram Further, if the

secondary current /
2
is known,

the secondary pressure Pz
can

be found by geometrically sub-

tracting the secondary impedance pressure I%3Z from the induced

EMF -E
Since the current 7

2
induced in the secondary winding by the flux

<f>h 1S always directed so that it tends to weaken the inducing field,

it is obvious that a primary current - 7
3
must be supplied to overcome

the reaction of the secondary current 7
2
on the field, if $h is to be

kept constant. Consequently, the current supplied to the primary has

two components The one component is the magnetising current Ia)
necessary for producing the field, while the other component is the

compensating current -72 required to neutralise the reaction of the

secondary current 7
2
on the main field Hence the primary current Jj

A o H

JjOC,

FIQ 110 Vector Diagram of the Currents and
Pressures In a Transformer
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is simply the resultant of the currents / and - /
2 Again, if we add

the impedance pressure 7^ to the pressure E, which is equal and

opposite to the B M.F. - E induced hy the main flux 4>4J the primary

pressure Pl
will be obtained If we now turn the pressure triangle

-E, P2 through 180 to the position E, -P2 >
we get a clear of

the pressure drop from the primary terminal pressure Pj to the

secondary terminal pressure
- P

2
The pressure E often termed the

E M F. consumed by the counter-electromotive force -E, is required
for driving the magnetising current / through the circuit, and there-

fore leads the latter by the angle \l>a , as shewn m the figure
The power -r, T nna ,r ,la coBya =J<i*ga

is consumed by the iron losses in the magnetic circuit, and is dissipated
in the form of heat

The phenomena which occur in a transformer occur m every other

form 01 electromagnetic apparatus, although in a somewhat modified

form. In every case, however, we have the secondary cwnent induced by
tJie mam flux, and the con espondmg compensating current which combines

with the magnetising cument necessany toproditce the Jinx to form thepnmaiy
current TJie main flusc, seaves to ttansmit tJie powen fiom the primary
side to the secondary, just as a belt tiansmits tJie power fiom one pulley
to anothef)'

In the stationary transformer the power E^oos^ is transmitted
from the primary circuit to the mam flux Here, in the mam flux,
the iron losses EIa cos ^a are consumed, so that the power transmitted
to the secondary circuit is

EI
Z cos ^2

=
EI-i cos^ - EIa cos $a ,

but since EIa WB\l/n is usually very small, nearly the whole power is

conveyed from the primary to the secondary
The frequency of both primary and secondary is the same The

only reason therefore for using a stationary transformer is to effect

a change of 'pressure as the power is transmitted from primary to

secondary This is achieved by choosing different numbers of turns
for the primary and secondary windings If there are w

l
turns on the

primary side and wz on the secondary, then the E M.r. induced in the
latter will be -n

since the flux <i>
ft induces the same E.MP in every turn The

secondary current is

where I,, is the compensating current in the primary winding This
follows at once from the fact that the ampere turns of the two
currents J2 and / must be equal and opposite u is the ratio of

transformation, which in a stationary transformer is the same for
currents as pressures. In the equivalent circuit, where the primary
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and secondary circuits are electrically connected, all secondary
pressures must be reduced to the primary by multiplying by u, and

secondary currents by dividing by u. The powers remain unaltered,
since

On the other hand, the impedances must be converted in the ratio u~

smce
EI_EI _i_ =A
/2
=

tt / w*/;

By these reductions the equivalent circuit and all the calculations may
be made independent of the ratio of conversion of the transformer.

38. Self-, Stray and Mutual Induction of Two Circuits Neglecting
the iron losses in a transformer, the mam flux at no-load can be

written,

where w
l
= number of primary turns and JR = magnetic reluctance

offered to the ideal flux completely interlinked with both primary and

secondary windings. The EMP induced in the secondary winding

ig called the coefficient of mutual iiwliudion between the primary

and secondary windings Introducing this coefficient into equation

(65ft) we get at no-load .

where L-^ denotes the total interhnkages of the primary winding with

the flux produced by unit current in this winding This is called

the coefficient of self-widuetum, of the primary winding. Between the

coefficients of self-, stray and mutual induction, there exists therefore

the following relation, ...

, , (68a)

for the primary winding, and similarly
-j - ^Wn f f* 1 \

Lv = S,> + M-2 (
68i

)2 -

WL
for the secondary winding.

By multiplying these two expressions, we get

Of the flux produced by and interlinked with the primary, the part

corresponding to M^ is interlinked with the secondary, whilst the

part corresponding to S
l
is interlinked only with the primary
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L L
lu practice, the ratio - -1 = ,

'

>1 = tr

is known as the leakage coeffiGiont, a immc given liy
J Ilopkinsou.

ir i-

always greater than unity, and represents tho ratio between tho total

flux and the flux <S>h which is mtoilinkod with tho secondary; in^m
other words, the ratio "between tho total and tho useful 11 u\ The

flux which is only interlinked with one winding is called dm if fhn

Both the praraary and the secondary have their own stray Jinxes.

In electromagnetic machinery, we have nearly always tu dwil with

a mam flux and a stray flux, or with corresponding magnitudes
viz the coefficients of mutual and of stray induction. Tins in dim to

the fact that these fluxes are actually present in the machine, whilst

the fluxes corresponding to the coefficients of self-induction do nut- w a

rule exist, and consequently are not easy to calculate. Moreover, t.h<
1

former method of calculation has the advantage that all niw'hinos c.in

be analytically replaced by equivalent eloctnc circuits, since ni tin-

equivalent en cuits tho only constants which occur are 1

& =
,

ffi
1
= 2w&S

r

,
and # = 27ir./S'a .

On the contrary, the reactance 2-ircL^ is not at all continod to nun

electric circuit, but is distributed over two circuits in which dilli'i'Oiit.

currents flow. Consequently, with machines, it is not com onionl to

work with tho reactance duo to self-induction

In the case of mains or other similar circuits however, where litLlc

or no iron at all is present, the conditions are different Iloro tlie

reaction of the currents in neighbouring conductors is often so Hinull

that the stray flux is larger than the main flux In such eosc-s it is

best to use the coefficients of self-induction, and estimate as nearly iw

possible, by approximate calculations and experiments, tho damping
effect of secondary currents in the neighbourhood or in the condnc-tors

themselves

When a circuit is influenced by a closed socondury circuit in its

neighbourhood, tho differential equations (Q5a and b) appear in the

following form :

and
(

Instead of solving these two equations with the unknowns i
}
and /,,

each of which would bring us to a differential equation of tho Necnnd

degree for z
:
alone or *

2 alone, wo may demonstrate the damping
of secondary circuits by the following simpler considerations
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For the sake of simplicity, assume that the resistances ?
1
and rz in

the equivalent circuits are negligibly small compared with the

Fid 120

reactances We then get the circuit shewn in Fig 120 The total

reactance of this circuit is

1

Thus the secondary currents reduce the self-induction of the main

conductor, and the greater the ratio of the mutual induction to the

self-induction of the secondary conductor, the greater is this reduction.

When w
l =w^ )

M is always smaller than L
z , and if we take, for

example, M=^L2 =lLl}
then the total reactance of the main circuit

will be

i.e. some 6 % less than when the secondary circuit is not present

Taking into account the resistances r
x
and rz ,

and also denoting

and x

we obtain the total impedance,

01
, neglecting </, z

t
= 1

1
-

J' t>

in which expression the resistance and reactance are given by the values

(69)

Thus the secondary currents in neighbouring conductors and the eddy
currents in the conductor itself cause an apparent increase in the
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resistance and a decrease in the self-induction of the main circuit

This is also what one would expect, for example, in a round conductor ,

the eddy currents are so directed that at the centre of the conductor

they flow against the main current, arid at the surface with the mam
current. Owing to this unsymmetncal distribution of the current

over the section of the conductor, the losses are of course increased ,

and since at the centre of the conductor where the self-induction

is greatest the current density is least, the total self-induction of

the conductor will be less than that calculated on the assumption that

no eddies are present We shall shew in Chap XXI how the effect

of the eddy currents on the circuit constants can be calculated

Lastly, it may be pointed out that formula (69) shews clearly

that the disturbing influences of the secondary and eddy currents

increase with the frequency of the main current and with the dimen-

sions of the conductor

39. Conversion of Energy in the Q-eneral Transformer. In the

above section we have considered two magnetically-interlinked electric

circuits and have seen that the magnetic flux serves to transmit the

energy from one to the other If the primary and secondary circuits

are fixed relatively to one another, the total energy given out by the

primary will be taken in by the secondary, neglecting iron losses.

In many cases, however, the two windings may be capable of motion

relatively to one another

For example, the primary winding may be fixed and the secondary

arranged on a rotating axis in such a way that the magnetic field

is still linked with both windings This condition is obtained by
placing the secondary winding in slots on the periphery of a laminated

cylinder and the primary in slots on the inner surface of a coaxial

ring, inside which the cylinder rotates. In such a machine the inter-

linkages of the two windings with the rotating field pulsate with

different frequencies c^ and c
2 .

For the fixed primary winding, the frequency c^
is proportional to

the speed of the rotating field, while for the moving secondary, c
2

is

proportional to the speed of the flux relative to the rotating winding
In this case the total power given out by the primary will not be taken

in by the secondary.

If, for example, the main flux <3?
ft
induce in the primary an E M F

having the frequency ^ , and in the secondary an E M 3?

j
2
= 4 4462^1 0-s,

having the frequency c
2

Then the two E M r 's have the ratio

Since in this case also the compensating ampeie-turus of the primary
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circuit must equal the ampere-turns of the secondary circuit, we must
have m

1
/ -M/

1
= 77&2

/
2
w

a ,
where m^ denotes the number of similar primary

circuits having the turns w
l}

and m
2
the number of similar secondary

circuits having the turns w% On transposmg, this becomes

a

and combining this with the above ratio of the E.M.F 's, we get

We have here ^(JHl
Ia)

= L(E^Iz) = ^2 ,
as in the transformer diagram

(Fig 119)
The power taken in by the secondary circuit is therefore less than

that given out by the primary, in the same ratio as the frequency
of the secondary current is less than that of the primary. The
dift'eience

C __. /*

-
WoSg/jj) cos ^.,

= -1 ^m
L
E

l
I

a cos ^2
c
i

between the power given out by the primary and that taken in by the

secondary must therefore appear in some other form, since energy
cannot be lost This difference does not appear in the form of

electrical but mechanical energy, and it is thus possible for the

general transformer to work also as a motor The power transmitted

from the primary circuit to the magnetic circuit therefore appears

partly as electrical power in the secondary circuit and partly as

mechanical power. The former (the electrical) part is proportional to

i.e. proportional to the velocity with which the secondary circuit

lags behind the primary, whilst the latter (the mechanical) part is

proportional to the velocity
-2 with which the secondary circuit is cut

by the main flux. i

Putting c
2
=

sCj ,

then &.-A0,, . . (71)2 ^ 1 \ /

or, with the same numbei of turns on the primary as on the secon-

dary, le w^Wg,
E

2
= sE

l (7 la)

Assuming further that the number of primary and secondary circuits

is the same, i e ?
1
=m2 ,

then

and 22
= -' = = S4 (72)
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where z'
a
denotes the impedance of the secondary circuit reduced to the

primary Further, let a^ denote the reactance of the secondaiy
circuit at frequency c

ls
then

Cn
*rt n <J

Hence = _,
a

J z

We may therefoie replace the general transformei with relatively

movable primary and secondary circuits by an equivalent electric

circuit (Fig 121), for, by reducing the secondary frequency to that

PIQ 131 Equlvulont Circuit of the General Trailnformei

of the primary, the continuity of the transmission of energy remains
In the equivalent scheme, the power given out by the primary is

Since, however, only the power /
7
2
= /a/'

M

appears in the secondary circuit as electric energy, the difteieuce

(73)-

must appear in the form of mechanical energy. To absorb an amount
of electrical power corresponding to the motor effect of the general
transformer, we may theiefore employ a resistance in the secondary
circuit of the equivalent diagram, having the value

?
2 Q-l)

ohms.
(73ft)

This is, of course, a completely non-inductive load Hence, in spite
of the mutual displacement of the primary and secondary windings, wo
can represent the general transformer by a simple equivalent electric

circuit, whose frequency and piessure are those of the primary, whilst
all the formulae deduced for the equivalent circuit hold also for the

general transformer The ratio of conversion of the pressuies,

assuming the same frequency in both secondary and primary, is

whilst the ratio of conversion of the currents is

M _/S
(Cu 7-/
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and since

the ratio of conversion of the impedances is

(74)

where u^ and w, denote the number of effective primary and secoudary
turua

c j j

Via 122. Induction Motor.

The ordinary form of the general tranaformei is the asynchronous
motor, which consists of a stationary laminated core, or stator on
which the primary is wound, and a lotatiug laminated core or rotor
which caines the secondary windings The two windings ai e embedded
in slots in their cores and ho directly opposite to one another, and as
near to the surface as possible so as to reduce the stray flux to a

ZT^^K133 ^T*16 Photograph of a modern induction
motor, with the bearing shield removed
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Saxtmpk For P
l
= 500 volts,

?i=' 2
= l ohm,

a^
= 5 ohms,

a;
2
= 2 5 ohms,

#,,
= 0002 mho,

#a = 0'01 mho,
the curves in Figs 123 and b have been plotted for the following
powers as functions of the slip s .

"r\

\

ahp -/

_
\\\l -ff-

~
i \y

Fio 123a.

1. The power supplied* to the primary Wl
=P

1
I
1 cos

3. The pnmary copper loss jr -pr

3 The iron losses y _
4 The power transferred to the secondary

5. The secondary copper loss V^ = T%'

6. The mechanical power Wz
= Pi /1_]\ =2 2

\s /
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In Fig. 1235 the scale of the abscissa axis has been increased, m
order to shew the curves more clearly in the neighbourhood of
synchronism.

vsRW

Fio 1286

As seen from these figures, the general transformer works as
motor between s = and s=l, ie between rest and the speed at
which no EMF'S are induced in the rotor circuits This speed
(ie s = 0) is called the synchronous speed, being that speed at which
the secondary circuit is at rest relatively to the main flux, as the rotor
rotates aynduonmidy with the main flux s is called the shp, since
this ratio shews how much the secondary slips relatively to the main
flux.

From s = in the negative direction the geneial transformer works
as a generator and supplies electrical energy to the mams

,
and from

s = 1 in the positive direction it works as an electric brake, receiving
both electrical and mechanical power, both of which are dissipated in
the transformer
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CAPACITY IN CIECUITS.

40 Transmission of Power over Lines containing Capacity 41 Condenser
Transformers 42 Transmission of Power ovei Lines containing Dis-

tributed Capacity 43 Ciment and Pressure Distribution in Lines with

Uniformly Distributed Capacity 44 Transmission of Energy over

Quartei- and Half-wave Lines. 45. Equivalent Circuit of a Powei
Transmission Line containing Uniformly Distributed Capacity 46

Uniformly Distributed Capacity in Transformers and Alternatmg-onrrent
Machines 47 Distributed Capacity in Lightning-protecting Apparatus

40. Transmission of Power over Lines containing Capacity. For

transmitting altei nating-curreut over long distances, overhead lines are

usually employed. The capacity
effects of such lines are compara-

tively small, except at very high

pressures Often, however, the

current must be taken along cables

laid in the earth over parts where
overhead wiies cannot be used, and

Klu 1J4
the capacity of these sections has

to be considered. A simple and

approximate calculation of the capacity effects in all such cases can be

obtained by assuming the total capacity of the conductors and cables

to be concentrated at the centre of gravity of the distributed capacity
We thus get the equivalent circuit shewn in Fig. 124, which can be

treated in the same way as the circuit described in Chap VII By
way of example, we shall here consider the case where the load

current at the receiving end of the lino is chiefly used for driving
induction motors The current vector will then move over a curve

which will be approximately a circle when all the motors are uniformly
loaded Let this circle be represented by E?b in Fig 125 and the

power line by P^P^
By inversion of this circle, we get the load impedance sb . To this

add the impedance 2 ,
and then a second inversion gives the admittance

y", which is in parallel with ya . After adding ya and a further
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inversion, we get the impedance d, which is in series with ^ Lastly,

by adding 2^ to z' and once more inverting, we get the load current in

the supply circuit, which is represented by the circle K All the

loss and power lines can be now drawn, but it will here suffice if

Fio 120

we merely shew the line PAPn for the total losses and the resultant

power line PQPK ,
from which the efficiency and maximum power of the

system can be obtained.

41. Condenser Transformers In 1891 Boudierot proposed to use

condensers to transform from a constant pressure to a constant current

or vice versa Such transformers known as condense) traiisfa-me
1

) s

were employed by Boucherot for series circuits for example, for

tunnels or gardens lighted by arc-lamps or incandescent lamps in

series, in which cases this system can be used with advantage
Three systems proposed by Boucherot are shewn in Figs 126a-c

They are all for the same purpose, viz for obtaining a constant current

in the load circuit AB independently of the load, when the supply

pressure P is constant Considering first the scheme shewn in

Fig 126a, we have

and the total current
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The supply pressure is therefore

or

Choosing the reactances a^ and equal, theu the current in the receiver

circuit will be p p
=-l =-1

.

That is, with constant supply pressme Plt the current
7^

in the load

circuit is constant, and is thus independent of the load resistance

V. j, *il x X "

Pio 12flo

FIG 120c

The total current 1^ is

but

hence

or

' --?{?VV 0* l

!C] JT

Thus the total current is a minimum when x%
= ,r

1
In this case

T _-Pi7'a_-fya
-'linlu a B

^ 2

When the load circuit is open (i e. no-load) r2
= oo, and /j will

therefore be infinite
3
whilst when the load resistance is short-circuited,

(i e i
2
=

0), 7T
= In other words, no-load in the load circuit acts as a

short-circuit to the supply terminals, and conversely, short-circuit in
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the load circuit acts as no-load to the supply circuit For this reason,

care must be taken that the circuit is not broken when a lamp is

extinguished This is effected by connecting choking coils in parallel
with the lamps, or by using a small transformer for each lamp In

the latter case all danger of short-circuit is removed
Of the different schemes given above, that in Fig 126c is the best,

since here the current /, is zero when the load circuit is short-circuited

p
(z = 0), instead of /, = l

,
as in the other two cases.

&i

Recently the condenser transformer has also been used for producing

pulsations of high pressure and frequency. If, for example, a path

containing inductance, resistance and a spark-gap
is placed in parallel with the condenser (Fig 127),

electric pulsations will be set up, provided the

self-induction L
z

is made large enough compared
with the resistance i

2
When an alternating

pressure P^ is applied at the supply terminals, a

large pressure will be set up across the gap and
will give rise to a spark The pressure then

falls immediately, and the spark is extinguished

by the rising air warmed by itself. This, how-

ever, is scarcely completed when the pressure

again rises and produces a further spark In

this manner, sparking will continue, and the Plo 12
~

frequency frt which only depends on the con-

stants of the receiver circuit will be found to be the natural

frequency of the circuit, viz

C* = -Z~ -V

This frequency is almost invariably much greater than that of the

applied pressure The oscillations in the receiver circuit produce
similar oscillations in the supply circuit also. When the natural

frequency is much greater than that of the supply pressure, the oscilla-

tions disappear during the time the condenser is discharged

42. Transmission of Power over Lines containing Distributed

Capacity. We now come to the most general case of the transmission

of power by alternating-currents We commence by considering the

physical occurrences in the conductors and in neighbouring bodies

Let a constant alternating EMF act at the supply teimmals of a

long two-wire system used for the transmission of a single-phase

alternating current to the receiver circuit which contains the load.

At any instant, every point in the line will have its own definite

potential. Eegard the earth as having zero potential In oider to

give the line its potential, a certain charging current is necessary,

and, since there are both conductors and dielectrics in the electro-

static field due to the line-potential, this charging curient will be
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dependent on the constants of these bodies, and may be quite con-

siderable. Moi cover, eveiy conductoi has imperfections in its

insulation, through which a quantity of electricity proportional to

the potential difference passes To this latter, we must also add the

escape of electricity into the air known as "
silent or glow discharge

"

(corona).
This potential which varies from point to point along the line

requires a current due to which an electromagnetic field is formed
around the conductor Moreover, this cm rent is not constant at

every section of the conductoi
, but varies according to the quantity

of electricity required for charging, for insulation leakage and for

discharge into the air

The above, however, applies only to what happens at any particular
instant, for the applied B M Ft is not constant, hut is a function of the

time For the time being, assume that the pulsating B M.F. follows a

sine law.

Both the electrostatic and the electromagnetic fields vary with the

time Owing to the pulsation of the electrostatic field, energy is

consumed in the insulating media This causes a loss-current, which
is m phase with the potential difference at the respective point The
presence of foreign bodies in the field causes an increase in these

displacement currents, to this also belongs ekcti astatic inflitence The
displacement currents can be resolved into two components, one of

which is in phase with the difference of potential, and the other dis-

placed 90 from it.

The alternating electromagnetic field induces BMF.'S both in the
line itself and in outside conductors. The E M j

1

's induced in the lino,
i e the K M F.'S of self-induction, can, under certain conditions, cause
an unequal distribution of the current over the cross-section, which
will cause an increase in the ohmic resistance of the line (shn-o/ect)
The closed conductors lying in the electromagnetic field act as trans-

former secondaries with the transmission line as primary Hence in

the closed secondaries current will flow which will react on the mam
conductor (mutual induction).

These E M.F 's of mutual induction can also bo resolved into an

energy component in phase with the current, and an idle component
at 90 to the same The latter component decreases the appaient
self-induction of the line Eddy currents can also be added to the
currents in adjacent conductors
The electromagnetic field produces losses in magnetic bodies duo to

hysteresis, these losses can be approximately allowed for by an
increase in the ohmic resistance, since the field strength is nearly
proportional to the current, so long as the field is weak.

Fig 128 shews a two-wire transmission scheme, representing the
effects that have just been discussed above
Wo now make the assumption, without which calculation is difficult,

that the conductor is uniform, so that the constants of the conductor

per unit length can be given. The calculation of these constants is
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complicated and inexact, since they depend on the frequency, the

pressure and the atmospheric conditions

Ficmke* and Breisig\ have shewn, however, how these constants

can be determined by simple measurements A conductor can be

represented by four constants, which we may suppose to have been

experimentally determined
Since these measurements and calculations must serve as the foun-

dation in working out new installations, we shall briefly summarise
them here, and shew the influence which the constants exert

ra denotes the equivalent ohmic resistance per kilometre by which
the current /must be multiplied in order to obtain the pressure in

phase with the current This pressure drop is due to the ohmic
resistance of the line and the watt components of the pressures
induced by the resultant electromagnetic field

xd denotes the equivalent reactance per kilometre by which the

current / must be multiplied in order to obtain the EMF'B which
the current leads by 90 These E M F 's are the wattless components
of the E M F 's induced by the resultant electromagnetic field

1111 iilll
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<7,
denotes the equivalent conductance per kilometre by which the

pressure P must be multiplied in order to get the currents in phase
with the pressure These currents are due to the losses in the

insulation and the air, and to the watt components of the displace-
ment currents induced by the electrostatic field

6, denotes the equivalent susceptauce per kilometre by which the

pressure P must be multiplied, in order to get the currents which

lag 90 behind the pressure These currents are the wattless com-

ponents of the displacement currents induced by the resultant

electrostatic field

Writing symbolically, we get

where /, is the single length of the line in kilometres

Let the pressure at the receiver terminals be

and the constants of the line and load, i e g and Z>
2 ,

be given ,
we

can then calculate the pressure, the current and their phase displacement

*E T Z 1891, Heft 35 t-E T Z 1899, Heft 10.

AO I
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at any point in the line When this is done, we shall 1)0 ubli
1 to

find the load on the supply station

At a point P distant I from the receiver station, wo have- a pii'ssun-

p = P/J2 sin
(
mi -f f) and a current i= 1^2 sin

(<ut + $ - )

Since the sinusoidal terminal pressure, midoi steady conditions,

always produces sinusoidal currents and pressures throughout tin-

whole system, it is not necessary to deal with momentary vului-s 111

this ease, so that, for the sake of simplicity, wo will introduce tin-

symbolic expressions P and / and use these for the preliminary
calculations In the formulae deduced, we can then return to I In-

instantaneous values, where these assist in explaining tho s,iim>.

Let I be negative when taken in the direction of tho lluw of t'liiTsjy,
and positive when taken in the opposite direction

, then, in Ihu ulismriit

dl of the conductor, the men ease of cunemt is

al = fz-M or JJ=PT

Further, the inaease of pressuie in the conductor-element til iluu to
the current / is

dP= I^dl or ^'-/^

By differentiating these two equations, we get

<7ft)
ft T\ 1 v _. _ . I

and

These two equations are homogeneous linear differential w
of the second order, and their indefinite integrals are

^ th6 C nStants f lntfigtior. These can 1m dntrr

Z-0, P =P

Substituting these in the above

At Z-0, P =P and

and
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and

Hence _
? - ...(76)

and /=J/,+ + j

Substituting, for the sake of brevity,

we can now measure the values of P
a
and I

I
at the supply teinmmls,

where Z = Z
t
for the following two cases as suggested by A FianLe

(1) At no-load, i e. the receiver terminals are open and the current

/
2
in the receiver circuit is zero,

Ao

^ can be called the apparent admittance of the conductor. Further,
the pressure at the receiver terminals at no-load is

(2) At shmt-eiicwt, le the resistance and therefore the prossmc
between the receiver terminals is zeio

,
i e

and

ZK may be called the apparent impedance of the conductor. The short-

circuit current at the receiver terminals is

2
~~

6'

By the division and multiplication of ZK and y ,
we get

(80)
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Then, by introducing C, y and zX) we get the equations for the

supply pressure and current

P
l
= (7(P2 + ,/,)

= CP
z(l

-

and /j ^ ^ u

(82)

-
. (83)

and /,-^(/i-y^i)J

Since these equations hold in general for the pressures and currents

in any particular part of the conductor, and the constants C, y and SA

of this part are independent of anything that lies beyond its limits,

it will be seen that the equations are sufficient for calculating the

electric conditions at any part of the line.

It is sufficient tlwnefme to know the constants rd} xdt glt i, or 0, y0) KK ami

the elective conditions at any point of the conductor, in ad&r to oe able to

calculate t/ie electnc conditions foi' any other point of the conductor The
three characteristic magnitudes of the conductor C, y and ZK are de-

termined by the short-circuit and no-load experiments.
The calculation of these three quantities can then be earned out

either graphically or analytically In both cases we start from e Sfd

We have

e^y^d = ^(01 -Jt>i)(rd -to) Z, = 6
ft -*0 Z|

Working out the root, we get

and

from which we get the following expressions for X and /*

(

and

The quantities A. and p. depend only on the electric properties of the
line per unit length and the frequency, and for a system with uniform
conductors can be calculated once for all

Since b
t
is a capacity susceptance and yl =(gl -j6t)lL , then 5, is always

positive IL, whose sign is determined by the product 2A/*, will then
also be positive as a rule
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In calculating the phenomena in long conductors, it is also useful

to know the following ratio

where ^ is a positive angle.

43. Current and Pressure Distribution in Lines with Uniformly

Distributed Capacity. By means of the constants A arid
/x.,

the value

of the current and pressure along the line can also be calculated For

this, it is best to start from the equations

and /=

and use the transformation

&-Mi = u
ew = 6 coa

We then get the following expressions for the pressure and ciuronb at

any point in the line

P= (A^
1 + Be-^coa pi -j (A^

1 -B^ Kl
}w^ pi

and

The two constants A and B represent pressure voctois, and can

be written

2

and -
"

;""
2

2

Substituting these expressions in the equations for P and 7, we get

and /= sp
l
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Turning now fiom the symbolic expressions to the momentary value?,

the pressure will be

p - PA^s

and the current

These equations shew that at any instant both p and i vary along
the conductor after a sine wave If we considei the momentary values

at the end of the line and at a distance - from the end. it will be seen
A* *

that these have opposite values This shews that, in very long con-

ductors, at different points the pressures oppose one another and the

currents flow in opposite dnections.
9

Since the cunents and pressures at points along the line / =

apart have the same phase, the length of the current and pressure
OT~

waves is From this it is fuither seen that the waves require a
P- / 1\ 2-rr

complete period (T=-} to tiaveise the distance
,
and since the

frequency is c cycles per second, the speed at which the wave travels is

27TC (I)

v = = -
p, /z

Hence the cuneuts and pressures in long lines travel at finite

velocities which depend only on the constants of the line

If we neglect the losses in the line, i e. put gt
= and ? d

=
0, we have

and the speed at which the waves travel wall be

27TC 1
"= = 7f

/* vA
where Ld and C

t represent the self-induction and capacity of the line

per kilometre

As will be seen later on, the speed at which the electric waves travel

along a conductor approaches the velocity of light, viz 300,000 km/sec
Thus the current and pressure waves pass along a long transmission

line of 100 km in 1/3000 sec
,

i e with a frequency of 50, during

3000
~
60

c^e> wnl k corresponds to a phase displacement of 6

between the momentary values at the two ends

The expressions for p and i are made up of two parts,- one of which
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increases with the distance I from the receiver terminals, whilst the

other decreases in the same direction

The phase displacement between these two waves at a point along
the line is $B

- fa + 2/4 i e. it increases with the distance from the

receiver terminals.

The second wave, therefore, can be regarded as the reflection of

the first wave, the point of reflection lying beyond the receiver

terminals The second wave lags ^B
-
\< more behind the first than

the lag corresponding to the time during which the wave travels from
the point in question to the receiver terminals and back.

It is also interesting to note that the resultant pressure wave is

formed from the sum of the outgoing and the reflected pressure waves,
whilst the resultant current wave equals the difference between the

outgoing and reflected current waves
This is also clear, for at any point in the line the pressures must

add, whilst the current must be the difference between that flowing
towards the receiver terminals and the reflected current flowing back
to the generator

In addition, each current wave lags ^ (fa
-
^) in phase behind the

pressure wave producing it

Since the two separate waves move along the conductor like waves
on the surface of water, they can be regarded as progressive waves,
while the resultant waves are similar in character to a stationary wave.

(a) In the special case where the receive) terminals an e open and the line

losses negligible,y y '

and

thus, at any point in the line,

p = ^P2
sin (at + pX) + \Pn sm ((at

-
pi)

= P
2
sm tat cos pi

r/r m
and i = iP

3 -v/-^ [sin (<at + p.1)
- sin (tat

-
p.1)]

= P
2 A/-J- cos wt sm p.1,

* AJ > Ai

fc~
whence follows /= P\l^r tan pi

V A*

In this special case, therefore, the resultant current and pressure
waves possess the same properties as stationary -waves with nodes and

loops well known in acoustics At the points

j_n i" 2?r 3:r 4vr
t U, , , , , ,

fj. p. fj. p

the current is always zero, whilst between these points it pulsates

between a maximum and minimum At the first points we have

nodes, at the others loops of the current wave
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The pressure wave which leads the current wave by 90 both in

space and time has its nodes at the positions I =~
, ^, ^, ,

and its

loops at I = 0, -,
"

t ,

OTT
If the length of the line is /x

= g-. M m Fig. 129, then in this special

case, wheie A. = and / is zero, no applied pressure is necessary to

Fin

produce large current and pressure waves in the line
,

a condition

we have already denoted as pi e&>ui e i csonance

It may also be mentioned that the ratio of the current to the

V7T~.
(b) We will also consider the opposite case to no-load in the receiver

circuit, namely that in which the leceiiw icnnwiah ate shmt-CMmwted ancl

1he hnc losses negligible

hence

aad

p = I2/J~ cos u>t sin fd,

i = J2 sm (at cos
fj.1

In this case also we get a stationary wave, as shewn in Fig. 130,

in which the current loops occur at Z = 0, -, , , etc, and the

,
TT STT STT ^ _ * I* *

, , ,

pressure loops at I = ,

^-, 5-, etc For a conductor whose length is

f of the wave-length, no current will flow iu the short-circuited
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conductor even with a large applied pressure at the terminals This

condition corresponds to cument-iesonance

From the above it follows that stationary waves can only be pioduced
wdh the receiver circuit either open or short-citcmted and negligible hne

losses When one of these conditions is not fulfilled, the current and

pressure waves travel along the conductor at a speed approaching that

of lighten a vacuum
With normal loads, therefore, it is best to deal with the outgoing and

reflected waves, and from the ratio between the amplitudes of these

two waves at the receiver terminals and their phase displacement

(&B
~
^)> calculate the current and pressure waves over the whole line

At the receiver terminals, where I= 0, the relation between the ampli-
tudes of the reflected and outgoing waves is

or

The formula shews also that the reflection is only complete when
PA

= PB and ^B=^A , which is only the case at no-load or short-circuit

Fid 180.

The kind of reflection under normal conditions depends both on the

load at the receiver terminals and on the hne constants

For the case when the ratio of the resistance of the line to the

self-induction is the same as that of the conductance to the capacity,

IB when 7<* =
f-

z

,
then

and

Such a line is by 0. Heamside termed distortionless.
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Suppose, further, the load in the receiver circuit is non-inductive, then

rt -Lf> -*O A/ "77

rd
and

Under these conditions, the outgoing waves are reflected at the same

angle as they arrive at the receiver terminals The reflected waves

are weaker, however, the greater the load, and vanish entirely when

that is, when the electrostatic energy due to the receiver pressure

equals the electromagnetic energy clue to the receiver current and

stored around the line For this

special case where the reflected

wave vanishes,

Timeline

X and
-j>

It follows further that the angle
of phase displacement between

current and pressure is zero, i e

cos<=l, at every point in the

line, which distinguishes the pro-

gressive wave in the circuit free

from disturbance from the station-

ary wave We also see that the

phase displacement chiefly depends
on the phase difference in the

receiver circuit and to a much less

extent on the relation between
the electrostatic and the electro-

magnetic energy stored in the fields

around the conductors at a given
load If these two quantities of

energy are kept equal, the phase
displacement between the receiver station and the generator station

will not change much If the electrostatic energy preponderates, the

phase displacement will be less, and vice versa when the electromagnetic
energy is the greater In designing long lines, therefore, it is necessary

Pio 181
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to see that these two quantities of energy are such as to give the

best conditions of working In Chap IX we shall see that the

efficiency of such a transmission line is highest when f%gt
= l\i A ,

that is,

when the no-load losses with normal receiver pressure equal the short-

Fld 182

circuit losses with normal receiver current, and this is the case when,
as above, the power factor throughout the line is unity

In Fig 131 the values of laud P are set off both in magnitude and

direction along the polar co-ordinates for a power transmission line

with abnormal conditions The plotted points correspond to/xZ = 15

The pressure P2 at the end of the line coincides with the ordmate axis
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The vector I
2 lags ^>2 behind Pz By projecting the radn-vectoies of

these two curves on to the rotating time-line, we get the momentary
values of the pressures and currents at every point along the line

These instantaneous values are represented in Fig. 132 as functions

of the length of the line for six different instants of time taken -fa of a

complete period from one another.
From these curves it is clearly seen that the pressure and current

vary after a sine law along the line, and at the same time we see how
the pressure and current waves progress along the line

44. Transmission of Energy over Quarter- and Half-wave Lines.

We have just seen that very long lines with negligibly small lino

losses have certain peculiarities The current and pressure waves are

stationary when the receiver terminals are either short-circuited or

open We will now see how these hues behave when line losses are

present
Quarter-wave Tianstmisswii Line We will first consider aline whoso

length is a quarter of the wave-length of the current and pressure
waves. Such a line we can call a quarter-wave transmission line

Then fa-*,

whilst A is not zero.

It then follows

A/]=
(cos fa +3 sin fa)

and the constant of the line will be

n J

\

whilst GzK

and Oy

The pressure and current at the supply terminals will then be,
from equations 81 and 82,

a
= CPZ + CzKIz= - Pasin (;AZ,) -;/a -rf cos

and /!
= C7

2 + Oy P2
= - /

3
sin (jAZJ -jP2 ^/ ifc

2*
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From this it is easy to see the influence of the load in the receiver

circuit and that of the line losses on the load in the supply circuit

If we put, for example, A. =
, by making the line losses negligible, then

and = **
I, P*Ct

Such a line therefore behaves like Boucherot's condenser transformer,

converting a constant pressure into a constant current, and conversely
Thus if we wish to increase the current in the receiver circuit, the

supply pressure must be raised
,
whilst if the receiver pressure is to be

raised, the current in the supply circuit must be increased accordingly.
Since no losses occur in the line, the supplied energy equals the received

energy, and since, further, P^ = - Pjz, the phase displacement in the

supply station equals that in the receiver station

Examining the effect of the line losses on the load in the supply

station, these occur in the first two terms of the expressions for

P
l
and /p viz in

P sin A.Z) and / sin

Since A7j is comparatively small, the sine can be replaced by the angle,

and we get for the two loss components, P2.M^ an(^ ty^i ^ie ^lne

losses are thus directly proportional to A7j, a quantity which can be

calculated as follows .

Since

and /i
2 ~ b

t
xd ,

,, 2 A. i d gl

then ~ + Y
[j.

xd bi

.-

where i, is to be taken as positive Since we also put cos(;A.^)

A

and '
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If the load in the receiver circuit is non-inductive, which is best in

such long transmission ImeSj and we take = r> tnen V ij

~
\ZT'

an(^

the phase displacement at the supply station will thus be zero also,

i.e GOS <f>= I in both the supply and receiver stations

Pia 133. Load Curves of a Quarter wave Tianamtsalon Lluo

In Fig. 133, the load curves of the supply and receiver stations of a

quarter-wave transmission line are shewn for constant receiver pressure,
and cos< 2

=0 95.

The supply pressure increases rapidly along a straight line with

increasing load, whilst the supply current only increases slightly, hut

also along a straight line. The increase m current serves to cover the

line losses as they increase with the load This method of transmis-

sion has recently been fully treated by Stemmetz, who illustrated its

practical value for very long hues. At 50 cycles, the length of the

transmission by means of the quarter-wave line is about

300000 1R._.
. KA = 1500 km.
4x 50

Half-wave Transmission Liaie Here the length of the line equals
half a wave-length, i e ^ =^
whilst A, is not zero.

It then follows that

-^(OOB^T; sm^) = -^
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The line constant is then

(A -jp)f,
e
- (A-AO& A/t +

-

=-cos(;A/1 ) J

whilst Cz = *l^

\LI _ -Mi

2

d ^o-JA-nnO^)
\ d

The pressure and current at the supply terminals are, accordingly,

P = 6'P --

and ^-
= - /

2
cos

If the line losses were negligible, i.e X = 0, then we should have

P
l
=-P

2
and /!=-/,

Consequently, the line behaves under steady working conditions like

a line possessing no resistance, inductance or capacity Taking the

line losses into account and making the same assumptions as above,

cos X/ = 1

and

then

and /--/ PEnd A ~
/2
~

jP2

which are quite obvious. At 50 cycles, the length of a half-wave hue

is about n Kf. =3000 km The current and pressure vectors in
2 x 50 r

Fig 131 correspond to a half-wave transmission line where the

electrostatic energy predominates The current in the receiver circuit

lags, whilst that in the supply circuit leads The losses in this line

are chosen unduly large, as clearly seen from the relation between
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45. Equivalent Circuit of a Power Transmission Scheme containing

Uniformly Distributed Capacity in the Line.

Fwst Farm of Equivalent Citcwd In Section 40, the total capacity in

the line was replaced by a capacity concentrated at the centre of

gravity We shall now shew that this is allowable in the case of a

uniform conductor, provided the capacity and the impedances of the

equivalent circuit are properly chosen.

Pier 184

Consider the circuit in Fig 134 we have the following equations

/=#,

and /
1

or /j

Similarly for the supply pressure

or, putting ^0=1- 3,

Thus we get the same equations for the circuit in Fig 134 as for

the uniform power transmission hue with uniformly distributed capacity

(cp equations (81) and (82)), and the effects of the latter can nearly
all be simply deduced from the equivalent circuit

The admittance ya of the equivalent circuit is

-

(85)
zd

and the impedance z is

t (86)
y,z* -vj^r, \ '
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Second Form ofEquivalent Circuit The equivalent circuit just deduced

has the form of a three-phase star, as we shall see in Chap XVII. It

is shewn there that every star-system can be reduced to an equivalent

mesh-system. Such a mesh-system is shewn in Fig. 135. Every

Z-CZi

Fin 135

uniform transmission line, therefore, can be replaced by a circuit like

that in Fig 135 The three branches of this circuit have the constants

G
a a -\

, QO'

To prove this we derive the following equations for the equivalent
circuit

A = I2 +P2ya + [(/ + Paya) s

Here 1+^=1+^2/0 i~l~7< (
see e(l 8^> P 131 )

Hence we have

I
1
= GIa + (l + C)P2ya

Similarly, for the supply pressure

We thus get the same equations (81 and 82) for this circuit as those

deduced for the tiansmission line The following formulae ser\e to

determine the constants of this equivalent circuit

(87)

where, as before from eq 80,

A,0.
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From this equivalent circuit, we see that every uniform transmissioi

line with inductance, resistance and capacity behaves like a line

possessing only inductance and resistance, provided that two equaj

capacities are assumed to be in parallel with the load and the

generators respectively
If the current diagram of the load for such a line is given

for a definite P
2 , we must first add the constant current P,j/lt

to

the load current and invert the current curve thus obtained by Uio
rules already given, and then add the impedance s By a further
inversion and adding the current P,yn ,

the diagram for the current
at the supply terminals is obtained for a constant supply pressureP

l One advantage of this equivalent circuit over that deduced
above is due to the fact that only two inversions aio required
for the current diagram, whilst four are necessary in the other
On the other hand, if we have to find the pressure diagram of
the generators from the load pressure diagram, the first form is

preferable

- 46 Uniformly Distributed Capacity in Transformers and Alternating-
current Machines. Not only in high-tension transmission lines, but
also in high-pressure windings of electromagnetic apparatus, dis-
tributed capacity is met with Under ordinary working conditions,
nowever, this is chiefly confined to transformers for very high
pressures In machines, distributed capacity only becomes dangerous
011 switching in and when sudden load variations occur Since, for the

moment, we are only dealing with steady con-

ditions, we shall only deal here with high-pressure
transformers

(a) Under steady working conditions, individual
coils in the transformer windings assume potentials
considerably higher than that of the surrounding
iron, which is usually connected to earth, as a

<
. r , ?

c nsequence of this, condenser action takes place

I

'
li

between the high tension coils and the earthed

T*f*rv*r*grTrF9& masses of iron The insulation of the winding
FIQ lee

a d fcne oil or air act as dielectrics Assumingthat the middle point of the high-tension winding
trfl.ll ftJOT*IT1 AT1 1Q Afl T^ll ayl *TT/\ nnJ- J.\ 11 1 ^

for the hTrf
1S 6are) W6

u
get the f Umequivalent hemdfc but caPacitv m the transformer (Fig 136), when theg

th
Parts of the dgis neglected Asthe hih-tensi hues, we denote the impedance per unit length of

^f md the admitta"ce P<* unit length of the
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point by P, and the current at the same point by I , then in the

element dl, the current increase will be '

and the increase of pressure

where the first sign refers to the secondary winding of a transformer

and the armature windings of a generator, whilst the other sign refers

to the primary of a transformer and the stator winding of a motor.

By differentiating the last equation and eliminating /, we get

_
dl* %

'

that is, the same differential equation as for transmission lines

The E M F. JHa ,
induced in the winding from outside, has no effect

therefore on the form of the differential equation, but makes its

appearance in the limiting conditions Similarly, by differentiating the

first equation, we have

which differs from the current equation for transmission lines

It is best therefore to start from the pressuie equation. The
solution of this is (see p 130)

The limits are

and give

hence A=

i

,-
h

and

Inserting this value of P in the equation
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we get the following expression for /
*/~, i

T--S-P A /L
e

-'--I-M'Y ev__
If no point of the transformer winding were connected to earth, then

any point m it might assume earth-potential, and from this both / and

P would then be calculated

In this connection it must also be remembered that the several parts
of the low-tension winding in a high tension transformer are statically

charged, since they act as the second plate of a condenser, the first

plate of which is formed by the high-tension winding These charges,

however, neutralise one another when the potential of the high-pressure

winding is symmetrically distributed with respect to the neutral point
If the high-tension winding is not earthed and its potential is not

symmetrical with respect to the neutral point, the electrostatic charges
in the secondary winding do not neutralise one another, and the whole

secondary winding can assume a fairly high static pressure witih

respect to earth, when the secondary winding is well insulated fiorn

earth "When the low-tension windings of high-tension transformers

are not earthed, it is still advisable to earth their neutral point through
a pressure safety device, such as a water-spray, etc

Assume further that the winding is the secondary of a transformer

on no-load , then the current at the terminals is

i e o-pV J T n

Thus the pressure at the secondary terminals of a transformer on no-load,

which possesses distiibuted capacity, is

Let us consider the simple case when the resistance i d and the

conductance gt
of the winding aie negligible ,

then

E L
d

Since tan <a>jLC! is greater than <a>jLC for values

of (oxjLC less than ^, the pressure at the terminals

will always be greater than the E M F. induced in

the winding
(b) We now proceed a step further and consider

the capacities which exist between the several turns and coils, they

FIG 187
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act like shunted condensers to the winding elements, as depicted
in Fig 137 Let the condensers be denoted by the admittances

ffv-jb =T per unit length, then the increase of current in a winding

element will be

and the increase of pressure

Thus we get the two differential equations for pressure and current,

'

I+T)^ B" PT

and similarly, ^f=/j* ^+

Since these two differential equations only differ from the former

by the factor

At

instead of "*
all the formulae deduced above can also be used for

'i

this case, if we substitute
i/'t

for
//,

Thus the capacity Gv between turns and coils acts like an increase

in the capacity C with respect to earth In all the formulae, instead

of
yi
we have

i _L V- 5*
T I
'i 'i

For the case when g,, and i
(l
are very small,

, yi <aC
Jl
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and the secondary pressuie of the transformei on no-load

P _ -"d'l -v a.
- -

-"i-'jo i___Mo ^-^ tan

^-ooooooooooo-.

Fid 138

jSo long as (a
2LGw <l, this expression is of the same nature as that

found without considering the capacity between the conductors

In transformers the capacity Ga between the turns is usually much

larger than the capacity with respeot to earth, although in high-

pressure machines G can assume high values compared with Cw

47. Distributed Capacity in Lightning-protecting Apparatus. The

multi-gap lightning-arrester of the General Electric Co of Schenectady
as shewn in Fig 138 consists of one or more series of metallic

L cylinders or rollers insulated from one

another, the first of which is connected

to the line to be protected and the

last to eaith, either directly or through
a resistance When the line is charged
to a high potential by atmospheric

electricity, the rollers, which can be

regarded as the elements of several

condensers in series, all become charged
If now the pressure between two cylinders becomes greater than the

break-down pressure for the air-gap between, a spark will jump across

and then across the other cylindeis, whereby the line is discharged to

a lower potential If the potential of the line and also the charge of

the first cylinder be steady and

uniformly directed, then all

the cylinders take up the same

steady charge, and the pressure
between the line and earth dis-

tributes itself uniformly over
all the gaps, so that the poten-
tial across all the rollers can
be represented by the dotted

straight line I in Fig 139

Since, however, the metallic toe

cylinders possess not only
mutual capacity, but also, with

respect to earth, all the

cylinders do not take up the

same chaige, but the charge on
the cylinders decreases towards earth, instead of the dotted straight
line we get the full-line potential curve II. If, in addition to the

capacities, the conductance from cylinder to cylinder and from cylinders
to earth is considered, we get Fig. 140 as shewing completely the
circuit of the lightning arrester

(a) As this circuit is similar in character to the transmission line

SORelUrs W
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in Fig 128, the equations deduced for the latter may also be
used for the mathematical investigation of the roller lightning
arrester Naturally the differential equations for the transmission
line are deduced for an alternating potential Pl

in the hue and not for

> -VWW- -VW- -VW- -WV- -Vfff -VW- -WW- -WV- -WW-

Fio 140

a steady one Since, however, an alternating potential occurs as

frequently as a steady, and further, since the differential equations
for the former can be suitably simplified for the case of a steady
potential, we shall start with the general differential equations foi

an alternating potential

These are ^.p

and 7^
= /
lf

Here yt
=

(gt -jbt) ^ - (gl
-

and ^.=
l
-l=

1 =
'i V* (fl'rf-A) (

where all constants refer to one i oiler and I therefore is expressed
as the number of i oilers by which the respective point is away from
the roller connected to earth. Usually Cd is of the order 10~n farad,

whilst G
l
is about T^ of Cd As seen from these expressions, we have

neglected the small inductance L of the rollers, which is only of the

order 2 1 0~8
henry, and consequently only begins to have an influence

on the pressure conditions when the frequency c = ^- approaches
i

^
the order -= , i e. about 35 millions

We can therefore neglect self-induction entirely, and thus obtmn the

following differential equations

gd
-

and -T^T = /
^~
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The solutions of these equations are

Inserting the limits

Z =

l-

we get Q

and PA^^ + Be
* **

hence

and

V'i -A/-rr'i
f J fa _ e

(6) Consider first the simple case where the conductance gt
bears the

same relation to the capacity C'
t
as the conductance gd to the capacity

Cd ,
then the ratio

tfL= C
L=: gL

y* cd gd

is a positive real number, and

^
The pressure, therefore, follows a curve independent of the frequency,
which also holds for a continuous (steady) pressure

In Fig 139 the potential curve II is calculated for the case of a

roller lightning arrester, where Cd = 4:000 and ^ = 50 cylinders Then

50
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With, the assumption ^ =^ the cunenb will be

It increases with the frequency, i e with w.

For a steady (continuous) pressure, ft> = 0, and the current is a

mmmum
-

J5, -J5,
* "<* ^ ^

The pressure between two cylinders is, in general,

This is greatest between the first two cylinders, that is between the

two nearest the line, and for the example in question appioximately

VTT
p

*- = J If this pressure exceeds the bi eak-down pressure,
Gd 20

a spark passes between the first two rollers, and so on along the whole

series, for when the pressure breaks down across the first two, the

pressure between the second and third is increased, and so on In

lightning arresters which consist of many cylinders, it is often

observed that the sparks vanish before all the rollers have been

passed This is due to the fact that the charge which, the spark

carries with it becomes less from roller to roller, the decrease being

caused partly by the conductance to earth and partly by the capacity

of the rollers with respect to earth

From the foregoing, it is seen that contrary to a popular view

the distribution of the potential over the gaps of rollei lightning

arresters, uot only with rapidly alternating potentials,
but also with

steady potentials, is quite unsymmetncal, and consequently the

potential curve in both cases deviates considerably from a straight line

(c) We will now return to the general case where there is no definite

relation between the capacity and conductance Here the potential

does not always follow the difference of two exponential curves, but

under certain conditions the diffeience of two sine curves, whose

amplitudes decrease according to an exponential curve In this case,

VI 1

-W* = ^(ooa /J-j BUI /*Z),
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where

and

There is, however, a case when the potential curve follows nearly a

straight line, namely when yt is very small compared with yA ,
then we

put -jfe
=

Q, ai*d therefore P=P^^
This occurs when either the conductance and capacity to earth are

very small, or when the conductance from roller to roller is very large
This latter is the case when sparks pass between the cylinders, for then
the resistance of the air-gaps becomes a minimum, due to lomsation of

the air Consequently, across the rollers where small sparks pass, the

potential curve follows a straight line It ceases to be a straight line,

however, wheie the sparks disappear from this point the curve
follows the general equation This phenomenon was first noticed by
Eushmore and Dubois,* and is represented in Fig 139 by curve III

Usually the conductance gl
to earth in relation to the capacity Ct

is

much smaller than gd to Cd Consequently, A, and with it the drop of

potential AP between the first cylinders, increases with the frequency.
, This explains why a potential at

a high frequency discharges itself

across a roller lightning arrester

more easily than the same

According to Rushmore and

Dubois, an ideal lightning arrester

should behave the same with all

potentials independently of the fre-

quency This is the case with a

PIO 141 roller lightning protector when the

potential curve follows a straight
line This can be obtained, as is done by the G- E C , by placing
several resistances of different values between the line and the first

rollers, as shewn in Fig 141 By this means, yd is made much
greater than yt ,

and the potential curve follows a broken curve, which
does not deviate largely from the straight line I (Fig 139) The
same authors have also shewri that the discharge currents of low
frequency pass along the largest resistance, whilst the high frequency
discharge currents pass along the rollers

*
Proceedings A .I.E.E 1907
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48. The No-load and Short-circuit Constants of an Electric Circuit

(a) Main Equations of tJw Gardened Cticibit In the previous chapters
we have discussed different kinds of electric circuits firstly, ordinary
conductors containing resistance and inductance

, then, electiomagnetic
apparatus whose circuits are magnetically interlinked ,

and lastly,
circuits containing uniformly distributed capacity

- Moreover, we
have seen how all these circuits can be leplaced by a simple circuit

containing an impedance in series with two parallel admittances
This naturally suggests that all circuits are governed by the same
laws, which is actually the case, whilst to find these laws we have
but to apply the generalised form of KirchhofPs Laws and the Law
of Superposition

In what follows it will be necessary to show the importance of the
no-load and short circuit constants of the general electric circuit, and
this we shall do under the assumption that the Law of Superposition
is always applicable ,

that is to say, the effect produced in a circuit

by any cause is independent of any other causes which may be at

work at the same time in the circuit Thus, a pressure produces the

same currents in a circuit whether other pressures are present or not,
or a current causes the same drop of pressure when other currents are

present as when no other currents are present Further, for the time

being, we shall assume the applied pressure JP
3
is a sine wave

Fig 142 shews the diagram of a general circuit, which may contain

transformers, converters or any other kind of alternating-current

apparatus
Let the supply pressure Pj act at the terminals PP of the cncuit,

whilst at the terminals SS at any part of the circuit suppose we have a
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load JP9 We musfc now study the effect of this load which depemU
on the "pressure P

2
and the current /2

on the electric properties
of

the circuit The two vectors P2
and 7

2
are at an angle </>_,

to one

another, so that the power 7F
2
= P2

/
2
cos

<jf>2

Flfi 142

First let the whole circuit be unloaded, and the terminals SS open,
and let the supply pressure P10 be so regulated that the pressure P

3 ,

coi responding fco the load W^ acts at the terminals SS
When this is the case, the installation is said to be on tw-lmd and a

current 7 will be taken by the circuit

We can then write P10 -C^Pa

and 7o
= Aoyfl ,

where all the quantities are to be taken as symbolic C\
=C^1

is a

complex number expressing the relation between the two vectors

?! and P
2 2/ is a measure of the electric conductance of the circuit,

and can be called its cuhmttauce Thus

/ is the no-load current of the circuit, and has the watt component
PlogQ and the wattless component P10

& The losses due to the no-

load current 7 are then jy _ j?

We now connect the terminals SS by a conductor, whose resistance is

aero, and so regulate the supply pressure Pjj- that the current 7
2

corresponding to the load W^ nows between the terminals SS Under
these conditions known as i>hoit-cvcwt a current IIK is taken by the

circuit Symbolically, I1X=CJ^

and PJT= /I^.
C

2
= C

z
^ is, like C\, complex and expresses the relation between the

current vectors Il and 72 ZK is a measure of the apparent electric

resistance of the circuit, and can be called its inqiedanes. Thus

Ps is the short-circuit piessure of the circuit with respect to the
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terminals SS, and has the watt component Ilfrf and the wattless

component /1A-a;A The losses due to the short-circuit current are then

Having considered these two extremes no-load and short-circuit

we now pass on to the normal-load condition For this purpose, we
can start either from no-load, /2

=
0, and gradually increase the cm rent

passing between the terminals SS, without altering the pressure P2 ,

or from the short circuit, and gradually increase the pressure P2
at the

terminals SS, without altering the current Z, The pressure P
2

at

the terminals SS requires at the terminals PP a pressure vector C^Pa

and a current vector I
Q
= P10y Similarly the current J

2
m the

receiver circuit SS requires at the supply terminals PP a current

vector Cg/a and a pressure *vector PK= IIKSK Now, since any two

conditions of the circuit are independent of one another, the load

condition can be obtained by superposing the no-load and short-circuit

conditions Hence, when the circuit is on load, the pressure at the

supply terminals is

P! = P]Q + J- A = ^1*2 + Ai^A

and the current 1^ = / + IIK = Piay + CZIZ ,

or, since I1X = CaI2 and PI = C\ Pz ,

then P1
= Cf

]
Pa + C'2/2 jr . (88)

and /! = C^ + C'lP^o (89)

These two equations are the chwf equations of the circuit, and by means
of them the conditions in the circuit for any load W^ P

2 ,
/
2

can

be determined As is seen from these

two equations (88 and 89) every circuit **T

letermined bv four constants G, .is determined by four constants

C
2 , f/

and
It can be shewn, however, that a

definite relation exists between these
^

foui magnitudes, so that only three p~

PIQ'US
^

constants are sufficient to determine

the characteristics of a circuit Consider the circuit represented in

Fig 143 having the constants ^, s
2
and ya we can then calculate

the constants zk , yQ , C\ and Gz for this circuit as follows

At no-load this circuit takes a current 7
,
where

/o =-^
I
=
r^- = /)

1 oyo

The receiver pressure P2 is
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Hence, for this circuit, C =l+zv

and n_fe ..

VI

At short circuit the supply current is

fl K
= ?2 + I&dja. /2 (

1

and the short-circuit pressure

whence ft = 1 + z$n (
9 2)

and r-*, +S
'

L-a

From equations (90) to (93), we get by multiplying SA and y

or 0|Cl(l-yA)-l. . (94)

We have thus the relation between ^ ,
ZK) G^ and C Such a relation

might have been predicted, from the fact that the four constants

Wot ZKI @i and Qz oan ^e expressed by the three magnitudes a
l}

z
z
and yn

(I) Determination of the Constants of a Genet al Circuit ly Measurement

Every circuit can be defined by the four constants C^, Cf

2 , y and SK ,

and since these can be expressed by three independent constants z.,

z^
and ynt it is possible to replace every circuit by an equivalent circuit

similar to that in Fig 143 The above relation (eq 94) holds for

this circuit, and can therefore be applied generally

Hence ftC2 ( 1
-y^ = I

is the third chief equation of an electnc circuit

From this we see that only three measurements are necessary for

determining the constants t7
l9
C
z , y and zx

From equation (94) we get

where JQ and IK denote the no-load and short-circuit currents for one
and the same supply pressure PI
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In Fig 144 let UF be the no-load and UP the short-circuit

current
,
then

^

Also

(96)

Fiom this it is seen that the greater the ratio of the no-load current
7 to the short-circuit current Tx ,

the greater C^ will be
,
the angle

(i/'i
+ ^a)' on the contrary, depends chiefly on

the difference
(<

-
<f>K)

of the phase-displace-
ment angles at no-load and short-circuit If,

in addition to ^ and ZK ,
either C

l
= G

l
^1 or

C^=02
^* is measured, the other constants

can easily be calculated from foimulae (94)
and (95).

In many cases it is impossible, and under

any conditions difficult, to measure G'
x
and C%

directly, since they are both complex quan-
titles The absolute magnitudes of the same
can be found from the no-load and short-circuit measurements,

Ci-^fjt
and C

t -?jf

The angle ^ is the phase-displacement angle between the supply
and receiver pressures at no-load, and the angle i^2

is the phase-

displacement angle between the supply and receiver currents at short-

circuit

These phase-displacement angles are small, and consequently not

easy to measure When the supply and the receiver terminals are

a long distance apart, it is even impossible to determine these angles

exactly by direct measurement Hence we shall shew how these two

angles' can be simply determined by indirect measurement

From the three chief equations, we get, by simple transpositions,

Fia 144

or

and

or

P,y =CJs(l-

/ = /i

(88a)

(89a)
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The two equations (88a) and (S9a) are in every way equivalent and

analogous to the chief equations (88) and (89) Whilst, however,

by means of equations (88) and (89), it is possible to calculate the

supply current /
T
and pressure PT

for a given receiver load (P2 ,
/
2 ),

the equations (88a) and (89a) enable us to calculate P
z
and /

2 ,

when the load (P15 /,) at the supply station is known
Let the pressure P2 act at tne receiver terminals wit'i the supply

circuit open ,
then the current 7, in the supply circuit is zero, and

the current at the receiver terminals is

whilst the receiver pressure P2
= C^Pi From the receiver terminals,
n

& current 7
2
= - Z, = C^P^ = P* -^ y

= P2 $' will flow into the circuit,
G
2

and the pressure at the receiver teiminals is

From this, we get ^ = ^-,
C'B yQ

where
y'Q

is the admittance of the circuit when the supply terminals

are open
If we now short-circuit the supply terminals (Pl

=
0) and apply the

pressure at the receiver terminals, the current will be

and the short-circuit pressure at the receiver terminals is

* as-- PS ~~ yvfi"K ~ IzK~~n -*a JT-'A

z'z is the impedance of the circuit when the supply terminals are shorfr-

oircuited, and we have

C,_^
n ~

~
2 "*z

Hence, from the three chief equations we have the following relation

whence we get Ai/-=^l -^2
==

K.-$r
= <#,-< ,

(98)

or &t = %(<!> -fa + ti- 6,) (98a)

From formulae (96) and (98) ^T
and ^ can now be easily calculated

for we have

and
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In order to determine C
l}

6'
2 , g/

and ZK ,
it is best to carry out three

of the following four measurements As a check, it is also desirable to

carry out all four.

1 With open receiver terminals, measure the supply pressuiePlQ ,
the

no-load current 7
, the no-load losses W and the receiver pressure P

2

Then, since
J'
=

-p
5- and ^>

= cos" 1

( T p ),
we can now find

*10 v*0-*10'

ft
=

ft+A =%*"

Further, <?i
= 5p-

"a

2. With the receiver terminals short-circuited, measure the supply
pressure Px ,

the short-circuit current I^ K) the short-circuit losses W K
and the receiver current J

2 Then, since

PK j ,

ss=T? and ^jr-co
MJT

we can find ^X=^K-JXE=^K
~
J<i>K

Further, 0*
=
^r'
-*2

3. With the supply terminals open, measure the pressure P20 ,
the

current /o and the power W' at the receiver terminals, and the

pressure P
l
at the supply terminals. From the first three measure-

ments we get / w' '

and further, C

4 Short-circuit the supply terminals and measure the pressure P2K ,

the current J2ff and the power W'K at the receiver terminals, and the

supply current 2
l

We then get

and Ci- 5-

M

From the four phase-displacement angles <
05 <f>s> <t>

and
<f>'K we get

the angle A^ in accordance with formula (98)
It often happens that the pressure acting on the supply circuit is

transformed before reaching the receiver circuit. In this case, P2
and

72 m the above formulae denote the receiver pressure and current

reduced to the supply system By this means, the ratio of conversion

of the transformer is completely removed from all further calculations.

A.O.
*

L
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(c) Glmf Eqiiatwtis of a Symmetncal Ciicmt. Considering again the

circuit represented in Fig 143 with the constants z
ls

z
2
and ya ,

we see

from formulae (90) and (92) that

and C^=

are equal when s,=z
z
= s,ie when the circuit is symmetrical about its

centre This holds generally, even for complicated circuits, and we

or

If gE and y are known, C=C^ can be found from the relation between

y , ZJT and 0. The two magnitudes ZK and y can easily be found by
measuring the pressure, current and power at no-load and short circuit

We have

= I

"V

IK
(99)-

/o cos (<
-
<,)

and

or, measured in degrees,

For this symmetrical circuit, the chief equations are

(88ft)

(896)

and

These hold for the usual cases met with in practice, for example

transformers, induction motors and many power transmission schemes.

We shall now shew how the magnitudes PK ,
IIK and $K obtained

from the short-circuit diagram can be used for finding the percentage
rise of pressure, and the magnitudes P10 ,

/ and </> obtained from the

no-load diagram, the percentage change of current in a circuit, whilst

both can be used for the determination of the change in the phase

angle <.

49. Determination of the Pressure Rise in a Circuit by means

of the Short-circuit Diagram. If the pressure P
2

at the receiver

terminals SS is to remain constant from no-load to full-load, W^ the

supply pressure must be varied accordingly This pressure variation
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is best expressed as a percentage of the no-load pressure Plo . The

change is generally an increase, whence we define

O

as the percentage rise of pressure To calculate this for a symmetrical
circuit with C

1
= C

2 ,
we proceed graphically, as in Fig 145 Set off /2

Fid 146

along the ordinate axis and P
z
= OA at angle <

2
to /2 . Set off vector

AC= IzzK at angle <f>x to the ordinate axis, where <f>K = tan"1 -^
, then

' K
73

OC=Pa + Iz2jc
=

-fj (see eq 8S&)

Then, since OA=P
z
=

-jr>

the percentage pressure rise e % can be expressed thus

O

/"i/"i n A
'= ^ 10 -

OA
On AC us diameter describe

a_circle
and produce OA to cut this

circle in P; then AB = IBxK and BC=I2 1 K

Let 'AP= pKOA and GP=vKOA;

then, from Fig 1 45, we have
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and working out this root,

8

When HK= VK=

generally negligible

If we write

the last term =
Tinnr and M therefore

100
and

CP-ji.
where ftK and VK are not to be taken as ratios but as percentages, then

the percentage rise of pressure will be

Pi -Pi
(101)

The negative sign before p,K is for the case when the phase angle <
2

leads and is greater than -= -
<j>K Hence, to determine the percentage

i

rise of pressure, we set off (Fig 146) AC=I^sK as a percentage of P
2

FIG UO. Short-drouit Diagram of a Symmetrical Olroult foi determining the Percentage
Pressure Rise.

at an angle <f>K to the ordinate axis, descnbe a circle on the same as

diameter, and drawAP at an angle <

2 to the ordinate axis we then get

and the percentage pressure rise
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This is a maximum when

100 and

Thus, in this case, ;% =
100J:

+

Fig 146 can be appropriately called the short-cv> cutt

If we are not dealing with a symmetrical circuit, but with the

general case, for which the constants (^ and 672 may considerably differ,

we substitute the actual receiver pressure P2
with the phase displace-

n
ment 0j by a fictitious pressure Pz

=
-^-P^ displaced from the receiver
(/a"

current 7
3 by the angle <

2
- A^. Then, since, from equation (88),

TT = 77/2 + I*ZK = P* + Iis*. >

'-'a ^a

the above formula (101) holds also for the rise of pressuie in the general

case, provided that we use Pz
= l\-^ instead of Pa and $ = $a

- A^
C/a

instead of ^>a in the short-circuit diagram Fig 147 represents the

Pio 147 Short-dieuit Diagram of the General Circuit

short-circuit diagram of a general circuit in this 7a^A is set off as a

percentage of Pz .

50. Determination of the Change of Current in a Circuit by means
of the No-load Diagram The pressure P

2
at the terminals SS

requires, as we have seen, a no-load current On account of this

no-load current, the load current 7
T

is greater than the short-circuit

current Ilx Starting from short circuit, let the pressure be gradually
increased then J

x will also increase, and we have now to calculate
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the percentage increase of current m passing from shoi t-circmt to

full-load This is,

;%- :nrlf ioo.
*IK

For a symmetrical circuit,

^
= I

2 + P,y (see eq. 89ft)

This equation also can be expressed graphically In Fig 148 set

PlO 148

off P
2 along the ordinate axis and I$

= OD at angle 3
to P2 . Set off

fui-ther DF=Pay at angle < to the ordmate axis, where <#>
= tan~1

,

so that
'

r
go

01=^.u*
C

OD = /3 =^,Further, smce

the percentage increase of current j % can be wiitten

On DF describe a circle and produce OD to cut the circle m Q , then

Pb and EF
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Let DQ =^:OD and FQ =-^OU }

then the percentage increase of current is
/

4 <
102)

The negative sign before /x is foi the case when the phase angle <
2

leads and is greater than - - <

2t

Hence, to find the percentage current increase, set off (Fig. 149)

PjyQ as a percentage of /
2
at an angle < to the ordina"te axis,

Pia 149 No-load Diagram of a Symmetrical Circuit for determining the Percentage Change
of Current.

describe a circle on the same as diameter and draw DQ at an angle <

to the ordinate axis

Then we have M=^-100 ;
J?

L

and the percentage increase of current

This is a maximum when <
2
= < . When <^

= 0,

P n P ^

^= ^0100 and v = -

2

Hence, in this case
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We can appropriately call the diagram in Fig 149 the iw-loitd

diagram
In an unsymmetrical circuit,

Consequently the no-load diagram and formula (102) hold for any

circuit, provided we use P2
= 7 P

Z
instead of P, and ^ =

<jb2
-
kty

2

instead of <, This is done in the no-load diagram in Fig 150, which

accordingly holds quite generally.

FIG 160 No-load Diagram of the General Circuit

When the conditions are such that the results yielded by the short-

circuit and no-load diagrams are inaccurate, we can use an alternative

method, and find the pressure P^ and current 1^ in the supply circuit

hy means of the load diagrams shewn in Figs. 145 and 148.

51. Change in Phase Displacement. The phase displacement be-

tween the piessure and current in a circuit changes as we pass from
the receiver terminals to the supply terminals. This displacement is

determined by the vector, PK= 0^f^E
of the short-circuit pressure and

the vector I = C
1P'$ of the no-load current. The angle of phase

displacement of the load at SS has been denoted by <;,
in the above

similarly we can denote that at the supply terminals PP by ^
Then

)
P
-for the two vectors - and -^ are rotated through the same angle in
L> L>

respect to the vectors Pj and /x
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From Figs 145 and 148 we see that

or ^-JC+
In order to find the phase-displacement angle at the supply terminals

for a symmetrical circuit, we must therefore calculate the two angles

A<jr and A< _
PC

From Fig 145 we have sin (A< A )
= ==
OG

OA P
Denoting the ratio -== =-4^- by a, we get

C/G -*i

1

and a

We can express sin (A^) in the form of a series, thus

5
*''

is negligible compared with A<^>A) so long as &<f>K= 25, which
6

ia usually the case where A< A is expressed in circular measure, or when
measured in degrees we have

V a 180

In a similar manner, from Fig 148,

or, denoting -== = -44? by )8,
we get

C/j *i

_
100

and A^ = 573^/
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whence the angle of phase displacement at the supply terminals is

In this formula, VK and v are to he taken negative when the points

P and Q respectively he on the arcs BC and EF ,
this is the case when

the angle of lag fa is greater than fa or fa respectively

In the case of the general unsymmetncal circuit, we must substitute

fa=fa- A^ for fa in formula (103), where fa is the angle between the

imaginary receiver pressure Fz and the receiver current I2

It has already been shewn that Ai/'
= ^ - ^ , hence, for any circuit,

the phase-displacement angle at the supply terminals is

+ . (108a)

52. "MftTrinnim Power and Efficiency. With constant supply pressure

P
x
and load power-factor (i e cos fa

= const ),
it is

_
only possible to

transmit a certain maximum power to the receiver circuit If we try

to go beyond this by increasing the load admittance y%, the receiver

pressure P
2

will fall more rapidly than the receiver current I
2

will

rise. This maximum is naturally reached when the drop of pressuie
C

I^ss in the circuit itself equals the receiver pressurefz=-
a

From the equationPC C= ^ +

it follows that, when fa is constant, the power given out at the receiver

terminals

is a maximum when the product of the two absolute values -^ /a
2
2
and

p 2

I^z is a maximum. Since the sum j^ of these two vectors is constant,

the product of their absolute values is a maximum when they are equal

Hence the condition for maximum power is

01 7f 2
Y2

In this case the receiver current is
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Q
The vectors ZK and

-^
z
2
are displaced from one another by the angle

-<l>2 + A^ a

Hence the receiver current at maximum load is

and therefore ^"am =-2 cos &= * 7 ** cos

M&ZX { 1 + cos (<k
-

Now, fiom Eq. 96, p. 159,

_1_j:K
- 1 cos

(</>
-

Hence ^ - P^Is ~ /0 COS (^ "^ COS
Hence, Ar2max -

P P
Since .?a

= -7r and /2^= Tf tne conditions for maximum power can
2 oa

be written With constant supply piesswie and load poweri-factm, we get

maximum, power foi the load, whose no-load and short-wicwt presmes are

equal

Proceeding further, we can now find the load power-factor cos< 2

necessary for obtaining the maximum power at the receiver terminals.

By differentiating Eq. 104, we find that this happens when

-
{1 + cos (^ -

t a + Ai/')} sin <&j
- cos ^ sin (C^E

-
4>a + A^) =

or when - < a
= A + A^

Introducing this value of <

2
into the expression for /Fa miu: ,

we get

(104a)

To find the efficiency of the general circuit, we calculate the power

W"i supplied to the circuit at the terminals PP and (hvide this into

the power W^ taken out at the receiver terminals The supply power
is most easily obtained from the real part of the product of P

l and the

conjugate vector of 1^ The supplied power W^ is

where ^ =P\^= C\P\gQ

is the no-load loss when P
2
acts at the receiver terminals, and
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IB the short-circuit loss when the current in the receiver circuit IB

s =p cos
</>2 + q sin </>a,

where

and ~
1 I -I cos (<-(/>*)'

COS
(<

-
Ai/-) + TO COS (< + &t -

and depends only on the kind of load, i e. on cos

Since the power at the receiver terminals is

we get the percentage efficiency

W W"
100 (105)

Both at no-load and short-circuit the efficiency is zero, for in the

first case the useful current is zero and in the second case the useful

pressure In the former case, the sum of all the losses is W
Q
and in the

latter WK .

Starting from no-load and keeping the load power-factor constant,

the efficiency and the heating losses WK gradually rise as the load IB

gradually increased, whilst the no-load losses JF decrease. When
WK=W^ the efficiency will be a maximum, for, with a given loss

W + 7^= const, the product WQWS= C\C\g i F%ll is a maximum
when the two losses are equal. Thus we see

For a gvo&n, Mild of load m a wiawtt, the efficiency is a maxiirmn when
the short-circutt losses comespondtng to tlie load cwwent equal tlie tw-load

losses corresponding to the loadpiessuie

The maximum efficiency for a given load power-factor is

W
Vra %= \

100.. (106)

2JF + -rW,.
cos <^3

2

Fui'ther, we find by differentiation that the power factor cos<
2 ,

for which the efficiency is a maximum, occurs when

and (?

and the maximum efficiency is

W
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Considering equation (107; more closely, we see that the load current

72 at the absolute maximum efficiency is displaced m phase with respect
to the receiver pressure In general it will be found that /

2 lags
behind or leads P2 almost as much as /j leads or lags behind P

x

53. A Transmission Scheme. As an example of the application of

the no-load and short-circuit diagrams to a symmetrical circuit, we will

consider a transmission line This consists of a supply station where

the pressure is transformed up, the transmission line and the receiver

station where the pressure is transformed down. We will assume both

supply and receiver transformers to have the same ratio of trans-

formation

(1) No-load measurements

P
l
= 1000 volts, / = 100 amps.,

(2) Short-circuit measurements

If= 1000 amps ,
PK= 250 volts,

We get ^-C^C

,
P

2
= 985 volts

= 80 K w
,

J
2
= 985 amps.

= 2 =5730(^0-^) 12

FIOB. lOla and I No load and Short-drcult Diagrams of Transmission Line.

For a load current /, = 985 amps., the watt and wattless components
of the no-load current are, in percentages,

The no-load diagram is drawn in Fig 15la
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For a power factor cos <

2
= 9 in the receiver circuit, the percentage

current increase is 2

At short-circuit, the watt component of the supply pressure is

W
PKW=^T= 80 volts

80
or

g-gg
= 8 12 % of the constant receiver pressure P2

= 985 volts The

wattless component is

PK WL =V2502 - 80a = 237 volts,

corresponding to 24*1 % of P
2 The short-circuit diagram is shewn in

Fig 151A The percentage pressure increase with cos <

2
= 9 is

Iii the transmission scheme, the phase displacement between current
and pressure is increased by the angle

Hence the supply phase-displacement is

<^
=

<f>2 + A</> + A<^J!r
= 25 85 + 12 25 = 38-l

and the power factor at the supply terminals cos <^ = 785
The efficiency of the transmission scheme is

where s = Ijc cos^ *7 cos M> + *r - 0a)
I -I

coB(<}> -<i> )

_ 4000 x 9 + 100 cos lir-85 _
4000 - 100 cos 4 9

94

hei 0/
985 x 985 x 0'9

71 /0 40000 + 80000 + 945 x 985 x 985

54. A Single-phase Transformer. As a further example, we will

take the single-phase transformer, which represents the simplest form
of all electromagnetic apparatus and machines The no-load measure-
ments taken on a 50 K v.A single-phase transformer were

P10
= 5000 volts, 7 = 0-4 amp., W^ = 750 watts,
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and at short-circuit

IIK= 10 amps ,
PK= 250 volts, WK= 1000 watts

Hence the no-load watt current is

fP 750

and the no-load wattless current

^>iraWlo-7
a

irW042 -0152 = 0-37 amp
/ w is 1 5 % and / WL is 3 7 % of the load current (10 amps ) ; from

these two magnitudes the no-load diagram (Fig 152a) is obtained
At cos <

2
= 9 the percentage current increase is

9 fi*72

With normal short-circuit current, the watt component of the primary
pressure is -^

i.e. 2 % of the normal pressure The wattless component is

p^ =^--f^=>/250
a -100B = 229 volts

or 4 58 % of the normal pressure From these two values we obtain

t 4

FIGS 162a and 6 No-load aud Short-circuit Diagrams of Single-phase Trunsfoi iner

the short-circuit diagram (Fig 152&) At cos</>2
= 0'9 the peicentage

pressure rise is

The increase in the phase displacement between pressure and current

due to transformation is

= 573 1 + 2 = 3 28.
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The angle of phase difference on the primary side IB then

and the power factor at the primary terminals,

008(^ = 0871,

whilst cos fj>2
= 900

In Fig 153 the percentage increase of pressure and current and the

increase in phase displacement with constant pressure and current on

fftaJf

X

lead J

Pio. 168

the secondary side are also shewn as functions of cos <
2

It is seen

that all three magnitudes vary most in the neighbourhood of unity

power factor, i.e. cos <

2
= 1
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55. Load Diagram of an Electric Circuit As we have seen, the

no-load and short-circuit diagrams are well suited for investigating the

working of a short transmission hue or modern transformer For repre-

senting the phenomena, however, which occur in a long transmission

line or in motors where electric energy is transformed into mechanical,
these diagrams are less suitable If we have, for example, a motor fed

from mains whose pressure is kept constant, we require a diagram which
will enable us to see directly how large a watt current and how large a

wattless current will be taken by the same at any given load. Further,
the diagram must shew, at the same time, the efficiency and speed of

the motor when working at this load and also its overload capacity
We shall now shew how to construct a diagram from which all these

quantities can be accurately obtained For this purpose we start

from the equations (88) and (89) of the general electric circuit, viz

and

From these, it follows

p
and since !->= ,

the current in the supply circuit will be
"

Put
i-yfa
n

and

A o.
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then the current Z, can be written .

Pro 164 Equivalent Circuit of the
General Blectrio Circuit.

. . ..(108)

This equation shews that every
circuit can be replaced by that

shewn in Fig 154, since equation

(108) also holds for this circuit.

We must now find, however, to

what the two parallel branches m
the original circuit correspond To
the branch with admittance yb a

power Wb is supplied, where

i e. the hcvnch with admittance yb coiiesponds with respect to power to tlie

load circuit with impedance z2 .

To the second branch with admittance ya a power W* is supplied,
which, expressed symbolically, equals

This corresponds to a loss which is proportional to the square of the

pressure This loss includes such losses as iron losses and those which
occur in the dielectrics of electrical apparatus and machines Con-

sidering finally the path with impedance zKt we find 111 it the loss

This is the copper loss in the circuit, and represents that part of the

electrical energy which is dissipated in the form of heat

/ Quad.

imaff values

FIG 165 Diagram of the Equivalent Circuit in Fig 154

To find the current /
x

for a given impedance z
z ,

we first of all

calculate^,, and yb and set off the same in a rectangular co-ordinate

system (Fig 155) The negative part of the abscissa axis is taken for
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the axis of the imaginary values By adding ya and yb geometrically,

we get the resultant admittance yr Since the admittances ya and yb

are in series with the impedance gf ,
we first find the impedance zr

corresponding to the admittance yr Thus

and Zr=L =^-j
u
-r =rr -j;Kr .

Adding now the short-circuit impedance ZK to ar ,
we get the resultant

impedance The inversion of z gives the admittance y,
which falls

in the first quadrant Finally, multiplying the admittance y by the

terminal pressure P-^ ,
we get the current /

t
in the supply circuit As

usual, let the pressure vector P-, fall on the ordmate axis, so that the

current vector 1^ coincides with the admittance y Then the vector

00 not only gives the direction of the current in the supply circuit,

but also its magnitude to a certain scale

Pio 166 Construction of Ourreut DIngmm

To determine the locus of the current vector I
l}
we first find the

curve traced out by the vector yb when the load c
2
is varied This is

Assume, by way of example, that the phase displacement <f>2
in the

load circuit is constant Then the locus of the admittance

tneis a straight line Ka (Fig 156) making the angle
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ordinate axis In order to draw the load diagram for this case, we fiist

set off the constant admittance

and draw through A a straight line KB at angle (< 2 + 2^2 ) to the

ordinate axis. The admittance yr is then represented by the vector

OB drawn to this line. Then, to find the impedance zr corresponding
to yr ,

we find the inverse of the straight line KB with the origin as

the centre of inversion This inverse curve is not drawn in the fourth

quadrant, but m the first, since we must return to this latter by a

further inversion Now, the inverse curve of a straight line is a circle

passing through the centre of inversion
, thus, in this case, the inversion

circle is K'n and the centre of inversion is the origin 0. The centre

of K'B lies on a straight line passing through the inversion centre and

perpendicular to the line Ka The radn-vectores of the circle K'a from
then give the impedance ar We now add the short-circuit

impedance ZK to zr by moving the co-ordmate system to the right

through a distance equal and parallel to zs The origin 0' of the new
co-ordinate system consequently falls in the third quadrant Then the

vectors drawn to the circle K'nt or, as it is now, K'
,
from this new origin

give the total impedance z of the whole circuit Finally, still remain-

ing in the same quadrant, let K, with centre M on the line ffM'i, be the

inverse circle of the circle K'C) with ff as centre of inversion Then
the vectors drawn from 0' to this circle K represent both the

admittance y and to another scale the current /, supplied to the line

m magnitude and phase, when the vector of supply pressure P
l

coincides with the ordinate axis.

The circle K is the desired current diagram, and on it lie the short-

circuit point PK and the no-load point PQ
. The former is the inverse

of the pomt 0, and the latter is obtained by a double inversion of

the point A.
In Fig. 157 the final current diagram JTis drawn to another scale.

All points on the upper part of the circle, lying between PK and P
,

correspond to points on the straight line KB above A, i e to load m
the branch yb ,

while points on the lower part of the circle correspond
to points on the straight line Kn below A, i.e. yb is then negative and
the branch works as a generator The ordinates of the circle K shew

directly the watt currents Iw ,
which the circuit takes in or gives out

By multiplying these currents by Plt
we obtain the power consumed

in the circuit.

The loss and power lines are now found in the same way as above.

The line of supplied power W^ = P^IW is simply the abscissa axis The

copper loss may be written

^-^^--BjcV,,
where V^= is the equation of the loss-line and EK is a constant This

loss-line is the semi-polar of the circle with respect to the origin, as

shewn previously The distance P~B from a point P on the circle to

this loss-line is proportional to the copper loss
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Consider the triangle OPrP. The two aides OPK and OP represent

the short-circuit current IK and the supplied current Jj resectivoly.

Let each side of the triangle be multiplied by ZK) then OPK = IK^k.

represents the terminal pressure P
x
and OP = I^K the pressure con-

sumed m ^A Since the three pressure vectors PI, I^K and
'-^

form a

closed tnangle, the hue P^P will repiesent the pressure vectoi jf
to

the same scale of pressure This pressure causes a loss Vit
m the

branch whose admittance is ya C^C^o-
As before, we can write

where Va = is the equation of the loss-line This loss-line is tangent
to the circle at thejDomt PK and the loss Va for a point P on the circle

is proportional to PS, the distance of P from this loss-line.

Fro 167 Cuirent Diftgiiuu of Eqiihalont Circuit Iii Fig
1 164

The power-line can now easily be determined Denoting ll'\
- J

r
K

by WM we have WH=A^N^-B^K =AjNtt ,

where we wnte W^ =A 1
W

1

to obtain symmetncal notation, Wj = being the equation of the
abscissa axis

The line W = foi the remaining power sitter subtracting tho

copper losses, clearly passes through S
s , the point of intersection of
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the abscissa axis with the hue of copper loss V*= Further, since

Wa is zero at short-circuit, the power-line Wrt
=

passes through the

short-circuit point P .

The power consumed in the branch of admittance yb is

Wt
= Wi - rx - Va=^Wj -SM =A,Wtl

where V =BKVK + 5 V = V
denotes the sum of the losses, which are represented by the line V =
As the equations shew, this resultant loss-line must pass through S2 ,

the intersection of the two loss-lines Vf=Q and Va
=

0, and we know
this point, since we have found both these loss-lines The resultant

loss-Line V = must further pass through the intersection of the

abscissa axis W
t
= with the resultant power-Line W

ft

= This

resultant power-line contains the points for which the power in the

branch yb is zero, which only occurs at no-load and at short-circuit.

Hence, the resultant power-line passes through the points f and P .

From this we can find Slt the intersection of the power-hue W6
=

with the abscissa axis, and the resultant loss-line V= can be drawn

through the points Sl
and Sz

.

In a branch of the equivalent circuit, the supplied power, the losses

in this branch and the useful power, which is the difference of these

two, can always be represented by three lines, which intersect in a

point It was shewn in Sect 25, that a straight line drawn between

two of these lines parallel to the third is divided in the ratio of the

first two powers by a line from the point of intersection of the above

three lines to a point on the circle Such a line can, therefore, at once

be used to represent the efficiency or the percentage loss in a branch of

the equivalent circuit.

In Fig 157 a line has been drawn parallel _to the abscissa axis

between the hnea Vjr=0 and Wa= 0. A line S~P then divides this

y
line in the ratio ~, the ratio of the part nearest the loss-Line to the

" o

V V
whole line being

-* =-^ and the ratio of the part nearest the
^.+ ^r i w w

power-bne to the whole Line being ^= 5=-=-=? Starting from the
"a.+ rjr "\

loss-line Vff
= and dividing the line drawn parallel to the abscissa axis

into 100 parts, the division where S^P meets this line gives the

percentage loss in the branch SE)

In the same way (Fig 157) a line is drawn parallel to W =
between Va

= and W&
= 0, and the intersection of this with PKP gives

the percentage loss in the branch yat
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To obtain the efficiency of the whole equivalent circuit, the

procedure is similar Draw a line between Wj = and V = parallel
to the abscissa axis and divide it into 100 parts, beginning at the

power-line W6
= Then the intersection of this line with S:

P gives
the efficiency, w w

We will now consider the relation between the power Wb in the

equivalent circuit and the power W2 consumed m the original general
circuit At the beginning of this section we denoted the load-

impedance of this original circuit by z
z
=

Also =C=

Hence Wb
- /6cos & =A/2 cos (02 + 2

^2

and r
2

=
/2 r2 COS
(< 2

Therefore, the efficiency of the general circuit is

TJ/ = 4
100

COS<^2 -' COS
17/0 W cos

Since 2^ is usually a very small angle, 77 is only slightly greater
than

77'.
If 2^2 is known, we can divide the horizontal between the

power-line W6
= and the loss-line V = into 100 f

08 ^2
, equal^

COS (02 + 2^2)

parts and read off 17 directly instead of
17'-

As shewn above, the line PKP serves for reading off the pressure in

the receiver circuit for any load. The current 7
2
in the receiver circuit

can be obtained ]ust as easily from the diagiam At any point P,
we have

which can be proved as follows

For any load, we have

/,-M =/!-(*!- /A) jr.

and at no-load Q = I -(Pl
-

IaZK) ya .

Subtracting the second equation from the first, we obtain

Since

we have 1 + s
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heiice

I
2
=

or, in absolute values,

This diagram, which enables us to completely investigate the

properties of any electnc circuit and to study the working of the same,
we shall refer to as the load dmgiam of the circuit From it we can

find directly for any load the following values the current I and

phase displacement <, in the supply circuit, the pressure -P
3
m the

receiver circuit, the total power W\ supplied to the circuit, the power

W^ taken out of the circuit, i e the useful power, the efficiency TJ
and

the percentage losses m the copper and in the iron and dielectrics

56. Simple Construction of the Load Diagram by Means of the

No-load and Short-circuit Points It now remains to be seen how the

circle diagram K admits of a simple construction 01 calculation. Two

points on the circle namely, the no-load point P
Q
and short-cucuit

Fio 168. Construction of the Oirolo Diagram.

point PK are already known by experiment or otherwise The

perpendicular to the line joining these two points passes through the

centre M of the circle In addition to this, the direction of the line

P
Q
M from the no-load point PQ to the centre M of the circle can easily

be determined as follows

In Fig 158 the straight line KB represents the admittance ya -\-yb
.

This line, as shewn above, is inclined to the left of the ordmate axis at

the angle (f>2 +^2 The corresponding impedance is represented by
the circle K'a . The line OM'b falls below the abscissa axis, making an

angle $, + 2^2
with it Then, after drawing 0(7 equal to ZK and

taking the inversion of the circle K'u to such a constant of inversion that

K'jt represents its own inverse curve K, the points PK and P represent
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respectively short-circuit and no-load m the circuit. Now, as shewn in
Sect. 48, p 159,

Consequently the angle /3 which P^M makes below the abscissa axis is :

Usually Ai/-
=

i/'j

- ^ is very small and may be neglected. When
< = () (le non-inductive load) the radius P

Q
M makes the angle

OrK Pfi + Af with the abscissa axis, and lies above it

If the point PQ lies above on the circle, the opposite sign must be

given to the angle OPKPQ This is the case when the phase displace-
ment at no-load is smaller than that at short-circuit

In Fig 159, for the sake of clearness, only those lines are drawn
which are necessary for the determination of the centre IT of the circle,

FIG 15(1 Determination of Centre of Circle

and are obtained at once from the short-circuit and no-load points,
when A^ is known or negligible, as the case may be
When

</>2
and Ai/< are zero, the determination of the centre M of the

circle is greatly simplified, as is shewn in Fig 160 In this diagram,
a vertical is drawn through the no-load point P to cut the line OPS
The centre of this vertical is the same distance above the abscissa axis

as the centre M
From this construction the effect of disymmetry in the circuit on the

position of M is clearly shewn The greatest disymmetry occurs when
z
l
=

0, i e when ^ = or -
(i/'1 + \j/2 )

-
Ai/-

= and the centre lies at

-M^-o,, or when s
2
=

0, le $Z
= Q or - (^ + ^a)

- A^ = -2^ and the

centre lies at M^^
The centie M can also be obtained by another analytical graphical
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method by jising the line M.O through the origin as well as the line

bisecting P PK at right angles This line makes an angle a with the

abscissa axis, the tangent of which can he calculated from the following

formula, which is deduced from Fig 1 56

tana

Pia 100 Simple Determination of Centre of Circle when <k>=Q

In most cases C-. and G
2
are very little different from unity and still

less from one another, and therefore A^= ^ -
\j/2 is a very small angle,

at most 5 Hence, neglecting this angle, we obtain the following

simple formula

tan a =
- IK sm <

2 + J , sin
(< r - <&) + / WIl cos (^ - ^2)

Is cos
/>B -h 7fl WL sin ($K

-
c^a)

- / , cos ($f
- &)

'

For a non-inductive load, 2
=

0, and we have then,

^0 IF SIM^ + 7 WL COS (f)

T T+ J-Q WL Sln 9JT
-

^O W COS <p^

toil ntan a=

/JC-/D COS
((/> + <*)'

57. Load Diagram of a Transmission Scheme. As examples of the

application of the load diagram, we can consider first a transmission

scheme, consisting of a supply station where the pressure is transformed

up, a transmission line and a receiver station where the pressure is

transformed down again.
The following readings are taken on no-load and short-circuit

(1) No-load

P
1
= 1000 volts, / = 325 amps., W = 40 K w

(2) Short-circuit

Pj= 1000 volts, 7A = 3000 amps ,
WK= 900 K.W.
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The transmission scheme works with a constant power-factor of

cos <
2
= 95 in the receiver circuit.

The load diagram is shewn in Fig. 161 drawn to a scale of

1 mm = 60 amperes.

Fio 161 Load Diagram of Transmission Lino

Since such a scheme can in general be taken as symmetrical, we get,

by direct measurement from the diagram,

(7=1-06.

The line OPEi 50 mm in length, represents the primary pressure

P^IOOO volts to a scale of 1 mm = 20 volts The receiver pressure
on no-load is

PBO-2QC APjr
= 20x1 -06x44 5 = 945 volts,

At P the receiver pressure is

A = 20 x 1 06 x 32-7 = 695 volts.&

The short-circuit current in the receiver circuit is

I2S =C.P~^PK= 1 06 x 60 x 44 5 = 2830 amps.

58. Load Diagram of the General Transformer. The general
transformer, whose method of working is described in Section 39,

can be replaced by the equivalent circuit (Fig. 121, p 120). r
x
and ?

2
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are the primary and secondary effective resistances, S
l
and S the

primary and secondary coefficients of stray induction of the trans-

former The constants r
2
and #

3
= 2ire$a are both reduced to the

primary circuit

The usual case of the general transformer is the three-phase induction

motor The secondary power JV
Z is here mechanical and equals

where ij,( l)
is the ohrmc lesistance equivalent to the load and

is placed across the secondary terminals The slip s gives the relative

velocity of the rotary field relative to the secondary winding Since

the loss in the secondary circuit due to the rotor resistance 1 B is I2r2)

the total power supplied to the secondary circuit is W=
I\-^

As all phases are alike in a polyphase motor, we need only con-

sider one phase
The following measurements were taken on such a motor .

(1) No-load, i e. synchronism (
=

0),

the load resistance ?
1

2 (
1

) being infinite
\s /

J = 10 1 amps., I\ = 1 10 volts, W
Q
= 146 5 watts

(2) Sliort-cirowt, i.e. at rest or s= 1, since iJ- - 1
j

is zero

7A - 105 amps., P^ = 1 10 volts, WK = 4040 watts.

1 *
/j

M

Hence, we get cos &"=
110 x 10 1

* '132 '

, 4040 . __
003 **- 110 x 106

= 35 -

In Fig. 162 the no-load point P and the short-circuit point PK are

drawn to the scale 1 mm = 2 amps For standard three-phase motors

we can put A^ = 0, and further, since ^ =
0, we get the centre of the

circle by means of the construction in Fig 160.

The lines of output Wo = and of total loss V = can now be

determined by means of Fig 157, and from these the efficiency 17
is

obtained. <

Only the slip s, from which the speed of the motor can at once be

determined, remains to be found from the diagram This is

,_
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where W denotes the power supplied to the secondary circuit Hence,
the slip in per cent is equal to the percentage copper loss in the

secondary winding, and can be represented in a similar manner to that

shewn in Fig 157. The construction is as follows

Draw the loss-line V
a
= for the loss Vz

= J\i%, and the power-lineW = for the power w supplied to the secondary circuit Since, as

we have shewn, the secondary current /o is proportional to P0P, the

loss-line Vj = is tangent to the circle at the no-load point Pg
The power-line W =

passes through the no-load point P ,
since at

this point W=r}-$ = (because /
2
=

0), and through the point on the
s

circle for which s=oo Since this latter point cannot be determined

experimentally, we will employ the following approximation
The line V

T
= for the primary copper loss J

8
^ is identical with

the loss-line Vjr = Neglecting the iron losses at short-circuit, we
have this equation for the short-circuit point,

Hence, if we draw a line P^C through the short-circuit point parallel

to the loss-line Vj
=

0, i e a perpendicular to the line OM, this line is

Via 102 Load Diagram of the General Traiiflfonnor

divided by the abscissa axis (W,=0) and the power-line (W = 0) m
the ratio W

^
W That is, from Fig 162 we have

P~D

Substituting

we have
DC i
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Hence we can find the power-line W = by drawing a, line PKC

perpendicular to OLI and dividing it at the point D in the ratio -^r
i

The line P
Q
D is then the power-line W =

The slip s, or the percentage secondary heating loss, is now read off

from the diagram by the point of intersection of the ray from J* and
a kne parallel to W =

Drawing the image F^ of the point Pa in the continuation of PpM,
the slip can be measured by P^F, where F is the point where JP^P

produced cuts the loss-line V
2
= The scale of slip on the loss-line

can best be found by determining the slip for any load-point by the

first method and marking off the value on the loss-line V
2
= This

construction for reading off the slip is clearly correct, since the two

triangles P^P F and P$H are similar

The second method for determining the slip s is accurate and
convenient for small slips
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59. Pressure Curves of Normal Alternators In the preceding

chapters we have dealt only with alternating-currents whose wave-

shape is a sine curve Stiictly speaking, such currents are seldom met
with in practice, for modern
alternators would become
much too expensive, if they
were required to generate

purely sinusoidal currents

with all kinds of load. Con-

sequently, we have to be

contented when the wave-

shape only deviates by a

certain specified amount
from a pure sine curve

Some 15 years ago, the

question of the best shape
of pressure curve was
much discussed in techni-

cal circles Some main-

tained that the peaked
curve, as shewn in Fig 172,

p. 1 99, was the most favour-

able for transformers, since

for a given effective pressure
the hysteresis loss is then a minimum, and the efficiency consequently

a maximum This is, however, doubtful, because every deviation of

pjo _I)i&gmm of^^^^ Revolvlng
Armature
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the current from a sine wave leads to an increase of the eddy losses in

both iron and copper Others, on the coutiary, maintained that the

peaked curve placed the greatest strain on the insulation, since for

a given effective pressure this curve shape has the largest amplitude.

Although many investigators at that time characterised this objection
as groundless, it is nevertheless upheld nowadays For lighting pur-

poses, the flat-shaped curve (Fig 172c, p 199) was held to be the best,

Fio 164.

since in this case the current remains longest in the neighbourhood
of its maximum, and therefore yields a steadier light
At the present day, however, such opinions are rarely advanced, the

prevailing opinion being strongly in favour of the sinusoidal pressure
curve In modern generators the greatest deviation from the funda-
mental is usually limited to 3 to 5 % In Fig 31 it was shewn how a

purely sinusoidal pressure wave can be generated The construction
of such a generator, however, is very uneconomical In order to employ
a strong magnetic field, it is necessary to bed the winding in which the
current is to be induced in iron, as shewn diagrammatically in Fig 163.
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Fio 106 -Diagram of Alternator with Stationary Armature

armature fixed and let the magnets 'roLtelfn wluS case we

-
'

<" ~^
i'

f iflflMIII HI. ,

' '

^fll

AO

Pia '166

165, a photograph of which is shewn in
exciting cunent is led to the magnet coils through

fj O
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slip-rings Iii this arrangement, which is especially adapted for

the production of high-piessure currents, the stationary armature is

also referred to as the stator

The pressure curve of these generators depends firstly on the shape
of the pole-shoe, and secondly on the armature winding If this latter

is concentrated in one large closed slot per pole, the pressure curve

will have the same shape as the field curve This is represented in

Figs 167a, I, c for different kinds of loads. It is of especial interest to

J

FIG 107 Field Curves of Alternator (a)
At No load , (6) with Non-lnductlve Load ,

(c) with Inductive Load

Fro 108. Pressure Curves of Alternatoi

(a) At No-load , (b) with Non-lnduotlve Load
,

(a) with Inductive Load

note the deviation of the curve at non-inductive load from that taken

at no-load. The no-load curve is symmetrical, whilst the curve taken on

load is distorted This distortion is of course caused by the armature

current, which reacts on the inducing field, and the difference represents
the armature reaction If the armature winding is distributed m
several slots, the pressure curve will no longer follow the field curve,

but will approach a sine wave, as is clearly seen from Fig 168 These

curves were taken on the same machine and under the same conditions

as the above except that the pressure of the whole winding was taken,
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whilst the pressures shewn in Fig 167 were taken from a single
concentrated coil

These last curves (for a distributed winding) are typical of the

pressure curves of modern alternating-current generators, and it is

clear that they deviate very little from sine waves.

60. Fourier's Series. As we have just mentioned, in practice we
have to deal with alternating-currents whose momentary values, as

functions of time, do not vary after a sine law, but according to some
other periodic functions In order to be able to carry out accurate

calculations with such currents in a simple manner, it is best to

analyse such a pressure curve into a sum of sine functions of different

frequencies The sine function possessing the lowest frequency is

called the first harmonic or the fwndamental, and all other sine functions,
whose frequencies are multiples of that of the fundamental, are called

lwgh&> harmomcs. Since Fawnf/r was the first to shew that every

periodic function can be analysed into a series of sine functions, such

series are generally termed Fouiw^s Semes

Before proceeding to deduce the same, however, we shall first quote
a few integration formulae which will afterwards be needed

These are as follows .

-+,r

"

(0
when m>n,

]

<Q when m = n = 0,
^

U when in =n>0j
where m and n are any positive integers

p+ir
Further, 1 GOBmxBiniixdx = Q . (110)

J -IT

+ir pTr
when m= 7i =

0,^
and I coBmxco8nxdx=-l TT when m= n>0, V ..... (HI)

^ "
[ when m^n J

In the interval,
- TT to + rr, let f(x) be any continuous single-valued

periodic function
,
we can then express the same by the following

series known as Fourier's Series

f(x)
= a

1
coax + l)

1
sm x + a

z cos 2a; + 6
2
sin 2a;

+ + an cos nx + bn sin nx +

The constant coefficients a
lt

a
2 ,

aa and 6
1 ,

Z>
2 ,

> are determined

by multiplying both sides of the equation by cos (nx)ch and integrating
from -v to +TT, whereby all terms on the right vanish except one

Thus, we get
/+IT f+ir

I f(x) cos nxdx = an \ cos2 (nx)dx anv

-+,

I

J ~

1 f
+ 7r

an = -
I f(x)
J -7T

or an = -
I f(x) cos (nx)dx.
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Similarly, multiplying all through by sin (nx)dx and integrating
between - v and + IT, we get

^G , (incjdx.

These two expressions for an and & can be somewhat transformed if

we integrate first from - TT to and then from to + TT, as follows

an = ~ I f(x) cos (nx) dx
J ir

= - \ I f(x) cos (nx) dx + I /() cos (nx) dx \

In the first integral put x= -
y ; then

f(x) cos (nx) dx=\ f(-y) cos (
-
ny) d(

-
y)

J -it J -it

.

or 1 f(x) cos (no)^ =
/(

-
a;)

cos (wa;) rfa;,

J-n- Jo

1 f
""

and we get an
-

\ [/(a:) +/(
-

a;)]
cos (TUB) dx.

'""Jo

I f""

Similarly, bn
= -

\ [f(x) -/(
-

a;)]
sm (n&) dx

""Jo

Example I. Find the value of i when the function i=f(wf) traces

out the rectangular curve represented in Fig 169

-T o +T

-1 i

Fia 169 Rectangular Altornftttng-Ourrent Curve.

From <at = Q to o)i= 7r, ^ = /J
and from urf = to ut= -TT, i= -I

1 f
+7r

1 f*
Then, an = -

I i cos nut d(wt)
= -

I [/+(-/)] cos ntai d(tt)
=
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^
H-ir -

i
/

and bn= -
I i sin nut d( (at)

= -
I [/

-
(
- /

)] sm twd d ((at)

[0

when n is even,

47
when n is odd.

nir

tr^ 4/rsinwi smSotf sm5a>tf
Hence 4= -^r + s + = + ..+

TT
1_ 1 3 5

Example II. Find the value of a when the function i=f(tat) traces

out the triangular (saw-tooth) curve shewn in Fig 170.

\-ir -*
Time

Pia. 170 Triangular Alternating Current Curve

7T 2
From wt= to o>t<=

,
i= -I(<at).A if

ut= W=-^,

Accorduigly,

1
a cos 7iw^^

1J
" U

I [I(ir
-

at) + {
-

I(ir
-

(at)}] cos no)td(tat) 1 =
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i r
+ir

and &,,=
-

^8lnn<atd(<at)

2 f*

2 [7 <at -
(
- 1

tat)] sin ntat
d(a>t)"^ Jo

Sin Tl

If W6 put 0>i' = 7T - 0)^
3

then the last integral becomes

9 f?
+ -^ (/ Gjrf

7 + 1 (of) sm (TITT
-

nut?) d(
J o

Foi all eveu values of TI,

sm (mr nut')
= -siuwuf,

and for all odd values of n,

sm (mr
-

nutf)
= sin 7iwf.

Consequently, we get

, 4 f?
on= -2 2/wisin7i(o^(ajAJ

ff Jo

when ?i can only be an odd number
, thus

7.
87 f

ft - -"

87

fi
*r2 25 J i ,-249

Hence i = |
sln "* _ sm 3w^

.
sin 5W _ sm 7otf

T* I 1 9
+

25 49
+

In this example not only the coswwtf terms vanish, but also the terms
sin nut, for which n is even

This latter pi operty is common to every cww wJwse two halves with testped
to the abscissa axis ate symmetrical, i.e when the two halves coincide
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when placed one above the other, as m Fig 171. Or, coiisidermg the

expressions,

1 f
+7r

1 ("*"*'
an= -

\ f(x) cos iixdx = -
\ [/(a;) +/(#

-
T) cos ?MT] cos nx dx

^J-n- VJQ

1 f
+ir

1 f
w

and & = -
I /(a) siu no; dx = -\ [f(x) +f(x

-
?r) cos IMP] sin ?ip

""J-TT ""Jfl
' /

Fia 171 Symmetrical Curvo with reapoo

we see for all even values of n, since COSTT= +1, that an = and fin ==0,
-****

provided that
/()--/(*-,).

In practice, nearly all curves have this property ,
hence we can

always omit those terms whose frequency is an even multiple of that

hln ut

Fiu 172 Effect of Tliird Harmonic on Wave-shape
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of the fundamental. An exception is the pressure curve of homopolar

machines, which, however, are seldom used.

Considering again the expression

1 f+ ir
1 f+rr

an= -
fix) cos nx dx,= -

| [f(x) +/(
-

a;)]
COB nz dx,

*}-* ""Jo

we see that aH is always zero when

i e an vanishes, and consequently all the cosine terms of the series

vanish, when the pressure curve is symmetrical about the origin

I sin cot

Fio 178. Effect of Fifth Homioiiio on WavB-almpo

The curves m Figs, 172 and 173 shew the influence of the highei
harmonics on the shape of a curve. Pressure curves similar to those

shewn in Figs 172 and 173 occur frequently in practice

61. Analytic Method for the Determination of the Harmonics of

a Periodic Function If we are given a periodic curve taken by
experiment (either by the point by point method or by an oscillograph)

and wish to analyse the same, it is not possible as a rule to express it

by means of a finite series, so that the above method cannot be used

for determining the amplitudes an and l,t

If the curve is taken by the point by point method and 2m
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momentary values have been measured at equidistant points in the

whole period 2ir, then we start from the equation

i = a
z
cos tat + \ sm at + a

8
cos 3<at + b

& sm 3ut + . . .

and apply the Principle of the Least Squares, whereby the constants
an and bn must be so determined that (ablated

-
manured)

2 is a minimum,
i.e we must have

O (t calculated
~~ * maainred) = r\

Van

iMl/1
V

(* calculated
~ *

uieiurared) _ n

36.
'

and we get just as many linear equations as there are unknowns.

Denoting the 2m measured values by ^, %, i%
. 4m >

then

2 f 2ir 4?r Sir 2(m-l)ir . "I

a,= -I^COS. - + *2 008^4-10008=: + +*__ 1 COS
x

-
y - lm >>1 m^ 2m 2 2m 8 2m m * 2m m

j

7
2 f . 2ir 4jr . GTT 2(7n-l)7rl

!= -ii,sin ., + *, sin _+zR sm,r- +... +4__i sin
x '

},1 mp 2m 2 2m * 2m m * 2m J

and in general

2
f

2?r . 4ff GTT 2(m-l)ir . 1
an = -1 1

COS7l;r- +4oCOSTO;. + en COS9l n
- + ... + m_iCOS7l

' -^n >,n mY1 2m 2 2m 8 2m m l 2m m
j

In order to impress this method more clearly on the memory, its

mathematical derivation can be considered from the following physical

conception, more familiar to electrical engineers.
An EM.F. en

= cos nut is induced in a circuit carrying a current

represented by the curve

i = a^ cos (at + &
T
sm tat + ffl

a cos 3tat + 6
fl
sin 3<at + ...,

in which we require to find the 71
th harmonic of the cosine terms All

the current hannomcs must be wattless with the exception of that we
are considering (the 7i

Ul
),
and the mean power is

On the other hand, the mean power is given by

lf
r

i dt-fr\ ^ cos nut dt

= mean value of (t cos nut).

Hence an = 2x mean value of (i cos nut),

and similarly, ln
= 2 x mean value of (i sin nut).
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This is the same result as that ]ust obtained in another way
If we take, for example, 2m=2 4, theii the calculation can be carried

out in the following tabular form

Experi-
mentally

Determined
Momentary

Values.

hi

ha

Coefficients for Determining the Amplitudes.

&! 03 68 OB &e 07

In the first column are the experimentally determined momentary
values, taken 15 from one another In the second column are the

cosine values, by which 4
1} i% to im must be multiplied in order to

find a ;
in the third column are the sine values, by which ^, i%,

etc
,

must be multiplied in order to find 6
1S etc

,
in the next columns are

the coefficients for determining a
a ,

b
s ,

a
6 ,

&
e
and a*, Z>

7
.

It has here been assumed that the given curve is symmetrical about
the abscissa axis, whence

1
= -im+i, % = -

m+si and so on If this is

not exactly the caae, the mean value between T and ^m+1 must be taken
in order to get ^ Further, for symmetrical curves, the origin can

always be chosen so that m= 0.

62. Graphic Method for the Determination of the Harmonics of a
Periodic Function. Instead of the above analytic method, we can also

proceed graphically, which is especially convenient when the whole

curve, and not only a few points on it, is at hand An example of

such a method is that given by Houston and K&iwelly, M World, 1898,
which depends on the following theorem

"If an odd number w of half waves of a sine wave are divided into

p sections by jj vertical hues equidistant from one another, then, when
p> 1 and p and w have no common factor greater than unity, the sum
of the areas in the odd sections equals the sum of the areas in the even
sections

"
In the summation, all surfaces above the zero line are

taken as positive and below as negative
To prove this theorem, divide the abscissa axis of the sine curve
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from x to x + WTT into p equal parts, draw the ordmates through these

points, and find the area of each section (see Fig 174)

I

Now find the sums of the areas of the even and uneven sections, and

equate the difference of these two sums to zero, thus the following

expression F must equal zero

F= cos x - 2 cos (x +
J
+ 2 cos \x+ 2^

+ 2 cos -U + (p-l) l-

= cosa; - 2 cos (x+ J
+ 2 cos (x + 2

J

,
- / 0-1 twr\

- 2cosfC+-f-
5
---

J
+ cosa;

/ WTT\ n ( n wir
-2 cos (a;

--
)
+ 2cos U-2

\ pJ \ P

= 2coszJl-2cosM>- + 2cos2w-- .2
\ P P * r

Multiply both sides by cos^ , then, applying the formula
2p

2 cos x cos y = cos (# + y) + cos
(a;
-

?/),
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all the terms ou the right-hand side except the last cancel out, so that

we get - .,W7T_ /-1 l\WJT

= 2 cos x cos -5-
= 0,

.a

and, since j? and w have no common factor greater than unity,

On the other hand, if w =p, and we commence to divide the wave at

a point where it passes through zero, so that a;= 0, then

F=2p,
i.e. equals p times the area of a half wave, which can also be seen

directly from Fig. 174
From this theorem we get the following rule :

A wave-line, representing graphically a semi-penod of an alteruatmg-
current, can he expressed by

fl
x
cos x+ Sj sin x + aa cos 3x + bs sin So; + . . .

In order to find the coefficient bn of the sine terms, starting from

zero, we divide the half wave-length into n equal parts and determine

by some means or other the difference F between the sums of the
even and the odd area-sections

Then, since F equals the mean ordmate of the sine wave of amplitude
2

bn times T, i.e. equals bn -
r, we get

where T equals half the wave-length of the given wave
To find the coefficients an of the cosine terms, we must again divide

the half wave-length into n equal parts, but we must now start at a

quarter wave-length from the zero of the 71
th

harmonic, i e at -

2w
of the interval of the given naif wave. In other words, the dividing
lines for the coefficients a he midway between those for the coefficients b.

Then, as above, we get, from the difference J^ of'the sums,

This method is not strictly correct, since in the surfaces measured
for one harmonic the surfaces of those harmonics are also included
whose frequency is a multiple of that of the fundamental This

inaccuracy therefore occurs as soon as we come to the ninth harmonic
The surfaces can be measured with a plammeter In order, however,

to obtain greater accuracy, the following device may be used the
areas of the given polygons ABCDA and ABODEA'A (Fig 175),
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which have to be measured, are divided into equal even and odd

sections, which can be omitted without further ado, so that only small

surfaces remain to be measured, these are traversed in the proper
sense with the planimeter, and the result can at once be read off.

t

Pin 176 Determluatlon of Aroas (or finding
1 Third Harmonic.

In Fig 175 the surfaces F and Fl
are obtained directly by means of

a, planimeter when we trace out the small areas flt /2 , /, and f[, /2', /,'

respectively m the direction indicated by the arrows, since

-F=/i-/a+/3 and F^A-fi+f,.

After the coefficients &,, OK, 7 &), &B , &? of t^e harmonics have

"been found in this way, we can also determine the coefficients Oj and 6j

of the fundamental, by taking the planimeter over the whole surface, ,

in the one case starting from 8= and in the other z = I To obtain

! and &n however, we must not directly substitute the surfaces F
nnd Fl

as measured in the formulae for an and ,&, since in addition to

the area enclosed by half a wave-length of the fundamental, there is also

measured the sum of the areas of all the harmonics within this

half wave-length, ^ r

*1

consequently,
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Similarly, we get i
=

5-^ /S ~" cos
(
n ~

-0 oJT
j

71 -i

=
~~2T

+
3~~5~

+
7~~

In Fig. 176 the current curve of a homopolar alternator is shewn
This curve has been analysed by both of the above methods In the

7ffana

FIG 170 Analysts of Hxpertmeutal Curvo into Its Harmonica

analytical method, the distance 2r, corresponding to 360", has been
2_

divided into 24 parts , thus one division equals ^-
= 15 The equation

found in this way is
~"

i= -3 -7 cos corf + 99 9smo) + 2 96cos3ui

- 3 54 sin 3coi+ 2'57 cos 5o>/ - 12 8 sin 5<o2

- 1 -73 cos 7torf + 5 46 sin 7wtf

These harmonics are also shewn in Fig 176
The equation found by the graphical method is approximately the

same, thus

i= - 3-82 cos W + 99 2 sin o>+ 2 94 cos 3W - 3 29 sin 3ut

+ 2'38 cos 5wt - 13 4 sin 5<at- 1 98 cos 7 corf + 5 79 sin 7W.

We thus see that the latter method is correct within one per cent,

of the amplitude of the fundamental wave
In drawing out the curve of the equation found analytically, the sine

and cosine terms of each harmonic have been combined and set off in

their proper position with respect to the other waves The amplitude
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in and the phase angle < of such a combined wave are found as

follows . _
cos ?io>tf + bn sin nut = v a?, + 6" sin

(
nut + tan' 1

^? )

\ bj
= in sin (nud + </>),

where au= n sm< n

and bn
= in cos<i>n

By this means, we get for the equation of the curve (Fig 176)

* = 100 sin
((at + 358) + 4 61 sm (3W + 140)
+ 13 05 sm (5(orf+169) + 5 71 sin (7orf + 342 5)

63. Alternating-Currents of distorted Wave-Shape In Chapter II
,

we saw that when a varying pressure p acts at the terminals of a

circuit containing ohmic resistance, self-induction and capacity, we
have, from Kirchhoffs Second Law,

r
1 dp _dh r di 1= + +

Further, we saw that, with constant ?
,
L and 0, a sinusoidal pressure

always produces a sinusoidal current of the same frequency.
Since the pressure equation is linear, the law of superposition can

always be applied And since the
pressure always has the same

frequency as the current it produces, it is obvious that each pressure
harmonic of any pressure wave produces a current at its own frequency,

independently of all other harmonics

Thus, when

= PIM sm (tat + f) + P, U11X sm

then
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Or, we can write

max

+ + Z,imaz sin (nut + \j/n <), . (H2)

where the amplitude of the wtb current harmonic is

pnnitts

and <.n=tan~
v

\

The phase displacement < of the 71
th harmonic is positive, zero or

negative, according as

n<oL= -

or n=
<<

From this we see that each harmonic of the pressure wave produces
its own current, and further, from the law of superposition, all these

currents are entirely independent of each other.

The amplitudes of the currents do not all bear the same relation to

the amplitudes of the pressure harmonics, since the impedance of the

ntlk harmonic

depends on the value of n. Further, the phase displacement $a is also

a function of n, so that resonance cannot occur at the same time

with more than one harmonic Since this phenomenon, however, is

frequently due to the higher harmonics, it is not sufficient to consider

resonance with regard to the fundamental alone, especially where

capacity is present in the systems
Since the relations between a pressure and its current are different

fo*r every harmonic both as regards magnitude and phase, the current

curve is, as a rule, quite different in shape from the pressure curve

We will now shortly investigate the influence of r, L and C on the

shape of the current curve

Consider first the simplest case, when the circuit contains only
ohmic resistance, then

PZ-*- nmax __ j j. n
A nuix

= - and < n = 0,

i.e. the current curve has exactly the same shape as the pressure curve

and is in phase with it. This can also be seen directly from the

differential equation, since p = vr.
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If, on the other hand, the circuit contains both resistance and self-

induction, then

T -^JIUUHL j -i lltoL

1-n max = /
and <pn

= tan J

V 1 + {ntaLi)^
'

Hence the greater the value of %, the smaler will be f" uiax and the
* ntaax

greater <, that is to say, the higher harmonics are not so pronounced
in the current curve as in the pressure curve, when the circuit contains
ohmic resistance and self-induction Thus the self-induction has the
effect of making the current curve more nearly a sine wave
On the contrary, when the circuit contains resistance and capacity,

we have p
T _ mimx

an{^ < n
= tan'

r't 4-T^ / /~/ \ o

The higher harmonics are now more prominent in the current curve
than in the pressure curve, and the current curve may become very
greatly distorted, when there is sufficient capacity in the circuit.

64. Power yielded by an Alternating-Current of distorted Wave-
Shape. The power of an alternating-current of any given wave-shape
can be expressed by the rate at which it develops heat in a resistance,
thus ..

Putting i = 7
1 ,, ulx sin(W + ^ -

<^) + J, limx sin(3u/ + ^ -
</>s) +

and remembei ing that

|-
+n. f when ?<%,

I sin wj sm nx dx, = \ when in = n = 0,
~ ir

[ TT when m = n>Q,
we see that, in the integration of i

z
dt, only those terms of a2 which

contain a sine squared yield a result differing from zero, and we get

1 f

-p\

Putting this power equal to J2
?, as before, wo get for the effective

GUI rent,

=
V T\ffU =

V:2^ i

(116)

From this it follows that each harmonic of the current curve pro-
duces its own heating in the circuit independently of the rest

,
that is,

the total heahnq Zosses in the cuctnt eqiial tJw wun of the Iwatmq losses diie

to the seve-i al Iiarmonics

AO o
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Similar to the effective current, we caii express the effective pressures

..................... (117)

Further, we know that the power developed by a current is

If we substitute the values of p and i and take the product, then all

terms vanish on integration except those containing a sine squared,
and we get

COS + sina sraax COS

. .(118)

We thus see that, with regard to power, all the harmonics are inde-

pendent of one another, each produces power for itself, whilst the

current of one harmonic produces no effect with the pressure of another

The cunent of any hamnonw is wattless with respect to the pressures of
oili&f hai-niomcs

We have now seen that all harmonics are in every respect inde-

pendent of one another, and the total power is obtained by the

summation of the powers of the several harmonics

Thus, each harmonic can be treated separately by itself, and can

have all the laws and graphic constructions which have already been

deduced applied to it.

If we have a problem for a pressure curve of given shape, we

analyse this curve into its harmonics, and treat each harmonic by
itself as in the previous examples In this way we find the current

and power of the harmonics, whence we get the effective current, the

total power and the efficiency In many problems where graphic
methods are used, it is possible to use with advantage separate parts
of the figure for each harmonic

65. Effect of Wave-Shape on Measurements.

I. Measurement of Induction Coefficients In practice it is often

required to find the coefficient of self-induction of a circuit of compara-
tively negligible resistance This is usually done by sending an

alternating-current through the circuit and measuring the effective

pressure and current Since, however, we have not always a sinusoidal

pressure at our disposal, it is of interest to investigate whether the

coefficient of self-induction can be determined from these two mea-
surements with sufficient accuracy when the pressure curve contains

harmonics.
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If p = P, ,
sin (ait + h } + PJmftl sin i

then i =^p s:

The effective values are then

By division, we get

From this formula we see that the pressure harmonics P8 ,
P5 ,

etc
,

must be very large in proportion to the fundamental P
l
for the root

to differ appreciably from unity Hence, for practical purposes, it is

generally sufficiently exact if we calculate the coefficient of self-

induction L from the effective pressure and current as measured, thus

neglecting the shape of the pressure curve If, for example, this curve

has a third harmonic, whose amplitude equals a third of that of the

fundamental wave, then the quantity under the root is 96 Thus
the error introduced by neglecting the correcting factor is but 4 %

If the ohmic resistance of the circuit is not negligible, for the above

formula (119) we must substitute formula (124), given on p 221.

II. Measurement of Ca/paaty (a) An analogous problem, namely the

determination of the capacity of a circuit of low ohmic resistance by
measurement of the effective pressure and current, may, on the other

hand, give results which are far from exact, when the pressure curve

deviates greatly from a sine wave

If - JPi 1I s

then t = C'wPj lnas sin ( at + ^ + ^ J

, raax sin

The effective values are

and
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whence, by division,

Instead of the factors ^, -L i we have now the factors 32
,
52

,

3^ 5^ 7 a

7 2
, ... under the root, which strongly affect the influence of the higher

harmonics on the readings.
For example, if Ps

=
^Pi, then

(7=-4N/0
7555 ^ 75 and not -^

o>P <af tar

In this case therefore it is not sufficient to merely know the effective

values of the pressure and current, but the curve shape must also be

taken into account

(ft) This, however, can be easily avoided in the following manner
In series with the capacity we
connect an induction coil L
and a large resistance E, as in

Fig 177 The induction coil

must be free from iron and

have sufficient stops to enable

us to regulate its self-induction,

vwwwv-
so *kat lts reactance %i

= >L

approximately equals the capa-

FIG m OoimoetionsfOT measuring Ctapncity
city reactance ^ =

-^ We HOW

vary the number of turns in the induction coil until the pressure P is

practically zero When minimum pressure occurs, then we know that

resonance is present, whence

-= toi = a;

<o<7

Of course, care must be taken that the resonance is duo to the funda-

mental and not to a higher harmonic We then mejisure the coefficient

of self-induction L for this number of turns without the resistance and

the capacity in circuit, and we get, with fair exactitude,

- P'

and from this C=
-%j

= -4-

By this means we ebminate all the disturbing influences of higher
harmonics in capacity measurements.
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36. Resonance with Currents of distorted Wave-Shape If a pressure
ve containing several higher harmonics acts on a circuit, partial
onauce will exist under several conditions This can be best

istrated by an example Consider the circuit shewn in Fig 178,
ich contains chiefly induc-

tee and capacity , partial ^=]f rL
onance will be caused by .

'TOOJOOO"
> wave of frequency c, when
s self-induction is such that

1

lice, if we vary L and plot the FIQ ITS

jctive current I as function of

j coefficient of self-mductiou L, a wave-shaped curve is obtained, as in

5. 179, which is often called the lesonaiice cwoe The curve shewn is

1,-vvu for a pressure curve having the equation

p = 1 00 sin ( tat + ^) + 30 sin (3u*+ f8)

+ 15 sm (5ut + ^B) + 20 sin (7otf + ^7 )

The frequency of the fundamental is c= 50, the resistance ? = 5 ohms,
> capacity 0=60 microfarads, while the inductance L was varied

A
\

0,08 0,11 0,16 0,i 0,26

Fin 179 RoBouauce Curve.

m to 0'3 henry The maxima of the effective current occur at

3 different values of L for which resonance is present The last and
aatest maximum is given when resonance is due to the fundamental,
3 next to the third harmonic, and so on
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Fig. 180 shews the several current harmonics plotted as functions of

the inductance L In order to shew the effect of the higher harmonics

more clearly, the scale has been made larger than that of Fig. 179

We see that the maxima of the several current hai monies, which occur

at resonance, aie related to each other m the same way as the amplitude
of the pressuie harmonics. The curve of iesultaiit current is obtained

by geometric addition of the harmonics With a larger inductance this

curve almost coincides with the fundamental With a low inductance,

r\ /'^
, ll \ I i

^ II \ I i /

,
I \ // \\ / / /
IP

~
I \V ///

,ll\ / i VY/
/ YV

0,01 0,02 03 Q.M 0,05 $08 0,01 0,0$ 0,09 QlLHwy

Fio 180 Resonance Curve.

however, it remains higher than this and also higher than the

harmonics The angles ^, by which the harmonics are displaced from
the fundamental, clearly have no effect on the resonance curve

It is, however, also interesting to see how one current curve passes
into the other as the inductance of the choking coil is altered We
shall therefore consider analytically the case when

is an even number. This condition lies directly midway between two
resonance conditions, viz between that due to the (7i-l)

Ul and that

due to the (n+ 1)*
11

harmonic, for n, being even, can only represent a

transient stage and not an actual harmonic The prevailing current

will therefore be

sin {(n- l

J(H+D n** sin {(n + 1) arf + &}
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Assume In_^ = /u+1 = /, then the current * can be written

* = V-i + Vi = 2/HU Bin (nut +^^ cos
(iiut

-
^^)-

This current is drawn out in Fig 181, for ^n
= ^b

= and n= 4.

As is seen, it forms a sine curve whose frequency is a mean of those

of the two currents and whose amplitude vanes after a sine wave.

The higher the periodicity of the harmonic, the more periods we get

FICI 181

for every period of the mam current Hence, by the interference of

two neighbouring harmonics, a current is produced, which possesses the

same character as currents caused by surging.
If the amplitudes /_! and J,1+1 are not equal, we still get a current

whose mean periodicity is n The amplitude of this current, however,
does not vary between zero and a maximum, but only between a
minimum and a maximum value, as seen from Fig 181
From the foregoing it is obvious that we cannot regard all pulsations,

such as those represented in Fig 181, as surging between free and
forced oscillations

B. Sti asset and / Zemieck,* who were the first to draw attention to

* Aunalen dcr Phymk, Bd 20, p 759
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these even harmonics, suggest that the same should be treated as

individual currents They substitute for a laige number of the uneven

harmonics, even harmonics which change their direction at every half

period of the fundamental. Such harmonics are shewn in Fig 182

By considering the field curve (Figs 167a and
b)

of a generator on

no-load and on non-inductive load, it

is easy to see that the distorted part
of this field duo to armature reaction

induces even harmonics in the stator

winding. The armature reaction is

obtained by subti acting the two curves

(Fig 1670 and &), and the curve thus

found is very similar to the second

harmonic in Fig 182, while the field

curve in Fig 167i is itself very like

the curve in Fig 182 printed with

a heavy line B Strasser and J
Zenneck call these harmonics pha&e-

chmiffinrj, since they altei their phase by 180 every half period of the

fundamental Since, however, it is not easy to treat phase-changing
currents and pressures analytically, we shall not pursue this method

of representation further All such phenomena can be quite well

explained by means of odd higher harmonics.

67. Form Factor, Crest Factor and Curve Factor of an Alternating-

Ourrent. Since the effective value of a periodic current or pressure

Fia 182.

FIG 188 Consti uction feu finding Effecthe Value of Periodic Curve (Fleming).

is often required, and it is a round-about way to fiist analyse the

given curve into its harmonics, we shall now give a method (due to

J?l&niinrf) by means of which the effective value of a periodic function

can be determined directly
For example, find the effective value of the curve given in Fig. 183.
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Take some point on the abscissa axis as origin for the polar diagram of
this curve. The area of the polar curve is then

whore y is the ordmate of the periodic curve
Now draw a circle whose area equals that of the polar diagram, and

denote the radius of this circle by E , then

= eflective value of the curve

The polar diagram of a sme wave is a circle
,
other periodic curves

give other polar curves, which are more or less similar to circles The
cucle of the same area as the polar curve can easily be estimated by
the eye, when a plammeter is not available By this means we have
a simple method for approximately finding the effective value of any
periodic curve

The ratio between the effective value of a periodic curve and the
mean value is often needed, and is known as the fam factor, since it

depends on the form of the curve The more peaked the curve is, the

larger is the form factor For a pressure cuive, the/om/ocfcw is

II
\T,

For the piessuie curves (Figs 169, 170 and I72a) the form factois aie

I'O, 1 15 and 111. The form factor of a sme curve is

Another characteristic factor which is met with now and again in

technical literature is the west fadoi /* which denotes the ratio

of the maximum to the effective value This is only of interest foi

piessuie curves serving as a measure for the strain put on the

insulation The maximum value of currents and pressures of given

curve-shape, on the other hand, has no direct relation to the iron and

*As suggested by Prof G. Kapp
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copper losses in electiomagnetic apparatus, and has therefore only

limited importance in practice.

. _maximum value _ P^ax_
effective value

and equals \/2 for sine waves
A thud factor, which is of especial impoitauce for motors, is the

ewve facto} , , , nJ
_ effective value P_

**

~
amplitude of fundamental

~
P^

Since only the fundamental of the pressure wave causes the effective

transmission of power from the stator to the rotaiy field, the load

capacity of a motor depends chiefly on the fundamental piessuro

Hence the importance of this factor
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68. The Equivalent Sine Wave and the Power Factor. It would
be possible, as already shewn, to represent graphically each one of the

harmonics by itself Since, however, such a representation is not

very convenient, it is simpler to proceed as with the power diagrams
and set off the apparent power PI at angle < to the ordinate axis, so

that the ordinate equals the power PIcos< cos$ is called fche_pow/

fadffi . This diagram can be drawn to any desired accuracy when the

piessure, current and power are known
In the previous load diagram (Ch. I Sect 12) the current and

pressure waves were sinusoidal } in this case, however, the waves may
have any shape whatever ,

thus < is not the actual phase displacement,
but only imaginary, being the angle between the sinusoidal pressure
and current, which are equivalent to the actual pressure and the

actual current with respect to effective values, and yielding, therefore,

the same power This imaginary sinusoidal wave is called the equi-

valent sine wave, and it is with this that we usually have to deal in

practice For most practical purposes this is sufficiently exact, but

in exceptional cases, eg with condensers or with strongly-distorted

pressure waves (i e pressure waves which deviate strongly from a sine

wave), this method of calculation is inexact

We will first examine what the actual significance of the power
factor cos <j>

is The power is

W= PI cos $ = 1*1,

where r is the effective resistance of the circuit ,
hence

,
Ii

= r
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(122)

wheie c^, 8 ,
e

5 , etc, as above, aie the phase-displacement angles of

the several harmonics.

Sura , =Acoa^
A

n T-

we can also write cos < = cos
</>j p^-

........ (122ti)

Both formulae (123) and (122a) have been deduced on the

assumption that the effective resistance ? is independent of the fre-

quency ,
this is geneially tiuu, but not always.

Let the effective resistance for the fundamental bo i\, foi the third

harmonic /, for the fifth /
B ,
and so on

, then, in this case, wo got

Further, from formula (122), we have

and

or, since

then

This formula is deduced on the assumption that i remains constant

for all harmonics, and that the reactance rises proportionally with
the frequency

It now remains to be seen how great is the en or introduced in

the experimental determination of the effective resistance and effective

reactance of an vndiidvoe circuit by using a distorted piessure cuivc,
when we calculate with the equivalent sine waves
The power supplied to the circuit through which the effective

current / flows is always W= Pr

when the effective resistance ? is independent of the frequency } in this

case, therefore, the determination of r is independent of the curve-
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shape This, however, is not the case with the effective reactance x, ;

for each harmonic of the terminal pressure

produces a current with its own frequency Thus

V/+
if the reactance x, is proportional to the frequency

But, P sin
</>

Combining these two last expressions, we get

/^ sinVi +

V P?sm^1

Generally the harmonics of the pressure curve are not known, neither

are the constants r and x, of the circuit in question , consequently we
disregard the shape of the curve and calculate with the equivalent
values We then have D ,

_ P sin
<ft&

j >

and introduce a small error by assuming the root equals unity. This
root is always somewhat less than unity, so that the approximate
formula already gives .T somewhat too large The error, however, is

not large, for example, for the strongly distorted pressure curve

P^lOO, P3
= 10, Pfi

= 31 65, the root equals 943 when -.-1'fi, and

0-948 when - = 25, i.e the error in this case is but 5 %
If the circuit has no inductance, but only resistance and capacity,

then the capacity reactance will be

Pv* /P?sinV1 + 9Pi

I V P?sinV1 + JP

so that the root is not approximately unity in this case

69. The Induction Factor. In the previous load diagrams

(Chap I), the abscissa PIsin< represented the so-called imaginary

power When harmonics are present, however, the matter is somewhat
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different, for if we take the sum of the imaginary powers of all the

harmonics, i e. _

this is not equal to PI sin fa hut is always smaller, as will now be

shewn M r -.~
,

n<aL 1 xn
Suice tan</>n

=---TT= >^
r nwCi r

where xn is the reactance of the ?i
tb

harmonic, then.1 r rln

so that W
t
= -

(jpj an ^ cos 0, + P? sin
</>a cos fa + )

From the formula for sin 0, we get

PI sin =
^7^

Hence /y

Again, since P^ain fa = 3xI3 ,
PHsm fa =

then Bin-- P
'J'nn

and since sin ^>
= sin fa^ Jj* + 97^

then / will also equal

If the circuit is non-inductive and contains only resistance and

capacity, the reactances of the several harmonics will lie

3, H , etc,

and we shall get in this case

This factor/ is always less than unity
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Consider the sum of the real powers of all the harmonics, then, by
the definition of power factoi, this must equal the actual power
PI cos

(f>, which is also the case when we work the same out We thus

see that the power) factoi is

cos<=p-p
............ (127)

W
and that ^ =/sin < < sin

<f>
......... (128)

/sm< is a characteristic of an electric circuit, and is called the
induction factoi

This factor, however, has only significance with sinusoidal currents
in graphical representation, because m this case it equals sin <, since

70. Graphic Summation of Equivalent Sine Waves. If we have
several circuits acted on by the terminal pressures PI9 Pn and Pm
producing the effective currents /: ,

/TI and /m ,
the apparent powers

Pi-Tu Piiln an(i An^m can be set off in the power diagram at angles
<ij ^ID $111 to "the ordinate axis, so that the ordinates of these vectors

represent the true powers Wlt Wn and W-^. Now arises the question:
Is it always allowable to sum up these power vectors* gi aplucally ? It will be
found that it is only permissible in certain cases, as we shall now
proceed to shew
The ordinate of each vector represents the true power in its re-

spective circuit, hence the algebraic sum W of the three ordinates

F, =/>!/! COS fc,

^111 =Pmlm COS t m
must represent the true power in the three circuits The same result

is obtained by calculation, based on the fact that the imaginary
power W) m the three circuits equals the algebraic sum of the several

imaginary powers W^ 17UJ and Wmi
We thus have

=PT /i COS </>T +Pn/n COS ( +Pmlm COS </>nl

and /P/sm$=W}=Wv+ W^, + Wmj
=fIPJl sin& +fllPlIIJI sin < +/iiiPm/m sin ^m .

If the geometric summation of power vectors is allowable, the

following two relations must hold

W= PI COB $ = Plll COS 0i + PH/H COS <
IT + P tII /in COS

<j/>m

and
j
W

s
= P/sin $ = Plll sin ^, + Pn 7n sin

</>IT + Pinlin sin ur .
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It is at once seen, that the first of these equations is identical with

the first of the two previous equations and is thus satisfied, on the other

hand, the other two equations viz that for the imaginary powers and

that for the abscissae of the power vectors do not always agree,
and we thus see that it is only allowable to add the power vectors

graphically when

sin <& + n ii sin n + in ui sin

= Plain
</>
= PZ/J sin & + PUIU sin < + Pln/m 8m

</>m

Thus the general condition for which it is allowable to add power
vectors graphically is

sin fc + (/-/n)
PnJn Sin fa

. .(129)

The general solution of this problem has, however, less interest than

"the treatment of the two cases for which all the P's are equal when the

three circuits are joined m parallel and all the 7's are equal when
the three circuits are joined in series We then get, on the one hand,
the condition for which it is allowable to geometrically add effective

currents without considering the wave-shape, and on the other hand
the condition for which it is allowable to geometrically add effective

pressures, likewise neglecting the wave-shape That which holds for the

first case, however, does not equally well apply to the second
,
con-

sequently the two cases must be treated separately
First consider the case of circuits of any kind connected in s&ites.

If the current / is constant throughout the whole circuit, we can write

the condition for the geometric addition of power vectors as follows

sin r + (/-/n)Pn am fa + (/-/m)Aii am fat =

This equation at the same time gives the condition for which it is

permissible to graphically add pressure vectors, when the circuits on

which these pressures act are in series We shall not enter further

into this general problem, but merely consider the case for which it

can be directly seen that the above condition is satisfied This is

the case when f j f /
7 =/i =/n = /inj

and this is first the case when the ratio between r, L and are the

same for the three circuits

Three such circuits can be called similar, since their diagrams are

always similar. That it is allowable to geometrically add the vectors

in this case, which make the same angle </>
with the ordinate axis, can

be seen without further demonstration
The second case when /=/i =/n =/m (Form 126a), when the same

current I flows through the whole circuit, occurs when r is independent
of the frequency and the reactance x is the same function of the

frequency for all the circuits. This is the case, for example, when
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all the x's are proportional to the frequency or when they all vary

inversely as the frequency
A special instance of this second case, in which geometrical addition is

also possible, is that for which the reactance of all parts of the circuit

except one is zero , we then have, obviously,

/=/., so that

I sin ^ = Ixsm (j>x ,

where /. and
<f>x relate to the a;

th
circuit

As an example of this special case, we can

take the diagram of a generator working on
a non-inductive circuit Here we have two

pressures which are to be geometrically

added, of which the one the terminal pres-
sure is in phase with the current, whilst

the pressure drop in the armature may have

any desired phase. We thus get the diagram
shewn in Fig 184, where PK is the terminal

pressure and Ea the EMF. induced in the ^Q 194.

eenerator ; Pt IS then the pressure drop in tivfl Pressures of n Generator for

S ,

r r oos*=l
the armature

For circuits connected in parallel the terminal pressure will be the

same for each branch.

In Equation 129, PIt Pu and Pm cancel out, and the condition for

the graphic summation of current vectors is then

(/-/xUiSin <k + (/-/n)/nsm &i + (/-/monism < in =

This equation is satisfied when

/=/i=/n=/ra
This is the case, firstly, when the circuits in parallel are similar,

i e when all the circuits have the same ratio between r, L and C
, and,

secondly, when the conductance g of each of the parallel branches is

independent of the frequency and also the susceptance of each path
is the same function of the frequency This second case is only of

mathematical interest, and has no practical importance, since g is nearly

always a function of the frequency, consequently the proof will be

omitted here

A further case, where the graphical addition of the currents in

parallel circuits is likewise allowable, is that in which the reactance of

every circuit except one is zero
,

it is then easy to see that f=fx) and

thus

where Ix ,
< x , /. refer to the x^ circuit, which may possess both in-

ductance and capacity The proof for this is given on p. 311 in the

description of the " three-ammeter method," which is more convenient

for this purpose
To shew the effect of the higher harmonics on the magnitude of the

error introduced by graphically adding the currents in parallel circuits,

A.C P
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the values of /, cos < and cos
</>j

as functions of are given in the

following tables for the three pressure curves
r

(1) Pj-100, Ps
= 3165, P

5
= 10

(2) Pj-100, ^3 = 22 4
3

P
fi

= 224

(3) Px =100, P, = 10, P
fi

= 3165

a;fl is the inductive reactance of the circuit with respect to the

fundamental When this ratio is given, the corresponding smc^,
cos^j, sm<

8 , cos$8
and so on can be easily calculated, and from

them the factor /, on the assumption that x, is proportional to the

frequency

TABLE (a)

01 02 05 10

COB (fa 995 981 894 707 100

Table (a) refers to a circuit whose capacity is zero, whilst Table (&)
is drawn up for a circuit whose ratio of capacity xcl to resistance t is

2 , thus in this case,

^ = 02, ^-3=0066 and ^-" = 004

10

08

06

04

0'2

|r

4
B&

02 04 06 08 10 12 14 16 18 2

r

Fin 186 Assumption, ^=0
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TABLE
(ft).

^ = 02
7

01 02 06 10

COS 0j 982 995 958 0-782 1015

Iii Figs 185 and 186 the ratios / (curve I), cos < (curve II) and cos 0,

(curve III) are plotted as functions of
!
foi the pressure curve (3)

From the values for / m Table (b) and in curve I, Fig 186, it is

cleai that there aie several circuits, which are not similar, but whose

0-2 04 06 0810 12 14 16 18 2

Xtl

r

FIG 186 Assumption, ^=02

currents can nevertheless be geometrically added without error, since

the circuits have the same ratio / for the given terminal pressure
Wheii currents in parallel circuits are graphically added, the watt

component of the resultant of all the currents always equals the sum
of the watt components of the several currents

,
this is not the case,

however, with the wattless components, and the difference between the

wattless component of the resultant current and the sum of the several

wattless components is

sm & + (/n -f}Iu sm </>ii + (/in
-
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Example Let pressure (3) act on three parallel circuits with the

ratio = and ^ = 01, 2 and 05, of which the first takes the
f t

current Ij = 100 amps, and each of the other two 50 amps, then

/z
= 776, /n = 802 and /m = 898, whilst by calculation /=0 805.

Hence, in this case,

A/,Ki = (0776 -0-805) 100 173 + (0 802 -0 805)50 0286

+ (0 898 - 805)50 .0 526 = 1 9 amps

The wattless component of the resultant current is 59 8 amps ,
the

percentage error in this extreme case is therefore,

wo 14=3-17%

From this example and from curve I, Fig 185, it is seen that far all

mdiicfwe en cuits, whose i eadaiices aiepi actically pi oportumal to the ft equency,

it is allowable to add the equivalent <&nc cwrretiks graphically. The addition

of equivalent currents of other parallel branches, where the reactances

do not bear the same relation to the frequency, or whose resistances

vary with the instantaneous value of the current, can lead to con-

siderable errors Examples of such circuits are arc lamps, condensers,

polarisation cells (above the pressure for which dissociation occurs) and
in high pressure mams (in which the maximum difference of pressure
exceeds that for which dark discharge occurs)

In curves II and III, Figs 185 and 186, we see the effect of the

shape of the pressure curve on the powei factoi cos $, and it is seen that

this curve lies considerably lower for a distorted curve than for a sine

curve It is, therefore, not allowable to replace a terminal pressure of

distorted wave-shape by its equivalent sinusoidal pressure, and with

this calculate the current and power factor In practice, however, this

3"

method is often adopted, which, in the above example for =
5,

gives cos
</>T
= 894 instead of cos = 858 This error, however, is

too large to be neglected^and still larger errors may be introduced

when we apply this method in the calculation of circuits containing

capacity or apparatus with similar reactances

71. Effect of Wave-Shape on the Working of Electric Machines and

Apparatus. In the introduction to the previous chapter attention was
drawn to the m]unous effects of higher harmonics We shall now
illustrate this by means of examples and curves

(a) Lighting As already observed, the flat-shaped curve is the most
suitable for this purpose, because in this case the current remains

longest in the neighbourhood of its maximum value Consequently
we can work at a lower frequency with a flat curve, such as in Fig 187,
than with a peaked curve, like that shewn in Fig 188, before variations

in the intensity of the light become noticeable. The Authors found
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from experiments carried out in the dark room, that the light of a

16 P. carbon-filament lamp foi 110 volts began to fluctuate when the

frequency of the current fell below 23 3, whilst this only occurred with

PIQ 187 FIG 188

the flat-shaped curve (Fig 187) when the periodicity fell below 20 cycles

per second.

With a 25 CP 115 volt metal-filament lamp, the pulsations were

already noticeable with the above pressure waves when the frequency
fell to 28'3 and 23 7 respectively This limit also depends on the

lamp pressure the lower the pressure, the lower the frequency at

which flickering becomes noticeable

It has often been noticed in practice that arc lamps are inclined

to be somewhat noisy when the pressure curve is very peaked.

\

\ I

.iv \ \ \ U\ \ \

J"\
\ J\ \

Y / ^

/ / p
Fio 18W

This humming noise, which is due to the pulsations set up in the arc

and the surrounding air, can be sufficiently damped, at a frequency of

50 cycles, by connecting a choking coil in series to suppress the

harmonics Fig 189 represents the pressure curve of a large three-

phase central station, where according to a report by Heir C Zorawski

(E T Z 1906, S 607) the humming became so considerable that

choking coils had to be connected in aeries Choking coils, however,

tend to lower the total power factor of the system

(b) Fumsfaimai Prof G Rossler (E TZ 1895, S 488) has ex-

perimentally investigated the effect of the shape of the pressure curve

on the drop of pressure in a small transformer of some \ K w
,
which

had comparatively high resistance and reactance The results of his

research are shewn by the curves in Fig 190 Curve I represents

the secondary pressure with non-inductive load when the peaked
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pressure curve e (Fig 191) was applied at the primary, whilst

curve II was taken when the approximately sinusoidal pressure wave

,20
,

115

P"
110

ng --- ' I i

100 20'J 300 400 500

Fio 100

e01 was applied For a non-mductive load of i KW the peaked
pressure curve gave a pressure drop of 7 65%, whilst the sinusoidal
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curve gave but 665% drop, thus about 13% less than the other

These expenments agree also with the calculations, which shew that
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the siimsoidal pi essw e wave is tJie lest with regard to the yresswe dtop in

ti ansfor-mers, amd also in mawis With non- or nearly non-inductive loads

a pressure curve causes a relatively larger drop of pressure, the greater
the largest of the harmonics is and the higher its frequency This is

also to be expected, as any electromagnetic apparatus, such as a trans-

former for example, is designed for a certain definite frequency, and
the more any other frequency deviates from that for which the

transformer is designed (i
e. from the fundamental) the more un-

favourable should be the result

To find the influence of the wave-shape on the losses in a trans-

former, the Authors measured the no-load losses in a transformer for

1026. Fci 102c

Pio U)2e FIG

the three pressure curves (Fig lQ2a-c) and the short-circuit losses
for the three current curves (Pig. 192rf-/) The results obtained aro
shewn in the following table, which shews that the more peaked tho
curve the smaller the no-load losses, whilst the short-circuit losses
increase the more the curve deviates from a sine wave

1 KVA SINGLE-PHASE TRANSFORMER

(a) No-load

Pressure Cm ve Fig 192a Fig 1926 Fig 192c

J = volts, --- HO 110 110

ro
= amps, - - - 0423 0447 0452

- - - 31 4 33 6 34 9
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(6) Short-circuit

Current Curve Fig. 192d Fig 192e Fig 192/

/r=amps ,
- - - 10 10 10

P*=volts, - - - 744 7'36 805

Fjr=watts, - - - 464 440 454

(c) Itidudion Motois As in the case of a transformer, the Authors
have also measured the no-load losses for the curve shapes in

Figs 193a and b and short-circuit losses for those in Figs 193c and d
in a 2 H P three-phase motor The results are shewn in the following

Fici lltSa FIQ 1936

Fio 198c Fio IQSrf.

table The no-load losses remain practically the same, whilst the
short-circuit losses, and still more the short-circuit reactance, for

the same effective current are larger the greater the harmonics which
are present.
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(b) Short-circuit.

Current Curve Fig 193c Fig 193d.

Tramps ,
- - - 10 10

P*=voltB, - - - 258 250

Wjc=WB.tts, - - - 204 198

Thus, the efficiency of a motor is also a maximum when the pressure
curve is a sine function. The same holds for the power factor and the

maximum power, for with a given applied pressure the short-circuit

current is smaller, when measured whilst the rotor is just set moving
This is due to the fact that only the pressure of the fundamental

p
PI = transmits power from the stator primary to the rotor secondary.

We thus get the same result as for a transformer, namely, the asyn-
chronous motor works best with a sinusoidal pressure curve This is

also true for commutator motors, for the flat-shaped pressure curve

is bad for commutation, whilst the peaked pressure curve reduces the

load capacity of such a motor

(d) Synchronous Machines If several synchronous machines having
different pressure curves work in parallel, large currents of high

Vote I

l\\
150 I \ / ^

/ V f \

- / \ /
/ \ J \

50 / I \ / \

I Pressure offlapplgMawt \ >' \

, / I I I I I I I \ / \

10' w"
*f\

*
\

Fid 1D4 FIQ 195

frequency will flow between them, since the pressure harmonics need
not be in phase when the fundamental pressures are If the reactances

of the synchronous machines are very low, the currents due to the

higher harmonics can attain such dimensions that the working may bo

sufficiently affected to cause the machines to fall out of stop The
shape and magnitude of these currents are best illustrated by the
curves in Figs 194 to 197, taken at the Electrotechmc Institute,
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Karlsruhe, by Di Blooh Figs 194 and 195 give the pressure curves

of the central station and of a 5 H P single-phase motor, whilst the

go
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curves in Fig 196 shew the currents in the motor By connecting a

large reactance in series, the current curves m Fig 197 were obtained.
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Here again the damping effect of the choking coil on the highei
harmonics is clearly seen The presence of currents of high frequencies

m synchronous machines can be limited

by taking care that all the synchronous
machines working on the network have
the same wave-shape at no-load Since,

however, the wave-shape varies with the

load, it is not possible to completely avoid
these internal currents The best means
for keeping them small is of couiso to

have the pressure curves of all the machines
as nearly sinusoidal as possible and to give
the machines a suitable reactance.

(&} Cobles and Cmtducto1
) s. The flat-shaped

pressure curve should of course place less

strain on the insulators and cable-insulation,
since for a given effective pressure the maximum pressure is then least.

On the other hand, this requires higher harmonics, which may give rise

\
\

\

V

Fl(J
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to resonance, under certain conditions Since such wave forms have a

disturbing effect on the pressure regulation of a system, and are more
difficult to deal with analytically than pure sine waves, it is also

always desirable to use sinusoidal pressures for transmission plants
The two pressure curves, Figs 194 and 198, are for a large electricity
works The latter represents the day piessure, the former the night
pressure As is seen, the higher harmonics are more pronounced in
the day curve than in the night curve, since the day load is more
inductive although small



CHAPTER XIII

POLYPHASE CURBENTS.

72. Polyphase Systems 73 Symmetrical Polyphase Systems 74. Interconnected

Polyphase Systems 75 Balanced and Unbalanced Systems 76 Com-

parison of the Amount of Copper in Alternating-current Systems with
that in Continuous-current Systems

72. Polyphase Systems. If three coils are arranged on the armature
of a generator (Fig 199), so that they are all displaced from one
another m space, the B M F 's induced in these coils will be

Pn^n

These all have the same frequency c, because all the coils rotate with
the same velocity. But they are all displaced from one another in

phase by the angle which the

coils make with one another
in space If each of the three

coils acts on its own circuit,

a current will flow in each

coil independent of that m
S the other coils The three

currents together form a

three-phase current and suck

a system ofalternating-cuments,_ m which several EMF's of
the samefi equency and displaced

from one anotlwn in phase pro-
duce currents which are also displaced ftom one another, to known in general
as a polyphase system

Externally, a polyphase generator appears the same as a single-phase
generator only the stator winding is different In Fig 163 the stator

winding of a single-phase generator is represented, and in Fig 165
that of a three phaser

Fia 109 Production of n, Polyphubu Current.
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Generally speaking, a polyphase system can be investigated by

splitting up the same into its several current branches, or phases,
the E M F acting in each of these current paths produces a current in

the system, which can be calculated independently of the E.M F 's of the

other phases The currents produced by all the E M F 's must then be

superposed, when the phases are electrically connected The several

systems can be classified thus

(1) Into symmetrical and u/n?ymmetrical systems

(2) Into dependent or interconnected and independent systems.

(3) Into balanced and unbalanced systems

The dependent or interlinked systems can be again split up into

sta1

) -connected systems, ring-connected systems and systems comprising
both of these two

73. Symmetrical Polyphase Systems. If a polyphase system is

formed by n pressures, whose amplitudes are equal and displaced from

one another in phase by - penod, the system is said to be symmetrical,

otherwise it is unsytnmetncal Such a system can also be called a

symmetrical w-phase system, since it has n phases In the case where

the pressures are sine functions of the time, the n pressures are repre-

sented by the following expressions

pi = P sin (at,

= P sin

If we sum up the momentary values of these n pressures we obtain

the well-known result that the sum of the momentary values of the

pressures of a symmetrical polyphase system always equals zero

We can now deduce the various symmetrical polyphase systems by

substituting various values for n

/ P

Fio 200 Single-phase Two-wlre System

Example 1 When n=l, pI
= Psinwf, and we get the single-phase

two-wire system of Fig. 200.
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When ii = 2, ^ =P am turf,

pn = P sin
(orf

- 180) = -ih

This gives the single phase three-wire system (Fig 201), wheie the

pressures are reckoned from the middle point When the two hdlves

/ L
Fin 201 Hiiiglo-pliaso Throe-wire Syatoru

of the genoiator are equally loa-dcd, no current flows in the middle

wire consequently this wire can bo made very light

Ewmple 2 When n - 3,

fi P sin tot,

/ 2?r
( otf-

-y

This is the symmetrical thieo-phaso system, wheie the throe pressures
are displaced in phase from one another by 120, which accordingly

ropiosonts the symmetrical polyphase system having the least number
of phases

3. When n = 4-, we get the symmetrical four-phase system

Pi = P sin tat,

-p lt

Thus jj and ^m occur in the same circuit, and similaily pn and plV

Consequently there are only two pressures, and these are displaced 90
from each other \

74. Interconnected Polyphase Systems In polyphase systems, each

of the phases may be made to form a closed system for itsolf such
a polyphase system then consists of n entirely independent single-

phase systems, which have only to satisfy the one condition that the

frequency and the mutual phase-displacement of the E M.F 's of the

several phases aie always the same. The generators of the single-phase
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currents must therefore run in perfect synchronism with one another
which is most easily attained by placing the several windings, in which
the B M F 's are to be induced, on the same armature We can now go
a step further, and electrically connect the windings of the several

phases with one another, i e interconnect the phases In this case,

however, the several phases will mutually affect one another, if the

system is not symmetrical both in respect to the induced E M E 's

and the load.

In the representation of polyphase systems it is usual to draw the

windings of the several phases displaced from one another by the angle
of the mutual phase-displacement
The phases can be connected in various ways with each other , only

care must be taken to have no closed circuits where the sum of the

induced E M F.'s is not zero
,
for such a circuit would act as a short-

circuit in which an HMF is induced , consequently a heavy current

would flow in the same
The systems generally met with in practice are the star-connected and

nnff-connected (or mesh-connected) systems.
The sta/r system is formed by joining the starting points of all the

phases to a common point This point is then termed the iwwttal

point, because in a symmetrical star-connected system it generally
attains the mean potential of the surroundings This point can be

connected to eanth, or to another neutral point, or insulated, it is

usual to regard the neutral point as having zero potential Between
the terminals of any phase, eg the a;

(h
,
we measure the phase pi esswe

P sin
\

iat -
(x

- 1
) I, whilst between the terminals of two neighbouring

I n
)

phases we have the hne pi esswe, whose momentary value equals the

difference of the momentary values of the pressures of the two phases
in question The momentaiy value of the line pressure between the

terminals of the a;
Ul and (x+ l)

tu
phases is thus

-x \
/

= 2Psm-cos \
at -fax- 1)-n [ n

j

whence it follows that the effective lino piessure is

PI
=2sm-P

p , (130)

where P
p

is the effective phase pressure
In the stai -connected system, the line pi esswe equals the 1 esultant pi esstw e

of two adjacent phases and the line cwient tJie phase current

The ring-connected system is formed by connecting the start of one

phase to the finish of the next, so that all the phases are joined in

series Accordingly, this connection can only be used when the sum of

the E M F 's of all the phases equals zero at every instant, which is the

case with symmetrical polyphase systems having sinusoidal E.M F 's



240 THEOKY OF ALTERNATING-CURRENTS

Current IB taken off at the junction of each two adjacent phases,
whence the number of hues equals the number of phases Thou, in

accordance with Kirchhoffs First Law, the current in each lino equals
the difference of the currents in the two neighbouring phases In this

case, therefore, the line cunent does not equal the phase current, but,

since the currents in two adjacent phases are displaced from one
o_

another by , equals
71

-(a;-l) [ -Jam^ ' n J
\n J

= 27 sin - cos
[
(at - (2x - 1)

-
\ ,

n I
v ' nj

hence, for effective values,

/
J
=
2sin^/7)

. . (181)

The line pressure is here the same as the phase pressure
JJenca, in the nng-connected system, the hne piessuic equals the pltuse

piesswe andtlie Hne cutrent the resultant curtent of two adjacent phast&
In the following, all magnitudes referring to the linos are denoted

by the suffix I and to the phases by the suffix p
The most usual connections for a symmetrical three-phase system

are as follows

(a) Thiee-phase Star System Fig 202 is an independent three-phase

system, where the phase current equals the lino current and the phase

\
-ft a

Fio 202. Nou-intorHnkod Three phase Fio 208 Three-phaso Star System
System

pressure the line pressure By coupling the three starting points
an az) aa together (Fig 203), we get the three-phase star-connected

system with four wires, which can be converted into a three-wire

system by omitting the middle- or neutral-wire a, which carries no

current so long as the load is symmetrical The line pressuio in

this system is

Pt
= 2 sin 60 Pp

=V3PP . (132)

and /,=/, (133)
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(b) Three-phase Ring System Fig 204 represents the three-phase

ring system, or, as it is also termed, the triangle- or delta- (A) or mesh-

connection Here we have

and (135)

Fin 204 Thioe-phaae Mesh System Fio 205 Combined Syntom foi Three-phase
Current (Dolivo von

Fig 20,") represents a combination due to Doliw von Dob owolsky
When 7i = 4, we can have the following schemes

(c) Independent Fom -phase System m Two-phaso System This is

represented in Fig 206 We have

/,= /, and P
l
=Pp

Fio 206 Noil interlinked Four-phase System. Fin 207 Four-phase Star System

(d) Fouryhase Star System Fig 207 represents the connections for
this system, in which

/-/, _ (136)

and ^ = 2sm45P
p
=

s/'2P^. (137)

-iwwvw-

Fin 208 Four phase Moab System Fio 20!) Two phase Three-wire or Interlinked
Two-phoao Syotom

(e) Fow -phase Ring System This is shewn by Fig 208

/,
= -s/2/

f> , (138;
and Pi = Pf (139)
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(/) Intel connected Two-phase System The scheme shewn in Fig 207

is seldom used, but rather that shewn in Fig. 209, which is developed

from the former and represents one half of an interconnected four-phase

system with middle wire This system, which is not symmetrical, is

usually termed the intei coivnected two^phase system or the two-phase

thiee-wre system. For this we have

P, = N/2A, (HO)

and Io = s/2/P . (Ul)

(g) Scott's System. To the interconnected polyphase systems belongs

also Scott's System, shewn in Fig 210 This serves for producing a three-

phase current by means of a
' ;

two-phase winding If one-

phase has \/f as many turns
P as the other and the start of

this phase is connected to the

middle of the second, we get a
"

symmetrical three-phase pres-

p sure between the terminals A,
and C Then the pressure

between the terminals A and

^ H . B and between A and (Fig
Pio 210 Scott's System rtv .^^

\

210) is vw + = 1 times the

pressure between B and C It is thus possible to produce a symmetrical

three-phase current by means of an unsymmetncal two-phase system
The phase pressures are

PA =OA=^ BC=J% P
t ,

and P
J!=P =0=OG

whilst the phase currents equal the line currents

(A) Impeifect Polyphase Systems These also belong to the inter-

connected polyphase systems, and consist of a main phase, together with

an interconnected auxiliary phase These were all introduced in the

early nineties, when it was desired to retain the simplicity of the single-

phase system, and avoid its deficiencies by the use of auxiliary phases
The simplest of the systems is the imperfect thiee-phase system

(Fig 211), which consists of two phases at 120 to one another The

auxiliary phase, which is chiefly used for starting asynchronous motors,
has a phase pressure equal to the distance of the point from the line

BG The starting torque is proportional to this auxiliary pressure P,, ,

When the two phases are symmetrically loaded, the currents in all

three lines are equal, but displaced 60 in phase from one another

Since thus system does not produce a large starting torque for motors,

,
as just shewn, Stemmetz proposed a system, similar to Scott's system,
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which is known by the unsuitable name of "
monocyclic system

"

This is a three-phase system, and serves to produce an unsymmetrical

three-phase current Stemmetz chose the auxiliary pressure OA
at the motors equal to Vf of

the mam pressure BC, whereby *3*p .>i-

the motors receive a symmetn- J*
cal three-phase pressure The

auxibary pressure OA of the

generators, however, was only
chosen about a fourth of the

pressure of the main phase
The ratio of conversion of the

transformers for the mam phase
4

is therefore -7= of that of the -

N/3 &
transformers for the auxiliary pIO ail Incomplete Thioe phase System

phase
None of these imperfect polyphase systems, however, have justified

their existence, since they all need three wires, as in symmetrical three-

phase system, and there is no reason why this latter should not be

adopted and so completely utilise the material of both generators and

motoi s.

75. Balanced and Unbalanced Systems. In Section 11, we have

seen that the current

i = I-J2 sin (wt
-

<j>),

produced by the pressure p = P\/2 sin at,

yields the momentary power

PF=PI{COB < - COS (2orf
-
<)}

Since the mean power is W= PI cos <f>,

f
cos (2 iat + </>)!

we have 7/=/Fl --

Although this pulsation of the power of a single-phase current, which is

shewn in Figs 4 i and 44 for any angle $ and for
<j>
= 90", does not

prevent its application for many purposes, eg lighting by means of

glow lamps, provided the frequency is chosen sufficiently high, it is

]ust this property of the single-phase current which makes it un-

suitable for power purposes. On the other hand, a symmetrical

polyphase system as will be shewn later on possesses the character-

istic that the momentary power of the whole system is always constant,

3onsoquently such systems are used a great deal for motor purposes

Not only symmetrical systems, however, but also other polyphase

systems can develop a constant power under certain conditions
,
thus

ill systems possessing this characteristic are said to be balanced, and all

others, unbalaiiced,
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The power in a polyphase system equals the sum of the powers in

the several phases. If the pressures pI} pll} pm of the several phases

produce the phase currents ix , %, 4m ,
the momentaiy power will be

and the mean power W= P^Ii cos <
: + Pn -?n cos $11 +

If now the vi-phase system is symmetrical with equally-loaded phases,
we have, e g ,

for the a;
tb

phase,

and ^+1

where $ is the phase displacement of the current in a phase behind its

pressure From this it follows that the momentary power of the

symmetrical ^i-phase system is

am tat - 2* - sin
n

{

(142)

Thus the momentary power ^
r
is constant for every symmetrical 9vphase

system and equals n times the mean power of a phase
For the thiee-wne two-phase system (Fig 209) the pressures are

and pn = Pp-s/2 sin
(
W -

\

If both phases are equally loaded in regard to current and phase

displacement, then

ii
=

7p\/2 sin (wt
-

<f>)

and in = Z,\2 sin wt - < -

Hence,

W= 2-Pp/p \
sm (at sm (cof

-
0) + sin

(
tat - ^ )

sm
(
(at -

cf>
-

)
i

I.
\ ^/ \ */ j

= 2Pp/p cos ^ - P^/^ {cos(2wi
-
<) + cos (2<o*

- <
-

TT)}

=
SPp/p cos

<jfc

= const

and the mean power W= 2P^/P cos 0, (143)

P /
or, since ^ =

-7^
and Z?=-^'V J v2

then /F=P
z
/ cos</> . . . (143a)
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We thus see that the three-wire two-phase system belongs to the

balanced unsymmetncal polyphase systems
The power of a symmetrical three-phase system is, from Eq (143),

or, since in a star system

P,-ljL
and /,-/

and in a mesh system P
p
= P, and Ip = -p,V3

the power in any symmetrical and intorconnected three-phase system is

From formulae (136) and (139) it follows similarly that the power in

a symmetrical interconnected four-phase system is always

cos 4>
= 2^P,/Z

cos <. (146)

Scott's system also belongs to the balanced unsymmetncal polyphase

systems.

76. Comparison of the Amount of Copper in Alternating-current

Systems with that in Continuous-current Systems To transmit a

definite power over a fixed distance electrically at a given maximum
pressure and efficiency, a definite amount of copper is essential The

higher the pressure and the lower the efficiency, the less the amount of

copper that will be required Since the pressure must not exceed a

certain limit on account of the danger to the insulation or the

employees, the pressure which enters into question here is the

maximum pressure which exists between any part of the installation

and earth If the neutral point of the system is earthed, the limit is

fixed by the maximum pressure between a terminal and this point.
If the neutral point is not earthed, and the whole system insulated,
the seventy of the electric shock caused by touching a terminal depends
on the pressure and the capacity of the system If the pressures arc

high and the capacity considerable, as is usually the case in transmission

bnes, the person touching the terminal may have to pay the death

penalty for his carelessness. Foi this reason, "live" machines and

apparatus ought never to be touched unless the person has previously
insulated himself against the pressure The insulation of a non-earthed

system, however, must be kept stronger than that of an earthed system,
since in the former case the insulation must prevent the passage to

earth of all the energy stored in the system For this ieason,
earthed and non-earthed systems cannot well be compared, since the
insulation of the latter must be calculated with regaid to quite different

pressures
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Hence, we shall only consider earthed systems for the present, and

shall put the amount of copper required for a symmetrical polyphase

system with earthed neutral point equal to

100

Further, we assume that the effective current density is constant in all

the conductors and that the pressure curve is sinusoidal The section

of the currentless middle wire is chosen equal to half that of one of the

outers We then get the following results

(ft) Symmetiical Polyphase Systems wth Eaithed Neutial Point Con-

sider first the symmetrical three-phase system We see that each of

the three phases carries the same current I at the same maximum

pressure Pulttx over the same distance I Let the section of a conductor

be q } then the copper losses per phase aie

I2r = F-
l
-P- =

Islp,

i e with a given current density s they are proportional to the power
transmitted per phase,

and the total copper volume is Slq.

By means of a single-phase two-wire system or any symmetrical

polyphase system with n phases, the same power 3-^Pmtx/cos <

could be transmitted with the same percentage losses with the same

amount of copper. For in each conductor the current is -/ and the

section of the conductor is reduced in this proportion Thereby the

current density s and also the percentage copper losses pK remain

constant, whilst the weight of copper also remains unchanged

Hence, all symmetrical polyphase systems with eaithed ncubal paint and

the single pluise two-mi e system aie ahke wth icsped to the amount of

coppen lequwed.
In practice, however, only the three-phase system has made headway,

because this requires the fewest conductors, and consequently the

least insulation of all the symmetrical polyphase systems

(1) Symmetrical Polyphase Systems with Eaithed Neutial Wne Con-

sider first the single-phase three-wire system with eaithed middle wire,

which is theoretically a symmetrical two-phase system bmce no

current flows in the middle wire when the load is symmetrical, then,

for the same section of outer wne as previously, the copper losses

remain the same as in a single-phase two-wire system The copper

required for this system, therefore, will exceed that required for the
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two-wire system by the amount required for the middle wire If we
therefore choose the cross-section of the middle wire half that of one
of the outers, as mentioned above, this system will need 25% more

copper than the single-phase two-wire system, in order to transmit the
same power at the same losses The copper needed for the single-

phase three-wire system is accoidmgly

100 / 1 1\ 125+X
In a similar manner we find the copper required for a three-phase

four-wire system is

IPO

and for a four-phase five-wire system,

100 / 1 1\ 1125/ 1 1\_
\ 4

X
2/~

(c) Single-phase Two-wire Systems with Eaithed Outer Wne This system
can be regarded as one phase of a polyphase system with a neutral

wire of the same section as the outer wire Consequently, this system
needs the same copper and has the same losses in the earthed wire as

in the outer wire With the same section for the outer wire as the

total section of all the outer wires of a polyphase system with earthed

neutral point, we get double the losses in a single-phase two-wire

system with earthed outer wire, when the same power is transmitted

at a given maximum pressure To reduce these losses to those in a

polyphase system, we must double the section of the outer wire, and

consequently also of the earthed wire Hence, the copper required in

a single-phase system with earthed outer wire is

100
(111)'=

4
.2 ' j '

or, in other words, four times as much as that of a polyphase system
with earthed neutral point.

(d) Two-pltase TJuiee-wwe System with HJaithed Middle Wiie. This

system can also be regarded as two phases of a polyphase system with

a middle wire of \/2 times the section of one of the outers Conse-

quently, this system requires for the middle wire

times the copper of the two outer wires, and similarly, as m a single-

phase two-wire system, the section of each outer wire must also be

increased in this case in order to transmit the same power with the

same losses The increase of section of the outer wires is, of course,

equal to the percentage increase of copper due to the presence of the
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middle wire, i.e proportional to fl +
-=)

The copper required in H

two-phase three-wire system with earthed middle wire is thus

100 / 1 \2 291 4
3~T I 1 +

]=
] =

jT-T
>

or about three times that of a polyphase system with earthed neutral

point

(e) Impenfed Tkiee-phase System with Earthed Middle Wue In this,
the current in the middle wire equals that in each of the two outers

Then, in a similar manner to that of a two-phase three-wire system, we
get the amount of copper equal to

_100_ 225

i.e. two and a quarter times as much as in a polyphase system with
earthed neutral point

(/) Contmuous-cwi rent Thi ee-wire System mth Eat thed Middle Wii e In

respect to the amount of copper required, this system is similar to the

single-phase three-wire system. But in this case the maximum
pressure P^ equals the working pressure P and not \/2 as much, as

in an alternating-current system. Further, in this case there is no

phase displacement between current and pressure, thus the percentage
loss is B 7

ft

pf--g- 100,

asei e with effective current density
COS

_J
>

times that of a smgle-ph

three-wire system. Since, howevei, in a continuous-current system,

the current is
j=-

times smaller, and since we can moreover choose
V 2 r

the current density
""* times greater than in a single-phase system,

in order to obtain the same losses, we must make the copper cross-

section in a continuous current system

/cos <ft\
2

_ cos2 */)

of that of a single-phase system, to obtain the same losses and to

transmit the same power at the same maximum pressure. Hence the

copper used in a continuous-current three-wire system is 5- times

that in a single-phase three-wire system, i ei

.

co&*<fi 2

as compared with in a polyphase system with earthed neutral

point.
cos $
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(g) Corftvmov-s-ffwrent Two-wire System with Earthed Outer Wire This

bears the same relation to the single-phase two-wire system as the

continuous-current three-wire system to the single-phase three-wire

system We thus need
400 oos*9 _ 200c^ -2

- 2UO

or twice as much copper as a polyphase system with earthed neutral

point

Summarising the above results, we get the following table .

Continuous-current two-wire system with earthed middle

point,
. - - 50

Continuous-current three-wire system with earthed middle

wire, 62 5

Continuous-current two-wire system with earthed outer

wire, 200

Symmetrical polyphase systems and single-phase two-wire

system with earthed neutral point,
- - -

5-:J e ">
cos2

<j!>

Single-phase three-wire system with earthed middle wire,
- ^-T* *

cos^ 9
1 1 fi *7

Three-phase four-wire system with earthed middle wire,
-

5-7r J
cos2 <

Four-phase five-wire system with earthed middle wire,
-

5-7-r J
cos29

Single-phase two-wire system with earthed outer wire,
- ^

Symmetrical three-phase system with earthed outer wire, -

j-y

291 4
Two-phase three-wire system with earthed middle wire,

-
5-r* J

cos29
225

Imperfect three-phase system with earthed middle wire,
-

5-7-
cosJ9

It is thus obvious that the systems with an earthed neutral point
are the most economical

;
then follow the systems with, earthed middle

wire, which only need more copper on account of the partly ineffective

middle wire, and finally, the systems with an earthed outer wire,

which are very uneconomical To this class belong the distributing

systems of most modern railway installations The advantage of a

three-wire system, however, is much reduced in this case, since the

rails, which serve as return, remain unused in the three-wire system.

Since, moreover, the losses in the rails are very small in proportion
to the losses in the overhead wire, the total losses in the line in a

two-wire system are not much greater than in a three-wire system
when the rails can be used as return.
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77. The Topographic Eepresentation of Pressures. Whilst con-

sidering star systems, we saw that they possessed a junction
known as the neutral point We make the assumption that this

point possesses zero potential quite arbitrarily, for it is not potentials
but only potential differences that we
measure

_In Fig ^12 let the three vectors 7JPI}

OPU and OPm represent the three equal

phase pressures of a symmetrical three-

phase star system Since the direction

of rotation of the time-line has been

chosen counter-clockwise, OPU must be

displaced 120 from OPl in a counter-

clockwise direction, for the EMF of

phase II lags 120 behind that of phase
I As shewn in Sect 6, p 17, a vector

is determined in magnitude and direction by its two components, that

is, by its extremity, and a point m the plane represents the pressure
between a point in the system and the neutral point in magnitude
and direction. Moreover, we have seen that the line pressure
equals the difference of the two phase pressures This difference P

t

is determined by the geometrical subtraction of the two vectors OPt

and OPn ,
and we get

Timeline

Pi,, SU-P of sym-
mutrical Three-phase Btar System

whence it follows that the distance between the ends of the two
vectors gives the line pressure P

z
m magnitude and direction In
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general, we have the following method of representation, as given by
Stemmed and B&rg and also by E Gorges in the E.T.Z 1898, p 164

If we take the potential at any point m a system as zero, the

potential of a second point (i e the pressure between this point and

the point at zero potential) is represented in magnitude and direction

by a point in the plane. In this manner, each point of the system
is represented by a corresponding point in the plane, and since the

potential of a conductor vanes from point to point along its length,
the same will be represented in the plane by a curye , this has already
been esjplamed on p 89, Sect 29 The shape of the curve, of course,

depends solely on the E M F 's in the conductor The curve may be a

straight line or other curve either continuous or broken If there is

no current in the conductor, the potential at a point equals the sum of

all the E M F 's from the point where the potential is zero to the point
considered When no current flows in the conductor and no E M P.'s

are present, the conductor has the same potential everywhere, and will

be represented in the plane by a single point On the other hand, if

l

Pn
Pio 218 Symmotilcnl Three phase Syntem with Unbalauccd Loud

the conductoi carries the current /, the potential will be displaced

by the distance Ii, owing to the ohmic resistance ?, in the direction

opposing the current, and by the distance Ix, owing to the total

reactance x = x,-x ,
in the direction lagging 90" behind the current

The curve of potential along the conductor can be drawn point by
point in this way, when we thus start at a point with given potential

This method of representation is well adapted for showing clearly
the pressure relations in a polyphase system, whilst the distance

between two points in the plane of the co-ordinates gives directly
the effective pressure between the two corresponding points in the

system. From Fig 212 we see at once that the line pressure of a

three-phase system equals \/3 times the phase pressure , similarly,
from Fig 215, it is obvious that, in an interconnected two-phtise

system, the line pressure at no-load equals \/2 times the pressure of a

phase, and so on

For the first example of this method of representation, we shall

consider a three-phase system in which the current producer is star

connected and the current consumer mesh connected Let only two

phases of the A system be loaded, the third being left opeu (Fig 213).
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If the system is unloaded, the three equidistant points PI O ,
P

Fw 214 Symmetrical Three-phase System with Unbalflnocd Load

(Fig. 214) represent the three potentials at the terminals of a sym-
metrical star system, provided that the potential of the neutral point

Fio 21fi. Unaymmetrical Two-phase Throe-wire System with Balanced Load

falls in the centre of the circle 0. Now let the phases I and II be

equally loaded , the currents IL and IU = I\ are then represented by two
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equal vectors making the same angle < with their inducing EMF.'S

Ao-^nio and Pno-^ino- The current Jni flowing in the third phase is

the geometrical sum of -/: and -Jn . On account of the currents

flowing in the phases, the no load potentials at the terminals PIO ,
Pno

and Pmo are shifted to PI} Pu and Pm ,
where e g PIOPi= If is in the

opposite direction to /: and PIPI
= IIx lags 90 behind the current,

thus PI^P-L equals !&, and so on. From this we see that a symmetrical
three-phase system with unsymmetrical load has no longer an equi-
lateral pressure triangle, as Pi P-noPmo on no-load, but in this case
an isosceles (uTibalmced) triangle P^uPm
As a second example, consider an unsymmetrical two-phase three-

wire system with symmetrical load (Fig 215). Plo ,
PIIQ and give

the terminal potentials at no-load Jx and 7n are the phase currents,
whilst / (the current in the middle wire) is the geometrical sum of

-/r and -/ On account of these currents, the potentials PIO ,
Pno

and are displaced to the points PI} Pn and It Since the pressure

triangle f\PnOi is not rectangular, we see that even with symmetrical
loading, the interconnected two-phase system is not exactly balanced.

78. Graphic Calculation of Current in a Star System

Method I In the previous section, for the sake of simplicity, we
assumed that the load current of the several phases was known both in

magnitude and direction Strictly speaking, this is seldom the case

In practice, however, it is often possible to estimate the currents in

the several phases with close approximation, and from these determine
the pressure drops in the different phases by the above method

If, however, we have to treat an unsymmetrically loaded system
with large pressure drops in generators, mams and transformers, it is

necessary, under certain conditions, to calculate these more exactly
than is possible by using the above method. For this purpose we turn
to the following problem
To calculate the currents and pressures in a star system, whose

generators and load admittances are all star connected The E M F 's in

the several phases are known, also the resistances, reactances and load

admittances

We assume as before that the neutral point of the generator possesses
zero potential Then at no-load the terminals of the various phases
have a potential corresponding to the E M F 's induced in these phases.
These E M F 's may have any desired shape and strength Assume, for

the present, that the potential of the neutral point of the load is

known
,
the potential difference consumed in each phase is then also

known This is, namely, equal to the potentials at the terminals of the

phases at no-load, less the potential of the neutral
point

of the load

The current in any phase then equals the potential difference conaumed
in that phase divided by its total impedance If the current is

thus found in magnitude and direction, the potential at any point of

the system can be easily deduced by the above method Thus the
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pressure drop from no-load to load can be simply determined for each

phase
Tlw knowledge of the potential of tJie stai point of the load will thits

simplify tJie whole problem, foi each phase can then be t) eated independently

of the i est

The determination of the potential of this neutral point, however,
offers some difficulties, which can be best overcome as follows As

Fio 216 Polyphase Shir-connected Generator

example, consider the star system shewn in Fig 216, the E.MF'S

induced per phase can be represented by OPIO ,
OPno ,

OPmo , G?rvo
and OPVO (Fig 217) The points PIO ,

PIIQ ,
PVQ give the no-load

potentials at the terminals of the generator The total admittances of

the five phases can be represented by g^, gu bu ,
and so on In these,

the resistances and reactances of the windings of the several phases are

also considered. At the ends of the pressure vectors, set off the con-

ductances g of the several phases parallel to the ordmate axis, and
from the ends of these the susceptances b in the horizontal direction

In this way the admittances y appear as lines which are displaced from
the ordinate axis by the phase^displacement angle <f>

of the several

phase currents We suppose the problem to be solved, and Oi the
neutral point of the load circuit to be found, the effective KMF'S of

the several phases are then represented by the vectors 0iPro , #i-Piioj

and so on, whilst the phase currents are displaced from their respective
E M F 's by the angle < From Kirchhoff's First Law, the sum of the
currents in all the phases at any instant must equal zero, if all in

the same sense with respect to the neutral point are taken as positive.

Consider now, for example, the effective EMF Pm = ^iPmo m
phase JII with the current 7m lagging $TII behind it We then know
that /in = -Pin#in Choose the time-line parallel to the abscissa axis,

the momentary value is then

%t = N/I/m cos a.m = */2yniPm cos a^ .
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From 0^ draw a normal on to ym ; this then makes an angle ain

with OlPmo ,
and the shortest distance of the point T from v/irl is

O^mocosaqn. Imagine yui to be a force, then, neglecting the factor

N/2, the moment of this force with regard to the pole : is represented
by the momentary value 4jn of the current /m The condition that

the sum of the currents in all the phases equals zero at any instant is,

therefore, the sum of the moments of all the forces y with respect to

the point Oi must equal zero, or 0^ must lie on the resultant of all the

Pro 217 Determination of 1'otentliil of Load f-tiu Point

forces y. If the time-line rotates with the angular velocity w, the forces

y must also rotate with the same velocity, so that the hues g always
remain normal to the time-line and the momentary values of tho

currents proportional to the moments of the forces
//
with respect to O

f

Imagine now that the whole diagram 1Pia PuoPITla PIVO Pva as a rigid

system at the terminals of which the corresponding forces y act
, wo

know then, that if the forces be turned through equal angles about the

points of application, the resultant of these forces will likewise turn

through the same angle about a fixed point This centre of the system
of forces must coincide with Ot in order that the condition " the sum
of all the moments is zero" is satisfied From this tlio construction
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for the point T follows at once by finding the resultant of the forces y
in two directions (e g at 90 apart) The point of intersection of

these then gives the potential of tlie load stai point,
In Fig. 217 the momentary value of the current Jm is positive, and

the moment of the force ym with respect to the middle point Oi of the

pressure must therefore be also positive The moment of the admit-

tance, which represents a current, will be also called a current moment
in what follows The momentary value of the current /! in Fig 217

is negative, and equals

ll
= \/2/! COS !

= - >J%Ii COS (1 80
- az )

N/2?/iPi cos (180 -04) equals the moment of the force yt with regard
to U-i This moment, which acts in a clockwise direction when taken

negative, gives the momentary value of the current Ii with its corre-

sponding sign (disregarding the factor N/2) From this it follows that

all current moments acting in a counter-clockwise direction are to be

taken as positive, and all acting in a clockwise direction as negative
This positive sense of the current moments is due to the direction of

rotation assumed for the time-line, with which the former agrees
In Fig 217 the currents /x and lm lag behind their respective

pressures Pr and -5ni in phase ; nevertheless the susceptances &x and 6IU

must be set off along the positive direction of the abscissa axis, when
the conductances are set off along the positive direction of the ordmate

axis, for the whole construction to be correct The current 7n leads its

pressure Pn >
so that 6n must be set off in the negative direction of the

abscissa axis This definite direction for the admittance forces y arises

from the chosen direction of rotation of the time-line.

After we have thus determined the potential of the neutral point of

the load system and knowing the effective E M F 's and pressures in

each phase, we can find the current in each phase The currents cause

a drop of potential in the windings of the generator and in the line,

which causes a displacement of the potential at the receiver terminals

This displacement equals It in the direction of the current and Ix

normal to it, as already explained If the E.MF'S and loads in the

phases are not all the same, the pressures at the receiver circuit may
differ considerably.
The above method for finding the neutral point was first suggested

by Kennelly, Elec Wmld and Engineer 1899, p 268

In the special case of a symmetrical star system whose phases are

symmetrically loaded, the neutral point O
l of the load coincides with

the neutral point of the generator, which can at once be seen from

symmetry The same current flows in each phase, and the no-load

potentials, PIO , PUO, PIUQ, and so on, at the receiver terminals are

displaced by the same amount, the system remains symmetrical and
balanced

If we have a star system with neutral wire, the neutral point Ot can

also be determined by the above method. For this purpose it is only
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necessary to introduce a force yQ at the point corresponding to the

admittance of the neutral line, m order to consider the influence of the

neutral wire oil the potential of the point : . When y is equal to

zero we have the system m which no neutral wire is present, while

for the case y equal to infinity, Ol and have the same potential.
The points are then short-circuited, so that the current and drop of

pressure in any one phase has no effect on the loads in the other phases.
The conversion problem treated by Kennelly in the above-mentioned

paper is of interest, for it also shews how, by suitably choosing the

Pro 21Sa. FIG 2186 PIQ 218e

Fin aiSo-c Diagram of Symmetrical Three phase System supplying Two phase
Ciment.

/ff'373

Flo 2100. Fin 2106 Fio 210e

Fio 219a-(? Diagram of an Interlinked Two-phase System supplying a Balanced
Three-phase Current

three load resistances of a symmetrical three-phase system, the same
can l)e made to deliver a two-phase current The conductances of the

three load resistances (Fig 2180) must bear the ratio 1
_1_

2 73

Fig 218i shews the pressures of the various phases, of which OP10 and

OP1I10 are perpendicular to one another Fig 218c is the diagram of

the currents

Conversely, a symmetrical three-phase current can be taken from an

interlinked two-phase system, by making the load resistances of the two

phases equal and in the ratio 1 . (1 +N/3) to the resistance of the neutral

wire (see Fig 2190) Figs 219& and c shew respectively the pressure
and current diagrams for this arrangement

A o B



258 THEOEY OF ALTERNATING-CURRENTS

79. Analytic Calculation of Current in a Star System. The graphic
method described in Section 78 for the determination of the middle

point Oi of the pressure is not always convenient, especially in the case

of a star system with a neutral wire
,
for the latter has usually a much

greater conductance than one of the loaded phases

Further, the admittances are often nearly parallel, so that graphic
summation is inconvenient and inexact, unless the resultants of the

forces y are found by means of the force and vector polygon, as is

customary in graphic statics

We shall, therefore, first shew how the currents and the middle point

I of the pressure of a star system, with and without neutral point, can

be analytically determined.

Method / The no-load pressures PIO ,
PIIO , etc, of the several

phases, which equal the induced BMF'S, will be denoted in general

by PJO for a phase and the admittances of the phases by y Then

where P is the potential of the middle point 1
of the pressure, 7 the

current m and
g/

the admittance of the neutral wire Fiom this

where 2(P^) = /OJ =/i + 7^ + /^II ,
etc

7ojr is the current which would flow in the neutral wire if the two
neutral points were connected by a wire with zero resistance, whilst

/i, /ij, etc
,
denote the currents in the phases under this assumption

If these currents are calculated, we have

If P is known, we calculate

/io
= ^ yi,

and so on

Finally, f

where 7IO + /

The phase currents are also easy to find, for

Similarly, /n = Jii- Jno> et

Let us take any given star system, and supposing first that the two
neutrals are connected, as in Fig 220, calculate the current distribution

for instance, for P = We have then

Secondly, we will suppose the current IQK distributed over all the

parallel conductors in the systems in proportion to their admittances,
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by putting the phase pressures PIOJ Pno , etc., equal to zero and

calculating the currents /I0 ,
7no / as if only P were present (see

Fig 221)
We have here, therefore,

-*io "t" -*no "f" "^~ -fo
==

-*oi' >

The phase currents are then obtained by superposing the two current

distributions in Figs 220 and 221.

* wwwv S*

Pro 2i20

_;

PlO 221.

To take a practical example, we will go through the calculations for

a star system Let us take a three-phase generator, star connected,

[r-OOSohm
lx-02olim

002 ohm

0-08 ohm

feeding a lighting network with a phase pressure of 100 volts The

lamps are connected in star, as shewn in Fig 222 With full balanced

load in the network, the current per phase is 100 amps The armature
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winding of the generator has an effective resistance of 03 ohm and

a reactance of 2 ohm per phase The mains between generator
and receiver have a resistance of 02 ohm per phase, whilst the

neutral line possesses a resistance of 08 ohm ,
the self-induction of

the mams and incandescent lamps is negligibly small.

FIG

We shall determine the distribution of current and pressure in the

system, assuming that the first phase is fully loaded, the second

working on
-|

full-load and the third on half-load In all the three

phases of the generator, the same effective E M F of 100 volts is induced;
hence the no-load potentials of the four terminals of the generator are

represented by the points 0, PIO ,
Pno and Pino (Fig 223) The first

phase of the load network has a conductance of 1 mho or a resistance

of 1 ohm, the second phase f mho or T333 ohms, and the third phase
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4 mho or 2 ohms To these resistances must be added the resistances

of the three lines and the phases of the generator, so that we have

^ = 105, a;I
= <2 or #[

= 0-922, ^ = 01755;

? n = 138, Bn=:02 or 0^ = 0-710, Jn = 0'103,

m = 2-05, 2:^ = 02 or /7ni = 0484, bm = 0-0473,

and ? = 08 ohm or gQ = 12 5 mhos

The impedance between the neutral points is

7 i.w=
0ii + 0m)

2

- 0-00152 ohm

We calculate now
=Ployi

= 100(0 922 +.y 01755)
= 92-2+; 17 55 amps,

/n = Piioyn = (- 60+.; 86 6)(0 710+^0013)
= - 44-4 +^56-4 amps.,

/in = Pmoyin = (
- 50 -

3 86 -6) (0 484 +j 0473)
= -20 l-;44-3 amps.

From this we find

/ojr
= 277+;297 amps,

P =
(0 0684 -jO 00152)(27 7 +;29 7)

= 194+; 199 volts.

This difference of potential produces the foUpwing currents .

= 1 44 +; 2 1 8 amps.,

l'17+
i;l-61 amps.,

/mo = PoVm = 85 +; 1 06 amps ,

/o
=

PO!/O
= 24 22 +; 24 85 amps.

Finally, we get

/i
= /i- /io

= - 90 76 +; 15 37 amps ,

/n = /ii
-
/no = - 45 57 +; 54 79 amps ,

/m = /m - /mo = - 20 95 ^45 36 amps

The absolute values of the, phase currents are

7T
= 92 amps ,

/ = 715 amps ,
/ITI

= 49-8 amps

The current II causes an ohmic drop in the armature winding and
line JT 7

= /t O 05 opposing the current, and an inductive drop 1^ =1^ 2,

perpendicular to the current, as shewn in Fig. 223. Due to these two
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pressure drops, the potential across the lamps in phase I is displaced
from PIO to PU and the lamp pressure is now O^i instead of the no-load

pressure OP10 From Fig 223 the lamp pressure of the three phases

I
= /I xl=92 volts,

(%Pn= /n x 1 33 = 95 volts,

O^Pju= ^ni x 2 = 99 6 volts,

thus shewing the effect of the out-of-balance load
If all phases had been equally loaded with 100 amperes, the lamp

pressure would have fallen to 93 volts in each phase.

80. Graphic Calculation of Current in a Polyphase System
Method II. As well as the analytic method in the previous section,

the following simple graphic method can also be used We will

describe it in connection with a symmetrical three-phase star system
with phases loaded unsymmetncally and without neutral wire

PIO 224 Flo 225

In Fig 224, the no-load pressures P of all the phases are drawn
in the same direction, viz along the ordinate axis /r', /n and I'm are

the currents which these pressures would produce if the neutrals of the

generator and the load were directly connected. Since all the no-load

pressures are equal in magnitude in a symmetrical system, the currents

/i, /i, and /! in such a system will be proportional to the admittances

yi, y-u and ym of the three phases. To the same scale, the vector

OA=Ji + Ia + Iin represents the total admittance y
=
y-i^yn + ym be-

tween the neutral points.
In Fig 225, the currents /T', 7n and /in are drawn at their correct

phase angles ^ $n and ^nl to the no-load pressures PIO , PH O and Pm o

Finally, we draw Fig 226, in which the currents 1(, /n and /ni
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are geometrically added, giving the current /0jK:

= /i'+/n + /in> which
must flow between the neutral points, from the load to the generator
The current I^K is now distributed among the several

phases in proportion to their admittances by drawing
on IOK a polygon similar to that formed by the

currents /i, / and I[u on OA in Fig 224 /I0 ,

/IIO and 7IIIO are the components of IOK in the

different phases By drawing parallel lines, we add
/i and -/OI together in Fig 225, and thus ob-

tain the resultant current I\ in phase I Similarly
for the other phases.
We have determined the phase currents without FIG 220

finding the potential of the neutral point O
l
of the

load. This can now be found at once, for the potential differences must
be proportional to the currents they produce Thus, for phase I,

_ * p
'-'i

Similarly for the other phases,

- " PT-Ll

n~P ^m Pv\"mo ==
p~-

rnio-

If we strike off arcs about the points PJO ,
Puo and PIIIO with these

radii m Fig 225, they will all cut in the point Or This is the middle

point of pressure in the

load For each phase we

get a pressure triangle
similar to the current

triangle for the same

phase
The direct determina-

tion of the point 0^ is

most easily done by the

constructionm Fig 227
Here again

is represented by the

vector OA Further,

/i+/II+ =/
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On the other hand,

i e. if we rotate the co-ordinate system of the pressures so that the

direction of PIO coincides with that of /, then Pa lies in the direction

of IOX} and it is only necessary to construct the fourth proportional in

Fig 227 to find the point Or

81. Conversion of a Mesh Connection into a Star Connection Of
the different ring-connected systems, mesh connection is almost the

only one which has found favour in practice , consequently we must

study this connection more especially
In the previous section was shewn how the neutral point of a star

connection can be easily determined, and the calculation of the

currents in a star system thus reduced to the treatment of simple
conductors. In order to obtain the same simplicity for a mesh

connection, the following method due to Kennelly (Electrical Wwld,
vol. 34, p 413) for converting a mesh connection into an equivalent
star connection with respect to the outside circuit may be used

z
n

Fio 228a Fia 22S&

Fro 228 Mesh System and its Equivalent Stai System

Fig 228a represents a mesh system with the impedances slt su ,
?m

in the several branches Lot the equivalent star connection (Fig 228fr)
have the impedances za ,

zb and . Now, in order that the mesh can be

replaced by the star without altering the conditions in the exteinal

circuit, the impedances between the three terminals A, B and G of the
star must equal the impedances between the angles A, B and C of

the mesh We have thus the following symbolic expressions for the

impedances

g , _

,
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Multiplying
each of these equations in turn by - 1 and adding,

we obtain

Substituting the complex quantities for %, zn and zin in these

symbolic formulae and splitting up the expressions za ,
zb and zc into

their real and imaginary components, we get the resistances and
reactances of the equivalent star connection expressed m terms of

those in the mesh connection

In a^similar manner, we get also

'
i

' ii
"

Conversely, if a star connection is given, we can substitute for this a

mesh connection

In this case we assume that the admittances of the star are known,
whilst the admittances of the mesh are to be determined

If the two systems in Figs 228a and b are equivalent, they will still

be equivalent if we connect like circuits between two like terminals in
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both They will therefore be equivalent when we connect a circuit of

impedance 3 = between A and B in both, i.e if we short-circuit A
and B In this case we have

If we connect 5, and C, A in turn m the same way, we also get

From these three equations, we then get

(147)

From the last three expressions, which can also be expressed as

complex quantities, the equivalent mesh connection of any star connec-
tion can be calculated

Pia 229 Graphical Transformation.

This problem of conversion caii also be solved graphically In

Fig 229, OZIt OZn and OZIU represent the impedances zlt su and sm
of a mesh connection m magnitude and direction

To determine now the impedances z
,_g6 and z of the equivalent

star connection, we first draw the vector OZ to represent the resultant

impedance 3 = 3i + Zii + Zin, and then construct the triangle OZaZ-u
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similar to OZIUZ Then OZa is the reqmred impedance za in magni-
tude and direction, for the following geometric relation is fulfilled

thus satisfying Eq. 146. The construction for sb and a
e is exactly

similar.

The graphic determination of the admittances of the equivalent
mesh from the admittances of the star is quite similar to the con-

struction of Fig 229, as shewn by Eq 147

Example Let gI
=

l, <7n
= and gm = ^ mho, or ?i=l, v n =1333

and ?m= 2 ohms.
Find ra = za ,

i b
= sb and = *

133.2 266 ...

or mhos,

or

and

mhos,

= = - = 0-308 ohm,'

g = 3 -28 mhos.or

Thus a mesh connection whose phase loads glt gu and gm are in the

ratio of 4 3 2 is equivalent to a star connection whose phase loads

gb , ge and ga bear the ratio of 4.3.2, whence it follows that the

influence of uiisymmetncal loading is no greater in a star system
than in a mesh system.

82. Conversion of Star and Mesh Connections when E M.F.'s are

Induced in the Phases. Until now it has been assumed that no E M F
J

s

are induced in the phases which have to be

transformed from mesh to star and vice

versa. If such E M F 's are present, we
have to proceed precisely the same as

before
, considering, e g , Fig 230, where

the paths of the mesh connection possess
both E M F 's and the impedances %, zu and

jsm ,
we can first imagine a condition

where no current at all flows, on account

of the EMF'S in the star system main-

taining equilibrium hi the former as

can actually occur with generators working
_ii i

in parallel
If the E M F in one or more of the phases

of the star connection is now altered, currents at once begin to

flow, and these currents will depend only on the impedance of the

PIG 230 Transformation of a
Mesh System where K.MF'B are

Induced In the Phases
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whole system _and on the amount by which the E M F.'s m the star

system are varied, since it is quite immaterial which EM.F'S maintain
the equilibrium Hence it follows that the impedances of the star

system which is equivalent to the mesh system remain the same

PIQ 231

whether EMF'S are present in the branches or not. As regardsthe conversion of star connections it is therefore immaterial whether
E.M F.'S are present or not
As an example illustrating the complete procedure, wo can take

a system in which both the generator and the load are mesh con-

Pio 233

nected, as shewn m Fig 231 We first calculate the impedancesof the equivalent star connections, and then find the sum of the
admittances m each phase and draw the pressure triangle for the
generator on no-load (Fig 232) At each corner of th?s triangle!we then set off the admittance of the corresponding phase as a fo?coIhe centre of these forces is then the neutral point O

l of the load, and
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the distances of this point from the angles of the pressure triangle give
the E M F 's of the phases. These, multiplied by the respective phase
admittances, give the bne currents (equal to the phase currents), which

make angles tan"1 - with
1
P These currents cause a displacement

7

of the potentials from the angles of the pressure triangle which is

drawn for the terminal pressures at the generator on no-load. The

displacement of each angle is equal to the corresponding phase imped-
ance of the equivalent star connection for the generator multiplied by
the line current The displacement Ir opposes the current in direction,

whilst Ix lags behind the same by 90 By this means, we get the

three new angular points PI3 Pn ,
Pm , giving the pressure triangle of

the generator on load (see Fig 232).
In Fig. 233 the three lines /, I6 and Ie represent the three line

currents It is often useful, however, to know the currents in the net-

work, i e. in the branches of the mesh These can

be found for the generator by taking the geometrical
difference P^P^ of PjPm and PloPuio, and divid-

ing this difference by the impedance zn of the

branch connecting them (Fig 234) If the currents

of the load triangle are required, we must first

construct the pressure triangle for the pressures
at the terminals of the receiver. The sides of

this triangle are the phase pressures, and each pro 234

such side divided by the impedance of the

respective branch gives the current in that part of the load triangle

We have thus completely solved the given problem without knowing
the potential of the neutral point of the equivalent star system for the

generator this point is unnecessary for the construction
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Example I The load admittances of the mesh system are all alike

in every respect j

Then, since za
= T1IL21 __

~i + *ri + ziu

and ZT = ZT = & =2

we have

i e. a mesh connection with equal impedances in all the branches can

be replaced by a star connection whose phase impedance equals one-thiid

of the phase impedance of the mesh connection
t

That this is so is clear,

for with star connection, the pressure per phase is \/3 times smaller

and the current >/3 times greater than in the equivalent mesh con-

nection , consequently the star impedance must be /->
8
=n that of the

mesh impedance (**'

Example II In three-phase systems several star connections are

often joined in parallel Since the admittances of the several branches

of the stars cannot be directly added when the load is unsym-
metrical, each star must first be replaced by its equivalent mesh The
admittances of the various meshes are simply added for each branch,
which is allowable, since these admittances are all in parallel between
the same two terminals. Consequently we get one resultant admittance

for every path, and the resultant admittances of the three paths form
a single triangle, which is equivalent to all the equivalent parallel
connected stars This triangle can further be replaced by an equivalent

star, whereby it is seen that several different star connections have
been reduced to a single equivalent star. In a similar manner it is

possible to treat any desired load on a three-phase system.

83. Symbolic Calculation of Current in Polyphase Systems In a

symmetrical polyphase system with n phases, the E M F px induced in

the %*** phase is

= N/2P sin

= ij2P \ sin tat cos (x
-
I)- cos (at sin (x- 1) |,

or, symbolically,

Since pl
= */2P sin at, i e symbolically P:

= P, and since also

t- STT 27T /-
e = cos H ? sin = v/1 = <J

?t
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we can write for the E M F
J

s induced in the several phases,

Consider first the interconnected four-phase system (Fig 235), whose

generator is star connected, whilst the load admittances form a quadri-
lateral. In this case it is best to start with Kirchhoff's Laws, which
state that the sum of all the currents at any junction is zero, and that

4

i

r
r

Flo 286.

the sum of all the E M F 's in a closed circuit must be zero Up to

the present there is no graphical solution for such a system,
consequently the symbolic method is used for treating this[particular
case which seldom finds practical application Applying Kirchhoff's

First Law for the five junctions in the system, we have

/ + /-/, =0,

/in + /-/, =0,

/IV + /.-/4 =0,

and /! + Iu + Jm + Iw =

Since the last equation can also be obtained by addition of the other

four, we need not consider it further

Similarly, applying Kirchhoff's Second Law for the five closed

circuits in the system, we have

PI ~ fu -
IT.ZI

- In8a + In&n =
0,

Pu ~ PHI ~

P -P -* in -*iv

and Inxa+ I,,zb + Icze + !&%&

The last equation can likewise be obtained by adding the other

four, and can therefore be omitted.



272 THEORY OF ALTERNATING-CURRENTS

Ifj in the pressure equations, \ve uow replace the phase currents

/u /in /m aud /IV by the line currents /, Ib ,
/ and Id ,

we get the

following four linear equations with the four unknown currents /, 7
ft ,

/ and /.
+/! =0,

-Pn ~ -Pin
~
/t (SIT + a

6 +

iv +/*m = 0.

+ /a-iv =0

From, these we find the cuiTents,

_ _ _
n ~T)> b

~
7)

'
~
D l

~
D'

where
~

(=1 + 3n + ~Il)) SlU 0,

n_ ^u ~
(^i + "t + ^iiyj SITIJ

0, iii,
-
(em + za + siv),

i. 0, *iv>
-

0, smj -
(SIH 4- ze + CTV)J

= ZD
,

' ^v, -

-
6s! + Sa + Il)j n> 0,

is the determinant of the above four equations, whilst D
I}
D

2 ,
Z>

8
and

.Z)
4 can be found from D when the coefficients of the unknowns /, Jb ,

Ie and /,i are respectively interchanged with regard to the constant

terms,

When the four currents /, J6 ,
/ and 7d have thus been determined,

the four terminal pressures,

and the four phase currents,

/is /n> -^iiij J-iv,

can be easily found.

The problem is accordingly solved
}
and for the solution we have

only used the simplest means This method of symbolic treatment,
however, yields a result which has very little meaning until we
work out the determinants, and then from the symbolic expressions
come back to the complex. The final result is thus always long and
complicated

In practice we usually meet with the independent two- or four-

phase system and the two-phase three-wire system The former
can be calculated both graphically and analytically in the same way
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as a single-phase system The two-phase three-wire system can be
best analytically and graphically treated by calculating the neutral

point of the pressure We shall, however, treat this case here sym-
bolically, and by means of an example explain the operations with

complex quantities somewhat more fully In Fig 215 a two-phase
three-wire system, with equal currents in the two phases, was graphi-
cally investigated, and it was found that the drop of pressure in the
two phases was unequal. If we consider the same system on the

assumption that both the phases have equal load admittances, we
find that in this case also the pressure drops are different Thus the

two-phase three-wire system is always unsymmetrical with respect to

pressures and currents, even with symmetrical loading
In oider to shew this, let

Pin
= P = E M F. induced in phase I of generator,

Pno=jP = E M F induced in phase II of generator,

/ = current in phases I and II,

/ = current in neutral line,

s = impedance in phase hues,

zQ
= impedance in neutral line,

y =load admittance of the two phases

Pl and Pu = terminal pressures between the phase terminals and the
middle wire

We have, then, /x + /Ir
= - /,

where all currents leaving the neutral point are taken as positive

It^yPj and / = #.?,

and Pn =PIIQ
- / * + J * =jP ~

or

y(z + 3,,)} PJI =jP,

(
z + ^-jy3o

whence P>= * - P.............. <
U8

>

( '

Take, for example, s= Zo\/2, then

l + (1707-0-707;)y
PI=

I + 3 414js + 2

1 + (1707 + 0707;)

1 + 3 414* + 2

For further similar calculations, see Stetiwiets and B&rg
AC 8
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The dissymmetry of currents and pressures is due to the fact that

the reaction of first leading phase in such a system on the second

lagging phase differs from that of the second upon the first Hence,
such a system is not to be recommended for current distribution

rather it is preferable to use the independent two-phase system, whose

pressure regulation is ]ust as simple as that of an ordinary single-phase

system For power transmission, however, the interconnected two-

phase system is often used, since it necessitates only three wires, one

of which can be earthed In this case it is customary to use two
concentric cables with uninsulated outers

84. Graphic Representation of the Momentary Power in a Polyphase

System. In Fig 45, p 36, the momentary value of the power,

pi= PI
jcos

(^ - (

2) + sin
|^2orf

+
(</>!

+ <
2
-

J J,

of an alternating current is graphically illustrated This method of

representation, however, is not suitable for polyphase currents We

therefore set off the momentary power as a vector, at an angle ( <o- ^ J

to the abscissa axis * ^ "^

Putting PI cos (^ - <
2)
= PIcos<j>=PT

and -^ + =

.1.
then ,

\ cos <f>

will be represented by a closed symmetrical curve, the so-called power
curve, whose centre is a point of the fourth degree Since the power
of each phase in a polyphase system vanes with double the frequency
of the current, the total power in a polyphase system can also be

expressed by an expression of the following form .

e,W is here the amplitude of the double-frequency power Returning
now to the rectangular co-ordinates x and y by putting

((at
-

]f)
=

-,,

\ 2>) x
w = va;

2 + y
2 and tan

|

we get the following equation for the power curve

which is a curve of the sixth degree

*See Stemmetz and Berg, Alternating-Current Phenom&na
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In this equation, put

^W = (l+e)W= maximum power,

Wmiii
=

(1
- e)W= minimum power,

then
alu and e= '"

Inserting this in the above equation of the power curve, we get

as the final form of the equation for this curve, whose mam power axes

are w^ and wMin The ratio wimUL :w,nia is often referred to as the

balance facto) of the system In Figs 236 to 239 the power curves

of the most important alternating-current systems are given

Pin 236 Single phaso System on Fift 23T Single-phase System on Non-inductive
Inductive Load, 0=00 Load, <fr=0

Pin 23S Inverted Tbvoe-plmse System on
Non-inductive Load

Fio 239 Inverted Three phaso System
on Inductive Load, </>=60

The single-phase system with non-inductive load (i e cos
</>
=

!) has

the following power equation

or, since wmftx
= 2 ZF, wjll1n

= and e=l, we get, in the rectangular
co-ordinate system, 2 as _ ^2 (

x + yy = Q

The power curve is shewn in Fig. 237
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As is obvious from the above figures, the power in an alteruating-

current system is completely characterised by the two main power
axes WWL and w,^ All symmetrical polyphase systems with ?i^3

give circles for the power curves when symmetrically loaded These

systems therefore transmit the power quite uniformly, and for this

reason have almost completely ousted all other unbalanced alternating-

current systems for power purposes



CHAPTER XV

NO-LOAD, SHORT-OIROUIT AND LOAD DIAGRAM OF A
POLYPHASE CURRENT.

85. No-load Diagram 86 Short-oiroiiit Diagram 87. Load Diagram.

85. No-load Diagram. (Percentage Current Variation
) When a

symmetrical polyphase system is uniformly loaded, each phase behaves

Pia 2^0 No-lond Diagram

in the same way as m a single-phase system Hence the no-load

diagram derived for the single-phase circuit can be directly applied for
the symmetrically loaded polyphase system
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In practice, polyphase systems are almost exclusively met with, the

chief amongst these bemg the three-phase We shall therefore now
derive the no-load diagram for a symmetrical three-phase star system
with unsymmetrical load aud with the no-load currents in the three

phases equal
The no-load diagram enahles us to determine the percentage change

of current from the receiver terminals to the supply terminals This

Pio 241

percentage current variation is nearly equal to the current variation at

the receiver terminals from short-circuit to load when the current in

the supply circuit is maintained constant.

If the system is unsymmetncally loaded, we must first find the hue
currents JI2 ,

JII2 and Imz by geometrically adding the three load

currents /J2) Iuz and Ioz . The pressure triangle (Fig. 240) is then

drawn for the pressures at the receiver terminals, as an equilateral

triangle this is not quite correct and the no-load currents
-ji?100,
MIO

and so on, are set off as percentages of the line currents at an angle <

to the phase pressures PI2 ,
and so on With the no-load currents as

diameters, we describe circles and obtain the variations of the three

line currents as we pass from the receiver terminals to the supply
terminals, thus, 2

VIO

200'
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In Fig 241, in the same way, the uo-load diagram is represented for

a three-phase network, to which several unsymmetncal transformers

are connected of the kind shewn in

Fig 242. The load is symmetrical
and inductive, with a power factor of

0'9 Since the no-load currents in the

several phases of the unsymmetncal
transformers vary considerably, we

get large differences in the diameters
of the circles (see Fig 241).

86. Short-circuit Diagram (Per-

centage Pressure Variation
) The

short-circuit diagram enables us to

determine the percentage change of the FIQ 242 Three-phase Transformer

supply pressures when the pressures
at the receiver terminals are kept constant from no-load to full load

This percentage variation nearly equals the change of pressure which
takes place at the receiver terminals when the pressures at the supply
terminals are maintained constant.

When a symmetrical polyphase system is uniformly loaded, each

phase behaves as in a single-phase system Hence the short-circuit

diagram of a symmetrical three-phase system can be found directly
from that of a single-phase

"We have here, however, three pressures at the receiver terminals,
whose directions are represented by the three sides PAZ> PBZ ,

Poa of an

equilateral triangle When the load is uniform, the hue currents /Ia ,

JIIB and /ma will all be equal and make the same angle <
2 with the

phase pressures PI2 ,
Pllz and Pma Each of these line currents causes

a displacement of the potential at the supply terminals by the amount

/aZjr in passing from no-load to full load Hence we set off the

impedance pressures T

feoo
"a

at angle ^ to the line currents, as a percentage of the pressure P2

at the receiver terminals On this, as diameter, we descnbe a circle

and find the distances p.K and v
, given by the three terminal pressures

in these circles Izzx is here the short-circuit pressure per phase, and

consequently equals PAE when the load is uniform, where PAX denotes
the terminal pressure at short-circuit The direction of each terminal

pressure cuts out lengths pK and vs from two circles We thus get
the percentage change of pressure at the supply terminals, on passing
from no-load to load

p / p / fi /+ IL +,,' _i_ (
vx + vxY

j /o
e
-fl/

6o/ /**/*jr+ 200
"
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If the three-phase system is unsymmetrically loaded, we fhst deter-

mine the line currents /i a ,
7II2 and /, as shewn in Fig 343, by

geometrically adding the load currents IAZ ,
IR2 and /ca

The short-circuit diagram, Fig 243, is drawn for au unsymmetrical
non-inductive load In this figure, therefoie, the load currents coincide

in direction with their respective terminal pressures P ts , P,,* and Pcz

Fio 248 Short circuit Diagram of a Throo plmne Sywtoiii

I-roZ
The impedance pressures 100 are then sot off at an angle </>A to

*
2

the line currents, as a percentage of the pressuie at the receivei terminals

On this as diameter, we describe a circle, and so obtain the percentage
variation of the pressure at the supply terminals. For phnso B this

variation is

and similarly for the other two phases

87. Load Diagram. With uniform loading, each phase of a poly-

phase system acts just as a single-phase system Hence we can apply
the load diagram for single-phase currents directly for polyphase
currents, if we carry out the calculations for each phase and afterwards

multiply the power per phase by the number of phases.
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The relations, however, are not so simple when we come to deal with
unsymmetrical systems or systems unsymmetrically loaded, since the

curients 111 the different phases mutually affect one another, but not all

in the same way Since systems with a considerable want of symmetry,
or with very misymmetrical loading, seldom occur in practice, we shall

not treat such systems exhaustively, but rather satisfy ourselves by
shewing how the load diagrams for such systems can be constructed

(a) In stai systems, it is best to find the neutral point of the pressure
for different loads. If this point does not alter much with the load,
the pressures between the terminals and the neutral point can be

regarded as constant, and the load diagiam for each phase is con-

structed in the usual manner and the several powers summed up. If

all the diagrams have the same conductance, they can be replaced by
an equivalent diagram, whose pressure P equals the root of the sum of

the squares of all the phase pressures PI3 Pu ,
PIII} and so on, i e

and the current / in the equivalent diagram bears the same relation to

the phase currents .

An interlinked four-phase system, where one double-phase is dis-

placed 90 in phase from the othei double-phase, but is of different

magnitude, yields an equivalent diagram, for example, if both phases
feed circuits of equal conductance y The equivalent pressure is then

an<J the equivalent current

If the two phases supply circuits, however, whose conductances are

different, but with similar diagrams, the equivalent diagram can also be
found for this case, if we take the pressure

P= pL+r*x

y
"
y

and the current 7= A ll\ + /?, -^-
>

V ^ n
yn

where the conductance y of the equivalent diagram equals the root of

the product of the two phase admittances y^ and yu ,
i e

The same also holds for an w-phase system, if we write for the

equivalent admittance ,

yWytfii yn
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The equivalent pressure is then

and the equivalent current,

Since these ratios of conductances are the same for all loads, we

can calculate them for any desired load e.g no-load and substitute

them in the formulae

(b) In ring systems, the phase pressures generally remain constant for

all loads, and on this account the formulae that have been deduced for

star systems may also be applied for nng systems

Fio 244. Load Diagram of a Threo phase Induction Motor

(c) As an e&ample of a symmetrically loaded three-phase system, we
will consider the load diagram for a 75 H.P three-phase asynchronous
motor at 580 rpm and 50 cycles Measurements were taken at

'no-load and short-circuit, and the following mean values were obtained

for each of the three phases

No-load

^ = 289 volte,

Short-circuit

PK = 6l volts,

From this we get

cos<

/ =- 21 amps ,
= 1 K w.

/ljr
= 80amps, JP",

= 1 -72 K w

Wn
-4- = 0166, < = 8030'
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The short-circuit current at full phase-pressure is

p
IK = AA -5-

= 379 amps ,

* K

W
aud cos<J3K =j-~ = 352, ^ = 69 20'

From these the load diagram per phase is drawn in Fig 244 to a
scale of 1 cm = 75 amps, together with the power and loss-lines, in

accordance with the constructions giveu m Sect 58
For the maximum power (Pm), the diagram gives

Supplied power ^ = 533 K.W
,

Efficiency 7= 72%,

from which 2̂max = 0'72 3 533 = 115KW.

for all three phases, or
-jig

0746-
1B4HP

With this scale, we find for the full-load powei of 75 HP (point P)
1= 80 amps., v = 89 7 , cos <l> = 0-9, s = 3'9./O'r J

The maximum power for
j!)2
=

0, A^^.0 is, fiom Formula 104,

ry _ P\{Ix- ^0C8 (<o
-
<*) }

am"
2(l+cos^)

= 3
289 (379 -21. 0981)

2(1 + 0-352)

= 115 KW or 154 HP.
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POLYPHASE CURRENTS OF ANY WAVE-SHAPE.

88 Higher Harmonics of Current and Pressure in Polyphase Systems.
89 Polyoyohc Systems

88. Higher Harmonics of Current and Pressure in Polyphase
Systems. As with a single-phase current, so also with polyphase
currents, each harmonic (fundamental and higher harmonics) can be

treated separately, and just as the resultant B M F. of the fundamental
waves of two phases is found by geometric addition, so also harmonics
of the same frequency can be summed up, only the angle at which they
act is different for the several hannomcs The harmonics of the same

frequency in an w-phase system form a pressure polygon of n sides, and
the laws deduced for this will apply quite generally The effective

pressure between two points and the effective current in a conductor
are likewise found, as before, by taking the square root of the sum of

the squares of the effective pressures or currents of the several fre-

quencies The total power of the system is the algebraic sum of

powers of the several harmonics
In an unsymmetrical system, there are such manifold variations that

it is preferable to treat the harmonics of symmetrical systems only
Particular unsymmetrical cases can then be studied for themselves.

As an example of a symmetrical u-phase system, we shall examine
that which most frequently occurs in practice, viz the tiroe-phase
system
The phase pressures in the three phases are as follows :

Pi = Pp i \/2 sin (at + fa)

-I- ... ,

= -?! \/2 sin (to* +^ - 120)

+Pp3 N/2 sin (3cui + ^3
- 3 . 120)
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Pin = -Ppi N/2 sin (orf + ^ - 240)

+ P,, , \/J sin (3o>f + ^8
- 3 240)

+ PpB N/2sin(5u +
i/'fi
-5 240)+ .

,

or, working these out

Pi = Pp i \/2 sin
(<at + fa)

+ PpaN/2 sin (Surf +!/<)

+ P
p(1 \/2sin(5toi + i//B)+ ,

pn = Ppl J2 sin (u* + ^ - 1 20)

+ PpHV2 sin (5 co* +
</<

- 240) + ,

= PpiJ% am (w* + ^ - 240)

From this it is seen that every harmonic whose frequency n

multiple of the third harmonic is equal in all the phases, i e at i

instant these E M r.'s have the same magnitude and the same direct

with regard to the neutral point, whilst all the other harmonics of

three phases are displaced at 120 to one another, and can theref

be treated as ordinary symmetrical three-phase currents It m
be observed, however, that the order in which the phases follow

another is not always the same as that of the fundamental ,
e g

the fifth harmonic the order is 1, 3, 2, where 1, 2, 3 is the 01

of the fundamental
From the momentary values _p t , pu and pm of the E M F.'s mducec

the three phases, the momentary values pni p b and pa of the

pressures of a star system can be found Thus

N/2 sin (u* +^ + 30)

= s/3P
J)1

v/2 sin (W + ^ - 90)

+ N/3P^N/2 sin (5orf + ^ + 90) +

and Pt=pia-Pi
= N/3Ppl N/2 sin (w* + ^-210")

2 sin (5* + ^6
- 150)
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If the time t is reckoned from anotbei instant, eg. W = w

W6get

p7 s/2 sin (l

smK + ^ -
120)

pn N/2 sin (Soif +^ - 240)
sm (7orf' + ^ - 120)

and pb
=V3Ppl -/2 sinK + ^ - 240)

V2 sm (Torf + ^ - 240)

This way of expressing instantaneous values of the lino pres-
sures agrees with that of the phase pressures, except that instead

of A! we have *f3Ppl} instead of Pp3i 0, instead of PpK and Pp1 ,

-\/3PpH and \/3Pp7 ,
and so on Hence, if we leckon from the time t',

where ,, ,
, QAOw = w + oO ,

in a three-phase system, we get the following expressions for the

effective line pressures of the several harmonica in the system,

(150)

A star system with the phase pressures P
pli Pp ^, Pp0 , etc, is

equivalent to a mesh system with the phase pressures Pn ,
Pn , PID)

etc, if the star system is regarded as lagging 30 behind the mesh
system
The harmonics of the third order have no effect on the pressure

between the terminals (m a star system), for these have the same
direction in the several phases and neutralise one another in respect of
the outside terminals Hence, the effective terminal pressure will be

whilst the phase pressure is

P = IPv v-^j

whence we get the ratio

. RftVftV
(151)
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For example, if Ppl
= 100, P^ = 31 65 and P

pS
= lQ ,

then

If Ppl ,
Pp3j PpB , etc., are the effective values of the several harmonics

in the phase pressure of an interconnected two- or four-phase system,
we get the effective values of the line pressures in a similar way
to the above

r (
152)

Pm=-N/2Ppll,/

whence Pt=>/2P, (153)

Fuither, the momentary value of one phase pressure is

sin

whence the momentary value of one line pressure is

2 sin (5(02' + ^)+ ,

where iotf = <at + 45

From this it is easy to find the momentary values of the remaining
phase and line pressures
To find the currents due to the several harmonics m a three-phase

star system, the pressure triangle can be drawn for each harmonic, and
the pressure of the load star point found for each triangle. The

triangles of the third, ninth, and so on, harmonics come together
at a point which is also the star point of the load, and is displaced
from the neutral point of the plane of the respective harmonics

by an amount equal to the phase pressure. Hence, in a symmetrical

three-phase star system, there is a difference of potential between the

star point of the generator and that of the load equal to the effective

E.M.F. of the harmonies of the third order This potential difference

can only produce a current when these two neutral points are

connected, whereby this P D can equalise itself along the neutral

wire. Consequently, in a three-phase system without a neutral wire,

only currents of the first, fifth, seventh, etc
,
order can flow, and only

pressures of these frequencies will exist at the terminals On the

other hand, in a symmetrical three-phase system with harmonics of

the third order, currents of these frequencies will flow when the

neutral points are connected (Fig 245)



288 THEORY OF ALTERNATING-CURRENTS

We have thus the general rule A symmetrical ii-phase star system
without a neutral line acts like a system on no-load with lespect to all

harmonics of the 71
th order

,
for currents of these frequencies cannot

flow in the outer wires nor can their corresponding pressures act
between the same. If n is a pnme number, or only divisible by some

FIG 245

power of 2, it will be found that all the other harmonics in the ?i-phase
star system act like the fundamental, if we disregard the order in which
they occur. When n is not a prime number, the phase E M P }

s of the
harmonics, whose order have a common factor with n

t will partly
coincide For example, with ?i = 9, we shall only get three different

triple harmonics, since the mue-sided polygon reduces to a triangle.
If the three phases of a symmetrical three-phase system are mesh con-

nected, the sum of the three momentary E M r 's will not equal zoio, but

Pi +Pu +Pm = 3P8\/2 sin (Serf + ^8) + 3P9x/2 sin (9oi* + ^ ) +

Such a system, therefore, with harmonics of the thud order, does
not satisfy the above requirement, that the sum of the E M.F 's of the

phases connected in a closed circuit

equals zero These E M F 's of the third,
ninth, etc

, harmonics will always produce
a current in the mesh

(i e even on no-load)
and only m the mesh Under certain
conditions this current may reach a
considerable value The mesh connection
acts like a short-circuited generator with

Pl 240 respect to these harmonics, and just as
the terminal pressure in such a case is

zero, so also these harmonics cannot have any effect on the pressure
between the outside terminals If the mesh is opened at any point
and a voltmeter is inserted (Fig 246), the effective pressure

will be measured, which may be denoted as the internal p> esswre
In this connection an internal current is produced which can be

measured by inserting an ammeter in the mesh With a star connec-

r
01!th m*ern^ Pressure produces no current Thus the harmonics

of the third order do not send any currents through the outer wires
and exert no pressures at the terminals This holds generally for
the harmonics of the wth

order m a symmetrical w^phase system
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89. Polycychc Systems. In an alternating-current installation

which has to provide simultaneously light and power, the selection of

a suitable number of phases and frequency often presents considerable

difficulties One condition for the proper working of all known means
of electric lighting is a high frequency On the other hand, both single-
and polyphase motors, together with rotary converters, work better,
and have a greater overload capacity, with low frequencies

For a pure power supply, a polyphase system is preferable, whilst for

lighting on account of the better pressure regulation and simpler
installation single-phase currents are more suitable

Moreover, with regard to the pressures, the conditions for power are

different from those for lighting The lighting pressure, on which the

cost of the network mains depends, must be chosen low to meet
the requirements of the lamps used at the present day ,

the pressures
for motors, however, can with advantage be chosen much greater
than those commonly met with for lighting
On account of the sensitiveness of electric lamps to variations in the

network pressure, it is advisable to keep the pressure drop in the

network and the generator much smaller m installations giving both

light and power simultaneously, than is necessary with one giving

power only Consequently, in the former case the amount of copper
used is greater, and therefore the cost of the network and the geneiator
is increased

The object of the polycyclic system, therefore, is to simultatieou&ly

transmit electrical energy by means of currents at different pressures
and frequencies tlvtough one and the same condiietoi, and to distribute the

same without their affecting one another For this to be possible, it is

of couise necessary that the currents of different frequencies should

have no mutual effect on one another
Consider a symmetrical three-phase system (Fig 247), then, assuming

sinusoidal currents of equal amplitude, no pressure will exist between

the neutral points and O
l Hence, considering such a star system

FlQ 247

(main system) as a whole, we can use the same as one conductor for

conveying other currents between its neutral points, by connecting, for

example, a source of supply G, in the conductor 00^ These currents,

which flow through the phases of the main system in the same sense

and phase, and superpose themselves on the currents already existing

in the mam system (main currents), produce no detectable motor or

A a T
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inductive effects m the generators, motors or transformers m the mam
system This superposed current may be aii alternating-current of any
frequency or a continuous current The two currents, the thiee-phase
current and the superposed single-phase current produced in generator
G, (Fig 247), are entirely independent of one another, and the super-

posed single-phase current will flow along the conductors of the mam
system m the direction shewn by the arrows (Fig 247), just as if the

three-phase currents were not present
Instead of a three-phase system, a single-phase system might have

been used as the main system,

|

"

I as shewn by Fig 248, for a

I I single-phase system can always
I ._ I be regarded as a two-phase

I ^ ^Cj)* ' 1 system with its phases displaced
I

^-^ I at 180

I I Di F. Bedell has shewn how
f f currents especially direct cur-

FIQ 24S

""

rent can ^e introduced and
drawn out at points having the

same potential in a power-transmission scheme without affecting the

currents which already exist

It is, however, easy to see that the superposed alternating-currents
introduced at the neutral point must cause a large inductive drop of

pressure in the generator and transformer windings, and, for this reason,
Bedell's arrangement for introducing and withdrawing the superposed
current has not met with practical success

WWMMVW-MM

\WMNMWf-rtMty

Fio 249

The Authors, together with Prof E Arnold, however, have overcome
these disadvantages in Bedell's arrangement and worked out a poly-

cyclic system. This system is based on the application of bifilarly-
wound choking coils, and on the introduction and withdrawal of the

superposed current by means of special transformeis and generators

Owing to the apparently complicated scheme of connections, however,
this system has never been used m practice.
As an illustration of the complete arrangement of an installation for

transmitting and distributing polycyclic currents, the scheme shewn in

Fig 249 can be used In the double generator G and E having
one armature and two pole systems arranged in the relative
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positions shewn in Fig 250 to one another the three-phase current and
the superposed single-phase current are simultaneously produced The
single-phase current, which is the third harmonic of the three-phase
current, is superposed on the main current in such a way that the
maximum momentary pressure between the return R and the remaining
conductors of the transmission line is as small as possible. At the

receiver station, the three-phase current is transformed into two-phase
current by means of two single-phase transformers connected as in

Scott's arrangement, this being better for a polycyclic supply network
than a three-phase current on account of symmetry.

The superposed alternating-current produces no flux in the two

transformers, and can therefore be withdrawn at the point O
l

in the

primary of the transformer T^ In the transformer !F8 ,
the superposed

single-phase current is transformed, and since the secondary winding is

connected between the two conductors a and I of the two-phase system,
incandescent lamps can be connected directly between the two wires

Taking an umnterlinked two-phase system as the main system, the

weight of copper is 66 7 % of that required by a single-phase system,
when the same total power is transmitted over the same distance with

the same effective pressure between the conductors and the same

percentage loss, if we take the power of the single-phase current as

50 % of that of the three-phase.
The polycyclic system, therefore, may become important in cases

where power and light have to be distributed by the same network and
the lighting load is the less of the two. We then combine in the one

network all the advantages of independent networks with different

frequencies, without introducing any complications whatever into the

scheme.



CHAPTER XVII.

MEASUREMENT OF ELECTRIC CURRENTS.

90 Systems of Units and Standards 91 Measuring Instruments 92 Electro-

static Instruments (the Electrometer). 93 Electromagnetic Instruments

94 Eleotiodynamio Instruments 95 Hot-wire Instruments 96 Watt-

meters 97 Direct Measurement of the Effective Values of tlio Several

Harmonics 98 Measurement of Power by Means of Three Voltmeters

or Three Ammeters 99 Measurement of Power m a Polyphase Chmiit

100 Measurement of the Wattless Component of an Alteinating-Cimont
101 Determination of Wave Shape of a Pressure or Current by Means
of Contact Appaiatus and Galvanometer 102 The Oscillograph 103

Braun's Tube 104 Measurement of Frequency of an Altei nating-Current

105 Instrument Tiansformera 106 Electricity Meters 107 Galibuition

ot Alternating current Instruments.

90. Systems of Units and Standards On the basis of tho work of

Gauss and Weber (1833-1852), the Committee of the British Association

on Electrical Standards was able, in 1869, to draw up a practical

system of electrical units which could be derived from the absolute

system of magnetic units At the International Congress held in Pans
in 1881, these units were designated as the ohm, the volt, the ampere,
the coulomb and the farad

Since these practical units can only be derived from the fundamental
'

units of length, mass and time of the G s system by means of very
elaborate and expensive measurements, which distinctly belong to the

region of physics, the need arose for standaids of the above electric

units which would remain practically constant and could be easily

reproduced As such standards, approximating as closely as possible
to the units derived from the absolute G s. system, and suitable for

use both in practice and at law, we have
The International Ohm equal to the resistance of a column of

mercury 106 3 cm long and 1 sq mm section at C and weighing
144521 gm

The International Ampene equal to the constant current which, when

passed through a silver voltameter, deposits silver at the late of

1 118 mg per second.

The remaining units can be then found from these two The
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following two units of electi ic pressui e (so-called standard cells) are also

used, however
TJie Claik Cell The positive electrode is mercury and the negative

amalgamated zinc The electrolyte consists of a concentrated solution

of zinc sulphate and mercurous sulphate The pressure between the

terminals of this cell, on open-circuit, at t C
,
is

1 4292 - 00123 (t
-

18)
- 000007 (t

-
18)

2 volts

between and 30 C.

The Weston m Cadmium Cell This cell differs from the above

only in having cadmium and cadmium sulphate instead of zinc and

zinc sulphate With a saturated solution of CdS04 ,
the pressure

between 10 and 30 C is, at t C
,

1 0187 -
000035(

-
18)

- 00000065 (t
-

18)
2 volts.

The Weston Co make a cell m which the CdS04 solution is saturated

at 4 C Such a cell has a pressure of 1 0190 volts, almost inde-

pendently of the temperature

91. Measuring Instruments The standards described in the last

section do not, as a rule, admit of direct use in practice, the methods
of measurement being somewhat roundabout For practical purposes,

therefoie, special instruments are used, which permit of measurements

being made directly by noting the position taken up by a pointer

capable of moving over a scale Such instruments must of course be

first calibrated or standardized by comparison with the above standards

Generally speaking, these instruments have a movable system which
cames the pointer, and a fixed system to which the scale is fastened

The electric measurement, then, depends on the mechanical force set up
between the two systems For the measurement of continuous currents

and pressures, the fixed system may consist of a permanent magnet and
the movable system of a coil through which the current flows , but for

alternating-currents and pressures both the fixed and movable system
must consist of coils In the older toision instruments (e g Siemens and
Halske's Torsion Galvanometer and Torsion Dynamometer^ the action

of this force is always measured for one and the same position of the

movable system, the latter being brought into its zero position by
means of a spiral spring, the force then varying directly as the angle of

torsion In the current balance also (Kelvin balance), the movable

system is kept in its original position, the magnitude of the force being
determined by weighing.

In general, for one and the same relative position of the two systems,
the force varies either directly (when the fixed system consists of a

magnet) or as the square of the electric magnitudes being measured.

Let a, therefore, denote the angle through which the spiral spring of

the torsion instrument must be turned, or the static moment of the

counter-weight in the current balance, the electric magnitude a; to be

measured is eithei given by
x =ka or a= &\/a.
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The advantage of these instruments lies in the fact that their reduction

factor k or k
z
can be determined once for all by a single measurement

(calibration), and remains constant. A disadvantage of this arrange-

ment is the necessary hand adjustment of the torsion spring or weight,

which makes it impossible to take such measurements rapidly, whilst

for the measurement of quickly varying currents such instruments are

out of the question For this reason, the instruments used in practice

at the present day are so arranged that the movable system with the

pointer moves away from the zeio position, and takes up a position

corresponding to the magnitude of the electric quantity being measured

In such instruments, even when the controlling force (which tends to

bring the needle back into its zero position) is proportional to the

deviation of the needle from the zero position (as can easily be

obtained by using springs), the readings nevertheless no longer follow

the simple or the quadratic law, because the force between the two

systems changes with their relative position Such instruments, there-

fore, must be calibrated at as many points on the scale as possible,

whilst intermediate points can be obtained by interpolation (graduation)
For measuring alternating-currents, only instruments can be used

which obey the law of squares, for it is only in such instruments that

the direction of movement does not alter with the change in current

direction Provided, then, that the mass of the moving parts is

sufficiently large and the frequency sufficiently great, the deflection of

the instrument will remain practically steady in a position corre-

sponding to the mean turning moment acting on the movable system

92. Electrostatic Instruments (The Electrometer) As first pointed
out by Lord Kelvin, electrostatic instruments can be made for absolute

measurements, but in practice only those graduated by comparison
with standards are used, and these chiefly foi measuring pressures
In principle a static voltmeter can be considered as a small air-

condenser, of which one part is fixed, and consists of one or more

plates, whilst the other the needle is movable, and also consists of

plates and carries a pointer The fixed part of the instrument is made

up of one or two systems of plates insulated from each other, called

the quadiants. If there is only one fixed system of plates m the

instrument, one terminal is connected to it and the other to the

needle The force exerted between the plates and the needle is

proportional to the square of the pressure existing between the charges,
and therefore to the pressure at the terminals, whatever the wave-

shape and frequency If the instrument has two fixed sets of plates,
one terminal is connected to one of these and the other terminal to

the needle and the other set of plates, so that the force acting on the

needle is approximately double that m the former case

Electrostatic instruments are well adapted for measuring high
pressures, because they only need an extremely small current The

capacity of such instruments is of the order 00001 microfarad

Fig. 251 shews an instrument for 60 to 120 volts, made by Hartmann
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and Braun. In oider to obtain sufficient force in the case of this low

pressure, several needles and pairs of quadrants are used (multi-cellular

instrument) For the purpose of damping, the movable axis carries a

metal disc at the bottom, which turns between the poles of a horse-shoe

magnet
For pressures of more than about 10,000 volts, the plates with the

opposite charge to the needle are completely embedded in rubber, to

prevent sparking from one to the other In instruments for pressures
under 10,000 volts, a separate spark-gap is provided, of which the

Fio 251 Multi cellular Voltmeter (Hortmanu and Brtiun)

contacts are at a smaller distance from each other than the smallest

space between needle and plate, so that all sparks are kept away from
the needle. In order that the quantity of electricity passing shall not

be too great, double-pole high resistances are connected in series in the

form of tubes filled with liquid
Static voltmeters can also be used for different ranges of measure-

ment by connecting in series two or more condensers, and placing the

voltmeter in parallel with one of these If the condensers are similar,

the reading on the scale must be multiplied by the number of con

densers The tmniig of the condensers, however, is so elaborate, that

the scales are usually calibrated separately The dielectnc of these

condensers is micanite This arrangement can be used with good
results up to 40,000 volts Dividing resistances are also employed in

a similar manner
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For laboratory purposes the instruments aie provided with horizontal

scales; for switchboards, on the other hand, vortical-scale instruments

are more generally employed.
Recently, electrostatic wattmeters have also been introduced, which

are very useful m the laboratory. The chief advantages of those aie

as follows :

1 Accurate readings can be obtained oven with low powei -factors

2 They are especially suited to high pressuios, because they do not

possess any high non-inductive lesistances.

3 There is not so much danger of overloading the instiumont us

with an ordinary wattmeter.

4. The construction is cheap and simple

The arrangement of the instrument is exactly the same as tho

quadrant voltmeter.

Denoting the potential of the noodle by 71

,,,

,, ,, first quadrant by 2\,
and ,, second quadrant by 1\,
the deflection a of the needle is given by

7" t 1> 7J \ ( J> 1
+

La = (i l
--iz)\^a-

where L is a constant.

Putting J,Q
_

yj]
= P) ^ _ ,,

a
=

in accordance with Fig 2f>3, for
tin_ alternating out rent we must sub-

stitute the momentary values P*J$ain<at and A/\/:4 sin (u/ -}-</>)
for

P and A/*, whore
</>

is tho phase

Load displacement between current .uul

Tf> pressure. Honco wo obtain for tho
- P - mean of tho deflection a, by mto-

grating over half a poi'io(l,

V----- y Since A/33 is negligibly small

>^^ __/ compared with the first torni, ,uul

AP is proportional to tho cunent
, , flowing through the non-induutn o

Gtnenibr
rosisbinco J{, u. is clodrly propoi'tional
to 2P/.Zi! cos

</>,
that is, to the power

Pl" 202

93. Electromagnetic Instruments Those instruments depend on

the action between a coil carrying an electric current and a magnet
In instruments for measuring piessuro (wlfnuifein) tho coil is con-

nected in series with a non-inductive resistance across tho torminalu

of the pressure to bo measured
;
whilst in those for nioasuiing cm rents

(animetwx) the current to be measured, or a propoitional pait of it,

flows through tho coil Since it is not good to allow heavy cui rents to
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pass through the moving coil, it becomes necessary to use calibrated

resistances (shunts) in parallel with the ammeter
. (a) If the magnet is permanent and its strength is not appreciably
influenced by tho current in the conductor, the f01 ce lu a given relative

position of coil to magnet will be directly proportional to the current

Consequently, such instruments are only suitable for continuous cur-

rents Usually tho magnet is the fixed part and the current-carrying
coil the movable (e g Weston and Deprez-d'Arsoiival instruments)

Fio 258 Moving-coil Infltrument (Hartmann and Braun)

Fig. 253 shews the internal anangement of such a moving coil

instrument by Hartmann and Braun M is a horse-shoe magnet with

two pole-shoes P turned cylmdrically A solid soft-iron cylinder E
of smaller diameter than tho bore of the shoes is placed between them

concentrically, and in the space between E and P the rectangular coil

S i otates, to which the cui i ent is brought through two spiral springs,
which provide at the same time a retarding force The iron core and
coil can be pulled out bodily, and they are shewn in this position in

the figine Since the field in the gap is practically constant, the scale

divisions are nearly uniform A heavy damping effect is obtained by
making the frame, on which the coil is wound, of metal



298 THEORY OF ALTERNATING-CURRENTS

(b) In some electromagnetic instruments (known as soft-iron mstru

ments) a small moving soft-iron magnet is employed, magnetised bj

the current in a fixed coil In such instruments the quadratic la\\

only holds approximately, because the magnetism in the lion is no1

exactly proportional to the current in the coil, and also because of tht

screening effect of the eddy currents set up in the non, which vary
with the frequency These instruments, therefore, read less with

alternating-currents than with direct, and cannot be calibiated directly

by means of continuous current Such an instrument must be gradu
ated by comparing it with another alternating-current mstiumeiit,

which can be calibrated or graduated with direct current, the com

panson being made when connected to the actual system
In spite of these inconveniences, such instruments are nevertheless

often used in practice on account of their cheapness and simplicity

Moreover, they can be made very sensitive, that is, to consume very
little power

94. Electrodynamic Instruments The principle on which thuso

instruments are based is the action between two coils carrying oloctuc

currents In electrodynaimc in-

struments for measuring pressure
and current, the two coils the

fixed mid the movable are genet-

ally connected in series Fig 25i

shews a Taiwan di/nanuiictei by
Siemens and Halske The movable

coil consists of a rectangular copper
frame of one turn, and is perpen-
dicular to the fixed coil It is

suspended by means of a thread

and a spiral spring from the toiraion

head at the top of the instrument
One pointer is carried by the head
and one by the coil, and both of

these pointers must stand at zero

when no current flows through the

instrument The current is led to

the movable coil through mercuiy
contacts The instrument shewn
has two fixed coils, the number

p (. T ) + /o and section of the turns on each
Fio 254 Torsion Dynamometer (Siemens , , , , , , , ,

and Haiske). being different, thus increasing the

range of the instrument When
in use, the movable coil is held in its zero position by rotating the
torsion head Since in this constant position, the torque is propor-
tional to the square of the current, the angle through which the head
is rotated is a measure of the square of the current Hence the
instrument is suitable for both continuous and alternating-cunents,
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ye-aud in the latter case measures effective values indepena

shape
or frequency

For measuring pressures, the two coils are made of several

fine wire A variable non-inductive resistance is placed in series

the instrument, which can therefore be used over a wide range If

the self-induction of such an instrument is negligible compared with the

ohmic resistance, the current will equal the pressure divided by the

Fin 265 Direct loading Bleotrodynamio Voltmotor (Weston)

resistance Hence the instrument can be used directly to measuie

pressures If there is a self-induction L present, the resistances for

alternating and continuous currents will have the ratio

where r is the total ohmic resistance in the circuit (coils + resistances)

Hence, if the instrument has been calibrated for direct current, the

readings must be multiplied by the above correcting factor when alter-

nating-cunentis measured The readings in this case depend on the

wave-shape and frequency, since to occurs in the correcting factor

(a) The newer electrodynamic instruments for measuring pressure

and current are made direct reading by reading off the position of the

pointer fixed to the moving coil Since the action between the two

coils under these conditions obeys no simple law, the scale must be

graduated by comparison with a direct-current instrument Fig 255

depicts such a direct-reading instrument by Weston for measuring

piesmie
The rotation of the moving coil due to the action of the current is

always such that the total self-induction L of the two coils (in series)
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r 4. sA- + u3#
ia increased Hence, m this case, the coirecting tactor

^

is

not quite constant For practical measurements, however, this source

of error m the pressure dynamometer is quite negligible

Fio 230 Elootrodj iianno Ammotoi (SioinoiiH luitl

In Fig 256 an electrodynamic instrument by Siemens .ind

for measmmg civnentb is shewn The movable coil is mounted on

pivots and controlled by
spiral spnngs, which also

servo to convey the current

to and from the coil, as in

the pressure dynamometer
and the electromagnetic
Weston instiument Since

A only a veiy small current

Y* can be conducted through
the springs, the fixed and

V movable coils in these in-

struments aio connected in

n ._,.. T1 A J

"
parallel. Fig 207 shows

Fia toi Connections of uu LJoutro-dyimruio Anuiu.tar ti i c j

(Siemens and Hnlako) tllC CliagUim ()f Connections
for such an instrument

SS denotes the fixed and s the movable coil ]\ is a plug for short-

circuiting the mstiument The two plugs I\ and 1\ seivo to vary
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the range of the instrument, thus with P
2 plugged, the range of the

instrument may be double that when P
1
is plugged The current must

be distributed in constant latio between the two parallel branches,

independently of the heating This is achieved by making the resis-

tances K, Ii
2
and i of material whose temperature coefficient is very

small In order that the instrument can be graduated with direct

current, the distribution of the current between the two coils must be
the same with alternating-current as with continuous Consequently
the time constants, or the ratio

ohmic resistance

apparent self-induction

in the two branches should be the same The apparent self-induction

of a coil equals the pure self-induction of the same plus its mutual
induction relative to the second coil

, hence, for the fixed coil,

and for the movable coil

J.

In order that the time constants may be equal, we must have therefore

where fi and i are the ohmic resistances in the two branches
In this case, however, M is variable, since the relative position of

the coils vanes In the neighbourhood of the zero position on the

scale, M is negative ,
when the coils are perpendicular to one another,M equals zero , and for larger deflections M is positive Hence this

condition can only be approximately fulfilled by making M small

this, however, cannot be earned too far for mechanical reasons, for the

change of M corresponds to the energy expended in the movement of

the pointer Another means is to make L, and I, small in comparison
with R and 1

,
in which case these magnitudes, and consequently any

change in the same, have but little influence on the current distribution

R

This is the moans usually employed, and although such ammeters
have comparatively large losses, they are, nevertheless, very valuable

for accurate laboratory work owing to their exact and convenient

readings

(6) A special class of electrodynamic instruments is known by
the name of Induction instruments. Currents are produced in the

movable system by the electromagnetic induction of the fixed system.

Fig 258 shews the arrangement of a Siemens and Halske induction

instrument It is based on the principle, due to Ferraris, of producing
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a rotary field by splitting up a single-phase current into two perpen

dicular components The laminated iron ring a carries the poles ei

and ff Between the latter, there is

the laminated iron cylinder c In the

gap there is a movable aluminium

drum b, to which the pointer of the

instrument is connected, and this

drum tries to follow the rotary field.

If the instrument is to be used for

measuring pressures,
sufficient non-

inductive resistance is connected in

series with the winding on the polo
ee

t
to bring the current approximately

into phase with the pressure being
measured The winding of the pole

ff forms the branch SS of the bridge

arrangement shewn in Fig 259 The

pressure to be measured acts between

A and C, whilst between C and B a choking coil of impedance ZA

is connected By suitably adjusting the two equal resistances w
and the resistance i b of the budge, it can be arranged that the

two equal currents m the paths SS are displaced 90 in phase from

Fio 368. Induction Instrument

OOQOOO

Fio 250 Connections of Induction Instrument

the pressure acting across AC In Fig 260 the vector diagram
of the scheme is shewn The total current / produces the pressure

drop BO in the choking coil. Pressure A~B is made up of AD and

DB on the one side and of AE and EB on the other Since the

pressures across diagonal paths of the bndge are equal and similarly

directed, their vectors form a parallelogram This is also the case with

the_
currents in the four paths. Further, we have /, perpendicular to

AU Since branches 11 and ? 4 are non-inductive, we have also Ir ||
AE

||
DB and Ib \\

DE
<j>t is the phase-displacement of the current in the

coils SS of the instrument The diagram only holds for one frequency,
and only for this frequency will the instrument read correctly For
the same reason, the readings also depend on the wave-shape, and
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the instrument must be calibrated with an alternating-current having
the same wave-shape as

that which has to lie

measured
Induction instru-

ments made by several

firms are based on the

production of a rotary
field having a very local

and veryunsymmetncal
distribution Pig 2GI ^
shews the arrangement
of such an instrument
An aluminium disc S,

carrying the pointer
of the instrument, is

capable of moving be-

tween the poles of the
horse-shoe magnet M.
The current to be mea-
sured is sent through
the winding W The
pole surfaces of the

magnet are slotted, to

take the coils w In
the latter, currents are

induced which react on the resultant field between the pole surfaces,

Pl 26 -Vector Dlaeram

n n

i i

-d tr
M

W

Pio 201 Arrangement of Induction Instrument
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so that at the right pole tip (hence inside the coils w) the field is

lagging with respect to the field in the left pole tip We thus get a

local rotary field moving over from left to right, so that the disc S
tends to turn in the same sense

To the category of electrodynannc instruments also belong the

watttneteis in general use for measuring power These, however, will

be dealt with in a separate section

95. Hot-wire Instruments The heating of a wue by a current is

proportional to the square of the effective value of the lattei, and is

independent of the frequency 01 wave shape Hot-wire instruments

in which the heating of a wire is measured by its extension were

first introduced by Cai dew

Fig 262 represents such an instrument, as made by Hartmami and

Braun The extension of the comparatively short wire h causes the

pointer to move over the scale,

as the figure shews The axis

of the pointer is provided with

an aluminium disc, which moves
between the poles of a strong per-
manent magnet, thus preventing
the instrument from oscillat-

ing The system is mounted
on a pl.ite, made up of biass and
iron in such a way that it has

the same coefficient of expansion
as the wire In this way it

becomes entirely independent of

the temperature variations of

the surroundings An adjusting
screw is connected to one end
of the wire, foi the purpose of

bringing the pointer to zero when no current is passing
These instruments are made both as volt- and ammeters As volt-

meter, a current of about 22 amp flows through the hot-wire to give
the maximum deflection, which corresponds to a pressure drop of

3 volts

For higher pressures a resistance made of constantin wire is con-

nected in series, which, up to a range of 400 volts, is made part of the

instrument, and for still higher voltages is contained in a, separate box
A pressure drop of 3 volts is much too high for ammeters, and con-

sequently thicker hot-wires are used and several connected in parallel
m such instruments, so that the drop is i educed to about 26 volt

The wires would become too thick, however, for currents above
4-5 amps ,

so that in this case a shunt of constantin strip is placed
across the hot wire For currents up to 100 amps these shunts are

made part of the instrument, but above this range they are kept
separate

Fio 282 Hot wire Instrument (Hartmium and
Braun).
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In spite of the disadvantage of a high current consumption, the

hot-wire instrument possesses many advantages Firstly, the heat

produced is independent of the wave shape or frequency, and secondly,
external magnetic variations have no effect, because there is no magnetic
field or solenoid present They can therefore be used for either

continuous 01 alternating-currents, and can be calibrated by means of

continuous current

Voltmeters for over 10 volts can be protected by fuses renewable

from the outside, but for lower pressures such protection is impracticable
on account of the high resistance Ammeters can be protected from

injury in a simple way by an automatic shorfc-circuiting switch

The hot wire wattmeter has not yet been made practicable It is

based on the formula
(l +^ _^_^ =^

where i is proportional to the current to be measured and i' to the

pressure By arranging two hot wires in such a way that the added

current
( + *') flows through one and the subtracted current (*-*')

through the other, with the pointer to indicate the difference of the

heating of the two wires, an instiument for measuring the power of a

circuit is obtained

All wattmeters le instruments for measuring
itice are based on the electrodynamic principle

96. Wattmeters AU win

power used in practice are

FIG 208 Wattmotor Ooniieotlona for Low Pressures and Jjai-ge Currents

Of the two coils of the wattmeter, the fixed one is connected in series

with the circuit, and is thus traversed by the main current
,
whilst the

movable coil is connected in parallel with the circuit whose power has

to be measured The connections are shewn in Fig 263

Suppose, for the time being, that the terminal pressure p follows a

sine wave, thus 7Jnmx= /
J SinW and -P = .

and the" main current i = /mftx sin (tat
-

, r -*iiiax

where A,,a,

and c/>
= tan I

A a.
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Similarly, the current in the shunt coil is

i' =1^ am (wt -<'),

p
' IUIUC

j , , ,
, a>L'

and (b = tan * -
1

The torque acting on the movable coil is proportional to the produ
of i and i', assuming that the coil is always held in the same positK

by a torsion spring The reading a, which is proportional to tl

torsion of the spring, is therefore proportional to the mean torque

Then, if It, is a constant,
1

o

= //' cos -<'

p= 7 cos (4>
-

<') cos 0'

The power to be measured is, however,

o

Substituting PI from the first equation, we get

7ir 11 COS c/>

'JF=Lai' ,. ,1 cos
(</>

- 9 ) cos 9

, , 1+tan2
^'= L-,a.1 . . . . .,

*

1 + tan
f/j
tan <

By suitably choosing and arranging i

'

we can make tan <' =~
verj

small, so that

W= K^a. = constant x reading

When we have a terminal pressure whose wave is not sinusoidal, bu

we get, as shewn by Piof H F JFeber, in the official report of the

Frankfort Exhibition, 1891,

j
P,I3 cos 4>3 PB7B cos <

fl

r= , ,~
1 + tan tan

</>'-, T'a^ cos <
3 cos^ 1 + tan fa tan 0',

!
cos

8
0i 1 + tan fa tan 01

The phase displacements < and <' apply to the cunent circuit and

pressure circuit respectively
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The first correcting factor is

-, , o,, , ffor tau</>>0,
1 + tan2

^' 1
'

The second correcting factor is always greater than unity, but even
for very distorted wave shapes is only about -nj^-^^y greater, and can
therefore be always put equal to 1 Hence, for any wave,

77= Lai'
l

-
. (154)1

1 - tan
</> tan t/>

The measured power W is not exactly equal to the power given to

pi
the circuit, but somewhat greater, since the heating loss T in the

pressure coil of the wattmeter is measured with it Hence the true
pa

power is W T ,
where i' is the resistance of the pressuie coil

At any stated voltage, it is a very simple matter to determine the

error
,- experimentally, by noting the wattmetei leading when the

load circuit is opened so that the true powei is zero

I

Fio 284 Wattmeter Connections foi Hlyh PiossureH and Biniill Currontu.

The wattmeter can also be connected as shown in Fig 264. Hero
likewise the power measured is too great by the amount I L

i ", lost in

the current coil of resistance t
"

If in the above circuits we have power pioducod and not power
p-2

consumed, the above losses 7V and r must be added to the measuicd

power Jrin order to find the power produced in the cncuit.
To obtain minimum error, the formoi scheme of connections should

be used for small currents and huge piessures, and the Utter for low

pressures and largo currents When powois at high prossmcs arc

measured, a resistance must be placed in series with the shunt circuit,
to keep the potential difference between the two coils of the wattmeter
as small as possible, as in Figs 263 and 264

In addition to the earlier wattmeters with torsion springs, several

firms, cq JFtoton and Siemens d Hahke, make mote convenient instru-
ments in which the movable coil (togethei with the pointer) changes
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its position relative to the fixed coil Prom this it follows that these

direct-reading instruments have not a uniform scale, and must con-

sequently be cahbiated by experiment
The Weston instruments for smaller powers have a compensating

coil wound over the current coil and carrying the current flowing

through the pressure coil, so that the cunents oppose one another in

the two fixed coils The number of turns of the compensating coil is

chosen so that the power is measured directly
For direct connection in high pressure circuits, wattmeters of the

type due to Lord Kelvin are specially suitable

97. Direct Measurement of the Effective Values of the Several

Harmonics The wattmeter, however, can also be used for other

purposes than the measurement of power For example, with two

Pio 266 Connections for Direct Measurement of the EfTootlvo Values of tbo Sevomi
Harmonics in a Circuit.

wattmeters the effective values of the pressures and currents of the
several harmonics in any wave can be measmod directly For this

purpose we must have auxiliary sinusoidal pressures at our disposal
at frequencies of the first, third, fifth and seventh harmonics
The current under investigation is sent through the curient coil of

one of the wattmeters, whilst the current coil of the other wattmeter
(which must be made for small currents and high pressures) is con-
nected in shunt The pressure coils of both wattmeters are connected
to the circuit in which the sine-wave pressure is produced

In Fig 265 H, and ff
z represent the current coils and 7V

15 AT
2 the

pressure coils The voltmeter V measures the sinusoidal pressure Ph
in the auxiliary circuit whose frequency can be adjusted to that of the
first, third, fifth or seventh harmonic
From Section 64 we know that only currents of the same frequency

can act on one another
electrodynamically, and that this action is a

maximum when the two currents are in phase If we then wish to
measure the magnitude of the fundamental, we induce the auxiliary
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cuirent at this frequency and vary its phase until it is in phase with

the mam current, the reading on the wattmeter is then a maximum
Let /Fj watts denote this maximum reading and Phl the value of

the auxiliary pressure read on voltmeter V }
the effective value of the

fundamental of the current is then

W
T

1

J-i p
-fju

To determine the effective pressure Pa
of the fundamental current,

the phase of the auxiliary current is varied until the pointer of the

second wattmeter shews a maximum Denoting this maximum reading
in watts by V-^ and the pressure of the auxiliary cncuit again by PA1 ,

the effective value P
l
of the fundamental of pressure will be

P =lf i

-ci
= K

-p>*H\

where L is a constant depending on the resistance H
We can also measure the phase displacement ^ between the funda-

mental pressure 2\ and the fundamental current I\ This is best

done by adjusting the phase of the auxiliary current until the needle

of the first wattmeter shews no deflection Starting from this position,

the angle through which the phase of the auxiliary current must be

altered to bring the deflection of the pointer of the second instrument

to zero then gives directly the phase angle ^ between P^ and Ir
If we arrange the auxiliary pressure to have the frequency of the

third harmonic, we get in a similar manuei the effective pressure and

current of the thud harmonic, viz

V W
Pj-tii and 7,-^i,

*A3 -fftj

where W* is the maximum power on the first wattmeter and Vz
on the

second, whilst PJt3 is the effective pressure of the auxiliary current at

this periodicity
<

3
is found in the same way as ^

By this means, the effective values of the currents and piessures, and

also their phase displacements, for the several harmonics can be found

directly, and an insight is obtained into the action of the same.

In most machines, the magnitude of the several harmonics is of

moie interest than their phase displacement, and in such cases

the above method is sufficient for then investigation In other cases,

& g arc lamps, insulation testing, transformers on no-load, where the

shape of the pressure curve and not the magnitude of the several

harmonics, is the important part, the above determination of the

harmonics one by one is not sufficient For this purpose, the oscillo-

graph can be resorted to for this instrument shews the complete
curve at a glance

98. Measurement of Power by Means of Three Voltmeters or Three

Ammeters In addition -to the measurement of power by wattmeters,
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'

two other methods may be mentioned, viz the thi ee-voltnuitei method

of Ay) ton, Srnnburue and Sumpnei and the tht ee-ammetei method of

Fleming t

The former can be cai ried out as follows J
(see Fig 266) i is a non-inductive !

resistance m senes with the circuit whose

power W is to be measured Since the

pressure Pt is in phase with the cunent

/, PI and Pn can be geometrically

200 Connections for tho Tbioe-Voltmetoi
Method

Fin 207 Piowun, l)l.if,miin of

Tin oo-Voltmotui Mutliod

added, independently of their wave shape Fig 267 is the vectoi-

diagram of this arrangement, wheie Pn is the resultant of 1\ and PJt .

The power due to PK is

= Pn--cos<t>n

2r (155)

This method is of no practical use because, unless tho powei consumed
in the inserted resistance is fairly laige, the lesults are very nuecui'cito

The second method, the three ammetet method, is also of little

importance, but nevertheless is preferable to the above, since tho full

pressme is applied to the load circuit, the non-inductive resistance

being placed m parallel with the latter (see Fig. 268) The diagram
is shewn m Fig 269, and the proof is as follows

From the diagram (Fig 269) we have firstly

W= PIn COS < n = 1 Jj/n COS <

= -/7B _72
Tz \-

,(
1 -

J. j
- 1 u). ...(156)
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Secondly, denoting the momentary values of the pressure and
currents by p, ^, x and n ,

we get, independently of the wave shape,

. P

The momentary power in branch II

is

and since
zjj
=

i\ +& + 2^,

then w =-=(--

Fin 2(18 Connections foi tho Tin ec-Aramotor
Method

Pic 201 Current Diagram of Threo-
Ammeter Method

hence the mean power is

This is the same as the previous result, from which we see that the

diagiam in Fig 269 is correct

Fioni this it follows in geneial that the giaphical addition of the

GUI rent vectors of parallel circuits is allowable if all these circuits

except one have zero reactance

A method foi experimentally examining the admissibihty of

geometrically adding effective EMF'S of any wave shape has been

given by Bahll in the Eke Wmld, Vol 28, No 3

Let 1\ and 7Jn be two piessures of any wave shape, and let P, be

their measured sum, whilst Pd is their measured difference (see Fig 270)

Then wo must have

and
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whence, by addition,

or

i e Pn is the line containing the centre of gravity of the triangle whose

sides are P., Pd and 2PZ , or, in other words, ACD must be H straight

line if it is allowable to add Pz and Pzz geometrically

FKI 370 Expcilmoiit allowing Low Pressures oiui bo added

By means of this proof, we can shew it is allowable to add P l and

PIZ geometrically, if we measure PI, Pn , P* and P
t

Instead of the three-voltmeter method for
' [

j measuring power, the following method can

also be used. To measure, for example, the

power w_ ;

Since the pressure Pl
= Ii (Fig 271) is in

phase with the current /, we have

I ^r\M\i 11

By subtracting the above expressiona for P"

and P
^,
we have

thus
Pa _

(157)
FIG 271 Diagram for nieas

by Baeaua f Tw ThlB method haa recently been recommended

by various writers for cases in which
</>n is

large ,
but even m such cases it is very inexact For measuring the

power in circuits with large phase displacements, it is advisable to
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have special wattmeters with scales only to i of those for the

ordinary wattmeter For example, if a wattmeter is made for 60

amperes and 100 volts, the torsion spring governing the movable coil

can be set (i
e weakened) so that the instrument has its maximum

deflection at 2000 watts instead of at 6000 One may also use the

ordinary wattmeter and overload the pressure coil, but this must

naturally only be done for short periods

99. Measurement of the Power in a Polyphase Circuit. In a

symmetrical n phase system which is symmetrically loaded, we found

in Chap XIII. that the power in each phase is -th of the total power.

From this it is obvious that the power in such a system can be

measured by a wattmeter inserted in any one of the phases The
same also holds foi a balanced two phase three-AVire system, since in this

Via 272. Measurement of Power lu i\. Biiliuiood Tlnoo-

pliaao System l)y moaiis of a Wattmeter
Fin 278

case also the two phases produce equal power This measurement can,

however, only be made directly when the system is independent, or in

the case of a star system, when the neutral point is available, so that the

pi essure coil of the wattmeter can be connected up To carry out the

measurement for a ring system, the latter must be opened at some

point in one phase and the current coil of the wattmeter inserted,

whilst the pressuie coil is connected across this phase
In cases where only the n terminals of the 91-phase system are

available, we must proceed othei wise A method suitable for this case

was given by Behn-Eschenburg in the ETZ, 1896, p 182 The
current coil is connected in series with one of the mains, and the

pleasure coil between this main and tin artificial neutral point 0^
made by moans of lesistances, as shewn in F]g 272 for a three phase

system
If the resistances ?

'

between the two points A and B and the point

O-L are chosen equal, the neutral point O
l
in the equilateral pressure

triangle (Fig 273) will fall on the normal from Con AB , consequently

the pressure 0^0 is displaced by the phase angle </>
from the cunent
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in the current coil of the wattmeter. If the pressure between two

wires is interlinked, the power m the system is

In the pressure coil, however, we have not the pressure 3P, but
,

consequently the reading must be multiplied by the ratio ^= -7- Iu

the pressure triangle (Fig 273), the point 1
is determined by the

method for finding the pressure of a load star point, p 254, and, hence,

2 2

Now + i7
=

-jjP, since a side of the triangle equals Ps/3

3l>
Hence

3P_2/+7'_ ?_' = /
,

oi j- ^

-^ +
r
=.

r)

and the powei in the system equals

J7=kr y. measured powei.

If we make i = i
',
we got

kr
= -T- = 3

and W= 3 x the measured watts.

If a polyphase system is not quite symmetrical, or is unsymmetiically

loaded, the power in the several phases may diffei considerably For
this leason, such a, system
cannot be regarded as bal-

anced, and the total powei
can only be ascertained m
the same way as for any
other unbalanced system, as

the two following methods
shew

(a) Foi the ordinary
'

,
method of measuring the

Fin 274 Meiwuioment nf Powoi In a Tmoowiro Throe -, ,

phiuje System by moans of Two Wnttmotorn pOWCr 111 any ?t-phase system
with n wires we need only

74-1 wattmeters ,
for any one of the n conductors can be regarded as

the return for the n - 1 currents, since the sum of all the currents in

the system equals The current coils of the n-l wattmeteis are

all connected in the same way in the n-l hues, and the pressure coils

between their respective lines and the line Avhere there is no wattmeter

Fig 274 depicts the connections for a three-phase system
From the seveial wattmeters, different powers will be obtained,

should any of these be negative, the wattmeter must be reversed and
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its power prefixed by the negative sign, the algebraic sum of the

powers thus measured gives the total power in the system
If the power of a symmetrical three-phase system is measured with

two wattmeters, the phase displacement of the currents in the system
can be found from the wattmeter readings

Let the three phase-pressures be

and the currents.

Then

and

whence

2 sm
((at

-
<j>),

-</>-!20)

For c = 60, W-a= I

cos (0-30),

" U
(158)

The above assumes sine waves for both curients and pressures, and
that all phases aie equally loaded

(b) The second method for measuring the power in any flrphase

system consists in using n wattmeters, each hue containing one
,
the

Kia 275 Fia 27(1

MoUKvnomeut of Powei hi nn Unbalanced Tin ee plume SyBtutn by mun.nn of

Throo WuttmotoiB

pressure coils can be connected between their icspective hues and the

neutral line If no neutial line is present, all the ends may be joined
to a neutral point In the foimei case, when a, neutral wire is present,
each wattmetei measures the power in its respective phase In the

latter case, the sum of the readings equals the total power, but the

several readings do not, m general, represent the power in the several

phases Consider, for example, a three-phase system without a neutral

wire (Fig 275), and let ABC, (Fig 276), represent its pressure triangle,
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with 0j as the middle point of pressure in the load The pressures of

the three loads are P { ,
Pu and Pm , further, if

2
is the middle point

of pressure for the piessure coils and their resistances and Ofl2
is equal

to Px ,
then the momentary values of the thiee measured powers are

hence wl + wLl + wm=p^ +pn hi +Pm *mi

which proves the coiTectuess of the measurement

100. Measurement of the Wattless Component of an Alternating
Current When we wish to determine the wattless component in anyW
circuit, the pressure, current and power factor, cos $ = -^p

will serve for

finding sin <, from which the wattless current can be calculated At
low powei -factors, however, the lesults thus obtained are not accurate

0,0t Q& 006 Off Qjt> OJt 0&
~

I'WHf
Pio 277 FJO 278.

As seen from Fig 277, in which sin $ and cos $ are plotted as functions
of 1 - cos <, a small error in the reading of the instrument, that is,

in cos <, causes a large error in sin <. If, for instance, the power
factor cos< = 99, and unity was read off the instruments (which only
amounts to an error of 1 %), the wattless curient of 14 % would have

escaped notice Especially in cases where condensers and synchronous
motors are used to raise the power factor to unity, it is advisable to have
instruments which enable the wattless current to be accurately measured

Of the various methods which have been published, only a few
which have found their way into practice will be described here

(a) The principle of an instrument by Hartmann and Braun is given
in Fig 278 The coil AR is traversed by the current = /sm ((at

-
<)

and produces a field 4> = <E>
n
sm (ut

-
<) A current i! = /' sin (at in phase

with the pressure is sent through the coil D, whilst a current
t \

a' =
/'sin(o>f-~j,
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at right angles to the pressure, is sent thiough the coil C, which stands

at 90 to D
When 1) is displaced through the angle a fioni the field, the torques

exerted on the coils are

$ /'
S
:
=

^ sin a cos
</>,

< /'
S
2
=

^ sin $ cos a

The movable system will come to rest at such an angle that 5
1
= S

2 ,

IB tan a = tan We measure therefore tan<, which function, in the

neighbourhood of unity, is as sensitive to changes of < as sin
(/>

itself

This instrument is of great use as synchi omset ,
for it serves to denote

phase equality and synchronism when paralleling When a current is

sent through AB, proportional to and in phase with the pressure of a

generator (or bus bars), and a current in phase with the pressure of the

other generator to be paralleled through D, and a current at 90" to this

pressure through 0, then the position of the movable coils will give the

phase difference between the pressures of the two generators
In large generators, in paralleling which it is highly important to know

the exact instant of phase equality, this instrument is of great service

The methods of synchronising by means of lamps or phase voltmeters,
since they are not very sensitive, may give rise to heavy rushes of

current on switching on. This instrument was first largely used in the

power station at Niagara Falls

It may be further mentioned that neither the angle between G and
D nor the phase displacement between the currents in these coils needs

to be exactly 90 So long as there is a space and time angle, the

instrument will respond to phase displacement

(b)
The principle of displacing the current m the pressure coil 90

from the pressure in an ordinary wattmeter can also be used to measure
the so-called imaginary power, or with, a constant pressure, the wattless

current Then the instrument will give the value PI sin
(ft

instead of

PI cos
</> By connecting a large capacity in series with the pressure

coil, a phase displacement of about 90 can easily be obtained

(c) We have still to deal with the application of wattmeters as phase
indicators in polyphase systems

If all the phases of a three-phase system are balanced and the

pressure is a sine wave, we can obtain the phase displacement by two

readings on one wattmeter from Formula 158, p 315,

Provided we do not alter the sensitiveness of the instrument we
need not know the constants but merely note the readings
The G- E C of America have made instruments with two pressure

coils (Fig 279) ,
the pointer then takes up a position corresponding to

the phase displacement The scale is calibrated on test and reads cos
</>
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Such instruments should only be installed, however, wheie a

knowledge of the wattless cm rent is essential

R*
-vwvs

i
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Pia 279 Oonnootlons of Powoi fiwtor Metei (G B )

The phase meter of the AEG- (due to Dohvo von Dobrowolsky)
is based on the principle of the induction instrument (see Fig 258)

Here, however, the one-coil system must be traversed by a current in

phase with the pressure The displacement of 90 mentioned on p 317
is not necessary. The instrument reads P/siii(, or at constant

pressure, the wattless current /sin <

All instruments, however, which are based on induction effects have
the disadvantage that they are largely influenced by frequency and
wave shape

101. Determination of Wave Shape of a Pressure or Current by
means of Contact Apparatus and Galvanometer. To determine the

instantaneous values of a rapidly

varying pressure or current, care

must be taken that only one and
the same momentary value acts on
the instrument this is attainable

with Joubert's disc and contact

apparatus For every revolution of

the rotating contact apparatus, the

same momentary current is tapped
off once The arrangement of the

contact apparatus and the measure
ment of the current thus tapped off

may be accomplished in various

ways, only two of which, however,
will be given here The one is a

zero method, and is specially suitable

for accurate work, whilst the other,
due to Bl&nrfel, is more convenient
and needs less time

The sieio or compensation metliod is

given in Fig 280
Q is the generator from which a

current is sent thiough the resistances ?
t
and r

2
Parallel to the resis

tance i v the contact appaiatus K-A and a galvanometer aie connected,

Fin 280 Dotermhiation of Pressure and
Current Curves by tbo Zeio Method



DETERMINATION OF WAVE SHAPE 319

together with the part c-d of the wire a-b which is connected to a

battery B If the contacts &-d are shifted along the wire until the

galvanometer shews no deflection, the pressure over the part c-d equals
the required momentary value That is, the momentary value being

r/l

measured = -r x p}
where p is the pressure across the whole wire a-b

The galvanometer must be a rather heavily damped Dqwez-galvanomefer
with a long period of oscillation and high sensitiveness

Blondel's method as used by Siemens and Halske in conjunction
with a synchronous motor is very convenient for practical work, since

the apparatus can be used anywhere Fig 281 shews the scheme

The pressure, whose curve is to be found, is applied to the terminals

A^ and K
2 By means of the contact apparatus K-A, which is driven

by a synchronous motoi running from the mains being tested, the

condenser G is chaiged each time contact is made and discharged m
the next instant through the galvanometer G, whose throw is thus

*,
!-"-[]

FJO 281 Determination of Pressure and
GUIrout Curves by Blondel's Method.

Fin 282 Dettirmiimtlcm of Pressure
and Current Curves by menus of a
MUll-voltruotor

proportional to the respective momentary pressure A well-damped
milh-voltmeter can also be used to measure this momentary pressure,
but it is found that the deflection is not proportional to the momentary
value, so that the scale of the milli-voltmeter must be calibrated by
means of a direct pressure applied at the terminals K-^ and K

z

This brings us to the third method, shewn in Fig 282, in which the

capacity is omitted and a sufficiently large deflection of the milh-

voltmeter is obtained by introducing a small resistance Of course, in

this case, the instrument will be largely overloaded during the period
of contact, which, however, is too short to cause damage

Care must be taken that the instrument is disconnected before the

synchronous motor is switched off, because otherwise the motor might
come to rest in such a position that contact was made continuously,
which would result in burning out the instrument To obtain steady

deflections, a lange of about one-third the scale should not be exceeded

Greater deflections are unsafe owing to the large currents broken at

the contact-maker The good adjustment of the contact spring is of

especial value, since the piesence of small sparks makes accurate results
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impossible For this mason, only a part of the pressure should be

used in taking the pressure curve

The method of obtaining the cuiient cuive is similar to tho above,
the current being passed through a suitable nou-inductive resistance

and the pressure curve taken at its terminals It is desirable to

calibrate this also with direct current Deviations from the propor-

tionality up to 20 % may occur through variations in the contact

resistance at the contacts, and it is therefore advisable to clean the

contact disc with switch oil

In the above methods it is chiefly the sparking at the contacts which
vitiates the accuracy of the curves This difficulty is completely
overcome by (kiwis' differential galvanometer* (Fig 283)

B

ff

II

V';^' \VV\ AW-I3

IX FS

Fio 288 Differential Galvanometer for Determination of Alternating oui rout
Curves (K. B tiianis)

The alternating current to be measured is sent through the two outer
fixed coils and a direct current through the two inner ones or vice

versA, A synchronous motor, driven by the current under considera-

tion, carries a contact-maker, which periodically closes a direct-current

circuit containing the movable coils The four fixed coils act on the
movable turns only when the circuit is closed Hence, if the direct-

current flowing m the inner fixed coils is varied, the momentary value
of the alternating current, which only flows in the moving coils at the
moment the circuit is closed, can be compensated, so that the coils do
not deflect A calibration is here necessary, in order to know what
relation the direct current bears to the momentary values of the

alternating current

For exact measurements the arrangement of the contact apparatus
shewn in Figs 284a and 6 and devised by G Sdiade is very useful
In this arrangement, there are no rubbing surfaces, but contact is made
by pressure The time of contact is very small, so that rapid changes
in the curve can be accurately measured.
The instrument consists of the contact-disc S coupled to the shaft of

* Amei Inst of Elect Eny 1902, p 763
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the machine, a segment T and the sliding piece of ebonite G which can

Via 284a

be shifted over this segment ff carnes the contact springs /. and /
insulated from it and the control springs /2 and /4 S carnes a contact
cam Wj The wires a and b are
connected once in every revolu-

tion, when
?ij comes underneath

/! /! is thus lifted until ^
makes contact with / In the
next instant the circuit between
a and b is broken, due to /T and
/3 being raised together, thereby
shifting &

2 from its position To
prevent n^ from making further

contact, a second cam n
2 behind

n^ is provided This keeps /3
raised until /:

returns to its

original position
102. The Oscillograph The

pomt-by-pomt methods ]ust de-
scribed for delineating alternating-
current curves have many great
disadvantages In the first place

they require much time, and

secondly they are often inexact

Pomt-by-pomt methods are, of

course, out of the question alto-

gether when the successive waves
are not identical In this case,
instruments known as osalkgraphs

F

VSS^SS^S^tf**^
A.O. X



322 THEORY OF ALTERNATING-CURRENTS

can be used for taking such curves, especially as they have been much

improved of late years In Vol XXVIII. (1899) of the Journal of the

Inst. of Elec Engmeeis, Duddell and Mat chant described an oscillograph

constructed according to a suggestion by Bloudel. The following is a

summary of this description
In Fig 285 the instrument is shewn diagrammatioally In the

narrow gap between the poles NS of a powerful electromagnet are

285 Diagrammatic View of Osoillogrnph

stretched the two parallel sides II of a metal strip which passes over a

small disc S *At the bottom the strip is fixed at bb, and above it

presses against the bridge C The current flows up one side of the

strip and down the other Owing to the electromagnetic action

brought into play, the one conductor will be displaced forwards and
the other backwards, whereby the small mirror d, fixed to the two

conductors, will be deflected through an angle, which, for small
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deflections, will be proportional to the current flowing through the

*? TV
osclll graPh should fulfil the following conditions11 he time of natural oscillation of the conductors II must be very

small compared with the period of the alternating-current beingmeasured
2 The instrument must be damped so as just to prevent the

movement becoming oscillatory
3 The apparatus must have a negligible self-induction
4 The sensitiveness must be sufficiently largeThe requisite damping is obtained by surrounding the conductors

and mirror with oil, the case for the oil being formed by the pole-faces
tor tne sides, a brass plate for the back and a lens for the front

In order to observe the movements of the mirror, a ray of light is
reflected from it by means of another rotating mirror

,
or by suitable

arrangements, the moving ray of light can be photographed
Actually the instrument is provided with two strips, each strip

occupying a separate space in the magnetic circuit, so that the
pressure and current curves can be taken simultaneously In addition
to this, between the two movable mirrors there is a small fixed mirror
ihe ray of light reflected from this fixed mirror then gives the zero line

Fro 2S6a Duddell tmd Ma: chant't Oscillograph

Fig 286a shows a front view of the instrument The front part
together with the lens, is removed and placed on the left at a.
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The glass tube b fixed to this part is for inserting the damping oil

The optical system of the apparatus is shewn in Fig. 2S6& is the

oscillograph with the two vibratory mirrors s
l
and s

2 , whilst s
s

is the

fixed mirror and I is the lens The beam of light is supplied by
the direct-current arc lamp lantern L
The light passes through a system of lenses and a vertical slit d

(about I
f

5 mm wide). The slit d is about 270 cm away from the

lens I

The photographic plate is dropped through an arrangement at S
During its motion (vertical) the plate passes a horizontal slit some
6 mm wide, through which the light from the mirrors falls on to the

plate The vertical distance of the case, which holds the plate, above

the slit must be chosen so that the mean velocity of the plate in moving
over the slit is 640 cm per sec For bringing the plate to rest after

-fR

Fin 2S06 Arrangement of Oscillograph

passing the slit there is a braking arrangement which acts by pressing
a spring against the back of the plate The plates are brought to

and taken from the apparatus by means of light-tight bags and
wooden cases

In front of the slit there is a cylindrical lens C whose axis is hori-

zontal This serves to concentrate the light coming from the vertical

slit d and to produce a sharp point of light at S R is the rotating
mirror driven by the small direct-current motor M A stnp of film

can be used instead of the plate to obtain a continuous photograph of

the curve

In order to observe the curve continuously, a whito plate is fixed at

S exactly behind the falling plate The rays reflected from the small

mirrors s
1}

s
2
and s

8
then fall on the white screen, and the wave-shape

can be observed in the rotating mirror at the same time as the

exposure is taken
The Cambridge Scientific Instrument Co constructs such an oscillo-

graph in which the time of natural vibration of the strip is less than

second
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The maximum permissible current for these oscillographs is 1 amp
Usually, however, the desired amplitude of the wave can be obtained

with a considerably smaller current

KlQ 287

A further great advantage of the oscillograph is that the shape of

the curve can be inspected before it is photographed
Fig 287 shews an oscillograph on the same principle, made by

Siemens & Halske

103. Brann's Tube The cathode rays, emitted in an exhausted

tube from the surface of the cathode where the current lines from the

anode strike, are diverted by a magnetic field into a plane perpendicular
to the direction of the lines of force In a rotary field of constant

strength, therefore, the cathode rays will describe a conical surface

Since a cathode ray causes chalk, Balmam's luminous paint and

many other bodies which it meets to glow brilliantly, the magnetic
field can be represented by means of a luminous curve, which can be

photographed If the vector representing the rotary field fluctuates

periodically, the luminous curve will be the polar diagram of this

vector This method is very sensitive, and can be so arranged that

even fields of y^ c G s unit can bo detected.

If the field is merely alternating, the ray will only be diverted in

one plane, and will swing with the frequency of the current The
luminous line thus formed will repiesent a curve on a uniformly

revolving mirror The curve can, however, be also seen directly on
the screen, when the cathode ray is given a uniform velocity perpen-
dicular to the plane in which it swings, by means of a variable auxiliary
current This auxiliary current can be obtained, for example, by
means of a contact C (Fig 288) moved uniformly along the wire AB
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The current traversing the coil S will then be nearly proportional to
the time This is most easily obtained by placing the wire AB on the

periphery of a disc revolving synchron-
ously with the alternating-current, whilst

C remains stationary In this way
corresponding points of the current
curve always fall on the same part of

the luminous screen, so that the curve
on the latter appears stationary and
can be photographed

B

ass

104. Measurement of the Frequency of an Alternating Current

(ft)
To measure the frequency of an alternating-current the effects of

resonance may be used, because these phenomena always depend on the

frequency, no matter whether we are dealing with the resonance
between a current and a

tuning-fork or with electric

resonance

Fig 289 shews a steel

fork vibrating under the in-

fluence of an alternating-
current magnet. In such an

apparatus resonance occurs

between the alternating mag-
netic field and the fork, when
the natural time of vibra-

tion of the latter is an exact

multiple of the frequency of

the current If either is

altered, the vibrations dis-

appear, together with the

note given out by the fork

In the ETZ, 1899, p 873,
an instrument of this nature

for finding the frequency is

described by E Stockhait.

The chief part of the instrument consists of a soft-iron tuning-fork
carrying weights which can be moved along its limbs to vary the time
of vibration Between the ends of the fork there is a soft-iron core
wound with a coil through which the alternating-current is sent. Each
of the movable weights carries a pointer which moves along a fixed

scale, from which the frequency of the current is read off directly. To
take the measurement the weights are displaced until the note given
out becomes loudest

In the ETZ
, 1901, p. 9, Kenipf-Haitmann described a different

method for directly measuring the frequency. The instrument has
32 steel tongues (similar to that in Fig 289) having different natural

periods of vibration, all of them being fixed in a ring with their free

Pio 289 Diagrammatic Representation of Pint Spring
vibrated by au Alternating-current Mugnot
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ends pointing upwards By turning a screw the tongues can be passed
across the poles of an electromagnet As soon as the tongue corre-

sponding to the frequency of the current enters the field, it commences
to give out its note The frequency is then read off directly on the

scale The loudness is immaterial, the vibrations of the tongue can

even be obseived through a glass plate and the adjustment is made so

as to obtain the maximum amplitude of vibration

With these acoustic instruments it is possible to determine the

frequency to within about one-fifth of a whole period.

Figs 290ft and 6 shew Frahm's frequency measurer * A series of

springs /, made from spnng steel as used for clocks, are adjusted for

different periods of vibration and fastened to a common bar s. This
bar is connected to the plate p by means of two steel springs lb (called

bndges), so that it can move somewhat about its longitudinal axis

Fia 2000.

Frahm's Frequency Measurer

Fia 2902)

On this bar also a flat piece of iron a is fixed, which forms the

armature for the magnet m The magnetism of this latter is alternately

strengthened and weakened by the current whose frequency is being
measured the current being sent through the coils cc The bar,

together with the springs attached to it, are thus set vibrating synchron-

ously with the alternating-current, and the particular spring whose
natural period of vibration harmonises with this motion is set swinging
to a sufficient extent to enable the motion at the head k to be distinctly
observed

(b) A black disc, having a white line drawn on it radially, is used
for the sttoboscopic method of measuring the frequency. The disc is

mounted on the shaft of a motor and is lit up by an arc lamp working
on the alternating-current being investigated
The light of the arc lamp varies periodically with the frequency of

the current, and when the speed of the stroboscopic disc is equal to this

frequency, the white line will always be illuminated in the same place
and appear to be at rest If the speed of the disc is less than the

*SeoJSTZ, 1905, p 264
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frequency, the line will appear to rotate in the opposite direction to

the disc, and if greater, in the same direction

This method of measuring the frequency is similar to that for

determining the slip of an induction motor, which is treated fully in

Wechselstr&mteckmk, Bd V., Part I
,
Sect 74

105. Instrument Transformers In the measurement of very heavy
currents or high pressures, it is often not possible to connect the

instruments directly in the respective circuits, for instruments suitable

for these extreme values of current and pressure would become both

expensive and impracticable, whilst such instruments in connection
with high pressures could not be used without danger In such cases,

therefore, instrument transformers are used
In Fig 291, TT shews the connections of a pressure transformer for

measuring the pressure across the bars S TA is a current transfonnor
for measunng the current flowing in the line L

J J

Fia 201 Connections of Pressure and
Gun-out Transfoimors

Pia 21)2 Connections of WiittniLtor with
Instrument Transforms a

As a first approximation, where the various losses in the transformer
are neglected, the pressures will be directly proportional to the numbers
of turns and the currents inversely proportional, thus

P -^P'^uj't, i --2r=-r1 w
2

l ~w
l

*
u

t

*

Usually the instruments are piovided with scales to read the primaiy
values directly

If the instrument transfoimers are connected to a wattmeter, as
shewn in Fig 292, and again neglecting the losses, the powoi supplied
to the line L will be

where W is the reading of the wattmeter
On load, the pressuie transformer works as on no-load foi the

voltmeter current must be very small The current transformer, on
the other hand, is practically on short circuit, for the terminal pressuie
of the ammeter is very small

When the range of a voltmeter is increased by placing resistance in
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senes, that of an ammeter by placing resistance in parallel, the losses

increase as the range is enlarged On the other hand, instrument

transformers allow of extreme values of current and pressure being
measured without causing larger losses than exist in the instruments

on their normal range, when the losses in the transformers themselves

are neglected

(a) Piessme Tiansfwm&r To investigate instrument transformers,
we start from the secondary values of current, pressure and impedance,
reduced to the primary, and write

From eq 88, p 157, we have for the pressure transformer,

where yv is the admittance of the voltmeter reduced to primaiy
Further, as shewn before,

V2

exl in the equivalent circuit (Fig. 293) is the short-circuit impedance
measured between the terminals 1-1 when the terminals 2-2 are short-

circuited Let zA2 denote the short-circuit impe-
dance between 2-2 when the terminals 1-1 aie p p
short-circuited.

'*

Pin 209 Equivalent Ch cult of ProsHuro Transform ar PHI 2fM rio
Diagram

Then

= l+-j*t, . (159)

where e is the percentage pressure rise in phase with P
2 , and , tho

percentage pressure rise leading I\ by 90 (Fig 294)
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Since
y, must be kept veiy small, it is sufficiently accurate to put

p

and . /1Rft v.,,.,. . V (159a)
, i (5. + ft.) -&. + ai (?. + &) +a*& J

'

Since the imaginary part of this expression is very small compared
with the real, the ratio between the effective values of the pressures
can be written

p
(160)

or, if the current taken by the voltmeter is very small, i e
y, is very

small, then

(16Qa)

The pressure transformer should be constructed, therefore, so that
is as near unity as possible, that is, gl ya is as small as possible,

for in this case the pressures are as nearly as possible in proportion to
the numbers of turns Further, this is also advantageous when the
transformer is graduated, for then the changes of ga and x

l ba are least

affected by variations in the saturation and frequency On the

contrary, the secondary resistance ?
2 and reactance x have no effect

when the voltmeter current is small

The conductance ga is due to the hysteresis and eddy losses in the
iron. Whilst the latter part is independent of the pressure, the part
due to hysteresis varies inversely as the O f4th power of the pressure
Owing to this decrease in the hysteresis conductance with increasing
pressure, the deviation in the secondary pressure is greater at low

pressures than at high To make this error as small as possible, the

primary resistance 1
1
must be as small as possible

The susceptance ba vanes inversely as the permeability with varying
pressure It is therefore large at low pressures, attains a minimum
at an induction .5 = 7000 to 9000, and then rises again With low

pressures when the induction is below 7000 to 9000, ba changes in the
same way as ga ,

and with increasing pressure causes an increase in the

secondary pressure compared with the primary At higher pressures,
the increase of ba acts against the decrease of ga) and the ratio of the

pressures will be more constant

With changing frequency c, the hysteresis conductance vanes in-

versely as c
*

Hence, qualitatively, the same changes occur as with

varying pressures

(b) Current Ttansformer From eq 89, we have for the current
transformer



INSTRUMENT TEANSFOEMERS 331

Here ZA denotes- the impedance of the ammeter, reduced to the

primary. Also

^OI
=

JFT
and V 2

=
ff,

where ^02 is the no-load admittance between the secondary terminals
,

hence

y = <72 (1 + yotaj = Ca + yazA
-*a

= l + i+j *,. .(161)

Here * =
( + Oft, + (3s + *)&. - - (162a)

is the percentage increase of current "in phase with 72 ,
and

ii
=

(i*+ rA)ba -(Xz + xA)ga . ... (1626)

is the percentage current increase lagging 90 behind / (see Fig 295)
Since the imaginary part is here very small compared with the real,

we can write r

yd !+( z + rA)ga + fa + xA)ba ... (163)

From this it is at once seen that the primary
impedance of the current transformer has no effect on
the measurements On the other hand, care must be
taken to keep the secondary resistance and leactance

as small as possible just the reverse of a pressure
transformer It is therefore immaterial where the

primary coil is arranged ;
often the bus bar is merely

led through an iron ring, thus making one turn in

the primary winding. To make the effect of changes
in ga and ba as small as possible, the impedance of the

ammeter ZA ,
reduced to primary, must be kept as low

as possible Thus tte apparent volt-ampere con- pro 206

sumption of the ammeter should be kept very small,
so that the current transformer is practically on short-circuit

To make ga and ba as small as possible, the induction must not be
made too low Since the induced E.M F. is very small, only a small

iron section is required
Since the E M F increases as the current rises in the same way as

when the pressure increases in a pressure transformer, the secondary
current increases in proportion to the primary cunent, owing to the

decrease of ga and ba Fig 296a shews the increase of this ratio very

clearly for a current transformer made by Siemens & Halske The
abscissa axis represents the current in per cent of the range of the

instrument, whilst the ordinates shew the percentage deviations of

the current ratio from its mean value. The cuives A, B and C are for

different impedances ZA As eq 161 shews, the secondary current

decreases for larger XA At the same time the effect of changes in ga
and ba is increased, so that the lower curves B and C rise more rapidly
than the upper curve A
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As mentioned in connection with pressure transformers, a decrease

in the frequency c must act in the same direction as an increase in ZA

eo so m%
ranae ormeagi'remtrt

D
E

Fid 206a aiid b

This is clearly seen in the curves D and E (Fig 2966), which are taken

for frequencies of 50 and 25.

(c) JPattmeteH Ticmsfffiw&'s For the measurement of power, current

and pressure transformers are used As before, let ytt
denote the

secondary admittance of the pressure transformer and z, the secondary
impedance of the current transformer Further, we will let the suffix

V denote the constants of the pressure transformer, and the suffix A
those of the current transformer The primary and secondary powers
are then represented by the vectors,

w^pj[ t r.-wi,
where I[ and /a

'

denote the conjugate vectors of /] and /
2

We have
then TTT '

The symbols marked
'

denote the conjugate vectors Introducing
equations 158 and 161, we get further

_ + 1 -.

(164)

If an ammeter is placed m series with the current coil and a volt-

meter in parallel (or in series) with the pressure coils of the wattmeter,
we can at the same time measure the real part W* of the secondary
power and also the secondary current and the secondary pressure P2

We then get W^

where 7F3 ,

Similarly, if we write W^ = W-^

we have Wl =(\ +e+ i)JVs +(e, + 0?T2i ,
"I

, ,,._.
r -l

lb5
)

B. J ^>
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If the secondary phase displacement is small (le. Wzi small), the

primary power W^ to be measured is found by increasing the reading
W<t by the percentage pressure drop and percentage decrease in current.

The measurement of the primary imaginary power PP1{ or primary
phase displacement is then inaccurate, because the term -(^-\-i^Wz
may be large

With very large phase displacements, the imaginary primary powerWlt is obtained by increasing the imaginary power WZi , measured in
the secondary, by the percentage pressure drop and current decrease
The measurement of the real primary power W^ is then inaccurate,
since the term (^ + 1<)

Wu can be comparatively large.

106 Electricity Meters. The energy consumed in a circuit is

A = \pi dt=
I
PI cos $ dt.

If the pressure remains constant,

If I and 4> are constant,

A

Finally, if the momentary power is constant, then

Corresponding to the above equations we can distinguish between
watt-hour meters, ampere-hour meters, volt-hour meters and electricity
meters Since it is difficult to construct instruments to respond only
to the watt component of the current, ampere-hour meters are not

largely used with alternating-currents. We shall therefore deal

chiefly with watt-Juw meters These work partly on the dynamometer
principle and partly on the laws of induction. We can distinguish
between motoi meters where the current to be measured itself causes a

movement, the speed of which is directly proportional to the current,
and pendulum met&s where the alternating action of two coils carrying
current is made to influence an already existing motion The latter

possess the disadvantages of being complicated, on account of the many
axes and moving parts, and that of being continually in motion and
therefore always subjected to wear Moreover, the permanent control

possible with the motor motor is an advantage which must not be
under-estimated Thus, whilst the motor meter is more reliable

m working than the pendulum meter, yet the induction meter, in

which there are no current leads and lubbmg contacts, has a still

more certain action As an example of the pendulum inetei we shall

consider the Aion watt-lwur met&i

This instrument is provided with two pendulums, each possessing a

pressure coil Under each pendulum a coil carrying the line current

is placed, and connections are made so that the one pendulum is
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accelerated, the other retarded If the pendulums swing synchion-

ously when no current is flowing, and operate a counting device which

only records the difference of their swings, then the readings will be

appioximately proportional to the current flowing
The time of oscillation t of a pendulum of length / is

where g is the acceleration due to gravity When cunent flows

through the coils, we can write

and L =

If the pointer on the indicator moves one division when one

pendulum has completed N swings more than the other, then one

division will correspond to N^-^r seconds, and the consumption per~

division, or the so-called constant of the instrument, is

^=
*7=^3600 x 1000

fck*"*

or - NPIt
3.~

1000 x 3600 ft'

where the higher powers of ^ are neglected
L/

That these instruments read correctly for alternating-currents is seen

directly, when we remember that the dynamometer action depends
only on the watt component of the current. Against the disadvantages
of the several axes and moving parts, these instruments have many
advantages, since they are independent of the frequency and wave-

shape, and further are very sensitive and possess no permanent magnets
whose magnetism can vary with age

Motor niet&s have been constructed in many forms and placed on the
market They consist, in principle, of one or more fixed current coils,

an armature to which a current proportional to the pressure is supplied
and a damping device, usually consisting of a disc of aluminium or

copper which revolves between the poles of a permanent magnet If

the instrument is to read correctly for alternating-currents, no iron

must be present Since a large resistance is placed in series with the

armature, the induced KMF is small compared with the network

pressure, and the current in the armature is practically proportional
to the pressure The torque will therefore be proportional to PIW and
the power to PIwn, where n is the speed of rotation

In the damping device E M.F 'B are induced directly proportional to

the speed, so that the power consumed in the disc is proportional
to the square of the speed.
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Since now neglecting losses the power taken must equal that

supplied, then PIwn = Cn2 or the power taken from the line is pro-

portional to the speed of the motor Hence a counting device coupled
to the axis of the motor can be made to read the power directly
The principle of the motor meter is only free from objection when

the pressure coil is entirely non-inductive A phase displacement ^
between pressure and current in the pressure coil changes the formula

W=PIooa<f>

where d = tan" 1
.

r

L = coefficient of self-induction
") , , , ,

Y of the pressure coil
r = resistance j

r

Since, however, the arrangements necessary to eliminate this error

make the instrument too costly, they are only provided in standard
meters In general, when the phase angle $ is not too large and the

resistance m series with the pressure coil is sufficiently high, the

accuracy is not materially affected, and a correction becomes unnecessary
for practical purposes.
The error due to friction loss can be eliminated by placing sufficient

turns on the current coil and sending through them the current in the

pressure coil until their mutual action can just compensate for this loss

The friction losses, however, do not remain constant after a time they
may decrease with wear, and then the meter may come to possess the

worst possible fault in the eyes of the consumer, viz the instrument
rotates when no current is being suppbed

Consequently, artificial friction resistance is often added, the magni-
tude of which is large compared with the original, and remains constant

Moreover, these artificial resistances have the advantage of being
adjustable They can be provided in

various ways, but a complete descrip-
tion would take us too far here One

| | Pressure Cod

practical device consists in
allowing

a

pin on the revolving axis to strike

against one or more springs at every
revolution

Induction met&s, from their principle,
are only applicable for alternating-
currents Like the induction instru-

ments for measuring current and \^ ^/ Current Cod

pressure described above, these also

depend on the alternating action of Pia

two magnetic fields displaced from
one another in phase on a closed revolving conductor (Fig 297) If

the line current I flows through one coil and a current i proportional
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Ewmg explains this phenomenon as being due to the retentive

powers of the magnetic molecules, when they are arranged so as to

form groups The splitting up of these groups takes time ,
it begins

with the molecules on the surface of the wire, which are less closely
held together and therefore more movable, and moves gradually
inwards With fine wires there are relatively more movable surface

molecules
; consequently, in this case the combinations of molecules are

disturbed much more quickly

By plotting the magnetic induction B as a function of the magnetic
force H, we get the static magnetisation curve of the material which is

found most accurately by means of a ballistic galvanometer

Since l.ff^=

the ampere-turns per cm-length will be
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FIG 800 Mngnetlfiattou Curve foi Iron Stampings

For practical purposes, it is more convenient to plot B as a function

of aw instead of H Such a magnetisation curve fo'r iron stampings is

shewn in Fig 300 by curve I
; curve II shews the permeability

Z? 7?
Jj JJ

as a function of B.

If the magnetisation of the iron is taken through a cycle by uni-

formly varying the magnetising force between the two values -Hmtx
and +Hm^ )

B can again be determined balkstically and plotted as a

function of H or aw
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Instead of an iron ring (or toroid), the Hopkmson's yoke (Fig 301)
can be used The test-bar 8 is here clamped at both ends to a soft
iron yoke / having low mag-
netic reluctance, thus forming a

closed magnetic circuit

Since the induction does not

depend alone on the effective _| -^-

magnetising force H at the
""

moment considered, but is also

dependent on the magnetic in-

duction at the previous moment i. i

the latter property being due FIG soi Hopkinson's Yoke

to the retentinty of the iron

the cyclic magnetisation curve for iron is a closed curve, the so called

hysteresis loop Hy (Fig 302) The curve in this case is obtained by
static magnetisation.

Since the induction in iron is as shewn a many-valued function
of the magnetising force, a magnetisation curve such as is represented

+B

I

/ i

I I

I I

I
'

I I

I I
f i

B

PIG 802 Hysteresis Loop

in Fig 300 can only give one value of induction for one magnetising
force, which depends on the means by which it is measured

Usually such curves are taken on the ballistic galvanometer by
measuring the throw on the galvanometer when th$ current is reversed.
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After a few reversals, this throw remains constant whilst the induction

changes from a positive value to the same negative value The

measurements are taken for various field strengths by starting with the

lowest magnetising current and increasing the latter step by step, and

determining the throw on the galvanometer for each step after a certain

number of reversals Previous to taking the measurements, the iron

should be demagnetised as completely as possible It is important to

start with the small inductions and gradually increase to the higher,

for a higher magnetisation wipes out the after-effect of a smaller

magnetisation more easily than vice versa

The magnetisation curve taken in this way (the so-called rising

magnetisation curve) represents as is seen the kffitf fa the peaJ^ of

the static hysteresis loops of the won.

The area of the hysteresis loop represents a loss of energy, for,

according to the definition of the potential energy for electric current

(see p 15), the work done in a unit of time is

W 7A

JQ
d* ergs,

where iw denotes the ampere-turns interlinked with the flux ll> If the

ring (Fig 299) has a constant section Q and a moun length /, then

iw , , aw ir. , D aw j r . rrdB V,

where V= Q.l= volume of the iron ring in cm8

The work done during one period is accordingly

and the hysteresis loss in ergs per second for one cms

and is thus proportional to the aiea of the hysteresis loop 11

Formula 166 is deduced on the assumption that the magnetisation
of the iron sample is uniform, and that the magnetic foice is duo

solely to the electric current It is easy to shew that this formula
holds quite generally, for instance, m the case when \tirious

inductions aie present in the several parts of the iron and magnetising
forces other than those due to electric currents act on the iron. In
this case, however, the loss in each part of the iron must be determined

by itself Further, it must be noted that the energy loss duo to

hysteresis may not only be supplied by electric currents, but also by
external mechanical forces, as in generators

If a test piece is magnetised cyclically between equal positive and

negative values of the maximum induction, it is found that the shape
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and area of the hysteresis loop varies with the maximum induction

The nature of this change is shewn in Fig 303, which represents a

hysteresis curve (due to Ewing) for annealed piano wire Here the

induction is always varied from one value to a somewhat greater value
of the opposite sign.

-E-60 -SO -tO -30 -WlH/ifg/^yW' 11 20 30 W 50 BOR

Fia 808 Hysteresis Loops, Piano Wire (Ewing)

If we plot the areas of the hysteresis loops divided by 477, taken at

different maximum inductions, as a function of these latter, we get a

curve which represents the work m ergs per cycle and per cm8 due
to the hysteresis of the iron in terms of the maximum induction

Fig 304 shews such a curve as given by Ewing for soft iron plates
It is seen that the loss increases more rapidly than the induction.

Steinmetz has given the following empirical equation for the curve

^
ft
= ij5

1-fl

ergs (167)

V)
is called the hysteresis constant. For soft, annealed dynamo

plates r) varies from 001 to 003.
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If c is the frequency at which the iron is magnetised, a 0. the number

02 * 68 10 K -ft

Pio 304 Hystereidc Energy per Cycle as Function of the Induction

of complete cycles the magnetisation passes through per second, the

effective loss due to hysteresis will be

WTI = ijcB
1 "9

ergs per sec.

=
ijc5

1-6 10~7 watts

The loss per dm8
is Wh

=
rjcB

l
'B IQ~i watts (Hi7<j)

12

1,1

1,C

cL
i 0.8

\

7
' /

ED

013

101)00 20000 Bmax
Fio 806 Hysteretio Loss foi One Cycle per Second foi Diffoiout Kinds of lion

In Fig. 305 curves are given which represent the hysteresis loss perdm8 for one cycle per second in watts, t e

as function of B The curves are calculated for w = 0'0012 and
9 = 0-0016
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When we multiply and divide by 100018= 63100 in formula (167a),
we get the following expression for the hysteresis loss per dm8

,
which

is more convenient for calculation ,

(168)
\ A \J\J/ \ L V/VV//

where a-h

The above expression has been developed on the assumption that

the hysteresis loss per cycle is independent of the rate at which the

latter is completed. More recent experiments, however, shew that

this is not quite true.

In comparing the magnetic conditions accompanying static magnetisa-
tion with that due to alternating-current, the first difference we may
mention is the eddy cwnents set up in the iron in the latter case

When the magnitude of the induction is rapidly varied, E M.P "s are

induced in the iron which give rise to currents whose directions are

such as to tend to hinder the pulsations of the flux This has the

effect of reducing the flux for a given magnetising current, or for a

given flux a larger alternating-current is required than when the same
flux is produced by continuous current In addition to this, the eddy
currents produce a loss in the iron which is proportional to the square
of these currents.

109. Magnetisation by Alternating Current. Let the pressure

be applied at the terminals of the winding on the iron ring shewn in

Fig. 299, then a current will flow, through the winding. This current

is called the magnetising current, and excites a magnetic flux in the

iron which induces an E M P. e in the winding,

,

where -
at

If r denotes the ohmic resistance of the winding, then we have

p + e = ir

If we choose the relations so that i and r are both small, we can
write with close approximation,

p. D= v 2P sin tat,

whence w& = - /2 cos at = *f2 sin
(
tat - -?

}w to \ 2/

/2 sin
(
wtf - ^ ]

tow \ 2/
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From this we see that when the applied pressure p vanes in a sine

wave, the flux $ also obeys a sine law The flux, moreover, is seen to

lag 90 in phase behind the applied pressure The maximum value of

tb6flUX1S p
GW

where the pressure P is measured in absolute units When the

effective terminal pressure P is measured in volts,

P= 4 tAcaQ^ ID'8 volts (170)

The induced E M F E is numerically equal to the terminal pressure
P and directly opposed to it in direction , thus E lags 90 behind the

flux $.

We will now consider the case when the applied pressure is not

sinusoidal, but is merely some periodic function of the time the only

assumption we now make is that momentary values taken 180 apart
are numerically equal and of opposite sign The pressure curve will

then only possess odd harmonics In this case the flux curve also will

have no even harmonics, that is to say, instantaneous values taken half

a period apart are likewise equal and opposite Since, in general,

d$
p = - G = W-jr

at

or

or, again, $ =-

the curve for the flux $ as a fuuctidn of the time is the integral curve
of the pressure curve with regard to time If we integrate pdt over a

semi-period and choose the limits so that the integral becomes a

maximum, then we denote

as the mean value of the periodic pressure and this passes through
T

a positive Mf-wave in the time from t to t + F ,
where T denotes the

J

time of a complete period. Denoting the magnitude of the flux at

T
time t by *,,, and at time t +

-^ by 3^, then

T 1

$ _* =-Lp^max ^mln
/i

lne*11

is the largest increase the flux can pass through in a semi-period
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Further, since from the above

<f> _ _d>
^mlu ^nuut)

then $mlu is an absolute minimum and S^ an absolute maximum of

the flux. Then, we get m -,

* _- P^max
4 W

J- maani

where the pressure is measured in absolute units Since T=- we get

-8
volts, (171)

which is guite independent of Hie wave-sha/pe. On page 217 the form
factor of an alternating-current curve was defined as the ratio

. _ effective value _ P
"*'
~

mean value
~~

Pmwa
For any wave-shape, therefore, we have the following expression :

P=4/.cw;*raluc 10-
8 volts (172)

For a sine-wave / = 111, and by substituting this we get
formula (170)

110. Magnetising Current with Sinusoidal E M P We again con-

sider the magnetisation of the iron nng shewn in Fig 299, and assume
a sinusoidal pressure is applied at the terminals of its winding We
shall take the pressure drop in the winding to be so small that it is

allowable to assume the induced E M F. at any
instant is equal and opposite to the impressed B- +12000

voltage Then, as already shewn, the flux

must also follow a sine law Now, to produce
+ 1000

D^_^

this flux < we need a magnetising current +BOJC /

which alternates periodically with the indue-
/eooc /

tion in the core.
'

/ /

At any point of the sinusoidal flux curve j
+A C '

or induction curve we can find the respective j +2000 I

momentary value of the magnetising current _ _^ 2 0+2/H +61
from the hyst&i esw loop. We have shewn above / /

a

that the area of this loop gives a measure for ' -2000/

the energy which is necessary to magnetise the / -<,QOC

iron through one cycle This energy, which / J
has to be supplied from outside by the primary / /
no-load current, is converted into heat

The curve of magnetising current, which we >L-' -iooco

get from the hysteresis loop by calculating for

a sinusoidal flux, is not sinusoidal and is

"
'-

unsymmetrical with respect to its maximum PIO soo

ordmate In Fig 306 a hysteresis loop is

represented, whilst Fig 307 shews e the curve of induced E M F., * the

corresponding flux curve and ^ the curve of the magnetising current,

which latter is obtained from Fig 306.
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The curve of the magnetising current can be split up into a first

harmonic i
l
and a curve ^d which contains the higher harmonics Let

the effective values of these two curves be Jj and Id respectively

Fia 307 Determination of Magnetising Current with Sine-wave Proflsure by
means of Hysteresis Loop

We draw the curve of applied pressure p= -e and analyse the sinu-

soidal curve ^
l
into a component ^ w in phase with p, and a component

which lags 90 behind the applied pressure Since the current

curve id is wattless with respect to the sinusoidal applied pressure, the

component ^ w will represent the total watt component of the mag-
netising current, and the hysteresis loss is

where 71IF is the effective value of the current
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The wattless component of the magnetising current is made up of

the wattless component of the first harmonic II WL ,
and of the effective

value of the higher harmonics Id These components can therefore be

substituted by an equivalent sinusoidal current whose effective value is

The total magnetising current can now be replaced by an equivalent
sinusoidal current whose effective value is I Written symbolically,

where !&=li w .

Thus JW/^/^WAV-t-/^/? -(173)

Graphically, the magnetising current can be represented as shewn in

Fig 308 Here P the applied pressure is set off along the ordmate

axis, while the flux 3> is set off to the left

along the abscissa axis The component "P

is set off in the direction of the pressure
and the wattless component

in the direction of the flux The
sinusoidal current /, which is equiva-
lent to the magnetising current, is

given in magnitude and direction by
the vector 00

If we measure the consumed power
W, the effective pressure P and the

effective magnetising current I, the vector of the equivalent current

can be at once determined, for

W= FI cos (90
-

a)
= PI sin cc = PIW ,

W

Fio 808. Diagram of Magnetising
Current

I -
J-w >

J-WL

The angle a, by which the equivalent sinusoidal current of the

magnetising current leads the flux, is called the hysteretic angle of

advance

The ratio -n=y
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is the admittance of the magnetising winding Similarly, the wattless

component of the magnetising current is

and the watt component of the same

1^=1 Bin a=gP,

where b denotes the effective susceptance and g the effective conductance

The hysteresis loss is then

If we calculate the effective resistance and reactance corresponding
to g, b and y from formulae 37 and 38, p 66,

r-1- a

f

then r
represents

an effective resistance which is independent of the

ohmic resistance of the winding This effective resistance equals the

ohmic resistance which the magnetising winding would have if

the hysteresis loss W were consumed in the winding by the mag-
netising current /,

or

and the effective reactance is

x--

If we assume as above that the ohmic resistance of the winding
is negligible, then P, /and W represent the measured values.

In the above we have neglected the effect of the eddy currents
These can easily be taken into account experimentally, for with a

sine-wave pressure the flux and along witb it the eddy currents vary
after a sine-wave The eddy currents increase both the magnetising
currents and the losses, and cause an increase both in the wattless

component and in the watt component of the sinusoidal part of the

magnetising current Consequently, nothing is altered in the calcu-

lations and considerations as given above, when these eddies are taken
into adcountj and the same diagrams can be used for the experimental
values obtained with alternating-currents The analytical treatment
of eddy currents will be found in sections 111 and 112.

In Fig. 309 the curve B represents the induction in dynamo plates
of average quality in terms of the momentary values of the ampere-



MAGNETISING CURRENT WITH SINUSOIDAL EMF 349

turns per cm length of the magnetic path Curve AT gives the
maximum induction in terma of the effective value of the ampere turns

per cm for sinusoidal magnetisation, curve AT, shews the effective
value of the first harmonics, ATa the effective value of all the higher
harmonics

V 20 90 SO BO 100 AT

48000

16m, ,. ,

, ^-
AT

12000

^ y-^ ~"

imoc
I S,/

8000
I jY

600C

WOC

o s 10 is w AT
Pio 809 Magnetisation Curves for Armature Stampings as Function of A T per om

111. The Eddy-Current Losses in Iron. When iron is magnetised
by means of alternating currents, eddy currents are always set up in
the iron Suppose a surface to be taken through the iron perpendicular
to the direction of the induction, and let a closed curve be drawn in
this surface, then along this curve an EMF is induced equal to the
rate of change of the enclosed ftux The currents thereby set up flow-

in a direction such that they oppose any change in the main flux, and

dissipate themselves in heat corresponding to the energy they take
from the magnetising current If the reversals in the magnetisation
in the iron are caused by the movement of the latter in the field, the
loss will be supplied by the mechanical force causing the movement
In some cases, the losses are partly supplied from electrical and partly
from mechanical sources of power
The most effective means of reducing eddy currents consists in

laminating the iron The laminations must run parallel to the lines of

induction

In what follows, the eddy-current losses will be calculated in each

case, on the assumption that the induction is uniformly distributed

over the whole section.
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Let the iron be made up of wires, and the induction, whose maximum
value is B, be uniformly distubuted over the section of the wire. In

a nng of radius x, the induced E M P will be then (see Fig. 310)

^ = 4/8cir2;
2 10-8

volts,

where fe denotes the form factor of the E M.F wave
For a length of wire 1 cm, the resistance of the nng of thickness

dx 1S

where p denotes the resistance per cm8 of the iron expressed in ohms

Fio 810 Path of Eddy Currents In
Round Wire.

Pm 811 Path of Bddy Currents
In Iron Stumping

The heating loss in the ring is then

El p- -= STr/yl &a?dx 10- 16 watts
iirX p p

From this we get the heating loss per cm length,

-v
watts,

thus per cm
3
,

u> =
^-<?f?&d*lQ-

ia watts

For the volume V
e measured in dm8 and d in mm, we have

'

77^ T^Ti ) V. watts

V, watts

For soft iron,

whence

100 1000,

= 5 10~6 to 10~6
ohms,

o-w= 0-l to 0-5.

(174)



THE EDDY-CURRENT LOSSES IN IRON 351

Next, let us assume the iron to be made up of thin plates Fig 311
shews a section through a plate perpendicular to the lines of induction

In a sheet of current 1 cm long, at distance x from the centre line

of the plate, an K M.F is induced

E, = tft .c S X.IQ-* volts

The resistance for 1 cm depth of plates (measured perpendicularly

to the plane of the paper) is -- ohms. The loss in a sheet of currentr c r ' ax
1 cm long, 1 cm deep and of thickness dx cm is

i ~pp g2 f^S^y?dx 1
~*" wattsx

P P
'

For the whole thickness of the plate the loss is

. 10~ lfl watts

The loss per cm
3 is therefore, when A is measured in cm,

10-18 watts (175)-
Sp"

For a volume Vt in dm8 and for A in mm, we have

=<r
"(
A
I5o (176)

\ J.V/V/ J.WW/
4 10~6

where o-M= ^
is the eddy-current coefficient of the plate.

If we substitute p = 5 10~B to 10~5 ohms in the above, we get

cru = 0-267 to 133

112. Effect of Eddy Currents on the Flux Density and Distribution
in Iron. In a piece of iron

of circular or rectangular
section (Figs 310 and 311)
let <, denote the pulsating
flux which the magnetising
current im would produce
alone when no eddy cur-

rents were present This

induces an E M F eu in the

shaded circuit, which for

a sinusoidal flux variation

can be represented by a vec-

tor lagging 90 behind the

flux vector, as in Fig 312. p^ 812 -Reaction of Eddy Current*
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The E M F eu produces an eddy current *, which in its turn produces
a flux represented by *w in Fig 312 The eddy-current circuit

thus possesses inductance corresponding to the flux >, and iw lags
behind 8

tt .

The resultant flux of &m and <, is $, and we see that the effect of

all the eddy currents is first to cause the resultant flux 3> to lag behind
the magnetising current ^m in phase, and secondly the flux is reduced
from *m to <.

Both the weakening and the lag of the induction is greatest in the

middle of the iron, and decreases towards the surface, where it is zero

Oberbedc and J J. Tlwmson have made calculations to determine the

weakening of the induction in iron cores due to eddy currents (not as

above, due to a single eddy) These calculations shewed that the

weakening in very thin wires and plates can be entirely neglected,
whilst with thicker plates the weakening rapidly increases with the

thickness. This is beat seen from a short calculation In a circuit of

radius x (Fig 310) a maximum E MF 2irc3?
tt
lQ-a volts is induced, and

in a circuit of radius x + dx the maximum E M.F induced will be

2irc (&x+ 2irxBf dx)lQ~
8 volts.

Hence in the outer circuit the E M F per cm length is larger by the

amount
dS.-toreB.dxlO-* volts.

In order to get the induction Bx from this, we must find a further

relation between Es and Bf This is obtained from the fundamental

principle of electromagnetism, which states that the induction Bx

increases from the radius x to the radius x + dx by the amount corre-

sponding to the M M.F of the current in the circular ring The
maximum value of this current is

where p is the specific resistance of the iron The increase in induction

corresponding to this current is

dB.-Q4I.p-Q4irPE.dx,
P

where /* denotes the permeability of the iron Passing to symbolic
values and taking the phases of the different quantities into account,
we get the two equations

and dB,--Q4ir$.dx

Substituting Ex from the second equation into the first, we get
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This is a homogeneous linear differential equation of the second

degree, whose solution is

B =A e
'

A and 7? are two constants which have the same value in this case,
since Bx has the same value, but of opposite sign, at diametrically

opposite points at the same distance & Putting further a
=

nULX for

x = i,ie at the surface of the cylinder, we get

-ZU = A

whence by division

Since e^~^z= e
(1-"z = ^(cos y -3 sin

a-)

and we write for brevity ^ J-^-
=

A., (177)

the induction BK can be written

=

^lO-Sj; . -/-.708ir3c SlO-fl*
P P '

V -JO Sn^e <= 10-8 r -./-

_or ^ - J*^^ + _ Ai
j
cQs x? _

By comparing this expression with the formula on p. 133 for the

distribution of the pressure along a long line, we see at once that the

induction from the surface to the interior of the cylinder follows a

sine law

The length of a complete wave is found from

i o 2ir 10*

\x = 27T or -T- =

Over such a wave-length the phase of the induction passes through
360

d T dB, E- ,

Since /.= . .

* = dx,
47T/i p

the eddy currents are
propagated

in the iron according to the same

exponeutial law as the induction.
A o 7.
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For an iron plate (Fig 311) the same differential equation for Bx is

obtained, and consequently the same flux distribution over the section

aa in a cylinder In this case x and i =
-^

do not represent radii, but

the distances of the respective points or surface from the centre of the

plate

Fig 313 shews the magnitudes of the flux distribution over a plate
for different thicknesses of plates at c= 100 An idea of the alteration

41

r-.
\\

\\

\\
\

'

A -0,25%

.^'J%L-

Pro 818 Distribution of Induction ftorows n Stumping foi 100 Cycles i>ei ROC

in the phase of the induction throughout the plate is obtained by
remembering that the wave-length for a= 100, /A

= 2000 and p = 10~ r<
is

104 104

\

0,8 Q6 0,4 Q2 Q2 OA 0,6 08

100 x 2000 x

10P

Thus at the centre of a 2 mm plate the induction is displaced
SfiO

2-24
= 160 in phase from that at the surface The induction Z ]imx at

the surface only corresponds to the effect of the external magnetising
forces, which we suppose in this case u> act uniformly over the whole

length of the cylinder or width of the plate. If we ascertain the

greatest mean value Emtul of the flux density which can exist at any
instant, this must be less than the mean value of the amplitudes of the
induction at the different sections, as found from Fig. 313 In Fig 314,
the ratio of the maximum mean value JBmnn to the maximum induction
-Bma* is plotted as function of the plate thickness for c=100 From
the figure it is clearly seen that with a plate 1 mm thick only about
55 % is utilised, and with & mm plate about 95 % The 1 mm plate
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therefore would only increase the flux in the ratio of 55 to 47 5 with

the same maximum induction This agrees with J J Thomson's
statement that a thick plate does not conduct an alternating flux of

100 cycles any better than two thin plates each of mm thickness,

0,2 0,4 0,6 a8 1 12 U 16 18 2

Thickness of Plate in m
/m

Pro 814 Ratio of Maximum to Moan Induction foi Dtfforout Thicknesses of

Stampings at 100 Cycles poi seo

i.e the total permeance of a thick plate at this frequency only equals
that of the two outside layers of \ mm each For this layer a simple
formula can be obtained, which gives fairly accurate results for plates
of high permeability When A. is very large, e-** can be neglected

compared with **. Then we get

_A
2

-Smaxif
'A],

Coming back to the absolute values

7? _ "'"
-"nieau

A _ B
or B
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whence it follows that the thickness of the equivalent plate, instead of

A , . 1 104
/6>

-s-, is only o = 7^
=

7: A / cm
2 J

J\V2 2jr vc/i

For c = 100, /x
= 2000 and p = 10~ 6 we get 8 = 0'253 mm, which agrees

with Thomson's investigations. It is also clear that the induction

rapidly decreases towards the interior since -** = - !hr = 0019, where

a; is a wave-length, i e the amplitude of a magnetic wave is reduced to

a two-thousandth of its value for every wave-length completed towards

the interior of the iron

For the eddy-current loss it follows that at a given mean value

-Smeuu the induction is increased on account of the unsymmetncal
distribution of the flux In electromagnetic machines, however, such

thin plates are used that the induction is almost uniformly distributed

over the whole core, whence it is admissible to calculate the eddy losses

by means of formulae 174 and 176.

113. Effect of the Frequency and Other Influences on the Iron

Losses. If the induced effective EMF E in an electromagnetic

apparatus is constant, then

* *= constant

Now, from equation (179), the eddy-cuirent loss is proportional to

(178)v '

From this it follows that tlie eddy-cnim ent lass isp opai tiortal to tJte squat c

of the effective induced EMF independently of tlie fi efpwiici/ and waveshape
of the latter

This only holds, however, up to a certain value of the frequency,
when the induction becomes unsymmetncally distributed over the

section

The hysteresis loss is, from equation (167), proportional to

m m n-e

/1I7Q\
( }

From this we see TJie hyst&esis loss is inversely pi open turned to tJie

6
th
power of tJie fi equency

The greater the frequency the smaller the hysteresis loss (for the
same pressure), and up to a certain limit this holds for the total iron

losses As the frequency increases a point is reached beyond which, on
account of the unsymmetncal distribution, the eddy losses increase

faster than the loss due to hysteresis decreases

Further, it is held that, in addition to eddy currents, there are yet
other differences between static and alternating magnetisation Max
Wien has attempted to shew experimentally, in WiecUrwniis Amialen,
Bd. 66, that the so-called magnetic men tia or mscosity at rapid reversals
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causes a decrease in the permeability and an increase in the hysteresis
loss per cycle at a constant maximum induction Thus, a similar effect

is ascribed to magnetic inertia as to eddy currents To prove this,

Max Wien took care to make the eddy losses quite negligible in every
respect, whilst the experiments were undertaken throughout with
sinusoidal E M F.'s and very different frequencies From Figs 315 and

316, based on Max Wien's experiments, it is easily seen that the flux

FIG 816 Shortening of the Hysteresis Loop duo to Increasing Frequency

at rapid reversals cannot quite follow the magnetising force, conse-

quently the hysteresis loops under these conditions appear different

from those taken with slow changes
At the close of his paper, Max Wien writes as follows on the

relation between magnetic after-effect and inertia "Whilst inertia

becomes noticeable with flux variations completed within yrcroth of a

second, the magnetic after-effect does not Ibegm before a lapse of

several tenths of a second (Klemencic-Martens). This after-eftect is

greatest for weak fields, where the differences of the permeability and

hysteresis loss at the various frequencies are scarcely noticeable

These differences attain their greatest value at maximum permeability,
at which point the magnetic after-effect vanishes On the other hand,
there are several analogies between the two phenomena chiefly the



358 THEORY OF ALTERNATING-CURRENTS

dependence on the diameter of the wire magnetised and the decrease

with the hardness of the iron
"

Like magnetic inertia, other magnetic phenomena can also be ex-

plained by Swing's molecular theory

/ '// 4GDO
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Fio 810 Widening of tho Hyateroals Loop duo to Inoi easing Frequency

decreases hysteresis loss. This is especially so with soft

iron au4 weak fields

The conviction is now fairly general that the hysteresis loss depends
much more on the physical nature of the iron than on the cJienncal

Piessiire increases the hysteresis loss and decreases the permeability,
even when the force is removed

Mfftdey found that a pressure of 270 kg per cm2 caused an increase

of 20 % in the hysteresis loss ; on removing the pressure, the loss sank
to its original value

In one and the same plate, the hysteresis loss varies from point to

pomt, and this variation may amount to 28% Near the edge and

perpendicular
to the direction in which the plate has been i oiled, the

loss is greatest, and in the inside portion parallel to this direction the

loss is least

Layers of oxidation on the plate, which have a low permeability, lead

to an increase in the hysteresis losses Iron plates are anncal&l to

reduce hysteresis loss The latter, plotted as a function of the

annealing temperature, gives a curve showing that minimum loss

occurs at 950 C. When we come above this annealing temperature
the loss curve rises rapidly At higher temperatures the plates may
stick together and be destroyed
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Up to about 200 C
,
the hysteresis loss is almost independent of

the temperature, whilst between 200 and 700" C. the loss decreases

from 10 to 20 %
With continuous heating, however, the hysteresis loss increases this

process is known as ag&ing The higher the annealing temperature,
the more pronounced does thia property shew itself

The curves in Fig 317 were taken by A H Fmd on four different

transformers of 1 to 2 K.w The transformers were fully loaded during
the whole of the experiments Ford maintains that ageing can be
reduced by rapidly cooling the red-hot plates.

50 100

Duration of Trat in Days

Fi 317 Agoing of Iron.

Mauermanu *
investigated a number of plates with respect to ageing,

some of which were annealed at 700-750 C and the remainder at

950-1000 C Those plates which were annealed at 950-1000 C
shewed a noticeable increase in hysteresis loss after one week's heating
at 56 C

,
whilst the plates annealed at the lower temperature shewed

little change After being heated at 77 C for a fortnight, the latter

plates still shewed little change, whilst the increase for the plates
annealed at the higher temperature remained about the same

Consequently, on account of ageing, it would seem that the annealing
temperature should not be too high
The investigations of a committee on Hysteresis appointed by the

y&laml (.kutbchen EleU'i otechnike) gave the following results (E T.Z

1904, p 501)
1 After lying in the temperature of the laboratory for some months,

some transformers shewed a higher loss coefficient t than on entering ,

* E T Z 1901, p 861 f Total iron loss m 1 kg at c= 50 and B= 10000.
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on the contrary, the loss coefficient of the testing-transformer, kept at

the temperature of the room, shewed no change duiing the 2 months'

continuous experiments, so that it appears the loss coefficient got worse

at the beginning when the iron was brought into the laboratory

temperature and then remained constant

2 Only one plate shewed no signs of ageing all the others shewed

a tendency to this, which was moie marked with the 35 mm plates

than with the 5 mm
,
in general, the ageing is very small (3 to 8 %),

with the exception of one plate, which was found to be non-homogeneous
on delivery In this case the loss increased 25 %

3 Marked ageing, on the other hand, was observed in the alloyed

plates, and was found to be larger m those with 2 % Al (33 %) than

in those containing 1 % Al (15 %)
4 An increase m the loss due to hysteresis was always the cause

of the loss coefficient becoming worse (?/ getting worse by 47 %),

whilst the eddy-current loss in general remained constant and in the

alloyed plates rather decreased (12 to 17%) The figures obtained

from static methods in so far as could be expected from the un-

certainty of the separation agreed m general with those obtained by
wattmeters

From recent experiments by Di E Kollen, on the influence of

silicon on the ageing of iron, it appears that this phenomenon of ageing

disappears rapidly as the amount of silicon increases, until with iron

containing 3 5 % of silicon it vanishes almost entirely

The wave-shape of the pressw e, like the frequency, has no effect on the

eddy-current loss at low and moderate frequencies At high frequencies,

however, the eddy losses are larger when the pressure curve deviates

from a sine wave, because the higher harmonics cause larger eddy
losses than the fundamental. From formula (182) it is seen that the

hysteresis loss varies inversely as

JJT the 1 '6
th

power of the form factor

iw Since peaked piessure curves have
*
\^ the largest form factors, the

v hysteresis loss is smallei foi such

ioo than for flat-shaped curves This

^s^ follows also fiom the fact that the

^x^^ maximum induction B is propor-
to ^^ tional to the area of the pressure

"^^ curve, whilst this area is inversely

proportional to the form factor for

60 the same effective value Conse-

quently, the maximum induction is

/ /,/ if 1,3 i,*Je inversely proportional to the form

, -IB i * * , u r,\
r

factor and the hysteresis loss to
PIG 318 Influence of tho Form Factor on ., , r

j
, ,

Hystoresis LOHBOS the 1 6
Ul

pOWCl
1 of the form factor

To give an idea of tho influence

of the wave-shape on the hysteiesis losses, the latter have boon calcu-

lated for various form factors as a percentage of the hysteresis losses
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foi a sinusoidal pressure, assuming the applied E M F. constant in

every case The results are plotted as a curve in Fig 318
It seldom occurs that a pressure curve has a form factor greater

than 1 3 to 1 35
,
with such a wave shape the hysteresis loss will be

reduced some 25% Such highly peaked curves, however, are a

disadvantage in other ways especially on account of the heavy strain

placed on the insulation In addition to this the eddy losses are

increased with peaked curves, so that they are not so efficient with

regard to the iron losses as indicated by Fig 318.

114. Flux Distribution in Armature Cores. In most electrical

machines the iron is not continually magnetised and demagnetised
in diametrically opposite directions,
but the induction often remains more
or less constant, whilst its direction

rotates Such a magnetisation occurs

in the armature of the foui-pole

dynamo in Fig 319. A rotating
induction of this kind can always
be split up into two components
perpendicular to one another.

To determine these components, we
start with the assumption that the

induction at the surface of the arma-

ture is smusoidally distributed, a

field thus distributed is called a sine-

wave field To calculate the flux

distribution inside the armature, we
can suppose that magnetic charges

Pin 310 Flux Distribution lu Foui-pole
Armaturo

71

exist on the surface of the armature, the density of which I --T-

varies after a sine wave These magnetic masses exert magnetising
forces H in the interior of the core, in accordance with the law of

magnetic potential these forces cause the magnetic induction B.

K Rudenberg* has calculated the components of this induction from

differential equations of the magnetic potential, on the assumptions
that the permeability /* of the plate is constant at all points and
in all directions, and that the distribution of induction is not affected

by eddy currents.

In polar co-ordinates, the radial component is

and the tangential component
1

*ETZ 11)05 and R Rudenbeig, Enmijie der Wnbclstidme Sammlung electr

Voitrage. (Stuttgart), 1906
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where p is the numbei of pole-pairs in the machine aud A and B two
constants These are obtained fiom the limiting conditions for the

inside aud outside radius

assuming a sine-wave flux distribution St in the gap
-.i-p

Hence follows

>1-'
and

If we change /
, and i n these formulae hold for machines with rotating

poles. In Fig 320 the flux distribution m the machine in Fig 319 is

shewn, as calculated by Eudenberg from the above formulae.

Fio 820 Flux Distribution In Pom polo Arnnitin e

From the formulae it is seen that the induction at every point of n

revolving armature is made up of two components, one of which vanes
with cos p<$> and the other with sinj^ If the 2^-polar armature
revolves at n revolutions per minute, E.M P.'s will be induced in the
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armature conductors at a frequency np per minute or e =^ cycles per
second Further "^

where i is the time in seconds taken by the armatuie to rotate through
the angle <

,
hence

, n .

The two components can therefoie be expressed thus

and the resultant induction can be represented by a vector OB revolving
about 0, as in Fig 321

The angular velocity of this rota-

tion is variable, and its average is to

The extremity B of the rotating
vector moves over an ellipse (elliptic

induction, elliptic rotary field). Near
the external surface of the armature,

hence, for ?,

large, at the

we have

0, or when p is very
surface where ? = *,

Fin 821 Hapreaentation of Radial mid

Taugeutiiil Components of Induction

At the internal surface of the armature, where =? 4 ,
then J5r

=
and

Whilst the radial component always decreases from the outside to

the inside surface of the core, this is only the case for the tangential

component when the number of poles is greater than two The

ellipses, after which the induction vanes, become flatter the deeper we

go into the core At the interior surface it becomes a line, because

the induction here vanes in diametrically opposite directions, as m a

transformer core The ellipse only becomes a circle m the theoretical

case when the inside diameter is zero, and only the induction at the

outside layer of such an ai mature follows a uniform rotation like a

circular vector (perfect rotaiy field) Assuming that the molecular

theory of magnetism coriesponds to the physical phenomena in iron,

we see that the molecules have the tendency to rotate when the
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armature lotates, the mean velocity corresponding to the frequency of

the E M F 's induced m the armature winding
If the field m the gap is not a sine wave, the flux curve can be

analysed by Founei's Series into its fundamental and higher harmonics,

and the calculations repeated for each field By superposing the

inductions due to the several fields, we get the resultant flux distribu-

tion in the armature Naturally, the fields with the largest numbeis

of poles penetrate the least distance mto the core.

If j; is very large or equal to QO
,
the equations assume the following

forms when rectangular co-ordinates aie introduced The tangential

component becomes
-"

sin -
T

and the ladial b,*= -\Ae -JBf

when T is the pole-pitch and A and B two constants which aie found

from the two limiting conditions

We then get
-
-1

1-e >

7T?
1

h is the core-depth. Thus, in the first formulae, h-r
lt
= i

t and T = "

The last formulae give an insight into the flux distribution in the

laminated pole-shoes of a continuous or alternating-current machine
with open or semi-enclosed slots in the armature On the mean
induction B

t ,
a magnetic wave, with its maximum value Bn opposite

the teeth and its minimum value - Bn opposite the slots, is supei-posed

(Fig 322)

At a depth y = ^ =
f, the magnetic waves have practically vanished,

since they are here reduced to

IB M % of their original value

The two assumptions on which we have based all our calculations,
viz. that the permeability is constant throughout and that the eddy
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currents do not affect the flux distribution, are not always quite true.

Since, however, the peimeabihty inci eases towards the interior, the

Pro 822. Flux Pulsations in the Qnp, duo to Slot-openings

given by the

tendency, and
induction inside will be somewhat larger than that

formulae The eddy currents have just the opposite
strive to keep the flux to-

wards the exterior !Figs
323 and 324 shew the dis-

tribution of the flux in

a smooth-cored and in a

toothed armature These

pictures of the lines of force

are reproduced from photo-

graphs taken by w M
Thornton* carried out by
the method due to Hele-

Sliaw, Hay and Powell. The
method is based on the fact

that the fundamental equa-
tions for the magnetic hues
of force agree with the

fundamental equations for

the flow in two dimensions

of an ideal % e. fnctionless

and incompressible fluid

A perfectly fnctionless

fluid does not exist, but
it is sufficient to take an

*
Electrician 1905/06, p 959 PIG 324. Pliix Distribution in a Toothed Armature

Fin 323 Flux Distribution in a Smooth cored
Armature
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ordinary liquid flowing in a very thin layer between two parallel
surfaces By forcing a coloured liquid in streaks between two parallel

glass plates, Hele-Shaw and others succeeded in producing stream hues
which agreed with the lines of force in a magnetic field The coloration
of the liquid was obtained by forcing an aniline dye into the liquid
from a tube containing a large number of fine holes at small equal
distances from one another thus forming sharply-defined stream lines

of extraordinary regularity

Further, it can be proved that the velocity of the fluid under like

conditions vanes with the cube of the thickness of the layer This
fact gives a suitable means for producing a mechanical analogy for the
various permeances of the several parts of the current path. The parts
of the one plate which is to represent the air-gap are covered with a

layer of wax, and the other plate is brought so near to this that only

Fia 826

a minimum gap is left between them
; if, for instance, this gap was a

tenth of that at the part not covered with wax, the "permeability"
would be reduced to a thousandth The liquid used was glycerine,
which was led in at one pole and out at the other As shewn by the

photographs, the paths of the "lines of force" correspond exactly with
those obtained from complicated calculations

In the calculation and construction of diagrams of the lines of force
it is best to make several pictures of the lines of force by estimation,
split these up into tubes of force and calculate the permeance of the
tubes Since the path of the lines of force is always such that the total
flux is a maximum, the diagram giving the greatest permeance can be
taken as the best It is often well to draw in the eqm-poteutial lines
of the flux, and from these obtain the position of the lines of force
This is only advisable, however, in cases whore the equi-potential lines
can at once be drawn more easily and accurately than the bnes of force
If we have now the figure of the lines of force -as, for instance, between
the pole surface and armature surface in Fig 325 and have found
that this possesses the largest permeance, we then pass on to calculate
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exactly the flux between the pole and armature surface The permeance
Aa of a tube of force is *

where bx IB the mean width and . the mean length of the tube of force.

The breadth of the tube perpendicular to the plane of the paper is

assumed to be 1 cm If the magnetic potential difference between the

pole and armature surface is AW&, the flux in the tube in question
will be

and the flux density at the armature surface

.(180)

since the tubes always enter the iron at right angles If the flux

density has to be found at a point in the gap, then <&a must be divided

by the part of the eqm-potential surface at the place in question, which
is cut by the tube of force In this way, the flux in all the tubes and
the flux density at any point can be found with fair accuracy

115. Iron Losses due to Rotary Magnetisation, (a) The
cunent losses in the iron with rotary magnetisation are obtained by
simply adding the losses produced by the two components of the

induction.

If the iron is magnetised by a pure rotaiy field, then Br
= B$ = B,

and we get just double the eddy losses obtained with a linear

alternating magnetisation to the same value B

Fio 320 Distribution of Eddy cnrreiita duo to Rotating Magnetisation

Starting from the formula in Section 114 for the flux distribution,
R Pilldenbeig has analytically investigated the eddy currents in

revolving armatures and obtained the interesting result that the stream
lines of the eddy currents are identical with the lines of force of the

magnetic field except 'at the boundary surfaces where the currents

are reversed. The current distribution is illustrated by Fig. 326
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For the eddy-current losses, Rudeubeig obtained the same formula
as above

Here BlnetlL
= -^-Bi is the mean tangential induction m the neutral

iril

zone where Z r
= Only the eddy-current coefficient for rotary

magnetisation is larger than for linear magnetisation, and, as seen from
the following formulae, depends largely on the armature dimensions

For a rotating armature, we have

"-e

For p = oo
,
t.e for a flat armature surface,

A

T
, (182)

tanh
T

and for hollow armature cores such as stators,

/i T /A
2"

,

* *(
1+

?j),
+1

*" AN2I>

_1

In Fig 327 the values of o-M for different numbers of polos are

plotted as functions of - All these curves start from -= for - =
0,r r b T

corresponding to alternating-current magnetisation Bi-polar rotating
armatures have the lowest eddy-current coefficient and bi-polar stator

cores the largest These formulae are deduced under the assumption
of uniformly distributed induction over the width of each plate and for

constant permeability p These assumptions are only partly correct,

so that the eddy losses are always somewhat larger than those given

by the formulae These losses are further increased by the filing, etc
,

done in building the core, so that the experimental values of the eddy-
current coefficient usually he between 5 and 10, and in continuous

current machines may be still higher. This is largely due to the fact,

that in addition to the eddy losses in the armature plates there are

also the further losses in the pole shoes, duo to the teeth passing over

A similar effect is produced m an induction motor These losses must
of course be separated, as will be shewn in the latter part of this

section
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(b) With respect to the hysteresis loss due to rotary magnetisation

(so-called rotary hysteresis), not many investigations have been made.
As shewn, the iron molecules in a revolving armature strive to rotate

at a frequency c corresponding to the mean angular velocity <a, but are

prevented from following the magnetising force by the friction between
them and the neighbouring molecules rotating in the opposite direction.

4* /'

/ ~
At SV -

a ^
/#

^9
V

V

& V 9,3 4* f f V I* W <"7

Flo 827 Relation of Eddy-aim ant Oooffloiant tr to Ooro Depth with Diffoiont

Numbers of Poles

Consequently, losses occur here which aprwm are not necessarily equal
to the hysteresis loss due to alternating magnetisation, for in this case

the magnetising force does not alter in direction but only in strength.
The most recent researches, however, shew that the hysteresis loss

with rotary magnetisation has about the same value as alternating

magnetisation for low induction up to about 10,000 At higher in-

ductions, on the other hand, the hysteresis loss is somewhat smaller than
with alternating magnetisation Various writers have even asserted

that the rotary hysteresis loss reaches a maximum at flux densities of

16,000 to 20,000, and then at higher values falls off very rapidly to a

very low value It has been attempted to explain this phenomenon by
means of Swing's molecular theory, but neither the explanation nor

the expenments seem to be free from objection The hysteresis
losses obtained with alternating magnetisation in formula (168) are

therefore generally used directly for rotary magnetisation also, and

calculated for the mean tangential induction 7?
llloail

= -r- S
f

TT/l

AC 2A
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(c) .Losses in Pole Shoes With a slotted armature the induction over
the surface of the pole shoe is not constant, but vanes along a wave

corresponding to the teeth and slots When the armature revolves,
the maxima and miuima of this wave move over the pole shoe, so that

at any point in the latter the induction pulsates at a frequency corre-

sponding to the number of teeth Z moving across the pole per second.

Aa a consequence of this, eddy currents are induced in the shoes having

the frequency cn -^ and penetrate to a depth h, where the induction

is constant The direction of these currents is such as to damp the

oscillations of the flux, that is, they exert a screening effect and are

therefore chiefly confined to the surface of the shoe
,
below the surface,

they are rapidly damped out
If the pole shoes are laminated, the eddy-current loss due to the

teeth can be calculated from formula
(176)^

for p = cc. It must be

remembered, however, that the gap density J3
t must be replaced by the

amplitude Bn of the flux pulsations at the surface of the shoe and the

pole pitch T by the half slot-pitch The depth of the laminations is

taken as
^, for if they were deeper, this would have but little effect

on the calculation, since the magnetic waves as shewn are practically

damped out at this depth Thus, in a pole shoe of length I cm, width

b cm and depth
-

cm, the eddy-current loss will be

" J-

100 "-1000/ 2000

Tt

since
1C

rr
Here

irh

7T2 T 7T2

,-g-, ,

,
, irti o tanh ir

tanh
T

and the frequency cn
= ,

where v is the peripheral speed of the armature in metres per second

Inserting these values

where Z,
i and ^ are in cm and A in mm
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The hysteresis losses are approximately

w.-~ A_A_^Y fli watts

6

lb watts
4007T 10V1000.

In this formula, as in the earlier, the flux distribution is taken as

constant over the whole plate For most pole shoes, however, this

does not hold, partly because the plates are often 1 mm or more thick

and partly because the frequency cu lies between 500 and 1500 The
thickness 8 of the equivalent layer of a plate in a pole shoe, where
c= 1000, p= 10~6 and /*

= 2000, is

thus being much less than half the thickness of the plate In such

cases the values obtained from the formulae are too low It is seen,

however, that it is extremely important not to use too thick plates for

pole shoes It is therefore of interest to calculate the eddy losses in a

solid pole shoe and compare these with the losses in laminated shoes

For this calculation we shall use the method given by Rudenberg in

fheUTZ 1905, p 182

The magnetic wave entering the shoe will again be represented by

h
In each element at the surface of the pole shoo and parallel to the

axis, the BMP induced per cm length is

ew = vbn IQ~
a
volts,

where v is the peripheral speed of the armature in m/sec This E M F.

produces an eddy current near the surface

aw =^ = 0^10- amp
P P

In section 112 it was shewn that the eddy currents are propagated
in solid iron in accordance with the exponential function e-^, where

a constant depending on the iron, and y the distance of the point in

question from the surface

Hence the general expression for the eddy currents can be written

We take now the expression
*
wp ch, which represents the loss due to

eddy currents in the element of volume dv, and integrate over the
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surface of the pole shoe
t^l

It is convement to exteud the integration
with respect to y to oo, but the magnetic waves do not extend even

a wave length into the iron
,
we then get the total eddy-current loss in

a slot pitch .

w.
pi

r
(

,= I dx\ dy\ dsi^p
Jo Jo Jo

ft, /

pj wa^a=
dx\ dy\ dz-^

Jo Jo Jo P 1U
" r 1'

.

hence ._, -.

Integrating over the whole polar arc b, instead of over a slot pitch t
lt

we get the total eddy-current loss

J ^and with

_ U watts,

w ^l$
1007;

n r

h

where &, Z and /
x
are in cm and v in m/sec

As seen, this expression differs considerably from that for laminated

shoes. They are in the ratio

66A2

to one another

For A= 5 mm, ^ = 2 cm, = 20 m/sec , /*
= 2000 and />= 10- fi

,
this

ratio becomes
6 6 x 52 20 x 2000

In this case, therefore, the losses in the laminated polo shoos are little

more than one tenth of those in the solid pole shoos To obtain this

result, however, the plates of the laminated shoes must not bo more than

2S = 16 mm, for cn
= - =1000 cycles per second

h
Since these thin plates are not practicable, the ocldy losses in the

actual laminations will have a value between the above



IRON LOSSES DUE TO KOTABY MAGNETISATION 373

116. Testing and Pre-determination of Losses in Iron Stampings.
For investigating iron, the apparatus should be arranged so that the

magnetic circuit is entirely composed of the sample to be tested.

In the standards of the Venlamd D&uA&dw Elekttotecknik&i the arrange-
ment shewn in Fig 328 is proposed for the testing of iron plates

ap
'

4 ,

Fid 828 Apparatus for Testdug Iron Stamping*

The magnetic circuit is made up of four cores each 500 mm long,
30 mm wide and at least 2^ kg in weight The several plates are

insulated from one another by tissue paper The cores are held in

position by wooden clamps and at the junctions separated by a 15 mm
strip of presspahn Special care is to be taken that the coi es are strictly
in line, correct position being detected by minimum noise and minimum

magnetising current The exciting coils are wound on presspahn spools,
on each of which there are 150 turns of wire of 14 mm2 section

The stampings according to these instructions shall be taken from
a sample of four lots weighing at least 10 kg From the total losses
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measured by the wattmeter, the loss in the winding is to be deducted
in order to obtain the iron loss Wt Fiom formulae (168) and (176),
the total iron losses are

'

<186>

The coefficients o-A and a-v can be found by expenment, by testing
the sample at a constant induction B with alternating-currents and
variable frequency c For this purpose we have only to maintain the
excitation of the generator constant and vary its speed , for then the
E M F. vanes in proportion to the frequency and the flux remains constant.
The losses measured by the wattmeter are then divided by the volume
of iron to obtain the loss per dm8

. These values divided by their

respective frequencies c are plotted as functions of the induction B,
and must according to the above equation give a straight line

The intercept of this straight line on the ordmate axis equals
o- / B \

lfl
I

ffi?) (TOOO) '
wkilst ^e' height of a point on the straight line above

this point of intersection with the ordmate axis is

"Vioo 1000;
'

In Fig 329 the above-mentioned lines have been determined for
5 mm dynamo plates at the inductions -B = 6000, 10,000 and 15,000,

1 Watt* and the values of a-h and o-w cal-

culated from the same are given
This method of separating the

hysteresis and eddy losses is

^ ~ ,., based on the assumption that
v> s , ...

tke hysteresis loss per cycle is

^ . independent of the frequency
Blt ' ' This is not, as we have seen,

strictly correct, for the same
increases somewhat as the

frequency increases Conse-

quently, by this method of

separation the eddy-current
loss will appear somewhat

greater, and the hysteresis loss

somewhat smaller than is actu-
o 10 20 so u (frla ally the case But in any case

Pin 820 Sepaiatlon of Iron Losses by Frequency the method enables US to 806

what part of the losses is

proportional to the frequency and what part to the square, which
is of importance for pre-determming the losses and obtaining
the coefficients <rh and o-w experimentally Further, we have seen
that the eddy currents especially at high frequencies cause a non-
uniform distribution of the induction over the section of the plates.
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In consequence of this, the hysteresis loss will be further increased

with increasing frequency, which appears as an increase of the eddy-
current coefficient o-,,, in the above separation This coefficient, therefore,

will generally be found considerably greater when determined by this

means, than when it is deduced from the thickness and permeance of

the plates If the paper between the plates does not insulate properly,
or if a direct path for currents from plate to plate is made during
erection or construction, as is often unavoidable in practice, the eddy-
current coefficient may be still further considerably increased

The total loss in watts in a kilogram of iron at an induction of

10,000 and frequency of 50 is called the specific loss of the iron

Assuming a specific gravity of 7 77, the iron tested in Fig 329 has a

specific loss of 4*1

According to Ewing, the best result obtained by him was from iron

having the following composition

Carbon 02 % Phosphorus 02 %
Silicon 0032% Sulphur 0003%
Traces of manganese Iron 99 925 %

This iron ages considerably, however By adding 3 % of silicon or

aluminium it has recently be found possible to produce an iron, in

which the hysteresis loss is less than that of the best Swedish iron

This iron is also consideiably less affected by ageing. The permeability
of such an alloyed iron is, however, lower than that of ordinary iron,

and likewise its mechanical strength
Since such alloy plates have 4 to 5 times the electrical resistance 6f

ordinary plates and therefore smaller eddy losses, they are particularly
suitable for transformers and other electromagnetic apparatus with large
iron losses and poor cooling.

For the specific loss the Bismarck hutte whose plates are largely
used in Germany at the present day guarantees

Ordinary plates
- - -36 watts per kg

6 to 7 % Silicon Alloy
- 3'2

30 to 3-5% - 18

The composition of alloy plates is usually as follows

Carbon 0-03 %, Phosphorus 01 %,
Silicon 34%, Sulphur 004%,
Manganese 0-3%, Iron 962%,

and they have a specific resistance of 5 ohm.

117. Calculation of the Magnetising Ampere-turns with Continuous,

and Alternating-Current. To calculate the ampere-turns in a magnetic
circuit excited by direct current, we divide the magnetic circuit into

parts made of the same material and having approximately a constant

induction Starting, for example, with the value 3^ of the flux in the

<&

first part, we find the induction B-^
= ^, where Ql

is the mean section
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cfr <

of this part Similarly, the induction at another part a 7f=<rx7l,
Vx 'vx

where a-a denotes the leakage coefficient of the part x with respect to

part 1. We now need the magiietisatum cut ves of the respective materials

These curves give the inductions B for the diffeient matenals as functions

of the ampere-turns aw per cm length of the magnetic path Such curves

are determined by the above-mentioned ballistic measurements, or

by means of some form of permeameter, and take no account,

therefore, of the effect of hysteresis The error hereby introduced is

usually not considerable In Fig 330 the magnetisation curves for the

commonly-used magnetic materials of average quality are given
The permeability of good cast steel is independent of the amount of

carbon present up to 25 % of the latter. Above this value the steel

becomes harder both mechanically and magnetically and its permeability
rapidly decreases

Let at^, at% s etc, denote the values of the ampere-turns per cm

length, as given by these curves, for the inductions />\, B2 , etc
,
in the

several parts, then for the whole magnetic ciicuit we have the total

ampere-turns

where L
} ,
L

z , etc
,
denote the lengths of the several parts

If we carry out this process for a number of values of the flux &
lt

we get a curve shewing ^ as a function of ATk (cp magnetisation
curve or no-load characteristic of machines)

The calculation of the magnetic circuit with an alternating flux, as

in the case of transformers Or induction motors, is quite similar

Here we have usually the nvmmum value of the sinusoidal alternating
flux either given or assumed, whilst the effective value of the magnetising
ampere-turns or current is to be calculated Further, this effective

value has to be split up into an energy or watt component and a wattless

component If the magnetic circuit is made up of sovoial pints, the

problem cannot be solved accurately, unless we have the hysteresis

loops for the several inductions m the various parts. From these the

hysteresis loop for the whole magnetic path could be calculated point
by point and the curve of magnetising current found, similarly to that
shewn in Fig 307.

Since this method is much too roundabout for practical purposes, it

is better to use the following approximate method
On a test-ring of the particular material, as shown in Fig. ^99, with

various applied pressures P, the effective current / and consumed
watts /Tare measured. If the pressure is sinusoidal,

* P 1QS
im" = 4446'

and the maximum induction

B=-P 1Q8
,

4 44 cwQ'
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where Q equals the section of the material The effective value of the

magnetising ampere-turn? per cm length of the ring is

. Iw
at= r-,

-L'm

where Lm is the mean length of the ling

Further, the watt component of the magnetising current is

/ - W
J-W-PI

and the watt-component of the corresponding ampere-turns per cm

The wattless component of the magnetising current and of the

corresponding ampere-turns per cm length of the magnetic path are

In Fig 331 the values of a^and atWL are plotted for different values
of B at 50 cycles per sec The curves are taken for iron plates of
various qualities and thicknesses, curves I and II being for dynamo
plates 5 mm and 0-35 mm thick, and curve III for alloy plates
33 mm thick

To calculate a magnetic circuit for alternating-current, the procedure
is similar to that for a circuit excited by continuous current After
the circuit has been divided into parts of the same material and with

approximately constant inductions B
l}
B

2 , etc, then, by means of the

curves, we can get the watt ampere-turns ATm for the whole circuit

, (187)

and likewise the wattless ampere-turns

^iw = a*iiA + *!* + . . (188)

The resultant ampere-turns are then

AT,=J(ATkW)*+(ATkWL)* . ... (189)

By this method, we not only take into account the effect of magnetic
hysteresis, but also the influence of the eddy-current losses on the

magnetising current.

The calculation of the watt ampere-turns is quite accurate, since
these are sinusoidal and give the total watts lost in the circuit

1C-8 watts
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The calculation of the wattless ampere-turns in the whole circuit by
summing up the wattless ampere-turns in the*several parts is not quite

exact, since these components contain higher harmonics which have
different relations to the fundamental m the seveial parts This

method, therefore, gives a somewhat too high value for the wattless

ampere-turns, especially when strongly saturated iron is in series with

feebly saturated or with air.

Fid. 331

The error can be reduced somewhat by splitting up the ampere-turns
atWL into a fundamental atlWL and a component atd comprising the

higher harmonics The latter is found fiom the equation

In Fig 332 the curves for at^ WL and atd are calculated for laminations

of the material used for curve I, Fig 331

Similarly, as in the above, we can now calculate from the curves for

the whole magnetic circuit

whence ATk WL
=

and AT^AT^+AT^-JAT^+AT^ +AT^ . (190)

At the present time, plates with low losses are usually used for

static transformers, which make it possible to work at high densities
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In these special plates, however, saturation is usually reached com-

paratively early, so that the magnetising current quickly becomes
distorted On this account, in the diagram of such transformers, the

magnetising current cannot be considered sinusoidal, and therefore
cannot be added geometrically to the sinusoidal load curieut m the

ordinary way , but, as shewn above, the sinusoidal part of the wattless

gt 39 19 SO 6I M 70

component of the magnetising current must first be added directly to

the wattless component of the load current and then the components
of the higher harmonics at 90 to these geometrically added, in order
to obtain the total wattless component of the primary current supplied
to the transformer By means of this accurate procedure the wattless

component of the primary current will appeal- smaller than the sum of

the wattless components of the magnetising current and the secondary
load current, which is usually the one calculated The error introduced,

however, by the latter simple method is generally negligible

118. The Magnetic Field in a Polyphase Motor. For the sake of

simplicity we will consider the actual case of a symmetrical two-pole
three-phase induction motor. The stator coils of the three phases are

displaced from one another by 120 in space To the throe phases the

following symmetrical pressures are applied

Pn = Pumx fllH
(ftrf+ ^ - 1 20),

Pin =P* am
(orf+ $ -

240).
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These pressures produce the following fluxes, which are interlinked

with the windings of the three phases

i= -max cos

*H = - *max COS (orf + ^ -
120),

and *TII
= - $, cos (at + $ - 240)

These fluxes are displaced by 120 in space, whilst in time they
succeed one another after one-third of a complete period
The resultant flux in a direction x, which encloses the angle x with the

perpendicular to the coils of the first phase, can therefore be written

* = - *m. cos ((at + \p
-

ic).

Suppose the direction x rotates with the angular velocity <o, then we
can write . tx = x

Q + at,

and we get
<

z
= - $

1Iinx cos ($
- x

), -(191)

i e thefoiMK along an axis i evolving with the angnlat velocity of the cui*ient is

constant Such a field is called a rotary field

If we take the initial position XQ
=

^, i e. so that the flux at the

instant t = is a maximum in the direction x
,
then this direction x

corresponds with the maximum flux at every instant

Hence, in a polyphase moton we have a constant fltix rotating with a

constant angulai velocity to, the direction of flux coinciding with the

perpendicular to the coils of each phase at the. instant when the

pressure of the respective phase is zero The flux distributes itself in

the gap in practically a sine wave over the armature periphery
To calculate the magnetising current in each phase, the effect of all

three phases in producing the common rotary field must now be taken

into account. Consider, for example, the instant when the flux is a

maximum in the first phase, then the resultant magnetising ampere-
turns along the perpendicular to the coils in this phase are also a

maximum and equal

4.TmB3.

=V cos + inw cos 120 + ^nw cos 240,

and this AT,^ has to produce the maximum flux density Bt
in the

gap along the perpendicular to the first phase w equals the number of

turns per pole and phase Since the magnetising currents are practi-

cally wattless, %i is a maximum, since the phase pressure is zero at this

moment Hence, we have

ATm^ = w\ /mBI cos sm^ + /max cos IJO'sin

+ /, cos 240 Bin

=
7,naxw (cos

2 + cos2 120 + cos2 240")
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that is to say, the magnetising current per phase required to produce
the rotary field in a three-phase motor is only 4 of the current required
to produce an equal alternating field by meaus of a single phase
For an TV-phase motor we should have

^T* = -LaxW ( COS
2 + COS2 + COS2 + + COS2

'

(192)

Hence m an n-phase motoi, the magnetising cnirrmit in each phase leqmied
f)

to ptoduce the rotaiij field is only - of the magnetising cuirent leqmied to
n

produce a conespondvng alternating field.

In a two-phase motor, where n = 2,

^-* -^ max ^ * max

In this motor the total flux is produced by one phase when the flux

is a maximum along the perpendicular to this phase Suppose the two

phases of the two-phase motor produce
alternating fields 6

X and ftn of the same
maximum density J?

z ,
which are dis-

placed by 90 both in space and time,

then, as shewn in Fig. 333, these combine
to produce a rotary field of constant

intensity El
From the above it is clear

that to produce a rotary field, twice as

many ampere-turns are needed as to

produce an alternating flux Whence it

follows further, that a single-phase
induction motor at no-load

(i
e. running

light) takes twice the magnetising
current that it takes at rest, since at

rest an alternating field is produced, and when running a rotary
field. .

If the three-phase motor is wound for 2p poles, the rotary field will

again move over a double pole-pitch in a period, thus through -th of

a revolution Hence the rotary field in a 2p-pole motor moves p times

more slowly than in a bi-polar, i e at the speed
- With the same

magnetic reluctance per unit-tube of flux, the 2p-pole motor requires
p times the magnetising current that the bi-polar takes, since there
are p times as many fields to produce

FIG 398.
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THE FUNDAMENTAL PEINOIPLES OP ELECTROSTATICS.
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119. The Electric Field (a) By the term " eleotnc field
"

is under-

stood a space where electric forces can be observed The electric field

has several properties in common with the magnetic field, though in

several points, on the other hand, there is a marked difference For

example, the total quantity of magnetism in a magnet is always zero.

With bodies in electric fields this is not always so
,
a body, for example,

may contain only positive electricity, in which case it is said to be

positively electrified or charged. Electrically-charged bodies produce
in their neighbourhood an electric field, which becomes weaker the

further we go from the charged body The repelbng force exerted on

one another by two small bodies carrying the charges q^ and qz in air

or in vacuo can be calculated from Coulomb's Law

Z=f3, . .(193)

where i is the distance in cm between the bodies If the charges are

expressed in electrostatic units, the force K will be given in dynes.
In the electrostatic system of units, therefore, the electric quantity or

charge has the same dimensions (L M T'1
)
as the magnetic quantity

in the electromagnetic system of units If we have an electric charge
+ 1 in an electric field, it will be acted on by the mechanical force /
This force / is termed the electric field-sit ength, and has the same

dimension (L~*M*T~
l
)

as the magnetic field-strength in the electro-

magnetic system of units

As in a magnetic field there are magnetic lines and tubes of force,

similarly in an electric field there are electric lines and tubes of force

An electric line of force is defined as a line such that its tangent
at any point coincides in direction with the field-strength The
number of unit tubes of force passing through a surface of 1 cm2
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perpendicular to the direction of the force is taken as numerically equal

to the field-strength at the respective point

(b) Every point in a constant electric field possesses a potential At

any point in the field the potential is

P= ?2, .(194)
r

where q denotes the electric charge of a point at the distance i from

the point considered. The summation has to be extended over all the

electric charges in the field

If we calculate the woik A done when the electric charge + 1 at

distance 1
1
from the charge ql

is removed to infinity, we have

The work A is thus equal to the potential of the charge ql
at a

distance
?j

Since this work is independent of the path s over which

the unit charge is conveyed, the potential will be

fe =
J

-f.ds

By differentiating, we get the field-strength in the direction s

equal to the fall of potential in this direction. From this, the potential
difference between two points A and B is

A surface perpendicular at all points to the direction of the field-

strength, and hence the locus of all points having the same potential,
is called an equispotential surface The earth's potential is usually
taken as zero, and m this case the potential of a point can be calculated

as the work done in moving positive unit charge from earth to the

point considered

(c) Gauss and Gheerts TJwoiem The total flux < leaving a closed

surface F is equal to 4:r times the sum of the electric charges q uisiclo

the sphere This theorem can be directly deduced from Coulomb's
Law Symbolically /

<f>=\ fndF=7r'2q, (196)

where/, is the normal component of the electric field-strength, directed

outwards, on the elemental surface df, and the integral is taken ovoi

the whole closed surface F
Inside a solid conductor, maintaining equilibrium, the elcctiic Jicld-Jioir/fh

f is evwywh&e seno Thus if the closed surface is placed inside a con-

ductor where /=0 everywhere, then 2^= 0, 10 no elcdneitt/ tan c/W
inside a charged conducts. The electricity inside the conductoi mutimlly
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repels itself to the surface, where the total electrical charge of the
conductor is therefore located The quantity of ehctrwiiy per unit of
surface is called the suiface density a- of tJw ehctnc chaige
On the element of surface dF the charge is

dq = a-dF.

If a closed surface as shewn in Fig. 334 is placed very near to
the elemental surface dF, then as the electric field-strength inside the
conductor is zero, and from Gauss's Theorem we have

fndF=fdF= 47rS7=4- dF

or /=47To- . (197)

Hence the electric field-strength at a point near the surface of a

charged conductor is 4?r times the surface density From this it follows

that the surface of a conductor forms an equi-potential
surface, and that the electric lines of force leave the
surface perpendicularly when it is positively charged,
and enter perpendicularly when it is negatively charged.
The positive and negative charges form the termini of

the tubes of electric force

(d) The electric field-strength at a point in the

surface of a conductor is not equal to the field-strength
at a point just outside

Just outside the surface, both the electric charge
*"

pra 334

a- dF and all the other electric charges on the conductor
exert their effect

, hence we can put/n =/x +fz ,
where the field-strength

f2
is due to the charge a-dF At a point on the surface, the charge

a-dF exerts no force /2 ,
so that the resulunt field-strength here is

fn-fi At a point just inside the conductor the charge a-dF exerts

the force -/2 , directed inwards, since the point is on the opposite side

of the surface element Since the electric field-strength inside a con-

ductor is zero, then /J =/1 -/2 = 0, i.e /i=/2 = ^/o- Consequently, the
electric field-strength at a point on the surface is

In a field of this intensity there acts on every unit of surface having
the surface density o-, the mechanical force

z-ff-**--. . . . (IDS)

which is always directed outwards, and is known as the electrostatic

tension Its presenpe can be observed by electrifying a soap bubble,
which grows largej^jjii finally bursts

If the conductor is a solid body and the electrostatic tension becomes
too high, the conductor will discharge itself into the air. At ordinary
atmospheric pressure and tempeiature, such a discharge occurs when
K= 400 to 500 dynes This tension corresponds to a mercury column
of 3 mm

AC 2s
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The distribution of the surface density a- over the surface is usually
non-uniform On a conductor removed from all other conductors, it

only depends on the shape of the surface
,
the density at any point is

inversely proportional to the radius of curvature at this point The

greatest density, therefore, is at points and edges of the conductor, so

that the discharge occurs first in these places

(e) Electric conductors are not only charged with electricity by
direct contact, but also by electrostatic induction If a conductor is

brought into an electric field, then negative charges will collect on the

part of its surface where the lines of force enter the conductoi and

positive charges where the lines of force leave. TJie algehaw sum of 11w

diatges of electiicity thiispioduccd is always z&o.

To protect a body against static induction it can be enclosed in a

conducting cover No lines of force enter the hollow space, thus the

conducting cover acts as an electric screen against all external electric

forces This property is employed in electrostatic measuring instru-

ments. In the interior of a hollow conductor, no electricity can exist

120. Capacity. By the capacity of a conductor is understood
the ratio of its charge Q to its potential P ,

hence

Q = CP (199)

Since the potential P = 2?, capacity has the dimension of a length
r

in the electrostatic system of units

(a) If the electric charge Q is concentrated at a point, then the

electric field-strength at a distance p is

and the potential P at the point in question is found from

dP__ f

dp~
J'

and is P = - /dp = -
I

-| dp
= - + const

J J r r

Since P = Q when />
= <, the constant disappeais, and the potential is

p-3
P

Since P = constant for surfaces at the same potential, p is constant

for such surfaces Hence the equi-potential surfaces are sphei es .ibout

the charged point as centre Considenng the space enclosed by one of

these spheres when the enclosing cover is metal, then the whole cluige
Q passes to the surface without the electric field being affected in any
way For, from Gauss's Theorem, the total flux ^> through the several

eqm-potential surfaces is not altered
,
this is
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and the surface density on a spherical surface is therefore

387

o- _
4:7r 47T/o

a

The potential at the surface of a

sphere of radius v and charge Q is

thus

p= Q
200)

Hence, it follows that in air the

capacity of a sph&ie eqmh its lachus

Inside the sphere the potential is every-
where zero, irrespective of whether
the sphere is hollow or solid

Consider a straight line of infinite

length (Fig 335) with the charge Q
per unit length The field-strength
due to it at a point distant p from
the straight line is

,

/='

Fio 835

--5 COSa=
a;
2

;

2g

P

The potential at this point is

P= - (fdp = - [dp = const -2Q log. p

The equi-potential sui faces also satisfy the equation p = const here,

i e they are cyhndeis about the straight line as axis. Suppose again

an equi-potential surface to be metallic, then the charge Q will pass to

this metal cylinder, without affecting the electric field The electric

flux for the length / of the cylinder is in this case

and the surface density is

The potential and capacity of an infinitely long cylinder cannot be

expressed in finite teims, since there are no limiting conditions for the

constants Later, however, we shall return to special cases

Lastly, we can consider an infinitely large plane with the surface

density tr
,

the field-strength at a point near the plane is f=2ira;

sinco half of the 4?ro- lines per unit surface go out perpendicularly

on tho one side, and the other half on the other side On the surface

itself / = ()



388 THEOEY OF ALTEENATING-CUEEENTS

(b) To calculate the capacity of a line, it is best to proceed as

follows We start from the assumption that the conductor has a

certain charge Q, and calculate its potential by finding the work

necessary to bring + 1 charge from intmity or earth to the conductor

The path along which this is done is, as mentioned, immaterial

As an example, we shall calculate in this way
the capacity of a cylinder of diameter 2i

(Fig 336) and length I surrounded by a co-axial

earthed hollow cylinder of inside diameter 272

The hollow cylinder has zero potential, and the

potential of the internal cylinder is the work

jv='
I -fdp, which is required to convey unit charge
Jp=R
from the outside cylinder to the inside. For a

very long cylinder we had

FlQ 880

where Q = charge per unit length ,
hence

and the capacity C of the two cylinders is

(202)

In a similar manner we find the capacity of a sphere of radius i

concentrically surrounded by a hollow sphoie of inside radius R Heie

,72-9

M
This may bo very different /

'Hence the capacity C= -^
=

from the capacity of a sphere removed far away from other
bodies The charge on the inner surface of the hollow

sphere equals the charge Q on the surface of the inner

sphere.
If a surface F having the charge Q placed opposite to an

earthed surface at a distance r, the field-strength between
the two plates is everywhere constant (Fig 337), when the Pm 337

surfaces are large compared with the distance r The
direction of the field is normal to the plates, and its strength is

(203)
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At the surface of the charged plate the field-strength / is only one

half, since here only the charge of the earthed plate can produce a

component of force , thus

The potential of the chaiged plate is

P f
p=% 7 4arQ ,

P=-\ fdp =-fr r=fi,
Jp=r

and the capacity of the pair of plates

Such systems of two conductors having large surfaces a small distance

apart are called condensei a, the two conductors being termed the plates
of the condenser Condensers are used for collecting large electric

charges by means of moderate potential differences.

In all practical condensers, the plates are so near together, that they
always receive the same charge, which depends only on the potential
difference applied to the plates, and is wholly independent of external

influences such as the presence of strong electric fields or other

condensers Usually the plates are made of tin-foil, whilst the dielectric

consists of paraffin-wax paper or thin mica sheets Recently, high-

pressure condensers with glass tubes and metal plates similar to

Leyden jais have been placed on the market
TJie capacity of a condensei is numerically equal to the charge Q which

colkcts on one plate when it is i aised to unit potential, tlie other plate being

eaithed, or in other words, when the potential difference between the

plates is unity If several condensers are placed in parallel, each

assumes a charge proportional to its capacity and to the common

potential difference, and the total charge of all the condensers equals
the sum of the charges of the several condensers Thus the capacity of
condensei s inpatallel eqiiah the sum of the capacities of t)ie several condense? s,

when these are independent of one another If several condensers are

placed in series, they will all assume the same charge Q, and the

potential difference P between the first and last will be divided

between the several condensers in inverse proportion to their capacity

Thus, 000
whence it follows that the reciprocal value of the capacity of several

condensers in series equals the sum of the reciprocal values of the

capacities of the several condensers

(c) We have seen that when other bodies, e g the earth, are in the

neighbourhood of a conductor, the capacity of the latter alters Every
body at zero potential which is brought into the electric field of the

conductor in question raises the charge of the latter, and thereby
increases its capacity.
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Maxwell defined the capacity of a conductor as tlie ratio of its charge
to its potential, the potential of all neighbouring bodies being zero, as

when they are earthed If there are several conductors A^, K^, etc,

with charges Ql} $2 , etc, in the electric field, the potential at any

point equals the sum of the potentials assumed by the same point when
each conductor receives its charge separately whilst the others remain

uncharged We have thus a superposition of the electric effects.

If the first conductor K^ has the charge Qlt
whilst the others remain

uncharged and insulated, the potentials of the conductors /vT
1}

JT
3 ,

will be respectively

.Pi 2 GII PitQi, et
>

where pllt p12 , etc, are constant magnitudes depending only on the

position and dimensions of the conductors These constants are known
as potential coefficients If conductor K2

is charged with the quantity $,,

whilst the others remain insulated and uncharged, the conductors will

have the potentials
ctc

Hence when the conductors have simultaneously the charges Qlt

etc their potentials will be

From these equations, we get

hfl,iPa + <fe 1 P,+
]

(306)

The magnitudes c are functions of the magnitudes j>, and like the

latter are determined by the position and dimensions of tho conductor
The magnitudes c are called capacity cocjficienk, when tho two sufhxes

are the same, or simply, the respective capacities Thus cll is the

capacity coefficient or the capacity of the conductor 7^,, c.22 tho similar

coefficient for conductor K2)
and so on The magnitudes"?, whoio the

two suffixes are different, are called the mutual capacity mujhncnt* of tho

respective conductors. In this case cmH = cnm Thus c12 is the mutual

capacity coefficient of conductor K^ relatively to conductor A"
2 ,

and
so on
From the last series of equations, it follows The capacity 01 flic

capacity coefficient of a condwtor is equal to the quantity of okdi iati/ yiovtuMid

by the conductor when its potential equah umti/, tho jiotential of all othci

conditctors being zen o

The mutual capacity coefficient ofa coniluctm K^ relatively to a condiictoi X,
equals the quantity of ekctiicity which collects on K^ when all othci conducted

except K^ have z&o potential whilst tJie conductor 7^ .i Inowjht to unit

potential
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If the conductor K-^ is charged positively whilst the remaining
conductors in the field are earthed, the lines of force from conductor K^
pass into these conductors and away to earth. Obviously, lines of force

cannot come from the other conductors, since no point at a lower

potential exists in the field Consequently, there can be no positive

charge on any of the other conductors. The sum of the negative

charges on the earthed conductors, therefore, can never become numeri-

cally greater than the positive charge on the conductor K^ From this

it is seen that the mutual capacity coefficients must always be negative (or xcio\
and that the &itni of the mutital capacity coefficients is nwnencally smaller

than (0? at the most eqiuil to)
tJie capacity coeffici&nt

(d) To determine the capacity coefficients experimentally, the method

given by Professor Schleiermacher* can be used with advantage
All conductors except the oF* are earthed, and the capacity of

the x01
is then measured, from the above definition this equals the

coefficient cxx Similarly, we proceed with all other conductors,

whereby c
, equal to the capacity of the y^ conductor, is obtained

If now all the conductors with the exception of the x^ and y^ are

earthed, whilst these two are joined in parallel, we shall not get the

capacity cxx + c
vv ,

as would be the case with parallel-connected inde-

pendent condensers, but a capacity c
(a+I/)

since both conductors mutually
affect one another. If we form the system of equations (185) for the

two conductors x and y under the assumption that all the remaining
conductors are earthed whilst they have the same potential P, then

and Qx+Qy
=P(

''(t+v)

By eliminating Qx and Qa from these three equations, we get

f - e _ _ c +cffff~
r
(*+i (207}

zir
~~

z
~~

9 \*"-" J

If
C(X+JI)

= cxx + css ,
as in independent condensers, then cxa

=
Q, which

indicates that the two conductors x and y induce no charge on each

other

It follows further that the three capacity coefficients of two con-

ductors can be determined expeiimentally by three capacity measure-

ments For three conductors six capacity measurements are necessary
and for n conductors (1 + 2 + 3+ -Mi) measurements in order to find

all the coefficients

If one of two conductors acts as a screen to the other, as in two

concentric spherical shells, then the lines of force go partly between

the two opposing spherical surfaces and partly between the external

sphencal suiface and the outside space The latter linos are only

piesent, however, when the outer conductor is charged Hence the

outer conductor possesses a capacity equal to the capacity of the

* E T Z 1905, p 1043
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inner sphere increased by the capacity it would have if the internal

conductor were not present With two spherical shells with radii
?j

and 1
?
and

-ffij
and E

2 respectively (Fig 338), the

capacity of the inner shell is

c" = 7T^rJh '2

and of the outer shell,

p '^
Pio 838 -"]

~
'i

From this the mutual capacity coefficient is

InR,

and.

If the outer shell is charged, a charge will collect both on its inner

and on its outer surfaces, when the inner shell is earthed On the

surface of the inner sphere there will then exist the same charge as on
the inner surface of the larger shell.

(e) The formulae (206) for calculating the capacity are inconvenient

in many practical cases Thus in transmission lines, for example, in

which there may be several conductors supported by the same polos,
each conductor can possess a different potential In this case it is

complicated to calculate the charge on a conductoi from formulae (206)
Hence we define in general the effective capacity of a conductoi as the

latw between its cliarge and its potential.

Since the effective potential of a conductor depends on the potentials
of the other conductors, both the capacities and potentials of the othoi

conductors must always be given The capacity of a conductor can

then in general be found in the same way as above, by calculating the
work done in moving unit positive charge from earth to the surface of

the conductor.

In calculating this work, not only the charges on the conductor, but
also all electric charges in the field must be taken into account

By way of example, the relation existing between the effective

capacity and the capacity coefficients will now be shown in the calcu-

lation of the charging current of a double-lino of a single-phase

alternating-current system with earthed neutral The potentials of

the two lines with respect to earth are^ and j;2 ,
wheie

1
lh= -P2

=
2

The charges are

-
(
C
22
-

<ia) 5 -^max Bill
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and the charging currents

*1
=

~Jt

=
(*l 1

- C
2 1) mox COS Wt = C

1
Puuuc GOB erf,

where C
1
=

c,^
-c

12 and O
z
= cM -e13 ,

the effective capacities of each of

-the two conductors

If the neutral point of the system is not earthed, the same current
i1
= <t

2
= i will flow in the conductors and

*1
=

(Cll
-

^ai) wPi max COS trf = (oC'j Pj ln COS
0!!,

2
= -

(^22
-

CIB) <0-?a imx COS (rf = -
toC^ P2 majc COS tat,

whence "-Pi + P

or wP^ cos tat =
i(-j-

+ \ =
,

where (7 is the effective capacity of the double-line Since

+
C\ c23 -c]2

it follows C= ^ i
~ fi 2) (^22

-
Ci a)

Cu + c22~ ^Cia

In calculating the effective capacities, however, it is not necessary to
first determine all the capacity coefficients, but the effective capacity is

calculated for the actual conditions, as will be shewn in Chap XXI

121. Specific Inductive Capacity Until now we have assumed
that the conductors are surrounded by air. If some other insulator

(solid or fluid) other than atmospheric air is brought between the

plates of a condenser, it is invariably found that the capacity of
the latter is increased Eveu in air the capacity is somewhat although
very little greater than m a vacuum

(a) The ratio of the capacity of a condenser, in which the space
between the plates is filled with an insulator, to the capacity of the
same condenser when this space is occupied by air (or is a vacuum) is

defined as the speafic indiidvoe capacity of the respective insulator
Since the insulator m this relation is often called the dielectric, the
ahove ratio is frequently referred to as the dielectric constant of the

particular dielectric

In what follows, we shall denote this constant by e.

"With ordinary gases, e differs only very little from unity, and can
therefore be taken as unity for all practical purposes
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All solid and liquid dielectrics have dielectric constants greater than

unity
In the following Table, the dielectric constants for solid and liquid

dielectrics m common use are given The values vary within

fairly wide limits owing to the fact that the matenals were of

different composition and were investigated under different physical

conditions

Ether - 3447
Ethyl-alcohol

- - - - 243274
Amyl-alcohol 15

Aniline .-'--- 71
Benzine 19
Benzol 2224
Methyl-alcohol 3J 7

Olive-oil 3316
Ozokentoil 216
Paraffin oil 19
Petroleum 2

Rape seed oil - - - - - 1 47

Castor oil 403
Carbon disulphide 1 72 7

Turpentine 22
Water (distilled)

.... 7682
Xylol 24

Ebonite 2 13-1
Ice 30

/heavy, easily fusible - - 2 5

1 light, difficult to fuse - - 5 010
Mica ------ 5070
Rubber ------ 235
Vulcanised rubber 2 3 3 5

Gi-utta percha 3 5 (usually 4 2)

Impregnated paper or jute
- - 43

Colophomum ----- 25
Manilla paper 18
Marble 60
Paper impregnated with turpentine

- 2 '4

Paraffin 23
Porcelain------ 53
SheUac 2 75

Sulphur 40
Silk 16

As the temperatuie increases, the dielectric constant deci oases

Thus if e denote the dielectric constant at t, then at t" AVC have
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For the following substances the values of a are

Mica (between 11 and 110) 0003
Ebonite ( 11 63) 00004
Glass

(
17 60) 0001 2 to 0002

Benzol and Toluol 0035

In the case of some media, the dielectric constant depends on the

strength of the electric field

(b) If e is the specific inductive capacity of the dielectric, the

potential difference of a condenser is, for the same charge, only

- times that of the potential difference in air

Since (from Eq. 195) r-

* A
~ 1 B ~

\
ft"18)

JA

it follows that the strength of the electric field / in a dielectric, foi

a given charge, is only - times as large as in air Two electric charges

q^ and qz ,
when situated in a dielectric, repel one another with a force

/iT=iM3 .. .. (208)

If we represent the field-strength in the dielectric by lines of force,

the number of lines leaving positive unit of electucity is

Between two parallel conducting plates with the surface charge cr,

and separated by a dielectric, the field-strength is

f. (209)

where P denotes the potential difference between the plates
The force acting on unit suiface of either of the plates is

If the surface densities <r are given, the attraction between the plates
is therefore inversely proportional to the dielectric constant On the

other hand, for a given potential difference, the attraction between
the plates is directly proportional to the dielectric constant

The capacity for F cm2 of the effective surface of a system of plates
m a plate condenser is -p

where e = dielectric constant of the dielectric, that is e tunes greater
than in air

(c) Gauss's equation (182) for a closed surface sui rounded by a

dielectric will be

(196o)
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We shall now consider the boundary surface, F, between two dielec-

trics I and II (Fig 339) having the dielectric constants ^ and e
3

The positive dnection of the field-strength /is assumed to bo from

dielectric I to dielectric II

It can be deduced from the principle of the

conservation of energy, just as in the case of a

magnetic field, that the tangential component ft

of the electric field-strength is continuous in

passing through the surface F. Let /, ( and /2 ,

denote these tangential components at two points

very nea,r to one another, but on opposite sides

of the boundary surface . then
Fia 330

J

Now consider the normal components /ln and /a,, of the electric field-

strength at two such points Imagine an extremely short cylinder

placed perpendicularly to the surface F with the points at the centres

of its end surfaces (see Fig 339) These end surfaces are parallel to

the element dF of the surface considered and both have the same

area as dF Let cr be the surface density on the element, then

If the sin face is uncharged (o-
=

0), then

(213)

a

Thus, in passing from one dielectric to the other, the normal com-

ponents of the electric field-strength vary invoisely as the dieloctnc

constants of the two dielectrics Thus
we have an analogous law for electric

hues of foice to that for magnetic

Similarly, termini of the electric lines

of force occur at the boundary surface,

which appear to give electric charges
to the surface

Fig 340 represents the transition of

electric lines of force from one medium
I to another medium II having double

the dielectric constant One half of

the lines terminate at the surface, the

other half pass out at an angle which
is inclined to the normal, such that its

tangent is twice that in medium I. A horizontal plane a b cuts

the same number of lines of force per unit of suiface in both media
A vertical plane c d in medium I will cut twice as many lines per
cm2 as a vertical plane e f in II.

Fio 340
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At the boundary surface of the two insulators theie will be an

apparent electnc surface charge, whose density a-, will be given by the

following equations

, e, ea 1 . e, - b 1 -

whence ^^ -fln
= ^ -fen

Let an insulator be brought into an insulating medium of smaller

dielectric constant, then where the electric lines of force enter, there is

an apparent negative, and where they leave, an apparent positive
surface charge Such an apparent electnc charge is called the influence

electiiGity of the insulator It corresponds to the magnetic surface

charge of paramagnetic substances, and vanishes as soon as the insulator

is removed from the electric field It disappears also when the in-

sulator is divided into two parts while in the field, the one part

containing the positive and the other the negative apparent charge,
and the individual parts are removed out of the field. The same
holds also for the magnetic surface-charge
On the other hand, a conductor retains its charge in the latter

case

(d) By the term indiwtum flw through an element of surface dF, we
mean the magnitude

d<f>
= tfndF, (213)

where / denotes the electric field-strength normal to the elemental
surface The ratio

can be defined as the induction or polarwation in the direction normal to

the surface element dF at the place considered In air or vacuum the
induction coincides with / In dielectrics, b is always greater than /.
From positive unit charge there are always 4:r induction lines

leaving and into negative nnit always 4w lines entering, no matter
whether the charge is placed in air or in some other insulator.

Induction lines only start and finish at actual electnc charges, and not
at apparent charges on insulators In passing through the boundary
surface between two insulatois, the normal components of induction
remain continuous, whilst the tangential components are in proportion
to the dielectnc constants Thus we have

(215)

At such a boundary surface no induction lines will terminate,

provided there is no actual electnc charge on the same
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(e) Let two conducting plates 1^ and 1T
2 (Fig 341), charged with

+ Q and -
Q, be separated from one another by insulators of different

dielectric constants e
l5 e,, c

3
and of thickness i

lt----"

?
2> 's The density of the charge is

*'! ^ o-
Q

p I
*'

j| p where jP denotes the effective surface of a plate

% % The induction between the plates can be taken as

constant, le
l

w w
%. fa Since the electric field-strength is inversely pro-

r r r portional to the dielectric constants, we have

~7- A=4> /,-f, /9=4 (216)
1 2 8

Let P be the total potential difference between
the two plates, and P

I}
P2

and P
3
the potential differences between

the several boundary surfaces, then

e
2

C8/ V l 2

The capacity of the system per unit of effective siufaco of a plate
is therefore i

(217)'

Putting !l.

wheie C^, C
z
and

C'g represent the capacity per cm2 for oach of the

dielectrics at the given thicknesses, then wo have1111
i e the capacity of a condenser, whose dielectric consists of several

parts, equals the resultant capacity obtained when the capacities of

the several parts are connected in series

The potential differences P
lt
Pa ,

P3 between
the several boundary surfaces equal the yf_II - II .

[['
_.jy

terminal pressures which act across the
j, J[

*

several condensers
6j , C% and C

s
when P is

' '

o

'

applied at the terminals. Hence the con-
1?m 342

denser (Fig 341) can be replaced by the connection shewn u> Fig 342
Let GTz be the capacity when we have air between the plates, then the
ratio between the capacities is
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D L \ C rt A R Y
Thus the capacity is increased by introducing heZ4ielectrics into

the field
^~ '

If we make
2
= e

3 =l and ?
2 + r

8
= ?

,
i e we pis

of thickness ?, between the plates, the remainder of the"iwy. uoju^-in
air, then for the same charge Q, the field-strength in the air remains
the same as if the whole space were filled with air The potential
diffeionce between the plates is reduced to the value

which is 4;roYl --\ times less than that existing when the plates

are separated by air The introduction of the dielectric of thickness 1
1

has the same effect as if the plates were brought nearer together by
the amount

For the same potential difference between the plates, the electric

field-strength in the air is increased in the latio

The capacity of the plates increases in the same ratio when the

dielectric is inserted The electric field-strength in the inserted

dielectric is times that in the air, and is thus

times the field-strength in the air before the dielectric was introduced.

When a conducting plate of thickness 1\ is placed between the two

plate conductors, we have only to insert ^ = GO in the above equations
The two charged plates behave in exactly the same way as if they
were brought neaier together by the amount ?

t
Provided the inserted

plate is insulated, its position between the charged plates is quite

immaterial, as in the case in which a dielectric is inserted

122. The Energy in the Electric Field. Similar to the magnetic
field oneigy ^2z<E>, the energy required for the production of the

electric field is,

A = J2QP = i (ftP, + ftP, + Q,P }
+ )

)J

(218)
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If the charged plates are insulated so that their charges remain

constant, the work done by a displacement of the plates in the field is

equal to the energy lost by the system duo to the displacement The
forces exerted by the field 011 the plates tend to move the latter, so

that the energy in the field is a minimum
If, on the other hand, the potential of the plates is kept constant,

aa is the case, for example, when the plates are connected to galvanic

batteries, the forces acting on the plates tend to displace the latter,

so that the energy of the field is a maximum In this case, the work
done by the forces due to the displacement in the field equals the

increase of energy in the system Both the mechanical work done
and the increase of energy m the field is taken from the batteries to

which the system is connected

The equation for the energy of a system of conducting plates holds

good independently of the dielectric in which the conductors may be

situated

(a) If two parallel plates have a surface density a- and a potential
difference P, then the energy per cm2 of the internal surface of

either of the two plates is

frf.

The constant electric field-strength in the space between the plates is

where r is the distances between the plates
If the space between the plates is filled by a dielectric whose constant

is e, then ,

*-

and the eneigy per unit of volume of the dielectric is accordingly

This equation holds quite generally for a field /j,
m any dielectric.

For a given electric field-strength (or potential difference) the energy
in the dielectric is thus proportional to the dielectnc constant

Since the induction

it follows that the expression for the energy is

M = _&1 ....... (219a)
Sir 8jre

v '

For a given induction (or charge^
the energy in the dielectric is

inversely proportional to the dielectnc constant
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The two surfaces of the plate condenser are attracted by a foroe

per cm2
,
and exert a pressure on the dielectric equal to the energy per

unit volume stored up in the same We thus see that the stored-up

energy in the electric field (like the stored-up energy in a magnetic
field) causes a mechanical strain between the respective bodies. From
this follows that the energies of the electric and magnetic fields do
not reside in the magnetic and electric charges as indicated by the

formula from which they are calculated but, as first pointed out by
Maxwell, in the media of the fields

(b) From the law of minimum field-energy it follows that a small

uncharged conductor, exerting no perceptible influence on the field

distribution in the neighbouring space, tends to move in that direction

in which the field-strength increases

An uncharged conductor m a uniform field does not experience any
resultant transverse foice, nevertheless it etnves to set itself just
like a piece of iron in a uniform magnetic field so that its longitudinal
axis coincides with the direction of the electric field. This is due to

the fact that unit volume of the body in this position can embrace the

greatest number of lines of foice and neutralise the same
The following method, which is often used to represent electric

lines of force diagrammatieally, is based on this phenomenon. It is

similar to the representation of magnetic hues of force by means of

iron filings If an insulating liquid is mixed with an insoluble powder
possessing a greater dielectnc constant than the liquid, and the whole
is placed in an electric field, the powder will set itself in lines which
run parallel to the electiic lines of force

A positively charged conductor in a uniform
field is acted on by a resultant force along the

positive direction of the field, since in this

direction the field is strong and in the opposite
direction weak When a movement occurs in

this direction, the space in which the field is

strong is reduced and that in which the field

is weak is increased, so that the total energy in

the field decreases (see Fig. 343) FIG MB

(c) The insulator also, like the conductor

in consequence of the principle of minimum energy in the field tends

to embrace as many induction lines as possible when it is surrounded

by a medium of smaller dielectnc constant

If it has a longitudinal shape, it tends to set itself with this axis

parallel to the electric lines of force If the field is not uniform,
it tends to move in the direction in which the field-strength
noreases

When an insulated sphere is brought into a uniform field in a

nedmm having half the induction capacity of the sphere, then we get
AC 2o
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a distribution somewhat as shewn in Fig 344 Lines of force am
induction lines are drawn full, whilst induction lines alone are shew
dotted

Fia 844 Spherical Insulator In a. Medium
with smaJloi Dielectric Constant.

Pin 84fi Splieiiaal Conduetoi in Electric
Flold.

In comparison with this, the influence of a conducting sphere on a

uniform field is shewn in Fig 345 All lines of force and induction
terminate at the influenced charges on the surface of the sphere

123. Electric Displacement

(a) By the electric displacement at a point in a medium we moan
a vector whose absolute value is

J
=^-f=^ -(220)J

4:1T
J

47T
V '

and whose direction coincides with that of the electric field-strength /.

Just outside a charged surface of a conductoi with surface density tr

the displacement is /oon

and is directed outwards in the case of a positive charge or inwards
in the case of a negative charge.

Inside a conductor
_;
=

0, since here /=
In passing from one dielectric c

1
to another

e_,,
the normal com-

ponents of the electric displacement remain constant, provided there is

no real charge on the boundary surface

On the other hand, the tangential components arc different, for

and since

then
fa

(223)
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For electric displacement, therefore, the same law of discontinuity
holds as for electi ic field-strength and electric induction

A unit tube of electric displacement encloses 4?r unit tubes of

electric induction, and is directed from the positive to the negative
unit charge
The displacement flux through a closed surface F is, from Gauss's law,

dF=^ (224)

where 2^ equals the quantity of electricity enclosed by the surface.

(b) An electric difference of potential can only produce a constant

electric flux, i e a continuous-current, in metallic conductors, whilst it

places the dielectrics in a state of strain which can be regarded as an

elastic displacement Consequently a continuous current cannot flow

in a circuit in which a condenser is connected, when once steady
conditions are reached, that is, when the charging current ceases

With alternating-currents it is different, because here the condenser

is always being charged and discharged, whereby the dielectric is

subjected to displacements pulsating to and fro with the current

Hence, in an alternating-current circuit with a condenser, the charging
current of the condenser will flow Maxwell designated the currents

in the condenser as displacement cifnents, and asserted that suck cuirents

obey tfie tame law* as onhmii/ electnc cuii&nts
t except that no heating

losses occur in the dieldctnc This not only holds for the displace-
ment current in the condenser, but also for all the other displacement
currents in the dielectrics of the electric fields The magnitude of the

displacement current i is the quantity of electricity which conveys
unit quantity to the surface normal to its direction at the instant

the polarisation of the dielectric occurs Consequently, the displace-
. , d(h , ,, , electric flux electric chargement curient ~ has the dimension or &

,

at time time

i e (LW*2*~
2
) in the electrostatic system of units If the displace-

ment current is to be treated like an ordinary current, it must be

expressed in electromagnetic units In this system, current has the

dimension (L^M^T~ 1
)

The ratio of the current in electrostatic units

to that ITI electromagnetic has therefore the dimension (L2'~
l

),
that

is the dimension of a velocity The value of this ratio has been

expeimientally determined, and is approximately 3 x 1010
cm/sec

This agrees with the velocity of light v in a vacuum, which Maxwell

3xplamed on the ground that electi ic charges must move at very high
velocities in order to exert the same effect on magnets as ordinary
currents

From this latio v between currents in the two systems, it follows

.hat the practical unit of cimeut

1 ampere = 01 c G s electromagnetic unit

= 3 . 109 C G.S electrostatic units (225)
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The same ratio exists between the units of electric quantity m the

two systems

1 coulomb = 01 C G S electromagnetic unit

= 3 10fl OGS electrostatic units . . (226)

The ratio between the units of potential in the several systems of

units can be found by considering that the expression for the energy
consists of the two factors, electric quantity and potential, i e the units

of potential must bear to one another the inverse ratio to that of the

units of electric quantity
We have thus

1 volt= 10s c G.s electromagnetic units

= wo- -G a - electrostatic units, ... . (227)

or 1 C G s. electrostatic unit = 300 volts

For the units of capacity, we have .

T . ,1 coulomb 3 10 _
, nll , , , , , /Ooo\

1 farad = , =
j

= 9 10n electrostatic units, (228)
1 volt W

or 1 microfarad = 9 . 10 c G s electrostatic units

= 9 kilometres, ......... (229)

i e a sphere of 9 kilometres radius has a capacity of 1 microfarad

For the displacement flux in the electro-magnetic system of units,

we have the expression

and the displacement cun ent is i = -

(c) Starting from the hypothesis that the displacement current obeys
the same law as the ordinary current, Maxwell developed the equations
for the distribution of the electric and magnetic forces, and tho pro-

pagation of their variations m space It will only be mentioned here

that Maxwell's equations can be deduced from the fundamental law
of electro-magnetism, /

4m= H
t dl,

J<*

where 0-, is a closed curve interlinked with the current i, and from
Maxwell s fundamental law of electromagnetic induction

After inserting the electric field-strength, this is

where C
z

is a closed curve embracing the flux <. This method of

deducing Maxwell's equations is that given by Galileo Ferraris * One
deduction from Maxwell's equations is that the electric and magnetic

*
Wwensdiafthche Grundlagen. der Elelctroteclmik
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forces move in vacuo with the velocity of light. The electric and

magnetic forces form an angle of 90 and are both transverse to the

direction of propagation , they travel by moans
of oscillations just like heat and light waves
As a strict consequence of Maxwell's equations,
we have the following hypothesis due to

Poyuting "The direction in which energy
travels through an electromagnetic field is

always perpendicular to the directions of the

magnetic and electric field-strengths' Through
each unit of area, of the plane normal to the

direction in which the energy is propagated,
the quantity of energy passing per second is

equal to the area of the paiallelogram (Fig 346)
whose sides are measured by the electric and magnetic field strengths,

divided by 4?r
"

From Poynting's hypothesis, the energy in a transmission line is not

propagated in the conductors, but in the surrounding dielectrics The
conductor does not represent a channel along which the eneigy travels,

but a space in which a part of the energy converges and in which this

part is conveited into heat

Fin 846



CHAPTER XX.

ELECTRIC PROPERTIES OF THE DIELECTRICS

124 Conductivity and Absorptivity 125 Energy Losses in tlio Dieleotuc
126. Influence of the Specific Inductive Capacity and Conductivity of the
Dieleotrio on the Distribution of the Electric Field-Hiienglh 127
Dielectric Strength.

IN Chap XIX. mention was made of the difference in dieleotiics ni

respect of their inductive capacity Other electrical properties arc

also possessed by dielectrics, and as these properties aro important in

practice, they will therefore be shortly dealt with here.

124. Conductivity and Absorptivity.

(a) When the two conductors of a cable or the two plates of ti

condenser having either a sohd or fluid dielectric are connected

thiough a galvanometer with the terminals of a continuous-current
machine of constant pressure, it is found that a

Hif
large current flows at the first instant, thus

p
'

charging the condenser This charging cunent
<f does not sink immediately to zeio, but decreases

r comparatively slowly, until after a fairly cou-
-wvwwr aiderable time it reaches an almost constant and
PIO 847 usually very low value The explanation of

this is partly that the dielectrics have a -certain
small electric canductwity, due to which a current of conduction is added
to the charging current The conduction of the dielectrics may be

purely metallic or accompanied by electrolysis The latter effect is

avoided as much as possible on account of damage done to the insulation

Regarding the conductance of the dielectric as constant, then an actual
condenser can be replaced by an ideal condenser with a perfectly
insulating dielectric and a parallel-connected ohmic lesistance kSuch an

equivalent scheme is shewn in Fig. 347, which can be used foi calculating
the time of discharge of a condenser when left to itself, i e completely
insulated. The discharge takes place in accordance with the equation

q= Q*~'
e

... (231)

where Q is the initial charge and i is the tune of discharge in seconds.
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The conductance of the dielectric generally increases with the

temperature and with the electnc tension. Media, which retain their

chemical composition at high tempeiatures, such as glass, porcelain,
etc

,
become comparatively good conductors when raised to then

melting temperature An interesting application of this phenomenon
is the Nernst glow lamp The dielectric forming the glowing filament

of the lamp in this case consists of magnesia the latter is warmed up
by i special attachment, whereby the conductance increases to such an
extent that an appreciable current begins to flow through the filament

which bungs the same to incandescence

Dielectrics IUIM in ycn& al a negative tempei atui e coefficient

Further, the resistance of dielectrics depends largely on the electric

conditions (thus on the strength of the electnc field) decreasing as

these become more stringent
The following table gives the specific resistances for several insulat-

ing materials at ordinary temperatures, and for average electnc

conditions

Specific Resistance
Datn-eos

Material Pi in megohms
Oontigrside

pei cm/cm*

Guthv-porolin, n1
045x10" 24

insulated with Gutta-percha - 0"2xlOfl 24

PuioRubboi ..... 109X109 24

Vulcanised Rubber - - - - 15x10 15

I'apor impregnated with Turpuntinc - 3x10 15

Juto impregnated with Tinpontmo - 119xl09 15

Sholloo ...... 9x10" 28

Paraflm wax ..... 24 x 10

Mien....... 084 x 10"

The effect of the tempei ature on the insulation resistance of a

tiansfoimor (curve A) and of dry cloth (curve B) is shewn in Fig 348

With the cloth the resistance increases at first with the temperature
until the moisture has been driven out, and then for still higher

temperatures it falls again to a value of only a few megohms
(b) Prof Schleiorraacher* has proposed the use of the same ex-

pressions foi the currents due to conduction as used by Maxwell for

thu charging currents, when several conductois at different potentials

are placed in the electric field These conduction cm rents for the

several couductois aio

E T Z 1905, p 1043
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where the coefficients with like suffixes g^, g22 , <78 ,,
denote the ratio

of the conduction current to. the potential above earth, when all the

other conductors are earthed The coefficients with unlike sufhxes

tit

so
\ I \

V /

\

to w 60 so 100 m m m'B

FIG 848 Relation betweeu Insulation Bealatanoe nud Temponitm o

A, for Transformer , J3, tor diy Clotb

correspond to the mutual capacity coefficients, defined as follows

gxy denotes the current flowing from conductor
//

to conductoi a
1

,
when

the former has unit potential' and all other conductors Live zero

potential The experimental determination of Jihese coefficients is

quite similar to that adopted for capacities
To determine gxx ,

all the conductors except the fl

ltb are earthed,
and the ratio of the conduction current i of the x* conductor to its

potential P is measured

In the same way gsv is determined for the #
th conductor and

ff{x+a )

for the 33
th and y^ together Then it follows

(c) The dow falling off of the charging cuirent with time is not

explained by assuming a constant conductance for the dielectric, but
must be considered in connection with the phenomena which occur
when a condenser is discharged
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If the two plates of a charged condenser are connected through a

galvanometer, at first a large current will flow, which gradually begins
to sink, and only after some considerable time vanishes altogether
If the connection is broken aftei the first rush of current and made

again after some time, another but weaker rush of current will ensue

in the same direction as the first The condenser can thus give
several such discharges, which gradually become feebler and feebler

This phenomenon is due to the residital chaige in the dielectric. The

explanation of the phenomenon was first given by Maxwell Accord-

ing to him, the residual charge is due to the heterogeneous nature

of most dielectrics

Fig 349 shows a section through the dielectric of a condenser,
whose plates are A and B Assume the dielectric consists of the

layers D and D', having different properties As shewn on p 398,
such a condenser can be replaced by two condensers C and 0' con-

nected m series (Fig 350) If the dielectric D' is not a perfect

D
A uC II C'

D' II

a

Fin 340 Pio 300

r
(AA/WW

insulator, wo must suppose an ohmic resistance / to be connected in

paiallel with the condenser C" Fig 350 thus gives the equivalent
scheme of the condeusei in which the dielectric D is a peifect
insulator.

Whethei the above mentioned action of the several layers of

a dielectric is the sole cause of the residual charge or whether
other influences, e g chemical action (similar to that in an electric

accumulator) are at work, is not yet certain Certainly very

heterogeneous dielectrics have specially large residual charges, but

even quite homogeneous liquid dielectrics appear to shew traces of

the same
Since transmission lines and all electrical apparatus subject to high

potential differences act as coudenseis, the formation of residual

chaiges (or the so-called absorption of the dielectrics) must not be left

out of account when working with high pressure currents, otherwise

soiious consequences may follow If for example a cable or transformer

is disconnected from the high-piessure terminals, the disconnected

apparatus should bo first connected to earth before it is touched A
single earthing, however, is not always sufficient, since charges may
afterwards collect and may give dangerous shocks Special attention

should be given to earthing where high direct-current pleasures are

concerned, since the liability to residual charge is greater in this

case
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As a practical case in which all parts of the dielectric possess con-

ductance, the equivalent scheme shewn in Fig 351 may be taken

According to the above, a residual charge should uot occur when the

ratio of the dielectric constant to the electric conductivity is the

same at all points in the dielectric

r r'
/WWW--i/WWW

Flo 861

125. Energy Losses in the Dielectnc

(a) The energy loss in a dielectric placed in a constant field

is given by the leakage current If, however, the electrification is

alternating, as for instance in a condenser to which an alternating

pressure is applied, the losses aie in general much greater than those

corresponding to the insulation resistance. The cause of these

additional losses has not yet been thoroughly investigated It may be
due to the absorptivity of heterogeneous dielectrics, discussed in the

previous section * In the dielectric represented in Fig 350 a loss will

occur when an alternating pressure is applied, but not with a continuous

pressuie Also in the scheme in Fig 351, the loss is greater with
00'

alternating-current than with continuous when < ,
i.e when the

ratio of specific inductive capacity to resistance of the sevoial parts of

the dielectric vanes These losses are often supposed to be due to

what is called dwlectow hystwesis of a similar nature to magnetic

hysteresis
Stemmetz t found for practical condensers made of paraffined paper,

with tm-foil plates dried in a vacuum-drying oven and steeped in

paraffin, that the losses at constant frequency incioase with the square
of the pressure, which corresponds to a constant conductance g foi the

condenser Since the dielectric constant, and with it the capacity or

the susceptance b of the condenser, is under normal conditions

independent of the pressure, the phase displacement of the charging
current remains constant, at a given frequency If the thickne&s of

the dielectric of a condenser be increased, the cunent remains the

same for the same electric field-strength, whilst the pressure increases

in proportion with the thickness The loss then increases in proper tion

with the thickness of the dielectric, so that the phase displacement of

the charging current remains constant for the same frequency Thus
for a given frequency, every dielectric has a constant phase displacement
Stemmetz found for the above paper condensers, cos

cf>
= Q 0038 to

0068, according to the frequency.

*Hoss, L'Edairage Electr 1895, vol 4, p 205

\El World, 1901, vol 37, p 1065
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For the power factor of the charging current in elect: ic cables, we
have the following values

01 to 025 for paper and jute cables,

02 to 04 for rubber cables,

03 to 07 for gutta-percha cables

(b) The capacity generally elect eases somewhat as the frequency
inci eases, which is easily explained by the action of the heterogeneous
nature of the dielectric mentioned in the previous action

In the scheme in Fig 350, for example, let the capacity for cou-

tinuous charge be C, then for rapid charge and discharge it will be
CO'

-
1 -^ In a paraffined paper condenser it was found by Eisler * that
C + o

the capacity was 25 mfs. for continuous charge; 2 15 mfs for e=18
cycles ,

and 2 01 mfs for c = 45 cycles
The decrease of the effective capacity of condensers with increasing

frequency must be specially noted m measurements It follows also

that the dielectric constant of a dielectric will vary with the frequency
at which the determination is made To eliminate absorptiou phe-
nomena as far as possible, such determinations are often made with

very high frequencies, as with Hertzian waves
At constant piessure, the losses in the dielectric increase with the

fiequoncy The energy absorbed per cycle usually increases at first as

the frequency is increased, attains a maximum, and at higher frequencies

may decrease. Eisler found an increase of 17 % in the losses per cycle
from 18 to 45 cycles In the experiment of Steinmetz mentioned on

p 411, the loss per cycle increased up to a frequency of about 100, and

began to fall at higher frequencies
Since the conductance g of a condenser is always small compared

with the susceptauco b, we can write

COS<I> =

Since C only \anes slightly with the frequency, the power factor

will vmy in the same way as the losses per cycle
Thu inconstancy of the losses per cycle is explained by many as a

kind of viscous hysteiesis, or the same phenomena may be deduced

fiom the equivalent scheme for non-homogeneous dielectrics (Fig .351)

126. Influence of the Specific Inductive Capacity and Conductivity

of the Dielectric on the Distribution of the Electric Field-strength

(a) If layers of various dielectrics are placed between the plates ot a

condcmsci, then provided no conductance is present the distribution

of the olectnc field-strength will vary inversely as the dielectnc con-

stants Thus a uniform field can by this means be made non-uniform.

* Zeitsihr. f El&Ur 1896, H. 12, p 345.



412 THEORY OF ALTERNATING-CURRENTS

Conversely, a non-miifoim field can be made moie or less uniform by
the use of various dielectrics

Considering a long conductor of radius i (Fig 352), having potential
P and surrounded by a co-axial, conducting cylinder of radius It and

potential zero, then at distance p fiom the

axis, let the dielectric constant be e The
electnc induction at this distance is, accoidmg
to Gauss's theorem,

%TTp p

where = electric charge per cm length of

conductor.

The electric field-strength is therefore

f b 20
. (233)

16 if the dielectric constant c is constant

throughout, the field-strength will vary in-

versely as the distance from the axis of the

wire, as the figure shews The variation of

the potential P= \ -fdp is shewn by the

FIQ 862.
second curve P If, however, we wish to keep
the electric field-strength constant, an insul-

ator must be used whose dielectric constant is inversely proportional
to the distance away from the axis of the conductor. This can be

obtained by using various insulating materials in several layeis.

Moreover, it follows from the integration to the limit R, that air-

bubbles and other irregularities in the insulating material are to be

avoided, both in compound and solid cables With stranded cables,
on account of the small radius of the single wires, the maximum
electric field-strength is 25 to 40% greater than with solid cables

or lead-covered stranded cables

On p 401 we have seen that particles of a dielectric having a larger
dielectric constant than the neighbourhood, tend to move in the direc-

tion in which the field increases In a liquid or semi-liquid dielectric,
such particles would assist in forming a uniform distribution of field,

which is of importance, as will be shewn later in connection with the

piercing strength, and this property can be utilised in cables

(b) The distribution of the electric field-strength is only determined

by the dielectric constants when no conductor is present, or when the
field is alternating so lapidly that the conduction currents are negli-

gible compared with the displacement currents Otherwise the specific
lesistauces determine the distribution In a uniform and constant field,
the electric field-strength distributes itself according to the specific resistances

of the several layers of the dielectric If a constant potential difference

be appbed at the terminals A and B in Fig 351, the pressures P and
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F of the condenseis U and 6" will have the ratio of i to 1', and are

independent of the magnitudes of the capacities C and 0'

In a non-uniform field produced by a direct pressure, a constant
electric field-strength can be obtained by giving to each part of the

dielectric a specific conductivity, proportional to the induction in

the field at the respective point In .Fig 352, for example, the con-

ductivity of the dielectric at any point is inversely proportional to the

distance of the point from the axis of the conductor Use is made
of this in the insulation of cables by saturating the inner layers of the

insulation with a liquid of higher conductivity than the outer *

_ L.

Pin 858 Wull Insulator for High-tension Linos

In some cases an approximately uniform distribution of field-strength

throughout the dielectric may be obtained by an arrangement due to

the Siemens-Schuckert-Werke t The insulator is composed of thin

layers separated from one another by a conductor (tin-foil) Fig 353

shows a leading-m tube for high-tension alternating-current made on
this principle The tin-foil is shewn by full lines and the insulating

layers dotted

d
Q
= diameter of wire,

7 = length of the inner layer of insulation,

dn
= diameter of the hole in the wall,

/ = length of the hole in the wall

For a sheet of tin-foil of length I and diameter d, we have

The layers act therefore, neglecting electrical leakage, like a number
of condensers of equal capacity connected in series, and each layer
takes up the same pressure

Moreover, with this type of leading-m tube, the harmful discharges
between wall and wire disappear With the ordinary leading-m

*0'Gommn, "Insulation of Cables," Journ. Inst E E 1900, xxx. p 608

t R Nagol, E/eklr Bahnen vnd Betnebe, 1906, p 278
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tube, as shewn in Fig 354, large surface discharges occur, and are

unavoidable even with very long insulators The following con-

sideration will make this clear. Each element of the conductor with

FIG 864 Wall-insulator foi Low-tension Linos.

its insulation forms a small condenser, of which the primary plates are

metallically connected by the conductor and the secondary plates
are connected in series thioue;h the surface resistance, as shewn dm-

grammatically in Fig 355 If i is the surface lesistance pei unit

-F f-
J__L_L_L _L_L_L_L
vmwwdw^^

m
Pin 305 Equivalent Circuit of Wall-insulator

length of the insulator and the capacity, the potential along the
whole surface is distributed according to the same exponential law,

d-J)A.- -Cl-/>A

*
e(l-J)AJ_ 6 -(l-flJU' v-"1 */

in accordance with which the potential is distributed over a long
alternating-current cable without conductance or self-induction when

one end is earthed In this equation A. =
A/ q

= JiircC, and the slope
fj P/p

-*

of potential -5 is a maximum near the end of the insulator, where

x = l The slope is here almost independent of the length of the

insulator, so that surface discharges always occur, even with long
insulators, when the elope of potential is high, relatively to the
surface resistance r per unit length When the leading-m tube is

of the form shewn in Fig 353, on the other hand, the pressure is

distributed according to a straight line over the whole surface of
the insulator, and no harmful surface discharges can occur until the

pressure is sufficient to produce a spark over the whole surface.



DISTRIBUTION OF THE ELECTRIC FIELD 415

(c) To determine the olectnc field-strength, it is best to use the
same methods as for magnetic fields

,
viz that of drawing a diagram

of the lines of foices and thence calculating the field strength /
foi each point, equal to the electric flux d<j> of the tube of force

divided by the section dF of the same at the point considered

Thus / =
jjlt where e is the dielectric constant.

fCH1

As starting-points in drawing out the lines of force, we can apply
the law of discontinuity to the lines passing from one medium to

Fio 866a FlO 860&

Pin SDUc. Pio 35G<Z,

Pin 350a to <l Linos of Forco in Thioo pbnao Cables (Thornton).

another and the law of maximum field-energy According to the

Inttei, the lines of force between conductors of given potential arrange
themselves, so that the displacement flux between the conductors is a
maximum Owing to the small values of the dielectric constants

compared with the magnetic permeability, it is much more difficult to

draw electric lines of force accurately than magnetic, when insulating
matoi lals of different dielectric constants are present in the field For
this leason Hole Shaw's method of representing the lines of force by
stream lines between two flat plates, as described on p 365, is very
useful in this connection From such figures it is easy to determine

simply the electric flux in each tube and thus obtain the field-

strength at each point Figs 356a to d shew the diagrams for two
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three-phase cables, taken by W M Thornton and J Williams *

The dielectric constant of the conductor is assumed infinitely large,

and the space between the plates where the conductors are is there-

fore made as large as possible At the places where the insulation is,

the space between the plates is made directly proportional to the cube

root of the dielectric constant The fluid is led in and out at the

places where tjhe conductors are, and the quantity of fluid for each

conductor is made proportional to the pressure in that wire at the

moment considered Figs a and b shew the field when one wire has

zero potential and the other two the potentials \f$P Mx ^gs c

and a shew the field when one wire has a potential -PulftX ,
and the

other two the potential -iPlnfli:
The sheath of the cable has zero

potential in all the figures. As is clear from the diagrams, the field-

strength alters from point to point, and at every point varies with the

time

127. Dielectric Strength If the pressure between two insulated

conductors (electrodes) is gradually raised, various discharge phenomena
occur within the dielectric and along its surface, and finally the

pressure is equalised by a suddfcn discharge through the dielectric

The dielectric is then said to be pierced If the dielectric is liquid or

gaseous, all traces of the passage of electricity immediately vanish
,
a

solid dielectric, however, will remain pierced at the place where the

discharge occurred If sufficient electric energy is supplied to the

electrodes, the break-down will continue in the form of an arc, even

with comparatively low pressures.
The pressure between the electrodes at which the break-down

occurs, is called the piercing pressure
'

This latter depends on the

material, the distance of the electrodes apart, and on the distribution

of the electric field in the dielectric (shape of the electrodes) The

length of time during which the pressure acts on the dielectric has

also a considerable effect on the piercing pressure For a very short

time the insulation can often withstand a much higher pressure than

continuously The piercing pressure of a dielectric for a given distance

between the electrodes is a maximum when the field is uniform, as

for instance, between two parallel plates at a sufficient distance from
the edges, in which case the maximum field-strength is a minimum
Between two points or between a point and a large plate, the electric

field is very varied, so that in this case the piercing pressure for a

given distance is smaller

Between the edges of two parallel plates the electric lines of force

are curved. The electnc
field-slfrength

near the surface of the dielectric

is consequently increased and on' the inside decreased Since the

maximum field-strength in the dielectric is thus increased, the break-

down between two such plates generally occurs at the edge For this

reason, high-pressure condensers are often made so that the dielectric

is thicker between the edges of the plates than elsewhere

*Etigmeenng, 1909, p 297
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,KilovoK Max

In the case of alternating currents, piercing depends chiefly on the

amplitude of the wave of pressure
The dielectric strength of an insulating material can be small even

when the specific resistance of the same is high and vice versa Dry
air, for "example, is a very good
insulator, but compared with most
solid and liquid insulators its di-

electric strength is very small
The piercing pressure usually in-

creases somewhat more slowly than
the thickness of the insulating
medium With thin layeis, how-

ever, the converse may be the case.

Fig 357 shews by way of example
the piercing pressure for mica as a

function of the thickness of the

same, taken from experiments made
by Stemmetz The amplitudes of

the pressures are given in kilovolts and the thicknesses in hundr^dths
of a mm * In this case an alternating-current at 150 cycles was used
Since the material shewed much heating, the pressure could only be

applied for \ minute
In the following Table, due to Stemmetz and Dr Baur, the piercing

pressures for 1 mm thickness of various insulating materials are given

Fio

2 $ 6 S 10

857 Break-down Pressure for Mica

Dielectric Piercing Pressure
Cor 1 rum thkkuosB

Mica - - - -

Mioamte -

Paraffined Plates\
Pai affined Paper J

Dry Wood Fibre

Hard Porcelain -

Oiled Linen

Presspalm -

Lentheroid

Vuloamsod Rubber -

Red Vulcanised Fibre

Asbestos Paper -

Vulcanised Asbestos -

Transformer Oil

Melted Paraffin -

Boiled Oil -

Oil of Turpentine

Insulating Varnish -

Lubricating Oil -

55000

about 35000

30000

13000

13000

12500

12000

10000

10000

5000

4300

3500

9000

8000

8000

6500

5000

1500

*ETZ 1893, p 251
2D
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The figures represent average values taken from experiments with test

pieces of various thicknesses and, on the assumption of proportionality
between thickness and piercing pressure, are reduced to a thickness

of 1 mm Since, however, no relation exists between the thickness of

the insulating material and the piercing pressure, the values can only
be taken for plates about 1 mm thick

Insulating oil under high pressures gives a straight line increase of

the piercing pressure with the distance between the electrodes For a

mineral transformer oil with plate electrodes, the alternating pressures
P P

f
-;

and -
g ,

at which breakdown occurred, were found, for sparking

distances d greater than 5 cm, to be

P=l 24000 + 9000d

With very unsymmetrical distribution of the electric field the

piercing pressure is much less Between an earthed plate and a

pointed electrode at potential P, it was found for the same oil as above

P = 37000 + 7000d.

If the spark gap d is given in cm, the effective pressure will be in

volts. These pressures can act on the oil for about 5 minutes without

causing a break-down. If the pressure is quickly raised, much higher

pressures can be reached before the oil breaks down in such cases,

however, the results are generally irregular
The breaking-down strength is considerably weakened by moisture

in the case of both solid and liquid insulating materials Oils are

dned for this reason either by heating, or by treating with quicklime
and such like Hygroscopic solid substances must be dried in a

vacuum oven and impregnated with vainish of some kind, so that

they cannot absorb moisture from the air

The breaking-down strength of an insulating material is in general
reduced when mechanical stresses are simultaneously applied
With most solid and liquid insulatois, the duration of application of

the pressure has a considerable influence on the insulation resistance as

well as on the dielectric strength The dielectric strength usually
decreases considerably for the first few minutes, while the insulation

resistance increases A well-dried machine usually has a very high
insulation resistance at the beginning when cold At first the in-

sulation resistance decreases very rapidly, even after the temperature
has become constant, and often reaches a minimum after seveial days'
work, after which it slowly recovers during a still longer time
Measurements of insulation on machines and apparatus should there-

fore be earned out after the normal temperature rise has been reached
in the process of its work

The temperature has little effect on the dielectric strength, provided
that the same is not sufficient to bring about chemical changes in the

material. This is, however, often the case even at comparatively low

temperatures
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If the dielectric consists of several layers of different materials

perpendicular to the lines of force, the electric field-strength dis-

tributes itself as previously shewn over the several materials

according to their respective specific resistances when the pressure is

constant With constant pressute theiefoie, in ord&i to use tJie several

mateimk to tJie lest advantage, tJie dielectric strength oftJie mateiials should
be pi oportional to tJieit specific lesistances

If the pressure is alternating, the electric field-strength distributes

itself over the insulating substances inversely as their dielectric con-
stants Hence, mtlb alternating-Gun ent appaiatiis, in ordei to iise the

vnsndahng inatmal to the best advantage, the dielectric stiengtJbs of-tJie several

inatenals sJiould be inversely as their dielectiic constants

In the construction of insulators for high pressures, attention must
be paid not only to the dielectric strength of the insulating material,
but also to the phenomena at the boundary surface of two dielectrics

For example, if two conductors at a large difference of pressure are

supported in air by solid insulators, it is not sufficient that the distances

between the two conductors, in air and through the insulator, corre-

spond to the pressure, but it is most important of all to see that the
distance apart measured along the sw>face is sufficient.

%̂_/'," ///
-

////j

p
Fin 868

Sparking may easily occur through the collection of moisture and
dirt on the surface Moreover, if the capacities of the two electrodes

are different, the electrode with the smaller capacity produces surface

discharges in the form of rays, which assist the sparking between the
electrodes Also, the capacity of the two conductors under pressure
with regard to a third insulated conductor can influence the piercing
pressure between the two former conductors to a less extent For

example, if two electrodes H
l
and E

z (Fig. 358) stand on an insulating

plate / under such a pressure that sparking does not yet occur, and an
insulated conducting plate P is brought to the other side of the
dielectric J, surface discharges occur between the two electrodes and

sparking takes places from one to the other This phenomenon is

similar to the surface discharges with leadmg-in tubes Sparking
occurs with a still smaller pressure when the plate P is connected to

one of the electiodes The surface discharges are then seen only about
the electrode not connected to P, in the form of rays In order to

obtain the largest possible distance over the surface with the smallest

distance between the electrodes and still avoid sparking, bell and

petticoat insulators are used

In accordance with the standards of the Verband deutscher Elektro-

techmker the dielectric strength of electric machines and transformers

should be tested for one minute when they are warm
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The testing pressures shpuld be

Working Pressure Tost Pleasure

Under 40 volts - At least 100 volts

40 to 5000 voltfl 24 times -working pressure, but not less than 1000 volts

6000 to 7500 volts - 7500 volts above working pleasure

7500 and upwards - Twice working pi esaure

The dielectric strength must be tested between windings and frame
and between electrically separated windings In the latter case, with

windings of different pressures, the highest must be used as the

test-pressure.



CHAPTER XXI

CONSTANTS OF ELECTRIC CONDUCTORS

128. Resistance of Electric Conductors 129 Self- and Mutual Induction of
Electrio Conductors 130 Self- and Stray Induction of Coils m Air
and Iron 131 Increase of Resistance, due to Eddy Currents m Solid
Conduotois 132 Stray Fields and Eleotrodynarmo Forces due to

Momentaiy Rushes of Current 133. Capacity and Conduction of Electric
Cables 134 Capacity of Coils m Air and m Iron 136 Telegraph and
Telephone Lmes

128. Resistance of Electric Conductors. Most conductors consist

of copper. With continuous curients and alternating-cunents of low

frequency, the current is uniformly distributed over the section of the
conductor If I denotes the single length of the line in km and q its

section in mm3
,
and p = 0016 (1+0 0047"), the specific resistance of

the copper, then the ohmic resistance of the whole line is

, =^1000 ohms
1

The heating loss in the line is

J8
?- = 21qP^ 1 000 = 1 OOO/oFs

2
,

where V= 2lq denotes the volume of the line in dm8
,
and s the current

density in amperes pel mm2

Of late years bare aluminium conductors have also been used for

transmission lines. An aluminium line with the same ohmic i csistance

as copper will have
a diametor l 3 timeSj

a section 1 69 times,

a weight 513 times,

larger than the coppei line The aluminium wire, however, has only
65 times the tensile strength of the copper According to circum-

stances, sometimes the aluminium is cheaper and sometimes the copper
In the following table the specific resistances and weights of the

materials most commonly used are given The specific resistance is

for 1 metre length and 1 mm2 section If this is required foi 1 cm
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length and 1 cm2
section, as it occurs in many formulae, the values

given in the table must be divided by 104 The specific weight is

given in gins per cubic cm

Specific Resistance
at lii ohms
pai m/mm2

Silver 0015

Copper 0016

Gold 0021

Alumimum - 027

Zmo 0056

Platmmm ... - 0090

Tm 10 to 13

Nickel 10 to 12

Lead 19

Pure Iron .... 0095

Wrought Iron and Mild Steel 10

Iron Wire Conductor - - 125

Oast Steel .... 20

Alloyed Stampings
- - - fi4

Cast Iron .... 1 00

Brass (30 % Zmo) - - - 065 to 085

Manganm - - - - 41 to 45

Couatantin .... 48

Niokehn I - - - - 41 to 43

German Silvei - - - 36 to 38

Rheotin - - - 047

Kruppin 84

Retort Caibon - - - 13 to 100

The specific resistance of oidinary fresh water is about 104 ohms
For liquids and electrolytes the lowest specific icsistances aio those

given in the following table,* along with the corresponding solutions.

Specific
Resistance

Percentage
Solution

Specific
Weight

HN03

HC1 -

KOH-
NaCl -

MgS04

ZnS04

CuSO,

136 104

1 39.10*

145 104

1 96 104

1 70 104

217 104

226 104

227 104

297
183

304
280
250
170
235
181

1 185

1 092

1 224

1 274

1 183

1 '28G

1 210

h

Deutichei Kalendarfur Eletirolechmiei von Uppenbom
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The resistance of the earth, in so far as it affects electric railways
and earthed installations, is very variable It not only depends on the

nature of the soil and on the weather, but chiefly on the arrangement
of the earthing plates .or rails The highest value that has been
observed for the earth's resistance in the case of railways is 2 ohm
per km It may, on the other hand, be also nearly zero To
obtain low contact resistance, it is advisable to have several parallel

plates placed at some distance from one another and sunk as

deeply as possible, so that they come into contact with underground
water

The contact resistance of a plate is proportional to the specific
resistance of the soil surrounding it, and inversely proportional to

the mean linear dimensions of the plate Let r denote the contact

resistance m an unlimited medium having a specific resistance p

Then for circular plates of diameter d, r = -A*
4t&

for square plates with side d, i = ^
,

for cylindrical electrodes of diameter d and length I,

P

129. Self- and Mutual Induction of Electric Conductors.

(a) In the determination of the self-induction of conductors, we shall

first start with the case of a single-phase system The two conductors

which serve as the outgoing and return lines are assumed to be fixed

to poles and parallel to one another over the whole length We
suppose that the two conductors are connected by wires at both ends
instead of by the actual apparatus, so that we have to determine the

self-induction of a rectangular loop
For the time being we assume that the current is distributed

uniformly over the section of the conductors, and further that no

ferro-magnetic bodies are present in the magnetic field produced by the

current in the conductors It is therefore allowable to superpose the

magnetic fluxes produced by the current flowing in each of the wires

As shewn in the introduction, the current flowing in each conductor

produces a magnetic field, whose lines of force are circles round the

conductor.

The field-strength H at a point P at a distance p from the axis of

the wire is

HJ_Hdl = MM.F

f
^i length of line of force*

or, when the point P lies outside the wire,
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and, when the point P lies inside the wire,

04(|)
!

02ip

From this we get the diagram of the field-strength for the plane AB,
as shewn in Fig 359

Fiaa. BfiO and 800 Magnetic Field of Two who System

If there are two conductors serving as outgoing and return lines,
the current produces a field for each of the two wires Supei posing
these fields, we get the resultant field-strength of a double line, as
shewn in Fig 360 The shaded surface serves as a measure for the
flux per cm length interlinked with the conductors

Since, however, the total current is not interlinked with the whole
flux, we must take this into account.



INDUCTION OF ELECTRIC CONDUCTORS 425

The energy supplied to the magnetic field during a time interval dt is

dA=?(iwx 3>x)~d(&)

Here %wx (or wx) since in the calculation of L, i is put equal to

1 ampere) denotes the current interlinked with the tube of force &x

From Formula 27, p 41, we get the following expression for the

coefficient of self-induction Z,
g

L= 2 &\ 10-8 = 2 (10,*.) 1 0-8
henry,

where the summation is to he taken over all the tubes of force in the

field Since, however, the field is produced by the superposition of

two equal fields, it is sufficient if we integrate the tubes of force in one
field and multiply the result thus obtained by 2

We calculate first the sum for the space between the wires The flux

in this part is interlinked with the whole current in the conductors ,

hence ws is here unity, and the sum is

p=a p=a
2 (.*.)- S

where d = diameter of wires

and
,

a= distance between the axes of the wires

By assuming the limit p = a, a small error is introduced, which, how-

ever, is negligible for small values of -00 a

Hence
""

<*M )
= 32

f~ ^ = 4Z log,K\
d JP=-, r \"> /

"-

or, substituting ordinary for natural loganthms,

For the interior of each wire we consider only that field pioduced by
the current in the wire itself, and since heie

9 n

-\ -

GD
_?L d d

-? f
P = T

(^"^ pS
we have 2 (u>J <i> .t;)

= 2 1 /^Ti w.r r/p = 2l IHtj-zdp
p=o Jp=o J P=o /\

p =o

4

= 017
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Hence the coefficient of self-induction of a double line is

and its reactance

(235)

x =

where I is measured in cm. If I is measured in kilometres, the

reactance is

ohms. (236)

We have seen that the magnetic field inside a conductor is not

constant It follows from this that the cuiTent lines in the conductor

Pro 861 Bffeot of Earth on the Self induction of a Conductor

do not all have the same inductance, and that when the alteiuating-
curreut is of high frequency the current is not uniformly distributed

over the section of the conductor We shall return to this in Section
131.

(b) In a system in which only one overhead conductor is used and
the earth acts as a return, the self-induction of the former can be
ascertained from the following considerations

In Fig 361 the lines of foice of the magnetic field represented are

those produced by the current flowing in the two conductors A and
B' It is clear that perpendicular B, passing through the middle point
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of the line joining the centres of the two circles, represents a line of

force The flux above is interlinked with the conductor A and that

below with the conductor B' If we now substitute for the conductor

B' a surface-carrying current (for instance, the surface of the earth) B,

then this will have no effect on the diagram of the lines of force and

equipotential surfaces above B, so that the self-induction of the con-

ductor A remains the same and that of the conductor B vanishes,

since the radius of B is infinite From this it follows that as regards
self-induction the earth leturn acts like a conductor which is the

image of the first conductor with respect to the earth's surface

If a denotes the distance of the conductor from the surface of the

earth, then the summation 2
(>.,$.,.)

must be extended from P=Q to

p = 2a, and since we only have one conductoi the coefficient of self-

induction will be

(c) We have still to investigate the influence of a current in a

conductor on the neighbouring conductors of other circuits If, for

example, there are four conductors on the

same pole, of which A and B belong to

one circuit and C and D to another, then

some of the tubes of force of the magnetic
field produced by the currents in A and
B will be interlinked with the loop
formed by the conductors C and D, and
will therefore induce E M r 'a in the latter

conductors It is simplest, however, to

calculate the effects of the two fields due
to the current in A and due to the current

in B separately and afterwards to super-

pose them
The magnetic lines of force produced

by the current in A are concentric circles, FIO 8U2

whence it follows that the mutual induc-

tion coefficient of the conductor A and the loop formed by C and

D IS p = u.i 1MA.CD = 2 (.*,) = - ^ 46 loglo
p = a

In the same way we find the mutual induction coefficient between

the conductor B, and the loop CD equals

MK_ on =
P

2
'

(,*,) =4 46 Iogl0

Since the currents in A and B are equal but of opposite direction,

the mutual induction coefficient between the t\vo circuits is

K,. -
fo

46
(lo

gw
4 - loglo

|)
=
jj,

46 log,. ($) (238)
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If the circuit CD consists of one overhead wire with an earth return,

then a
2
and b

2
are to be taken as the distances of the conductors

A and B from "a conductor situated symmetrically, with respect to the

earth's surface, to the conductor G Accordingly a
2
= &

3 ,
and we get

for MAB_C ,
the simple expression

I

In general, the mutual induction between neighbouring couductois,

(as, for example, between telephone wires on the same poles as a

transmission Ime) is made as small

as possible This is done by cross-

ing the wires A and B or by placing
the telephone wires symmetrically
with respect to the conductors A
and B, for in this case we got

0^2 =6^ and MAH_ afi
=

(d) In an unmterhnked two-

phase system, which is the system

usually employed for two-phase
transmission, the best arrangement
for the wnes is that shewn in

Fig 363 The mutual induction

coefficient between the two phases
in this case equals

Fin 368

since aj
= a

2 and \ = 6, The two

phases are entirely independent of

one another as regards inductive
action between the wires, and the resultant coefficient of self-induction

for one phase is

(e) If the three conductors of a three-phase system are symnietncaMy
arranged, i e placed at the three angles of an equilateral tnanglo
(Fig. 364), then equal currents flowing in hues II and III will induce
the same E M F in phase I.

Since now two wires can always be considered as the return for the

third, the coefficient of self-induction of a phase with the above

symmetrical arrangement of the wires is independent of the load in

the several phases and equals

(239)

since here for one phase only the single length has to bo considered
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If the three wires are not symmetrical, but arranged in a straight

line, as shewn m Fig 365, the current in the middle wire cannot exert

any inductive effect on the two outer wires and conversely. The
coefficient of self-induction of the middle phase is, therefore,

while with a symmetrical load in all three phases the coefficient of

the two outside phases is

A, = B

To make the coefficients of self-induction of all the phases equal
with this arrangement, each of the three phases may in turn occupy

Fin 804

a third of the length I as the middle phase,
of self-induction of each phase will be

2,

In this case the coefficient

(240)
\" / j

(f) With concentric cables the conductor forming the core ia a

complete cylinder, whilst the other is a hollow concentric cylinder
This arrangement of the two conductors as one cable used to be

almost exclusively used and was most convenient for manufacture

The capacity of the outside conductor of such a cable, however, with

respect to the inner conductor, is so large that in recent years stranded

cables, in which the conductors he side by side, have come more into

use If each conductor is ananged in a cable by itself, an iron sheath
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should be avoided, because the latter would considerably increase the

self-induction of the conductor Since the iron covering is only re-

quired for giving strength to the cable, stranded cables with several

conductors are largely used
For stranded cables with two and three conductors we get precisely

the same formulae as for a double line and a three-phase line Hence
with a double-line cable,

and in a three-phase cable, for each phase

When cables are provided with an iron sheath, the lines of force outside

the conductor close through the covering, whereby the self-induction

is increased The eddy-currents produced in the iron covering by
these lines of force are however so small that no heating is pro-
duced in the covering when the load is symmetrical, and only very
httle heating when the load is slightly unbalanced

130. Self- and Stray Induction of Coils in Air and in Iron

(a) Of all coils the simplest is the circular coil formed by a wire of

circular cross-section (Fig 366) Its coefficient of self-induction is

=^-a
[o46(l

+
1645|)loglo ^

+
037| -0163J,

(241)

or, if the value of =- is not too large,'

This can only be determined by means of a complicated integration

"

PlO 868 Fin 31)7

Another simple coil is of a circular wire wound in the form of a

rectangle of sides a^ and a
2

Since the coefficient of self-induction pei
unit length for two parallel round wiies of diameter d and distance

a apart (Eq 235) is
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and smce, further, two conductors at right angles can exert no i

ductive action on each other, the coefficient of self-induction of tl

rectangle, shewn in Fig 367, is

L=~[0 92a, Iog10 (^-
2

)
+ 92a

2 loglo (%ft
+ (a, + aj const

]

By accurate calculations this constant is found equal to - :

instead of -rO 1, which might have been expected , hence the coefficiei

of self-induction of a rectangle equals

L =
jjjg [o

92a, loglo (^)
+ 92a

2 loglo^ -
24(aa

+ a3
)]

(J4

or approximately

where 7, is the mean length of the coil

If the circulai or rectangular coil is not formed of

wire of circular section, but say of rectangular section,
the calculations may be earned out with sufficient

accuracy by taking the diameter d as the diameter of

a circle having the same periphery as the section of

the conductor (see Fig 368) This, however, is only

permissible when the section is not too flat

If the circular coil consists of several (w) turns, as is

shewn in Fig 369, the formula becomes

u=s
Fia sos

where d, is the diameter of a circle of equal ponpheiy
Z,
= 7rJ9 is the mean length of the coil. It is assumed

that I, is large compared with d,

to the

in this

(24;

coil an
formul

Fia 869 Fia 870

F'i&m the above formula it follow? diiedly iliat tJie coefficient of seJ

induction w pi open twnal to the squat e of the number of turns

Treating a rectangular coil with w turns (Fig 370) in a similar waj
we have

10s
[lo

glo()-02] (244
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If such a coil is laid ou a flat non surface, the coefficient of self-

induction is approximately doubled, because the magnetic reluctance is

practically reduced to half.

Fro 871 Magnetic Field of an Armature OolL

This is also approximately the case, even when the iron surface is

cylindrical, because the lines of force always pass into the iron at

right angles ,
the surface of the iron forms an equipotentaal surface.

JETig
37 1 shows the distribution of the lines 01 force for a coil of

circular section half embedded in an iron cylinder The lines of

force are dotted foi the ease in which the

|-
nrnrYTTnmrnr 1 1 1 1 . xi < i rr i

(jy^n^Qr jg made of non-magnetic material.

^ ttm
~- From the distribution of the lines it is clear

\ 1-mTi^iixr-rmTrm-rmj that the introduction of the iron cylinder
/ into the field of the coil reduces the mag-

Fra fl 2̂
netio reluctance to half and thereby doubles
the self-induction

The field-strength in the middle of a long thin coil of diameter D
and length I, (Fig. 372) is

rr ilTlW VWHm =

Denoting the section of* the coil by q,
= -rD2

,
the flux through the

middle part of the coil equals approximately qjfm ,
at the ends of

the coil, however, the flux is somewhat smaller, so that all the w

turns do not embrace the same flux 0-*"-
is a measure of the flux-

k,

mterlmkages with the coil, where the factor k, is greater than 1 and
takes into account the decrease in flux at the ends of the coil
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Hence we obtain the coefficient of self-induction L of such a coil,

equal to the sum of the flux-mterlmkages for = 1 ampere,

Jc, depends on the dimensions of the coil, especially on the ratio

The greater this ratio, the nearer k, approaches unity. If -4 is

very large, -^y- is the magnetic reluctance of the cylindrical coil and
0-til,

!*' is the magnetic reluctance of the effective flux, which is con-
U'Onl,^

sidered to be interlinked with all w turns.

(b) When dealing with the coils in electric machines and trans-

formers, it is not usual to calculate with self- and mutual induction,

(as mentioned in Chap VIL, p 116), but with the mam and leakage
fluxes, or the quantities corresponding to these, i e the coefficients of

mutual and leakage induction It would carry us too far here to

calculate all the coefficients occurring in machines and transformers ,

and therefore we shall confine ourselves to pointing out the methods

by which they may be calculated

Fig 373 shews the distribution of the hues of force in a single-phase
iron-core transformer with a cylindrical winding. I denotes the

primary coils and II the secondary Both embrace the main flux,

which is produced by the difference between the primary and secondary
ampere turns The leakage lines, of which the primary are inter-

linked with part of the primary winding and the secondary with part
of the secondary winding, are squeezed between the primary and

secondary coils, in which currents flow in opposite directions. The
leakage coefficients S

l
and S% are given by the summations (p. 112)

wa\~ w
i x

~ ~

wj
a.

which extend over all the tubes of force interlinked with the primary
and secondary turns respectively

In general, it is only necessaiy to know the sum of these two

coefficients, and this can easily be approximated as follows

Foi each limb of the transformer,

where wl is the number of primary turns per limb, 8% the secondary
leakage coefficient reduced to the primary and R, the effective magnetic
reluctance of the space between the two windings This reluctance can
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be expressed in the same way as the reluctance of ti cylindi ical coil

(Eq.245), ^^
where q, is the section of the effective flux between the primary
and secondary winding, I. the mean length of the two windings and k,

a factor which takes into account the magnetic reluctance of the

FIG 873 Leakage Flold of TmnHfonnoi with Oyliudriuul Windlny

leakage flux outside the space between the two windings, and the
decrease m the leakage field at the ends of the windings Demoting
the radial distance between the two windings by A, thu depth of the

primary and secondary windings by A, and A^, and the periphery
between the two windings by U, we have

The presence of -J and
-^

in this expression is due to the fact that

the integration has to bo carried out for the mtorhnkages of the tubes

of force 2
Kj-\

and not for the tubes of force 2 (^\ The result of
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this is not the mean of A
x
and A,, but a third of their sum Hence

the sum of the leakage coefficients of the windings per limb is

3 )

10 a

8k.l,
henrys (246)

The strength of the leakage field itself for a section in the middle of

the windings is shewn by curve C in Fig 373

\
Fia 874a. Lenknge Field of Thi eo phase Generator

Prof G- Kapp has determined experimentally the values of 7i. for

seveial transformers }
in modern transformers Jc, lies between 95 and

1 05 In order that no local leakage fields may exist in the trans-

former, care must be taken that the two windings are as far as

possible alike in shape and arranged

symmetrically with respect to each f?. f ,

\,
, -T. ^

other. c *>" "?
"

"<"*>

The armature coils of electric +.> e-*j

machines are nowadays nearly always c ^, <-*>

placed in slots In this case it is of -

advantage in calculating the leakage Z3
coefficient to split up the leakage lines

into three groups
-

1 Lines A (Fig 374a), which =
entirely pass through the slots

2 Lines B, which pass between the <+-> c*->

tops of the teeth c^> c*->

3 Lines C (Fig 374/j), which are c>) ^ c ->

closed round the coil-ends outside the ^f* j J C* J J^
lr n

PIG 374i -Laikogo Field of Ooil onds

In addition to the leakage lines, there

are also the lines D of the main flux, which pass through the armature

coils and produce in them the E M F of mutual induction The main
flux of a polyphase generator, as shewn in Fig 374fl, is produced by
the resultant of the held and armature ampere-turns
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As was pointed out 111 Sect 118, p 382, the resultant ampere-turns
of an ?i-phase armature winding having w turns per pole and phase, and

having a current of maximum value /mftx ,
is equal to ^/maxw ,

this M M r.

rotates in synchronism with the field, and is displaced from it by a

-t i-

Fin Pin S"i4d

certain angle ^. This angle is identical with the internal phase
displacement ^ of the armature current, if the anglo of a pole-pair
is just equal to 2?r

Using the same method as employed above, the leakage coefficient of

an armature coil can be written

where E, is the magnetic reluctance of the effective leakage flux,
inteilmked with all the > turns in a slot It is, however, more

convenient for our division of the

leakage lines to write

where
A.,,

is the permeance of the

leakage field acioss the slot for

1 cm length of iron, A.A the same
for the leakage field across the tops
of the teeth and A, for the coil-onds

or overhang / is the length of

the iron and /, the length of the

overhang
In Fig 375, the leakage linos A

passing through the slots are considered, and curve C shews the

strength of the leakage field The permeance A.n , calculated from this
distribution of the leakage lines, neglecting the magnetic reluctance in

the iron, is given by

Pia BTD -Slot Field

'08(V '08J
t

(247)
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Here we have again - and not -
,
because we integrate over

3?
8

2r3
oifi

/ffc

the mterlmkages of the tubes of force 2-^, i e
(

-

For the leakage lines B we take the distribution as being two

quarter-circles and the straight lines joining them, us shewn in

Fig 375 From this we have

(34S >

The integration is here taken to the limit t
lt which it is best

to put equal to the slot-pitch, since all the tubes of force outside

this limit usually embrace several slots To estimate these correctly
necessitates complicated constiuctious, into which wo shall not enter

further

To calculate the leakage lines C, it is best to consider the two
coil-ends as comprising one rectangular coil (Fig 374), whose per-
meance is equal to

(249)

Hence the leakage coefficient of an armature coil is

o,a

(250)

where A.n ,
AA and A, can be calculated from the above formulae

If two similar coils, belonging to different circuits, he side by side in

the same slot (Fig 376), the currents in them are mutually inductive
The coefficient of mutual induction M of two such coils

is equal to the leakage coefficient S, assuming the dis-

tribution of lines of force in Fig 375.

The distribution of the lines of force, however, will lie

quite another thing if the currents in the two coils are

very different from each other, and especially if they are

oppositely directed In this case M is somewhat smaller
than 8 Plo m

The above formulae for the calculation of the leakage
coefficients of armature coils do not of course give quite accurate values,
since the lines of force are not distributed along the assumed geometric
lines, but always choose complicated paths, for which the magnetic
permeance of the leakage fields is a maximum For this reason

experimental values are usually somewhat greater than calculated

131. Increase of Resistance, due to Eddy Currents in Sohd
Conductors In the previous section we have seen that the magnetic
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field in the mtenor of an electric conductor is uot constant, from

which it follows that the current lines do not all possess the same
self-induction On this account the distribution of a high-frequency

alternating-current over the section of the conductor is not uniform,

but such that the variation of the potential energy L- is as small as
Jj

possible For this reason the greatest current-density is obtained in

that part of the conductor in which the magnetic field is strongest.
Lord Kelvin first demonstrated this phenomenon, which is known as

Its action produces an increase in the resistance and reduction in the

self-induction of the conductor When the field in a wire is due to

the current m that wire alone, the current-density is dependent on
the distance of the point considered from the axis of the wire The

current-density is greatest at the surface and least at

the axis

(a) We first calculate the distribution of current

over the section of a round wire, in which case the

approximate equations are similar to those for tho

distribution of a rapidly alternating magnetic flux in

a round iron wire

ket us considei' tne element of the wire formed by
a cylinder of thickness dx at a distance x horn the

axis (Fig 377) Let the maximum current-density be 7, and the

magnetic field-strength Hx This increases from the inside to tho

surface by the value

, 7 , 4:TrI..2irx dx . T ,

d "
=

2*2 =O^A
while the induction, assuming constant permeability, increases by
fj.dHj.= dBz . On the outside of the cylinder a smaller EMK Ex is

acting than on the inside The increase in the E M F Ef , assuming a

phase displacement of 90", is

ilEx= ZiycB^xlQ-* = 2ir/c/z//^a;10-
8 volts

This increase m the pressure requires an inciease in the cuiruut-

P-E
density, according to the equation Jx =--, equal to

dlx= _^= -27r/c^//>;10-e volts
P P

TT d2
!, - U.(IJfX 1nHence - |= -

ITTJC- -7- 10~ s

dx*
J

p ilx,

Substituting now the value of =-^, we have=-
ClQut
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Introducing (in the same way as for the distribution of induction in

iron wires)

we obtain

The solution of this equation is

where A and B are equalj since the same value is obtained for Ix for

both + x and - x Hence

At the surface of the wire, where x = i, the cm rent-density is a

maximum .. ,, ..

_- , ,-
The.eforo

*--*-j>^* .-*-* <
2B3

>

The current-density theiefore decreases from the outside to the inside

in a curve like the induction in an iron wire To determine the

effective resistance of the wire, the mean of the squares of the current-
rx=>

densities I I*2irxdx must be divided by the square of the mean of
'

x=
the current-density I Ix 2-irxdx . The real ratio of these two

a=0

quantities gives the ratio k of the effective resistance roff to the ohmic
resistance i

JULOIIUO . =-= (real part).

Since this ratio can only be determined by tedious calculations, the

result of exact calculations is here shortly given For low frequencies,

we have for copper wire
(/*=

1 and
/o
= 017 x 10~ 4 fi

^J

for aluminium wire ( M= 1 and p = 0285 x 10~4 fl
)

V cm2
/
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for thin iron vires (u.= 1000 and /o
= 10 x lO-4

^-^.^
V cm.*/

where the diameter d of the wire is expressed in cm
For medium frequencies it is best to use the table calculated by

Hospitaher, which gives the values of L for different values of crfa

This table applies to copper wire with p = 017 ohm To obtain the

ratio for wires of other materials, the value of cd2 must be multiplied

by -0 017, and the value of k corresponding to this new value of cdz

found from the table

cd2 I cd2 /'

I'OOOO 1520 1 8628

20 1 0000 1880 2 0430

80 - 10001 2280 22190
170 10258 2710 23937
300 10805 4820 30956
470 1 1747 7500 3 7940

680 13180 17000 55732
920 14920 30000 73250
1200 1 6778

(b) For very high frequencies and conductors of magnetic material,

27T

reaches such high values that e~^ can be neglected compared with

The current-density Ix can then be wntten

,(!-;) AJ:

/_/ __ = T 6AX- -^luajL
(l_J)x,

-^iiiax
6

This, like all the previous equations, serves not only for round

wires, but also for bars of rectangular section Foi such a bar, x

denotes the distance from the middle of the bar and 2? = A its thickness

For very high frequencies or permeabilities, the mean current-density
in a bar is A

x=0

-(I-J)ATT-' 2

or
(254)
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When we remember that /J/D^ denotes the pressuie-drop per cm

length of the conductor, due to the ohmic resistance aud to the field

within the conductor, we see that this pressure-drop, based on the

mean current-density /mean or on the current A/ulBail flowing in the

conductor, is composed of two equal components. One of these com-

ponents is in phase with the current and represents a zesistance-drop,
while the other leads the current by 90, and therefore becomes a

reactance-drop Each component is equal to A/> Hence the same
resistance would be obtained, if the current in the conductor was

divided into two layers each of thickness
j,

since these layers would

have an ohmic resistance of $kp per cm length For this reason it is

said that high-frequency currents only penetrate into the conductor to

a thickness T or that an outer layer of the conductor of thickness
A

i i r\A It r\

(255)

carries the whole current The effective resistance of the conductor is

equal to the resistance of this outer layer, and at the same time this

is equal to the effective reactance of the conductor, due to the field

within itself This reactance, however, is usually negligible compared
to the reactance due to the field outside the conductor

The same result is obtained for round wires, where only an outer

cylindrical layer of thickness S
eff
= Y serves to carry the current. For
A

this reason copper tubes are also used as conductors for very high-

frequency currents They not only possess the advantage of utilising
the copper better, but they also have a smaller self-induction. Such
tubes are used, for example, in switch-gear, and especially for the

connections of lightning protectors. The thickness of the conducting
layer is as follows

For copper conductors (p = Q 017 x 10~4 fl
gj

104
/I Op 6-5= -P cm,

for aluminium conductors (p
= 028 x 10~4 i2

S =

for iron conductors ( p= 1000, p 10 x 10~4
fl

104
/10p 05
' - = r= CHI

cm
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For railway rails we obtain 8^= 1 cm = 1 mm. at 25 cycles If U
is the periphery of the rail in mm, the effective resistance per kilometre

length at 25 cycles is

0-1 xlO3 100 .

%ff= -- - ^-- ohms.

At 15 cycles the resistance is -/H = Vb~6 = 0-775 times us largo,
77 5

i.e. - . ohms.

The effective reactance of the rails, due to the field within them,
is of course equal to the effective resistance.

Jc)
If the wires lie near one another as ID cables, their mutual

uction affects the distribution of current The highest current-

density here occurs in the parts where the wnoa are noar together, and
the skin-effect may become very considerable For this case wo can
use the formulae given by Prof G Mie (WwA Ann 1900) for non-
magnetic wires at Tow frequencies The ratio for twin-coppor cable is

approximately

and for aluminium cable

where a denotes the distance between the axes of the two conductors
For conductors of magnetic material the distance between the wires
has little effect on the current distribution, arid m this case thu same
formulae may therefore be used as for a single conductor.

If the reactance of a cable, due to the field within itself, fomw a
considerable part of the whole reactance, it is also necessary to correct
the coefficient of self-induction at high frequencies. Instead of 1 in
formula 236a, we have to put for copper cables

0-1

and for aluminium cables

01/1-

If the conductor in the cable consists of several small wires moie or
less insulated from each other, the skin-effect is considerably i educed,due to thus

splitting up the section.

f>,

P
L

f Ml
f
haS

^I
611^6 m 8 formulae for rapid oscillations, inthe same place as the above The ratio k for copper wiros is
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and for aluminium wires

443

whilst the coefficient of self-inductiou approaches the value

r 0-92,

as the frequency increases.

(d) In a coil consisting of several turns, the distribution of the lines

of force of its field is still more complicated
than with one or two wires, so that the cal-

culation of the effective resistance is much
more difficult In order to keep the increase

in resistance as small as possible, the conductors

should be made of flat copper strip, arranged
in such a way that the longer side of the section

coincides with the direction of the leakage
lines Further, turns which lie in different

leakage fields should not be connected in

parallel, since heavy local currents might ensue,

producing an apparent increase in resistance

Messrs Field* have exhaustively treated the

distribution of current-density fof coils in slots

and the increase in resistance due to fields

occasioned by the presence of the teeth Only
the mam points and the result of these investi-

gations will be given here

Let us consider two bars placed one above

the other, as in Fig 378, and again assume
that the leakage field traverses the slot in

straight lines, and that the magnetic reluctance

of the iron can be neglected compared with

that of the slot Then it follows that the

current-density /. does not vary in the breadth

of the slot, but only in the height. The

field-strength increases with the height x ac-

cording to the following law

In the upper surface of the element of conductor of thickness dx,

which we are considering, an E M r is induced, which differs from that

induced on the lower surface by dEx , equal to

dEx
=

^trjc,\LHK dx 10~8
volts,

* Transactions A I E E 1905 and Proceedings I E E 1906
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which causes an alteration in the current-density of

dlx = -2irjc?

Hence, from these two differential equations we obtain

which differs from the equation for wires m air on p 438 only m the

factor -!. If we substitute

we have Ix = A< -J) ** + e
-
(i -j) A*

and H= _

To determine the constants A and B, we have the following two
limits

' 6

Firstly, for G= 0,'

8

where /^m denotes the maximum current per conductor, and (n-l)
is the number of conductors in the slot underneath the conductor
considered The conductor considered is therefore the ?i

tb from tho
bottom, and (n-l)Imoairr2 is the maximum ourront-volumo lyingbeneath this conductor 5

The second limit is, that the maximum current in a conductor is
equal to

-1 fx=t

By means of these two limits we can first determine the constantsA and JJ and then find the ratio k of the effective resistance to the ohmic
fx=i

Ildx
'off J z=0 / i , v

(real part).
--

r-
Cx=f 2

Ixdx\
LJx=o J

A B Field has given the
following formula for this latio

cos Xr)(smh^ - sin X
) + (sinh 2\.i + sin 2A.?

)

cosh 2A.? - cos 2A? '

(256)
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and this is shown in Fig 380 for different values of A// By means
of these curves the ratio k for each turn of tho armature coil can now
be found, and thus the moan increase in losistanco of all the turns

easily determined Fig 379 shews the curi ent-density and phase-

displacement with regard to the main current as functions of the

6

*

\-

__
\ / ^^~ S
/ O

y-/

I

/

J -of

o QZ qt 0,6 QB o o,t 0,9 0,6 0,8 1,0

FIG 879 Current Density and Plnwo DiHpliicornunt In two Armatiuo Cuncluctoi-H

height of bar The curves were calculated by A B Field for the two
conductors shewn in Fig 378 at 25 cycles It will bo noticed that

great variations occur in the current-density For tho lower conductor
it is a maximum at the upper corner, while for the upper conductoi

it is a minimum in the middle From this, as well as from the curves

in Fig 380, it is clear that the increase in resistance is much greater
for the conductor near the armature surface than for tho other

As for wires in air, the skin-effect haR not only the effect of in-

creasing the resistance of armature coils, but also of deci easing then-

self-induction This is due to the fact that the current is driven

upwards in the bars, so that the path of the leakage field ncioss the
slot is not straight, as shewn in Fig 375, but passes chiefly between
the bars and through the highest and lowest paits of tho bars If

many turns are arranged above one another in the slot, the distortion

of the leakage field is not so marked, since the conductors are very
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thin and the leakage field vanes from the bottom to the top almost

according to a straight-hue law.

If there are only a few large conductors in the slot, it is advan-

tageous to laminate them parallel to the lines of force or to make them

Jr

2,8 2f 2,* 2 2fl 1,8 f,ff W
-

! !
M

\
\\\\ I

Ml I I I

Ml//
IM / / /

//M / /

l!l\ / /

IIIIM /

III / /\ /

III ! I V
//// / A _

0,2 ff,9 0,5 0,S 1,0 If 7,

Fin 8SO Curves for Determining Increase of Resistance In Armaturo Conductors

of pressed cable. In many electric machines, such as continuous-

current machines, and to a still higher degree in rotary converters, the

wave-shape of the currents flowing in the armature conductors is very
different from a sine wave In such eases the current must be resolved

into the fundamental and higher harmonics, and the losses on the

ratio k calculated for each of these currents If these ratios are &
19

ka ,
L
5 ,

etc for the currents /
13
/
8 ,
/
6 ,

etc
,
then for the effective current
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the effective ratio L is obtained from the equation

/7~

Hence

These considerations and formulae for armature coils can also be
used in many other cases with close approximation, so long as the

leakage lines run parallel to the surfaces of the conductors, and the

path of the lines of force is not appreciably altered through unsym-
metncal distribution of current Such cases occur in transformers
and induction coils

,
but here the paths of the lines of force must be

taken into account in choosing the ratio -
9
3

(e) Besides the eddy-currents induced in electric conductors by fields

within them, there are also currents induced by external fields, which

however, do not result in an apparent increase in resistance, but only
in a production of heat in the conductor For these currents the for-

mulae may be used which were developed for the eddy-currents in iron

wires and plates It will be best to demonstiate this by two examples.
On the surface of a smooth armature there is a copper conductor of

breadth A and thickness i (Fig 381) The armature has a diameter D
and pole-pitch T=-^-, and rotates with a peripheral speed of v We
will consider the field in the air-gap as

being distributed smusoidally over the

pole-pitch T. Then the field-strength at

any point in the conductor at any moment
can be expressed by

( <at

The middle of the conductor, where y, = 0, then falls m the middle
of the neutral zone of the magnetic field, where 1 = 0, at time t =
In an element of the conduct'or at distance x from the middle, an B.M F

per cm length is induced equal to

ex
= vb 10- volts,

where v is expressed in metres per second Hence the current-density
in this element is

p

The presence of the constant is due to the fact that the sum of

all the internal currents induced in the conductor is equal to zero

Therefore
,

A

A f
=+

2 , vS
t

IT A .= I ^xax = 2 cos cof sin - + C/A,

^x=-- p^lO
T

2 T

from which C can l>e calculated and placed in the expression for ix .
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Hence the current-density is

. vB,
A

7T_A
rJ

. / , TT \
in (orf--a; .

\ T )

To find the loss ww per unit volume, we integrate over i
z

xp -^
-= and

obtain
A 1

L

Developing the sine into a senes and neglecting all terms of the

higher orders, we have

/fl-Ay 3Vr2
Vr 2J

Further, putting 100v= -57r = -gA
=^TC an^ expressing A in mm,

7T

for a form factor of ft
= I'll =

^=,
the loss per dm8 is

(357)

This formula corresponds exactly with the expression given on

p 351 for the eddy-current loss in iron plates It holds only so long

Fio 382(1. FIQ S82&
Slot Fields

as the eddy-currents do not appreciably affect the distribution of the
lines of force

If the armature bars he in slots, E M F 's are also induced in them by
the main field These E M F 's are due mainly to the lines of forces

passing between the surface of the pole and the sides of the teeth,
which are chiefly present with large open slots and a small air-gap,
as is shewn in Fig 382a
The field-strengths of the slot-leakage field can be resolved into

radial and tangential components, the tangential component mainly
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induces harmful eddy-currents in the upper conductors Strongly

saturated teeth also raise the field strength in the slobs If the slots

are very deep and the teeth only strongly saturated at the root,

the lines of force pass between the sides and bottom of the slots

(Fig 382i) They induce eddy-currents in the lower conductors, and

m this case the ladial as well as the tangential components determine

the magnitude of the eddy-current loss

The eddy-current loss can be determined in this case also by formulae

similar to those used for a smooth armature It is, however, muoh
more difficult to determine, as the calculation is much more com-

plicated, and can only be approximated.

Watt

13

0,8

0,0

0,S

w
0,3

0,s

iOOO

ArmatureB ArmatureM
i jr m ir

Armature VI

r m
Pro 388 Eddy Currentw In Armature Conductors

Dr Ottenstein* has determined the order of magnitude of this loss

by a long series of careful experiments, and has found that maximum
tooth-densities of 24-25000 can be employed before large losses occur,
due to the lines of force between the sides and bottom of the slots

In Fig 383 the loss per cm3 is plotted for difteient slots and different

arrangements of the conductors in the slots as a function of the ideal

maximum tooth-density Bld (i e the tooth-density calculated on the

assumption that all the lines of force pass through the teeth, which

* " Das Nutenfeld m Zalinainmturon und die WirbolstroruveiliiHte in inassivon

Armatur-Kupferleiteni
"

Sammlung elehrotechmschei Ftw truge, Stuttgart, 1 903
A a. 2F
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is not actually the case with highly saturated teeth) Fiom tins figure

it is clear that the lines of force between tho pole-face and the surface

of the slots may give rise to very high losses

The highest loss of 1 watt per cm
3
occurring in tho cm ves cot responds

to an effective current-density sn) which is obtained from

If />
= 002 is inserted for warm coppoi, the

loss_
of 1 watt per cm3

corresponds to an effective current-density sa = s/50 amp/mm
2

,
a value

which far exceeds the usual mean density in armature bars It is

therefore advisable, when the copper armature bars he in open slots,

as is usually the case in direct-current machines, not to have tho

conductors too near the armature surface, that tho air-gap should not

be too small compared with the breadth of slot (i
o not loss than \),

and that the maximum tooth-saturation is not too high (i.e. not above

25000 on full load) In large alternators with open slots tho armatmo
bars near the surface should be laminated tangentially in order to keep
the eddy-currents induced by their own field within permissible limits,

and the same bars should be laminated radially, iniorder to destroy tho

eddy-currents induced by the mam field Since this is nut possible in

practice, the bars in the neighbourhood of tho surface are either made
of stranded cable, or they are sunk very deep in the slots and at the

same time laminated tangentially

132 Leakage Fields and Electrodynamic Forces due to Momentary
Bushes of Current. During lecent years, commercial roijuu union Us

have led to the bunding of very large power-stations with large units

At first all the machines were connected to tho same bus-bar system
and therefore to the same network, since no apparent i canons woio

forthcoming why the usual practice for small units should be departed
from It had not been considered that with largo units working to-

gether on the same network, when a short-circuit occmrcd anywhere
in the system an immense amount of energy would act on the shoit-

circuit, and therefore give rise to enormous rushes of current Theses

rushes produce great mechanical as well as electrical forces, and often
lead to destructive explosions in the automatic circuit-breakers, which
are provided to cut out the faulty part from tho lest of tlio nol-

work In the following section some formulae will be given for

calculating the mechanical forces due to such momentafy rushes
of current To determine the mechanical forces, liowovei, the dis-

tribution of the leakage fields at the moment of shoit-cn-cmt iniis( lie

known, and for this reason the strengths of tho leakage fields will be
calculated together with the mechanical forces

To illustrate the forces which act between straight conductois, Fig
384 shews the switchboard of a 6500 volt motor, destroyed by a short-
circuit The motor was connected to tho large network of the
Manchester Corporation power-station, and tho figuie was supplied byC L Pearce, Esq, the chief engineer All the cables were well hung
between insulators at a distance of about ]2 5 cm apart The figiue
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shews clearly how the outgoing and return cables of the same phase
were repelled from each other, and the cables of different phases
attracted The insulators a, and 1) were broken and the insulating

plate J made of asbestos board was out clean through The thin

cables, which were for the most pait bent, normally carried 10 amperes,
but as the following calculations shew, must have carried a very much
higher current during the short-circuit It is clear that the bending

Fio 384 Effects of u Short-circuit cm the Oablo Oonuootlons of a Switchboard

of the cable was greatest near the angle-iron carrying it on account
of the magnetic hold-strength being greatest there Also, we may
conclude from the figure, that the bending started near the angle-

iron, and after the wires had first approached this place the motion

proceeded further downwards

(a) We first calculate the repelling force between two parallel con-

ductors, serving as the outgoing and return lines The force must bo

repulsion, since the currents in the two conductors are oppositely
directed It can also be said that the wires tend to move in such a
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way that the self-induction of the loop formed by them becomes as

large as possible ,
since the magnetic field-energy is then a maximum

The wires therefore tend to move away from each other Parallel

wires carrying currents m the same direction have the opposite effect

From Ampere's law the repelling or attracting force between two

parallel wires per cm length is equal to

where ^ and i, denote the currents in the wires in amperes and a their

distance apart'm cm This formula is amplified when we consider that

2
one conductor produces a magnetic field of ZT=r^~ at the position of

the second conductor, and that the mechanical force on the second
Hi

conductor, from formula (7a), is
-y^

2
dynes If the two conductors carry

the effective current /, the maximum force per cm length is

Substituting in this /= 10 amperes and a = 12 5 cm, we have

_ 4x100 = JJ2
125xl08 ~108 g

32
For a length of 100 cm the force is thus only about

=-^5 kg,

and to obtain a force of 1 kg, the rush of current must therefore

/TO"
increase to A/ -077

= 175 times its normal value.
\ Da

Considering further that each cable in Fig 384 was repelled from

one side and attracted from the other, it still requires ^ = about 125

Pia SS5 Field Intensity of a Long Thin Conductor

times the normal current to exert a force of 1 kg on a cable 1 metre

long. This calculation shews clearly that very considerable rushes of
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current are met with in networks of large systems Short-circuits in

such networks act almost like dynamite explosions, in that the forces

which occur are sudden shocks, acting momentarily This accounts
for the great damage so often done to the windings of generators and
transformers

In order to calculate the mechanical forces acting on the coils, we
shall first consider the field-strength ff, produced by a long flat con-

ductor (Fig 385)
For this purpose we divide H into a component HX

=H sin a perpen-
dicular to the conductor and a component H =HQ08a parallel to the
flat side of the conductor If the conductor, which stands perpendicular
to the paper, is very thin and carries the current idy in the element dy,
then the field-strength produced by this element at the point P is

dH=
?,i dy

TOT
and its components are

Sidy Bin a

id,-
n

and
'2tdi/cosa

10,
'

Integrating over the whole conductor, we now obtain, since

t da. = dy cos a and dt = dij sin a,

the two resultant components

=
^f^'

=
^log-

3 = 046*log 10p (259)
J 1 1

and
10

i is here the current per cm
breadth of the conductor If the

length of the conductor is not

very great, but consideiable with

regard to the distance of the point
P, the two components Hx and Hv

must be multiplied by d^j where

7 is the angle in degrees which
the conductor subtends at the

point P If the conductor is not

very thin, the components Hx

and H (Fig 386) must be deter-

mined by a double integration

J-.-
t f2t dx dy

Fin 880
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Since tana
1
=^L and tana

2
=^ (Fig 386),

Jj iXj

x=x* 9- r / /v \ / r \ ~~1

we have H=
\
tan'M -

)

- tairM -
} \ch,"

x=ri ioL \v WJ
whence

where t denotes the current-density per cm- mid .1^ i
z , y^ and y, are

expressed in cm In the same way we have for JIX ,

and the resultant field-strength is

~&) + l ltollo

(259a)

If the conductor is not veiy long, the factor -2_ must bo added to
lou

this This foimula also holds for a coil-side consisting of several tinns,m which case ^ denotes the curient volume per cm2
, and the lengths

are expressed in cm As a first approximation, the fielcl-sti ongth
can also be written 9 /

10,
' v* u v

where ? denotes the distance of the point considered from the centre
of the coil

(b) Considering two coils placed over one anothei, as in Fig 387,
then if they are connected in soiies

to oppose each other (01 if either coil

is short-en cuited on
itself), the two

coils will be repelled by a momentary
rush of current The leakage field,

PIO 8S7 TWO Mutuniiy-repoiiing Coiia passing between the two coils, tends
to spread out as much as possible and

thereby exerts a strong repelling force on the upper coil This

repelling force can be calculated from the above formulae foi the

field-strength The field-strength is approximately equal to

=
lQa

and the repelling force

= 'W =
alO S>

whore 7, is the mean length of the coils, iw the ampeic-tuins and a, the
distance between the coils from centre to centre
The

_
leakage field in all electric machines and tiansfortners stuvcs

to attain maximum field-energy, just as do the two coils in Fig 387
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Since the leakage field is squeezed between the primary and secondary
windings, and always tries to expand as much as possible, the

windings are driven apart by momentary rushes of current, if they are

not fixed secuiely enough Kushes of current which exert these

forces are chiefly duo to short-circuits in the secondary circuit, that is,

in the stator circuit in the case of alternators In this case the field

winding is the primary and the stator wind-

ing the secondary Besides this, mechanical ~7

forces also occur in machines and apparatus \

between the several coils of one winding I

carrying the same or pioportioual currents

These coils need not belong to the same ~|~
-

phase
~~-

In a transformer in which the coils of

the primary and secondary windings are

sandwiched between one another, as in Fig
388, the leakage fields are squeezed between
each primary and secondary coil, so that

these mutually repel one another
It has even happened that the coils

themselves have been blown apart The
mechanical forces acting on the upper and
lower coils are of course the largest, since

in the neighbourhood of the yoke the Pl 8SH

permeance of the leakage field is greatest
To determine the repelling force between two coils, we must first make

a calculation of the field-strength produced by one coil at the position
of the next coil On account of the great magnetic permeance of the

non core, this is not ^, but almost double this value It must of
lOa

course be considered that the rushes of current occur so rapidly, that

the iron partially loses its permeance owing to the eddy-cunents
induced in the plates This remains, however, so large on the sides

wheie the leakage lines outer the iron parallel to the laminations, that
A.fijj

the field-strength here must be put equal to -, while on the sides
JL \jCL c\

where the leakage field enters at light angles to the plates,
*"

must be
1 \J&

used The mean field-strength is therefore somewhat smaller than

,
- For this reason the short-circuit reactance of a transformer

10a

becomes somewhat smaller during a momentary rush of current

than under steady conditions Denoting the effective value of the

momentary short-circuit current by Imk and the number of turns of

the outer coil by w,, the maximum force by which the upper and lower
coils aie pressed against the yoke is

_ 6(1.^
"max -

8 \~ U0 /
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if all the coils have the same ampere-turns If the coils in the middle
have double as many ampere-turns as the two outer coils, the force is

approximately double as large as that given by the formula The
formula is not very accurate, because of the very great difficulty in

calculating Imt
In transformers -with cylinder windings, shewn in Fig 373, the field-

strength produced by one winding at the position of the second can be
calculated from formulae 239 and 260 It only interests us here to

find the maximum field-strength, which occurs at the middle of the

windings Here HX
= Q and

TT TT 2iW
,

>""
Iw

or if AS=
-j-

denote the effective ampere-turns pei cm length of the

winding, the maximum field-strength is

Hence the force exerted outwards on a coil of w, turns per cm length
of coil is ASIw

If the coil is circular, the force, distributed uniformly over the whole

coil, exerts a bursting action on it. If, on the other hand, the coil is

rectangular, which is usually the case in large transformer, the long
sides of the rectangle tend to bend out, so that the shape becomes

elbptical
Mechanical forces do not only, however, act between the primary

and secondary coils on the same core, but also the outer coils on

neighbouring cores are mutually attracted, since currents flow in the
same direction in the adjacent coil-sides These forces of attraction

can be calculated from the same formulae
In addition to short-circuits, rushes of current also occui in trans-

formers when they are switched on to the network These rushes aie

heavier, the more strongly the iron is saturated In this case the

secondary circuit is open, and therefore carries no current , the primary
coil then tends to move towards the position of highest reactance. For
this reason care must be taken with cylmdei windings that the coils

are at equal distances from the two yokes, while in all transformers
the upper coils must be well fixed relatively to the yoke, so that they
are not drawn against the yoke on switching in

(c) The argument for generators is similar to that for transformers.
The pnmaiy and secondary leakage fields strive to press between the
stator and field windings and to drive them apart Here the field

winding is fixed so well on the inner rotating member that it cannot
be displaced For this reason the repelling forces tend to drive the
coil-ends of the stator winding away from the field system Forces of

repulsion or attraction also occur between the coil-ends of the se\ eral
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UT I

phases, according to the direction of current in the phases at the

moment of short-circuit If a coil-end is very near the iron, it is

usually drawn against the iron With the arrangement of the coil-

ends of a three-phase generator shewn in Fig 389, the coil-ends of

phase I are usually bent outwards by the leakage fields between the

stator and field windings, while those of the second and third phases
are mutually repelled To calculate the

repelbng force on phase I, it must be
borne in mind that at the moment of

short-circuit the main field cannot sud-

denly vanish despite the demagnetising
effect of the stator current and that a

greater current is induced in the field coil,

which strives to maintain the field In

this way a large primary leakage field

crosses over to the pole-shoe, and bends
the coil-end of phase I outwards To
determine the forces present it is neces-

saiy to know the momentary current in

the field coils as well as the magnitude
of the mam field. If this momentary
exciting current is known to be imt ,

the magnetomotive force imtwg
- awm

acts on all the tubes of force between pole-shoe and yoke, where awm
denotes the ampere-turns necessary to send the flux through the field

system The field-strength about phase I can be calculated approxi-
mately by drawing the lines of force, and we have

_ W0. - awmH ~
8Z

The maximum mechanical force per cm length of the coil-end is then

PIQ 880 Section of Throe-phBJse
Generator

10r 8/107 kg, (265)

where zauiftx is the effective momentary short-circuit current in phase I

and w, is the number of turns in the coil-end Since imewe may in the
case of large machines attain a value of 100,000 ampere-turns at the
moment of short-circuit, while i

alllttk at the same time reaches a value of

150,000, we have

K= 105 x 1 5 x 105 1500

OSZIO? 08Z-kg

Thus if I = 36 cm, K= 52 kg If the pole-arc of the machine is 60 cm
and the length of the coil-end 80 cm, we can reckon on a force on the

coil-end of about

Evidently veiy considerable forces may occur in large machines
For this reason the arrangement shewn in Fig 389 is not used, and
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when possible, the coil-ends are arranged in two planes, as shown in

Fig. 390 The coil-ends are now so far icmoved from the field coils,

that these have little effect. In this latter winding there are chiefly

repelling forces between the coil-ends, since at any moment the currents

are almost always oppositely directed in the two planes In the part
of the coils running axially, where they come straight out of the slots,

the same direction of current occurs in groups, so that attracting as

well as repelling forces are here present. The latter aie the laigest, since

FIG 800 Current Distribution in tho Coil ouds of Tbieo-plmao Goiiumtor

the leakage field between the coils is the gieatest, where tho current

changes its direction In order to make the repelling forces between tho
coil-ends of the several phases harmless, they must be fixed us firmly as

possible, and further, care must be taken that tho coil-ends lire

sufficiently far from the iron It is possible to calculate the field

strength of the leakage field, which one coil produces whoie the other
is situated, for various positions. To calculate it accinatoly, tho for-

mulae on p 454 must be used, but we can write as tin approximation

_ _~
10a ~107

~-

This holds for the moment when the current is a maximum in one
phase and half as large in the other two For t,lM^w,= 150,000 and
a =10 cm, we have

225xl010

TOlTTO^
= 5 kg per cm

With an active length of 60 cm, the total force on a coil-end becomes

JT= 22 5x60 = 1350 kg,

which is certainly a considerable force It is clear from tho foregoing
that it is of the utmost importance to keep the momentaiy short-
circuit current m electric generators and transformers jis small us

possible. This, however, is not possible without allowing an undue
fluctuation in pressure, due to alterations in the working load In
this matter, as so frequently happens in practice, a compromise has to
be made between two evils
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133. Capacity and Conduction of Electric Cables

(a) In order to begin with the simplest case, the capacity of a con-

centric cable (Fig 391) will first be calculated The two conductors

may be considered as the plates of a condenser consisting of a pair of

cylinders Denoting the electric charge of the inner conductor by Q,

its potential by P, the dielectric constant of the dielectric between the

two conductors by e, the diameter of the inner conductor by d and
the inside diameter of the outer conductor by 2a, formula 202 (for the

capacity of a pair of cylinders) gives the capacity
of the concentric cable per unit length (1 cm) in

electrostatic units, thus

or for the length / in kilometres and in electro-

magnetic units

C=
9 X 1020

, /2<A
\~d )

Fin 80 1 Section of H
Concentric Cablo

Since capacity is usually measured in miciofarads (mfd), where

1 mfd = :-IB times the electromagnetic unit, we have

e/10107B
,,=

9^10-
- mM

00242/

The susceptauce ba due to the capacity of a cable is

where C is the capacity measured in practical units (faiads) The

capacity susceptauce of a concentiic cable is therefore equal to

0242eZ ,

^
- mno.

10 fl

log10 (^
(268)

Denoting the effective alternating pressure between the conductois

of the cable by /', the capacity gives rise to a wattless displacement
current T __ n}.

L iriU~ J- UQ>

which leads the prossine by 9U
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Since the insulation between the conductors is never perfect, and on

account of the dielectric hysteresis, a current in phase with the piessure
also flows into the cable. This watt-current is equal to

Of this we shall calculate the part due to imperfect insulation, i e.

the conduction-curi ent Pga ga is the electric conductance, or the

reciprocal of the resistance, between the two conductors, and is called

the conduction of the cable It is given by

1 f"
=

>'fe s= .Pf_ lc

or &.- '^L' (
269)

cm
where pt

is the specific resistance per g
and I is the length of the

cable in cm Substituting I in kilometres and as is usual p t
in

f&

27T/10" 272Z

megohms per 5, we have
cmr

mho
2 3 x lOaftlogJ^) p t \ogJ~'

ffa) however, is strongly affected by the junctions in the surface at

the ends and connecting-points of the cable, and therefore in a netwml
with ina,ny 6? andies the conductance ga s much gi eatei than the value cal-

culated from the above foimula
In the above calculation it is assumed that the insulation between

the two conductors consists of a homogeneous material with a constant
dielectric constant e If this is not the case, the calculation becomes

very complicated, for the dielectric must then be considered as several

condensers m series with different insulation resistances The capacity
of the cable in this case may be approximated as follows

where dx is the outside diameter of the x^ layer of insulation. Simi-

larly the conduction is approximately

9

(371 >

In addition to the capacity between the two conductors, the capacity
between one conductor and earth must be considered.
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If the inner conductor is disconnected while the outer still remains

under pressure, the capacity of the outei conductor (Fig 391) with

regard to earth u

If the inner conductor is earthed, the capacity of the outer conductor,
with regard to the inner and to earth, is

=00242*2
*

. +
*

,. mfd

If, on the other handj the outer conductor is disconnected, the

capacity of the inner conductor, with regard to the outer, is in series

with that of the outer with regard to earth Hence the capacity of

the inner conductor with regard to earth is

c_ v, 0242*Z

login (^J
+ log]0

faj-J
logw (^- )

This is much smaller than the capacity of the outer conductor with

regard to earth

Further, the capacity of the inner conductor with regard to earth,

when the outer is earthed, is

c= 00242*2

log, H?

(b) We now proceed to calculate the capacity of an air-line in a

system, using the earth as a return

In Fig 392, the electric lines of force (current curves) x and the

equipotential surfaces y of the electric field are shewn as they are pro-
duced by the conductors A and B charged with equal quantities of

electricity, but of opposite sign The curves x and y represent only
the intersections of the current and equipotential surfaces with the

plane of the paper The electric resistance of any element of a tube

of force is proportional to -A

By means of a mathematical transformation,* we can now replace the

diagram in Fig 392 by another simpler geometric diagram, in which
each elemental tube of force has exactly the same resistance as the

corresponding tube in the original system
The capacity and conduction are thereby unaltered, and their calcula-

*
Stemmetz, E T Z 1893, S 477
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tion is considerably simplified Denoting the new system of current
and equipoteutial curves by v and n, then, in order to satisfy the

above condition, we must have

du
__
df

dv
~
dy

As is well known, this condition is fulfilled by any equivalent
transformation from one plane to another, any tranaf01 mation being

y

Fin. 392. Current ftud Equl potential Ourvos of Two Pai-allol Cunrlurtora

called equivalent or equiangular, when any two curves of the one
plane make the same angle as the corresponding curves of the second
plane
We have already had recourse several times to a tiarisfoi iiwtion of

this kind, namely inversion, or, as it also called, transformation by
reciprocal radii. Since the problem can be solved very simply with
this transformation, we make use of it here

If a conductor^ is given, as above, with the earth solving as return,
the system of current-lines and eqmpotential curves given by the
circle A and line B (the surface of the earth) may be transformed into
another equivalent system We may, for example, convert the circleA and the line B (Fig 393) into two concentric circles To do this,we mark off the inversion centre 0, the perpendicular to li drawn
through the centre of circle A, and further choose the inversion
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coefficient in such a way that circle A corresponds to itself and Hue B
to a circle concentric Avith A. We then have

and OT2 = I=
where / is the constant of inversion

R

Pro 308

d
' MP = a is the height of the conductor A above the earth, MT=-~
its radius and OM=R the radius of the large circle.

Hence OT* =&

or

that is,
R = a

If d is negligible compared with a, then

that is, the capacity and conduction between a conductor at a height a

above the surface of the earth and the earth are the same as between

the conductor and a concentric cylinder, of which the radius R is

approximately double the distance of the conductor from the earth

The capacity in this case is therefore

0242e/ 0242eZ

^ log,,"-?
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or very closely Q 0242j
C=

4
mfd,

and the conductance for determining the conduction current is

272Z

OLM)
; fp

Fio 3fl4a

(272)

(273)

(c) In calculating the capacity of a double hue, where the two
conductors are arranged near

_ t [ /^ one another as overhead lines

or placed underground, either
'

together in one cable or as

separate cables, it must be

remembered that the earth af-

fects the electric distribution

We shall first consider the

simple case, in which the eftect

of the earth on the capacity of

the double lino can be ne-

glected If the two conductors

are represented by the circles

A and B in Fig 394a, we
know that the line 00 per-

pendicular to the line joining
the centres of A and B re

presents an equipotentuil sur-

face of zero potential The
electric field between con-

ductor A and the sin-face 00
and between conductor B and the surface ~00 can therefore each be

replaced (Fig. 3947;) by a condenser of capacity

0242e7.

and of conductance

Connecting these two equal condensers in series, we obtain a capacity
and conductance equal to half of each condenser The capacity of a
double line, neglecting the influence of the earth, is therefore equal to

2 log,
fa + Jaz -

1

V d
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and the conductance equals

02737 0272/ ,

fin
~

,

-- mno
-70

From tins we come to the conclusion, as Steinrnetz first shewed, that

an earth-return, as regards capacity and conduction, behaves like a

conductor symmetrical to the overhead line with respect to the earth,

whose distance and potential are the same below the earth as the air-

line is above it The conductot, equivalent to the eaith, is therefore the

image of the ov&i head-hne in the eon th's surface
In Fig 392 are shewn the electric lines of force and the equipotential

curves of the electric field of a double line All the lines of force are

arcs of circles, which, if produced inside the conductors, intersect at

the points O
l
and 0, It is further known that

The physical meaning of this is that the electric field produced by
the charges on the cylindrical conductors A and B is the same,
as if the charges of the conductors were concentrated on the straight
lines O

l
or 2 , running parallel to the axis of the conductors

We can now determine the capacity of a double line in the same

way as for a concentric cylinder (p 387) Thus we calculate the work
done in moving unit positive electric mass from the surface of a

conductor to the neutral zone This work is equal to the potential of

the respective conductor, and is equal to half the pressure between the

conductors The foice acting on unit positive mass at the point P
(Fig 394a)is 1 / - 2(A 1 /2Q\ _ 1 /_J2g

cp _
Multiplying this equation by dp and integrating from p = li^Qz

to

= OU,,\ve obtain the work for half the pressure equal to

. 2Q, 002 2Q, 00, 2Q. ^Ol

%F= Mog=J__^ log^ i^ ^11e Ji2 2
e

.ftgC/j
e Jr

2
U3

It follows from Fig 394a, that

and 7?
2 2=002

-

and therefore
a =

.

}

Hence the capacity of a double line per cm length, in electrostatic

units, is Q
7"

AC 2G
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which formula coi responds to the previous ones In this case we have

moved the point P along the central line 0^, but since the potential

difference between R
2
and is independent of the path of P, the same

result is always obtained, whatever the motion of P From this it

follows, in general, that tlie uwk done by the elediic clwige of a stiaight

hne a ,
when unit mass is moved fiom E to S, is piopoitimal to log -J--

To determine the capacity of a double line, taking the earth's

influence mto account, we substitute for the earth, two equivalent
conductors A' and B', forming the images of A and B in the earth's

surface If A and B have the charges
- Q and + Q, then A' and B'

will have the charges + Q and - Q respectively
To obtain the effective capacity of the double line, including the

effect of the earth, we calculate, as shewn on p 392, the work done

in moving unit positive mass from the earth to the surface of the

conductor B The woik done by the charge on B itself is equal to

. , ,
!

by charge A --
log -^ ,

^2^1

-
v, 2Q. da,

by charge B ~~ S ~

and by charge A' +
^- log -=

Since the dielectric constant is heie equal to 1, the total work equals

= 20 oo- - locr -W

-'\1

)J

The capacity of the double line theiefore equals

C- ^242/

,

mid (276)yr /

[log
M
(

(d) To determine the capacity of the conductors of a three-phase

system, we proceed m the same- way, by moving unit positive mass
from one conductor to the neutral The work done in this Avay is

equated to the phase-pressure Pv
If conductor I, from which the

mass is moved, has the charge Q sin. W, the other two conductors will
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have chaiges Q sin ((at- 120) and Q sin (at
- 240) The work done

(Fig 395a) is therefoie equal to

O.

Pio 3036

Neglecting the effect of the earth, the capacity per phase of a three-

phase line is 00242eZ

If further, as in the case of overhead lines, the distance a between
the wires is very great compared with their diameter, the capacity may
be written with close approximation

The capacity of the mains of a three-phase system can thus be
considered as three condensers connected in star, each of which has
the capacity

Since three-phase concentric cables introduce dissymmetry into the

system (and possess a higher capacity), cables for thiee-phase work are

almost always made stranded Each phase of a concentric cable has a

different capacity to the others

"With stranded cables the effect of the earth on the capacity of each

phase must be considered This can be done approximately in a

simple way. In Fig 396a, the circle A represents the conductor of

one phase, and the circle B, the surface of the cable-sheath This

system, consisting of two eccentric circles, is replaced by inversion by
AC 2a2
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a system consisting of the circle A^ which corresponds to itself and the

straight line B'. We have _

The system consisting of the circle A and the straight line B' is

again replaced by an equivalent system, consisting of the circle A and
its image B" with respect to F. The circle B" has the opposite
electric charge to A> that is - Q sin (at Carrying out this transforma-

tion for each phase, we obtain Fig 396J Assuming, for the sake of

Pin SQOa. Pin 300ft

simplicity, that O
l

coincides with M
I}

O
z
with 7I/

2 ,
etc

,
the capacity

of each phase becomes

n 0242c/=

0242eZ
mfd (278)

We have thus reduced the capacity of a three-phase cable with

separate conductors to that of three condensers of capacity connected
in star

(e) In a two-phase system, without connection between the phases,
it is found that the two phases are independent of each other as

regards capacity and conduction, the same formulae therefore hold
as in the case of a single-phase system The capacity of each phase
of a four-phase system (Fig. 397) is obtained from the equivalent
arrangement shown in Fig 397i. For phase I III and phase II IV,
the capacity is the same, and equals

S"
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For an interconnected two-phase system, two concentiic cables are

frequently nsed, of which the outer conductors are earthed and serve

Pin 397tt

as the middle wire The capacity of such a cable can be determined

by the above methods.

(f) As already mentioned, conduction alone is not a measure of the

losses in cables and conductors Losses are also present in the
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lielectnc, which are much greater than those due to conduction, and

ct like an increase of the latter Usually the losses in cables are

stimated by assuming some definite power-factor This was given
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on p. 411 for different cables It is evident that this method can

only give approximate lesults, since the powei -factor of a cable vanes
with the temperature, and to a certain extent with the frequency

Fig. 398 shows the variation of the power-factor as a function of the

temperature fiom tests carried out by Dr P Human * It might be

thought that the variation of the power-factor is due to the variation

of the insulation lesistance i
{ This, however, is not the case, for

the curve i in Fig 398, giving the insulation resistance, falls very

lapidly with increasing temperature, while the power-factor does not

show a corresponding increase, but rises only for the lower tem-

peratures and then falls as the temperature increases The powet -facfm

1500

woo

3500

3000

2500

2000 -

iSOff

1000

SOD

Mttt

Ai/oiolt

US 568 16 2 J2

Fir. 800

of a cable, th&iefme, lewis no dned relation to lis inmlafwn icsibtanM In
addition to a sufficiently high insulation resistance, it is usually

required of a good alternating current cable that the poww -factoi at

temperatures up to 50 C must not rise appreciably .ibov c the value

measured with the cable cold
,

also the latio between the capacities
measured with continuous and alternating currents at any tempciatino
must not be very different from unity
With bare overhead conductors also, the losses are considerably

gi eater than those due to conduction The extra losses here are

due to the passage of current over the insulators, and to the

*
Elektr, Balinen und Setnele, 1906, R. 518.
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dielectric losses in the insulators and in the other electric fields In

damp weather a part of the electricity is also conducted directly by
the moisture and ram. With high pressures, this latter loss may
become very large, if the mtical pressuie is exceeded

Fig 399 shows the relation between the loss of powei between two
wires in air, at distances of 38, 56, 89 and 127 cm apart, and the

effective alternating pressure, being the results of tests carried out

by C F. Scott and K D Meishon The diameter of the wires was
4'1 mm The losses are taken over 1 km double line It is seen here
that the critical pressure occurs at about 50,000 volts, since the curves

bend sharply upwards at this point The losses for other lines can
be estimated from these cuives A double line of 8 2 mm wires,
250 cm apart at 100,000 volts pressure, for example, will have approxi-

mately the same losses as one of 4 f

l mm wires, 127 cm apart at

50,000 volts.

134. Capacity of Coils in Air and in Iron The capacity relations of

coils in electric machinery and apparatus aie -very complicated It is,

however, possible to arrive at simple practical formulae, if we calculate

with, the capacity between elements of the conductor, as well as

between the conductor and the earth

Theoretically this is not quite fiee fiom

objection, but since an approximate formula
is better than none at all, we shall now
proceed to obtain such an expression For

I

the sake of brevity we shall denote, in the ys* -^
following, the expressions deduced on p 390 wk

_.j
for the mutual capacity coefficient by the i

10 & 8 7 e \

term "
capacity of a conductor-element

" 5 f"
-

(a) Firstly, the capacity of a conductor-

element will be calculated with regard to the

neighbouring turns In Fig 369 a circular

coil of flat copper strip is shewn. Such coils

are frequently used Each element of such

a coil possesses capacity with regard to all

the other turns of the coil, but only the &a

capacities of the adjacent turns are of im-

portance If the insulation between the FIO 400

turns is thin compared T\ith the thickness

of the stup and has the dielectric constant e, the capacity of an

element of length 1 cm and breadth b cm equals

Cd = p- electrostat units = v^-lO-" mfd
, (279)

47T? 1 I O)

in which each element and the adjacent turn is consideied as a plate-

condenser with a thickness of insulation of i This foimula for the

capacity of an element also holds for the case in which the coil is wound
with flat copper strip on edge If the coil consists of several layers of

rectangular bais with 11 turns per layer, as shewn m section in Fig 400,
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then we estimate first the capacity of an element with regard to the

adjacent turns in the same layer, which has the value

and then the capacity of unit-length of a layer with legaid to the next

layer, which is approximately

If the coil is wound as numbered in Fig. 400, the mean pressure
between two adjacent layers is n times as great as that between two

adjacent conductors Since, howevei, on the other hand the capacity

of a conductor with regard to the adjacent layer is only - times the

capacity between two layers, the capacity of dii element with regard
to the next turns can be written

C^Ui + Ct ..... . (280)
/

*

The capacity with regard to the turns on the other side is naturally
of the same magnitude. For several coils anauged near one another,
the above formulae for the capacity of an element hold very closely.
This holds not only for round coils, but also for other shapes, the

chief requirement for the accuracy of the formulae is that the distances

r
x
and ?

2
are small compared with the breadths ^ and bt> These

formulae can even be used for stator coils with sufficient "accuracy
Somewhat smaller values are obtained for the capacity with lound
wires than for rectangular, with equal thicknesses of insulation r

T

and ?
3

(b) The calculation of the capacity pei element between coil and
earth appears more difficult For this leason we shall here also lestnct
ourselves to a mean value and put the mean capacity of an element
with regard to the earth equal to the total capacity of the whole

winding with regard to earth divided by the total length of winding
This has the advantage that magnitudes that can be dnectly
measured are used in the calculation.

In a machine with Z slots of periphery U and length /, the capacity
of the whole winding with regard to earth is

........ (281)

where i is the thickness of the slot insulation
(i e. the distance between

copper and iron) and e its dielectric constant The capacity is not
much greater than that given by the right-hand side of the formula,
since the coil-ends have very little capacity with regard to earth
With transformer windings and choking-coils, the capacity with

regaid to earth is more difficult to calculate and depends so much on
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the shape of the surface, that general formulae are too inaccurate and
have therefore no value The capacities of these windings can be
calculated in any particular case with some accuracy, however, by using
the formulae for plate and cylinder condensers

(c) Losses, like those m the dielectrics of cables, also occur in electric

nuchmes
,
but still fewer measurements of these are available than of

the foregoing Skinner measured the dielectric losses in two 5000 K w.

generators made by the Westinghouse El Mfg Co
, Pittsburg, for 11,000

volts maximum and 25 cycles These values are plotted in Fig 401

SoooWati,

GOOO

2000

Volt

20 29 28XK) 3

as a function of the test pressure. The lowei GUI ve A was measured
on one machine with the winding at a temperature of about 21 C and
curve B on the other machine with the winding at about 31 C.

At 25,000 volts the maximum loss was 021 watts per cm8 of

insulation, and this was not sufficient to raise the temperature of the
insulation appreciably in 30 minutes
Dr P Hollitscher * measured the dielectric losses on two machines

made by the Lahmeyerwerke, Frankfurt, for 500 H P and 400 K w
,

10,000 volts, 50 cycles These are shewn by curves A and B in

Fig 402 This test shews that the losses increase practically pro-

portionally to the cube (instead of the square) of the pressure, which

may be due to a certain extent to a discharge of electricity from the

coil-ends at higher pressures Dr Hollitscher found further, that
the losses increase proportionally to the frequency Also the test

shews that the capacity increases with the pressure, i e with the
electric field-strength ,

this corresponds to au increase m the dielectric

constant The slot insulation of the machines consisted of micanite

*ET Z. 1903,8 635
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tubes, and testa upon these gave the figures shewn in Fig 403,

the dielectric constant increasing from 2 8 in one case and 2 2 in the

other at normal pressure to about 5 at double pressure On the

Watt,
sooo

3000

8000

tow

2000 fOOO 8000 000 10000 13000 NOW 10000 ISOOO 20000 2SOOOKU

Pio 402

other hand a variation of frequency shewed no appreciable effect on

the dielectric constant.

Care must also be taken in electric machines and transformers,
that the electric field-strength is at no place so gieat that tho insulating
material is injured thereby, an effect which may happen even if no

2000 WOO 6000 8000 10000 12000 41000 WOO iSOOO 20000 22O007olt

Pin 408

appearance of glowing can be seen With transformer foi voiy high

pressure, in which one winding is made of very fine wire, a well-

rounded metal plate is often placed between coil and insulating

material, to protect the insulation fiom too strong an electric field
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Besides this, care must be taken in the choice of insulating material

111 high tension machines, to see that they can withstand the mechanical
forces of attraction between the copper and iron, which form the two

plates of a condenser For this reason soft materials should always
be avoided

Up to the present no insulating material has yet been found which
can wholly withstand continuously the simultaneous effects of heat

and electro-mechanical stresses, as well as the chemical effect of the

nitrates formed in high tension machines Most insulating materials

change their structme in time
, nevertheless, they still come up to the

requirements, because initially they have been rated very liberally

135. Telegraph and Telephone Lines. As is well known, the trans-

mission of signs in telegraphy is effected by means of unidirectional

currents, obtained from any source The telephonic transmission of

speech on the other hand makes use of alternating-currents, induced
in the secondary windings of induction coils The differences in the

construction of the lines, especially of cables, is due to this difference in

the kind of cm rent For the same reason the influences of power
cables on telephone and telegraph lines aie different

(a) Tekffiaph lines Air-lines are usually made of galvanised 11011

wire of 3 to 7 mm diameter or of 3 mm bronze wire Cables placed

underground usually contain many wires, and are insulated with eithei

gutta-percha or ]ute and paper The strands of gutta-percha cables

are made up of several (up to 14) twisted copper wires 7 mm
diametei, while the wires of cables with fibrous insulation are 1 5 mm
diameter

Submarine cables are always made Avith a single core, insulated with

gutta-percha and heavily armouied against the great mechanical stresses.

The resistance of these cables varies between 2 and 6 ohms, the

insulation resistance between 500 and 1 250 x 106 ohms and the capacity
between 2 and 15 mfd, per km length With overhead conductors

and short cables, which require only veiy small charging cm rents,

the current at the leceiviug station follows immediately on the closing
of the circuit by the key, and up to 1000 words of five letters can

be transmitted per minute With long submarine cables, the charging
cui rent is so great, that an appreciable time elapses before the cable is

fully charged, and the rush of current is noticeable at the leceivmg
station With long submarine cables, therefore, the charging waves

are used as signals The uumbei of possible signals, i e current-waves,

per minute depends chiefly on the capacity and the resistance of the

cable, and only to a small extent on the conduction and self-induction

As a first approximation the product (i 0) of resistance and capacity

per km length of hue seives as a measure of the signalling-speed of

a telegraph line With undergiound cables the gieatest signalling-

speed is obtained, when the outside diameter over the insulation of

each conductor is 1 65 times the diameter of the bare conductoi

Taking mechanical strength into consideration, however, the outside

diameter is made 2 to 4 times the bare diameter
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(b) Telephone hues Air-lines are usually made of silicon-bronze wire

1 5 to 5 mm in diameter, according to the distance Recently, also,

for very long lines, double lines are

frequently used to eliminate external

disturbances When several double lines

are fixed to the same poles, they are

arranged as shewn in Fig 404, as

suggested by Chnstiani In this way
adjacent double lines do not induce any
currents in each othei

Telephone cables consist of many con-

ductors and are usually insulated with

paper Since the capacity must be as

small as possible in modern double-line

cables it should not be more than 05

mfd per km the paper is either per-
forated or arranged in such a way that

there are air-spaces round the conductors.

On account of the capacity, the diameter

of the wire is chosen larger, the longer
the cable is, and the usual diameter ranges
from 08 to 2 mm Telephone cables

are laid either in iron tubes or cement

troughs. In order to further eliminate

the effect of the capacity in very long
lines, small induction coils are connected
in the lines at certain distances as sug-

gested by Pupin, or the self-induction

f ^ lln 1S "Ceased by Wrapping it

round with iron wiie The damping of

an alteinating-current in a long line is

proportional to e"**, where, the damping-factor

- 7
'

d (J<

Fin 404 -Non Inductive Arnrngement
of Telephone Linen

and t

is the tune the current takes to traverse the length 7
3

of the line

Hence we have

a L
l

where R is the total resistance and G the total conduction of the

telephone line, while C,, is the capacity and Ld the self-induction per
km length To make at and therefore the damping of the telephone
currents as small as possible, we must have the following i elation

between the four constants of the line
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which is also the condition for a line free from distortion (p 137)
Since the self-induction of au ordinary telephone line is smaller than the
value given by the formula, Pupin's coils are connected or the line

is bound with iron wire, in order to raise the self-induction artificially.
In this calculation the constants of the line i d) Ld) gt and Cl} measured
with continuous current, will not serve The frequency of the

alternating-currents, occurring in telephony, vanes over a fairly wide

range. Usually 1000 cycles per second is reckoned as a mean value,
and hence the constants of the line are measured at a frequency of 1000

(c) Effect ofpowei -cv> cuits mi telegraph (Mid telephone lines. If power and

signalling lines run close together, the heavy currents may disturb the

weak currents. These disturbances are of different kinds and are

due either to (1) direct conduction of current, (2) electromagnetic in-

duction, or (3) electrostatic induction To avoid direct conduction

of current, both lines must be carefully insulated With electric

railways in which the rails serve as return, it is desirable on this

account to use double lines for parallel telegraph lines, in order

to avoid as far as possible a transference of cuirent, due to the

pressure-drop in the rails

The pressures induced in the low-current lines by the electro-

magnetic fields of the heavy currents are usually small, and can be

calculated from the formulae on p 427 To make the E M F 's induced

by electromagnetic induction harmless, it is of advantage to cross the

feeble-current lines on every third or fifth pole
In general telephone lines are disturbed by static charges These

can be calculated from the formulae given in Section 134 as the

product of the electric potential and the mutual capacity of the line

These charging currents, however, can easily be eliminated from

telephone lines, by leading them to earth through a special chokmg-coil
connected between the two lines. The terminals of the cholciug-coil
are connected to the two telephone lines and the middle point is earthed

The chokmg-coil offeis a high inductive resistance to a current from
line to line, whilst it provides only a very small inductive resistance

from the line to earth Such a chokmg-coil cannot be used for

telegraph lines, since in this case the current is continuous and can

therefore pass through the choking-coil to earth without any high
resistance By using high-pressure continuous current (120 volts) for

telegraphy, the disturbance from electrostatic charging currents can

be made almost entirely harmless
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