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CHAPTER I

POINTS OF VIEW

THE OBJECT OP MATHEMATICS

UMIvJL ATHEMATICS is queen
of the sciences and arithmetic the queen of mathe-
matics. She often condescends to render service

to astronomy and other natural sciences, but under
all circumstances the first place is her due."

So wrote the master mathematician, astron-

omer, and physicist, Gauss (1777-1855) over a

century ago. Whether as history or prophecy,
Gauss' declaration is far from an overstatement.

Time after time in the nineteenth and twentieth

centuries, major scientific theories have come into

being only because the very ideas in terms of

which the theories have meaning were created

by mathematicians years, or decades, or even

centuries before anyone foresaw possible applica-
tions to science.

Without the geometry of Riemann, published
in 1854X or without the theory of invariance de-

veloped by the mathematicians Cayley (1821-

1895), Sylvester (1814-1897), and a host of their

followers, the general theory of relativity and

gravitation of Einstein in 1916 could not have
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been stated. Without the whole mathematical

theory of boundary value problems to use a

technical term which need not be explained now

originating with Sturm (1803-1855) and Liouville

(1809-1882), the far-reaching wave mechanics of

the atom of the past five years would have been

impossible.

The revolution in modern physics which began
with the work of W. Heisenberg and P. A. M.
Dirac in 1926 could never have started without

the necessary mathematics of matrices invented

by Cayley in 1858, and elaborated by a small

army of mathematicians from then to the present
time.

The concept of invariance, of that which

remains unchanged in the ceaseless flux of nature,

permeates modern physics, and it originated in

1801 in the purely arithmetical work of Gauss.

These are but a few of many similar instances.

In none of the scores of anticipations of fruitful

applications to science was there any thought of

what might come out of the pure mathematics.

Guided only by their feeling for symmetry,

simplicity, and generality, and an indefinable

sense of the fitness of things, creative mathe-

maticians now as in the past are inspired by the

art of mathematics rather than by any prospect

of ultimate usefulness. However it may be in
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engineering and the sciences, in mathematics the

deliberate attempt to create something of imme-

diate utility leads as a rule to shoddy work of only

passing value. The important practical and scien-

tific applications of mathematics are unsought

byproducts of the main purposes of professional

mathematicians.

The queen of the sciences however needs no

shabby apology as an introduction. Jacobi

(1804-1851) fittingly expressed what many be-

lieve to be the true purpose of mathematics in

his retort to Fourier (1768-1830). To appreciate

this we must recall that Fourier's influence on

pure mathematics is comparable to Jacobi's on

applied mathematics. In his analytical theory of

heat (published in 1822), the applied mathe-

matician Fourier devised tools which are as useful

today in pure mathematics as they are in all

physics where wave motion underlies the pattern
of events. On the other hand, the contributions

of the pure mathematician Jacobi to higher me-

chanics are indispensable in modern physics.

Fourier had reproached Jacobi for "trifling with

pure mathematics." Jacobi replied that a scientist

of Fourier's calibre should know that the true

end of mathematics is the greater glory of the

human mind.
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A GOLDEN AGE

In the past hundred years mathematics entered

its golden age. This most prolific period in the

history of mathematics had well started by 1830;

the end is not yet in sight. No previous age ap-

proaches the past century for the depth and

tremendous sweep of its mathematics. The only

other centuries at all comparable with the past

hundred years are those of Archimedes (287-212

B.C.) and Newton (1642-1727), and these can be

compared with the Century of Progress only

when generous allowance is made for the diffi-

culties of pioneering. The mathematical inheri-

tance of the past century from its predecessors

was great, both in quantity and quality, so great

indeed that one prophet in 1830 lamented that

"the golden age of mathematical literature is un-

doubtedly past." That splendid inheritance of

at least twenty centuries was increased many
times in one hundred years.

So vast has been the increase of mathematical

knowledge in the past century that few men would

presume to claim more than an amateur's ac-

quaintance with more than one of the four major
divisions of modern mathematics. The field of

higher arithmetic alone as it exists today is prob-

ably beyond the complete mastery of any two
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men, while geometry, algebra and analysis, es-

pecially the last, are of even greater extent. If

mathematical physics be annexed as a province of

mathematics, a detailed, professional mastery of

the whole domain of modern mathematics would

demand the lifelong toil of twenty or more richly

gifted men.

In all this there is a crumb of comfort for those

whose mathematical training ended with their

last year in high school or their first year in

college. These are not so much worse off, rela-

tively, than the majority of mathematicians who
turn the pages of the current mathematical

periodicals or attend scientific meetings. Out of

fifty mathematical papers presented in brief at

such a meeting, it is a rare mathematician in-

deed who really understands what more than

half a dozen are about. The very language in

which most of the other forty-four are presented

goes clean over the head of the man who follows

the six reports nearest his own specialty./

Many causes contribute to this state of affairs

which seems to be a necessary consequence of

mathematical progress. We need mention only
one. It is the perennial youthfulness of mathe-

matics itself which marks it off with a discon-

certing immortality from the sciences.

In theoretical physics it is but seldom neces-
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sary to master in detail a work published over

thirty years ago, or even to remember that such a

work was ever written. But in mathematics the

man who is ignorant of what Pythagoras said in

Croton in 500 B.C. about the square on the long-

est side of a right angled triangle, or who forgets

what someone in Czecho Slovakia proved last

week about inequalities, is likely to be lost. The
whole terrific mass of well established mathe-

matics, from the ancient Babylonians to the

modern Japanese, is as good today as it ever was.

Looking down and far out over the past from

our vantage points of today we can only marvel

at the dogged courage and persistence of the

explorers who first won a devious way through
the wilderness. Broad highways now cross the

barren deserts, straight as bowstrings; where

scores perished miserably in the pestilent marshes

there is a thriving city, and the pass through the

iron mountains which our forefathers sought in

vain is an easy four hours' pleasure trip from the

distant city. The loftier range behind the one on

which we stand is now accessible to us, although

the way is hard, and by scaling its lesser peaks
we can catch glimpses of an El Dorado of which

the most daring of the pioneers never dreamed.

If we marvel at the patience and the courage of

the pioneers, we must also marvel at their per-
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sistent blindness in missing the easier ways through
the wilderness and over the mountains. What
human perversity made them turn east to perish

in the desert, when by going west they could

have marched straight through to ease and plenty?
This is our question today. If there is any con-

tinuity in the progress of mathematics, the men of

a hundred years hence will be asking the same

question about us. We know that there is a

higher range behind us, and we suspect that

behind that one is a higher, and so on, for as far

and as long as there shall be human beings with

the spirit of adventure to heed the whisper of the

unknown. At the present rate of progress our

vantage points of today will be barely distinguish-

able hillocks in a boundless plain to the explorers
of a century hence. Before standing on one or

two of the hard-won peaks of the past century to

see what we can of the progress made in the last

hundred years, let us look about us well before we
start.

ABEL'S ADVICE

To get some sort of a perspective, let us con-

sider roughly the kind of mathematics acquired

by a student who takes all that is offered in a

good American high school. The geometry taught
is practically that of Euclid and is 2200 years old.
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It is a satisfactory first approximation to the

geometry of the physical universe, and it is good

enough for engineers, but it is not that which is

of vital interest in modern physics, and its interest

for working mathematicians evaporated long ago.

Our vision of the universe has swept far beyond
the geometry of Euclid.

In algebra the case is a little better. A well

taught student will master the binomial theorem

for a positive whole number exponent which

Blaise Pascal discovered in 1653. There he will

stop. And yet the really interesting things in

algebra are the creation of the Nineteenth and

Twentieth Centuries, and began to be developed

over a century and a half after Pascal died.

Of higher arithmetic the graduate of a good
school will learn precisely nothing. Unless ex-

tremely fortunate, he will never even have heard

of the theory of numbers. And yet at least one

of its most beautiful and far reaching truths was

known to Euclid. Many of the most striking

results in this field are accessible to anyone with

a year of high school training.

In analytical geometry and the calculus the

score is again zero. The calculus, however, which

has been estimated as the most powerful instru-

ment ever devised for scientific thought, may
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become part of the regular high school course

before the next Chicago World's Fair.

Without a good working knowledge of the

differential and integral calculus created by
Newton and Leibnitz in the Seventeenth Century
it is impossible even to read serious works on the

physical sciences and their applications, much
less to take a step ahead. The like is true, but to

a far lesser extent, for some branches of biology

and psychology, and it is beginning to be true for

some economics. Any normal boy or girl of sixteen

could master the calculus in half the time often

devoted to stumbling through Book One of

Caesar's Gallic War. And it does seem to some
modern minds that Newton and Leibnitz were

more inspiring leaders than Julius Caesar and

his unimaginative lieutenant Titus Labienus.

The junior college student will be considerably

farther ahead at the end of his fourth year.

Provided he has not sought culture by the literary

trail exclusively, he may be able to appreciate
some of the minor classics of science. He will

know as much as the men of the Eighteenth Cen-

tury knew of the calculus, and he will know it

better than they did. Much of what passed for

proof with the pioneers would not now be tolerated

in a college text book. To this light extent the

profound critical work of the Nineteenth Century
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mathematicians has influenced the thinking of

those who take the calculus in college at least in

a good college under a man who is not hopelessly

dry and dusty.

Before quitting this somewhat uninspiring pros-

pect, let us glance at another of the reasons why
the average graduate of standard four year college

course in mathematics usually manages to miss

completely the spirit of modern mathematics.

The point is obvious from a remark of Abel

(1802-1829), one of the greatest mathematical

geniuses of all time. In his wretched life of less

than twenty-seven years Abel accomplished so

much of the highest order that one of the leading

mathematicians of the Nineteenth Century

(Hermite, 1822-1901) could say without exaggera-

tion, "Abel has left mathematicians enough to

keep them busy for five hundred years." Asked

how he had done all this in the six or seven years

of his working life, Abel replied "By studying the

masters, not the pupils."

To appreciate the living spirit rather than the

dry bones of mathematics it is necessary to inspect

the work of a master at first hand. Text books

and treatises are a very necessary evil. The mere

bulk of the work to be assimilated in any reason-

able time precludes intimate contact with the

creators through their works. Nevertheless it is
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not impossible in the ordinary course of education

to read at least ten or twenty pages of mathe-

matics as it came from the pen of a master. The

very crudities of the first attack on a significant

problem by a master are more illuminating than

all the pretty elegance of the standard texts which

has been won at the cost of perhaps centuries of

finicky polishing.

It is rarely feasible for beginners to attempt
the mastery of recent work. This appears in the

mathematical journals, of which there are now
about 500 published throughout the world. Some
come out monthly, others quarterly, and the con-

tents of about 200 are almost exclusively accounts

of current mathematical research. Most of the

articles are in English, Italian, French, or German

(particularly the last two), although many are

printed in the native languages of the authors,

which range from Japanese, Russian, and Polish to

Czech and Roumanian. For a competence in

modern mathematics a reading knowledge of the

first four languages named is a necessity.

Instead of trying to touch the spirit of modern

mathematics through any of this up-to-the-minute

work, it is much more practicable to study

attentively some older classic. Many of the

fluent papers of Euler (1707-1783), for example,

dealing with quite elementary things, may be read
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as easily as a detective thriller. A little farther

along, a memoir by Lagrange (1736-1813) would

make an excellent companion to all the clumsy
textbooks of the standard college course in ana-

lytical mechanics.

In this connection there is an amusing bit of

recent history. At one of the leading American

universities the ambitious president had so thor-

oughly grasped Abel's precept about studying the

masters in preference to their pupils, that he pro-

ceeded to put it into effect in the freshman class.

To aid him in this worthy undertaking, the presi-

dent called in a specialist in the teaching of

science not a specialist in science. Between them

they made up a list of mathematical classics to

be read by freshmen in their spare time. These

included Newton's Principia of 1687 and

Einstein's Theory of General Relativity and Gravi-

tation of 1916. The last is quite a short trifle.

It is the famous paper of which it used to be said

that only twelve men in the world could under-

stand it. The president is enthusiastic about the

project. The freshmen have not yet been heard

from.

THE SPIRIT OF MODERN MATHEMATICS

None of these remarks on the antiquity of the

mathematics which passes as sufficient in a liberal
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education today, or on Abel's sound advice to

would-be mathematicians, are intended in any

spirit of discouragement. Quite the reverse: by
admitting that it is a waste of time for those who
are not mathematicians by trade to explore the

minutiae of modern mathematics, we shall agree
to be content with wider vistas than would satisfy

a peering professional. In fact one of the out-

standing achievements of the past century was the

discovery and exploration of loftier points of view

from which many fields of mathematics, both

ancient and modern, can be seen as wholes and

not as rococo patchworks of dislocated special

problems. The details, however, remain matters

which only specialists can appreciate.

The summits from which those broader points of

view may be gained today seem to us, who did

not have the pain of discovering them, to be

ridicuously evident. Why were these outstand-

ing peaks not seen before? Viewing the progress

of mathematics one might almost be tempted to

amend Kant's rhapsody,

"Two things I contemplate with ceaseless awe,

The starry Heavens, and man's sense of law/'

by striking out "sense of law" and substituting for

it "stupidity." The only thing that deters us is

the moral certainty that we ourselves are as blind
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to what stares us in the face as our predecessors
were.

If the mathematical spirit of the past hundred

years can be described in a phrase, probably
ever greater generality and ever sharper self-criticism

is as just as any. Interest in special or isolated

problems steadily diminished as the century ad-

vanced, and mathematicians became builders of

vast and comprehensive systems of knowledge in

which individual theorems were completely sub-

ordinated to the grander structure of inclusive

theories. The fashioning of ever more powerful

weapons for the assault of whole armies of old

difficulties, instead of single combat against one

at a time, also characterized this golden age of

mathematics. And through and over the whole

period played an almost continuous brilliance of

the most amazing inventiveness the world has

ever known.

The other side of the picture is increasing rigor.

The so-called obvious was repeatedly scrutinized

from every angle and was frequently found to be

not obvious but false. "Obvious" is the most

dangerous word in mathematics.



CHAPTER 11

MATHEMATICAL TRUTH

DESCRIPTIONS OF MATHEMATICS

WH,WHATEVER mathematics

was a century ago, it is certainly not today the

meagre shadow of itself which the dictionaries

make of it. No doubt it takes courage amounting
to rashness to quarrel with a standard dictionary,

but mathematicians have never been conspicuous
for that particular brand of cowardice which sub-

mits to the printed word merely because it is fat,

black, and backed by authority. Disregarding

tradition, some have even framed pithy definitions

of their own, intended as improvements on those

of the dictionaries.

Unfortunately no two of the definitions are in

complete agreement. Each has some high light

which reflects the bias of its author, and all taken

together might give an impressionistic picture not

utterly inadequate. To reproduce all of these

attempts to hobble mathematics in a neat phrase

would amount to compiling a mathematical dic-

tionary, and the work would be hopelessly out of

date long before it was finished. A few examples
must suffice.

15



16 THE QUEEN OF THE SCIENCES

The first description of mathematics as a whole

which need be seriously considered is a much-

quoted epigram which Bertrand Russell emitted

in 1901.

"Mathematics may be defined as the subject

in which we never know what we are talking

about, nor whether what we are saying is true."

This has four great merits. First, it shocks the

self-conceit out of common sense. That is pre-

cisely what common sense is for, to be jarred into

uncommon sense. One of the chief services which

mathematics has rendered the human race in the

past century is to put 'common sense' where it

belongs, on the topmost shelf i]text to the dusty
canister labled 'discarded nonsense.'

Secondly, Russell's description emphasizes the

entirely abstract character of mathematics.

Thirdly, it suggests in a few words one of the

major projects of mathematics during the past

half century, that of reducing all mathematics and

the more mature sciences to postulational form

(which will be explained later), so that mathe-

maticians, philosophers, scientists and men of

plain common sense can see exactly what it is

that each of them imagines he is talking about.

Last, Russell's description of mathematics ad-

ministers a resounding parting salute to the

doddering tradition, still respected by the makers
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of dictionaries, that mathematics is the science of

number, quantity, and measurement. These

things are an important part of the material to

which mathematics has been applied. But they
are no more mathematics than are the paints in an

artist's tubes the masterpiece he paints. They
bear about the same relation to mathematics that

oil and ground ochre bear to great art.

Although it is true in a highly important sense,

of which examples will appear as we proceed,

that we do not know what we are talking about in

mathematics, there is another side to the story,

which distinguishes mathematics from the elusive

reasoning of some philosophers and speculative

scientists. Whatever it may be that we are

talking about in a mathematical argument, we must

stick to the subject and avoid slipping new assump-
tions or slightly changed meanings into the things

from which we start.

To be certain that we have not shifted the sub-

ject of discussion in an involved and delicate

mathematical argument, or to know that our

initial assumptions really do contain all that we

think we are talking about, is the crux of the whole

matter. Time and again mathematicians have

been forced to tear down elaborate structures of

their own building because, like any other fallible
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human beings, they have overlooked some trivial

defect in the foundations.

Before leaving Russell's definition, let us put
two others beside it for comparison. According
to Benjamin Pierce (1809-1880), "Mathematics

is the science which draws necessary conclusions."

As Russell restates the same idea, "Pure mathe-

matics consists entirely of such asseverations as

that, if such a proposition is true of anything,

then such and such another proposition is true.

It is essential not to discuss whether the first

proposition is really true, and not to mention what

the anything is of which it is supposed to be true."

Or again, "Pure Mathematics is the class of all

propositions of the form 'p implies q/ where p, q
are propositions . . . .

"

The evolution of this excessively abstract view

of mathematics has been slow, and it is a charac-

teristic product of mathematical activity of the

past half century. Not all mathematicians would

assent to a definition of this type. Many, par-

ticularly those of the older generation, prefer

something more concrete.

These estimates may well be enhanced by one

from Felix Klein (1849-1929), the leading German
mathematician of the last quarter of the Nine-

teenth Century. "Mathematics in general is

fundamentally the science of self-evident things."
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This has been reserved for the last because it is so

very bad.

In the first place the modern critical movement
has taught most mathematicians to be extremely

suspicious of
*

'self-evident things/' In the second

place it is little better than conceited affectation

for any mathematician to imply that complicated
chains of close reasoning are either easy or avoid-

able from the beginning. After a problem has had
its back broken by half a dozen virile pioneers it

is usually simple enough to walk up and dispatch
the brute with a single well-aimed bullet. If

mathematics is indeed the science of self-evident

things, mathematicians are a phenomenally stupid
lot to waste the tons of good paper they do in

proving the fact. Mathematics is abstract and
it is hard, and any assertion that it is simple
is true only in a severely technical sense that of

the modern postulational method. The assump-
tions from which mathematics starts are simple;
the rest is not.

Each of the quoted attempts to define mathe-
matics has contributed a valuable touch to the

whole picture. These, and the scores of others

which have not been mentioned, illustrate the

hopelessness of trying to paint a brilliant sunrise

in one color. The attempt to compress the free

spirit of modern mathematics into an inch in a
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dictionary is as futile as trying to squeeze an

ever-expanding thunder cloud into a pint bottle.

THE POSTULATIONAL METHOD

Less than a century ago it was quite commonly

thought that mathematics has a peculiar kind of

truth not shared by other human knowledge. For

example, Edward Everett in 1870 expressed the

popular conception of mathematical truth as

follows : "In the pure mathematics we contemplate

absolute truths, which existed in the divine mind

before the morning stars sang together, and which

will continue to exist there, when the last of their

radiant host shall have fallen from heaven."

Although it would be easy to match this extrava-

gance by many as wild from recent writings of

those who, like Everett, are not mathematicians

by profession, it must be stated emphatically that

only an inordinately stupid or conceited mathe-

matician would now hold any such inflated esti-

mate of his trade or of the "truths" he manufac-

tures. One very modern instance of the same sort

of thing, and we shall pass on to something more

profitable. The astronomer and physicist Jfeans
declared in 1930 that "The Great Architect^ the

Universe now begins to appear as a pure mathe-

matician." If this high compliment or that of
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Everett meant anything, pure mathematicians

might indeed feel proud.

Against all the senseless rhetoric that has been

wafted like incense before the high altar of

"Mathematical Truth," let us put the considered

verdict of the man whom most professional mathe-

maticians would agree is the foremost living mem-
ber of their guild. Mathematics, according to

Dayid Hiljbert (1862- ), is a game played ac-

cording to certain simple rules with meaningless
marks on paper. This is rather a comedown from

the architecture of the universe, but it is the final

dry flower of a century of progress. The meaning
of mathematics has nothing to do with the game,
and mathematicians pass outside their proper
domain when they attempt to give the marks

meanings. Without assenting to this drastic

deflation of mathematical truth, let us see what

brought it about.

The story begins in 1830 with George Peacock

(1791-1858) and his study of elementary algebra.
Peacock seems to have been Tme of the first to

recognize that algebraical formulas are purely
formal empty of everything but the rules accord-

ing to which they are combined. The rules in a

mathematical game may be any that we please,

provided only that they do not lead to flat contra-

dictions like "A is equal to B and A is not equal to
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B." The British algebraic school, Peacock, Greg-

ory (1813-1844), Sir William Rowan Hamilton

(1805-1865), Augustus De Morgan (1806-1871),

and others, stripped elementary algebra of its in-

herited vagueness and embodied it in the strict

form of a set of postulates. As these postulates

are illuminating we shall state them in the follow-

ing chapter in a modern version. Before doing

so, however, let us see what postulates are.

A postulate is merely some statement which we

agree to accept without asking for proof. A

famous example is Euclid's postulate of parallels,

one form of which is this: Given a point P in a

plane and a straight line L not passing through P,

it is assumed that precisely one straight line L' lying

in the plane can be drawn through P, such that L
and L' do not meet however far they are drawn."

Many geometers after Euclid's time struggled to

prove that there is one such line I/ and, moreover,

that there is only one. They failed, for the suffi-

cient reason that the postulate is incapable of proof.
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We return to this in the next chapter. In passing,

any modern mathematician will salute Euclid's

penetrating genius for recognizing that this com-

plicated statement about parallel lines is indeed a

postulate, on a level, so far as Euclid was concerned,

with such a simple postulate as "things which are

equal to the same thing are equal to one another."

Euclid's postulate illustrates two points about

postulates in general. A postulate is not neces-

sarily "self-evident," nor do we ask "is it true?"

The postulate is given; it is to be accepted without

argument, and that is all we can say about the pos-

tulate itself. In the older books on geometry,

postulates were sometimes called axioms, and it

was gratuitously added that "an axiom is a self-

evident truth" which must have puzzled many
an intelligent youngster.
Modern mathematics is concerned with playing

the game according to the rules; others may inquire

into the "truth" of mathematical propositions,

provided they think they know what they mean.

The rules of the game are extremely simple.

Once and for all the postulates are laid down.

These include a statement of all the permissible

moves of the "elements" or "pieces."

It is just like chess. The "elements" in chess

are the thirty two chessmen. The postulates of

chess are the statements of the moves a player can
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make, and of what is to happen if certain other

things happen. For example, a bishop can move

along a diagonal; if one piece is moved to an occu-

pied square, the other piece must be removed from

the board, and so on. Only a very original philos-

opher would dream of asking whether a particular

game of chess was "true/' The sensible question

would be, "Was the game played according to the

rules?"

Among the permissible moves of the mathe-

matical game is one which allows us to play. This

is the assumption outright that the laws of ordi-

nary logic can be applied to our other postulates.

As this blanket postulate is of the highest impor-

tance, we shall illustrate its meaning with a simple

example.
In the sixth proposition of his first book of Ele-

ments^ Euclid undertakes to prove that if the

angles ABC and ACB are equal in the triangle as

drawn, then the side AB is equal to the side AC.
His proof is the first recorded example of the in-

direct method reductio ad absurdum .(reduction to

the absurd). Euclid provisionally assumes the

falsity of what he wishes to prove. Namely, he

assumes that AB and AC are unequal. This leads

easily to the conclusion that the angles ABC and

ACB are not equal. But they were given equal.

Faced with this contradiction, Euclid concludes
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by common logic that his provisional assumption

that AB and AC are unequal must be wrong.

Therefore AB and AC must be equal, as this is the

only way of avoiding the contradiction.

In this, when fully developed, appeal is made to

two of the cardinal principles of Aristotelian logic,

the law of contradjctionjLn^

6

iniddlg. The law of contradiction asserts that no

A is not-A; the law of the excluded middle asserts

that everything is either A or not-A. Both of

these have been accepted until quite recently in all

sane reasoning, but both, be it observed, are postu-

lates. As wre shall see later, the law of the excluded

middle has been called into question as a univer-
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sally valid part of reasoning within the past

twenty years by mathematicians. In practically

all mathematics of the past century, however, the

whole machinery of common logic has been included

in the postulates of all mathematical systems.

Unless otherwise remarked, this assumption is

tacitly made in everything discussed.

Having stated a particular set of postulates, say
those of elementary algebra or those of elementary

geometry, what next? In the past forty years a

beautiful art has developed around postulate sys-

tems as things to be studied for their own sake.

One question asked about a given set is this. Is

the set the most economical? Or is it possible to

prune off one and still have a sufficiency? If so,

the one that is to be pruned must follow by the

rules of logic from the others. With a little prac-

tice even amateurs can construct such desirable

sets of mutually independent postulates. It is at

least as amusing a pursuit as solving crossword

puzzles or playing solitaire, and it is fully as useful

as whatever anyone cares to mention.

The requirement of independence for our postu-

late set is not dictated by necessity but by aes-

thetics. Art is usually considered to be not of the

highest quality if the desired object is exhibited in

the midst of unnecessary lumber. Many an other-
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wise good cathedral has been ruined by too many
gargoyles.

Are the postulates then completely arbitrary?

They are not, and the one stringent condition they

must meet has wrecked more than one promising set

and the whole edifice reared upon it in the past

hundred years. The postulates must never lead to

an inconsistency. Otherwise they are worthless.

If by a rigid application of the laws of logic a set of

postulates leads to a contradiction, such as *A is

B and A is not B', the set must either be amended
so as to avoid this contradiction (and possibly

others), or it must be thrown away. We shall

have blundered, and we must start all over again.

At this point it is pertinent to ask, How do we

know that a particular set of postulates, say those of

elementary algebra, will never lead to a contradiction?

The answer to this disposes once and for all of the

hoary myth of absolute truth for the conclusions of

pure mathematics. We do not know, in any single

instance, that a particular set of postulates is self-

consistent and that it will never lead to a contradic-

tion. This may seem strong, but the reader will be

in a position to judge for himself if he reads the

succeeding chapters.

So much for the "absolute truths, which existed

in the divine mind before the morning stars sang

together" so far as these were mathematical
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truths, and so much also for the Greater Architect

of the Universe as a pure mathematician. If he

he can do no better than some of the postulate

systems that pure mathematicians have con-

structed in the past for their successors to riddle

with inconsistencies, the Universe is in a sorry

state indeed. The less said about the postulate

systems for the universe constructed by scientists,

philosophers and theologians the better.

If anyone asks where the postulates come from in

the first place, he is harder to answer. Possibly

the question is of the kind which mathematicians

describe as "improperly posed." Merely because

it sounds like a sensible question is no guarantee
that it is not as nonsensical as asking when time

began.



CHAPTER III

BREAKING BOUNDS

COMMON ALGEBRA

A STATEMENT of what

common algebra is from a modern point of view

was promised in the preceding chapter. The

reader is asked to look rather closely at the simple

postulates given, as from them we shall see pres-

ently at least one aspect of that process of generali-

zation which was a distinctive feature of much
mathematics of the past century.

The letters a, 6, c in what follows are to be inter-

preted as mere marks without meaning. Chinese

characters or f, *, , or any other marks would srf as

well. The signs , O may be given any names
we please, for example, tzwgb and bgwzt. For

the sake of euphony however, they may be read

plus, times. What follows is a paraphrase of the

first part of a paper by E. V. Huntington on Defini-

tions of a Field by Independent Postulates. (Trans-
actions of the American Mathematical Society, vol.

4, 1903, pp. 27-37). The whole paper is within

easy reach of anyone who can read simple formulas.

The underlying idea is that of what we call a

29
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class in English. We do not define class, but we do

assume that, given any class, say C, and an indi-

vidual, say i, we can recognize intuitively whether

i is or is not a member of C. If i is a member of Cf

,

we say that i is in C. For example, if C is the

class of horses, and i is a particular cow, we can

point to i and say i is not in C. All this is so

simple that the only difficulty is to realize that it is

less simple than it seems.

To proceed with common algebra.

We are given a class and two rules of combination,

or two operations, that can be performed on any

couple of things in the class. The operations are

written , O . We postulate or assume that when-

ever a and 6 are in the class, the result, written a

6, of operating with on the couple a, b is a

unique thing which is in the class. This postulate

is expressed by saying that the class is closed under

. We postulate also that the class is closed under

the operation O.

A word as to the reading of formulas. Suppose
a and b are in the given class. By our postulate

above, a 6 is in the class, and therefore it can

be combined with any c in the class to give a unique

thing again in the class. How shall this last be

written? If we get the result from the couple a

6, c, we shall write it (a 6) c; if the result is

got from the couple c, a 6, we shall write it c
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(a 6). At this step the hasty may jump to the

unjustifiable conclusion that, necessarily,

(a b) e c = c (a e 6),
'

where = is the usual sign of equality.

The only things we shall assume about equality
are these.

If a is in the class, then a = a. This says that a

thing "is equal to" itself.

If a, 6, c are in the class, and if a = 6 and b =
c,

then a = c. This is Euclid's old friend about

things equal to the same thing being equal to one

another.

If a, 6 are in the class, and if a = 6, then 6 = a.

The postulates proper for common algebra can

now be stated in short order. In this particular

set there are seven, which we number for future

reference.

POSTULATE (1 . 1) If a, b are in the class, then a

b = b a.

POSTULATE (1 . 2) If a, 6, c are in the class, then

(a 6) c = a (b c).

POSTULATE (1 . 3) If a, 6 are in the class, then

there is an x in the class such that a + x = 6.

These are merely the familiar properties of alge-

braic addition precisely and abstractly stated.

Subtraction is given by (1.3). Notice that our

covering postulate of closure under permits us
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to talk sense about a b and b ffi a in (1.1), and

similarly in the rest. The following three make
common multiplication precise. The postulate

(2.3) gives algebraic division.

POSTULATE (2.1) If a, b are in the class, then a

Ob = b Q a.

POSTULATE (2 . 2) If a, 6, c are in the class, then

(a O 6) O c = a Q (6 O c).

POSTULATE (2.3) If a, b are in the class and are

such that a a is not equal to a, and b b is not

equal to 6, then there is a y in the class such that a

O y = 6.

The seventh and last connects , O.

POSTULATE 7. If a, 6, c are in the class, then

a O (b ffi c)
- (a O 6) 8 (a O c).

Notice that (1 . 1) and (2.1), also (1.2) and (2.2),

differ only in the occurrence of the signs , O.
If we now replace by the common +, and O

by X, and then say that the class shall be that of

all the numbers, positive, negative, whole or frac-

tional, that ordinary arithmetic deals with, we see

that our postulates merely state what every child

in the seventh grade knows. Of course, to take

(1.1), (2.1), we must get the same result out of

6 + 8 as we do out of 8 + 6, and of course 8 X 6 is

the same number as 6 X 8.

There is no of course about it. Can it be proved?

Yes, up to a certain extent, provided we agree to
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stop somewhere and not demand further prooffor the

things asserted. This needs elaboration.

In common algebra we point to all the numbers

of common arithmetic, as we did just a moment

ago, and say there is a class, the numbers, and

there are two operations, common addition and

multiplication, which satisfy all our seven postu-

lates.

Examining parts of the curious (2.3), we observe

that they amount to forbidding the beginners' sin

of attempting to divide by zero.

If then we agree to accept common arithmetic as

a self consistent system, we shall have exhibited a

consistent interpretation of our seven postulates.

Otherwise, granted that arithmetic is self-con-

sistent, we shall have pointed out a self-consistent

system satisfying our postulates.

But what about common arithmetic? Why not

see what it stands on? Do'we know that the rules

of arithmetic can never lead to a contradiction?

No. In the past half century a host of mathe-

maticians have busied themselves over this. Per-

haps the most striking answer is that which bases

the numbers on symbolic logic. But on what is

symbolic logic based? Why stop there? For the

same reason, possibly, that the Hindoo mytholo-

gists stopped with a turtle standing on the back of
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an elephant as the last supporter of the universe.

No finality is possible.

Another sort of answer was given by Leopold
Kronecker (1823-1891). An arithmetician by
taste, Kronecker wished to base all of mathematics

on the positive whole numbers 1, 2, 3, 4,

His creed is summed up in the epigram, "God made

thejntegers, all the rest is the work of man." As
he said this in an after dinner speech perhaps he

should not be held to it too strictly.

In the paper from which the seven postulates are

transcribed it is proved that the set is independent:

no one of the seven can be deduced from the other

six.

The system which the seven postulates define is

called &field. An instance of a field is therefore the

common algebra of the schools. The same system,

namely a field, can also be defined by other sets of

postulates. There is not a unique set of postu-

lates for common algebra, but several, all of which

have the same abstract content. It is just as if

several men of different nationalities were to

describe the same scene in their respective lan-

guages. The scene would be the same no matter

what language was used.

Which of all possible equivalent sets of postu-

lates for a field is the best? The question is not

mathematical, as it introduces the elements of
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taste, or purpose, or value, none of which has yet

been given any mathematical meaning. For some

purposes a set containing the greatest number of

postulates may be preferable. In such a set most,

if not all, of the postulates will be simple subject-

predicate statements. For other purposes a set in

which not all of the postulates are independent

might be easier to handle, and so on.

Before leaving this set, let us recall that it con-

tains all the rules of the game of common algebra.

We can make our moves only in accordance with

these rules.

We can make any rules we please to begin with

in mathematics, provided they are consistent.

But, having made the rules, we must be sportsmen

enough to abide by them while playing the game.
If the game should prove too hard or uninterest-

ing under the prescribed rules, we are free to make
a new set and play accordingly. The exercise of

that legitimate license was the source of some of

the most interesting mathematics of the golden

age.

We have chosen algebra rather than geometry to

illustrate postulate systems on account of its

greater simplicity. The same sort of thing has

been done repeatedly for elementary geometry, for

which one of the neatest postulate systems is

Hilbert's of 1899-1930.
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CHANGING THE RULES

To recall some useful terms, let us name the rule

of play given by Postulate (1.1) the commutative

property of the operation . As the postulate

(2.1) says exactly the same thing about O that

(1.1) does about , we refer to it as the commuta-
tive property of O. Similarly (1.2), (2.2) express

the associative property, and Postulate 7 is the dis-

tributive property. These are the familiar names
of the schoolbooks on algebra.

The circles in , O can now be dropped, as they
have sufficiently played their part of emphasizing
that we are speaking of whatever satisfies the seven

postulates and nothing else. Accordingly we shall

now write a + b for a 6, and a . b or ab for a Q 6,

exactly as in any text on algebra.

Suppose now that we rub out one of the postu-

lates, say (1.2), the associative property for addi-

tion. Then, whenever a + (b + c) turns up, we
can not put (a + b) + c for it, as there is no postu-

late permitting us to do so. We must carry a +
(b + c) and (a + 6) + c as two distinct pieces of

baggage, instead of the one piece we had before.

The new algebra is more complicated than the old.

Is it any less "true?" Not at all, provided we can

point to a class of things a, 6, c, and two

operations, our new "plus" and "times," which

behave as the six postulates we have now laid down
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require, and which we agree to accept as consis-

tent. Without bothering for the moment whether
we can point to an example, let us see how the sys-

tem defined by the six postulates compares with

that defined by all seven from which it was derived

by suppressing one postulate.

A moment's reflection will show that the new

system is more general, that is, less restricted, than

the old. This is plain, because the new system has

to satisfy fewer conditions than the old, and there-

fore there is greater freedom within it. Whatever

we can say about the new system will hold also for

the old. The other way about is false, for some

things (namely all those for which the postulate

(1 . 2) is necessary) can not be said about the new.

This illustrates one way of generalizing a mathe-

matical system. We weaken the postulates.

More than idle curiosity prompts the next ques-

tion. By weakening the postulates of a field

(common algebra) how many consistent systems
can be manufactured? I believe the answer has

not been printed (it is not mine), but it appears to

be 1152. At any rate, the mathematicians of the

past century produced well over 200 such systems

incidentally in the course of their work on postu-

lates. There are thus 200 or more, possibly 1151,

"algebras" in addition to the "common algebra" of

the schools, and each of these is more general than



58 THE QUEEN OF THE SCIENCES

the common one. The schoolboy of the 22nd

Century may have to learn some of these, but he

certainly will not be tormented by more than 1152

in all, for that, it can be proved, is the limit of

possibilities in this direction.

Anyone except a mathematician may be par-

doned for demanding what is the good of this?

Isn't the algebra of the high school enough for

practical life? A reasonable answer seems to be

that high school algebra is either too much or too

little for everyday life. Only one person in hun-

dreds ever actually uses the common algebra he

learned. But for the many in our technical age
who must use mathematics in their work far more
than common algebra is desirable and often neces-

sary. One example must suffice to give some

weight to this assertion.

Open any handbook on mechanics or physics as

they are taught in the first two years of college to

those who intend to make their livings at applied

science, and notice the heavy black letters, usually
in Clarendon type, in the formulas. These repre-
sent "vectors." A vector is the mathematical

name for a segment of a straight line which has

both length and direction. A vector a, inter-

preted physically, represents, among other things,
a force of stated amount acting in a stated direc-

tion. Now follow through a few of the vector
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formulas. Presently the astonishing fact presents

itself that a X b is not equal to b X a, but to m^nus
b X a.

Vectors are added according to our postulates

(1.1), (1.2); postulate (2.2) is still good, and

postulate (7) is satisfied, all with perfectly sensible

physical meanings. But (2.1), the commutative

property of multiplication, has gone overboard,

as it is not truefor vectors. Instead we have ab =

-ba. All this, when properly amplified, gives the

standard vector analysis, without which no one

would think nowadays of trying to mastermechan-
ics or electricity and magnetism.

Still stranger specimens of our collection have

their uses. One, something like vector algebra,

discovered by W. K. Clifford in 1872, has just

recently proved of great service in studying the

complicated mechanics of atoms. Others are of

equal interest to mathematicians. Even the

freak we suggested by suppressing (1.2) is not

without charm.

Another example of generalization (from geom-
etry instead of algebra) will be given presently.
For the moment let us glance back. All that has

been said is as simple as any interesting game, and
is in fact far simpler than chess. Its simplicity has

not bloomed over night. Almost a century was

required for the perfection of the flower. Sir
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William Rowan Hamilton, ^universal genius and

one of the most creative mathematicians of the

golden age, racked his grains for fifteen years in the

effort to create a suitable algebra for geometry,

mechanics, and other parts of physics. The

obstacle which blocked him all those fifteen years

was the commutative property of multiplication.

Finally the solution flashed on him one day while

he was out walking: throw away the commutative

property; a times b is not always and everywhere

equal to b times a.

Today a college freshman discards the commuta-

tive property without fifteen seconds' thought.

SOURCES OF POSTULATES

With a definite system of postulates now at hand

for inspection, we may ask where they came from.

To some mathematicians the question is meaning-
less. Others accept the statement of certain philos-

ophers that the postulates of mathematical sys-

tems are derived from experience. This may be

satisfactory, provided we know what experience
means. But to say that every set of mathematical

postulates is a fruit of experience is to stretch the

meaning of experience to the breaking point, and to

give an answer that is little better than a quibble.

If indeed, as Hilbert has asserted, mathematics is

a meaningless game played with meaningless
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marks on paper, the only mathematical experience

to which we can refer is the making of marks on

paper.

Instead of trying to answer what may be a sense-

less question by giving a plausible equivocation

which any competent mathematician could shoot

to pieces in two seconds, let us see how one of the

most celebrated systems of postulates actually

originated. Anyone who wishes may ascribe the

postulates already stated for a field to expe-

rience. The set for Lobachewsky's geometry
could more properly be credited to a lack of

experience in any usual sense of the word.

For centuries before 1826 mathematicians had

tried to prove Euclid's postulate of parallels (stated

in the preceding chapter) from the remaining

postulates of Euclid's geometry. They succeeded

in proving that if the postulate is so provable, then

any one of a large number of equivalent geometri-
cal theorems must be true. Conversely, if one of

these theorems is a consequence of all of Euclid's

postulates except the one for parallels, then it can

be proved that through a point P in a plane can be

drawn exactly one straight line L' lying in the plane
determined by P and a straight line L not passing

through P, such that L and I/ do not meet how-
ever far extended.

One of these crucial theorems equivalent to the
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parallel postulate is this 'obvious' trifle. Given a

segment AB of a straight line, (see figure follow-

ing) and equal perpendiculars AC, BD erected at

A and B, and on the same side of AB, join CD, and

prove that each of the equal angles (they are easily

proved to be equal) ACD, BDC, marked in the

figure, is a right angle:

Common sense at once "sees" that ACD, BDC
are right angles by folding the rectangle over the

/Y

line perpendicular to AB through the middle point
M of AB. What common sense thinks it sees is a

striking illustration of the fact that mathematics

is not the science of self-evident things.

Being unable to prove that each of ACD, BDC is

a right angle by Euclid's geometry without using
Euclid's parallel postulate, Nicolai Lobachewsky
(1793-1856) conceived the brilliant and epoch-

making idea of what is equivalent to postulating
the assumption that each angle is less than a right
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angle. With minute care he proceeded to develop

the consequences of this hypothesis. It led him to

a simple geometry, just as consistent as Euclid's

and equally sufficient for the needs of everyday life,

in which he discovered the following undreamed of

situation regarding "parallels."

P is any point not on the straight line L; PH is

perpendicular to L; QT and RS are a particular

5

H

pair of straight lines drawn through P. The

angle TPS between RS and QT is greater than zero;

that is, the lines RS arid QT do not coincide. Now,
in Lobachewsky's geometry, any line I/ passing

through P and lying within the angle TPS is such

that it never meets L, however far extended in

either direction. So then there are an infinity of

"parallels" in Lobachewsky's geometry.
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In Euclid's geometry, RS and QT coincide, and

there is only one parallel. Lobachewsky calls the

two lines PR, PT, neither of which meets L, his

parallels, as they both have all the properties of

Euclid's one parallel.

Which geometry is "true?" The question is

improper; each is self-consistent. And each is

sufficient for everyday life.

But why, out of the three thinkable possibilities

that the equal angles ACD, BDC in the original

figure are each less than, equal to, or greater than a

right angle, stop with the first two, which give the

respective geometries of Lobachewsky and Euclid?

There is no compulsion. We may equally well

postulate that each is greater than a right angle.

The result is a third geometry, again self-consis-

tent and sufficient for every day life. In this last

geometry (developed by Riemann) there are no

parallels, and a straight line is dosed and of finite

length.

Why choose Euclid's in preference to either of

the others? Some would say because Euclid's is

the simplest of the three to learn, backed as it is by
2200 years of school teaching.

The significant thing for us at present is that

Lobachewsky changed the rules of Euclid's game
and invented another just as good. This was a

tremendous step forward. It showed mathemati-
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cians that they might try the same trick of denying
the obvious, of ignoring or contradicting those

things which have been accepted in any region of

mathematics, "always, everywhere, and by all,*

and see what might come out of their boldness.

In geometry alone the outcome during the past

century has been sufficiently staggering. Geome-

tries by scores have been created and studied inten-

sively. When first made these were created for

their own sake. More than once these manufac-

tured geometries have proved invaluable in science,

for which the classical geometry of Euclid is today

quite inadequate. We shall return to this later.

Before leaving this, however, let us mention

another direction in which geometry freed itself of

the shackles of tradition by generalization. Solid

space for the Greeks had three dimensions, say

length, breadth and thickness. When geometry
was studied analytically or algebraically instead of

synthetically (as was the case up to 1637), the

restriction to three dimensions no longer was neces-

sary. It was only in the past century however

that complete freedom was attained in this direc-

tion. First, in analytical mechanics in the Eight-

eenth Century, it became useful to reason about

solid space and time together as a geometry otfour

dimensions. The step from/cwr to n (any whole,

positive, finite number) was taken by Cayley
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(1821-1895). From n dimensions to a countable

infinity of dimensions came considerably later.

A countable infinity is as many as there are of all

the positive whole numbers, 1, 2, 3, From

geometry of a countable infinity of dimensions to

an uncountable infinity (as many as there are points

on a straight line) of dimensions, was the last step,

taken about thirty years ago.

If common sense objects to geometry of four

dimensions, it will get little comfort from modern

physics. Relativity is based on a particular

geometry of four dimensions, and geometry of an

infinity of dimensions is now commonly used in the

mechanics of atoms.

The postulational method of setting up mathe-

matical theories algebra, geometry, and the

rest was one of the major advances of the past

century.



CHAPTER IV

"THE SAME, YET NOT THE SAME"
REALIZATIONS OF COMMON ALGEBRA

N,o ONE with a musical

ear would mistake a jig for a waltz. The structure

of each betrays its nature in the first few bars or

phrases. Nor would a musician confuse two
waltzes. Although they belong to the same
kind of composition, their melodies alone are

sufficient to distinguish them immediately.
In mathematics there is frequently discernible

a similar structure. Within each of several theo-

ries is an inner harmony of pure form, and the

form for all is the same. But two theories having
the same abstract form may be as different in their

outward appearance and in their applications as

are two waltzes in sound and emotional appeal.
This is not intended as more than a rough descrip-

tion; and the analogy must not be pressed too far.

As a somewhat crude example, let us look first

at the postulates of a field stated in the preceding

chapter. We shall see that common algebra can
be "realized" in any one of at least three ways. In

the first the class concerned is that of all rational

numbers; in the second the class is that of all real

47
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numbers; in the third the class is that of all com-

plex numbers. The structure of these three fields

is the same, namely the postulates (1.1), (1.2),

(1.3), (2.1), (2.2), (2.3) and (7). Each is, say,

to pursue the analogy, a waltz; the tunes of all

three are different. If we work out the conse-

quences of the postulates once for all abstractly,

without asking for a tune to lighten our labors, we
shall have done waltzes completely, all except fit-

ting melodies to particular waltzes. The melodies

correspond to the interpretations of the things in

the given abstract class and those of the abstract

operations according to which these things are

combined in accordance with the postulates. We
use abstract to emphasize that we can say nothing

about the system considered, here a field, beyond what

is explicitly stated in the postulates and what can be

deduced by common logicfrom those postulates alone.

When we say, for example, that the things in the

given class are real numbers, we assert something
which is not deducible from the postulates, for in

them the things were mere marks. By thus put-

ting a definite restriction on the marks, we get a

field which is no longer abstract or general, but

special. The formulas for this special field will be

instances of those for the abstract field.

Leaving the analogy, we must first describe what
is meant by rational, real and complex numbers.
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These notions permeate much of mathematics.

It is assumed that we understand what the zero,

positive and negative whole numbers, 0, 1, 2,

, 1, 2 are a vast assumptioh
in the light of modern critical mathematics.

If a, b are whole numbers, of which b is not zero,

the ratio of a to b is a/6 (the result of dividing a

by 6). A rational number is defined as the ratio of

two whole numbers. The class of all whole num-
bers is a subclass of all rational numbers, as is

seen by restricting the divisor b to be 1.

The rational numbers do not include the irra-

tionals. A number is called irrational if it is not

the ratio of any pair of whole numbers. For

example, the square root of 2 is irrational, as can

be easily proved by supposing the contrary and

getting a contradiction. This fact, by the way, so

disconcerted Pythagoras, who had constructed his

theory of the universe on the hypothesis that all

numbers are rational, that he induced its dis-

coverer to drown himself in order to suppress the

awkward theory-destroying fact. So runs the

story. It is also reported that the fact had become
so notorious in the golden age of Greece that

Plato averred that anyone who did not know that

the square root of two is irrational (he used differ-

ent words, suited to geometry), was not a man but

a beast.



50 THE QUEEN OF THE SCIENCES

A part of all the irrationals and all the rationals

are swept up into the common class of real numbers.

To picture these, take any convenient point on

an indefinitely extended straight line, and any con-

venient length, say an inch, which we agree shall

be the unit of measure. Step off 1, 2, 3, ......

inches to the right of 0, and 1, 2, 3, ...... to the

left; name the first positive, and the second negative.

The points thus marked, including at O corre-

spond to the whole numbers. Scattered along the

line are the points corresponding to the rational

-* -1 -1 -A. o

numbers, a few of which are marked in the figure.

Where is the square root of 2 on the line? To the

right of O and somewhere between the two rational

numbers 140/100 and 142/100. Being content for

the present with that vague somewhere, we remark

that to each point on the line corresponds one and

one and only one real number, rational or irrational.

The real numbers are everywhere dense on the line,

for between any two we can always locate another

by bisecting the segment joining the two repre-

sentative points, if no other way suggests itself.
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The class of all real numbers is the class whose

members correspond, one-to-one, to all the points

on the line.

Complex numbers constitute a still vaster assem-

blage. In describing them, I shall deliberately

avoid the perfectly satisfactory way of the high-

school texts and return to Gauss. This has two

advantages for our purposes. It avoids the legiti-

mate but trivial discussion of what "imaginary"
means. "Imaginary" numbers are no more imag-

inary than are negatives, if we persist in regarding

the positive whole numbers as the only true num-
bers. It also makes it easy to see how mathe-

maticians in the past seventy years generalized

complex numbers and invented hypercomplex
numbers.

Following Gauss, we let a, b represent any real

numbers, and we create an ordered couple (a, 6).

This ordered couple of real numbers is called a

complex number if it is made to satisfy certain

postulates, of which we shall state only three as

samples.

The sum (a, b) ffi (c, d) of the given pair of com-

plex numbers (a, fe), (c, d) is defined to be the com-

plex number (a + c, 6 + d) ; the result (a, 6) O
(c, d) of multiplying the given pair (a, fe), (c, d) is

defined to be (ac-bd, ad + fee) ; equality is defined

to mean that (a, 6)
=

(c, d) when and only when
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a = c and b = rf. In the above, a + c, ac, etc.,

have their usual meanings as for real numbers in

arithmetic.

With these definitions of "addition," "multipli-

cation," and "equality," it is a simple exercise to

o

IE

I (+>

N

verify that the class of all complex numbers (a, 6),

(c, d), satisfies all the postulates of a field.

In passing, we give the usual geometrical picture

of (a, 6) (fig 6). Through draw a perpendicu-
lar to the line on which we represented real numbers.

Take any point P in the plane fixed by these two

lines, and drop a perpendicularPN to the line of real
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numbers. If the length of ON is measured by the

real number a, and that of NP when laid along the

line of real numbers is measured by 6, we affix to1

the point P the complex number (a, 6). If P lies

in either of the quadrants labeled I, IV, a is posi-

tive; if P lies in II, III, a is negative; if P is in I or

II, b is positive; if P is III or IV, b is negative.

The pairs ( + , +), (-, +), (-, -), (+, -),

taken in the order opposite to the motion of the

hands of a watch, tell the story on the figure.

The "imaginary" square root of minus one has not

been mentioned. Whoever cares to look for it will

find its image on the vertical line. Notice that

(a, 6) is also uniquely placed by giving the length of

OP and the magnitude of the angle NOP, read as

indicated by the arrow. Now OP is a vector, whose

magnitude is the length of OP and whose direction

is NOP. This perhaps suggests why complex
numbers are of great use in the study of alternating

currents, where the vectors concerned are repre-

sented graphically.

Out of all this several simple and important

things emerge. First, the infinitely rich class of all

real numbers is imaged on a mere straight line on

the plane picturing the class of all complex num-

bers, which is infinitely rich in straight lines

they can be drawn in all directions over the whole

plane. To anticipate a question that will be dis-
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cussed later, we state here one of the great dis-

coveries of the golden age. Common sense and

all appearances notwithstanding, there are pre-

cisely as many real numbers as there are complex
numbers. Stated geometrically, this says that on

any straight line in a plane there are just as many
points as there are in the whole plane. If that is

not sufficiently jarring to the original sin of our

preconceived notions, consider this. In the whole

plane there are only as many points as there are on

any segment of a straight line, provided only that

the segment is indeed a segment and has a length
not zero say a billionth of a billionth of a billionth

of an inch. There is a still more striking conclu-

sion of a similar sort. The segment contains as

many points as there are in the whole of space of a

countable infinity of dimensions.

If the reader will look back a few sentences he

will see the words "one of the great discoveries of

the golden age." That was not a mere rhetorical

flourish. It was a historical statement, and was
meant to be taken literally. It was neither as-

serted nor implied that a great discovery is ever

necessarily the final one in a given direction. Out
of this discovery and what led to it has grown in

the past twenty years what is today regarded by
many as the turning point in modern mathematics,
and we do not yet know whether the signpost reads

"Go on" or "Go back."
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THE END OF A ROAD

What else do the rational, the real, and the com-

plex numbers give us, beyond a nest of Chinese

boxes each of which is enclosed in the one following

it? Every schoolboy knows or takes for granted

that each of the first two classes of numbers satis-

fies all the demands of common algebra, and those

slightly more advanced know the same for complex
numbers. We have then three distinct instances

of a field three waltzes with different melodies.

The structure of the field is the same in all three,

which are abstractly identical; the specialized fields

differ in their interpretations.

Before leaving this, we shall answer the natural

question suggested by the rationals, the reals and

the complexes. Why not generalize still further,

say to triples (a, 6, c) of rationals, combined accord-

ing to appropriate rules?

The answer is again a great landmark. It was

proved by Karl Weierstrass (1815-1897) about

1860, and more simply by Hilbert later, that no

further generalization in this particular direction

is possible. We have reached the end of a road.

As it is of some importance to understand exactly

what Weierstrass proved, I state it more fully.

By retaining all the postulates of a field, it is impos-
sible to construct a -class of things which satisfies all
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postulates and which is not either the class of all com-

plex numbers or one of the latter
9

s subclasses.

Here again I have tried to be historically precise.

It was a landmark of the golden age. In the past

six years, however, so broad, so rapid and so deep
is the river of mathematical progress, that this

landmark has been endangered. Not the fact

which Weierstrass and Hilbert thought they

proved has yet been swept away, but the type of

reasoning which they employed has been called

into serious question. Professing no opinion on

these matters, which affect all our reasoning in

logical patterns inherited from Aristotle, I simply

report and pass on.

If complex numbers are the end of this particu-

lar road, how shall we progress? Go back and

build another! New roads by hundreds were con-

structed to higher points of view by the mathe-

maticians of the century of progress. One great

highway led to the unbounded field of linear asso-

ciative algebra, in which the associative property
of multiplication, but not the commutative, is

retained in the postulates.

Having acquired from Lobachewsky, Hamilton,
and others the habit of denying the obvious, the

pioneers might easily have contradicted or denied

one or more of the postulates of a field, as we now
sometimes do, to reach these vantage points. But



THE END OP A ROAD 57

this is rather a road for the sophisticated, easy

enough to travel after it has been blasted out of

the rock and graded. As a matter of fact one of

the commanding peaks of the Nineteenth Century,
which we could now reach more easily, was dis-

covered otherwise and far from naturally. It all

but revealed itself through the mists a score of

times to seasoned explorers, who glimpsed its

lower slopes but never its summit, for almost a

century before a boy of eighteen looked up and saw

it all. Less than three years later he was killed in

a duel. From the summit which Evariste Galois

(1811-1832) discovered, a host of workers, led by
Jordan and Kronecker, looked out over the vast

domain of algebraic equations and algebraic num-

bers and perceived order, simplicity, and beauty
in what was chaos to the pioneers; another host,

led by Felix Klein and ascending yet higher, saw

the multitude of geometries which the golden age
discovered as isolated provinces united into a

single, harmonious pattern of light and shade.

We shall indicate these summits next.



CHAPTER V

OAKS FROM ACORNS
TRANSFORMATIONS

I,. N MATHEMATICS it IS new

ways of looking at old things which seem to be the

most prolific sources of far-reaching discoveries.

A particular fact may have been known for cen-

turies, and it may have been sterile or of only minor

interest all that time, when suddenly some original

mind glimpses it from a new angle and perceives

the gateway to an empire. What the first flash of

intuition sees may take years or even centuries to

open up and explore completely, but once a start

in the right direction is made, discovery goes for-

ward at an ever increasing speed. Such, in outline,

appears to have been the evolution of two of the

dominating concepts of the mathematics of the

golden age, that of groups and invariants.

The story begins far back. Distinct traces of

the long development are discernible in the work of

the Babylonians and the Greeks who, however,

never suspected what their regular patterns in

tilework and other forms of art meant abstractly,

that is, mathematically.
A different approach to the dominating idea

58
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seems to have guided the brilliant Arabian alge-

braists of the Ninth to the Fifteenth Centuries and

successive generations of their European followers

down to the Eighteenth and first two decades of

the Nineteenth Century. But again those who
were guided failed to grasp the thread and followed

it, if at all, subconsciously.

Regularities and repetitions in patterns suggest

at once to a modern mathematician the abstract

groups behind the patterns, and the various trans-

formations of one problem, not necessarily mathe-

matical, into another again spell group and raise

the question what, if anything, in the problems re-

mains the same, or invariant, under all these trans-

formations? In technical phrase, what are the

invariants of the group of transformations?

When faced with a new problem mathematicians

frequently try to restate it so that it is equivalent
to one whose solution is already known.

In school algebra, for example, the general equa-
tion of the second degree is solved by "completing
the square." This reduces the general quadratic
to one which we can solve at sight. To recall the

steps: we solve y*
= k for y thus, y = db \/k.

We then reduce ax2 + 2bx + c = 0, by completing
the square, to

/ 6V &
( x H 1 =
V /
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which is of the sameform as the easy equation y
2 =

k. In f

b2 - ac

k. In fact, if we now write y x + -, k =
a

-, we have exactly y
2 = k. Notice the ex-

a-

pression ft
2 ac. A remarkable property of this

simple expression, considered in a moment, started

the whole vast theory of invariance.

Successes such as this were some of the reasons

why mathematicians began to study algebraic

transformations intensively for their own sake.

To illustrate a contributory cause, let us consider

two further simple problems, one from elementary

algebra, the other from geometry, to see how the

comprehensive modern concept of invariance

originated. Those who have forgotten their first

year of school algebra will have to skip the next.

In ax2 + %bxy + cy
2
, express the x, y in terms of

new letters X, Y as follows, x = pX + qY,

y = rX + sY. The result is a(pX + qY)
2 +

2b(pX + qY) (rX + sY) + c(rX + sY)
2

.

Multiply everything out and collect like terms.

The result is

AJ2 + WXY + CY\

in which A, B, C are the following expressions in

terms of a, 6, c, p9 g, r, s:
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A = ap
2 + Zbpr + c r2,

B = apq -f

We shall leave it to the reader to verify that the

new A,B,C and the old a, fe, c are connected by the

astonishing relation

B*- AC = (ps
- rqY (6

2 -
ac).

To sum up what has happened, let us write

-f CY\
B* - AC =

(ps
-

rqY (& - ac).

The -4 can be read "is transformed into." The
indicated transformation of x, y is said to be linear

(technical term for "of the first degree") in X and

Y. The expression ps qr, which depends only
on the coefficients p, q, r, s of the transformation of

x, y is called the modulus of this transformation.

Now look at the summary. It says that 62 ac

belonging to the original ax2 + %bxy + cy
2
, and J5 2

- AC, belonging to AX2 + 2BXY + CY\ differ

only by a factor which is the square of the modulus

of transformation. For this reason, 62 ac is

called a relative invariant of ax2 + %bxy + cy* 9

"relative," because 62 ac is not absolutely un-

changed under the transformation. If however

p, g, r, s are chosen so that (ps qr}
2 = 1, then
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62 ac and J92 AC are equal and of the sameform,
and we say that 62 ac is an absolute invariant of

ax2 + %bxy + cy
2 under the given linear transfor-

mation. This appears to be the first known in-

stance of such unchangeableness of algebraicform.
A mathematician who could look at the relation

between b2 ac and B2 AC and not be at least

mildly surprised provided it was the first time he

had seen such a phenomenon would be little more

than an algebraic imbecile. This elementary fact

is the acorn, among other things, of the great oak

which overshadows ipodern physics, Einstein's

principle of the "covariance of physical laws," and

it was planted by Gauss in his immortal Disquisi-

tiones Arithmeticae (published in 1801). Cayley,

Sylvester, and others made the acorn grow to the

oak in 1846-1897.

Our geometrical example requires no algebra.

Consider the shadows cast on a wall by a book as

it is turned into various positions. The lengths

of the sides of the shadow change as the book is

moved. What does not change? Try it with a

flat mesh of straight wires. The shadow angles at

which the wires intersect and the shadow lengths

of the pieces of wire between intersections change
in the varying shadows. But an intersection of two

or more wires remains the same; the shadow wires
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intersect in the same way as the real wires, and the

straight wires remain straight in shadow.

The wires represent a simple geometrical con*

figuration of points (intersections) and straight

lines. Under the shadow transformation the

straightness of the lines is invariant. Further, the

intersection of any number of lines is an invariant

property, as also is that of the order of any number
of intersections lying on one straight line. The
shadow is a particular kind of projection, like that

of a picture on a screen.

Let us recall now that the school geometry (Eu-

clid's) deals almost exclusively with the compari-
son or measurement of lengths, areas, and angles.

For instance, the angle inscribed in a semicircle is a

right angle. What becomes of this under projec-

tion? It is not invariant, for the circle projects

into an ellipse and the right angle loses its "right-

ness."

Properties of geometrical configurations which

are altered by projection are called metric, since they

depend upon measurements. Properties invariant

under projection are called protective. This is

merely a description of terms and not an exact or

full definition. It is sufficient for our purpose,

although in passing it may be mentioned that by

taking account of points whose coordinates are

complex numbers, the whole of metric geometry can
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be restated more simply as an episode in projec-

tion. The common non-Euclidean geometries
also come into the shadow picture.

A PROBLEM IN GEOMETRY

Glancing back at the algebraic example and the

geometrical shadows, we see two general problems,
one algebraic, the other geometric.
The geometric one is the more easily stated : Given

any geometrical configuration, to find all those

properties of it which are invariant (unchanged)
under projection.

This is immediately generalized. Why stop
with projection, which is only a particular kind of

transformation? We might for instance seek all

those properties of extensible, flexible surfaces,

like sheets of rubber, which are invariant under

stretching and bending without tearing. The geo-
metrical problem now is: Given any geometric

thing configuration, surface, solid, or whatever

can be defined geometrically and given also a set

of transformations of that thing or of the space

containing it, to find all those properties of the

given thing which are invariant under the trans-

formations of the set.

All this can be translated into the perspicuous

symbolic languages of algebra and analysis. The
last may be very roughly described as that de-
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partment of mathematics which is concerned with

continuous variables. A variable is, as its name

implies, a mark or letter, say x, which takes oui

different values successively in the course of a given

investigation. For example, the speed of a falling

body is not a constant number, say 32 feet per

second, but a variable whose numerical value in-

creases continuously from zero (when the body
starts to fall) to a greatest speed just as the body
strikes the earth.

In passing I must apologize for this very crude

description of variables. To state fully what a

variable is would take a book. And the outcome
would be a feeling of discouragement, for our at-

tempts to understand variables would lead us into

the present day morass of doubt concerning the

meanings of the fundamental concepts of mathe-
matics. I shall ask the reader to trust his feeling

for language and let it go at that: a variable is

something which changes. A continuous real

variable passes through all numbers in agiven inter-

val, say from zero to 10, or from zero to infinity.

Now, in 1637 Descartes published his epoch mak-

ing treatise on analytical geometry. At one step
the whole race of mathematicians strode far ahead
of the Greek geometers. To understand the con-

nection between the analytical and algebraical

aspects of invariance and the geometrical problem
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of invariance, it is essential to see what Descartes

did.

A GLANCE BACK 300 YEARS

In the familiar figure below which every school-

boy (or girl) uses to "graph" one thing or another,

is the germ of the revolutionary idea. How could

f-

y

o

tyure

X

ir
the whole race have missed this till Descartes saw

it? A graph is more easily read than any table of

numbers.

The point P has the coordinates (x, y} ; x is meas-

ured along the X-axis XOX', and y is measured

parallel to the F-axis YOY''. Distances x to the

right of are positive, those to the left negative;
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distances y measured up above XOX f
are positive,

those measured down below XOX' are negative.

The point P is uniquely fixed when its coordinates

are assigned.

Now consider all the pairs (x, y) of coordinates

of a point which satisfy a given equation connect-

ing x and y ; say the equation is / (x, y) = (read

as, "equation connecting x and y" or "function

of x, y equals zero"). All of these pairs will lie on

a certain line, straight or curved, say briefly on a

curve, in the plane fixed by XOX' and YOY' and

/ (x 9 y) = is called the equation of this curve.

For example, the equation of the circle whose

centre is at and whose radius is 5 is x2 + y
2 = 25.

What Descartes did was this. Instead of study-

ing curves and surfaces by drawing figures as the

Greeks had done, he wrote down the equations of

the curves considered and proceeded to manipulate
these equations algebraically. Then, conversely,

he interpreted the resulting algebra in terms of the

curves whose equations he had written.

The gain in power was tremendous. A fresh-

man today can prove with ease properties of curves

whose difficulties, by the Greek or synthetic

method, would have taxed the greatest of the

Greeks. This however does not imply that any
freshman is necessarily a greater geometer than

Euclid or Apollonius, or even Pappus.
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The method of Descartes did more. It sug-

gested literally an infinity of interesting curves and
surfaces never even imagined by the predecessors

of Descartes. Many of these are of the highest im-

portance in practical affairs.

Another great step forward was rendered possible

by Descartes' amazingly simple invention of

analytical geometry. Many prefer pictures, verbal

or graphic, to equations. The invention of

analytic geometry enables us to speak the vivid

language of geometry about things which are alge-

braic or analytic.

Last, Descartes potentially freed geometry from

the unnecessary restriction to space of three dimen-

sions, although final and complete freedom in this

respect was achieved only in the present century.

There is no reason why we should suddenly stop
with equations in three variables. Why not consider

any number n? When we do, and use the language
of geometry, we have a "geometry of n-dimen-

sional space." This also is of great practical use.

Thus rigid kinematics is a geometry of 6 dimen-

sions; the theoretical physics of gases is a geometry
of 6n dimensions, where n is the number of mole-

cules in the volume of gas considered.

WHAT IS GEOMETRY?

A more appropriate question would be "What
was geometry in its second golden age of the past
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century?" In the last ten or twelve years geom-

etry has entered a new phase, vaster and more

powerful than ever. The new geometry goes far

beyond that which we are about to describe, vast

as that was, and it is of unprecedented importance
for its suggestiveness in the physical sciences.

The spirit of geometry from at least 1872 to 1922

can not be better or more briefly described than in

a famous sentence of Felix Klein. All the astound-

ing inventiveness and infinite variety of geometry

during that amazingly prolific half century is seen

as one orderly, simple whole from the commanding
summit which Klein recognized as the proper point

of view to sweep in the whole of the past of geo-

metry and to foresee much of its future. Here is

the famous sentence:

"Given a manifold and a group of transformations

of the same, to develop the theory of invariants relat-

ing to that group"
It is a pity to spoil the beautiful simplicity of

this by explanations, but we can be brief. A
manifold of n dimensions is a class of objects which

is such that a particular object in the class is com-

pletely specified when each of n things is given.

For instance, a plane is a two-dimensional manifold

of points, because the plane can be considered as

the class of all its points and any point in the plane
is completely specified, or uniquely known, when
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its two coordinates x and y are given. Common
solid space similarly is a three-dimensional manifold

of points. I shall leave it to the reader to see that

common solid space is also a four-dimensional

manifold of straight lines. This should rob the

"fourth dimension" of some of its silly mystery.
The transformations referred to are of the kind

which replace each object of the manifold by some

definite object of the manifold, or even of another

manifold. For instance, we might consider all

those transformations of the straight lines of solid

space which carry straight lines into other straight

lines, or into spheres, for (as the reader may easily

think out for himself) common solid space is four-

dimensional in spheres as well as in lines. (It

takes four numbers to fix a particular sphere;

three to fix the coordinates of the centre, and one to

fix the length of the radius) . The number of dimen-

sions of any space depends only upon the elements

(points, lines, planes, spheres, circles, etc.} in terms

of which the space is described.

The transformations, according to Klein, must

form a group. The postulates for a group are

given in the next chapter, and these postulates are

the official definition of a group. But as the group
is the central and commanding concept of Klein's

whole vast program, let us describe its leading

property.
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Consider a class of things and a set of opera-

tions which can be performed on the members of

that class. If the result of performing any one of

the operations upon any given member (or mem-

bers) of the class is again a member of the class, we

say that the class has the group property with

respect to the operations. The class then is closed

under the operations of the set. Thus the class of

positive whole numbers 1, 2, 3, has the

group property with respect to addition, for the

sum of any two of these numbers is again one of

the class. The like holds also for multiplication,

but not for subtraction or division.

The invariants in Klein's program are those

things (properties, actual figures, or what not)

that persist, or remain unchanged, under all the

transformations, or operations, of a particular

given group.

Finally, notice that nothing is said about the

number of dimensions of the manifold. This may
be 1, or 2, or 3, or n, or it may be infinite.

All possibilities are envisaged in the vast program.
Was Klein's program simply an empty dream,

an unnecessary abstraction and generalization of

the familiar? Far from it. From that single

point of view the geometers of the golden age saw

projective geometry, metric geometry of all kinds,

Euclid's geometry, innumerable non-Euclidean
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geometries, geometries of any number of dimen-

sions, and much more, as harmonious parts of

Klein's comprehensive, simple program. It was

one of the memorable things of all mathematical

history, not merely an outstanding achievement of

the past century. That the present is going be-

yond Klein, and ascending higher than he saw,

does not diminish the sublimity of his conception.



CHAPTER VI

GROUPS AND MATRICES

AN EXCURSION IN THE PRACTICAL

Jr ROM Klein's program
for geometry it is clear that the concept of a group
dominated at least one major province of mathe-

matics during the past century. Groups also were

found to be the structure behind much of modern

algebra, in particular the theory of algebraic equa-
tions. Wherever groups disclosed themselves, or

could be introduced, simplicity and harmony
crystallized out of comparative chaos. Finally
some modern philosophers became interested in

this powerful, unifying mathematical concept of

groups as an important phase of scientific thought.
As the idea of a group was one of the outstanding
additions to the apparatus of scientific thought of

the last century, we shall discuss it at some length.

Before proceeding to the official definition of an

abstract group, I add a word of caution. Vast as

was the panorama swept in from the vantage point
of groups, it by no means included the whole of

mathematics, either ancient or modern. In many
a fertile mathematical province groups either play
no part or only a very subordinate one. The

73
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whole theory of groups itself is but an incident in

the algebra of the past century.

Groups are first subdivided into two grand divi-

sions, finite and infinite. The number of distinct

operations in a finite group is finite; in an infinite

group the number of distinct operations is infinite.

The subject was developed in the Nineteenth Cen-

tury by a host of mathematicians, among whom
Galois, Cauchy, Jordan, Lie and Sylow may be

mentioned.

A finite group according to a famous dictum of

Cayley in 1854 is defined by its multiplication

table. Such a table states completely the laws

according to which the operations of the group are

combined. Here is a specimen which can be easily

understood.

/ A B c D E

A

B

c

D

E

I A B C D E

A B I D E C

B I A E C D

C E D I B A

D C E A I B

E D C B A 1
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This group contains the six operations I, A, B,

C, D, E. We shall state what the table says about

any pair of these operations, say B and D. Take

any letter, say B, from the lefthand verticalcolumn,

and any letter, say D, from the top horizontal row,

and see the entry C in the table where the B-row

and the D-column intersect. It is just as if we
were to multiply B by D, say B X D, and get the

answer C. Instead of writing B X D, we shall

write BD, which says to take B from the left, D
from the top, and find where the corresponding row

and column intersect. This gives the result C; so

we write BD - C.

What about DB, found according to the same
rule? It is not equal to C, but to E; namely, DB
= E. So in this kind of composition, BD and DB
are not necessarily equal. The reader may easily

satisfy himself that although the commutative
law has gone, the associative is still valid. For

instance (AB) C = A (BC).
Let now x be any member of a given class on

which I, A, B, C, D, E operate. We postulate that

the result of operating with any one of /, A, B, C, D,
E on x gives another member of the class. Let us

write B (x) (read, "J? on or") for the result of operat-

ing on x with B. By our postulate this is some
member of the given class, so we can operate on
B (x) with D. The result is written BD (x), which
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is again in the class. Now, the assertion of the

table that BD = C says that, instead of performing

the operations J5, D successively, first B and then

D, we could reach the same final result in one step,

by performing the operation C on x. Thus, the

class is closed with respect to the operations I, A, B,

C, D, E. For the results of performing the opera-

tions of the set successively are always in the set.

If the reader does not believe this, let him follow

the rule which gives BD = C, DB = E, CE = A,
EC =

jB, etc., and try to escape from the table.

Lay aside this book for a moment and reflect on

the miracle that such closed, finite sets actually

exist.

Notice the effect of operating with /. The table

says that AI = IA = A; BI = IB =
J?, and so for

all. Thus / as an operation changes nothing; it is

called the identity.

The last thing to be observed attentively is this.

Given any one of /, A 9 B, C, D, E, say X, there is

always exactly one other of the six, say Y such that

XY = I. Further, for every such pair, X, Y it is

true thatXY = YX. It is not asserted that X, Y
are necessarily distinct. For example, if X is the

particular operation B, then the table says that

Y = A, because BA = 7; if X is E, then Y also is

E. Two operations X, Y such that XY = the

identity are called inverses of one another. The
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table states that each element of the set has a unique
inverse.

A set of operations having all of the foregoing;

properties is called a group. The definition by

postulates will be given presently.

For the moment let us see that an instance of the

group defined by the specimen multiplication table

actually exists. There are dozens of them all in

different parts of mathematics. Here is a very

simple specimen from arithmetic. Start with any
number different from zero, say x. We can sub-

tract xfrom 1, and we can divide 1 by x 9 getting the

new numbers 1 x and I/a:. Repeat these opera-

tions on the new numbers. Then 1 x gives back

x and a new number I/ (1 x);l/x gives the new
number 1 I/a; or (x 1) fx, and gives back x.

Keep this up forever. You can never get but one

or other of the six numbers x, I/a;, 1 x, I/ (1 x),

(x !)/#, x/ (x 1). Now let 7 be the operation

which transforms x into itself, / (x)
= x; let B be

the operation which transforms x into (x 1) /x,

or B (x)
=

(a; l)/av and so on, with C (x)
=

I/a:, D (x)
= 1 -

x, E (x)
= x/(x -

1). A little

patience will show that these I, A, B, C, D, E
satisfy the multiplication table.

The number of different operations in a group is

called its order. Thus our group is of order 6.

Looking at the table more closely, we see several
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smaller groups within the whole group, for example
those whose multiplication tables are

/ C I A B

whose respective orders are 1, 2, 3. Now 1, 2, 3

are divisors of 6, and we have illustrated a funda-

mental theorem of groups, the order of any sub-

group of a given group is a divisor of the order of the

group.

The following postulates for a group should now
be intelligible.

We consider a class and a rule, written as o, by
which the two things A, B in any ordered couple

(A, B) of things in the class can be combined so as

to yield a unique thing which is again in the class.

The result of combining A, B in the ordered

couple (A, B) where A and B are any things in the

class, is written A o B.

POSTULATE. (Closure under o). If A, B are in

the class, then A o B is in the class.
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POSTULATE. (Associativity of o). If A, B, C
are in the class, then (A o B) o C = A o (B C).

POSTULATE. (Inclusion of identity) . There is fc

unique thing I in the class such that A o / = I o A
for every thing A in the class.

POSTULATE. (Unique inverse). If ^4 is any

thing in the class, there is a unique thing, say A',

in the class such that A o A' = /.

The foregoing postulates define a group: the class

is said to be a group under (or with respect to) the

composition o. The postulates contain redundan-

cies, but are more easily seen in the above inelegant

form. The A, B, C, are our previous

"operations."

It is instructive to compare the postulates for a

group with those for a field. It will be seen that,

if we suppress the commutative property of multipli-

cation in a field, the remaining postulates for

multiplication are those of a group, and likewise

for addition.

If the composition o does have the commutative

property (as in the arithmetical examples above),
the group is called commutative, or Abelian (after

Abel).

Let us glance back here at the linear transforma-

tion

*= PX + qY\
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of Chapter V. Merely write down the coefficients

p, g, r 9 s of this transformation, as Cayley did in a

fundamental "Memoir on Matrices" in 1858, thus

p. q

r, s

This is called a matrix (of order 2, since there are 2

rows and two columns) . What of it? the skeptical
reader may ask. I refer him to the physicists for

the moment, until an answer can be indicated

shortly. At present I wish merely to emphasize
that matrices were invented in 1858 by Cayley for

the purposes of pure mathematics, and neither he

nor anyone else dreamed that 88 years later they
would prove to be a subtle clue to some of the

deepest mysteries of the physical universe.

Cayley dealt directly with the matrix instead of

with the linear transformation of which it is the

skeleton. An important thing about matrices is

the way they are combined, or operated upon, or, in

technical phrase, multiplied. The rule is illus-

trated thus

r, s

P,Q

R,S

pP + qR, pQ + qS

rP -f sRt rQ + sS

where X is read "times," and the matrix on the

right of the sign = is by definition the result of
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performing X on the given matrices in the given
order. As numerical examples:

1, 3

2, 4

3, 5

6, 7

X

X

3, 5

6, 7

1, 3

2, 4

21, 26

30, 38

13, 29

20, 46

The multiplication of matrices is not commutative,
as shown by this example or the rule.

Suppose now that we perform two linear trans-

formations in succession. The matrix of the single

resulting linear transformation is obtained by the

rule above. The extension to matrices of any
order is immediate. From this remark it may be

surmized that groups and matrices are intimately

connected, and this is the fact. Cayley and his

successors perfected the theory of matrices; the

theory of groups is a mine for our successors to

exhaust.

Let us glance back. No man, I believe, no mat-

ter how practical, could point to a more conspicu-
ous example than matrices of the apparently futile

things over which mathematicians labor as few

others ever dream of laboring. And it would be

difficult to find a better instance of the historical

fact that the significant advances of mathematics
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and not a few of those of science are inspired by the

spirit of pure mathematics. Just as "beauty is its

own excuse for being," so mathematics needs no

apology for existing. I apologize, on the contrary,

for pointing out presently that matrices do have a

non-mathematical use, and a highly important one

at that. This use, by the way, is but one of many.
After such an instance as this, scientists, educa-

tors, and others may be more willing to let mathe-

matics develop according to its own nature, in-

stead of insisting, as they have sometimes done,

that it should draw its life from finance, bridge-

building, statistics, or whatever happens to be

popular at the moment in physics. As remarked

before, the deliberate effort to follow immediate

utility in mathematics almost invariably leads to

second or third rate work, and more often than

not the very utility which is narrowly sought turns

out to be not so great after all.

The mathematics of what many mean by every-

day life, practical mechanics, buying and selling,

and the other necessary activities by which we live

more or less from hand to mouth, is for the most

part worked out and reduced to simple rules of

thumb. But that which is of vital importance in

modern life, which is based on an ever expanding
science and an ever more scientific technology, is

not simple, and it is not a matter for the engineer-
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ing handbooks. It is partly in process of creation.

Mathematicians may safely be left to follow their

own bent as their contribution to this age of science.

What they did in the past century is enough for a

vast region of science and technology as they exist

today; what mathematicians as professionals are

interested in today will, if there is any continuity

at all in scientific and industrial history, be the

indispensable framework of the science and tech-

nology of tomorrow.

To return to matrices, one of the fair examples of

the foresight of mathematics. When Heisenberg
in 1926 was casting about for some adequate means

of formulating the mechanics of the atom pos-

sibly the dominant interest in Twentieth Century

physics he found exactly what was required in

the theory of matrices, with its queer "multiplica-

tion" in which a times b is not necessarily b times

a. From that work developed with amazing speed
the new mechanics and the new physics of spectra

and atoms.

In 1926, and again in 1931, Hermann Weyl
wrought the new physics into a beautiful, sugges-

tive pattern in which the theme is the theory of

groups and the interpretation of quantum mechan-

ics in terms of that great, abstract theory. In

this interpretation some of the most abstract and

advanced labors of algebraists for the past 70 years
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are drawn on and pressed into service to the limit.

The advanced analysis, integral equations, and

the rest, of the past thirty years is also utilized to

the full.

INFINITE GROUPS

A word must be said about infinite groups.

These again fall into two grand divisions. In the

first, the distinct things are denumerable, that is,

the things in the group can be counted off 1, 2, 3,

, but we never come to the end. Such groups
are infinite and discrete. In continuous groups
the number of distinct things is infinite, but not

denumerable; the things can not be counted off 1,

2,3, , but are as numerous as the points on

a line.

Continuous groups arise in the following way
among others. In school geometry it is assumed

that a plane figure, say a triangle, can be moved
about all over the plane and retain its shape (size

of angles and length of sides) . Consider the group
of all motions of a rigid figure in a plane. Evi-

dently the group contains infinitesimal transfor-

mations, for we can shift the figure from one posi-

tion to another by stages as small as we please.

Another example of a group consisting of infini-

tesimal transformations is that of the rotations of

a rigid, solid body about a fixed axis. Either the
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body as a whole may be thought of as being moved
from one position to another, or the motion may be

realized by subjecting each individual point to an

appropriate transformation. Both points of view

are useful.

Now let us recall that the equations of mechanics

and those of classical mathematical physics are

differential equations. Roughly, such equations

express laws concerning rates of change of one

or more continuously varying magnitudes with

respect to one or more others. As a simple ex-

ample, the velocity of a falling body is the "rate"

of change of position with respect to time. The
vast theory of differential equations was greatly

furthered by the introduction of continuous groups
into its study. For instance, the central equa-
tions of higher dynamics, those named after their

discoverer, Hamilton, when viewed from the stand-

point of continuous groups become much clearer

than before.

The study of such groups absorbed the working
lives of many mathematicians from 1873 to the

early years of this century, when interest dimin-

ished, owing to a great memoir published in 1894 by
Elie Cartan, which disposed of several of the main

problems. The theory of continuous groups in its

broad aspects was almost exclusively the work of

one man, Sophus Lie (pronounced Lee), 1842-
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1809. But with the new physics, beginning with

general relativity in 1915, and continuing with the

quantum mechanics of 1926- (?), continuous

groups suddenly were seen to be of fundamental

importance in the description of nature. New and

yet more general geometries, suggested partly by

physics, are being created in swarms, and in this

outburst the theory of continuous groups has been

at least a highly suggestive guide. In this latest

renaissance of infinitesimal geometry, Cartan has

been and is a leader.

The foregoing is mentioned to introduce another

landmark of progress. In the past seven years

Klein's great program, which directed geometry
for half a century, has been found insufficient.

Geometry is blooming again, more freely and more

luxuriantly than ever, uncramped by the limita-

tions imposed by the theory of groups. The new

geometries of the highest suggestiveness for

physical science do not conform to the pattern of

the group. Galileo was right. The world does

move.

THE ICOSAHEDRON

Although it is not our intention to discuss special

results, we may close this description of groups by
referring to one which would have delighted Py-

thagoras and have caused him to sacrifice at least a
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thousand oxen to his immortal gods. The story

covers nearly 2200 years. Only the high points

can be indicated.

The Greek geometers early discovered the 5

regular solids of Euclidean space, the tetra-

hedron, cube, octohedron, dodecahedron, and ico-

sahedron of 4, 6, 8, 12 and 20 sides respectively, and

proved that there are no others. This discovery

begot much of the incredible mysticism of later and

less exact thinkers.

Our next high point is about 2000 years farther

on. For over two centuries algebraists had tried

in vain to solve the general equation of the fifth

degree,

a*8 + bx* -f ex3 + dx* + ex + /= 0,

until Abel in 1826 and Galois in 1831 proved that it

is impossible to express x by any combination of

the given numbers a, 6, c, d, e,f, using only a finite

number of additions, multiplications, subtractions,

divisions and extractions of roots. Thus it is

impossible to solve the general equation of the fifth

degree algebraically. On the eve of that stupid
duel in which he was killed, Galois, then in his 21st

year, wrote out his mathematical testament,

in which, among other tremendous things, he

sketched a great theorem concerning all algebraic

equations. He reduced the problem of the alge-
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braic solution of equations to an equivalent, ap-

proachable one in groups. As this is an outstand-

ing landmark in algebra, I shall state Galois'

theorem, in the hope that some may be induced to

go farther and find out for themselves exactly what
it means: an algebraic equation is algebraically

solvable, if, and only if, its group is solvable. No
more technical knowledge is necessary to follow

the proof than is possessed by high school gradu-
ates. As a consequence of this perfect theorem,

it is impossible to solve the general equation of any
degree greater than 4 algebraically.

In 1858 Hermite solved the general equation of the

fifth degree, not algebraically, for that would have
been to do the impossible, which is too much even

for mathematicians, but by expressing x in terms of

elliptic modular functions (a sort of higher species
of the familiar trigonometric functions).
Our last peak was discovered by Klein, who

showed in 1884 that the profound work of Hermite
was all implicit in the properties of the group of

rotations about axes of symmetry which change an

icosahedron into itself that is, which twirl the

solid about so that, say, a given vertex slips over
to the place where some other vertex was, and so

for all in every rotation. There are 60 such rota-

tions.

That the rotations of an icosahedron and the
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general equation of the fifth degree should be

unified from the higher standpoint of groups, is a

good illustration of the power of the concept of an

abstract group
The far reaching power of the theory of groups

resides in its revelation of identity behind apparent

dissimilarity. Two theories built on the same

group are structurally identical. The more famil-

iar is worked out; the results are then interpreted

in terms of the less familiar.



CHAPTER VII

THE QUEEN OF MATHEMATICS
AN UNRULY DOMAIN

FAUSS crowned arith-

metic the queen of mathematics. Gauss lived

from 1777 to 1855, and to his profound inventive-

ness is due more than one strong river of mathe-

matical progress during the past century. He
also made outstanding contributions to the science

of his time, notably to electromagnetism and

astronomy. His opinions therefore carry weight
with all mathematicians and with some scientists.

Arithmetic to Gauss, as to the Greeks, was pri-

marily the study of the properties of whole num-
bers. The Greeks, it may be remembered, used a

different word for calculation and its applications

to trade. For this practical kind of arithmetic the

aristocratic, slave-owning Greeks seem to have had

a sort of contempt. They called it logistica, a

name which survives in the logistics of one modern
school in the logic and foundations of mathematics.

In arithmetic as in all fields of mathematics du-

ring the past century discovery went wide and far.

But there was one most significant difference be-

tween this advance and the others. Geometry,

oo
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analysis, and algebra each acquired one or more

vantage points from which to survey its whole

domain; arithmetic did not.

The Greeks left no problem in geometry which

the moderns have failed to dispose of. Faced by
some of the trifles which the Greeks left in arith-

metic we are still baffled. For instance, give a rule

for finding all those numbers which, like 6, are the

sums of all their divisors less than themselves,

6 = 1+2+3, and prove or disprove that no odd

number has this property. To say that arithme-

tic is mistress of its own domain when it cannot

subdue a childish thing like this is undeserved

flattery.

The theory of numbers is the last great uncivil-

ized continent of mathematics. It is split up into

innumerable countries, fertile enough in them-

selves, but all more or less indifferent to one an-

other's welfare and without a vestige of a central,

intelligent government. If any young Alexander

is weeping for a new world to conquer, it lies before

him.

Lest this estimate seem unduly pessimistic, let

us not forget that in each of the several countries

of arithmetic there was considerable progress in

the past century. Indeed, two or three of the

splendid things done are comparable to anything
in geometry, with this qualification, however: no
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one advance affected the whole course of develop-

ment. This possibly is due to the very nature of

the subject.

Among the notable advances is that which

revealed one source of some of those mysterious
harmonies which Gauss admired in the properties

of whole numbers. This was the creation by
Kummer, Dedekind and Kronecker of the theory

of algebraic numbers. In this particular field the

invention of ideal numbers is comparable to that

of non-Euclidean geometry. Another striking

advance was the brilliant development of the

analytic theory of numbers during the past thirty

years. Of isolated problems inherited from the

past that have been successfully grappled with we

may mention in particular Waring's of the Eight-
eenth Century. Another result of singular inter-

est was the proof that certain numbers are tran-

scendental, and the construction of many such

numbers. We shall briefly indicate the nature of

all these things presently. These preliminaries

may well be closed with the following quotation.

"The higher arithmetic/' wrote Gauss in 1849,

"presents us with an inexhaustible storehouse of

interesting truths of truths, too, which are not

isolated, but stand in the closest relation to one

another, and between which, with each successive

advance of the science, we continuously discover
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new and wholly unexpected points of contact. A
great part of the theories of arithmetic derive an

additional charm from the peculiarity that we

easily arrive by induction at important proposi-

tions, which have the stamp of simplicity upon
them, but the demonstration of which lies so deep
as not to be discovered until after many fruitless

efforts; and even then it is obtained by some
tedious and artificial process, while the simpler

methods of proof long remain hidden from us."

ALGEBRAIC NUMBERS

The positive, zero and negative whole numbers of

common arithmetic are called rational integers, to

distinguish them from algebraic integers, which are

defined as follows,

Let a , ai, a2 , , an_i, an be n + 1 given
rational integers, of which a is not zero, and not

all of which have a common divisor greater than 1.

It is known from the fundamental theorem of alge-

bra (first proved in 1799 by Gauss) that the equa-
tion

a xn + fli x"' 1 + . . . -f a-i x + a n

has exactly n roots. That is, there are exactly n

real or complex numbers, say Xi, #2 > x n9

such that if any one of these be put for x in the

equation, the left hand side becomes zero. Notice
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that no kind of number beyond the complex has to

be created to solve the equation. If n = 2, we
have the familiar fact that a quadratic equation
has precisely two roots. For emphasis I repeat

that a , i, a2 , , an in the present discussion

are rational integers, and that a is not zero. The
n roots #i, #2 , > #n are called algebraic num-
bers. If a is 1, these algebraic numbers are called

algebraic integers, which are a generalization of the

rational integers. For instance, the two roots of

Sx2 + 5x + 7 = are algebraic numbers; the two

roots of x2 + 5x + 7 = are algebraic integers.

A rational integer, say n, is also an algebraic

integer, for it is the root of x n = 0, and so

satisfies the general definition. But an algebraic

integer is not necessarily rational. For instance,

neither of the roots of x2 + % + 5 = is a rational

number, although both are algebraic integers. In

the study of algebraic numbers and integers we
have another instance of the tendency to generali-

zation which distinguishes modern mathematics.

Omitting technical details and refinements, we
shall give some idea of a radical distinction between

rational integers and those algebraic integers which

are not rational. First we must state what a field

of algebraic numbers is.

If the left hand side of the given equation ao#
n +

a Lxn ~ l + + an = 0, in which a , ai, ,
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a n are rational integers, can not be split into two
factors each of which has again rational integers

as coefficients, the equation is called irreducible

of degree n.

Now consider all the expressions which can be

made by starting with a particular root of an irre-

ducible equation of degree n (as above) and operat-

ing on that root by addition, multiplication, sub-

traction and division (division by zero excluded).

Say the root chosen is r; as specimens of the results

we get r + r, or 2r, r/r or 1, r X r or r2
, then 2r2

,

and so on indefinitely. The set of all such expres-
sions is evidently a field, according to our previous

definitions; it is called the algebraic number field of

degree n generated by r. This field will contain

algebraic numbers and algebraic integers. It is

these integers at which we must look, after a slight

digression on rational integers.

The rational primes are 2, 3, 5, 7, 11, 13,17,19,

23, 29, , namely the numbers greater than 1

which have only 1 and themselves as divisors.

The fundamental theorem of arithmetic states that a

rational integer greater than 1 is either a prime or

can be built up by multiplying primes in essen-

tially one way only. For instance, 100 = 2 X 2 X
5 X 5, 105 = 3 X 5 X 7. This is so well known
that some writers of school books assert it to be

"self-evident," which is another instance of the
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danger of the obviqus_in mathematics^ Euclid

gave a beautiful proof of this theorem, one of the

gems of all his work. If the reader has never seen

a proof, it may puzzle him to make one.

Primes in algebraic numbers are defined exactly

as in common arithmetic. But the "self-evident"

theorem that every integer in an algebraic number
field can be built up in essentially one way only by

multiplying primes is, unfortunately, false. The
foundation has vanished and the whole superstruc-

ture has gone to smash.

One should not feel unduly humble at jumping
to this particular obvious but wrong conclusion.

More than one first rank mathematician less than

a century ago did the same. One of them was

Cauchy, but he soon pulled himself up short. In

some algebraic number fields an algebraic integer

can be built up in more than one way by mul-

tiplying primes together. This is chaos, and the

way back to order demanded high genius for its

discovery.

The way in which the whole question originated

was this. Fermat (1601-1665) bequeathed this

teaser to his exasperated successors. "It is impos-
sible to find three rational integers x, y, z all differ-

ent from zero, and a rational integer n greater than

2, such that xn + y
n = zn . The exception 2 is

necessary; for instance, 3 2 + 4 2 = 5 2
, 5

2 + 12 2 =
13*.
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The mathematician and business man Fermat

was well known for his probity. He asserted that

he had an "extremely simple proof," which the

margin of his book was too narrow to contain.

For nearly 300 years arithmeticians and others

have broken their heads over Fermat's assertion

and so far haven't made a dent in it. The asser-

tion remains unproved, although it is known to be

true for numerous values of n. A general proof is

what is wanted.

About 1845 E. E. Kummer (1810-1893) thought
he had one. His friend Dirichlet pointed out the

mistake. Kummer had assumed the truth of that

obvious but not always true theorem about the

prime factors of algebraic integers. He set to

work to restore order to the chaos in which arith-

metic found itself, and in 1847 published his resto-

ration of the fundamental law of arithmetic for the

particular fields connected with Fermat's assertion.

This achievement is usually rated as of greater

mathematical importance than would be a proof of

Fermat's theorem. To restore unique factoriza-

tion into primes in his fields, Kummer created a

totally new species of number, which he called

ideal.

In 1871 Richard Dedekind (1831-1916) did the

like by a simpler method which is applicable to the

integers of any algebraic number field. Rational
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arithmetic was thereby truly generalized, for the

rational integers are the algebraic integers in the

field generated by 1 (according to our previous

definitions) .

Dedekind's "ideals," which replace numbers,

stand out as one of the memorable landmarks of

the past century. I can recall no instance in

mathematics where such intense penetration was

necessary to see the underlying, true pattern be-

neath the apparent complexity and chaos of the

facts, and where the thing seen was of such shining

simplicity. A rough idea of Dedekind's "ideals"

can be glimpsed from their very degenerate form

for the rational integers.

Consider the fact that 3 divides 12 arithmeti-

cally. The quotient is 4. Therefore 12 is four

times as great as three. The last is precisely what

we must not look at, obvious and true as it is. On
the contrary we need to see that 4, from another

point of view, is really bigger than 12, in the sense

of greater inclusiveness. Precisely: we no longer

look at 3 and 12, but at the respective classes of

rational integers which we get when we multiply
each of 3, 12 by all the rational integers in turn.

Thus, some of the integers in the class so generated

by 3 are -9, -6, -3, 0, 3, 6, 9, , and simi-

larly from 12 we have the specimens 36, -24,

-12, 0, 12, 24, 36, The class generated
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by 3 is called the principal ideal 3, and similarly for

12. The ideal 3 contains, or includes the ideal 12.

That is, every rational integer in the ideal 12 is in

the ideal 3. The other way about is false; for in-

stance, the ideal 12 does not contain 9.

The reader may easily see that all the properties

of common arithmetical division persist if we make
the following changes: replace every rational

integer by the principal ideal which it generates,

and replace the word "divides" by "contains."

It was a natural extension of this inverted way
of looking at division which restored the funda-

mental theorem of rational arithmetic to the vaster

domain of algebraic number fields. The extension

deals with classes defined, not by a single integer,

but by a set of n integers.

As might be expected from the definition of

algebraic numbers as roots of algebraic equations,

the theory of groups plays an important part in

algebraic number fields. Here also the marvellous

creations of Galois in the theory of algebraic equa-
tions have free scope. Exploration in this terri-

tory is still in progress, and much is being dis-

covered.

TRANSCENDENTAL NUMBERS

A mere glance at these must suffice. A number
which is not algebraic is called transcendental.

Otherwise stated, a transcendental number satis-
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fies no algebraic equation whose coefficients are

rational numbers. It was only in 1844 that the

existence of transcendentals was proved by Joseph
Liouville (1809-1882). The transcendental num-

bers, hard as they are to find individually, are

infinitely more numerous than the algebraic num-
bers. A very famous transcendental is w (pi),

the ratio of the circumference of a circle to its

diameter. To 7 decimals, <* = 3.1415926 ,

and it has been somewhat uselessly computed to

over 700. In 1882 Lindemann, using a method
devised in 1873 by Hermite, proved that TT is tran-

scendental, thus destroying for ever the last slim

hope of those who would square the circle al-

though many of them don't know even yet that the

ancient Hebrew value 3 of T was knocked from

under them centuries ago.

In 1900 Hilbert emphasized what was then an out-

standing problem, to prove or disprove that 2^
is transcendental. The rapidity of modern prog-
ress can be judged from the fact that Kusmin in

1930 proved a whole infinity of numbers, one of

which is Hilbert's, to be transcendental. The

proof is quite simple.

WAKING'S CONJECTURE

Fermat proved that every rational integer is a

sum otfour rational integer squares. Thus 10
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O2 + O 2 + I 2 + 3 2
, 293 - 22 + 82 + 9 2 + 12 2

, etc.

In 1770 E. Waring guessed that every rational

integer is the sum of a fixed number N of n th

powers of rational integers, where n is any given

integer and N depends only upon n. For n = 3,

the required N is 9; for n = 4, it is known that N
is not greater than 21. Hilbert, by most ingenious

reasoning, proved Waring's conjeccture to be cor-

rect in 1909. In 1919 G. H. Hardy (1878- )

applying the powerful machinery of modern analy-

sis, gave a deeper proof, the spirit of which is

applicable to many other extremely difficult ques-

tions in arithmetic. This advance was highly

significant for its joining of two widely separated

fields of mathematics, analysis, which deals with

the uncountable, or continuous, and arithmetic,

which deals with the countable, or discrete.

Finally, quite recently, Winogradov has brought
some of these difficult matters within the scope of

comparatively elementary methods. Here again

progress is increasingly rapid. The conquests

being made today in this field would have seemed to

the men of a hundred years ago to be centuries

beyond them.

ANALYTICAL ARITHMETIC

In our generation we have seen the application

of analysis to arithmetic on a scale which only
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fifty years ago was undreamed of. As one type of

problem in this province, we may cite the distribu-

tion of primes. The question is to state how many
primes there are below a given limit, say a billion

billion. To find and count them is humanly impos-
sible. The problem as stated seems to be hope-

less; an exact, terminated formula in terms of

simple expressions is out of the question. But we
can ask for a formula of this kind: if P (x) denotes

the number of primes not greater than x, to find an

expression containing x such that P (x) divided

by this expression tends to the limiting value 1 as

x tends to infinity. This has been solved; the re-

quired expression is x divided by the logarithm of x.

The solution of this age-old problem was given in

1896 by J. Hadamard and de la Vallee Poussin

simultaneously and independently. Subsequent
work deals, roughly, with estimating the error com-

mitted in distribution formulas by stopping short

of the end. A little more precisely, the analytic

theory of numbers is largely concerned with deter-

mining the order (relative size) of the errors made
if we take an approximate enumeration in a par-

ticular problem concerning a class of numbers in-

stead of the exact enumeration. In this the

leaders are G. H. Hardy, Edmund Landau, and J.

E. Littlewood.

The broader significance of all this work is its
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fusion of modern analysis and arithmetic into a

a powerful method of research in the theory of

numbers. Fifty years ago such a union would

have been an idle dream.

One further problem may close this sketch. In

1742 Chr. Goldbach, on only scanty empirical

evidence, stated that every even positive rational

integer is a sum of two primes, for example 30 =

13 + 17. All the available data seem to substan-

tiate this wild guess in the dark. It has success-

fully resisted all analytical (and other) attacks.

But the mere fact that modern analysis can take

hold of and handle a problem of such inhuman

difficulty is an indication of progress.



CHAPTER VIII

"STORMING THE HEAVENS"
TOWARD THE INFINITE

1 NFINITY and the infinite

have long had a singular fascination for human
thought. Theology, philosophy, mathematics and

science have all at some stage of their development
succumbed to the lure of the unending, the un-

countable, the unbounded. "Only infinite mind
can comprehend the infinite," according to one;

"Cantor's doctrine of the mathematical infinite is

the only genuine mathematics since the Greeks,"

according to another, while yet a third, contradict-

ing both, declares that "the infinite is self incon-

sistent, and Cantor's theory of the mathematical

infinite is untenable."

Here we reach a frontier of knowledge, and fur-

ther progress will necessarily be slow. Some be-

lieve that mathematics is about to retrace many of

the giant strides it made toward the infinite in the

past half century; others foresee a steady progress
in the direction already travelled.

The simple fact seems to be that no one at pres-
ent can say exactly where mathematics stands

with regard to its supposed conquest of the infi-

104
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nite, and no one can sensibly predict its future.

Equally competent authorities hold diametrically

opposing views.

With this caution against accepting anything in

what follows as final, we may proceed to a short

description of the kind of scaling ladders with

which mathematicians "stormed the heavens," in

Weyl's phrase, during the past fifty or seventy

years.

HOW THE INFINITE ENTERED MATHEMATICS

The infinite entered mathematics early. Not to

go too far back, let us glance at one type of prob-
lem which induced Archimedes in the Third Cen-

tury B.C. to use the infinite in mathematics. It

is that of finding the area under a curve, say the

area ABCD. Cut the area up into strips of equal
breadth, and disregard the shaded triangular bits.

The remaining rectangles can easily be calculated.
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Their sum is an approximation to ABCD. If by
taking thinner and thinner rectangles the sum of

the discarded shaded bits tends to zero, and if the

sum of the rectangles tends to a limit, this limit is

the required area. To reach the limit we must take

the sum of an infinity of rectangles. This crude

description must suffice.

With the invention of the calculus in the Seven-

teenth Century and its applications to the finding

of areas, surfaces, and volumes of all imaginable

shapes, such infinite summations, known as inte-

grations, became one of the most powerful tech-

niques of analysis.

Mathematical physics could not exist without

integration. Consider for example the simple

problem of calculating the work done as a variable

force moves a body through a given distance, work

being measured as force times distance in the

proper units.

The process inverse to integration or summation

is called differentiation. It will be sufficient here

to state one geometrical application of differentia-

tion. To draw a tangent line at a given point of a

given curve necessitates the finding of the slope of

the tangent line, and this is equivalent to perform-

ing a specific differentiation. Now consider this.

It is intuitively evident that we can always draw a

tangent to a continuous curve at a given point of
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the curve. Intuition is misleading; there exist

continuous curves which have no tangents at all. We
admit gladly that this is shocking to common,
sense, for it shocked mathematicians when Weier-J

strass first confronted them with such a curve in

1861.

Now let us go back to summation a moment.

The solutions of multitudes of mathematical and

physical problems lead to infinite sums. Here are

three specimens:

1 -
i + i

- i+ ...... ;

1 + x* + * + z* + ..... ;

These are almost pathologically simple, but they
will do. The dots mean that the series are to con-

tinue without end, according to the law indicated in

each case. Now, it can be proved that the first

series converges to a definite, finite number as we

proceed to infinity, adding and subtracting the

fr actions as they occur. If x is a real number, the

second series converges only for such x as lie be-

tween 1 and +1 ; for all other real values of x the

series diverges, that is, by adding a sufficient num-
ber of terms, the sum can be made to surpass any

previously assigned number. The third series is

divergent, although it does not look it. It seems

incredible that the sum of a sufficient number of
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terms of this series can be made bigger than a

billion billion billion, but such is the fact. An-
other astonishing thing is that the first series is not

equal to (1 + J + |
- + ...... )

-
(i + i + i +

Is it not clear that if a physical problem, say the

calculation of a temperature, yields as answer a

divergent series, then that answer has no physical

meaning? When such nonsense turns up we go
back, revise our mathematics and reformulate the

problem, or give it up.

One of the outstanding things young Abel and

Cauchy did in the early decades of the Nineteenth

Century was to provide the first methods whereby
the convergence of a series can be tested.

From the foregoing handful of examples we can

appreciate the program of that great triumvirate

Weierstrass, Dedekind, and Cantor, who in 1859

to 1897 undertook a thorough examination of the

mathematical infinite itself. Another impulse to

an attack on the infinite was the problem of irra-

tionals. What does the square root of two mean,
if it is not the ratio of any pair of whole numbers?

Dedekind's attack on irrationals is a modern

reverbration of Eudoxus. If either falls under the

counter attack of modern skeptics, both fall.

Paradoxical as it may seem, the last conclusion is

no novelty of the Twentieth Century. Isaac
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Barrow, the teacher of Newton, late in the Seven-

teenth Century acutely criticized Eudoxus, and
Barrow's objections to the logic of the great Greel

have been repeated by the leading Twentieth

Century critics of the mathematical theory of the

infinite elaborated by Weierstrass, Dedekind, and
Cantor. If nobody listened to Barrow, the like

cannot be said for Brouwer and his school.

Let us look at one or two of the central concepts
of this controversial subject. Mathematical anal-

ysisthe calculus and every luxuriant growth that

has sprung from its fertile soil in the past two cen-

turies derives its meaning and its life from the

mathematical infinite. Without a firm founda-

tion in the infinite, mathematical analysis treads

at every step on dangerous ground.

COUNTING THE INFINITE

Let us consider first what counting means. At
a glance we see that the two sets of letters x, y, z

and X , F, Z contain the same number of letters,

namely 3. We say that two classes contain the

same number of things if the things in both classes

can be placed in one-to-one correspondence, that is,

if we can pair of the things in the two classes and
have none left over in either. For example, we
can pair x with X 9 y with F, z with Z. We say
that two classes are similar if the things in them
can be paired in one-to-one correspondence.
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Observe this simple fact : the classes x, y, z, w and

X, Y, Z are not similar. Try as we will, we cannot

find a mate for some one of x, y> z, w. The reason

here is plain; the first class contains/owr things, the

second only three, and four is greater than three.

Everyone saw this for thousands and thousands of

years and, for a wonder, everyone saw straight.

The next took genius of a high order to perceive.

Georg Cantor (1845-1918) is the hero of this.

Consider all the positive rational integers

1, 2, 3, 4, 5, 6, 7, 8, ....

and under each write its double, thus,

1, 2, 3, 4, 5, 6, 7, 8, ...

2, 4, 6, 8, 10, 12, 14, 16

How many numbers 2,4,6, are there in the

second row? Exactly as many as there are num-
bers altogether in the first, for we got the second

row by doubling the numbers in the first. The
class of all the natural numbers 1, 2, 3, 4, is

similar to a part of itself, namely to the class of all

the even numbers 2, 4, 6, 8, There are just

as many even numbers as there are whole numbers

altogether.

This illustrates a fundamental distinction be-

tween finite and infinite classes. An infinite class

is similar to a part of itself; a finite class is similar to



COUNTING THE INFINITE 111

no part of itself. "Part" there means proper part,

namely, some but not all.

As another example, let us see that any two seg-

ments of a straight line contain the same number
of points. (For brevity I am forced to omit many
refinements which a mathematician would de-

mand, but the following illustrates what is meant.)

Suppose the segments AB and CD are of different

lengths. Place them parallel as in the figure, and
let AC, ED meet in 0. Take any point, say Q,
on AB, and join OQ. Let OQ cut CD in P. This

sort of construction puts the class of all points on
AB into one-to-one correspondence with the class

of all points on CD.
Is there no escape? What about postulating that

the points on a line are not dense everywhere, but

strung like dewdrops on a spiderweb, and that

any segment contains only a finite number of
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points? Such finite, discrete geometries have been

extensively investigated by American mathema-

ticians in the past thirty years by the postula-

tional method. But to say that space whatever

scientists and others mean by space is gran-

ular in structure and not continuous is too repug-

nant to habit to be acceptable. Nevertheless, in

physics, energy parted lightly enough with some of

its continuity in 1900 when Planck quantized it,

to avoid mathematical and physical absurdities.

Instead of quantizing space, mathematicians at

present prefer to overhaul their reasoning.

WHAT IS A NUMBER?

As analysis rests on numbers, I interpolate here

an answer to the question of what a cardinal num-
ber is, say 2, or 3, or 4, or any other number which

states "how many." The answer was given in

1884 by G. Frege, whose work passed almost un-

noticed, possibly because much of it was written

in an astounding symbolism which looked as com-

plicated as a cross between a Babylonian cuneiform

inscription and a Chinese classic in the original.

It is the finest example of the precept that mathe-

maticians should write so that he who runs may
read. Bertrand Russell independently arrived at

the same definition in 1901, and expressed it in

plain English. Here it is :
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The number of a class is the class of all those classes

that are similar to it.

This is not meant to be simple. It is profound,
and it is worth pondering until one grasps its truth

intuitively. Beside this gem of abstract thought
the visions of the mystics seem material and gross.

DEDEKIND'S CUT

How did Dedekind tame the irrationals? We
postulated that the square root of 2 can be repre-

sented by a point on the line of all real numbers,

lying somewhere between 1 and 2, and that, by

approximating more and more closely we can

narrow the interval in which the elusive number
lies. But to trap it alone, and not get a whole

brood of undesirables in the trap at the same time,

requires supreme skill.

Dedekind provided this in his famous "cuts,"

which can be applied at any point of the line of

reals. We need consider only that kind of cut

which separates all the rational numbers into two

classes of the following sort : each class contains at

least one number: every number in the "upper"
class is greater than every number in the "lower"

class. Further, the numbers of the upper class

have no least number, those of the lower class have

no greatest number.

We can now imagine the "upper" and the
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"lower" classes laid down on the line of real num-
bers. Owing to those provisos about no greatest

and no least in the respective classes, the two

classes will, as it were, strive to join one another.

But they cannot, because any number in the upper
is greater than every number in the lower. The

place where they strive to join is the cut, and it

defines some irrational number.

To locate the square root of 2 as a cut, we put
into the upper class all those positive rational num-
bers whose squares are greater than 2, and into

the lower class all other rational numbers. A
moment's visualization will reveal that the elusive

square root of 2 is definitely trapped between the

two classes and is in the trap alone.

The Dedekind cut is at the root of modern mathe-

matical analysis. Another root of that ever fer-

tile tree is the vast theory of assemblages which,

roughly, discusses among other things the proper-

ties of curves, surfaces, and so on, as sets or classes

of points. An outstanding problem in the theory of

sets is this: Can the elements in any set whatever

be well ordered? For example, consider all the

points on a segment of a straight line. Between

any two points of the line we can always find

another point of the line. How then shall we
individualize this uncountable infinity of points

and call each by its name according to any conceiv-
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able system of nomenclature? We do not know.

A very famous postulate, Zermelo's of 1904, prac-

tically assumes that any assemblage can be \\ell

ordered, for his unaccepted proof rests on a doubt-

ful postulate. The postulate asserts that if we are

given any set of classes, each of which contains at

least one thing, and no two of which have a thing

in common, then there exists a class which has just

one thing in each of the classes of the set. Why
should this be true, if it is, of an infinite set of

classes? This assumption, like all of the notions

sketched in this chapter, has been challenged. It

is much less innocent than it looks. We may have

reached the great turning point in the progress of

mathematics, and we may have to retrace our

steps or swerve to one side to circumvent the

unsurmountable. Whatever happens, we shall

have lived through an epic age.

In the final chapter we shall indicate further

difficulties.



CHAPTER IX

THE POWER OF ANALYSIS

TENDENCIES OF THE CENTURY

WAS remarked of

Africa, there is always something new coming out

of analysis. This vast domain comprises every-

thing that concerns continuously varying quanti-
ties. Its importance for natural science is there-

fore evident, since it is true, apparently, that "all

things flow." Fixity is an illusion, and analysis

gives us a firm grasp on the laws of continuous

change.
The progress in analysis during the past century

was beyond all precedent. Today its scope is so

vast that probably no mathematician is competent
in more than a province or two of the entire domain,

Particularly is this so if, as seems legitimate, we
include under analysis the modern developments of

differential geometry the investigation of geo-
metrical curves, surfaces, and so on, from the

study of configurations and structure in a small

neighborhood. The last man to look out over the

whole field of analysis was the universally-minded

|3enri Poincare (1854-1912), and he was able to

do so largely because great tracts of modern analy-
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sis were his own creations. On practically every

department of mathematics this outstanding

genius left his deep impression.

In all of this bewildering progress it is not easy

to find commanding points of view from which to

survey any significant expanse of the whole, un-

bounded territory. The boundaries in all direc-

tions are being pushed forward so rapidly that the

eye soon loses them in the distance.

Nevertheless the past hundred years did indicate

one or two general directions of advance, at which

we must look. It may be said that three of the

leading activities were the invention and exploita-

tion of new species of functions in almost incon-

ceivable variety, continual generalization, and

drastic criticism of the foundations on which analy-

sis rests.

Standards of rigor in proof were constantly

raised. What had passed as satisfactory at an

earlier period was minutely scrutinized, often

found to be shaky, and firmly established according

to the standards of the day. In this direction

finality is not sought, for it is apparently unattain-

able. All that we can say is, in the words of a

leading analyst, "sufficient unto the day is the

rigor thereof."

Another tendency manifested itself. No sooner

was a significant advance made in another depart-
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ment of mathematics than analysis seized upon the

central ideas and assimilated them with voracious

speed. Thus groups, invariants, much of geom-
etry and parts of the higher arithmetic succes-

sively become its more or less willing prey. On the

other hand, wherever it was found possible to

apply the techniques of analysis to any other

domain, whether purely mathematical or scientific,

the advance was swift and sure.

CLERK MAXWELL AND EINSTEIN

Nowhere more strongly than in analysis do we

appreciate the peculiar power of mathematical

reasoning. This power is traceable, at least partly,
to the fact that mathematics does not direct iso-

lated or individual weapons at a problem, but

unites whole complexes of subtle and penetrating
chains of thought into new, intimately wrought
engines of reason, often expressed by a single

symbol whose laws of operation are once for all

investigated, and then applies these as units to

the problem on hand. It is somewhat like the

advance of an entire, well coordinated army by a

single order, instead of fussing over the details by
which the individual companies are to manoeuvre.

The mere creation of the single weapon begets

unsuspected power in the parts of which it is com-

posed and, operating as a unit, the whole achieves
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incomparably more than the sum of the achieve-

ments of the parts. Unsuspected possibilities

present themselves automatically. Before the

designer of the new weapon is aware of it, he has

made a conquest of which he never dreamed.

Instance after instance of this peculiar power

might be cited. We shall sketch only two briefly.

In each it was not mathematics alone which won
the victory. The insight, or intuition, of a great

physicist was in each case necessary before the

physical problem could be formulated mathe-

matically. But neither advance could have been

made certainly neither was made without

powerful mathematical analysis. The ability to

translate new scientific problems into mathe-

matical symbols appears to be as rare as the genius

which creates the mathematics to solve the prob-
lems.

Our first example goes back to 1864. In that

year James Clerk Maxwell (1831-1879), having
translated some of Michael Faraday's brilliant

experimental discoveries in electromagnetism into

a set of differential equations, and having filled out

the set of equations to fit a physical hypothesis of

his own, proceeded to manipulate the equations

according to standard processes of mathematical

analysis.

Now, one of the fundamental equations in mathe-
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matical physics expresses the fact that whatever

satisfies the equation in a given instance is propa-

gated throughout space in the form of waves.

Moreover the equation contains the velocity with

which the waves are propagated.

Manipulating his electromagnetic equations,

Clerk Maxwell derived from them the wave equa-

tion of mathematical physics. The indicated ve-

locity was that of light. Whether he was surprised

at what the mathematics gave him, he does not

record. At any rate he proceeded to exploit his

discovery in grand fashion. He showed that

electromagnetic disturbances must be propagated

through space as waves. Further, from the man-
ner in which the velocity entered the equation, he

concluded that light is an electromagnetic disturb-

ance.

This was in 1864. Clerk Maxwell died in 1879.

In 1888, Heinrich Hertz (1857-1894), directly in-

spired by Clerk Maxwell's prediction of "wireless"

electromagnetic waves, and guided by his prede-

cessor's mathematics, set out to produce the waves

experimentally and to determine their velocity.

From his success has sprung the whole wireless and

radio industry of today, and it all goes back to a

few pages of mathematical analysis. But again
we must emphasize that without Clerk Maxwell's

extraordinary skill in setting up the equations and
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his physical intuition, the mathematics could not

have got very far. On the other hand Hertz might
never have even started.

Our second example goes back to 1854, when
Bernhard Riemann (1826-1866) lectured before

the venerable Gauss, "Prince of Mathematicians,"
"On the Hypotheses which lie at the Foundations

of Geometry." This work pleased Gauss greatly,

as it was a worthy sequel to his own of many years

previously. One of Riemann's ideas concerned

measurement in a curved space of any finite num-
ber of dimensions. In a curved two-dimensional

space, for example the surface of a sphere, the

formula of Pythagoras for the square on the

longest side of a rightangled triangle, on which all

everyday measurements of distance are based, does

not hold. Riemann supplied a perfectly general

formula, good for any of an infinity of "spaces" in

which the curvature changes in any sufficiently

general manner from point to point. Near the

conclusion of his remarkable dissertation he made
the following striking prediction of one great ad-

vance of the Twentieth Century.
"Either therefore the reality which underlies

space must form a discrete manifold, or we must
seek the ground of its metric relations outside it,

in binding forces which act upon it.

"The answer to these questions can only be got
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by starting from the conception of phenomena
which has hitherto been justified by experience,

and which Newton assumed as a foundation, and

by making in this conception the successive

changes required by facts which it cannot explain."

He goes on to say that narrow views and preju-

dice must not hamper the free investigation of all

the novelties he has suggested.

Riemann's new geometry was one of the tower-

ing landmarks of the past century. A host of

workers developed it, including E. B. Christoffel

'(1829-190Q), after whom the famous "index sym-
bols/' familiar to physicists through relativity, are

.named. In all this work the theory of invariants

played a leading part.

In the 1880's the geometer Ricci started a new

development in Riemannian geometry. This was

tied up with the concept of invariance. Ricci

developed a calculus of extraordinary power for dis-

covering those geometrical properties in Rieman-

nian space which are invariant under extremely

general (in fact almost any) transformations. This

calculus is called now tensor analysis.

Consider now the statement of any physical fact

or "law." If this statement contains essential ref-

erences to the observer's particular way of expres-

sing the law, then the supposed law is as much an

expression of his tastes as of nature's. The point
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need not be labored. Einstein saw it (nobody else

had till he pointed it out in 1915 as one of the cor-

nerstones of his general relativity), and today it is

appreciated by all who honor Einstein.

While Einstein was constructing his general

theory in 1906 to 1915, he cast about for some cal-

culus which would yield the differential equations of

mathematical physics in invariant form. Covari-

ant is the usual technical term, but in this connec-

tion it means the same. He found what he wanted
in the calculus of Ricci. Einstein also needed an

adequate geometry to describe the four-dimen-

sional physical world of space-time. He found it

in the work of Riemann and his successors. The
rest was physics plus supreme genius, and is so

well known today that it need not be repeated.
When general relativity first came out physicists

were appalled at the unfamiliar mathematics the

commonplaces of over half a century to profes-
sional mathematicians. Today serious students of

physics take all this in their stride and think no
more of Christoffel symbols than they do of any
other necessary mathematical tool. At the lead-

ing French technical school, PEcole Polytech-

nique, tensor analysis is taught along with mechan-
ics in the second year of the regular course. It is

far more practical than the older vector analysis.

Relativity has generously repaid its debts to
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geometry and analysis by starting a new golden

age in geometry.

THE COMPLEX VARIABLE

A distinctive feature of progress in analysis dur-

ing the past century was the stupendous develop-

ment of the theory of functions of a complex vari-

able. We saw earlier that if all the postulates of

common algebra are retained, then no numbers

more general than the complex satisfy the postu-
lates. This gives a strong hint why functions of a

complex variable sweep up so much of analysis.

The development had well started by 1830; in

fact Cauchy had then made his greatest contribu-

tions to this branch of analysis, of which he was

the creator.

In the period we are considering two other ways
of looking at the whole subject were discovered,

one by Weierstrass, the other by Riemann.

Weierstrass arithmetized analysis. His univer-

'sal tool was the power series. He regarded func-

tions from the point of view of the convergent
infinite series (like a + a\z + a2z

2 + +
anz

n + ) which define them for values of the

variable z in ranges appropriate to the functions.

Riemann on the other hand may be said to have

geometrized the analysis of functions of a complex
variable. By a most ingenious model of connected
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sheets or surfaces superimposed on a plane, for in-

stance, he gave an intuitive picture of the proper-

ties of certain highly important complex functions,

particularly those which take several different

values for a given value of the variable. This

development contributed greatly to analysis situs,

the geometry which studies the properties of sur-

faces, volumes and the like which are invariant

under a continuous group of transformations.

To give any adequate idea of this vast field in a

few words is impossible, and we must pass on.

Touching analysis situs however, we may mention
one unsolved elementary problem which can be

stated untechnically.

Practical map makers have never found a map,
no matter how complicated, which cannot be col-

ored, as a map should, by four colors. Prove that

four colors are sufficient for any map in which con-

tiguous countries have a line boundary in common.
This looks easy. The solution may turn out to be

extremely simple. The problem has important

bearings on several others.

SPECIAL FUNCTIONS

Many of the most interesting functions which
were intensively investigated from 1830 to 1900
were discovered from 1800 to 1830. Here again
the field is too vast for more than a slight glance.
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We shall mention only one type of functions which

claimed the attention of analysts from about 1880

on.

Consider first any periodic phenomenon say

the passage of the tip of the minute hand of a

watch over the 12-o'clock mark. This passage is

made at regular intervals of one hour. We say

that the position of the tip is a periodic function of

the tune, with period one hour. Periodic phenom-
ena permeate science. Wave motion is an in-

stance. For this reason, if no other, periodic func-

tions were extensively investigated by the analysts

of the past century and a half.

Expressing the periodicity in the above example

algebraically, we write/ (t + 1)
= / (f), which is

read, "function of / + 1 is equal to function of t."

Here "function" may be interpreted as position

expressed in terms of time t. The thing to be

noticed is that the numerical value of / (t) is unal-

tered when we replace the variable t by the linear

expression t + 1, depending only upon t. Thus the

value of the function is invariant under a particular

linear transformation of the variable.

Why stop here? Poincare in the 1880's went

much farther, and considered functions invariant

under groups (in the technical sense explained pre-

viously) of linear transformations of their variables.

The result was a new kingdom of analysis.
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As a byproduct of all this, Poincare solved the

general algebraic equation of the nth degree by

showing how its n roots can be expressed explicitly

in terms of some of the functions he had created.

Finally, throughout the whole century, func-

tions with any finite number of periods received

much attention. These alone supply enough for

a life's work.

GENERALIZATIONS

What is perhaps the most striking generaliza-

tion originated in the work of Vito Volterra

(1862- ) and his school in the 1880's and 90's.

In a word, Volterra investigated functions of a

non-denumerable infinity of variables
,-
a non-denum-

erable infinity being as many as there are of points

on a straight line. For example, instead of looking

at a curve as a relation between the coordinates of

any point on it, we may consider the curve itself as

the variable thing, and see what happens as one

curve shades into another. The curve however,
from another angle, is the set of all its points, and

this set is non-denumerably infinite.

This, and what grew out of it, appears to be the

true mathematical approach to all those physical

problems where all the past history of a given

thing has to be taken account of in predicting the

future. For example, a steel bar when magnetized



128 THE QUEEN OF THE SCIENCES

and then demagnetized, exhibits more or less per-

manent modifications which must be included in

the mathematical analysis. Here and elsewhere,

in economics for instance, the theory of integral

equations and its modern extensions, largely the

work of the past thirty years, is the clue. The

subject originated with Abel and Murphy (who
was a clergyman) .

Roughly the distinction between such equations

and those of the classical physics is this. In the

classical mechanics and physics it is rates of change

which enter the equations (differential equations) ;

in the newer work it is the inverses of such rates, or

integrations (infinite summations) which appear.

From a given relation between these it is required

to disentangle the functions which are integrated.

Finally, in 1906, Henri Lebesgue revolutionized

integration itself.

Those in a position to judge predict that these

comparatively new fields will presently prove to be

of an importance in science at least equal to that

of differential equations, which have dominated

physical science for over two centuries.

In differential equations the expansion during
the past eighty years also has been enormous.

Some of this was inspired directly by physics, much
of it not.
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BOUNDARY VALUE PROBLEMS

We alluded in the first chapter to boundary
value problems. Such a problem is of the follow-

ing type. Suppose we know the equation (as we

do) which expresses the law of conduction of elec-

tricity in a medium, say in a sheet of copper of any

shape. Applying the current at any parts of the

sheet, we wish to know the subsequent distribution

of electricity over the whole sheet. This is accom-

plished by making the general solution of the known

equation satisfy the initial physical conditions. It

is clear from the physics of the situation that once

these conditions are given, say the places where

the current is supplied and the amounts supplied

there, the solution is uniquely determined. There

cannot be conflicting distributions at any place at

any time. Fitting of solutions of equations to

prescribed initial conditions is technically known
as solving boundary value problems.

This again leads to a vast field, still under vigor-

ous development, in which many of the special

functions devised by analysts in the past find their

scientific interpretations.



CHAPTER X

BEDROCK
MATHEMATICAL EXISTENCET. ..

o THE uninitiated it

may seem a very queer proceeding to build up vast

systems of knowledge without seeing first whether

the foundations will bear the superstructure.

Mathematics did precisely that. As weaknesses

began to appear in the foundations, and one part

or another of the colossal edifice crumbled, mathe-

maticians made hasty repairs and went on build-

ing, until more serious faults made themselves

evident, and so on for well over a century.

Who shall criticize the builders? Certainly not

those who have stood idly by without lifting a

stone.

There is nothing reprehensible in the way mathe-

maticians have worked. Any creative artist

knows that criticism before a work is fairly com-

plete is ruinou. . Only after the work is far enough

along to be offered to the public is criticism rele-

vant when it cannot cause the artist to spoil his

conception.

The critics of mathematics have been mathe-

maticians almost without exception. The one

130
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reputable exception is Bishop Berkeley who, in

the Eighteenth Century, showed that he knew
what he was talking about when he gave the New-
tonians a run for their money. In general the

matters in dispute lie far below the surface, and

are not likely to be observed by any but mathe-

maticians as they go about their business.

In passing, let us record that Berkeley's specific

criticisms were not met until the second half of the

Nineteenth Century, when Weierstrass drove out

of analysis the "infinitesimals," or "infinitely small

quantities," of the Newtonians, to which Berkeley
had so vigorously objected.

An anecdote concerning the arithmetically-

minded Kronecker foreshadows one phase of the

modern objections to mathematical reasoning.

When everyone was congratulating Lindemann in

1882 over his proof that TT is transcendental (see

chapter VII), Kronecker said, "of what value is

your beautiful proof, since irrational numbers do

not exist?" Here Kronecker incidentally denied

the "existence" of TT, and he was less of a radical

at that than some of the moderns.

What is the point at issue here? There are sev-

eral. One which is disturbing mathematicians

profoundly at present is this very question of what

is meant by mathematical existence. We know
or used to think we knew that with sufficient dili-
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gence (and stupidity) TT = 3.1415926 could

be calculated to an indefinitely great number of

decimals. Indefinitely great? Not exactly; for

who could ever do it? In what sense then, if any,
does TT "exist" as an infinite, nonrepeating deci-

mal? I trust that I have not made this sound like

a foolish quibble, for it is anything but that.

Kronecker said flatly that unless we can give a

definite means of constructing the mathematical

things about which we talk and think we are reason-

ing, we are talking nonsense and not reasoning at all.

At one stroke he denied the validity of all the great
work of the mathematical analysts on the infinite.

To him it was worse than meaningless; it was use-

less.

There are those today who say Kronecker was

right, and they cannot be silenced by an affection

of superiority on the part of those who believe

otherwise. There are equally strong men on both

sides of the entire controversy.

Progress in this direction is being made by meet-

ing Kronecker's objection step by step where it is

important to do so, and actually exhibiting con-

structions for things that are used. It is impos-

sible, of course, to meet fully any demand for a

construction of an actual infinite; here we have to

be content with exhibiting a process which, if

carried out, would produce the required thing to

any prescribed degree of accuracy.
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I must warn the reader that the foregoing is an

exceedingly crude description of extremely subtle

difficulties, and that parts of the last sentence, if

not all of it, would be regarded as sheer nonsense

by one of the modern schools of mathematical

thought. I can only suggest those profound prob-

lems and pass on to others, treating them equally

sketchily.

The use of words alone in all these discussions is

a treacherous proceeding. This also affects much
of the technical literature on these disputes.

Some mathematicians feel that if the ideas con-

sidered can not be adequately expressed in some

appropriate symbolism, they are too dangerous to

be handled. The history of philosophy is a suffi-

cient warning.

HILBERT'S LOGIC

So great is the average mathematician's distrust

of purely verbal arguments that Hilbert, beginning

about 1925, proposed that for the present at least

mathematicians forget about the "meanings" of

their elaborate game with symbols, and concen-

trate their attention on the game itself. He and

his pupils have formulated the rules of play in an

unassuming theory of demonstration, whose aim is

to prove that mathematics is free of contradiction.

The rules are expressed in symbols with brief
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verbal instructions for their use, and are a strik-

ingly simple form of symbolic logic. Hilbert

assumes as known the logical and, or, not, if-then,

and some more mathematical notions, equally

elementary. For example, not-X is written X;
X & Y is X and Y, etc., and a typical rule of play

permits us to put JT&F for Y&X if the latter

appears in shifting the "meaningless marks" about

in accordance with the rules.

The object of all this is to prove that the innocent

looking rules will never lead to a contradiction.

Critics of the movement deny that it has any

significance for the points in dispute. Some of

them further deny the modest claim made by
Hilbert's adherents that they have proved the

consistency of mathematics up to the point where

only Si finite number, or only a countable infinity of

elements are concerned. A countable infinity, we

recall, is as many as there are of all the natural

numbers 1, 2, 3, That wretched mono-

syllable "all" has caused mathematicians more

trouble than all the rest of the dictionary.

That Hilbert's method has established the con-

sistency of the Dedekind cut, of Cantor's theory of

the infinite, of any of the theory of sets, or of

mathematical analysis, is not claimed even by its

most ardent partisans.

The outstanding merit of Hilbert's contribution
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is its fearless exposure of the weak spots in mathe-

matics and the attention which it commands for

these spots from competent professional mafhe-

maticians. That a man of Hilbert's mathematical

eminence should put the supreme effort of his great

career into this crisis is a sufficient reply to those

who belittle the honest if disturbing strictures of

the critics.

FURTHER DIFFICULTIES

Most of the paradoxes which mathematics is

striving to resolve entered with the mathematical

infinite. This led to a critical examination of

mathematical reasoning of any type. From this

the criticisms have reached out to the classical

logic of Aristotle, which for over two thousand

years reigned free of suspicion that it might not be

universally valid.

If Aristotle ever heard of an infinite set in the

sense of mathematics, he seems to have left no

record of the fact. What reason can be given that

Aristotelian logic applied to infinite sets will not

produce contradictions? None whatever. In

1906 Henri Lebesgue, who revolutionized the

theory of integration, stated explicitly that he was

not convinced that a statement about an infinite

set is necessarily true or false. In other words

there may be a third possibility, between truth and
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falsity, or there may be nothing but nonsense in

any assertion about an infinite set.

The reader may amuse himself by picking the

foregoing sentence to pieces in the light of the very

objection it raises, namely to the universal validity

of the law of excluded middle an assertion is true

or it is false. The sentence is riddled with incon-

sistencies. It is a fair sample of the difficulty of

talking sense about the fundamentals of reason-

ing mathematical or other.

A leading contention of the strong intuitionist

school led by L. E. J. Brouwer is that the logic of

Aristotle is partly inappropriate for mathematics.

In particular, the law of excluded middle is not

always admissible, and Euclid's method of indirect

proof is not free from very serious objection. One
aim of this school is to revise mathematical reason-

ing so as to avoid the disputed points. It is aston-

ishing to see how far we can go in this direction.

What is desired in this: to weed out what can

be shown to be definitely erroneous in mathe-

matics, and to root what remains in uninfected

soil. Further, if the whole critical movement is

not to be utterly barren, it must account for the

undisputed fact that mathematical reasoning has

led to results which, by common consent, are

true, whatever "truth" may mean. If the reason-
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ing by which correct results were reached was

irreparably wrong, then that in itself will be an

astounding and far-reaching discovery.

As the reader may be interested in seeing the

kind of puzzle which is worrying mathematicians,

I shall transcribe a simple one for him to ponder.
It is known as Russell's paradox. This particular

one is cited because Russell with A. N. Whitehead
in 1910-1914 produced the monumental Principia
Mathematica which aimed, among other things,

to resolve the paradoxes of analysis and the theory
of sets. This gave a new impulse to mathematical

rigor which has lasted to the present day. Here is

the paradox, not yet resolved, as the machinery
which Russell contructed for such purposes has

been abandoned by mathematicians.

"Let w be the class of all those classes which are

not members of themselves. Then, whatever

class x may be, x is a w is equivalent to x is not an

x. Hence, giving to x the value w 9

6w is a w' is

equivalent to 'w is not a w\
Two propositions are called equivalent when both

are true or both are false." (American Journal of

Mathematics, vol. 30, 1908, p. 222.)

It was the appearance of several similar para-
doxes in mathematical analysis in the past forty

years that led to the present upheaval.
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TO OUR SUCCESSORS

After the splendid achievements of the Century
of Progress in mathematics, it seems ungracious

to close on a note of doubt. The sentiments of

creative mathematicians cannot be disregarded.

Surely their feeling for what is true in mathe-

matics is not without significance. Almost with-

out exception these men feel this about the past

and probable future of their beloved mathematics:

not all of those giants of the past can have been

fools all of the time, and we may rest assured that

greater shall come after them.

Wisdom was not born with us, nor will it perish

when we descend into the shadows with a regretful

backward glance that other eyes than ours are

already lit by the dawn of a new and truer mathe-

matics.








