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PREFACE TO THE THIRD EDITION

NO
extensive changes have been made in this edition. The mosfc

important are in 80-82, which I have rewritten in accord

ance with suggestions made by Mr S. Pollard.

The earlier editions contained no satisfactory account of the

genesis of the circular functions. I have made some attempt to

meet this objection in 158 and Appendix III. Appendix IV is also

an addition.

It is curious to note how the character of the criticisms I have

had to meet has changed. I was too meticulous and pedantic for

my pupils of fifteen years ago: I am altogether too popular for the

Trinity scholar of to-day. I need hardly say that I find such

criticisms very gratifying, as the best evidence that the book has

to some extent fulfilled the purpose with which it was written.

G. H. H.

August 1921

EXTRACT FROM THE PREFACE TO
THE SECOND EDITION

THE principal changes made in this edition are as follows.

I have inserted in Chapter I a sketch of Dedekind s theory
of real numbers, and a proof of Weierstrass s theorem concerning

points of condensation
;
in Chapter IV an account of limits of

indetermination and the general principle of convergence ;
in

Chapter V a proof of the Heine-Borel Theorem , Heine s theorem

concerning uniform continuity, and the fundamental theorem

concerning implicit functions; in Chapter VI some additional

matter concerning the integration of algebraical functions ;
and

in Chapter VII a section on differentials. I have also rewritten

in a more general form the sections which deal with the defini

tion of the definite integral. In order to find space for these

insertions I have deleted a good deal of the analytical geometry
and formal trigonometry contained in Chapters II and III of

the first edition. These changes have naturally involved a

large number of minor alterations.

G. H. H.

October 1914
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EXTEACT FEOM THE PEEFACE TO THE
FIEST EDITION

book has been designed primarily for the use of first

year students at the Universities whose abilities reach or

approach something like what is usually described as scholarship
standard . I hope that it may be useful to other classes of

readers, but it is this class whose wants I have considered first.

It is in any case a book for mathematicians: I have nowhere
made any attempt to meet the needs of students of engineering
or indeed any class of students whose interests are not primarily
mathematical.

I regard the book as being really elementary. There are

plenty of hard examples (mainly at the ends of the chapters) : to

these I have added, wherever space permitted, an outline of the

solution. But I have done my best to avoid the inclusion of

anything that involves really difficult ideas. For instance, I make
no use of the principle of convergence : uniform convergence,
double series, infinite products, are never alluded to : and I prove
no general theorems whatever concerning the inversion of limit-

d*f d*f
operations I never even define 5-%- and =-4-. In the last two

cxdy dydx

chapters I have occasion once or twice to integrate a power-series,

but I have confined myself to the very simplest cases and given
a special discussion in each instance. Anyone who has read this

book will be in a position to read with profit Dr Bromwich s

Infinite Series, where a full and adequate discussion of all these

points will be found.

September 1908
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CHAPTER I

REAL VARIABLES

1. Rational numbers. A fraction r=p/q, where p and q
are positive or negative integers, is called a rational number. We
can suppose (i) that p and q have no common factor, as if they
have a common factor we can divide each of them by it, and

(ii) that q is positive, since

pl(-q) = (-p)lq, (-p)/(-q)=p/q.

To the rational numbers thus denned we may add the rational

number obtained by taking p = 0.

We assume that the reader is familiar with the ordinary
arithmetical rules for the manipulation of rational numbers. The

examples which follow demand no knowledge beyond this.

Examples I. 1. Ifr and s are rational numbers, then r+ s, r - *, rs, and

rjs are rational numbers, unless in the last case s= (when r/s is of course

meaningless).

2. If X, w, and n are positive rational numbers, and m &amp;gt; n, then

X(?n
2 -ft2

), 2Xwm, and \(m2+ n2
) are positive rational numbers. Hence show

how to determine any number of right-angled triangles the lengths of all of

whose sides are rational.

3. Any terminated decimal represents a rational number whose denomi
nator contains no factors other than 2 or 5. Conversely, any such rational

number can be expressed, and in one way only, as a terminated decimal.

[The general theory of decimals will be considered in Ch. IV.]

4. The positive rational numbers may be arranged in the form of a simple
series as follows :

Show that plq is the
[ (p + q

-
1) (p+ q

-
2) + q]ih term of the series.

[In this series every rational number is repeated indefinitely. Thus 1

occurs as i, f ,,.... We can of course avoid this by omitting every number

H. 1
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which has already occurred in a simpler form, but then the problem of deter

mining the precise position of pjq becomes more complicated.]

2. The representation of rational numbers by points
on a line. It is convenient, in many branches of mathematical

analysis, to make a good deal of use of geometrical illustrations.

The use of geometrical illustrations in this way does not, of

course, imply that analysis has any sort of dependence upon

geometry : they are illustrations and nothing more, and are em

ployed merely for the sake of clearness of exposition. This being

so, it is not necessary that we should attempt any logical analysis

of the ordinary notions of elementary geometry; we maybe content

to suppose, however far it may be from the truth, that we know

what they mean.

Assuming, then, that we know what is meant by a straight

line, a segment of a line, and the length of a segment, let us take

a straight line A, produced indefinitely in both directions, and a

segment A A l of any length. We call A the origin, or tJte point

0, and A l the point 1, and we regard these points as representing
the numbers and 1.

In order to obtain a point which shall represent a positive

rational number r=p/q, we choose the point A r such that

A A r being a stretch of the line extending in the same direction

along the line as A A l} a direction which we shall suppose to be

from left to right when, as in Fig. 1, the line is drawn horizontally

across the paper. In order to obtain a point to represent a

~ATT&quot; ~AT~ A Ax A,

Fig. 1.

negative rational number r = s, it is natural to regard length as

a magnitude capable of sign, positive if the length is measured in

one direction (that of A^A-^, and negative if measured in the

other, so that AB = -BA
;
and to take as the point representing

r the point A-s such that
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We thus obtain a point A r on the line corresponding to every

rational value of r, positive or negative, and such that

and if, as is natural, we take A A 1 as our unit of length, and write

A A l
= 1, then we have

A A r
= r.

We shall call the points A r the rational points of the line.

3. Irrational numbers. If the reader will mark off on the

line all the points corresponding to the rational numbers whose

denominators are 1, 2, 3, ... in succession, he will readily convince

himself that he can cover the line with rational points as closely

as he likes. We can state this more precisely as follows : if we

take any segment EG on A, we can find as many rational points as

we please on BO.

Suppose, for example, that BC falls within the segment A! A.,.

It is evident that if we choose a positive integer k so that

k.BC&amp;gt;l ........................ (1),*

and divide A^A^ into k equal parts, then at least one of the points j

of division (say P) must fall inside BC, without coinciding with

either B or C. For if this were not so, BC would be entirely

included in one of the k parts into which A 1A 2 has been divided,

which contradicts the supposition (1). But P obviously corre

sponds to a rational number whose denominator is k. Thus at

least one rational point P lies between B and C. But then we

can find another such point Q between B and P, another between

B and Q, and so on indefinitely ; i.e., as we asserted above, we can

find as many as we please. We may express this by saying that

BC includes infinitely many rational points.

The meaning of such phrases as *

infinitely many or an infinity of\ in

such sentences as BC includes infinitely many rational points or there are

an infinity of rational points on C }

or there are an infinity of positive

integers ,
will be considered more closely in Ch. IV. The assertion there are

an infinity of positive integers means given any positive integer n, however

large, we can find more than n positive integers . This is plainly true

* The assumption that this is possible is equivalent to the assumption of what

is known as the Axiom of Archimedes.

12
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whatever n may be, e.g. for n= 100,000 or 100,000,000. The assertion means

exactly the same as we can find as many positive integers as we please .

The reader will easily convince himself of the truth of the follo\ving

assertion, which is substantially equivalent to what was proved in the second

paragraph of this section : given any rational number r, and any positive

integer ?i, we can find another rational number lying on either side of r and

differing from r by less than l/n. It is merely to express this differently to

say that we can find a rational number lying on either side of r and differing
from r by as little as we please. Again, given any two rational numbers-

r and s, we can interpolate between them a chain of rational numbers in

which any two consecutive terms differ by as little as we please, that is to

say by less than l/?i, where n is any positive integer assigned beforehand.

From these considerations the reader might be tempted to

infer that an adequate view of the nature of the line could be

obtained by imagining it to be formed simply by the rational

points which lie on it. And it is certainly the case that if we

imagine the line to be made up solely of the rational points,

and all other points (if there are any such) to be eliminated,

the figure which remained would possess most of the properties-

which common sense attributes to the straight line, and would,

to put the matter roughly, look and behave very much like

a line.

A little further consideration, however, shows that this view

would involve us in serious difficulties.

Let us look at the matter for a moment with the eye of

common sense, and consider some of the properties which we may
reasonably expect a straight line to possess if it is to satisfy the

idea which we have formed of it in elementary geometry.

The straight line must be composed of points, and any segment
of it by all the points which lie between its end points. With

any such segment must be associated a certain entity called its

length, which must be a quantity capable of numerical measure

ment in terms of any standard or unit length, and these lengths

must be capable of combination with one another, according to-

the ordinary rules of algebra, by means of addition or multipli

cation. Again, it must be possible to construct a line whose

length is the sum or product of any two given lengths. If the

length PQ t along a given line, is a, and the length QR, along

the same straight line, is b, the length PR must be a + 6.
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Moreover, if the lengths OP, OQ, along one straight line, are

1 and a, and the length OR along another straight line is b,

and if we determine the length OS by Euclid s construction (Euc.

VI. 12) for a fourth proportional to the lines OP, OQ, OR, this

length must be ab, the algebraical fourth proportional to 1, a, b.

And it is hardly necessary to remark that the sums and products

thus defined must obey the ordinary laws of algebra ;
viz.

a + b = b + a, a + (b 4- c)
= (a + b) + c,

ab = ba, a (be)
=

(ab) c, a (b + c)
= ab + ac.

The lengths of our lines must also obey a number of obvious

laws concerning inequalities as well as equalities : thus if

A, B, C are three points lying along A from left to right, we must

have AB&amp;lt; AC, and so on. Moreover it must be possible, on our

fundamental line A, to find a point P such that A QP is equal to

any segment whatever taken along A or along any other straight

line. All these properties of a line, and more, are involved in the

presuppositions of our elementary geometry.

Now it is very easy to see that the idea of a straight line as

composed of a series of points, each corresponding to a rational

number, cannot possibly satisfy all these requirements. There are

various elementary geometrical constructions, for example, which

purport to construct a length x such that x* = 2. For instance, we

M
Fig. 2.

may construct an isosceles right-angled triangle ABC such that

AB = AC=1. Then if BC=oc, #2 = 2. Or we may determine

the length x by means of Euclid s construction (Euc. vi. 13) for

a mean proportional to 1 and 2, as indicated in the figure. Our

requirements therefore involve the existence of a length measured

by a number x, and a point P on A such that
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But it is easy to see that there is no rational number such that

its square is 2. In fact we may go further and say that there

is no rational number whose square is m/n, where m/n is any

positive fraction in its lowest terms, unless m and n are both

perfect squares.

For suppose, if possible, that

p having no factor in common with q, and m no factor in common
with n. Then np

2 = mq
z
. Every factor of

&amp;lt;f

must divide np
2
,
and

as p and q have no common factor, every factor of (f must divide

n. Hence n = \q*, where X is an integer. But this involves

m = \p
2

: and as m and n have no common factor, X must be unity.

Thus in =p2
,
n q*, as was to be proved. In particular it follows,

by taking n = 1, that an integer cannot be the square of a rational

number, unless that rational number is itself integral.

It appears then that our requirements involve the existence of

a number x and a point P, not one of the rational points already

constructed, such that A P = x, #2 = 2; and (as the reader will

remember from elementary algebra) we write x \/2.

The following alternative proof that no rational number can have its

square equal to 2 is interesting.

Suppose, if possible, that pjq is a positive fraction, in its lowest terms,

such that (p/20
2= 2 or p2= 2q

2
. It is easy to see that this involves

(2g j)
2=2(p- &amp;lt;?)

2
;
and so (2q p)/(p q) is another fraction having the

same property. But clearly q&amp;lt;p&amp;lt;2q,
and so p-q&amp;lt;q.

Hence there is

another fraction equal to pfq and having a smaller denominator, which

contradicts the assumption that p/q is in its lowest terms.

Examples II. 1. Show that no rational number can have its cube equal

to 2.

2. Prove generally that a rational fraction pjq in its lowest terms cannot

be the cube of a rational number unless p and q are both perfect cubes.

3. A more general proposition, which is due to Gauss and includes those

which precede as particular cases, is the following : an algebraical equation

with integral coefficients, cannot have a rational but non-integral root.

[For suppose that the equation has a root a/b, where a and b are integers
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without a common factor, and b is positive. Writing a/b for #, and multiply

ing by 6*
1

&quot; 1
,
we obtain

a fraction in its lowest terms equal to an integer, which is absurd. Thus 6

and the root is a. It is evident that a must be a divisor ofpn .\

4. Show that ifpn=l and neither of

is zero, then the equation cannot have a rational root.

5. Find the rational roots (if any) of

10 = 0.

[The roots can only be integral, and so
&quot;T,

+ 2, 5, +10 are the only

possibilities : whether these are roots can be determined by trial. It is clear

that we can in this way determine the rational roots of any such equation.]

4. Irrational numbers (continued). The result of our

geometrical representation of the rational numbers is therefore to

suggest the desirability of enlarging our conception of
c number

by the introduction of further numbers of a new kind.

The same conclusion might have been reached without the use

of geometrical language. One of the central problems of algebra

is that of the solution of equations, such as

#2=1, a? = 2.

The first equation has the two rational roots 1 and 1. But,

if our conception of number is to be limited to the rational

numbers, we can only say that the second equation has no roots;

and the same is the case with such equations as ot? = 2, at = 7.

These facts are plainly sufficient to make some generalisation of

our idea of number desirable, if it should prove to be possible.

Let us consider more closely the equation #2 = 2.

We have already seen that there is no rational number x which

satisfies this equation. The square of any rational number is

either less than or greater than 2. We can therefore divide the

rational numbers into two classes, one containing the numbers

whose squares are less than 2, and the other those whose squares
are greater than 2. We shall confine our attention to the -positive

rational numbers, and we shall call these two classes the class L, or

the lower class, or the left-hand class, and the class R, or the upper
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class, or the right-hand class. It is obvious that every member of

R is greater than all the members of L. Moreover it is easy to

convince ourselves that we can find a member of the class L whose

square, though less than 2, differs from 2 by as little as we please,
and a member of R whose square, though greater than 2, also

differs from 2 by as little as we please. In fact, if we carry out

the ordinary arithmetical process for the extraction of the square
root of 2, we obtain a series of rational numbers, viz.

1, 1-4, 1-41. 1-414, 1-4142,...

whose squares

1, 1-96, 1-9881, 1-999396, 1-99996164,...

are all less than 2, but approach nearer and nearer to it
;
and by

taking a sufficient number of the figures given by the process we

can obtain as close an approximation as we want. And if we

increase the last figure, in each of the approximations given above,

by unity, we obtain a series of rational numbers

2, 1-5, 1-42, 1-415, 1-4143,...

whose squares

4, 2-25, 2-0164, 2*002225, 2-00024449,...

are all greater than 2 but approximate to 2 as closely as we please.

The reasoning which precedes, although it will probably convince the

reader, is hardly of the precise character required by modern mathematics.

We can supply a formal proof as follows. In the first place, we can find

a member of L and a member of 21, differing by as little as we please. For

we saw in j^that, given any two rational numbers a and b, we can construct

a chain of rational numbers, of which a and b are the first and last, and in

which any two consecutive numbers differ by as little as we please. Let us

then take a member x of L and a member y of J?, and* interpolate between

them a chain of rational numbers of which x is the first and y the last, and

in which any two consecutive numbers differ by less than S, d being any

positive rational number as small as we please, such as 01 or -0001 or 000001.

In this chain there must be a last which belongs to L and a first which belongs

to R, and these two numbers differ by less than d.

We can now prove that an x can be found in L and a y in R such that

&amp;lt;Z xl and y
2 -2 are as small as we please, say less than 8. Substituting j

for 8 in the argument which precedes, we see that we can choose x and y so

that y x&amp;lt;\\ and we may plainly suppose that both x and y are less

than 2. Thus
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and since ,?;
2

&amp;lt;2 and ^
2

&amp;gt;2 it follows a fortiori that 2 x* and ?/
2 2 are each

less than d.

It follows also that there can be no largest member of L or

smallest member of R. For if x is any member of Z, then #2
&amp;lt; 2.

Suppose that #2 = 2 S. Then we can find a member ^ of L
such that #!

2 differs from 2 by less than 8, and so #
x

2
&amp;gt; #2 or ^ &amp;gt; x.

Thus there are larger members of L than #; and as x is o^
member of L, it follows that no member of L can be larger than

all the rest. Hence L has no largest member, and similarly R has

no smallest.

5. Irrational numbers (continued}. We have thus divided

the positive rational numbers into two classes, L and R, such that

(i) every member of R is greater than every member of L, (ii) we

can find a member of L and a member of R whose difference is as

small as we please, (iii) L has no greatest and R no least member.

Our common-sense notion of the attributes of a straight line, the

requirements of our elementary geometry and our elementary

algebra, alike demand the existence of a number x greater than all

the members of L and less than all the members of R, and of
a corresponding point P on A such that P divides the points which

correspond to members of L from those which correspond to members

ofR.

Fig. 3.

Let us suppose for a moment that there is such a number x,

and that it may be operated upon in accordance with the laws of

algebra, so that, for example, #2 has a definite meaning. Then #2

cannot be either less than or greater than 2. For suppose, for

example, that so
2 is less than 2. Then it follows from what pre

cedes that we can find a positive rational number f such that f
2
lies
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between #2 and 2. That is to say, we can find a member of L

greater than x\ and this contradicts the supposition that # divides

the members of L from those of R. Thus x- cannot be less than

2, and similarly it cannot be greater than 2. We are therefore

driven to the conclusion that #2 = 2, and that x is the number

which in algebra we denote by \/2. And of course this number

\/2 is not rational, for no rational number has its square equal to

2. It is the simplest example of what is called an irrational

number.

But the preceding argument may be applied to equations

other than x* 2, almost word for word
;

for example to #2 = N
t

where N is any integer which is not a perfect square, or to

a;
3 = 3, a3 = 7, a4 = 23,

or, as we shall see later on, to x3 = 3x + 8. We are thus led to

believe in the existence of irrational numbers x and points P on

A such that x satisfies equations such as these, even when these

lengths cannot (as \/2 can) be constructed by means of elementary

geometrical methods.

The reader will no doubt remember that in treatises on elementary algebra

the root of such an equation as xftn is denoted by fln or n1
^, and that a

meaning is attached to such symbols as

by means of the equations

And he will remember how, in virtue of these definitions, the laws of indices

such as
nr xn*=nr + 8

, (n
r
}
8=nri

are extended so as to cover the case in which r and 5 are any rational numbers

whatever.

The reader may now follow one or other of two alternative

courses. He may, if he pleases, be content to assume that

irrational numbers such as \/2, ^3, . . . exist and are amenable to

the algebraical laws with which he is familiar*. If he does this

he will be able to avoid the more abstract discussions of the next

few sections, and may pass on at once to 13 et seq.

If, on the other hand, he is not disposed to adopt so naive an

* This is the point of view which was adopted in the first edition of this book.
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attitude, he will be well advised to pay careful attention to the

sections which follow, in which these questions receive fuller

consideration *.

Examples III. 1. Find the difference between 2 and the squares of the

decimals given in 4 as approximations to x/2,

2. Find the differences between 2 and the squares of r^
i, s, i, ti, u, n-

1
*

3. Show that if mjn is a good approximation to v/2, then (m-f-2)/(fl-f n)
r

is a better one, and that the errors in the two cases are in opposite directions.

Apply this result to continue the series of approximations in the last

example.
.1

4. . If x and y are approximations to x/2, by defect and by excess respec

tively, and 2 - #2
&amp;lt; 8, if-

- 2 &amp;lt; S, then y-x&amp;lt;.

5. The equation #2=4 is satisfied by #=2. Examine how far the argu

ment of the preceding sections applies to this equation (writing 4 for 2

throughout). [If we define the classes Z, R as before, they do not include all

rational numbers. The rational number 2 is an exception, since 2 2 is neither

less than or greater than 4.]

6. Irrational numbers (continued}. In 4 we discussed

a special mode of division of the positive rational numbers x into

two classes, such that a? &amp;lt; 2- for the members of one class and

#2
&amp;gt; 2 for those of the others. Such a mode of division is called a

section of the numbers in question. It is plain that we could

equally well construct a section in which the numbers of the two

classes were characterised by the inequalities a? &amp;lt; 2 and x3
&amp;gt; 2, or

#4
&amp;lt; 7 and XA &amp;gt; 7. Let us now attempt to state the principles

of the construction of such sections of the positive rational

numbers in quite general terms.

Suppose that P and Q stand for two properties which are

mutually exclusive and one of which must be possessed by every

positive rational number. Further, suppose that every such

number which possesses P is less than any such number which

possesses Q. Thus P might be the property x2
&amp;lt; 2 and Q the

property x* &amp;gt; 2. Then we call the numbers which possess P the

lower or left-hand class L and those which possess Q the upper or

* In these sections I have borrowed freely from Appendix I of Bromwich s

Infinite Series.
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right-hand class R. In general both classes will exist
;
but it may

happen in special cases that one is non-existent and that every
number belongs to the other. This would obviously happen, for

example, if P (or Q) were the property of being rational, or of

being positive. For the present, however, we shaft confine

ourselves to cases in which both classes do exist
;
and then it

follows, as in 4, that we can find a member of L and a member
of R whose difference is as small as we please.

In the particular case which we considered in 4, L had no

greatest member and R no least. This question of the existence

of greatest or least members of the classes is of the utmost im

portance. We observe first that it is impossible in any case that

L should have a greatest member and R a least. For if I were

the greatest member of L, and r the least of R, so that I &amp;lt; r, then

i (I + T) would be a positive rational number lying between I and

r, and so could belong neither to L nor to R
;
and this contradicts

our assumption that every such number belongs to one class or to

the other. This being so, there are but three possibilities, which

are mutually exclusive. Either (i) L has a greatest member I, or

(ii) R has a least member r, or (iii) L has no greatest member and

R no least.

The section of 4 gives an example of the last possibility. An example
of the first is obtained by taking P to be a?

2
&amp;lt; 1 and Q to be *#2

&amp;gt;1 ;

here Z=l. If P is #2
&amp;lt; 1 and Q is x2

&amp;gt;

1, we have an example of the

second possibility, with r\. It should be observed that we do not obtain

a section at all by taking P to be x* &amp;lt; 1 and Q to be #2
&amp;gt;

1
;
for the special

number 1 escapes classification (cf. Ex. in. 5).
y&amp;gt; 1)

7. Irrational numbers (continued). In the first two cases

we say that the section corresponds to a positive rational number

a, which is I in the one case and r in the other. Conversely, it is

clear that to any such number a corresponds a section which

we shall denote by a*. For we might take P and Q to be the

properties expressed by
x a, x &amp;gt; a

respectively, or by sc &amp;lt; a and x ^ a. In the first case a would be

the greatest member of L, and in the second case the least member

*
It will be convenient to denote a section, corresponding to a rational number

denoted by an English letter, by the corresponding Greek letter.
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of R. There are in fact just two sections corresponding to any

positive rational number. In order to avoid ambiguity we select

one of them
;
let us select that in which the number itself belongs

to the upper class. In other words, let us agree that we will consider
A ~- &quot;

* &quot;

only sections in which the lower class L has no greatest number.

There being this correspondence between the positive rational

numbers and the sections denned by means of them, it would be

perfectly legitimate, for mathematical purposes, to replace the

numbers by the sections, and to regard the symbols which occur

in our formulae as standing for the sections instead of for the

numbers. Thus, for example, a &amp;gt; a would mean the same as

a &amp;gt; a, if cc and a are the sections which correspond to a and a .

But when we have in this way substituted sections of rational

numbers for the rational numbers themselves, we are almost forced

to a generalisation of our number system. For there are sections

(such as that of 4) which do not correspond to any rational

number. The aggregate of sections is a larger aggregate than that

of the positive rational numbers; it includes sections corresponding
to all these numbers, and more besides. It is this fact which we
make the basis of our generalisation of the idea of number. We
accordingly frame the following definitions, which will however be

modified in the next section, and must therefore be regarded as

temporary and provisional.

A section of the positive rational numbers, in which both classes

exist and the lower class has no greatest member, is called a

positive real number.

A positive real number which does not correspond to a positive

rational number is called a positive irrational number.

8. Real numbers. We have confined ourselves so far to

certain sections of the positive rational numbers, which we have

agreed provisionally to call positive real numbers. Before we
frame our final definitions, we must alter our point of view a

little. We shall consider sections, or divisions into two classes,

not merely of the positive rational numbers, but of all rational

numbers, including zero. We may then repeat all that we have

said about sections of the positive rational numbers in 6, 7,

merely omitting the word positive occasionally.
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DEFINITIONS. A section of the rational numbers, in which both

classes exist and the lower class has no greatest member, is called

a real number, or simply a number.

A real number which does not correspond to a rational number
is called an irrational number.

If the real number does correspond to a rational number, we
shall use the term rational as applying to the real number also.

The term rational number will, as a result of our definitions, be

ambiguous; it may mean the rational number of 1, or the corresponding
real number. If we say that

&amp;gt; ,
we may be asserting either of two different

propositions, one a proposition of elementary arithmetic, the other a proposition

concerning sections of the rational numbers. Ambiguities of this kind are

common in mathematics, and are perfectly harmless, since the relations

between different propositions are exactly the same whichever interpretation
is attached to the propositions themselves. From i&amp;gt; and

&amp;gt;j
we can

infer
&amp;gt; J ;

the inference is in no way affected by any doubt as to whether

, J, and
|-
are arithmetical fractions or real numbers. Sometimes, of course,

the context in which (e.g.} occurs is sufficient to fix its interpretation.
When we say (see 9) that

J&amp;lt; V(i), we must mean by the real number .

The reader should observe, moreover, that no particular logical importance
is to be attached to the precise form of definition of a real number 3

that we
have adopted. We defined a real number as being a section, i.e. a pair of

classes. We might equally well have defined it as being the lower, or the

upper, class
; indeed it would be easy to define an infinity of classes of

entities each of which would possess the properties of the class of real

numbers. What is essential in mathematics is that its symbols should be

capable of some interpretation ; generally they are capable of many, and

then, so far as mathematics is concerned, it does not matter which we adopt.
Mr Bertrand Russell has said that mathematics is the science in which

we do not know what we are talking about, and do not care whether what
we say about it is true

,
a remark which is expressed in the form of a

paradox but which in reality embodies a number of important truths. It

would take too long to analyse the meaning of Mr Russell s epigram in detail,

but one at any rate of its implications is this, that the symbols of mathe

matics are capable of varying interpretations, and that we are in general at

liberty to adopt whichever we prefer.

There are now three cases to distinguish. It may happen that

all negative rational numbers belong to the lower class and zero

and all positive rational numbers to the upper. We describe

this section as the real number zero. Or again it may happen
that the lower class includes some positive numbers. Such a section
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we describe as a positive real number. Finally it may happen

that some negative numbers belong to the upper class. Such

a section we describe as a negative real number*.

The difference between our present definition of a positive real number a

and that of 7 amounts to the addition to the lower class of zero and all the

negative rational numbers. An example of a negative real number is given

by taking the property P of 6 to be x+ I&amp;lt;0 and Q to be #+1^0.
This section plainly corresponds to the negative rational number - 1. If we

took P to be #3
&amp;lt;
-2 and Q to be 3?&amp;gt;

-
2, we should obtain a negative real

number which is not rational.

9. Relations of magnitude between real numbers. It

is plain that, now that we have extended our conception of

number, we are bound to make corresponding extensions of our

conceptions of equality, inequality, addition, multiplication, and so

on. We have to show that these ideas can be applied to the new

numbers, and that, when this extension of them is made, all the

ordinary laws of algebra retain their validity, so that we can

operate with real numbers in general in exactly the same way
as with the rational numbers of 1. To do all this systematically

would occupy a considerable space, and we shall be content to

indicate summarily how a more systematic discussion would

proceed.

We denote a real number by a Greek letter such as a, /3, 7, . . .
;

the rational numbers of its lower and upper classes by the corre

sponding English letters a, A ; 6, B\ c, C; .... The classes them

selves we denote by (a), (A), ..,

If a and /3 are two real numbers, there are three possibilities :

(i) every a is a b and every A&B\ in this case (a) is identical

with (b) and (A) with

* There are also sections in which every number belongs to the lower or to

the upper class. The reader may be tempted to ask why we do not regard these

sections also as defining numbers, which we might call the real numbers positive

and negative infinity.

There is no logical objection to such a procedure, but it proves to be incon

venient in practice. The most natural definitions of addition and multiplication do

not work in a satisfactory way. Moreover, for a beginner, the chief difficulty in the

elements of analysis is that of learning to attach precise senses to phrases containing

the word infinity ;
and experience seems to show that he is likely to be confused by

any addition to their number.
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(ii) every a is a b, but not all A s are B s
;
in this case (a) is

a proper part of (6)*, and (B) a proper part of (A) ;

(iii) every A is a B, but not all a s are b s.

These three cases may be indicated graphically as in Fig. 4.

In case (i) we write a = ft, in case (ii) a &amp;lt; ft, and in case

(iii) a &amp;gt; ft. It is clear that, when
a and ft are both rational, these ? (i)

definitions agree with the ideas of

equality and inequality between + (ii)

rational numbers which we began

by taking for granted; and that ? 1

(iii)

any positive number is greater Fig . 4.

than any negative number.

It will be convenient to define at this stage the negative a

ot a positive number a. If (a), (A) are the classes which consti

tute a, we can define another section of the rational numbers by

putting all numbers A in the lower class and all numbers a

in the upper. The real number thus defined, which is clearly

negative, we denote by a. Similarly we can define a when a

is negative or zero
;

if a is negative, a is positive. It is plain

also that ( a)
= a. Of the two numbers a and a one is always

positive (unless a = 0). The one which is positive we denote by

|

a and call the modulus of a.

Examples IV. 1. Prove that = - 0.

2. Prove that /3
=

a, j3&amp;lt;a,
or

/3&amp;gt;a according as a=ft a&amp;gt;ft
or

a&amp;lt;/3.

3. If a = /3 and/3= y, then a=y.

4. If a &amp;lt;

ft /3&amp;lt;y,
or

a&amp;lt;ft /3 ^ y, then
a&amp;lt;y.

5. Prove that /3
= a -/3&amp;lt; -a, or

/3&amp;gt; a, according as a = /3, a&amp;lt;,3,

or a&amp;gt;/3.

6. Prove that a&amp;gt;0 if a is positive, and a&amp;lt;0 if a is negative.

7. Prove that a &amp;lt; a
|

.

8. Prove that 1&amp;lt; v/2 &amp;lt; v/3 &amp;lt; 2.

9. Prove that, if a and /3 are two different real numbers, we can always

find an infinity of rational numbers lying between a arid /3.

[All these results are immediate consequences of our definitions.]

*
I.e. is included in but not identical with (&).
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10. Algebraical operations with real numbers. We now

proceed to define the meaning of the elementary algebraical opera
tions such as addition, as applied to real numbers in general.

(i) Addition. In order to define the sum of two numbers

a and ft, we consider the following two classes : (i) the class (c)

formed by all sums c = a + b, (ii) the class (C) formed by all sums

C = A+B. Plainly c &amp;lt; C in all cases.

Again, there cannot be more than one rational number which

does not belong either to (c) or to (C). For suppose there were

two, say r and s, and let s be the greater. Then both r and s

must be greater than every c and less than every (7; and so C c

cannot be less than s r. But

and we can choose a, b, A, B so that both A a and Bb
are as small as we like; and this plainly contradicts our

hypothesis.

If every rational number belongs to (c) or to (C), the classes (c),

(0) form a section of the rational numbers, that is to say, a number

7. If there is one which does not, we add it to (C). We have

now a section or real number 7, which must clearly be rational,

since it corresponds to the least member of (C). In any case

we call 7 the sum of a and ft, and write

7 = a + ft.

If both a and /3 are rational, they are the least members of the upper
classes (A) and (B}, In this case it is clear that a-f/3 is the least member

of (6*), so that our definition agrees with our previous ideas of addition.

(ii) Subtraction. We define a ft by the equation

The idea of subtraction accordingly presents no fresh difficulties.

Examples V. 1. Prove that a + (
-

a)
= 0.

2. Prove that a+0=0+ a= a.

3. Prove that a+ /3
=

/3+ a. [This follows at once from the fact that the

classes (a+b) and (&+ ), or (A+) and (B+A}, are the same, since, e.g.,

a-|-6= 6-fa when a and b are rational.]

4. Prove that a+ (0+ y )
=

(a+ 0) + y.

JI. 2
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5. Prove that a - a= 0.

6. Prove that a - = -
(/3
-

a).

7. From the definition of subtraction, and Exs. 4, 1, and 2 above, it

follows that

We might therefore define the difference a-/3= y by the equation -y+/3
= a.

8. Prove that a- (/3-y) = a- /3+ y.

9. Give a definition of subtraction which does not depend upon a previous
definition of addition. [To define y= a ft, form the classes (c), (C) for which

c=a-B,C=A-b. It is easy to show that this definition is equivalent to

that which we adopted in the text.]

10. Prove that

II&quot; -|/3|j:g|a/3|&amp;lt;|

11. Algebraical operations with real numbers (con

tinued). (iii) Multiplication. When we come to multiplication,
it is most convenient to confine ourselves to positive numbers

(among which we may include 0) in the first instance, and to go
back for a moment to the sections of positive rational numbers

only which we considered in 4 7. We may then follow practi

cally the same road as in the case of addition, taking (c) to be (ab)

and (C) to be (AB). The argument is the same, except when we
are proving that all rational numbers with at most one -exception
must belong to (c) or (G). This depends, as in the case of addi

tion, on showing that we can choose a, A, b, and B so that (7 c is

as small as we please. Here we use the identity

G - c = AB - ab = (A - a) B + a (B - b).

Finally we include negative numbers within the scope of our

definition by agreeing that, if a and /3 are positive, then

(-a)/3 = -a& a(-/3) = -a, (-a) (-0) = a.

(iv) Division. In order to define division, we begin by de

fining the reciprocal I/a of a number a (other than zero). Con

fining ourselves in the first instance to positive numbers and

sections of positive rational numbers, we define the reciprocal of a

positive number a by means of the lower class (1/A) and the upper
class (I/a). We then define the reciprocal of a negative number

a by the equation l/( )= (I/a). Finally we define a//3 by
the equation
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We are then in a position to apply to all real numbers, rational

or irrational, the whole of the ideas and methods of elementary

algebra. Naturally we do not propose to carry out this task in

detail. It will be more profitable and more interesting to turn

our attention to some special, but particularly important, classes

of irrational numbers.

Examples VI. Prove the theorems expressed by the following
formulae :

OXa=0. 2. aXl = lXa= a. 3. ax(l/a)

4. a/3
=

/3a. o. a (/3y)
=

(a/3) y. 6.

7. (a+ /3)
= + . 8.

12. The number */2. Let us now return for a moment to

the particular irrational number which we discussed in 4 5.

We there constructed a section by means of the inequalities
y? &amp;lt; 2, a? &amp;gt; 2. This was a section of the positive rational numbers

only ;
but we replace it (as was explained in 8) by a section of

all the rational numbers. We denote the section or number thus

defined by the symbol \/2.

The classes by means of which the product of \/2 by itself is

defined are (i) (aa), where a and a are positive rational numbers

whose squares are less than 2, (ii) (AA ), where A and A are

positive rational numbers whose squares are greater than 2. These

classes exhaust all positive rational numbers save one, which can

only be 2 itself. Thus

Again
(- V2)

2 = (- V2) (- A/2)
= V2 V2 = (V2)

2 = 2.

Thus the equation x* = 2 has the two roots \/2 and A/2. Similarly

we could discuss the equations #2 = 3, x3 = 7, ... and the corre

sponding irrational numbers V3, \/3, $7,....

13. Quadratic surds. A number of the form + \fa, where

a is a positive rational number which is not the square of another

rational number, is called a pure quadratic surd. A number of

the form a \/b, where a is rational, and ^/b is a pure quadratic

surd, is sometimes called a mixed quadratic surd.

29-
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The two numbers
a&amp;lt;Jb are the roots of the quadratic equation

Conversely, the equation x2+ 2px+ q=0, where p and q are rational, and

p
z
-q&amp;gt;0,

has as its roots the two quadratic surds -p*J(p2
q).

The only kind of irrational numbers whose existence was

suggested by the geometrical considerations of 3 are these

quadratic surds, pure and mixed, and the more complicated
irrationals which may be expressed in a form involving the

repeated extraction of square roots, such as

V2 + V(2 + V2) + V{2 + V(2 + V2)).

It is easy to construct geometrically a line whose length is

equal to any number of this form, as the reader will easily see for

himself. That irrational numbers of these kinds only can be con

structed by Euclidean methods (i.e. by geometrical constructions

with ruler and compasses) is a point the proof of which must

be deferred for the present*. This property of quadratic surds

makes them especially interesting.

Examples VII. 1. Give geometrical constructions for

2. The quadratic equation cu,i2 + 26#+c has two real roots t if

b2
-ac&amp;gt;0. Suppose a, b c rational. Nothing is lost by taking all three

to be integers, for we can multiply the equation by the least common

multiple of their denominators.

The reader will remember that the roots are {-,b^/(b
2
-ac)}/a. It is

easy to construct these lengths geometrically, first constructing *J(b
2
-ac).

A much more elegant, though less straightforward, construction is the

following.

* See Ch. II, Misc. Exs. 22.

f I.e. there are two values of x for which aa;2 -f 2bx + c= 0. If 62 -ac&amp;lt;0 there

are no such values of x. The reader will remember that in books on elementary

algebra the equation is said to have two complex roots. The meaning to be

attached to this statement will be explained in Ch. III.

When 62 -rtc the equation has only one root. For the sake of uniformity

it is generally said in this case to have two equal roots, but this is a mere

convention.
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Draw a circle of unit radius, a diameter PQ, and the tangents at the ends

of the diameters.

Q Q

Fig. 5.

Take PP = Za/b and QQ = c/26, having regard to sign*. Join P Q ,

cutting the circle in M and N. Draw PM and PN, cutting QQ in X and Y.

Then QX and QY are the roots of the equation with their proper signsi.

The proof is simple and we leave it as an exercise to the reader.

Another, perhaps even simpler, construction is the following. Take a line

AB of unit length. Draw BC= -2b/a perpendicular to AB, and CD=c/a

perpendicular to BC and in the same direction as BA. On AD as diameter

describe a circle cutting BG in X and Y. Then BX and BY are the roots.

3. If ac is positive PP and QQ will be drawn in the same direction.

Verify that P Q will not meet the circle if 62
&amp;lt;c,

while if b2= ac it will be

a tangent. Verify also that if 62= ac the circle in the second construction

will touch BC.

4. Prove that

14. Some theorems concerning quadratic surds. Two

pure quadratic surds are said to be similar if they can be ex

pressed as rational multiples of the same surd, and otherwise to be

dissimilar. Thus

and so \/8, ^^f- are similar surds. On the other hand, if M and N
are integers which have no common factor, and neither of which

is a perfect square, &amp;gt;JM
and *JN are dissimilar surds. For suppose,

if possible,

V-ir-* A
q V u

where all the letters denote integers.

* The figure is drawn to suit the case in which b and c have the same and a

the opposite sign. The reader should draw figures for other cases.

t I have taken this construction from Klein s Lemons sur certaines questions di

geometric elementaire (French translation by J. Griess, Paris, 1896).
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Then ,JMN is evidently rational, and therefore (Ex. n. 3) \

integral. Thus MN = P2
,
where P is an integer. Let a, b, c, ...

be the prime factors of P, so that

where a, y3, y, . . . are positive integers. Then MN is divisible by
a2

*, and therefore either (1) M is divisible by a2a
,
or (2) N is

divisible by a2
&quot;,

or (3) M and N are both divisible by a. The last

case may be ruled out, since M and N have no common factor.

This argument may be applied to each of the factors a2a
,
b2

?, c2y
,

. . .
,

so that M must be divisible by some of these factors and N by
the remainder. Thus

Jf-PA N-Pf,

where P^ denotes the product of some of the factors a2a
, b-P, c2y, . . .

and P2
2 the product of the rest. Hence M and N are both perfect

squares, which is contrary to our hypothesis.

THEOREM. If A, B, C, D are rational and

then either (i) A G, B = D or (ii) B and D are loth squares of
rational numbers.

For B- D is rational, and so is

If B is not equal to D (in which case it is obvious that A is also*

equal to (7),
it follows that

is also rational. Hence \/B and */D are rational.

COROLLARY. // A + *JB = C+&amp;gt;JD, then A-
(unless *JB and *JD are both rational).

Examples VIII. 1. Prove ab initio that ^2 and x/3 are not similar

surds.

2. Prove that
&amp;gt;Ja

and *J(I/a), where a is rational, are similar surds

(unless both are rational).

3. If a and b are rational, then
&amp;lt;Ja+ *Jb cannot be rational unless Ja and

/& are rational. The same is true of *Ja Jb, unless a = b.
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4. If

then either (a) A = C and B=D, or (6) A =D and J3= C,or (c) JA, *JB, ^&amp;lt;7,

^/^) are all rational or all similar surds. [Square the given equation and

apply the theorem above.]

5. Neither (a+ Jb)
3 nor (a

-
*/b}

3 can be rational unless Jb is rational.

6. Prove that if x=p+ *Jq, where p and q are rational, then #m
,
where

in is any integer, can be expressed in the form P+QJq, where P and Q
are rational. For example,

Deduce that any polynomial in x with rational coefficients (i.e. any expression

of the form

where a
,

... an are rational numbers) can be expressed in the form

7. If a +
v/&&amp;gt;

where b is not a perfect square, is the root of an algebraical

equation with rational coefficients, then a-*Jb is another root of the same
J

equation.

8. Express l!(p+Jq) in the form prescribed in Ex. 6. [Multiply

numerator and denominator by p -
Jq.]

9. Deduce from Exs. 6 and 8 that any expression of the form G (x)IH (x\

where G(x] and H(x) are polynomials in x with rational coefficients, can be

expressed in the form P+ QJq, where P and Q are rational.

10. If p, q, and p
2 -q are positive, we can express J(p+*Jq) in the form

t
where

1 1 . Determine the conditions that it may be possible to express J(p^
+ *Jq\

where p and q are rational, in the form V^+ Vy, where x and y are rational.

12. If a2 - b is positive, the necessary and sufficient conditions that

should be rational are that a2 -b and ^{a+ N/(a
2
-6)j should both be squares

of rational numbers.

15. The continuum. The aggregate of all real numbers,

rational and irrational, is called the arithmetical continuum.

It is convenient to suppose that the straight line A of 2

is composed of points corresponding to all the numbers of the

arithmetical continuum, and of no others*. The points of the

* This supposition is merely a hypothesis adopted (i) because it suffices for the

purposes of our geometry and (ii)
because it provides us with convenient geometrical

illustrations of analytical processes. As we use geometrical language only for

purposes of illustration, it is not part of our business to study the foundations

of geometry.



24 REAL VARIABLES [l

line, the aggregate of which may be said to constitute the linear

continuum, then supply us with a convenient image of the

arithmetical continuum.

We have considered in some detail the chief properties of a

few classes of real numbers, such, for example, as rational numbers
or quadratic surds. We add a few further examples to show how

very special these particular classes of numbers are, and how, to

put it roughly, they comprise only a minute fraction of the infinite

variety of numbers which constitute the continuum.

(i) Let us consider a more complicated surd expression such as

Our argument for supposing that the expression for z has a meaning might be

as follows. We first show, as in 12, that there is a number
?y
= x/15 such that

2/
2
=15, and we can then, as in 10, define the numbers 4+ ^/15, 4- v/15.

Now consider the equation in z
l ,

The right-hand side of this equation is not rational : but exactly the same

reasoning which leads us to suppose that there is a real number x such that

#3=2 (or any other rational number) also leads us to the conclusion that there

is a number zl such that 21
3=4+ v/li3. We thus define ^= ^(4+^15), and

similarly we can define 22 =4/(4 ^15) ;
and then, as in 10, we define zz^z^.

r v v&amp;lt;
&amp;gt;

-&amp;gt; i + -v c i
. &amp;gt;

*
* ^ *

Now it is easy to verify that

23= 3,+ 8&amp;gt;

. \ $?*

V And we might have given a direct proof of the existence of a unique number

\z Buch that z3=3z+8. It is easy to see that there cannot be two such

numbers. For if z
i
3 = 3z1 + 8 and 22

3= 3%-f8, we find on subtracting and

dividing by Zi~z2 that Zi
2+z1z2+z2

2=3. But if z
l
and z2 are positive ^3

&amp;gt;8,

z2
3

&amp;gt;8 and therefore
Zj&amp;gt;2,

22 &amp;gt;2, Zi
2+ z1 z2+ z2

2
&amp;gt; 12, and so the equation

just found is impossible. And it is easy to see that neither zl nor z.
2 can

be negative. For if zi is negative and equal to -r, is positive and
3-3+8 = 0, or 3- 2= 8/. Hence 3- 2

&amp;gt;0,
and so &amp;lt;2. But then

8/&amp;gt;4, and so 8/ cannot be equal to 3- 2
,
which is less than 3.

Hence there is at most one z such that z3= 32+ 8. And it cannot be

rational. For any rational root of this equation must be integral and a

factor of 8 (Ex. n. 3), and it is easy to verify that no one of 1, 2, 4, 8 is a root.

Thus z3= 3-2+ 8 has at most one root and that root, if it exists, is positive

and not rational. We can now divide the positive rational numbers x into

two classes Z, A according as x3
&amp;lt; 3x+ 8 or x3

&amp;gt; &v + 8. It is easy to see that

if a? &amp;gt; 3. + 8 and y is any number greater than #, then also y
3

&amp;gt; 3y+ 8. For

suppose if possible y
3

&amp;lt;3?/-|-8. Then since #3
&amp;gt;3#+ 8 we obtain on sub

tracting y
3 -tf3

&amp;lt;3(y-#), or y
2 + xy+ x2

&amp;lt; 3, which is impossible; for y is
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positive and #&amp;gt;2 (since ^3
&amp;gt;8). Similarly we can show that i

and y &amp;lt; x then also y
z

&amp;lt; 3y -f 8.

Finally, it is evident that the classes L and It both exist
;
and they form

a section of the positive rational numbers or positive real number z which

satisfies the equation z3= 3z + 8. The reader who knows how to solve cubic

equations by Cardan s method will be able to obtain the explicit expression of

z directly from the equation.

(ii) The direct argument applied above to the equation

y? 3x + 8 could be applied (though the application would be

a little more difficult) to the equation

a? = x + 16,

and would lead us to the conclusion that a unique positive real

number exists which satisfies this equation. In this case, how

ever, it is not possible to obtain a simple explicit expression

for x composed of any combination of surds. It can in fact

be proved (though the proof is difficult) that it is generally

impossible to find such an expression for the root of an equation

of higher degree than 4. Thus, besides irrational numbers which

can be expressed as pure or mixed quadratic or other surds, or

combinations of such surds, there are others which are roots of

algebraical equations but cannot be so expressed. It is only in

very special cases that such expressions can be found.

(iii)
- But even when we have added to our list of irrational

numbers roots of equations (such as x? = cc-\- 16) which cannot be

explicitly expressed as surds, we have not exhausted the different

kinds of irrational numbers contained in the continuum. Let us

draw a circle whose diameter is equal to A A l} i.e. to unity. It is

natural to suppose* that the circumference of such a circle has a

length capable of numerical measurement. This length is usually

denoted by TT. And it has been shownf (though the proof is un

fortunately long and difficult) that this number TT is not the

root of any algebraical equation with integral coefficients, such,

for example, as

7T
2 =

??, 7T
3 = H, 7T

5 = 7T + U,

* A proof will be found in Ch. VII.

f See Hobson s Trigonometry (3rd edition), pp. 305 et seq., or the same writer s

Squaring the Circle (Cambridge, 1913).
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where n is an integer. In this way it is possible to define a

number which is not rational nor yet belongs to any of the classes

of irrational numbers which we have so far considered. And this

number TT is no isolated or exceptional case. Any number of other

examples can be constructed. In fact it is only special classes of

irrational numbers which are roots of equations of this kind, just
as it is only a still smaller class which can be expressed by means
of surds.

16. The continuous real variable. The real numbers

may be regarded from two points of view. We may think of

them as an aggregate, the arithmetical continuum defined in

the preceding section, or individually. And when we think of

them individually, we may think either of a particular specified

number (such as 1, -J, \/2, or TT) or we may think of any number,
an unspecified number, the number x. This last is our point of

view when we make such assertions as
(x is a number

,

lx is the

measure of a length ,
# may be rational or irrational

, The x
which occurs in propositions such as these is called the continuous

real variable : and the individual numbers are called the values of

the variable.

A variable , however, need not necessarily be continuous.

Instead of considering the aggregate of all real numbers, we

might consider some partial aggregate contained in the former

aggregate, such as the aggregate of rational numbers, or the

aggregate of positive integers. Let us take the last case. Then
in statements about any positive integer, or an unspecified positive

integer, such as
(n is either odd or even

,
n is called the variable,

a positive integral variable, and the individual positive integers
are its values.

Naturally a and n are only examples of variables, the

variable whose field of variation is formed by all the real

numbers, and that whose field is formed by the positive integers.

These are the most important examples, but we have often to

consider other cases. In the theory of decimals, for instance, we

may denote by x any figure in the expression of any number as a

decimal. Then # is a variable, but a variable which has only ten

different values, viz. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The reader should
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think of other examples of variables with different fields of varia

tion. He will find interesting examples in ordinary life : policeman

X) the driver of cab x, the year x, the xth day of the week. The

values of these variables are naturally not numbers.

17. Sections of the real numbers. In 4 7 we con

sidered sections of the rational numbers, i.e. modes of division of

the rational numbers (or of the positive rational numbers only)

into two classes L and R possessing the following characteristic

properties:

(i) that every number of the type considered belongs to one

and only one of the two classes
;

(ii) that both classes exist
;

(iii) that any member of L is less than any member of R.

It is plainly possible to apply the same idea to the aggregate
of all real numbers, and the process is, as the reader will find in

later chapters, of very great importance.

Let us then suppose
* that P and Q are two properties which

are mutually exclusive, and one of which is possessed by every

real number. Further let us suppose that any number which

possesses P is less than any which possesses Q. We call the

numbers which possess P the lower or left-hand class L, and

those which possess Q the upper or right-hand class R.

Thus P might be x &amp;lt;

N/2 and Q be x &amp;gt; ^2. II is important to observe

that a pair of properties which suffice to define a section of the rational

numbers may not suffice to define one of the -real numbers. This is so, for

example, with the pair
c x &amp;lt; v/2 and x &amp;gt; s/2 or (if we confine ourselves

to positive numbers) with #2
&amp;lt; 2 and * x2

&amp;gt;
2 . Every rational number

possesses one or other of the properties, but not every real number, since in

either case v/2 escapes classification.

There are now two possibilities!. Either L has a greatest

member I, or R has a least member r, Both of these events

* The discussion which follows is in many ways similar to that of 6. We
have not attempted to avoid a certain amount of repetition. The idea of a section,

first brought into prominence in Dedekind s famous pamphlet Stctigkett und

irrationale Zahlen, is one which can, and indeed must, be grasped by every reader .

of this book, even if he be one of those who prefer to omit the discussion of the
j

notion of an irrational number contained in 6 12.

t There were three in 6. b / ^
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cannot occur. For if L had a greatest member I, and R a least

member r, the number \(l-\-r) would be greater than all members
of L and less than all members of R, and so could not belong to

either class. On the other hand one event must occur*.

For let LI and Rj_ denote the classes formed from L and R by

taking only the rational members of L and R. Then the classes

L^ and R1 form a section of the rational numbers. There are now
two cases to distinguish.

It may happen that Ll has a greatest member a. In this case

a must be also the greatest member of L. For if not, we could find

a greater, say (S. There are rational numbers lying between a and

ft, and these, being less than ft, belong to L, and therefore to L^
and this is plainly a contradiction. Hence a is the greatest

member of L.

On the other hand it may happen that L l has no greatest

member. In this case the section of the rational numbers formed

by L1 and R! is a real number a. This number a must belong
to L or to R. If it belongs to L we can shew, precisely as before,

that it is the greatest member of L
,
and similarly, if it belongs

to R, it is the least member of R.

Thus in any case either L has a greatest member or R a

least. Any section of the real numbers therefore corresponds to

a real number in the sense in which a section of the rational

numbers sometimes, but not always, corresponds to a rational

number. This conclusion is of very great importance ;
for it shows

that the consideration of sections of all the real numbers does not

lead to any further generalisation of our idea of number. Starting

from the rational numbers, we found that the idea of a section of

the rational numbers led us to a new conception of a number, that

of a real number, more general than that of a rational number;

and it might have been expected that the idea of a section of the

real numbers would have led us to a conception more general still.

The discussion which precedes shows that this is not the case, and

that the aggregate of real numbers, or the continuum, has a kind

of completeness which the aggregate of the rational numbers

lacked, a completeness which is expressed in technical language

by saying that the continuum is closed.

* This was not the case in 6.
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The result which we have just proved may be stated as follows:

Dedekind s Theorem. If the real numbers are divided into

two classes L and R in such a way that

(i) every number belongs to one or other of the two classes,

(ii) each class contains at least one number,

(iii) any member of L is less than any member of R,

then there is a number a, which has the property that all the numbers

less than it belong to L and all the numbers greater than it to R.

The number a. itself may belong to either class.

In applications we have often to consider sections not of all numbers but

of all those contained in an interval (0, y\ that is to say of all numbers

x such that /3 x ^ y. A section of such numbers is of course a division of

them into two classes possessing the properties (i), (ii), and
(iii). Such

a section may be converted into a section of all numbers by adding to L all

numbers less than /3 and to R all numbers greater than y. It is clear that

the conclusion stated in Dedekind s Theorem still holds if we substitute the

real numbers of the interval (ft y} for the real numbers
,
and that the

number a in this case satisfies the inequalities /3 &amp;lt;a^y.

18. Points of accumulation. A system of real numbers, OP

of the points on a straight line corresponding to them, denned in

any way whatever, is called an aggregate or set of numbers or

points. The set might consist, for example, of all the positive

integers, or of all the rational points.

It is most convenient here to use the language of geometry*.

Suppose then that we are given a set of points, which we will

denote by S. Take any point f,
which may or may not belong to S.

Then there are two possibilities. Either (i) it is possible to choose

a positive number 8 so that the interval (f S, % + S) does not con

tain any point of S, other than f itself f, or (ii) this is not possible.

Suppose, for example, that S consists of the points corresponding to all

the positive integers. If is itself a positive integer, we can take S to be any
number less than 1, and (i) will be true; or, if is halfway between two

positive integers, we can take 8 to be any number less than \. On the other

hand, if S consists of all the rational points, then, whatever the value of
,

(ii) is true ; for any interval whatever contains an infinity of rational points.

* The reader will hardly require to be reminded that this course is adopted

solely for reasons of linguistic convenience.

t This clause is of course unnecessary if does not itself belong to S.
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Let us suppose that (ii) is true. Then any interval (f 8, f 4- S),

however small its length, contains at least one point fj which

belongs to 8 and does not coincide with
;
and this whether f

itself be a member of S or not. In this case we shall say that f is

a point of accumulation of 8. It is easy to see that the interval

(?~8, f+S) must contain, nojj_merely one, but infinitely many

points of 8. For, when we have determined f1} we can take an

interval (f 81, f + 81) surrounding f but not reaching as far as flt

But this interval also must contain a point, say fa ,
which is a

member of $ and does not coincide with f. Obviously we may
repeat this argument, with f2 in the place of fj ;

and so on

indefinitely. In this way we can determine as many points

\

as we please, all belonging to S, and all lying inside the interval

A point of accumulation of $ may or may not be itself a point

of S. The examples which follow illustrate the various possibilities.

Examples IX. 1. If S consists of the points corresponding to the

positive integers, or all the integers, there are no points of accumulation.

2. If S consists of all the rational points, every point of the line is a

point of accumulation.

3. If S consists of the points 1, J, , ..., there is one point of accumula

tion, viz. the origin.

4. If S consists of all the positive rational points, the points of accumula

tion are the origin and all positive points of the line.

1 19. Weierstrass s Theorem. The general theory of sets

r S of points is of the utmost interest and importance in the higher

branches of analysis ;
but it is for the most part too difficult to be

included in a book such as this. There is however one funda

mental theorem which is easily deduced from Dedekind s Theorem

and which we shall require later.

THEOREM. If a set S contains infinitely many points, and is

entirely situated in an interval (a, j3), then at least one point of the

interval is a point of accumulation of 8.

We divide the points of the line A into two classes in the

following manner. The point P belongs to L if there are an
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infinity of points of S to the right of P, and to R in the contrary
case. Then it is evident that conditions (i) and (iii) of Dedekind s

Theorem are satisfied
;
and since a belongs to L and /3 to R,

condition (ii) is satisfied also.

Hence there is a point f such that, however small be 8, f S

belongs to L and f+S to R, so that the interval (f-5, +)
contains an infinity of points of S. Hence f is a point of accumu

lation of S.

This point may of course coincide with a or
/3,

as for instance when a=0,

$= 1, and S consists of the points 1, |, ^, .... In this case is the sole

point of accumulation.

MISCELLANEOUS EXAMPLES ON CHAPTER I.

1. What are the conditions that ax+ by + cz=0, (1) for all values of

a, y, z\ (2) for all values of x, y, z subject to ax+py+yz=0 , (3) for all

values of x, y, z subject to both ax+$y+ yz= Q and

2. Any positive rational number can be expressed in one and only one

way in the form

&amp;lt;*1+ r
J
2
+ rTT3~f &quot; +

i7273~7^I

where aj, 2 -&quot;j % are integers, and

Ogalt 0&amp;lt; 2 &amp;lt;2, 0^ 3 &amp;lt;3, ...0&amp;lt;a fc &amp;lt;.

3. Any positive rational number can be expressed in one and one way
only

7 as a simple continued fraction

where a1} 2
&amp;gt;

are positive integers, of which the first only may be zero.

[Accounts of the theory of such continued fractions will be found in text

books of algebra. For further information as to modes of representation of

rational and irrational numbers, see Hobson, Theory of Functions of a Real

Variable, pp. 4549.]

4. Find the rational roots (if any) of 9#3 - &v2
-f 15x - 10= 0. *

5. A line AB is divided at C in aurea sectione (Euc. II. 11) i.e. so that

AB . AC=C2
. Show that the ratio A CjAB is irrational.

[A direct geometrical proof will be found in Bromwich s Infinite Series,

143, p. 363.]

6. A is irrational. In what circumstances can-i . where a, b. c. d
cA + d

are rational, be rational?

J
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7. Some elementary inequalities. In what follows a1? a2 ,
... de

note positive numbers (including zero) and
jt?, #, ... positive integers. Since

ajP-a2
P and !- 2 have the same sign, we have (af - a2 *&amp;gt;) (a^ - a2 ) &amp;gt;0,

or

........................ (1),

an inequality which may also be written in the form

+ 2
p + g

&amp;gt;
/V+

2 =\ 2

By repeated application of this formula we obtain

and in particular &amp;gt;

..............................
(4)&amp;gt;

When
;?
=2=1 in (1), or p= 2 in (4), the inequalities are merely different

forms of the inequality af+af^Za&z, which expresses the fact that the
arithmetic mean of two positive numbers is not less than their geometric
mean.

8. Generalisations for n numbers. If we write down the \n(n-l}
inequalities of the type (1) which can be formed with n numbers alt a2 ,..., ,

and add the results, we obtain the inequality

........................ (6).

Hence we can deduce an obvious extension of (3) which the reader may
formulate for himself, and in particular the inequality

(7).

9. The general form of the theorem concerning the arithmetic and
geometric means. An inequality of a slightly different character is

that which asserts that the arithmetic mean of a
lt a2 , ..., an is not less

than their geometric mean. Suppose that ar and a
?
are the greatest and

least of the a s (if there are several greatest or least a s we may choose any
of them indifferently), and let O be their geometric mean. We may suppose

&amp;gt; 0, as the truth of the proposition is obvious when G= 0. If now we replace
ar and as by

we do not alter the value of the geometric mean ; and, since

/+ a8 -ar -as
= (ar

-
G) (a,

-
(?)/

&amp;lt;

0,

we certainly do not increase the arithmetic mean.

It is clear that we may repeat this argument until we have replaced each

of a
l , 2 , ..., an by G; at most n repetitions will be necessary. As the final

value of the arithmetic mean is G, the initial value cannot have been less.
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10. Schwarz s inequality. Suppose that a
lt 2 , ..., an and 6

1? 62 , ..., bn

are any two sets of numbers positive or negative. It is easy to verify the

identity

(2aA)2= 2 r
2
2a.

2- 2 (arb8
- a8br)\

where r and s assume the values 1, 2, ..., n. It follows that

an inequality usually known as Schwarz s (though due originally to Cauchy).

11. If alf a2 , ..., an are all positive, and *n= a
1 + o2+ . .. + ,

then

(Math. Trip. 1909.)

12. If !, 2 , ..., n and 615 b%, ..., 6n are two sets of positive numbers,

arranged in descending order of magnitude, then

13. If a, 6, c, ... & and ^4, Z?, (7, ... K are two sets of numbers, and all of

the first set are positive, then

lies between the algebraically least and greatast of A, /?, ..., K.

14. If Jpt Jq are dissimilar surds, and a+b *Jp+c */q+d J(pq}**0,
where a, b, c, d are rational, then a= 0, 6= 0, c= 0, d=Q.

[Express *Jp in the form M+N Jqt
whereM and N are rational, and apply

the theorem of 14.]

1 5. Show that if a *JZ + b ^/3 + c J5= 0, where a, 6, c are rational numbers,
then a= 0, 6= 0, c=0.

16. Any polynomial in Jp and V^ with rational coefficients (i.e. any
sum of a finite number of terms of the form A (Jp}

m
(&amp;lt;Jq}

n
^
where m and n

are integers, and A rational), can be expressed in the form

a+ b Jp+ cVq+ d &amp;gt;Jpq,

where a, 6, c, d are rational.

17. Express**,- ~f , ,-, where a, b, etc. are rational, in the form
a+ e -

where A, S, C&amp;gt;
D are rational.

[Evidently

Jq _ (a+ b Jp+ c Jq) (d+e Jp-fjq) __ a

where a, /3, etc. are rational numbers which can easily be found. The required

n. 3
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reduction may now be easily completed by multiplication of numerator and
denominator by e-Vjo. For example, prove that

18. If a, b, x, y are rational numbers such that

then either (i) x=a t y=b or (ii) l-ab and \-xy are squares of rational

numbers.
(Math. Trip. 1903.)

19. If all the values of x and y given by

ax2+ Zhxy+ by
2=

1, a x*+ 2k xy+ by
2= I

(where a, A, b, a
,
h

,
b are rational) are rational, then

(h
- A )2

_
(a - a ) (6

- 6
), (a&

- a &)
2+ 4 (ah

- a h] (bh
1- b h]

are both squares of rational numbers. (Math. Trip. 1899.)

20. Show that N/2 and N/3 are cubic functions of N^2+ x/3, with rational

coefficients, and that ^2 ^6+ 3 is the ratio of two linear functions of

x/2 + .v/3. (Math. Trip. 1905.)

21. The expression

is equal to 2m if 2m2
&amp;gt; a &amp;gt; m2

,
and to 2 v/(a

- wi2) if a
&amp;gt; 2wi2

.

22. Show that any polynomial in #2, with rational coefficients, can be

expressed in the form

where a, 6, c are rational.

More generally, if p is any rational number, any polynomial m ^p with

rational coefficients can be expressed in the form

where a
, j, ... are rational and a= %p. For any such polynomial is of the

form

where the 6 s are rational. If Jc^m 1, this is already of the form required. If

Jc&amp;gt;m- 1, let ar be any power of a higher than the (m l)th. Then r=\m+ s,

where X is an integer and 0^s&amp;lt;m- 1
; and a

r=axm+s=p
x
a
s
. Hence we can

get rid of all powers of a higher than the (m l)th.

23. Express (4/2 -I)
6 and (#2-l)/(#2 + l) in the form

where a, b, c are rational. [Multiply numerator and denominator of the

second expression by ^4- 4/2 + 1.]

24. If

where a, 5, c are rational, then a=0, 5= 0, c= 0.
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[Let y= f/2. Then #
3= 2 and

Hence 2c 2+26+a 3=0 or

Multiplying these two quadratic equations by a and c and subtracting,

we obtain (a6-2c
2)y+a2 -26c=0, or y= -

(a
2 -

26c)/(a6
- 2c2

), a rational

number, which is impossible. The only alternative is that ab 2c2
=0,

a2 - 26e = 0.

Hence a6= 2c2
,
a4=462c2. If neither a nor b is zero, we can divide the

second equation by the first, which gives a3=263
: and this is impossible,

since ^/2 cannot be equal to the rational number a/6. Hence a6= 0, c= 0,

and it follows from the original equation that a, 6, and c are all zero.

As a corollary, if a+&^2=Hc&amp;lt;v/4
=

d+e^/2+/&amp;gt;/4, then a= d, b= e, c=f.

It may be proved, more generally, that if

p not being a perfect mth power, then a =ai= ... = am _ 1
=

j but the proof is

less simple.]

25. If A + $B=C+j/D, then either A = C, B=D, or and D are both

cubes of rational numbers.

26. If %A +$B+$C= 0, then either one of A, B, C is zero, and the other

two equal and opposite, or JfA t j/B, $C are rational multiples of the same
surd j/X.

27. Find rational numbers a, 3 such that

28. If (a-Z)3)6&amp;gt;o, then

3f 963+ a /a-6*\ sf 96 + ^//a-6*\\ s/fv v&quot;36-)/

+ v r~
is rational. [Each of the numbers under a cube root is of the form

where a and /3 are rational.]

29. If a= Z/p, any polynomial in a is the root of an equation of degree n,

with rational coefficients.

[We can express the polynomial (x say) in the form

where lit mly ... are rational, as in Ex. 22.

29



36 REAL VARIABLES

Similarly x2=l2+m2a+... +r2a
(n
~

1)

,

Hence Lvx+ L%x2 + . . . +Lnxn= A,

where A is the determinant

mi ... i

mn ...rn

and Zi, Z2 ,
... the minors of llt 12 , ....]

30. Apply this process to x=p+Jq, and deduce the theorem of 14.

31. Show that y= a + bp
1 3 + cp

2/3 satisfies the equation

#
3 - 3a/+ 3y (a

2 -
6cjo)

- a3 - 63p - c3^2+ Zabcp= 0.

32. Algebraical numbers. We have seen that some irrational numbers

(such as x/2) are roots of equations of the type

a^x
n+ a^x

n ~ l + . . . + an= 0,

\ where
, a^ ..., an are integers. Such irrational numbers are called alge-

}
braical numbers: all other irrational numbers, such as TT ( 15), are called

transcendental numbers. Show that if x is an algebraical number, then so are

kx
t
where k is any rational number, and x

m n
, where m and n are any integers.

33. If x and y are algebraical numbers, then so are x-\-y&amp;gt;x-y,xy
and x\y.

[We have equations a$x
m + aiX

m ~ 1+ . . . + am= 0,

where the a s and 6 s are integers. Write x+y=z,y=z-x in the second,

and eliminate x. We thus get an equation of similar form

satisfied by z. Similarly for the other cases.]

34. If a n+ a
1
#*- 1 + ...+an

=
0,

where a
,
a1} ..., an are any algebraical numbers, then x is an algebraical

number. [We have n + l equations of the type

a
0&amp;gt;r

ar
mr+ ai tr ar

mr~ l + ...+amrir
=

(r
= 0, 1, ..., ri),

in which the coefficients
, r&amp;gt;

a
i, r&amp;gt;

are integers Eliminate a . alt ..., an

between these and the original equation for x.}

35. Apply this process to the equation x2- 2x V2 +V3 0.

[The result is ^-
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36. Find equations, with rational coefficients, satisfied by

37. If #3=x + 1
,
then #3n= aHx+ bn+ cjx, where

38. If #G+^5 -2. 4 -.r3 +tf2+ l=0 and y = A4 -^2 4-^- 1, then y satisfies

a quadratic equation with rational coefficients. (Afat/i. Trip. 1903.)

[It will be found that y
1+y + 1 = 0.]



CHAPTER II

FUNCTIONS OF HEAL VARIABLES

20. The idea of a function. Suppose that x and y are

two continuous real variables, which we may suppose to be repre
sented geometrically by distances A^P = x, B^Q^y measured

from fixed points A 0) B along two straight lines A, M. And
let us suppose that the positions of the points P and Q are not

independent, but connected by a relation which we can imagine
to be expressed as a relation between x and y: so that, when
P and x are known, Q and y are also known. We might,
for example, suppose that y = x, or y=2x, or |#, or #2 + l. In

all of these cases the value of x determines that of y. Or

again, we might suppose that the relation between x and y is

given, not by means of an explicit formula for y in terms of as,

but by means of a geometrical construction which enables us to

determine Q when P is known.

In these circumstances y is said to be a function of x. This

notion of functional dependence of one variable upon another is

perhaps the most important in the whole range of higher mathe

matics. In order to enable the reader to be certain that he

understands it clearly, we shall, in this chapter, illustrate it by
means of a large number of examples.

But before we proceed to do this, we must point out that

the simple examples of functions mentioned above possess three

characteristics which are by no means involved in the general

idea of a function, viz.:

(1) y is determined for every value of x\

(2) to each value of x for which y is given corresponds one

and only one value ofy,

(3) the relation between x and y is expressed by means of

an analytical formula, from which the value of y corresponding to

a given value of x can be calculated by direct substitution of the

latter.
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It is indeed the case that these particular characteristics are

possessed by many of the most important functions. But the con

sideration of the following examples will make it clear that they
are by no means essential to a function. All that is essential is

that there should be some relation between x and y such that to

some values of x at any rate correspond values of y.

Examples X. 1. Let y=x or 2# or \x or x2+ 1 Nothing further need

be said at present about cases such as these.

2. Let#=0 whatever be the value of x. Then y is a function of x, for we

can give x any value, and the corresponding value of y (viz. 0) is known. In

this case the functional relation makes the same value of y correspond to all

values of x. The same would be true were y equal to 1 or -
\ or V2 instead

of 0. Such a function of x is called a constant.

3. Let y = x. Then if x is positive this equation defines two values of y
corresponding to each value of #, viz. Jx. If #=0, y0. Hence to the

particular value 0- of x corresponds one and only one value of y. But if x is

negative there is no value of y which satisfies the equation. That is to say,

the function y is not defined for negative values of x. This function therefore

possesses the characteristic (3), but neither (1) nor (2).

4. Consider a volume of gas maintained at a constant temperature and

contained in a cylinder closed by a sliding piston*.

Let A be the area of the cross section of the piston and W its weight.

The gas, held in a state of compression by the piston, exerts a certain pressure

p per unit of area on the piston, which balances the weight TF, so that

W=APo .

Let v be the volume of the gas when the system is thus in equilibrium.

If additional weight is placed upon the piston the latter is forced downwards.

The volume (v) of the gas diminishes ; the pressure (p) which it exerts

upon unit area of the piston increases. Boyle s experimental law asserts that

the product of p and v is very nearly constant, a correspondence which, if

exact, would be represented by an equation of the type

pv=a (i),

where a is a number which can be determined approximately by experiment.

Boyle s law, however, only gives a reasonable approximation to the facts

provided the gas is not compressed too much. When v is decreased and p
increased beyond a certain point, the relation between them is no longer

expressed with tolerable exactness by the equation (i). It is known that a

*
I borrow this instructive example from Prof. H. S. Carslaw s Introduction to

the Calculus.
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much better approximation to the true relation can then be found by means
of what is known as van der Waals law

, expressed by the equation

(ii),

where a, /3, y are numbers which can also be determined approximately by
experiment.

Of course the two equations, even taken together, do not give anything
like a complete account of the relation between p and v. This relation is no
doubt in reality much more complicated, and its form changes, as v varies,
from a for ^

nearly equivalent to (i) to a form nearly equivalent to (ii). But,
from a mathematical point of view, there is nothing to prevent us from con

templating an ideal state of things in which, for all values of v not less than
a certain value V, (i) would be exactly true, and (ii) exactly true for all

values of v less than V. And then we might regard the two equations as

together denning p as a function of . It is an example of a function which
for some values of v is denned by one formula and for other values of v is

denned by another.

This function possesses the characteristic (2) . to any value of v only one
value of p corresponds : but it does not possess (1). For p is not denned as

a function of v for negative values of vj a negative volume means

nothing, and so negative values of v do not present themselves for considera

tion at all.

5. Suppose that a perfectly elastic ball is dropped (without rotation)
from a height \gr

l on to a fixed horizontal plane, and rebounds continually.

The ordinary formulae of elementary dynamics, with which the reader is

probably familiar, show that h = gt
2 if &amp;lt;t

&amp;lt;r, h=\g (2r-t)
2 if rt

&amp;lt;3r,
and

generally

if (2n- l)r&amp;lt;&amp;lt;(2w+ l)T, h being the depth of the ball, at time t, below its

original position. Obviously A is a function of t which is only denned for

positive values of t.

** 6. Suppose that y is denned as being the largest prime factor of x. This

is an instance of a definition which only applies to a particular class of values

of x, viz. integral values. * The largest prime factor of J
3
*- or of N/2 or of TT

means nothing, and so our defining relation fails to define for such values of x
as these. Thus this function does not possess the characteristic (1). It does

possess (2), but not (3), as there is no simple formula which expresses y in

terms of x.

7. Let y be defined as the denominator of x when x is expressed in its

lowest terms. This is an example of a function which is defined if and only
if x is rational. Thus y= 7 if x -

11/7 : but y is not defined for #=^2, the

denominator of ^2 being a meaningless form of words.
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8. Let y be defined as the height in inches of policeman Cx, in the

Metropolitan Police, at 5.30 p.m. on 8 Aug. 1907. Then y is defined for a

certain number of integral values of x, viz. 1, 2, ... , N, where N is the total

number of policemen in division C at that particular moment of time.

21. The graphical representation of functions. Sup

pose that the variable y is a function of the variable x. It will

generally be open to us also to regard x as a function of y, in virtue

of the functional relation between x and y. But for the present we

shall look at this relation from the first point of view. We shall

then call x the independent variable and y the dependent variable
,

and, when the particular form of the functional relation is not

specified, we shall express it by writing

y-/()
(or F (x}, &amp;lt;j) (x), i/r (x), . . . , as the case may be).

The nature of particular functions may, in very many cases, be

illustrated and made easily intelligible as follows. Draw two lines

X, Y at right angles to one another

and produced indefinitely in both direc

tions. We can represent values of x

and y by distances measured from

along the lines OX, OY respectively,

regard being paid, of course, to sign,

and the positive directions of measure

ment being those indicated by arrows

in Fig. 6.

Let a be any value of x for which

y is defined and has (let us suppose)
the single value b. Take OA = a,

OB = b, and complete the rectangle Fig.

OAPB. Imagine the point P marked on the diagram. This

marking of the point P may be regarded as showing that the

value of y for x = a is b.

If to the value a of x correspond several values of y (say

b, b
, b&quot;},

we have, instead of the single point P, a number of

points P, P ,
P&quot;.

We shall call P the point (a, b) ;
a and b the coordinates of P

referred to the axes OX, OY ;
a the abscissa, b the ordinate of P ,

OX and Y the axis of x and the axis of y, or together the
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axes of coordinates, and the origin of coordinates, or simply
the origin.

Let us now suppose that for all values a of x for which y is

defined, the value b (or values b, b
, b&quot;, ...) of y, and the corre

sponding point P (or points P, P t P&quot;, ...), have been determined.

We call the aggregate of all these points the graph of the

function y.

To take a very simple example, suppose that y is defined as

a function of x by the equation

Ax + By + C = ........................ (1),

where A, B, C are any fixed numbers*. Then y is a function of x

which possesses all the characteristics (1), (2), (3) of 20. It is

easy to show that the graph of y is a straight line. The reader is

in all probability familiar with one or other of the various proofs

of this proposition which are given in text-books of Analytical

Geometry.

We shall sometimes use another mode of expression. We
shall say that when x and y vary in such a way that equation (1)

is always true, the locus of the point (x, y) is a straight line, and

we shall call (1) the equation of the Zocws, and say that the equation

represents the locus. This use of the terms locus
, equation of

the locus is quite general, and may be applied whenever the

relation between x and y is capable of being represented by an

analytical formula.

The equation Ax + By + G = is the general equation of the first

degree, for Ax + By + C is the most general polynomial in x and y
which does not involve any terms of degree higher

than the first

in x and y. Hence the general equation of the first degree repre

sents a straight line. It is equally easy to prove the converse

proposition that the equation of any straight line is of the first

degree.

We may mention a few further examples of interesting geo
metrical loci defined by equations. An equation of the form

*
If Z?= 0, y does not occur in the equation. We must then regard y as a

function of x defined for one value only of x, viz. x -
C/A, and then having all

values.
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or #2 + 2/

2 + 2Gx+ 2%-f (7 = 0,

where G2 + P2 C &amp;gt; 0, represents a circle. The equation

(the general equation of the second degree) represents, assuming
that the coefficients satisfy certain inequalities, a conic section,

i.e. an ellipse, parabola, or hyperbola. For further discussion of

these loci we must refer to books on Analytical Geometry.

22. Polar coordinates. In what precedes we have determined

the position of P by the lengths of its coordinates OM=x, MP =
y.

If OP = r and MOP =
0, 6 being an

angle between and 2?r (measured in

the positive direction), it is evident that

x = r cos 0, y r sin 6,

r = \/(#
2 + 2/

2
), cos 6 : sin 6 : 1 : : x : y : r,

and that the position of P is equally well

determined by a knowledge of r and 6. o * M
We call r and 6 the polar coordinates Fig- 7.

of P. The former, it should be observed, is essentially positive*.

If P moves on a locus there will be some relation between r

and 6, say r =/(0) or = F(r). This we call the polar equation
of the locus. The polar equation may be deduced from the (x, y)

equation (or vice versa) by means of the formulae above.

Thus the polar equation of a straight line is of the form

rcos(# a)=p,
where p and a are constants. The equation r = 2a cos 6 represents
a circle passing through the origin ;

and the general equation of

a circle is of the form

r2 + c2 - 2rc cos (6
-

a)
= A 2

,

where A, c, and a are constants.

* Polar coordinates are sometimes defined so that r may be positive or negative.
In this case two pairs of coordinates e.g. (1,0) and (-1, TT) correspond to the

same point. The distinction between the two systems may be illustrated by means
of the equation lfr= l -ecos0, where

Z&amp;gt;0, e&amp;gt;l. According to our definitions r

must be positive and therefore cos0&amp;lt;l/e: the equation represents one branch only
of a hyperbola, the other having the equation -l\r= \-e cos 0. With the system
of coordinates which admits negative values of r, the equation represents the whole

hyperbola.
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23. Further examples of functions and their graphical

representation. The examples which follow will give the

reader a better notion of the infinite variety of possible types of

functions.

A. Polynomials. A polynomial in x is a function of the

form

a Qx
m + a^-1 + ...+ am ,

where a
,
a1} ..., am are constants. The simplest polynomials are

the simple powers y x, a?, a?, . . ., x
m

,
.... The graph of the function

xm is of two distinct types, according as m is even or odd.

First let m = 2. Then three points on the graph are (0, 0),

(1, 1), ( 1, 1). Any number of additional points on the graph

may be found by assigning other special values to x\ thus the

values

tf = i 2, 3,-i, -2, 3

give
=

J, 4, 9, 4,9.

(0,0)

Fig. 8.

If the reader will plot off a fair number of points on the graph, he

will be led to conjecture that the

form of the graph is something
like that shown in Fig. 8. If

he draws a curve through the

special points which he has proved
to lie on the graph and then tests

its accuracy by giving x new

values, and calculating the cor

responding values of y, he will

find that they lie as near to the curve as it is reasonable to expect,

when the inevitable inaccuracies of drawing are considered. The

curve is of course a parabola.

There is, however, one fundamental question which we cannot

answer adequately at present. The reader has no doubt some

notion as to what is meant by a continuous curvej_a_c_urve without

breaks or jumps ;
such a curve, in fact, as is roughly represented

in Fig. 8. The question is whether the graph of the function

y = #2
is in fact such a curve. This cannot be proved by merely
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constructing any number of isolated points on the curve, although
the more such points we construct the more probable it will

appear.

This question cannot be discussed properly until Ch. V. In

that chapter we shall consider in detail what our common sense

idea of continuity really means, and how we can prove that such

graphs as the one now considered, and others which we shall

consider later on in this chapter, are really continuous curves.

For the present the reader may be content to draw his curves as

common sense dictates.

It is easy to see that the curve y= #2 is everywhere convex to the axis of x.

Let PO, PI (Fig. 8) be the points (xQt x\ (a?i, V)- Then the coordinates of

a point on the chord PQ Pi are # X# +/i#i, y=X# 2
-f-/*#i

2
&amp;gt;

where X and p.
are

positive numbers whose sum is 1. And

so that the chord lies entirely above the curve.

The curve y = x4 is similar to y = x* in general appearance, but

flatter near 0, and steeper beyond the points A, A (Fig. 9),

and y xm
,
where m is even and greater than 4, is still more so,

As m gets larger and larger the flatness and steepness grow

more and more pronounced, until the curve is practically indis

tinguishable from the thick line in the figure.

o

Fig. 9. Fig. 10.

The reader should next consider the curves given by y=x
m

y

when m is odd. The fundamental difference between the two

cases is that whereas when m is even ( x)
m = xm

,
so that the

curve is symmetrical about OF, when m is odd ( x)
m = xm, so
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that y is negative when x is negative. Fig. 10 shows the curves

y = x, y = a?, and the form to which y xm approximates for

larger odd values of m

It is now easy to see how (theoretically at any rate) the graph
of any polynomial may be constructed. In the first place, from

the graph of y = xm we can at once derive that of Cxm
, where C is

a constant, by multiplying the ordinate of every point of the

curve by C. And if we know the graphs of f(x) and F (#), we
can find that of f(x) + F(x) by taking the ordinate of every point

to be the sum of the ordinates of the corresponding points on the

two original curves.

The drawing of graphs of polynomials is however so much

facilitated by the use of more advanced methods, which will be

explained later on, that we shall not pursue the subject further

here.

Examples XI. 1. Trace the curves 3/=7#
4
, y=3#5

, y=xl
.

[The reader should draw the curves carefully, and all three should be

drawn in one figure*. He will then realise how rapidly the higher powers
of x increase, as x gets larger and larger, and will see that, in such a

polynomial as

(or even #10
-f SO^+VOCte*), it is the first term which is of really preponderant

importance when x is fairly large. Thus even when #=4, a?
10

&amp;gt; 1,000,000,

while 30^&amp;lt; 35,000 and 700^?4 &amp;lt; 180,000; while if #=10 the preponderance

of the first term is still more marked.]

2. Compare the relative magnitudes of x12
, 1,000,000^, 1,000,000,000,000^

when #=1, 10, 100, etc.

[The reader should make up a number of examples of this type for himself.

This idea of the relative rate of growth of different functions of x is one with

which we shall often be concerned in the following chapters.]

3. Draw the graph of ax*+ Zbx+ c

[Here y {(ac
- 62)/a} =a {x+ (bja}}

2
. If we take new axes parallel to the

old and passing through the point x= b/a, y= (ac b2)/a, the new equation

isy = ax 2
. The curve is a parabola.]

4. Trace the curves y =#3 -3#+ l, y=#2
(#-l), y=x(x-\}

z
.

*
It will be found convenient to take the scale of measurement along the axis

of y a good deal smaller than that along the axis of x, in order to prevent the

figure becoming of an awkward size.
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24. B. Rational Functions. The class of functions which
ranks next to that of polynomials in simplicity and importance
is that of rational functions. A rational function is the quotient
of one polynomial by another : thus if P (x), Q (x) are polynomials,
we may denote the general rational function by

In the particular case when Q (x} reduces to unity or any other

constant (i.e. does not involve x), R (x) reduces to a polynomial :

thus the class of rational functions includes that of polynomials
as a sub-class. The following points concerning the definition

should be noticed.

(1) We usually suppose that P (x} and Q (x) have no common factor x+a
or xv + axv~ l + bxv-*+ ...+k, all such factors being removed by division.

(2) It should however be observed that this removal of common factors

does as a rule change the function. Consider for example the function #/#,
which is a rational function. On removing the common factor x we obtain

1/1
= 1. But the original function is not always equal to 1 : it is equal to 1

only so long as # =f=0. If #= it takes the form 0/0, which is meaningless.
Thus the function xjx is equal to 1 if x^Q and is undefined when #=0. It

therefore differs from the function 1, which is always equal to 1.

(3) Such a function as

may be reduced, by the ordinary rules of algebra, to the form

which is a rational function of the standard form. But here again it must be
noticed that the reduction is not always legitimate. In order to calculate the

value of a function for a given value of x we must substitute the value for x
in the function in the form in which it is given. In the case of this function
the values x= 1, 1, 0, 2 all lead to a meaningless expression, and so the
function is not defined for these values. The same is true of the reduced

form, so far as the values - 1 and 1 are concerned. But x= and x= 2 give
the value 0. Thus once more the two functions are not the same.

(4) But, as appears from the particular example considered under (3),

there will generally be a certain number of values of x for which the function
is not defined even when it has been reduced to a rational function of the
standard form. These are the values of x (if any) for which the de
nominator vanishes. Thus (^

2
-7)/(^

2 -3^ + 2) is not defined when # = 1

or 2.
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(5) Generally we agree, in dealing with expressions such as those con

sidered in (2) and (3), to disregard the exceptional values of x for which such

processes of simplification as were used there are illegitimate, and to reduce

our function to the standard form of rational function. The reader will

easily verify that (on this understanding) the sum, product, or quotient of

two rational functions may themselves be reduced to rational functions of

the standard type. And generally a rational function of a rational function
is itself a rational function: i.e. if in z=

P(y)IQ(y}&amp;gt; where P and Q are

polynomials, we substitute y PiWIQiW, we obtain on simplification an

equation of the form z=P2 (x)/Q2 (x).

(6) It is in no way presupposed in the definition of a rational function

that the constants which occur as coefficients should be rational numbers.

The word rational has reference solely to the way in which the variable x

appears in the function. Thus

is a rational function

The use of the word rational arises as follows. The rational function

P (x)IQ(x] may be generated from x by a finite number of operations upon

a, including^on^mjiltiplic^tipn of x by itself or a constant, ajddition of terms

thus obtained, and division of one function, obtained by such multiplications

and additions, by another. In so far as the variable x is concerned, this pro

cedure is very much like that by which all rational numbers can be obtained

from unity, a procedure exemplified in the equation

3~ 1+1+1

Again, any function which can be deduced from x by the elementary

operations mentioned above, using at each stage of the process functions

which have already been obtained from x in the same way, can be reduced to

the standard type of rational function. The most general kind of function

which can be obtained in this way is sufficiently illustrated by the example

2

which can obviously be reduced to the standard type of rational function.

25. The drawing of graphs of rational functions, even more

than that of polynomials, is immensely facilitated by the use of

methods depending upon the differential calculus. We shall

therefore content ourselves at present with a very few examples.

Examples XII. 1. Draw the graphs ofy=l/xt y= I/a
8
, y= I/a

3
,

. . . ,

[The figures show the graphs of the first two curves. It should be

observed that, since 1/0, I/O
2
,

... are meaningless expressions, these functions

are not defined for #= 0.]
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2. Trace y=#+(!/#), #-(!/*), #2+ (l/#
2
), #2

-(l/#
2
)

and

taking various values, positive and negative, for a and b.

3. Trace

4. Trace y= \l(x-a)(x-b\ !/(#-) (x-b) (x-c\ where a&amp;lt;b&amp;lt;c.

5. Sketch the general form assumed by the curves y= \lx
m as m

becomes larger and larger, considering separately the cases in which m is

odd or even.

Fig. 11. Fig. 12.

26. C. Explicit Algebraical Functions. The next im

portant class of functions is that of explicit algebraical functions.

These are functions which can be generated from # by a finite

number of operations such as those used in generating rational

functions, ^gether^jwSB) a finite number of operations of root
]]

extraction. Thus

-7T

are explicit algebraical functions, and so is xmln
(i.e. yat

m
) f
where m

and n are any integers.

It should be noticed that there is an ambiguity of notation

involved in such an equation as y = Jx. We have, up to the

present, regarded (e.g.) \/2 as denoting the positive square root

of 2, and it would be natural to denote by \/#, where x is any

n. 4
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positive number, the positive square root of a?, in which case

y ^Jx would be a one-valued function of x. It is however

often more^ convenient to regard *Jx as standing for the two-valued

function whose two values are the positive and negative square
roots of x.

The reader will observe that, when this course is adopted, the

function \jx differs fundamentally from rational functions in two

respects. In the first place a rational function is always defined

for all values of x with a certain number of isolated exceptions.

But \jx is undefined for a whole range of values of x (i.e. all

negative values). Secondly the function, when x has a value

for which it is defined, has generally two values of opposite signs.

The function tyx, on the other hand, is one-valued and defined

for all values of x.

Examples XIII. 1. V{(#- )(&-#)}, where
a&amp;lt;b,

is defined only for

a &amp;lt; x b. If a&amp;lt;x&amp;lt;b it has two values : if x= a or b only one, viz. 0.

2. Consider similarly

3, Trace the curves y*=x, y
2
=&, y

2=x3
.

4. Draw the graphs of the functions y= *j(&amp;lt;#-x
i
\ y=bj{l - (#

2
/a

2
)}.

27. D. Implicit Algebraical Functions. It is easy to

verify that if

J

or if y = V#

then
2/

4 -
(4i/

2 + 4y + 1) a? = 0.

Each of these equations may be expressed in the form

y + Eiy -^r...+Rm =Q .................. (1),

where R1} R2 , ..., Rm are rational functions of x\ and the reader

will easily verify that, if y is any one of the functions considered

in the last set of examples, y satisfies an equation of this form.
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It is naturally suggested that the same is true of any explicit

algebraic function. And this is in fact true, and indeed not

difficult to prove, though we shall not delay to write out a formal

proof here. An example should make clear to the reader the lines

on which such a proof would proceed. Let

x + \/x

Then we have the equations

_x -\-u-\-v-\-w
y x u + v w

u^ x, v* = x + u, w3 = 1 + oo,

and we have only to eliminate u
t v, w between these equations in

order to obtain an equation of the form desired.

We are therefore led to give the following definition : a,function

yf(x) will be said to be an algebraical function of x if it is the

root of an equation such as (1), i.e. the root of an equation of the

mth
degree in y, whose coefficients are rational functions of x. There

is plainly no loss of generality in supposing the first coefficient to

be unity.

This class of functions includes all the explicit algebraical
functions considered in 26. But it also includes other functions

which cannot be expressed as explicit algebraical functions. For
it is known that in general such an equation as (1) cannot be

solved explicitly for y in terms of x, when m is greater than 4,

though such a solution is always possible if m =
1, 2, 3, or 4 and

in special cases for higher values of m.

The definition of an algebraical function should be compared
with that of an algebraical number given in the last chapter

(Misc. Exs. 32). \-
* (,

Examples XIV. 1. If m= l, y is a rational function.

2. If m= 2, the equation is f+R^+R2
=

0, so that

This function is defined for all values of x for which R? &amp;gt;4/?2 . It has two
values if R1

2
&amp;gt;4:R2 and one if .#1

2=4Jft2 .

If 7/1= 3 or 4, we can use the methods explained in treatises on Algebra for

the solution of cubic and biquadratic equations. But as a rule the process is

complicated and the results inconvenient in form, and we can generally study
the properties of the function better by means of the original equation.

&quot;

42
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3. Consider the functions denned by the equations

in each case obtaining y as an explicit function of x
t
and stating for what

values of x it is denned.

4. Find algebraical equations, with coefficients rational in #, satisfied by
each of the functions

5. Consider the equation y*=xz
.

[Here y*=x. If a? is positive, y=\/x\ if negative, ?/
=V (

- #
). Thus the

function has two values for all values of x save #=0.]
6. An algebraical function of an algebraical function of x is itself an

algebraical function of x.

[For we have

where *+, (^)^-i +...+,$;

Eliminating we find an equation of the form

Here all the capital letters denote rational functions.]

7. An example should perhaps be given of an algebraical function which
cannot be expressed in an explicit algebraical form. Such an example is the
function y defined by the equation

y-y-tf= 0.

But the proof that we cannot find an explicit algebraical expression for y in

terms of x is difficult, and cannot be attempted here.

28. Transcendental functions. All functions of x which
are not rational or even algebraical are called transcendental

functions. This class of functions, being defined in so purely

negative a manner, naturally includes an infinite variety of \vhole

kinds of functions of varying degrees of simplicity and importance.

Among these we can at present distinguish two kinds which are

particularly interesting.

E. The direct and inverse trigonometrical or circular

functions. These are the sine and cosine functions of elementary

trigonometry, and their inverses, and the functions derived from

them. We may assume provisionally that the reader is familiar

with their most important properties *.

* The definitions of the circular functions given in elementary trigonometry pre

suppose that any sector of a circle has associated with it a definite number called its

area. How this assumption is justified will appear in Ch. VII.
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Examples XV. 1. Draw the graphs of cos x, sin #, and a cos x+ b sin x.

[Since a cos x+ b sin x= /3 cos (x a), where /3=V(a
2+ &2

)&amp;gt;

and a is an angle
whose cosine and sine are a/*J(a? + b2

) and 6/v/(a
2+ &2

), the graphs of these

three functions are similar in character.]

2. Draw the graphs of cos2 x, sin2 x, a cos2 x+ b sin2 x.

3. Suppose the graphs of f(x] and /*(#) drawn. Then the graph of

/ (x) cos2 x+ F(x) sin2 #

is a wavy curve which oscillates between the curves # =/(#), y= F(x). Draw
the graph when / (x)

= #, .F (a?)
=x\

4. Show that the graph of cospx+cosqx lies between those of

2 cos % (p
-

q) x and 2 cos ^ (p+ &amp;lt;?) #, touching each in turn. Sketch the

graph when (p-q}l(p+ q) is small. (Math. Trip. 1908.)

5. Draw the graphs of x+ sin x, (l/#)+sm#, #sin#, (sin#)/#.

6. Draw the graph of sin (I/a;)-

[If y= sin (l/#), then ?/
= when #= I/WTT, where m is any integer. Similarly

y= \ when d?=l/(2fH4*^)* an(i
.y
= ~l when #=l/(2m |) ?r. The curve is

entirely comprised between the lines y= 1 and y=l (Fig. 13). It oscillates

up and down, the rapidity of the oscillations becoming greater and greater as

x approaches 0. For #=0 the function is undefined. When x is large y is

small*. The negative half of the curve is similar in character to the positive

half.]

7. Draw the graph of x sin (l/.

[This curve is comprised between the lines y= - x and yx just as the

last curve is comprised between the lines y= 1 and y=l (Fig. 14).]

V.H V
V*

Fig. 13. Fig. 14.

* See Chs. IV and V for explanations as to the precise meaning of this phrase.
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8. Draw the graphs of ^2
sin(l/^), (l/#)sin(l/#), sin*(l/#), {asm (lfx)}*9

a cos2 (I/a?)+ 6 sin2
(l/#), sin^+ sin (1/j;), sin # sin (I/a?).

9. Draw the graphs of cos #2
,
sin #2

,
a cos x2+ b sin #2

.

10. Draw the graphs of arc cos a? and arc sin x.

[If #=arccostf, #= cos#. This enables us to draw the graph of a?, con
sidered as a function of y, and the same curve shows y as a function of x.
It is clear that y is only denned for -1

&amp;lt;*&amp;lt;!, and is infinitely many-
valued for these values of x. As the reader no doubt remembers, there is,
when -

!&amp;lt;#&amp;lt;!,
a value of y between and TT, say a, and the other values

of y are given by the formula 2^7ra, where n is any integer, positive or

negative.]

11. Draw the graphs of

tan
a?, cot x

t
sec

a;, coseca?, tan2
a?, cot2 a?, sec2

a?, coseca a?.

12. Draw the graphs of arc tan a?, arc cot x, arc sec
a?, arccosec^. Give

formulae (as in Ex. 10) expressing all the values of each of these functions
in terms of any particular value.

13. Draw the graphs of tan (I/a?), cot (I/a?), sec (I/a?), cosec (I/a?)

14. Show that cos a? and sin a? are not rational functions of x.

[A function is said to be periodic, with period a, if f(x)=f(x+ a) for all
values of a? for which f(x) is defined. Thus cos^ and sin x have the period
2 TT. It is easy to see that no periodic function can be a rational function,
unless it is a constant. For suppose that

/(*)-&amp;gt;(*)#(*),

where P and Q are polynomials, and that/(a?) =/(#+), each of these equations
holding for all values of x. Let /(O) =y&.

Then the equation P (^)
- @ (#)

= o
is satisfied by an infinite number of values of x, viz. #=0, a, 2a, etc., and
therefore for all values of x. Thus f(x)= k for all values of x, i.e. /(#) is a
constant ]

V\lft**V H^
15. Show, more generally, that no function with a period can be an

algebraical function of x.

[Let the equation which defines the algebraical function bo

*/ +,% -i + ...+ m=0 ........................... (1)

where Rlt ... are rational functions of x. This may be put in the form

where P
,
Plt ... are polynomials in x. Arguing as above, we see that
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for all values of x. Hence y k satisfies the equation (1) for all values of #,

and one set of values of our algebraical function reduces to a constant.

Now divide (1) by y-k and repeat the argument. Our final conclusion is

that our algebraical function has, for any value of x, the same set of values

&, ,
...

; i.e. it is composed of a certain number of constants.]

16. The inverse sine and inverse cosine are not rational or algebraical

functions. [This follows from the fact that, for any value of x between - 1

and + 1, arc sin x and arc cos x have infinitely many values.]

29. F. Other classes of transcendental functions. Next

in importance to the trigonometrical functions come the expo

nential and logarithmic functions, which will be discussed in

Chs. IX and X. But these functions are beyond our range at

present. And most of the other classes of transcendental func

tions whose properties have been studied, such as the elliptic

functions, Bessel s and Legendre s functions, Gamma-functions,

and so forth, lie altogether beyond the scope of this book.

There are however some elementary types of functions which,

though of much less importance theoretically than the rational,

algebraical, or trigonometrical functions, are particularly instruc

tive as illustrations of the possible varieties of the functional

relation.

Examples XVI. 1. Let y \x\ where \x\ denotes the greatest integer

not greater than x. The graph is shown in Fig. 15 a. The left-hand end

points of the thick lines, but not the right-hand ones, belong to the graph.

2. y=x-[x\. (Fig. 156.)

y --
\

- I
,cVc

b* K ;

Fig. 15 a. Fig. 15 &.
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}. (Fig. 15 e.) 4. y=
y -

*l
-

6.

[n

(Fig. 15 d.)

i \

\^

Fig. 15 c.
Fig. 15 d.

7. Let y be defined as the largest prime factor of x (cf. Exs. x. 6).Then y is denned only for integral values of x. .If

tf=l, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ... ,

then y= 1)2j3)2)5&amp;gt;3)7)2j3) 5jHj 3&amp;gt;13&amp;gt;

The graph consists of a number of isolated points.

8. Let y be the denominator of x (Exs. x. 7). In this case y is defined
only for rational values of x. We can mark off as many points on the graph
as we please, but the result is not in any ordinary sense of the word a curve,and there are no points corresponding to any irrational values of x.

Draw the straight line joining the points (N- 1, JV) t (tft ^V), where N is a
positive integer. Show that the number of points of the locus which lie on
this line is equal to the number of positive integers less than and prime to N.

D. Let y = when x is an integer, y=x when x is not an integer. The
graph is derived from the straight line y= x by taking but the points

...(-1, -1), (0,0), (1,1), (2,2),...

and adding the points (-1, 0), (0, 0), (1, 0), ... on the axis of x.

The reader may possibly regard this as an unreasonable function. Why,
he may ask, if y is equal to x for all values of x save integral values, should it

not be equal to x for integral values too I The answer is simply, why should

itl The function y does in point of fact answer to the definition of a

function : there is a relation between x and y such that when x is known y is

known. We are perfectly at liberty to take this relation to be what we please,
however arbitrary and apparently futile. This function y is, of course, a quite
different function from that one which is always equal to #, whatever value,

integral or otherwise, x may have.



29] FUNCTIONS OF REAL VARIABLES 57

10. Let y= 1 when x is rational, but y when x is irrational. The graph
consists of two series of points arranged upon the lines y=l and y Q. To
the eye it is not distinguishable from two continuous straight lines, but in

reality an infinite number of points are missing from each line.

11. Let y=# when x is irrational and y= J{(l -f-p
2
)/(l + g

2
)} when x is a

rational fraction pfq.

Fig. 16.

The irrational values of x contribute to the graph a curve in reality dis

continuous, but apparently not to be distinguished from the straight line y=&.

Now consider the rational values of x. First let x be positive. Then

\/{(l-fp
2
)/(l + &amp;lt;?

2
)} cannot be equal to p/q unless p= q, i.e. x=\. Thus all

the points which correspond to rational values of x lie off the line, except

the one point (1, 1). Again, if
p&amp;lt;q, \/{(l+p

2
)/(l+?

2
)} &amp;gt;

pl&amp;lt;l 5 if P &amp;gt; &
V/{(1 +p2

)/(l + q
2
)} &amp;lt;p[q.

Thus the points lie above the line y=#ifO&amp;lt;#&amp;lt;l,

below if x &amp;gt; 1. Ifp and q are large, /{(! +P2
)/(1 + 2

2
)} is nearly equal to p[q.

Near any value of x we can find any number of rational fractions with large

numerators and denominators. Hence the graph contains a large number of

points which crowd round the line y =x. Its general appearance (for positive

values of x) is that of a line surrounded by a swarm of isolated points which

gets denser and denser as the points approach the line.

The part of the graph which corresponds to negative values of x consists

of the rest of the discontinuous line together with the reflections of all these

isolated points in the axis of y. Thus to the left of the axis of y the swarm

of points is not round y=oc but round y= x, which is not itself part of the

graph. See Fig. 16.
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30. Graphical solution of equations containing a single

unknown number. Many equations can be expressed in the

form

/()-*(*) ........................... a).

where/ (x) and
&amp;lt;f&amp;gt;

(x) are functions whose graphs are easy to draw.

And if the curves

intersect in a point P whose abscissa is
,
then f is a root of the

equation (1).

Examples XVII. 1. The quadratic equation ax2 + 2bx+c=0. This

may be solved graphically in a variety of ways. For instance we may draw

the graphs of

whose intersections, if any, give the roots. Or we may take

y= a?
t y=-(2bx+ c)/a.

But the most elementary method is probably to draw the circle

whose centre is (-6/a, 0) and radius y(b*-ac)}/a. The abscissae of its

intersections with the axis of x are the roots of the equation.

2. Solve by any of these methods

3. The equation xm+ax+b=0. This may be solved by constructing

the curvesyxm
^ y=-ax-b. Verify the following table for the number of

roots of

b positive, two or none,
(0

,

or
/TA jj ( a positive, one,
(b) m odd -I ,

. 7

Construct numerical examples to illustrate all possible cases.

4. Show that the equation tan#=#+ & has always an infinite number

of roots.

N^ 5. Determine the number of roots of

v ^\ir^^- sin#:=tf, sin x = $x t
sin^= |^, Binx=^x.

6. Show that if a is small and positive (e.g. a = -01), the equation
2x a= 7r sn

has three roots. Consider also the case in which a is small and negative.

Explain how the number of roots varies as a varies.

(\ IA &quot;, X * ^
r K ^V - S,- X *j \ ^.

K 11 ^ w. A
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31. Functions of two variables and their graphical

representation. In 20 we considered two variables connected

by a relation. We may similarly consider three variables (x, y,

and z) connected by a relation such that when the values of x and

y are both given, the value or values of z are known. In this case

we call z a function of the two variables x and y ;
x and y the

independent variables, z the dependent variable; and we express

this dependence of z upon x and y by writing

*/(*. *)

The remarks of 20 may all be applied, mutatis mutandis, to this

more complicated case.

The method of representing such functions of two variables

graphically is exactly the same in principle as in the case of

functions of a single variable. We must take three axes, OX, OF,

OZ in space of three dimensions, each axis being perpendicular

to the other two. The point (a, b, c) is the point whose distances

from the planes YOZ, ZOX, XOY, measured parallel to OX, OF,

OZ, are a, 6, and c. Regard must of course be paid to sign,

lengths measured in the directions OX, OF, OZ being regarded

as positive. The definitions of coordinates, axes, origin are the

same as before.

Now let z=f(x,y).

As x and y vary, the point (x, y, z) will move in space. The

aggregate of all the positions it assumes is called the locus of the

point (x, y, z) or the graph of the function z =/(#, y). When the

relation between x, y, and z which defines z can be expressed in an

analytical formula, this formula is called the equation of the locus.

It is easy to show, for example, that the equation

(the general equation of the first degree) represents a plane, and

that the equation of any plane is of this form. The equation

or x+ 7/
z x Gy + 2Hz + (7=0,

where F2 + 6r
2
-f H2 - C &amp;gt; 0, represents a sphere ;

and so on. For

proofs of these propositions we must again refer to text-books of

Analytical Geometry.
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32. Curves in a plane. We have hitherto used the notation

-/(&amp;gt; a)

to express functional dependence of y upon x. It is evident that

this notation is most appropriate in the case in which y is ex

pressed explicitly in terms of x by means of a formula, as when

for example

y = x~, sin x, a cos2 x + b sin2
x.

We have however very often to deal with functional relations

which it is impossible or inconvenient to express in this form.

If, for example, y
5

y x = or a? + y
5

ay 0, it is known

to be impossible to express y explicitly as an algebraical function

of x. If

a? + 7/
2 + 2Gx + 2Fy + C = 0,

y can indeed be so expressed, viz. by the formula

y = -F+ V(^
2 - & - 2Gx - C) ;

but the functional dependence of y upon x is better and more

simply expressed by the original equation.

It will be observed that in these two cases the functional

relation is fully expressed by equating a function of the two

variables x and y to zero, i.e. by means of an equation

/(*,y) = o (2).

We shall adopt this equation as the standard method of

expressing the functional relation. It includes the equation (1)

as a special case, since yf(%) is a special form of a function of x

and y. We can then speak of the locus of the point (xt y) subject

to /(a?, y) 0, the graph of the function y denned by f(x, y) 0,

the curve or locus f(xy y} 0, and the equation of this curve or

locus.

There is another method of representing curves which is often

useful. Suppose that x and y are both functions of a third

variable t, which is to be regarded as essentially auxiliary and

devoid of any particular geometrical significance. We may write

=/(*), V = F(t) (3).

If a particular value is assigned to t, the corresponding values of

x and of y are known. Each pair of such values defines a point
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(sc, y). If we construct all the points which correspond in this

way to different values of t, we obtain the graph of the locus

defined by the equations (3). Suppose for example

x a cos t, y = a sin t.

Let t vary from to 2?r. Then it is easy to see that the point

(x, y) describes the circle whose centre is the origin and whose

radius is a. If t varies beyond these limits, (x, y) describes the

circle over and over again. We can in this case at once obtain

a direct relation between x and y by squaring and adding: we
find that x* + y

2 = a2
,
t being now eliminated.

Examples XVIII. 1. The points of intersection of the two curves whose

equations are /(#, #)=0, &amp;lt;j) (#, #)= 0, where / and &amp;lt; are polynomials, can be

determined if these equations can be solved as a pair of simultaneous equations
in x and y. The solution generally consists of a finite number of pairs of

values of x and y. The two equations therefore generally represent a finite

number of isolated points.

2. Trace the curves (#+y)
2
=l, xy= l, x2

-y^= l.

3. The curve /(#, y)+A$(#, t/)
= represents a curve passing through

the points of intersection of/=0 and = 0.

4. What loci are represented by

(a) x=at+ b, y= ct+ d, (ft) a?/a
=

*/(! + **), y/a=(l-*
2
)/(l-H

2
)&amp;gt;

when t varies through all real values ?

33. Loci in space. In space of three dimensions there are

two fundamentally different kinds of loci, of which the simplest

examples are the plane and the straight line.

A particle which moves along a straight line has only one I

degree of freedom. Its direction of motion is fixed; its position!

can be completely fixed by one measurement of position, e.g. by
its distance from a fixed point on the line. If we take the line as

our fundamental line A of Chap. I, the position of any of its points

is determined by a single coordinate x. A particle which moves

in a plane, on the other hand, has two degrees of freedom
;
its

|

position can only be fixed by the determination of two coordinates.

A locus represented by a single equation

*
=/O&amp;gt; y)

plainly belongs to the second of these two classes of loci, and is

called a surface. It may or may not (in the obvious simple cases
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it will) satisfy our common-sense notion of what a surface

should be.

The considerations of 31 may evidently be generalised so

as to give definitions of a function / (x, y, z) of three variables (or

of functions of any number of variables). And as in 32 we

agreed to adopt f(x, y)
= as the standard form of the equation

of a plane curve, so now we shall agree to adxypt

as the standard form of equation of a surface.

The locus represented by two equations of the form z =/(#, y)

or f(sc, y, z)
=

belongs to the first class of loci, and is called

a curve. Thus a straight line may be represented by two equations

of the type Ax + By + Cz +D = Q. A circle in space may be

regarded as the intersection of a sphere and a plane; it may
therefore be represented by two equations of the forms

(a- )2 + (y
-

/3)2 + (z- 7)
2 =

/r,
Ax + By+Cz + D= 0.

Examples XIX. 1. What is represented by three equations of the type

/(*,jr,f)-01

2. Three linear equations in general represent a single point. &quot;What are

the exceptional cases ?

3. What are the equations of a plane curve f(x, y} =0 in the plane XOY,
when regarded as a curve in space ? [/(#, y)=0j ?= 0.]

4. Cylinders. What is the meaning of a single equation /(#, y)=0,
considered as a locus in space of three dimensions ?

[All points on the surface satisfy/ (x, y}
=

0, whatever be the value of z. The

curve /(#, #)=0, z=0 is the curve in which the locus cuts the plane XOY.

The locus is the surface formed by drawing lines parallel to OZ through all

points of this curve. Such a surface is called a cylinder.]

5 Graphical representation of a surface on a plane. Contour Maps.

It might seem to be impossible to represent a surface adequately by a

drawing on a plane ;
and so indeed it is : but a very fair notion of the

nature of the surface may often be obtained as follows. Let the equation of

the surface be z=f(x, y\

If we give z a particular value a, we have an equation /(#, y) = a, which

we may regard as determining a plane curve on the paper. We trace this

curve and mark it (a). Actually the curve (a) is the projection on the plane
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XOY of the section of the surface by the plane z= a. We do this for all

values of a (practically, of course, for a selection of values of a). We obtain

some such figure as is shown in Fig. 17. It will at once suggest a contoured

Ordnance Survey map : and in fact this is the principle on which such maps
are constructed. The contour line 1000 is the projection, on the plane of the

sea level, of the section of the surface of the land by the plane parallel to the

plane of the sea level and 1000 ft. above it*.

3000

TOGO

Fig. 17.

6. Draw a series of contour lines to illustrate the form of the surface

7. Right circular cones. Take the origin of coordinates at the

vertex of the cone and the axis of z along the axis of the cone
;
and let a be

the semi-vertical angle of the cone. The equation of the cone (which must
7

be regarded as extending both ways from its vertex) is #2+y2 - 22 tan2 a= 0. ^
8. Surfaces of revolution in general. The cone of Ex. 7 cuts ZOX in

two lines whose equations may be combined in the equation #2=22 tan2
a.

That is to say, the equation of the surface generated by the revolution of

the curve y= 0, #2=22 tan2 a round the axis of z is derived from the second of

these equations by changing #2 into x2+y2
. Show generally that the equation

of the surface generated by the revolution of the curve #=0, xf(z\ round
the axis of z, is

9. Cones in general. A surface formed by straight lines passing

through a fixed point is called a cone: the point is called the vertex. A
particular case is given by the right circular cone of Ex. 7. Show that the

equation of a cone whose vertex is is of the form/(z/#, z/y)=0, and that any
equation of this form represents a cone. [If (x, y, z) lies on the cone, so must

(X#, Ay, \z\ for any value of X.]

* We assume that the effects of the earth s curvature may be neglected.
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10. Ruled surfaces.

composed of straight lines.

The two equations

Cylinders and cones are special cases of surfaces

Such surfaces are called ruled surfaces.

.(1)

represent the intersection of two planes, i.e. a straight line. Now suppose

that a, bj c, d instead of being fixed are functions of an auxiliary variable t.

For any particular value of t the equations (1) give a line. As t varies,

this line moves and generates a surface, whose equation may be found by

eliminating t between the two equations (1). For instance, in Ex. 7 the

equations of the line which generates the cone are

#=2 tan a cos, 2/

where t is the angle between the plane JTOZand a plane through the line and

the axis of z.

Another simple example of a ruled surface may be constructed as follows.

Take two sections of a right circular cylinder perpendicular to the axis and

at a distance I apart (Fig. 18 a). We can imagine the surface of the cylinder

to be made up of a number of thin parallel rigid rods of length I, such as PQ,

the ends of the rods being fastened to two circular rods of radius a.

Now let us take a third circular rod of the same radius and place it

round the surface of the cylinder at a distance h from one of the first two

rods (see Fig. 18 a, where Pq=h}. Unfasten the end Q of the rod PQ and

turn PQ about P until Q can be fastened to the third circular rod in the

position Q . The angle qOQ = a in the figure is evidently given by

Let all the other rods of which the cylinder was composed be treated in the

same way. We obtain a ruled surface whose form is indicated in Fig. 18 b.

It is entirely built up of straight lines ;
but the surface is curved everywhere,

and is in general shape not unlike certain forms of table-napkin rings (Fig. 18 c).

Fig. 18 &. Fig. 18 c.
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MISCELLANEOUS EXAMPLES ON CHAPTER IL

1. Show that if y=f(x) = (ax+ b)/(cx-d) then x=f(y\

2. If /(#)=/(-#) for all values of #,/(#) is called an even function.

lif(x) =-/(- x\ it is called an odd function. Show that any function of x,

denned for all values of x, is the sum of an even and an odd function of x.

[Use the identity/(^)
= H/(^)+/(-^)} + H/(^)-/(-^)}-]

3. Draw the graphs of the functions

3 sin .27+ 4 cos #, sin ( -^ sin x
)

. (Math. Trip. 1896.)W* /

4. Draw the graphs of the functions

sin x (a cos
2 x+ b sin2 x),

-^^
(a cos2 #+ b sin2 a?), f

-j- J
.

5. Draw the graphs of the functions a? [l/#], [#]/#.

6. Draw the graphs of the functions

(i) arc cos (2#
2

1)
- 2 arc cos x,

(ii) arc tan -- arc tan a - arc tan a?,
1 CM?

where the symbols arc cos a, arc tan a denote, for any value of a, the least

positive (or zero) angle, whose cosine or tangent is a.

7. Verify the following method of constructing the graph of
/{&amp;lt; (x)} by

means of the line y= x and the graphs of /(#) and (a?) : take 0.4 =# along

OX, draw ^5 parallel to OF to meet y= &amp;lt;j&amp;gt;(x)

in 5, 5(7 parallel to OJT to

meetyx in
(7, CD parallel to OY to meet y=f(x) in D, and DP parallel to

OX to meet AB in P; then P is a point on the graph required.

8. Show that the roots of x5+px+ q= are the abscissae of the points of

intersection (other than the origin) of the parabola y= x2 and the circle

2 + (p
-

9. The roots of x*+ -nx* -\-px
z + qx+ r= are the abscissae of the points of

intersection of the parabola x2=y $nx and the circle

10. Discuss the graphical solution of the equation

by means of the curves y=xm, y= -ax*-~bx-c. Draw up a table of the

various possible numbers of roots.

11. Solve the equation sec + cosec d= 2*j2; and show that the equation

sec + cosec = c has two roots between and 2rr if c2 &amp;lt;8 and four if c2 &amp;gt;8.

II
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12. Show that the equation

where n is a positive integer, has 2^+ 3 roots and no more, indicating
their localities roughly. (Math. Trip. 1896.)

13. Show that the equation $xsmx = l has four roots between - TT

and TT.

14. Discuss the number and values of the roots of the equations

(1) cot#+#-fTr= 0, (2) .r&amp;gt; + sin2 #= l, (3) tan ^=2^(1+^
(4) sin#-#+ #3=

0, (5) (l-cos#)tana-#+ sin#=0.

15. The polynomial of the second degree which assumes, when x=a, b, c

the values a, /3, y is --
p -- y

(a-b)(a-c)

Give a similar formula for the polynomial of the (n-l)th degree which

assumes, when x=a^ 2 ,
... an ,

the values a1} a2 ,
... an .

16. Find a polynomial in x of the second degree which for the values

0, 1, 2 of x takes the values 1/c, l/(c + l), l/(c+ 2); and show that when
its value is l/(c+ l). (1/a^. Tn&amp;gt;. 1911.)

17. Show that if x is a rational function of y, and y is a rational function

of x, then

18. If ?/ is an algebraical function of x, then x is an algebraical function

of y.

19. Verify that the equation

cos

is approximately true for all values of x between and 1. [Take #=0, J, ,

^ 5 f ) 1&amp;gt;

and use tables. For which of these values is the formula exact?]

20. What is the form of the graph of the functions,

21. What is the form of the graph of the functions z=sinx-\- siny,

22. Geometrical constructions for irrational numbers. In Chapter I

we indicated one or two simple geometrical constructions for a length equal to

N/2, starting from a given unit length. We also showed how to construct

the roots of any quadratic equation ao^+ 26a?+c= 0, it being supposed that

we can construct lines whose lengths are equal to any of the ratios of the

coefficients a, 6, c, as is certainly the case if a, 6, c are rational. All these con

structions were what may be called Euclidean constructions ; they depended
on the ruler and compasses only.
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It is fairly obvious that we can construct by these methods the length
measured by any irrational number which is denned by any combination of

square roots, however complicated. Thus

V7 // 1 7 + 3 X/11\ //V IV Vl7-3 N/li;~ V V

is a case in point. This expression contains a fourth root, but this is of

course the square root of a square root. We should begin by constructing

A/11, e.g. as the mean between 1 and 11 : then 17 + 3&amp;gt;/ll
and 17 -3^/11) and

so on. Or these two mixed surds might be constructed directly as the roots of

^2_34#+ 190= 0.

Conversely, only irrationals of this kind can be constructed by Euclidean

methods. Starting from a unit length we can construct any rational length.

And hence we can construct the line Ax+By + C 0, provided that the ratios

of A, J3, C are rational, and the circle

(or ,r
2
-t-2/

2
H-2&amp;lt;7#-f 2jfy+c= 0), provided that a, /3, p are rational, a condition

which implies that a, f, c are rational.

Now in any Euclidean construction each new point introduced into the

figure is determined as the intersection of two lines or circles, or a line and

a circle. But if the coefficients are rational, such a pair of equations as

give, on solution, values of x and y of the form m+ n*Jp, where m, n, p are

rational : for if we substitute for x in terms of y in the second equation we

obtain a quadratic in y with rational coefficients. Hence the coordinates of

all points obtained by means of lines and circles with rational coefficients

are expressible by rational numbers and quadratic surds. And so the same

is true of the distance */{(#! #2)
2
-f(yi-3/2)

2
} between any two points so

obtained.

With the irrational distances thus constructed we may proceed to construct

a number of lines and circles whose coefficients may now themselves involve

quadratic surds. It is evident, however, that all the lengths which we can

construct by the use of such lines and circles are still expressible by square
roots only, though our surd expressions may now be of a more complicated
form. And this remains true however often our constructions are repeated.

Hence Euclidean methods will construct any surd expression involving square
roots only, and no others.

One of the famous problems of antiquity was that of the duplication of

the cube, that is to say of the construction by Euclidean methods of a

length measured by ^2. It can be shown that ^2 cannot be expressed by
means of any finite combination of rational numbers and square roots, and so

that the problem is an impossible one. See Hobson, Squaring the Circle,

pp. 47 et seq. ;
the first stage of the proof, viz. the proof that ^2 cannot be a

root of a quadratic equation ax2+ 2bx+c= with rational coefficients, was

given in Ch. I (Misc. Exs. 24). ,

** 5_o
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23. Approximate quadrature of the circle. Let be the centre of

a circle of radius R. On the tangent at A take AP=^R and AQ=^R,
in the same direction. On AO take AN=OP and draw JVM parallel to

OQ and cutting AP in M. Show that

and that to take AM as being equal to the circumference of the circle would

lead to a value of ?r correct to five places of decimals. If R is the earth s

radius, the error in supposing AM to be its circumference is le.ss than 11 yards.

24. Show that the only lengths which can be constructed with the ruler

only, starting from a given unit length, are rational lengths.

25. Constructions for 4/2. is the vertex and S the focus of the

parabola ?/
2= 4#, and P is one of its points of intersection with the parabola

#2=
2#. Show that OP meets the latus rectum of the first parabola in a point

Q such that SQ=j/2.

26. Take a circle of unit diameter, a diameter OA and the tangent at A.

Draw a chord OBC cutting the circle at B and the tangent at C. On this

line take OM=BC. Taking as origin and OA as axis of x, show that the

locus ofM is the curve

(the Cissoid of Diodes}. Sketch the curve. Take along the axis of y a length

OZ&amp;gt;
= 2. Let AD cut the curve in P and OP cut the tangent to the circle

at A in Q. Show that AQ=f/2.



CHAPTER III

COMPLEX NUMBERS

34. Displacements along a line and in a plane. The

real number x, with which we have been concerned in the two

preceding chapters, may be regarded from many different points

of view. It may be regarded as a pure number, destitute of

geometrical significance, or a geometrical significance may be

attached to it in at least three different ways. It may be re

garded as the measure of a length, viz. the length A QP along the

line A of Chap. I. It may be regarded as the mark of a point,

viz. the point P whose distance from A is x. Or it may be

regarded as the measure of a displacement or change of position

on the line A. It is on this last point of view that we shall now

concentrate our attention.

Imagine a small particle placed at P on the line A and then

displaced to Q. We shall call the displacement or change of

position which is needed to transfer the particle from P to Q the

displacement PQ. To specify a displacement completely three

things are needed, its magnitude, its sense forwards or backwards

along the line, and what may be called its point of application,

i.e. the original position P of the particle. But, when we are

thinking merely of the change of position produced by the dis

placement, it is natural to disregard the point of application and

to consider all displacements as equivalent whose lengths and

senses are the same. Then the displacement is completely speci

fied by the length PQ = x, the sense of the displacement being

fixed by the sign of x. We may therefore, without ambiguity,

speak of the displacement [x\ *, and we may write PQ \x\.

*
It is hardly necessary to caution the reader against confusing this use of the

J

symbol [x] and that of Chap. II (Exs. xvi. and Misc. Exs.).
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We use the square bracket to distinguish the displacement [#]

from the length or number x*. If the coordinate of P is a, that

of Q will be a + x
;

the displacement [x] therefore transfers a

particle from the point a to the point a + x.

We come now to consider displacements in a plane. We may
define the displacement PQ as before. But now more data are

required in order to specify it completely. We require to know :

(i) the magnitude of the displacement, i.e. the length of the

straight line PQ ; (ii) the direction of the displacement, which is

determined by the angle which PQ makes with some fixed line in

the plane ; (iii) the sense of the displacement ;
and (iv) its point

of application. Of these requirements we may disregard the

fourth, if we consider two displacements as equivalent if they are

the same in magnitude, direction, and sense. In other words, if

PQ and RS are equal and parallel, and the sense of motion from

P to Q is the same as that of

motion from R to S, we regard

the displacements PQ and RS as

equivalent, and write

Fig. 19.

Now let us take any pair of

coordinate axes in the plane (such

as OX, OF in Fig. 19). Draw a

line OA equal and parallel to PQ, the sense of motion from

to A being the same as that from P to Q. Then PQ and OA
are equivalent displacements. Let x and y be the coordinates

of A. Then it is evident that OA is completely specified

if x and y are given. We call OA the displacement [x, y] and

write

*
Strictly speaking we ought, by some similar difference of notation, to dis

tinguish the actual length x from the number x which measures it. The reader

will perhaps be inclined to consider such distinctions futile and pedantic. But

increasing experience of mathematics will reveal to him the great importance of

distinguishing clearly between things which, however intimately connected, are iioj;

the same. If cricket were a mathematical science, it would be very important to

distinguish between the motion of the batsman between the wickets, the run which

he scores, and the mark which is put down in the score-book.
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35. Equivalence of displacements. Multiplication of

displacements by numbers. If f and rj are the coordinates

of P, and f and 77 those of Q, it is evident that

The displacement from (f, 77) to (f , 77 ) is therefore

[r-feVHJ
It is clear that two displacements [a?, ?/], [# , y ] are equivalent

if, and only if, x = a) ,y = y . Thus
[a?, ?/]

=
[a? , y*] if and only if

# = #
, y = y ........................... (1).

The reverse displacement QP would be [{
-
f , 77

-
77 ], and it

is natural to agree that

these equations being really definitions of the meaning of the

symbols [ f, 77 77], PQ. Having thus agreed that

-[*y] = [-^-yl
it is natural to agree further that

afcy] = [0, #] ........................ (2),

where a is any real number, positive or negative. Thus (Fig. 19)

if OB =-OA then

The equations (1) and (2) define the first two important ideas

connected with displacements, viz. equivalence of displacements,

and multiplication of displacements by numbers.

36. Addition of displacements. We have not yet given

any definition which enables us to attach any meaning to the

expressions

Common sense at once suggests that we should define the sum

of two displacements as the displacement which is the result

of the successive application of the two given displacements. In
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other words, it suggests that if QQi be drawn equal and parallel

to P Q ,
so that the result of successive displacements PQ, P Q on

a particle at P is to transfer it first to Q and then to Q1} then we

should define the sum of PQ and PQ as being P& . If then we

draw OA equal and parallel to PQ, and OB equal and parallel to

P Q ,
and complete the parallelogram OACB, we have

Fig. 20.

Let us consider the consequences of adopting this definition.

If the coordinates of B are x
, y

f

,
then those of the middle point of

AB are J (x + x
), % (y+y )&amp;gt;

and those of C are x+x, y+y. Hence

[x,y] + [x ,y ]
=

[x + x,y + y ] (3),

which may be regarded as the symbolic definition of addition of

displacements. We observe that

[x, y ] + [a?, y]
=

[x + x, y + y\

= [x + x
, y + y&quot;]

=
[&amp;gt;, y] + [&amp;gt; , 2/1

In other words, addition of displacements obeys the commutative

law expressed in ordinary algebra by the equation a + b = b + a.

This law expresses the obvious geometrical fact that if we move

from P first through a distance PQ2 equal and parallel to P Q ,

and then through a distance equal and parallel to PQ, we shall

arrive at the same point Ql as before.
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In particular

Here [#, 0] denotes a displacement through a distance x in

a direction parallel to OX. It is in fact what we previously

denoted by [a?],
when we were considering only displacements

along a line. We call [x, 0] and [0, y] the components of [x, y],

and [x, y} their resultant.

When we have once defined addition of two displacements,

there is no further difficulty in the way of defining addition of

any number. Thus, by definition,

[&amp;gt;, y\ + [of, y } + 0&quot;, y&quot;]

=
([x, y] + [x , y }) + [&amp;gt;&quot;, y&quot;]

= + #
,&amp;lt;/ + y] + [&amp;gt;&quot;, y&quot;]

=
[x + # + a&quot;, y + y +

y&quot;].

We define subtraction of displacements by the equation

[*, y]
- IX 2/1

=
[*, 2/1 + (- [^ y ]) ............ (5),

which is the same thing as [x, y] + [- # ,
-
y ]

or as [# -x, y- y ].

In particular

|&amp;gt;,y]- [&amp;gt;,y]
= [0,0].

The displacement [0, 0] leaves the particle where it was
;

it is

the zero displacement, and we agree to write [0, 0]
= 0.

Examples XX. 1. Prove that

(i) a
|j8a?, j8y]

=
ft [ax, ay]

=
[aflff, a/ty],

(ii) ([* y] + IX, 3/1) + [^ y1 = [^ y]+(K y } +K ^D

(iii) 0, y]+ [&amp;gt; , y]
=

[of, y } + [&amp;gt;, y],

(iv) (a+0) [a?, y]
= o

[ar, y]+^ [a?, yl

(v) {[a?, y] + [a/, y*]}
= a

[a?, y] + a JV, /].

[We have already proved (iii). The remaining equations follow with equal

ease from the definitions. The reader should in each case consider the

geometrical significance of the equation, as we did above in the case of (iii).]

2. IfM is the middle point of PQ, then ~OM=%(OP+ OQ). More generally,

if M divides PQ in the ratio /* : X, then

3. If G is the centre of mass of equal particles at P lt P2t ..., Pn ,
then
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4. If P, Q, R are collinear points in the plane, then it is possible to find

real numbers a, /3, y, not all zero, and such that

and conversely. [This is really only another way of stating Ex. 2.]

5. If ~AB and ^AC are two displacements not in the same straight line,

and

then a= y and (3
= 8.

[Take AB1
= a . A B, ACl

=
/3 . A C. Complete the parallelogram AB^P^C^

Then AP
{
= a . 5J2+ /3 . AC. It is evident that APl

can only be expressed

in this form in one way, whence the theorem follows.]

6. ABCD is a parallelogram. Through Q, a point inside the paral

lelogram, RQS and TQU are drawn

parallel to the sides. Show that D U
_,c

RU, TS intersect on AC.

[Let the ratios AT: AB, AR : AD
be denoted by a, /3. Then

AT=a.AB, ~AR=$.Al),

S

Let RU meet AC in P. Then, AT B

since R, U, P are collinear, Fig. 21.

AP= X - 1

where /i/X is the ratio in which P divides R U. That is to say

AD.

But since P lies on AC, AP is a numerical multiple of AC , say

TP=k . 1C=k . lB+k . ID.

Hence (Ex. 5) a/*=/3X+ /z
=

(X + /i) ^, from which we deduce

a/3

The symmetry of this result shows that a similar argument would also give

I?/ =
a^l Z^

if P is the point where TS meets AC. Hence P and P are the same point.]

7. ABCD is a parallelogram, and Jf the middle point of AB. Show that

DM trisects and is trisected by A C*.

* The two preceding examples are taken from Willard Gibbs Vector Analysis.
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37. Multiplication of displacements. So far we have

made no attempt to attach any meaning whatever to the notion

of the product of two displacements. The only kind of multipli
cation which we have considered is that in which a displacement
is multiplied by a number. The expression

0, y} x [x, y ]

so far means nothing, and we are at liberty to define it to mean

anything we like. It is, however, fairly clear that if any definition

of such a product is to be of any use, the product of two displace

ments must itself be a displacement.

We might, for example, define it as being equal to

[x + x, y + y ] ;

in other words, we might agree that the product of two displace

ments was to be always equal to their sum. But there would be

two serious objections to such a definition. In the first place our

definition would be futile. We should only be introducing a new

method of expressing something which we can perfectly well

express without it. In the second place our definition would be

inconvenient and misleading for the following reasons. If a is

a real number, we have already defined a [x, y\ as [ax, ay]. Now,
as we saw in 34, the real number a may itself from one point of

view be regarded as a displacement, viz. the displacement [a]

along the axis OX, or, in our later notation, the displacement

[or, 0], It is therefore, if not absolutely necessary, at any rate

most desirable, that our definition should be such that

[a, 0] [x, y]
=

[ax, ay],

and the suggested definition does not give this result.

A more reasonable definition might appear to be

[x, y} [x , y ]
= [xx

f

, yy ].

But this would give

[a, 0][x,y]=[ax, 0] ;

and so this definition also would be open to the second objection.

In fact, it is by no means obvious what is the best meaning
to attach to the product [x, y] [x, y ].

All that is clear is (1) that,

if our definition is to be of any use, this product must itself be
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a displacement whose coordinates depend on x and y, or in other

words that we must have

AYhere X and Y are functions of x, y, a?
,
and y ; (2) that the

definition must be such as to agree with the equation

[x, 0] [V, y ]
= [xx

f

, xy] ;

and (3) that the definition must obey the ordinary commutative,

distributive, and associative laws of multiplication, so that

[x, y] [x , y }
=

[of, y ] [x, y\ t

([x, y-] +K y ]) [&amp;gt;&quot;, y&quot;]

=
[&amp;gt;, y] [*&quot;, y&quot;]

+ [x , y } [x&quot;, y&quot;],

0, y] (IX, 2/1 + IX , 2/&quot;])

= K y] IX, 2/1 + K y] [*&quot;, y&quot;],

and [, y] ([x } y ] [x&quot;, y&quot;])
=

([&amp;gt;, y] K y ]) [^, y&quot;].

38. The right definition to take is suggested as follows. We
know that, if GAB, 00D are two similar triangles, the angles

corresponding in the order in which they are written, then

05/(M = OD/OC,

or OB . OC = OA . OD. This suggests that we should try to define

multiplication and division of displacements in such a way that

WI~OA = ODI~OC, ~OB .oc = ^A .&quot;OD.

Now let
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and suppose that A is the point (1, 0), so that OA =
[I, 0]. Then

OZ.OB = [1,0][Z, F] = [2T, F],

and so

The product OB . 0(7 is therefore to be denned as OA # being
obtained by constructing on 00 a triangle similar to OAB. In

order to free this definition from ambiguity, it should be observed

that on 00 we can describe two such triangles, OOD and OOD .

We choose that for which the angle OOD is equal to AOB in sign
as well as in magnitude. We say that the two triangles are then

similar in the same sense.

If the polar coordinates of B and are
(/&amp;gt;, 6) and (a, &amp;lt;/&amp;gt;),

so

that

x p cos 0, y p sin 0, x a- cos
&amp;lt;/&amp;gt;, y = o- sin

c/&amp;gt;,

then the polar coordinates of D are evidently pa and
#+&amp;lt;/&amp;gt;.

Hence

X = pa cos (6 + () = ## T/?/ ,

F= pa sin (0 + &amp;lt;)

= xy + y# .

The required definition is therefore

l&amp;gt; 2/1 IX, y ]
= [^ -

yy &amp;gt; ay
7

+
0&amp;lt;1

............ (6).

We observe (1) that if y = 0, then X = ##
,
Y= xy , as we

desired
; (2) that the right-hand side is not altered if we inter

change x and x
}
and y and y ,

so that

0, y] [V, y
7

]
=

[of, y ] [&amp;gt;, y] ;

and (3) that

{[*, y] + IX, 2/]} (X &amp;gt; y&quot;}

= [* + &amp;lt;? + 2/1 IX , 2/&quot;]

=
[(a? + aO a;

/x -
(y + y

7

) y&quot;, (x + a/) 7/

/x + (y + y } x&quot;}

=W -
yy&quot;,

x

Similarly we can verify that all the equations at the end of 37

are satisfied. Thus the definition (6) fulfils all the requirements
which we made of it in 37.

Example. Show directly from the geometrical definition given above

that multiplication of displacements obeys the commutative and distributive

laws. [Take the commutative law for example. The product UB . OC is OD

(Fig. 22), COD being similar to A OB. To construct the product 0(7. OB we
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should have to construct on OB a triangle BOD similar to AOC
-,

and so what
we want to prove is that D and DI coincide, or that BOD is similar to AOC.
This is an easy piece of elementary geometry.]

39. Complex numbers. Just as to a displacement [x] along
OX correspond a point (x) and a real number x, so to a displace

ment [x, y} in the plane correspond a point (x, y) and a pair

of real numbers x, y.

We shall find it convenient to denote this pair of real numbers

x, y by the symbol
x + yi.

The reason for the choice of this notation will appear later.

For the present the reader must regard x + yi as simply another

way of writing [x, y]. The expression x + yi is called a complex
number.

We proceed next to define equivalence, addition, and multiplica

tion of complex numbers. To every complex number corresponds
a displacement. Two complex numbers are equivalent if the

corresponding displacements are equivalent. The sum or product
of two complex numbers is the complex number which corresponds
to the sum or product of the two corresponding displacements.

Thus

x+yi = x + y i (1),

if and only if x = x
, y y \

(x+yi) + (x + y i)
= (x + x ) + (y + y )i (2);

(x + yi) (x + y i) xx -
yy + (xy

f + yx) i (3).

In particular we have, as special cases of (2) and (3),

x + yi
= (x + 00 + (0 -f yi),

(x -f Qi) (x + y i)
= xx + xy i

;

and these equations suggest that there will be no danger of

confusion if, when dealing with complex numbers, we write x for

x + Oi and yi for + yi, as we shall henceforth.

Positive integral powers and polynomials of complex numbers

are then defined as in ordinary algebra. Thus, by putting x = x,

y = y m (3), we obtain

(x + yi)
2 = (x + yi) (x + yi)

= x* - y* + 2xyi.
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The reader will easily verify for himself that addition and

multiplication of complex numbers obey the laws of algebra

expressed by the equations

yi + (x
f + y i)

=
(a/ + y i) + (x + yi),

{(x + yi) + (of + y i)} + (x&quot;
+

y&quot;i)
= (x + yi) + {(of + y i) + (x&quot;

+
y&quot;i)},

(x + yi) (x
f + y i)

= (x
r

+ y i) (x

yi,

(^ +/O + (^ + /O 0&quot; + 2M),

(a? + yi) {(x
f + y i) (x&quot; + y&quot;i)}

=
{(a? + yi) (x + ^)) (^ + y&quot;i\

the proofs of these equations being practically the same as those

of the corresponding equations for the corresponding displace
ments.

Subtraction and division of complex numbers are defined as

in ordinary algebra. Thus we may define (x + yi) (x
f + y i) as

(x + yi) + {- (x + y i)} =x + yi + (-x -
y i)

=
&amp;lt;&amp;gt;

- x ) + (y
-
y )i ;

or again, as the number f -f rji such that

Avhich leads to the same result. And (x + yi)/(af -f y i) is defined

as being the complex number + rji such that

or off
-
y t] + (x rj + y ) i = x + yi,

^ x Z-y y^x, x tj+y %=y ............... (4).

Solving these equations for and 77, we obtain

This solution fails if a? and y are both zero, i.e. if a? + y i = 0.

Thus subtraction is always possible; division is always possible
unless the divisor is zero.
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Examples. (1) From a geometrical point of view, the problem of the

division of the displacement ~OB by ~OC is that of finding D so that the triangles

COB, AOD are similar, and this is

evidently possible (and the solution

unique) unless C coincides with 0, or

OC=0.

(2) The numbers x+yi, x-yi are

said to be conjugate. Verify that

(x -{-yi) (x yi)
= x^+y2

,

so that the product of two conjugate
numbers is real, and that

x+yi

Fig. 23.
M ~^y

40. One most important property of real numbers is that

known as the factor theorem, which asserts that the product of two

numbers cannot be zero unless one of the two is itself zero. To

prove that this is also true of complex numbers we put x = 0,

y = in the equations (4) of the preceding section. Then

These equations give f = 0, 77
= 0, i.e.

+.* -&amp;gt; 0,

unless x = and y = 0, or x + y i = 0. Thus x + yi cannot vanish

unless either x + y i or f + rji vanishes.

41. The equation i
2 = 1. We agreed to simplify our

notation by writing x instead of x + Oi and yi instead of + yi.

The particular complex number li we shall denote simply by i.

It is the number which corresponds to a unit displacement along

OY. Also

# = H = (0 + li) (0 + li)
= (0 .

- 1 . 1) + (0 . 1 + 1 . 0) i = - 1.

Similarly ( i)
2 = 1. Thus the complex numbers i and i

satisfy the equation #2 = 1.

The reader will now easily satisfy himself that the upshot of

the rules for addition and multiplication of complex numbers is

this, that we operate with complex numbers in exactly the same

way as with real numbers, treating the symbol i as itself a number,
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but replacing the product ii = i2 by 1 whenever it occurs. Thus,

for example,

(x + yi) (x + y i)
= xx + xy i + yx i + yy fi

= (xx
-
yy ) + (xy

f + yd) i.

42. The geometrical interpretation of multiplication

by i. Since

(as 4- yi) i = y + xi,

it follows that if x + yi corresponds to OP, and OQ is drawn equal

to OP and so that POQ is a positive right angle, then (x + yi) i

corresponds to OQ. In other words, multiplication of a complex
number by i turns the corresponding displacement through a right

angle.

We might have developed the whole theory of complex
numbers from this point of view. Starting with the ideas of

x as representing a displacement along OX, and of i as a symbol
of operation equivalent to turning x through a right angle, we
should have been led to regard yi as a displacement of magnitude

y along Y. It would then have been natural to define x + yi as

in 37 and 40, and (x + yi) i would have represented the dis

placement obtained by turning x + yi through a right angle,

i.e. y + xi. Finally, we should naturally have defined (x + yi) x

as xx + yx i, (x + yi) y i as yy + xy i, and (x + yi) (x + y i) as the

sum of these displacements, i.e. as

xx -yy +(xy

43. The equations z2 + 1 = 0, az* + Zbz -f c = 0. There is no

real number z such that z* + 1 =
;
this is expressed by saying

that the equation has no real roots. But, as we have just seen,

the two complex numbers i and i satisfy this equation. We
express this by saying that the equation has the two complex roots

i and i. Since i satisfies z* = 1, it is sometimes written in the

form V(- 1).

Complex numbers are sometimes called imaginary*. The

expression is by no means a happily chosen one, but it is firmly

* The phrase real number was introduced as an antithesis to imaginary

number .

H. 6
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established and has to be accepted. It cannot, however, be too

strongly impressed upon the reader that an imaginary number

is no more imaginary ,
in any ordinary sense of the word, than a

real number
;
and that it is not a number at all, in the sense in

which the real numbers are numbers, but, as should be clear from

the preceding discussion, apair_ofnumbers (x, y), united symbolically,

\ for purposes of technical convenience, in the form a? + yi. Such

a pair of numbers is no less real than any ordinary number

such as J,
or than the paper on which this is printed, or than

the Solar System. Thus

i = Q + li

stands for the pair of numbers (0, 1), and may be represented

geometrically by a point or by the displacement [0, 1]. And

when we say that i is a root of the equation z* + 1 = 0, what we

mean is simply that we have denned a method of combining such

pairs of numbers (or displacements) which we call multiplica

tion ,
and which, when we so combine (0, 1) with itself, gives the

result (- 1, 0).

Now let us consider the more general equation

a,s
2 + 2bz + c = 0,

where a, b, c are real numbers. If 62
&amp;gt; ac, the ordinary method of

solution gives two real roots

{- b V(&
2 -

ac)}/a.

If 62
&amp;lt; ac, the equation has no real roots. It may be written in

the form

an equation which is evidently satisfied if
,
we substitute for

z + (b/a) either of the complex numbers i \J(ac b*)/a *. We

express this by saying that the equation has the two complex roots

{-bi ij(ac
-

b*)}/a,

If we agree as a matter of convention to say that when 62 = ac

(in which case the equation is satisfied by one value of x only,

viz. -b/a), the equation has two equal roots, we can say that

a quadratic equation with real coefficients has two roots in all

cases, either two distinct real roots, or two equal real roots, or two

distinct complex roots.

* We shall sometimes write x + iy instead of x + yi for convenience in printing.
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The question is naturally suggested whether a quadratic

equation may not, when complex roots are once admitted, have
more than two roots. It is easy to see that this is not possible.
Its impossibility may in fact be proved by precisely the same
chain of reasoning as is used in elementary algebra to prove that

an equation of the nth degree cannot have more than n real

roots. Let us denote the complex number sc + yi by the single
letter z, a convention which we may express by writing
z = x + yi. Let / (z) denote any polynomial in z, with real or

complex coefficients. Then we prove in succession :

(1) that the remainder, when f(z) is divided by z - a, a being
any real or complex number, is /(a) ;

(2) that if a is a root of the equation f(z) = 0, then f(z) is

divisible by z a
;

(3) that if f(z) is of the nth degree, and f(z) = has the

n roots al} aa , ..., an , then

f(z) = A(z- dj) (Z
-

fife)
. . . (Z

- an),

where A is a constant, real or complex, in fact the coefficient

of zn in f(z). From the last result, and the theorem of 40,
it follows that/ (2) cannot have more than n roots.

We conclude that a quadratic equation with real coefficients has

exactly two roots. We shall see later on that a similar theorem is

true for an equation of any degree and with either real or complex
coefficients: an equation of the nth degree has exactly n roots.

The only point in the proof which presents any difficulty is the

first, viz. the proof that any equation must have at least one
|

root. This we must postpone for the present*. We may, however,
at once call attention to one very interesting result of this theorem.
In the theory of number we start from the positive integers and
from the ideas of addition and multiplication and the converse

operations of subtraction and division. We find that these

operations are not always possible unless we admit new kinds of

numbers. We can only attach a meaning to 3-7 if we admit

negative numbers, or to f if we admit rational fractions. When
we extend our list of arithmetical operations so as to include root
extraction and the solution of equations, we find that some of

* See Appendix I.

6-2



84 COMPLEX NUMBERS [ill

them, such as that of the extraction of the square root of a number
which (like 2) is not a perfect square, are not possible unless we
widen our conception of a number, and admit the irrational

numbers of Chap. I.

Others, such as the extraction of the square root of 1, are

not possible unless we go still further, and admit the complex
numbers of this chapter. And it would not be unnatural to

suppose that, when we come to consider equations of higher

degree, some might prove to be insoluble even by the aid of

complex numbers, and that thus we might be led to the con

siderations of higher and higher types of, so to say, hyper-complex
numbers. The fact that the roots of any algebraical equation
whatever are ordinary complex numbers shows that this is not the

case. The application of any of the ordinary algebraical operations
to complex numbers will yield only complex numbers. In technical

language the field of the complex numbers is closed for algebraical

operations .

Before we pass on to other matters, let us add that all

theorems of elementary algebra which are proved merely by
the application of the rules of addition and multiplication are

true whether the numbers which occur in them are real or com-

plex, since&quot; the rules- referred to apply to complex as well as

real numbers. For example, we know that, if a and ft are the

roots of

az&amp;gt; + 2& + c = 0,

then + = -(26/a), =
(c/a).

Similarly, if a, /3, &amp;lt;y

are the roots of .-

3cz + d = 0,

then

a + 13 + 7 = -
(36/a), fa + yd + a/3 = (3c/a), a/3y = - (d/a).

All such theorems as these are true whether a, 6, ... a, (3, ... are

real or complex.

44. Argand s diagram. Let P (Fig. 24) be the point (x, y\
r the length OP, and the angle XOP, so that

x = r cos 6, y r sin 9, r = *J(a? + y
2

),
cos 6 : sin 6 : 1 : : x : y : r.
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We denote the complex number ae + yi by z, as in

we call z the complex variable.

We call P the point z, or

the point corresponding to z\

z the argument of P, x the

real part, y the imaginary

part, r the modulus, and

6 the amplitude of z\ and we

write

43, and

= z
,

=
!(&amp;gt;.

= am #.

o X

Fig. 24.

When y we say that z is real, when x that z is purely

imaginary. Two numbers x + yi, x yi which differ only in

the signs of their imaginary parts, we call conjugate. It will be

observed that the sum 2# of two conjugate numbers and their

product ot? + 7/
2 are both real, that they have the same modulus

V(#
2 + y

1

} and that their product is equal to the square of the

modulus of either. The roots of a quadratic with real coefficients,

for example, are conjugate, when not real.

It must be observed that 6 or am z is a many-valued function of

x and y, having an infinity of values, which are angles differing by

multiples of 2?r*. A line originally lying along OX will, if turned

through any of these angles, come to lie along OP. We shall

describe that one of these angles which lies between TT and I

f

TT as the prirwirjal^value of the amplitude of z. This de- j I

finition is unambiguous except when one of the values is TT,

in which case TT is also a value. In this case we must make
some special provision as to which value is to be regarded as

the principal value. In general, when we speak of the amplitude
of z we shall, unless the contrary is stated, mean the principal

value of the amplitude.

Fig. 24 is usually known as Argand s diagram.

*
It is evident that \z\is identical with the polar coordinate r of P, and that

the other polar coordinate 6 is one value of am z. This value is not necessarily

the principal value, as defined below, for the polar coordinate of 22 lies between

and 27r, and the principal value between - TT and TT.
,

.

rv?^%
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45. De Moivre s Theorem. The following statements

follow immediately from the definitions of addition and multi

plication.

(1) The real (or imaginary) part of the sum of two complex

numbers is equal to the sum of their real (or imaginary) parts.

(2) The modulus of the product of two complex numbers is

equal to the product of their moduli.

(3) The amplitude of the product of two complex numbers is

either equal to the sum of their amplitudes, or differs from it by 2?r.

It should be observed that it is not always true that the principal value of

^.
am (zz

1

} is the sum of the principal values of am z and am/. For example, if

z=z = -l+i, then the principal values of the amplitudes of z and z
1
are each

v
j ITT. But zz = 2i, and the principal value of am (zz }

is -\ir and not |TT.

The two last theorems may be expressed in the equation

r (cos 6 + i sin 0) x p (cos (/&amp;gt;

+ i sin $) r*A
= rp {cos (0 + 0) + i sin (6 + (/&amp;gt;)},

rr ^H
which may be proved at once by multiplying out and using the

,

ordinary trigonometrical formulae for cos (0 + &amp;lt;f&amp;gt;)

and sin (6 + $).

More generally

n (cos 0! + i sin X) x r2 (cos 2 + i sin 2) x ... x rn (cos 6n 4- i sin n)

= rjra ... rn {cos (0j + a + ... + 0) + i sin (0j + a + ... + n)}-

A particularly interesting case is that in which

n = r2
= ... = rn = 1, 0! = 2

= ... = On = 0.

We then obtain the equation

(cos + i sin 0)
&amp;gt;l = cos nO + i sin w0,

where n is any positive integer: a result known as De Moivres
.

Theorem*.

Again, if z - r (cos + i sin 0)

then \\z (cos i sin 0)/r.

Thus the modulus of the reciprocal of z is the reciprocal of the

modulus of z, and the amplitude of the reciprocal is the negative of

the amplitude of z. We can now state the theorems for quotients

which correspond to (2) and (3).

*
It will sometimes be convenient, for the sake of brevity, to denote cos 6 + i sin &

by Cis0: in this notation, suggested by Profs. Harkness and Morley, De Moivre s

theorem is expressed by the equation (Cis0)
n=
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(4) The modulus of the quotient of two complex numbers is

equal to the quotient of their moduli.

(5) The amplitude of the quotient of two complex numbers

either is equal to the difference of their amplitudes, or differs from

it by 2?r.

Again (cos 6 + i sin 6)~
n =

(cos i sin 0)
n

=
{cos (- 0) + i sin (- 6}}

n

= cos (- n6) + i sin (- nd).

Hence De Moivres Theorem holds for all integral values of n,

positive or negative.

To the theorems (1) (5) we may add the following theorem,

which is also of very great importance.

(6) The modulus of the sum of any number of complex
numbers is not greater than the sum of their moduli.

pdv)

P&quot;

Fig. 25.

Let OP, OP
, ... be the displacements corresponding to the

various complex numbers. Draw PQ equal and parallel to OP ,

QR equal and parallel to OP&quot;, and so on. Finally we reach a

point U, such that

The length OU is the modulus of the sum of the complex

numbers, whereas the sum of their moduli is the total length

of the broken line OPQR...U, which is not less than OU.

A purely arithmetical proof of this theorem is outlined in

Exs. xxi. 1.



88 COMPLEX NUMBERS
[m

46. We add some theorems concerning rational functions of

^ complex numbers. A rational function of the complex variable z
is defined exactly as is a rational function of a real variable x,
viz. as the quotient of two polynomials in z.

THEOREM 1. Any rational function R (z) can be reduced to

the form X + Yi, where X and Y are rational functions of x and
y with real coefficients.

In the first place it is evident that any polynomial P (x + yi)
can be reduced, in virtue of the definitions of addition and multi

plication, to the form A + Bi, where A and B are polynomials
in x and y with real coefficients. Similarly Q(x + yi) can be
reduced to the form C + Di. Hence

R (X + yi)
= P(X + yi)/Q (X + yi)

can be expressed in the form

(A + Bi)l(G + Di) = (A + Bi) (G - Di)/(C+ Di) (C
-
Di)

AG+BD BG-AD.
&quot;

which proves the theorem.

THEOREM 2. If R(x + yi)=X + Yi, R denoting a rational

function as before, but with real coefficients, then R(x-yi)=X- Yi.

In the first* place this is easily verified for a power (x -f yi)
n

by actual expansion. It follows by addition that the theorem is

true for any polynomial with real coefficients. Hence, in the

notation used above,

, ..__~
~- T &quot; ~

the reduction being the same as before except that the sign of i

is changed throughout. It is evident that results similar to those

of Theorems 1 and 2 hold for functions of any number of complex
variables.

THEOREM 3. The roots of an equation

a^n + a^n-J + . . . + an = 0,

whose coefficients are real, may, in so far as they are not themselves

real, be arranged in conjugate pairs.
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For it follows from Theorem 2 that if x + yi is a root then so is

x yi. A particular case of this theorem is the result ( 43) that

the roots of a quadratic equation with real coefficients are either

real or conjugate.

This theorem is sometimes stated as follows : in an equation

with real coefficients complex roots occur in conjugate pairs. It

should be compared with the result of Exs. vnr. 7, which may be

stated as follows : in an equation with rational coefficients irrational

roots occur in conjugate pairs* .

Examples XXI. 1. Prove theorem (6) of 45 directly from the

definitions and without the aid of geometrical considerations.

[First, to prove that
|

z+ z
\

&amp;lt;

|

z
\
+

\

z
\

is to prove that

(x+xj + (y +/)
2 y(a

8
+3/

2
) + V(^ 2 +/2

)}
2
.

The theorem is then easily extended to the general case.]

2. The one and only case in which

|*| + |

+ ...!*+ +.. -I,

is that in which the numbers z, d, ... have all the same amplitude. Prove

this both geometrically and analytically.

3. The modulus of the sum of any number of complex numbers is not

less than the sum of their real (or imaginary) parts.

4. If the sum and product of two complex mimbers are both real, then

the two numbers must either be real or conjugate.

5. If a + bj2 + (c+dJ2)i=A +Bj2 + (C+Dj2}i, ^_
where a, &, c, o?, -4, B, C, D are real rational numbers, then

a= A, b= B, c=C, d=D.

6. Express the following numbers in the form A + Bi, where A and B are

real numbers :

where X and \i
are real numbers.

7. Express the following functions of z=*x+yi in the form X+ Yi, where

Xand Tare real functions of x andy: 22
, z\ zn

, \\z, * + (!/*), (a + /fe)/(y+8s),

where a, /3, y, 8 are real numbers.

8. Find the moduli of the numbers and functions in the two preceding

examples.

* The numbers a + ^/6, a-Jb, where a, 6 are rational, are sometimes said to be

conjugate .
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9. The two lines joining the points z= a, z= b and z= c, zd will be

perpendicular if

i.e. if (a-ty/(c-d) is purely imaginary. What is the condition that the lines

should be parallel ?

10. The three angular points of a triangle are given by 2= a, z=&, z= y,

where a, /3, y are complex numbers. Establish the following propositions :

(i) the centre of gravity is given by z= % (a+/3-f y) ;

(ii) the circum-centre is given ly\za\ = |z-/3| = |

2 - y |
;

(iii) the three perpendiculars from the angular points on the opposite
sides meet in a point given ty

B

(iv) there is a point P inside the triangle such that

CBP=ACP=BAP=co,
and cot co = cot A -f cot B+ cot C.

[To prove (iii) we observe that if A, E, G are the vertices, and P any
point 2, then the condition that AP should be perpendicular to EG is (Ex. 9)

that (z a)l($-y) should be purely imaginary, or that

This equation, and the two similar equations obtained by permuting o, /3, y
cyclically, are satisfied by the same value of z, as appears from the fact that

the sum of the three left-hand sides is zero.

To prove (iv), take EG parallel to the positive direction of the axis of x.

Then*
-&amp;lt;7), /3-a= -

We have to determine z and a&amp;gt; from the equations

)

where ZQ) OQ, &&amp;gt; yo denote the conjugates of z, a, /3, y.

Adding the numerators and denominators of the three equal fractions,

and using the equation

i cot o&amp;gt;
=

(1 + Cis
2o&amp;gt;)/(l

- Cis 2),
we find that

^

^3yo
-

j3oy 4-y o
-
yoa + a^o

- a^
From this it is easily deduced that the value of cot is (a

2+62+c2
)/4A,

where A is the area of the triangle ;
and this is equivalent to the result given.

* We suppose that as we go round the triangle in the direction ABC we leave

it on our left.
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To determine z, we multiply the numerators and denominators of the

equal fractions by (y -/3 )/(/3-a), (a
-
y )/(y

-
), (&&amp;gt;

- a )/(a
-

7)5 and a &amp;lt;*d

to form a new fraction. It will be found that

11. The two triangles whose vertices are the points a, b, c and #, y, z

respectively will be similar if

1 1 1 =0

[The condition required is that ABfAC^XYjXZ (large letters denoting
the points whose arguments are the corresponding small letters), or

(b-a)l(c-a)= (y-x}l(z-x\ which is the same as the condition given.]

12. Deduce from the last example that if the points #, y, z are collinea.r

then we can find real numbers a, /3, y such that a-f # +y= and ax+ /3y +yz=0,
and conversely (cf. Exs. xx. 4). [Use the fact that in this case the triangle
formed by #, y, z is similar to a certain line-triangle on the axis

OX&amp;gt;
and

apply the result of the last example.]

13. The general linear equation with complex coefficients. The

equation az+/3=0 has the one solution 2= -
(/3/a), unless a= 0. If we put

and equate real and imaginary parts, we obtain two equations to determine

the two real numbers x and y. The equation will have a real root if y= 0,

which gives ax+ b= Q, Ax+ B=0, and the condition that these equations
should be consistent is aB bA = 0.

14. The general quadratic equation with complex coefficients. This

equation is

Unless a and A are both zero we can divide through by a + iA. Hence
we may consider

22+ 2 (b+ ffi) z+ (c+ (7^ = ........................ (1)

as the standard form of our equation. Putting z=x+yi and equating real

and imaginary parts, we obtain a pair of simultaneous equations for x and y,
viz.

If we put

these equations become 2 _
^2
=^ 2^ = k.
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Squaring and adding we obtain

We must choose the signs so that
77
has the sign of k : i.e. if k is positive

we must take like signs, if k is negative unlike signs.

Conditions for equal roots. The two roots can only be equal if both the

square roots above vanish, i.e. if A= 0, =0, or if c= 62 B2
, CVbB. These

conditions are equivalent to the single condition c+ CY=(&+ Z?i)
2
,
which

obviously expresses the fact that the left-hand side of (1) is a perfect square.

Condition for a real root. If #2 + 2 (b+ Bi) #+ (c + CY) = 0, where x is

real, then #2 + 2&.r-t-c= 0, 2/to+ (7=0. Eliminating x we find thab the

required condition is

C*-4bBC+ 4c.fi2= 0.

Condition for a purely imaginary root. This is easily found to be

&amp;lt;7

2 - bBC-4&2c=0.

Conditions for a pair of conjugate complex roots. Since the sum and the

product of two conjugate complex numbers are both real, b+ Bi and c+ Ci

must both be real, i.e. Z?=0, (7=0. Thus the equation (1) can have a pair of

conjugate complex roots only if its coefficients are real. The reader should

verify this conclusion by means of the explicit expressions of the roots.

Moreover, if b2
&amp;gt;c,

the roots will be real even in this case. Hence for a pair

of conjugate roots we must have =0, (7=0, b2 &amp;lt;c.

15. The Cubic equation. Consider the cubic equation

where O and H are complex numbers, it being given that the equation has

(a) a real root, (b) a purely imaginary root, (c) a pair of conjugate roots If

H=\+p.i, G= p+ o-i, we arrive at the following conclusions.

(a) Conditions for a real root. If
/z

is not zero, then the real root is -
&amp;lt;r/3/z,

and o-
3+ 27X/iV 27/z

3
p
= 0. On the other hand, if

/i
= then we must also

have o-= 0, so that the coefficients of the equation are real. In this case there

may be three real roots.

(6) Conditionsfor a purely imaginary root. If
/z

is not zero then the purely

imaginary root is (p/3/i) i,
and p

3 -
27Ap,

2
p 27/x

3
o- =0. If

p.
= then also p = 0,

and the root is yi, where y is given by the equation y* 3X?/ a-= 0, which has

real coefficients. In this case there may be three purely imaginary roots.

(c) Conditions for a pair of conjugate complex roots. Let these be x+yi
and xyi. Then since the sum of the three roots is zero the third root

must be - 2#. From the relations between the coefficients and the roots of

an equation we deduce

Hence G and II must both be real.

In each case we can either find a root (in which case the equation can

be reduced to a quadratic by dividing by a known factor) or we can reduce

the solution of the equation to the solution of a cubic equation with real

coefficients.
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16. The cubic equation #
3+ i#

2+ a-tfc+ a3
=

0, where a-^A^ + A^i, . . .
,
has

a pair of conjugate complex roots. Prove that the remaining root is

unless J Examine the case in which A 3
= Q.

1 7. Prove that if z3+ 3Hz + G=0 has two complex roots then the equation

has one real root which is the real part a of the complex roots of the

original equation ;
and show that a has the same sign as G.

18. An equation of any order -with complex coefficients will in general

have no real roots nor pairs of conjugate complex roots. How many con

ditions must be satisfied by the coefficients in order that the equation should

have (a] a real root, (6) a pair of conjugate roots ?

19. Coaxal circles. In Fig. 26, let a, b,z be the arguments of A, J3, P

Then am^l-aP*,
if the principal value of the amplitude is chosen. If the two circles shown

in the figure are equal, and z
,

zl}

and APB = 0, it is easy to see that

z -b

are the arguments of P
,
P

am

and

= Tr-0 am

-7T + 0.
z

1
-a

The locus defined by the equation

am -- =
0,z-a

where is constant, is the arc APB. By

writing 7r-0, -0, -jr + for
&amp;lt;9,

we obtain

the other three arcs shown.

The system of equations obtained by

supposing that is a parameter, varying

from -TT to +TT, represents the system of

circles which can be drawn through the

points A, B. It should however be ob

served that each circle has to be divided

into two parts to which correspond different

values of 0.

20. Now let us consider the equation

\z-b

Fig. 26.

.(1),

where X is a constant.

Let K be the point in which the tangent to the circle ABP at P meets

AB. Then the triangles KPA, KBP are similar, and so

AP\PB=PK\BK=KA\KP= X.
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Hence KA/KB= \Z
,
and therefore K is a fixed point for all positions of P

which satisfy the equation (1). Also KP2=KA.KB, and so is constant.

Hence the locus of P is a circle whose centre is K.

The system of equations obtained by varying X represents a system of

circles, and every circle of this system cuts at right angles eveiy circle of the

system of Ex. 19.

The system of Ex. 19 is called a system of coaxal circles of the common

point kind. The system of Ex. 20 is called a system of coaxal circles of the

limiting point kind, A and B being the limiting points of the system. If X
is very large or very small then the circle is a very small circle containing A
or B in its interior.

21. Bilinear Transformations. Consider the equation

z=Z+a ....................................... (1),

where z=x+yi and Z=X+Yi are two complex variables which we may
suppose to be represented in two planes xoyt

XOY. To every value of z

corresponds one of Z, and conversely. If a= a+/3i then

and to the point (#, y) corresponds the point (X, F). If (#, y) describes a
curve of any kind in its plane, (X, F) describes a curve in its plane. Thus
to any figure in one plane corresponds a figure in the other. A passage of

this kind from a figure in the plane xoy to a figure in the plane XO Y by
means of a relation such as (1) between z and Z is called a transformation.
In this particular case the relation between corresponding figures is very
easily defined. The (X, F) figure is the same in size, shape, and orientation
as the (#, y} figure, but is shifted a distance a to the left, and a distance

downwards. Such a transformation is called a translation.

Now consider the equation

*=PZ .....

*

...... .......................... (2),

where p is real. This gives x= pX, y=pl
r
. The two figures are similar and

similarly situated about their respective origins, but the scale of the (#, y}

figure is p times that of the (X, F) figure. Such a transformation is called

a magnification.

Finally consider the equation

2= (cos &amp;lt; + ^sin() Z .............................. (3).

It is clear that \z\
= \Z\ and that one value of am z is am Z+

&amp;lt;f&amp;gt;,

and that the
two figures differ only in that the (#, y} figure is the (X, Y} figure turned

about the origin through an angle &amp;lt;j&amp;gt;

in the positive direction. Such a trans

formation is called a rotation.

The general linear transformation

(4)
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is a combination of the three transformations (1), (2), (3). For, if
|
a \=p and

am a= 0, we can replace (4) by the three equations

z=z + b, z =pZ ,
Z =

(cos (p + ism&amp;lt;p)Z.

Thus the general linear transformation is equivalent to the combination of a

translation, a magnification, and a rotation.

Next let us consider the transformation

*=VZ ....................................... (5).

If \Z\ =R and amZ^e, then \z\
= l/R and am z= -0, and to pass from

the (x, y) figure to the (X, Y] figure we invert the former with respect to o,

with unit radius of inversion, and then construct the image of the new figure

in the axis ox (i.e. the symmetrical figure on the other side of ox}.

Finally consider the transformation

This is equivalent to the combination of the transformations

i.e. to a certain combination of transformations of the types already con

sidered.

The transformation (6) is called the general bilinear transformation.

Solving for Z we obtain

_*-6
cz a

The general bilinear transformation is the most general type of trans

formation for which one and only one value of z corresponds to each value of

Z, and conversely.

22. The general bilinear transformation transforms circles into circles.

This may be proved in a variety of ways. We may assume the well-known

theorem in pure geometry, that inversion transforms circles into circles

(which may of course in particular cases be straight lines). Or we may
use the results of Exs. 19 and 20. If, e.g., the (#, y] circle is

and we substitute for z in terms of Z, we obtain

,

where
b a-d b pd

*--

a pc
o- = -- , p=

a pc
X.

23. Consider the transformations z= l/Z, z= (l+Z)/(l - Z\ and draw

the (X, 7} curves which correspond to (1) circles whose centre is the origin,

(2) straight lines through the origin.
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24. The condition that the transformation z= (aZ+b}/(cZ+d} should

make the circle #2+ ?/
2= l correspond to a straight line in the (JT, Y) plane

is \a =
\c\.

25. Cross ratios. The cross ratio fazZt z3 z4) is denned to bo

If the four points Zi, z2 ,
z3) z are on the same line, this definition agrees

with that adopted in elementary geometry. There are 24 cross ratios which
can be formed from 2l5 z%, ^31 24 by permuting the suffixes. These consist of

six groups of four equal cross ratios. If one ratio is X, then the six distinct

cross ratios are X, 1 -X, 1/X, 1/(1 -X), (X- 1)/X, X/(X- 1). The four points are

said to be harmonic or harmonically related if any one of these is equal to

1. In this case the six ratios are 1, 2, -1, , 2, \.

If any cross ratio is real then all are real and the four points lie on a
circle. For in this case

am
(z1 -zi)(z2 -z3)

must have one of the three values TT, 0, TT, so that am {(zl z
3)/fa

-
z^} and

am {(z2
- z3)/fa

-
4)} must either be equal or differ by TT (cf. Ex. 19).

If (ziZ2 ,
Z2 Z\) 1) we have the two equations

The four points A^ A 2 ,
A 3 ,

A 4 lie on a circle, A l and A 2 being separated

by A 3 and A 4 . . Also A 1 A 3IA 1A t=A 2A 3jA 2 A i . Let be the middle point of

AsAi. The equation

may be put in the form

or, what is the same thing,

But this is equivalent to OA l
. OA 2

= OA 3
2=OA^. Hence OA 1 and (9J 2

make equal angles with A 3A^ and OA 1 . OA 2=OA 3
2
=OA^. It will be ob

served that the relation between the pairs A l ,
A 2 and A 3 ,

A is symmetrical.

Hence, if is the middle point of ^M 2 ,
A 3 and ^1

4 are equally inclined

to AiAfr and J 3 . OAOAJ^O A^.

26. If the points A
lt A 2 are given by az2+ 2bz+ c=0, and the points

A 3 ,
A 4 by a z2+ 2b z+ c =Q, and is the middle point of A 3 A 4 ,

and
acf + a c - 266 =

0, then OA lt OA 2 are equally inclined to A 3A 4 and
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27. AB, CD are two intersecting lines in Argaud s diagram, and P,

Q their middle points. Prove that, if AB bisects the angle CPD and

PA 2=PB2=PC . PD, then CD bisects the angle AQB and QC2= QD*= QA.QB.
(Math. Trip. 1909.)

28. The condition that four points should lie on a circle. A
sufficient condition is that one (and therefore all) of the cross ratios

should be real (Ex. 25) ;
this condition is also necessary. Another form

of the condition is that it should be possible to choose real numbers

a, /3, y such that

1 1

|8 y

0.

[To prove this we observe that the transformation Z= \\(z-z) is equivalent

to an inversion with respect to the point 24 , coupled with a certain reflexion

(Ex. 21). If zlt z%, z3 lie on a circle through z4t the corresponding points

Z
l
=

ll(z1 -zi\ Z&amp;lt;i=ll(zz-Zi\ ^3=l/(z3 -z4) lie on a straight line. Hence

(Ex. 12) we can find real numbers a
, /3 , y such that a +/3 -f-/

= and

7(*i
~ zi) +ft /(z2 -z4) + y /fo

~ z
i)=Q&amp;gt;

anc* it is easv to prove that this is

equivalent to the given condition.]

29. Prove the following analogue of De Moivre s Theorem for real

numbers : if fa^ fa, fay is a series of positive acute angles such that

tan $,n + 1=tan
&amp;lt;p
m sec fa -{-sec fan tan fa t

then tan (pm + n= tan m sec
(/&amp;gt;

rt+ sec &amp;lt; m tan
(/&amp;gt;

,

sec
(/&amp;gt;

?u + n=sec $m sec &amp;lt;

rt +tan m tan
(/&amp;gt;
n ,

and tan fan+ sec $m= (tan fa -f sec fa)
m

.

[Use the method of mathematical induction.]

30. The transformation z=Zm . In this case r=Rm
,
and 6 and me

differ by a multiple of 27r. If Z describes a circle round the origin then z

describes a circle round the origin m times.

The whole (#, y} plane corresponds to any one of m sectors in the (X, Y}

plane, each of angle 2-rr/m. To each point in the (x, y) plane correspond

m points in the (JT, Y) plane.

31. Complex functions of a real variable. If /(*), (0 are two real

functions of a real variable t defined for a certain range of values of t,

we call

. ...... (1)

a complex function of t. We can represent it graphically by drawing the

curve

H.
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the equation of the curve may be obtained by eliminating t between these

equations. If z is a polynomial in
t,

or rational function of t, with complex

coefficients, we can express it in the form (1) and so determine the curve

represented by the function.

(i) Let z=a+(b-a)t,

where a aiid b are complex numbers. If a= a+ a i, 6=/3+ /3% then

#=a+ (/3-a), y= a + ($ - a ) t.

The curve is the straight line joining the points z= a and z=b. The seg

ment between the points corresponds to the range of values of t from

to 1. Find the values of t which correspond to the two produced segments
of the line.

u If -

where p is positive, then the curve is the circle of centre c and radius p. As
t varies through all real values z describes the circle once.

(iii) In general the equation z= (a+ bt)j(c+dt) represents a circle.

This can be proved by calculating x and y and eliminating : but this process
is rather cumbrous. A simpler method is obtained by using the result of

Ex. 22. Let z=(a+ bZ)/(c + dZ), Z=t. As t varies Z describes a straight

line, viz. the axis of X. Hence z describes a circle.

(iv) The equation z=a+ 2bt+ ct*

represents a parabola generally, a straight line if b/c is real.

(v) The equation z= (a+ 2bt+ ct2)/(a+ 2pt + yt*), where a, /3, y are real,

represents a conic section.

[Eliminate t from

where A+A i=a, B+B i=b, C+C i=c.]

47. Roots of complex numbers. We have not, up to the

present, attributed any meaning to symbols such as tya, amln
,

when a is a complex number, and w and n integers. It is,

however, natural to adopt the definitions which are given in

elementary algebra for real values of a. Thus we define tya or

a1/M
,
where n is a positive integer, as a number z which satisfies

the equation zn = a
;
and amlnt where m is an integer, as (a

1/n
)
m

.

These definitions do not prejudge the question as to whether

there are or are not more than one (or any) roots of the equation.

48. Solution of the equation zn = a. Let

a = p (cos &amp;lt;j&amp;gt;

+ i sin
&amp;lt;/&amp;gt;),

where p is positive and &amp;lt; is an angle such that TT &amp;lt; &amp;lt; ^ TT. If
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we put z = r (cos + i sin 0), the equation takes the form

rn (cos nd + i sin nO) = p (cos
cf&amp;gt;

+ i sin
&amp;lt;/&amp;gt;)

;

so that rn = p, cosn0 =
coscf&amp;gt;,

sinft# = sin&amp;lt; ......... (1).

The only possible value of r is yp, the ordinary arithmetical

nth root of p ;
and in order that the last two equations should be

satisfied it is necessary and sufficient that nd
&amp;lt;p

+ 2&?r, where k

is an integer, or

6 =
(&amp;lt;/&amp;gt;

+ 2k7r)/n.

If k=pn + q, where p and q are integers, and Qq&amp;lt;n, the

value of 9 is 2p?r + ((/&amp;gt;

+ 2q7r)/n, and in this the value of ^? is a

matter of indifference.
*

Hence the equation

zn = a = p (cos (f&amp;gt;

+ i sin 0)

Aas 7i roofc ancZ n (wfo/, Driven by z = r (cos + i sin 0), where

r = %p,
=

(4&amp;gt;
+ 2^7r)/, (#

= 0, 1, 2, . . . n - 1).

That these n roots are in reality all distinct is easily seen

by plotting them on Argand s diagram. The particular root

\//3 {cos (&amp;lt;t&amp;gt;/n)
+ i sin ($/n)}

is called the principal value of J/a.

The case in which a=l,p = l,c/&amp;gt;

= is of particular interest.

The n roots of the equation xn = 1 are

cos (ZqTr/n) + i sin (2qir/ri) t (q
= 0, 1, . . . n 1).

These numbers are called the nth roots of unity; the principal

value is unity itself. If we write con for cos (2-Tr/n) + i sin (27r/n),

we see that the nth roots of unity are

1, a&amp;gt;n , col... col~
l

.

Examples XXII. 1. The two square roots of 1 are 1,
- 1

;
the three

cube roots are 1, (-l + W3), J(-l-iV3)&amp;gt; the four fourth roots are 1,

i, 1, -i; and the five fifth roots are

1, it x/5-

2. Prove that

3. Prove that
(x+ya&amp;gt;z

+ za%) (#+yo&amp;gt;5+z&amp;lt; 3)=#
2+ ?/

2
+;s

2
3/2 zx-xy.

4. The nth roots of a are the products of the nth roots of unity by the

principal value of %/a.

72
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5. It follows from Exs. xxi. 14 that the roots of

are

like or unlike signs being chosen according as is positive or negative. Show
that this result agrees with the result of 48.

6. Show that (x**- a2
)/(#

2 - a2
) is equal to

a-2o* cos - ^ cos

[The factors of tf
2m - a2 are

The factor ff-aw^ is #+. The factors (tf-aco J, (x-a&amp;lt;J*) taken together
give a factor tf

2
-2a#cos(s7r/m) + a2

.]

7. Resolve a;
8** 1-* +

!, ^ + a
J
and ** + 1 + * +1 into factors

-

n a
similar way.

8. Show that x^ - Zxnan cos + a2 &quot; is equal to

*2 - 2xa cos -+ a2 ^ - 2m cos

[Use the formula

^2 &quot; - 2^a cos &amp;lt;9 + a2 &quot;= {#
- aw (cos 6+ iam 6}} [x

n-an
(cos6- i sin 6)},

and split up each of the last two expressions into n factors.]

9. Find all the roots of the equation #6 -- 2x3+ 2 = 0. (Math. Trip. 1910.)

10. The problem of finding the accurate value of^ in a numerical form
involving square roots only, as in the formula *t t(-l+V*X is tho

algebraical equivalent of the geometrical problem of inscribing a regular
polygon of n sides in a circle of unit radius by Euclidean methods, i.e. by ruler
and compasses. For this construction will be possible if and only if we can
construct lengths measured by cos (2ir/ri) and sin(/) ; and this is possible
(Ch. II, Misc. Exs. 22) if and only if these numbers are expressible in a form
involving square roots only.

Euclid gives constructions for n= 3, 4, 5, 6, 8, 10, 12, and 15. It is

evident that the construction is possible for any value of n which can be
found from these by multiplication by any power of 2. There are other

special values of n for which such constructions are possible, the most inter

esting being n= 1 7.
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49. The general form of De Moivre s Theorem. It

follows from the results of the last section that if q is a positive

integer then one of the values of (cos 6 + ism 6)
llq is

cos(#/)+ sin

Raising each of these expressions to the power p (where p is any

integer positive or negative), we obtain the theorem that one of

the values of (cos -f i sin 0)^ is cos (pO/q) + i sin (pO/q), or that if
a is any rational number then one of the values of (cos + i sin 6)

a
is

cos a6 4- i sin ct&.

This is a generalised form of De Moivre s Theorem (45).

MISCELLANEOUS EXAMPLES ON CHAPTER III.

1. The condition thatl triangle (xyz) should be equilateral is that

[Let XYZ be the triangle. The displacement 1ZX is YZ turned through
an angle TT in the positive or negative direction. Since Cis f7r

=
3 ,

Cis(-f7r)= l/&amp;lt; 3
=a&amp;gt;

3 ,
we nave x-z=(z-y~] o&amp;gt;

3
or x-z=(z y] w3

. Hence

#
+y&amp;lt;B3 +zo&amp;gt;3

=0 or
^-fya&amp;gt;3+ za)

3
=0. The result follows from Exs. xxn. 3.]

2. If X YZ, XY Z are two triangles, and

V rr T7/ r/t ~r7~V 7 V Y V V V2 6 . I /j =A Zi A =A I A. JL
,

then both triangles are equilateral. [From the equations

say, we deduce 2 !/(/
- z

)
=

0, or 2# 2 -
^y z 0. Now apply the result of the

last example.]

3. Similar triangles BOX, CAY, ABZ are described on the sides of a

triangle ABC. Show that the centres of gravity of ABC, XYZ are coincident.

[We have (^-c)/(6-c) = (y-a)/(c-a) = (0-6)/(a-6) = X, say. Express

fj (x+y+z) in terms of a, 6, c.]

4. If X, T, /?are points on the sides of the triangle ABC, such that

BX/XC= CYI YA = AZ/ZB= r,

and if ABC, XYZ are similar, then either r=l or both triangles are

equilateral.

5. If J
, 5, C, D are four points in a plane, then

4Z) . BC &amp;lt; BD . CA + CD . AB.
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[Let j?!,
22 ,

23 ,
24 be the complex numbers corresponding to ^4, B, (7, Z).

Then we have identically

(Xl

Hence

6. Deduce Ptolemy s Theorem concerning cyclic quadrilaterals from the

fact that the cross ratios of four concyclic points are real. [Use the same

identity as in the last example.]

7. If z2+ z 2=
1, then the points z, z are ends of conjugate diameters of an

ellipse whose foci are the points 1,
- 1. [If CP, CD are conjugate semi-

diameters of an ellipse and S, H its foci, then CD is parallel to the external

bisector of the angle SPH, and SP . HP= CD\]

8. Prove that |a + 6|
2+|a-6 2

=2{ja|
2+

| 6|
2
}. [This is the analytical

equivalent of the geometrical theorem that, if M is the middle point of PQt

then

9. Deduce from Ex. 8 that

|a+ V(a
2 -&2)Ma-V( 2 -&2

)|= a+ b\ + \a-b\.

[If +V( 2 -&2
)
=

2i, a-x/(a
2 -62

)
= 22 ,

we have

and so (\z :
|
+ |^2 |)

2=2
(| a|

2
+| a2 -62

1

+
|

b
|

2
}
=

|

a + 6|
2+ |a-6|

2+ 2
|

2 -62
|.

Another way of stating the result is : if zi and z
2 are the roots of

az2 +2/32+y=0, then

K 1
+ 1*2

10. Show that the necessary and sufficient conditions that both the roots

of the equation z2+ az+ b= Q should be of unit modulus are

|a|&amp;lt;2, \b\
= l

}
am 6= 2 am a.

[The amplitudes have not necessarily their principal values.]

11. If ^4+4ai^3+ 6a2^2+ 4a3^-|-a4=0 is an equation with real coefficients

and has two real and two complex roots, concyclic in the Argand diagram, then

12. The four roots of a a4+ 4a1#3+ 6a2#2+ 4a3#+a4=0 will be harmonic

ally related if

0.

[Express ^23,14^31,24^12,345 where Z
23i 14

=
(z 1
- 22 ) (z3

-
4) + fa -z3} (z2

-

and zi, zz ,
zz ,

z are the roots of the equation, in terms of the coefficients.]
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13. Imaginary points and straight lines. Let ax+by + c = Q be

an equation with complex coefficients (which of course may be real in special

cases).

If we give x any particular real or complex value, we can find the corre

sponding value of y. The aggregate of pairs of real or complex values of x

and y which satisfy the equation is called an imaginary straight line
;
the

pairs of values are called imaginary points, and are said to lie on the line.

The values of x and y are called the coordinates of the point (.t?, y}. When
x and y are real, the point is called a real point : when a, 6, o are all real (or

can be made all real by division by a common factor), the line is called a real

line. The points x=a+{tit y y+ oi and xa-^i, y= y
- 8i are said to bo

conjugate ;
and so are the lines

Verify the following assertions : every real line contains infinitely many
pairs of conjugate imaginary points ;

an imaginary line in general contains

one and only one real point ;
an imaginary line cannot contain a pair of

conjugate imaginary points : and find the conditions (a) that the line

joining two given imaginary points should be real, and (6) that the point

of intersection of two imaginary lines should be real.

14. Prove the identities

(x+y + z} (x+ yo&amp;gt;3+ 20)3) (x +3/0)3+ za&amp;gt;

3)
= a?+f+ z3 - Zxyz,

(x+y+z)

15. Solve the equations

(a
3+ 1)

= 0, x*- 5ax?+ 5a2#+ (a
5 + 1)

= 0.

16. If/ (#)
= a + !# -f . . . + akxk

,
then

a) being any root of xn=\ (except #=1), and \n the greatest multiple of

contained in k. Find a similar formula for a +a +nx
n+ a

17. If (l+x)
n

n being a positive integer, then

^0-^2+^4 - =$n cos Jrarr, pl -Pz+Ps - ... =$n sin Inn.

18. Sum the series

x x* _#3_ xnl3

8!f-2i*51-5I 81 ^-8!
+ &amp;lt; &quot; +^^TT

n being a multiple of 3. (Math. Trip. 1899.)

It is a complex number such that
|tf|
=

l, then the point

x=(at+ b}l(t c) describes a circle as t varies, unless |c|
=

l, when it

describes a straight line.
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20. If t varies as in the last example then the point x=^{at+ (b/t)} in

general describes an ellipse whose foci are given by x2
=ab, and whose axes

are
|

a
|
+

1

6
1

and
|

a
\

-
\

b
\.

But if
|

a
\

=
\

b
\

then x describes the finite straight
line joining the points -*J(ab), J(ab).

21. Prove that if t is real and z=P- I + J(t*-p\ then, when 2
&amp;lt;1,

z is

represented by a point which lies on the circle %2+y2+x=0. Assuming that,

when $
2

&amp;gt;1, v (^-*2
) denotes the positive square root of t*-t2

,
discuss the

motion of the point which represents z&amp;gt;

as t diminishes from a large positive
value to a large negative value. (Math. Trip. 1912.)

22. The coefficients of the transformation z=(aZ+fy/(cZ+d) are subject
to the condition ad bc=\. Show that, if c=4=0, there are two fixed points

a, /3, i.e. points unaltered by the transformation, except when (a+ d)
2
=4, when

there is only one fixed point a ; and that in these two cases the transforma

tion may be expressed in the forms

0--a_ 7,^:
-a J_ 1

*-/3 ^-/3 z-a~Z-a+

Show further that, if c= 0, there will be one fixed point a unless ad,
and that in these two cases the transformation may be expressed in the

forms

\ z=Z+K.

Finally, if a, 6, c, d are further restricted to positive integral values (in

cluding zero), show that the only transformations with less than two fixed

points are of the forms (Ifz)
= (1/Z)+A ,

z=Z+K. (Math. Trip. 1911.)

- 23. Prove that the relation z= (l+Zi}l(Z+i) transforms the part of the

axis of x between the points z=\ and z=-l into a semicircle passing

through the points Z= 1 and Z= 1. Find all the figures that can be obtained

from the originally selected part of the axis of x by successive applications of

the transformation. (Math. Trip. 1912.)

24. If z=2Z+Z2 then the circle \Z\ = l corresponds to a cardioid in the

plane of z.

25. Discuss the transformation z=^{Z+(l/Z)}, showing in particular

that to the circles JT2+ F2=a2
correspond the confocal ellipses

&quot;26. If (z+ l)
2= 4/Z then the unit circle in the z-plane corresponds to the

parabola ^cos2
|0= l in the ^-plane, and the inside of the circle to the

outside of the parabola.

27. Show that, by means of the transformation z={(Z ci)l(Z+ci)}
2
,

the upper half of the 2-plane may be made to correspond to the interior of

a certain semicircle in the Z-plane.
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28. If z=Z2
-l, then as z describes the circle \z\

=
&amp;lt;,

the two corre

sponding positions of Z each describe the Cassinian oval p 1p2
=

,
where

pi, p2 are the distances of Z from the points -1, 1. Trace the ovals for

different values of K.

29. Consider the relation az2+ ZhzZ+ bZ2+ 2gz+ 2/Z+ c= 0. Show that

there are two values of Z for which the corresponding values of z are equal,

and vice versa. We call these the branch points in the Z and ^-planes re

spectively. Show that, if z describes an ellipse whose foci are the branch

points, then so does Z.

[We can, without loss of generality, take the given relation in the form

the reader should satisfy himself that this is the case. The branch points in

either plane are cosec o&amp;gt; and - cosec o&amp;gt;. An ellipse of the form specified is

given by

\z+ cosec o&amp;gt;

|

-|-
1

2 - cosec G&amp;gt;

\

=
C,

where C is a constant. This is equivalent (Ex. 9) to

z+ ^(22 _ cosec2 w) |

+
|

z _^2 _ CQsec2 M ) |

=

Express this in terms of
Z.&quot;]

30 If z=aZ n+ bZn,
where m, n are positive integers and a, b real, then

as Z describes the unit circle, z describes a hypo- or epi-cycloid.

31. Show that the transformation

_
cZ$ -(a di)

where a, 6, c, d are real and a2 +dz+ bc&amp;gt; 0, and ZQ denotes the conjugate of

Z, is equivalent to an inversion with respect to the circle

c (#2 +y2)
_ %ax -2dy-b=0.

What is the geometrical interpretation of the transformation when

32. The transformation

where c is rational and &amp;lt; c &amp;lt; 1, transforms the circle
|

z
\

= I into the boundary
of a circular lune of angle ir/c.



CHAPTER IV

LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE

50. Functions of a positive integral variable. In

Chapter II we discussed the notion of a function of a real

variable x, and illustrated the discussion by a large number of

examples of such functions. And the reader will remember that

there was one important particular with regard to which the

functions which we took as illustrations differed very widely.

Some were defined for all values of x, some for rational values

only, some for integral values only, and so on.

Consider, for example, the following functions : (i) x, (ii) *Jx, (iii) the

denominator of x, (iv) the square root of the product of the numerator and

the denominator of #, (v) the largest prime factor of #, (vi) the product of

fjx and the largest prime factor of x, (vii) the #th prime number, (viii) the

height measured in inches of convict x in Dartmoor prison.

Then the aggregates of values of x for which these functions are denned

or, as we may say, the fields of definition of the functions, consist of (i) all

values of #, (ii) all positive values of x, (iii) all rational values of x, (iv) all

positive rational values of x, (v) all integral values of #, (vi), (vii) all positive

integral values of #, (viii) a certain number of positive integral values of #,

viz., 1, 2, ..., N) where N is the total number of convicts at Dartmoor at a

given moment of time*,

Now let us consider a function, such as (vii) above, which is

defined for all positive integral values of x and no others. This

* In the last case N depends on the time, and convict x, where x has a definite

value, is a different individual at different moments of time. Thus if we take

different moments of time into consideration we have a simple example of a

function y =F (x, t) of two variables, defined for a certain range of values of t, viz.

from the time of the establishment of Dartmoor prison to the time of its abandon

ment, and for a certain number of positive integral values of x, this number

varying with t.
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function may be regarded from two slightly different points of

view. We may consider it, as has so far been our custom, as a

function of the real variable x defined for some only of the values

of x, viz. positive integral values, and say that for all other values

of x the definition fails. Or we may leave values of x other

than positive integral values entirely out of account, and regard

our function as a function of the positive integral variable n,

whose values are the positive integers

1,2,3,4,....
In this case we may write

y = &amp;lt;/&amp;gt; (n)

and regard y now as a function of n defined for all values of n.

It is obvious that any function of x defined for all values of x

gives rise to a function of n defined for all values of n. Thus from

the function y x^- we deduce the function y = nz

by merely

omitting from consideration all values of x other than positive

integers, and the corresponding values of y. On the other hand

from any function of n we can deduce any number of functions

of x by merely assigning values to y, corresponding to values of x

other than positive integral values, in any way we please.

51. Interpolation. The problem of determining a function of x which

shall assume, for all positive integral values of x, values agreeing with those

of a given function of %, is of extreme importance in higher mathematics.

It is called the problem of functional interpolation.

Were the problem however merely that of finding some function of x to

fulfil the condition stated, it would of course present no difficulty whatever.

We could, as explained above, simply fill in the missing values as we pleased :

we might indeed simply regard the given values of the function of n as all

the values of the function of x and say that the definition of the latter

function failed for all other values of x. But such purely theoretical solutions

are obviously not what is usually wanted. What is usually wanted is some

formula involving x (of as simple a kind as possible) which assumes the given

values for #= 1, 2, ....

In some cases, especially when the function of n is itself defined by a

formula, there is an obvious solution. If for example y= &amp;lt;$&amp;gt;
(n\ where

(f) (n)

is a function of n, such as n2 or cos nir, which would have a meaning even

were n not a positive integer, we naturally take our function of x to be

y=*&amp;lt;t&amp;gt;(x).
But even in this very simple case it is easy to write down other

almost equally obvious solutions of the problem. For example

y &amp;lt;j&amp;gt; (x} + sin xir

assumes the value $ (n} for x= n, since sin ?i7r = 0,
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In other cases (n) may be defined by a formula, such as
( l)

n
, which

ceases to define for some values of x (as here in the case of fractional values

of x with even denominators, or irrational values). But it may be possible

to transform the formula in such a way that it does define for all values of

x. In this case, for example,

( !)
= cos nir,

if n is an integer, and the problem of interpolation is solved by the function

cos xn.

^T^\^- In other cases
&amp;lt;j&amp;gt;(x) may be defined for some values of x other than

jj^^ positive integers, but not for all. Thus from y=nn we are led to y_xx
.

This expression has a meaning for some only of the remaining values of x.

If for simplicity we confine ourselves to positive values of #, then x* has

a meaning for all rational values of #, in virtue of the definitions of

fractional powers adopted in elementary algebra, j)
But when x is irrational

x* has (so far as we are in a position to say at the present moment) no

meaning at all. Thus in this case the problem of interpolation at once

leads us to consider the question of extending our definitions in such a

way that of6 shall have a meaning even when x is irrational. We shall see

later on how the desired extension may be effected.

Again, consider the case in which

In this case there is no obvious formula in x which reduces to n ! for x=n,
as x ! means nothing for values of x other than the positive integers. This

is a case in which attempts to solve the problem of interpolation have led to

important advances in mathematics. For mathematicians have succeeded

in discovering a function (the Gamma-function) which possesses the desired

property and many other interesting and important properties besides.

52. Finite and infinite classes. Before we proceed further

it is necessary to make a few remarks about certain ideas of an

abstract and logical nature which are of constant occurrence in

Pure Mathematics.

In the first place, the reader is probably familiar with the

notion of a class. It is unnecessary to discuss here any logical

difficulties which may be involved in the notion of a class :

roughly speaking we may say that a class is the aggregate or

collection of all the entities or objects which possess a certain

property, simple or complex. Thus we have the class of British

subjects, or members of Parliament, or positive integers, or real

numbers.
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Moreover, the reader has probably an idea of what is meant

by a finite or infinite class. Thus the class of British subjects
is a finite class: the aggregate of all British subjects, past,

present, and future, has a finite number n, though of course we
cannot tell at present the actual value of n. The class of present
British subjects, on the other hand, has a number n which could

be ascertained by counting, were the methods of the census

effective enough.

On the other hand the class of positive integers is not finite

but infinite. This may be expressed more precisely as follows.

If n is any positive integer, such as 1000, 1,000,000 or any number
we like to think of, then there are more than n positive integers.

Thus, if the number we think of is 1,000,000, there are obviously
at least 1,000,001 positive integers. Similarly the class of rational

numbers, or of real numbers, is infinite. It is convenient to

express this by saying that there are an infinite number of

positive integers, or rational numbers, or real numbers. But the

reader must be careful always to remember that by saying this

we mean simply that the class in question has not a finite number
of members such as 1000 or 1,000,000.

53. Properties possessed by a function of n for large
values of n. We may now return to the functions of n which we
were discussing in 50 51. They have many points of difference

from the functions of sc which we discussed in Chap. II. But there

is one fundamental characteristic which the two classes of func

tions have in common : the values of the variable for which they

are defined form an infinite class. It is thisjact which forms the

basis of all the considerations which follow and which, as we shall

see in TEe next chapter, apply, mutatis mutandis, to functions of x

as well.

Suppose that
&amp;lt;j)(n)

is any function of n, and that P is any

property which &amp;lt; (n) may or may not have, such as that of being
a positive integer or of being greater than 1. Consider, for each

of the values n 1, 2, 3, ..., whether &amp;lt;f&amp;gt;(n)

has the property P or

not. Then there are three possibilities:

(a) (f&amp;gt; (n) may have the property P for all values of n, or for

all values of n except a finite number N of such values :
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(b) $ (n) may have the property for no values of n, or only for

a finite number N of such values :

(c) neither (a) nor (6) may be true.

If (6) is true, the values of n for which &amp;lt;&amp;gt; (n) has the property

form a finite class. If (a) is true, the values of n for which $ (n)

has not the property form a finite class. In the third case neither

class is finite. Let us consider some particular cases.

(1) Let &amp;lt; (ft)
=

ft, and let P be the property of being a positive integer.

Then (n) has the property P for all values of n.

If on the other hand P denotes the property of being a positive integer

greater than or equal to 1000, then (p (n) has the property for all values of n

except a finite number of values of ft, viz. 1, 2, 3, ..., 999. In either of

these cases (a) is true.

(2) If (ft)
=

ft, and P is the property of being less than 1000, then (6) is

true.

(3) If (ft)
=

ft, and P is the property of being odd, then (c) is true. For

&amp;lt; (n) is odd if n is odd and even if n is even, and both the odd and the even

values of n form an infinite class.

Example. Consider, in each of the following cases, whether (a), (6), or

(c) is true :

(i) $ (n)
= n, P being the property of being a perfect square,

(ii) $(ft)=&amp;gt;n&amp;gt;
where pn denotes the ftth prime number, P being the

property of being odd,

&amp;lt; (n)=pn ,
P being the property of being even,

&amp;lt; (n)=pn ,
P being the property $ (/&)&amp;gt;,

$ (n)
= 1 -

(
-

1) (I/ft), P being the property &amp;lt;

()&amp;lt;!,

(n)
= l -

(
-

l)
n

(I/ft), P being the property &amp;lt;/&amp;gt;
(w)&amp;lt;2,

( vii) $ (ft)
= 1000 (1 + (

-
1)

1

} /ft,
P being the property $ (ft) &amp;lt; 1,

(viii) ^ (ft)
=

I/ft, P being the property $ (ft) &amp;lt; -001,

(ix) (ft)
=

(
-

l)
n
/rc, P being the property | &amp;lt;/&amp;gt;

(ft) |

&amp;lt; 001,

(x) $(ft)
= 10000/ft, or (-l)

n
10000/?i, P being either of the properties

&amp;lt;(ft)&amp;lt;-001
or

| $ (n) |

&amp;lt; -001,

(xi) (n)=(n- l)/(ft+ l), P being the property l-0(ft)&amp;lt;-0001.

54. Let us now suppose that
&amp;lt;/&amp;gt;

(n) and P are such that the

assertion (a) is true, i.e. that
&amp;lt;/&amp;gt; (ft) has the property P, if not for

all values of n, at any rate for all values of n except a finite

number N of such values. We may denote these exceptional

values by
flj, W2 , ..., Wjy.

VM P r AU- cyO^r
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There is of course no reason why these N values should be the

first N values 1, 2, ..., N, though, as the preceding examples
show, this is frequently the case in practice. But whether this

is so or not we know that &amp;lt; (n) has the property P if n &amp;gt; nN .

Thus the nth prime is odd if n &amp;gt; 2, n = 2 being the only exception
to the statement; and

l/n&amp;lt;
001 if n &amp;gt; 1000, the first 1000 values

of n being the exceptions ; and

1000 {1 + (- l)}/w&amp;lt;
1

if n &amp;gt; 2000, the exceptional values being 2, 4, 6, ..., 2000. That
is to say, in each of these cases the property is possessed for all

values of n from a definite value onwards.

We shall frequently express this by saying that $ (n) has the

property for large, or very large, or all sufficiently large values of n.

Thus when we say that &amp;lt; (n) has the property P (which will as a

rule be a property expressed by some relation of inequality) for
large values of n, what we mean is that we can determine some
definite number, ?? say, such that $ (n) has the property for all

values of n greater than or equal to n . This number n
,
in the

examples considered above, may be taken to be any number

greater than nN , the greatest of the exceptional numbers : it is

most natural to take it to be nN +l.

Thus we may say that all large primes are odd
, or that l/n is

less than 001 for large values of n . And the reader must make
himself familiar with the use of the word large in statements of

this kind. Large is in fact a word which, standing by itself, has
no more absolute meaning in mathematics than in the language
of common life. It is a truism that in common life a number
which is large in one connection is small in another

;
6 goals is a

large score in a football match, but 6 runs is not a large score in a
cricket match; and 400 runs is a large score, but 400 is not
a large income : and so of course in mathematics large generally
means large enough, and what is large enough for one purpose
may not be large enough for another.

We know now what is meant by the assertion (n) has the

property P for large values of n . It is with assertions of this

kind that we shall be concerned throughout this chapter.
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55. The phrase n tends to infinity . There is a some

what different way of looking at the matter which it is natural to

adopt. Suppose that n assumes successively the values 1, 2, 3, ....

The word successively naturally suggests succession in time, and

we may suppose n, if we like, to assume these values at successive

moments of time (e.g. at the beginnings of successive seconds).

Then as the seconds pass n gets larger and larger and there is

no limit to the extent of its increase. However large a number

we may think of (e.g. 2147483647), a time will come when n has

become larger than this number.

It is convenient to have a short phrase to express this unending

growth of n, and we shall say that n tends to infinity, or n -&amp;gt;- oo
,

this last symbol being usually employed as an abbreviation for

infinity . The phrase tends to like the word successively

naturally suggests the idea of change in time, and it is convenient

to think of the variation of n as accomplished in time in the

manner described above. This however is a mere matter of con

venience. The variable n is a purely logical entity which has in

itself nothing to do with time.

The reader cannot too strongly impress upon himself that

when we say that n tends to oo
J

we mean simply that n is

supposed to assume a series of values which increase continually

and without limit, There is no number infinity &amp;gt;i such an

equation as

n oo

is as it stands absolutely meaningless : n cannot be equal to oo
,

because ;

equal to oo means nothing. So far in fact the symbol

oo means nothing at all except in the one phrase tends to oo
,

the meaning of which we have explained above. Later on we

shall learn how to attach a meaning to other phrases involving

the symbol oo
,
bub the reader will always have to bear in mind

(1) that oo by itself means nothing, although phrases con

taining it sometimes mean something,

(2) that in every case in which a phrase containing the

symbol oo means something it will do so simply because we have

previously attached a meaning to this particular phrase by means

of a special definition.
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Now it is clear that if $ (n) has the property P for large values

of n, and if n tends to oo
,
in the sense which we have just

explained, then n will ultimately assume values large enough to

ensure that $(n) has the property P. And so another way of

putting the question what properties has
&amp;lt;f&amp;gt;(n)

for sufficiently

large values of n ? is how does $ (n) behave as n tends to oo ?

56. The behaviour of a function of n as n tends to

infinity. We shall now proceed, in the light of the remarks

made in the preceding sections, to consider the meaning of some

kinds of statements which are perpetually occurring in higher
mathematics. Let us consider, for example, the two following

&amp;gt;

statements : (a) I/n is small for large values of n, (b) 1 (I/n) is

nearly equal to I for large values of n. Obvious as they may
seem, there is a good deal in them which will repay the reader s

attention. Let us take (a) first, as being slightly the simpler.

We have already considered the statement I/n is less than 01

for large values of n . This, we saw, means that the inequality
I/n &amp;lt; 01 is true for all values of n greater than some definite

value, in fact greater than 100. Similarly it is true that I/n is

less than 0001 for large values of n : in fact l/n &amp;lt; 0001 if

n &amp;gt; 10000. And instead of 01 or 0001 we might take 000001 or

00000001, or indeed any positive number we like.

It is obviously convenient to have some way of expressing the

fact that any such statement as I/n is less than 01 for large

values of n is true, when we substitute for 01 any smaller

number, such as 0001 or 000001 or any other number we care

to choose. And clearly we can do this by saying that however

small 8 may be (provided of course it is positive), then
I/n&amp;lt;8 for

sufficiently large values of n . That this is true is obvious. For

I/n&amp;lt;
8 if n&amp;gt; 1/8, so that our sufficiently large values of n need

j

only all be greater than 1/8. The assertion is however a complex j

one, in that it really stands for the whole class of assertions which

we obtain by giving to 8 special values such as 01. And of course

the smaller 8 is, and the larger 1/8, the larger must be the least of

the sufficiently large values of n : values which are sufficiently

large when 8 has one value are inadequate when it has a smaller.

The last statement italicised is what is really meant by the

statement (a), that I/ft is small when n is large. Similarly

H. 8
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(b) really means &quot;if &amp;lt;/&amp;gt;(ii)

= l-(l/n), then the statement !-&amp;lt;
(?i) &amp;lt; 8

for sufficiently large values of n is true whatever positive value

(such as *01 or 0001) we attribute to 8 &quot;. That the statement (b)

is true is obvious from the fact that 1 &amp;lt; (n) = l/n.

There is another way in which it is common to state the facts

expressed by the assertions (a) and (b). This is suggested at once

by 55. Instead of saying l/n is small for large values of n we

say l/n tends to as n tends to oo . Similarly we say that

1 (l/n) tends to 1 as n tends to oo : and these statements are

to be regarded as precisely equivalent to (a) and (b). Thus the

statements

l/n is small when n is large ,

l/n tends to as n tends to oo
,

are equivalent to one another and to the more formal statement

if 8 is any positive number, however small, then l/n &amp;lt; B

for sufficiently large values of n
,

or to the still more formal statement

if 8 is any positive number, however small, then we can

find a number nQ such that
l/n&amp;lt;8

for all values of n greater

than or equal to n .

The number ?i which occurs in the last statement is of course

a function of 8. We shall sometimes emphasize this fact by

writing ?i in the form nQ (8).

The reader should imagine himself confronted by an opponent who

questions the truth of the statement. He would name a series of numbers

growing smaller and smaller. He might begin with -001. The reader would

reply that
l/?i&amp;lt;

001 as soon as 72-&amp;gt;1000. The opponent would be bound to

admit this, but would try again with some smaller number, such as 0000001.

The reader would reply that
l/n&amp;lt;

-0000001 as soon as n&amp;gt; 10000000: and so

on. In this simple case it is evident that the reader would always have the

better of the argument.

We shall now introduce yet another way of expressing this

property of the function l/n.~ We shall say that the limit of l/n

as n tends to oo is ,
a statement which we may express symboli

cally in the form

lim - = 0,
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or simply lim (l/n)
= 0. We shall also sometimes write

as n -*- oo
, which may be read l/n tends to as n tends to oo

;
or

simply l/n
-*

. In the same way we -shall write

lim (l-iW, lim M --W,
^oo \ n] \ n]

or l-(l/n)-^l.

57. Now let us consider a different example : let
&amp;lt;j)(n)

ri*.

Then n* is large when n is large . This statement is equivalent

to the more formal statements

if A is any positive number, however large, then n2
&amp;gt; A

for sufficiently large values of n
,

we can find a number n (A) such that n2
&amp;gt; A for all values

of n greater than or equal to n Q (A) .

And it is natural in this case to say that n* tends to oo as n

tends to oo
,
or ?i

2 tends to oo with n
,
and to write

Finally consider the function
&amp;lt;(rc)

= ?i
2
. In this case

&amp;lt;f&amp;gt;(n)

is large, but negative, when n is large, and we naturally say that
*

ri* tends to oo as n tends to oo and write

_ W2 -^ _ 00 .

And the use of the symbol oo in this sense suggests that it

will sometimes be convenient to write ?i
2 + oo for n2 -* oo and

generally to use + oo instead of oo
,
in order to secure greater

uniformity of notation.

But we must once more repeat that in all these statements

the symbols oo
, + oo

,
oo mean nothing whatever by themselves,

and only acquire a meaning when they occur in certain special

connectipns in virtue of the explanations which we have just

given.
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58. Definition of a limit. After the discussion which

precedes the reader should be in a position to appreciate the

general notion of a limit. Roughly we may say that &amp;lt; (n) tends

to a limit I as n tends to oo if &amp;lt;/&amp;gt; (n) is nearly equal to I when n is

large. But although the meaning of this statement should be
clear enough after the preceding explanations, it is not, as it

stands, precise enough to serve as a strict mathematical definition.

Ilt

is, in fact, equivalent to a whole class of statements of the

type for sufficiently large values of n,
&amp;lt;f&amp;gt;(n) differsfrom I by less

than 8 . This statement has to be true for 8 = 01 or *0001 or any

positive number ;
and for any such value of 8 it has to be true for

any value of n. after a certain definite value n (8), though the

smaller 8 is the larger, as a rule, will be this value n (8).

We accordingly frame the following formal definition :

DEFINITION I. The function &amp;lt;f&amp;gt; (n) is said to tend to the limit

I as n tends to co
, if, however small be the positive number 8,

(f&amp;gt; (n) differs from I by less than 8 for sufficiently large values of n ;

that is to say if, however small be the positive number 8, we can

determine a number ?? (8) corresponding to 8, such that
(f&amp;gt; (n) differs

from I by less than 8 for all values ofn greater than or equal to nQ (8).

It is usual to denote the difference between
c/&amp;gt; (n) and I, taken

positively, by |
&amp;lt;/&amp;gt; (n) I . It is equal to

&amp;lt;f&amp;gt;
(n) I or to I

&amp;lt;f&amp;gt; (n),

whichever is positive, and agrees with the definition of the

modulus of
(/&amp;gt;

(n)
-

I, as given in Chap. Ill, though at present
we are only considering real values, positive or negative.

With this notation the definition may be stated more shortly

as follows : if, given any positive number, 8, however small, we

can find n (8) so that
\ (f&amp;gt; (n) I

\

&amp;lt; 8 when n j

f w (8), then we say

that
c/&amp;gt;

(n) tends to the limit I as n tends to oo
, and write

lim
&amp;lt;/&amp;gt;

(n)
= I .

n-*-&amp;lt;x&amp;gt;

Sometimes we may omit the *?&-*&amp;lt;
;
and sometimes it is convenient, for

brevity, to write $ (ri)-*-l.

The reader will find it instructive to work out, in a few simple cases, the

explicit expression of n as a function of d. Thus if (x)
= ljn then =

0, and

the condition reduces to
l/n&amp;lt;d

for n&amp;gt;nQt which is satisfied if w =l+[l/8J*.
There is one and only one case in which the same n will do for all values of d.

* Here and henceforward we shall use [#] in the sense of Chap. II, i.e. as the

greatest integer not greater than x.

&amp;gt;
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If, from a certain value JV of n onwards, &amp;lt; (n) is constant, say equal to C, then

it is evident that $ (n) (7=0 for n^N, so that the inequality \&amp;lt;f)(n)-C\ &amp;lt;8

is satisfied for n&amp;gt;.N and all positive values of d. And if
| &amp;lt;f)(n) l\ &amp;lt;d for

n&amp;gt;.N and all positive values of S, then it is evident that &amp;lt; (n)=l when n
&amp;gt;xV,

so that $ (T&) is constant for all such values of n.

59. The definition of a limit may be illustrated geometrically

as follows. The graph of &amp;lt; (?i) consists of a number of points

corresponding to the values n = I, 2, 3, ....

Draw the line y = I, and the parallel lines y I 8, y=
at distance 8 from it. Then

Km
(j&amp;gt; (n)

=
I,

y=l-8

Fig. 27.

if, when once these lines have been drawn, no matter how close

they may be together, we can always draw a line x = n0t as in the

figure, in such a way that the point of the graph on this line, and

all points to the right of it, lie between them. We shall find

this geometrical way of looking at our definition particularly

useful when we come to deal with functions defined for all values

of a real variable and not merely for positive integral values.

60. So much for functions of n which tend to a limit as n

tends to oo . .JVe must now frame corresponding definitions for

functions which, iike the functions w2 or ?i
2
,
tend to positive or

negative infinity. The reader should by now find no difficulty in

appreciating the point of

DEFINITION II. The function $(n) is said to tend to + oo

{positive infinity) ivith n, if, when any number A, however large,

is assigned, we can determine n (A) so that
&amp;lt;p (n) &amp;gt; A when n ^ n Q (A);
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that is to say if, however large A may be,
&amp;lt;/&amp;gt; (ri) &amp;gt; A for sufficiently

large values of n.

Another, less precise, form of statement is if we can make

&amp;lt;/&amp;gt; (n) as large as we please by sufficiently increasing n . This is

open to the objection that it obscures a fundamental point, viz.

thaT
&amp;lt;/&amp;gt;

(n) must be greater than A for all values of n such that

n = n (A), and not merely for some such values. But there is no

harm in using this form of expression if we are clear what it

means.

When
&amp;lt;f&amp;gt; (n) tends to + oo we write

(/&amp;gt; (n)
-* + oo .

We may leave it to the reader to frame the corresponding
definition for functions which tend to negative infinity.

61. Some points concerning the definitions. The reader

should be careful to observe the following points.

(1) We may obviously alter the values of $(ft) for any
finite number of values of n, in any way we please, without in

the least affecting the behaviour of $ (n) as n tends to oo . For

example l/n tends to as n tends to oo . We may deduce any
number of new functions from l/n by altering a finite number of

its values. For instance we may consider the function
&amp;lt;/&amp;gt;

(n) which

is equal to 3 for n = l, 2, 7, 11, 101, 107, 109, 237 and equal to

l/n for all other values of n. For this function, just as for the

original function l/n, lim $ (n)
= 0. Similarly, for the function

&amp;lt;/&amp;gt;
(n) which is equal to 3 if n = 1, 2, 7, 11, 101, 107, 109, 237, and

to ft
2
otherwise, it is true that

c/&amp;gt; (n)
-* + oo .

(2) On the other hand we cannot as a rule alter an injutite

number of the values of
&amp;lt;/&amp;gt;

(n) without affecting fundamentally its

behaviour as n tends to oo . If for example we altered the function

l/n by changing its value to 1 whenever n is a multiple of 100,

it would no longer be true that lim &amp;lt; (n)
= 0. So long as a finite

number of values only were affected we could always choose the

number ?? of the definition so as to be greater than the greatest

of the values of n for which
&amp;lt;/&amp;gt;

(n) was altered. In the examples

above, for instance, we could always take n &amp;gt; 237, and indeed we

should be compelled to do so as soon as our imaginary opponent
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of 56 had assigned a value of S as small as 3 (in the first

example) or a value of A as great as 3 (in the second). But

now however large n Q may be there will be greater values of n for

which
&amp;lt;j&amp;gt; (n) has been altered.

(3) In applying the test of Definition I it is of course

absolutely essential that we should have
| &amp;lt;/&amp;gt; (n) I &amp;lt; 8 not merely

when n = n but when n = nQ) i.e. for n and for all larger values

of n. It is obvious, for example, that, if
&amp;lt;/&amp;gt;

(n) is the function last

considered, then given S we can choose w so that
\(f&amp;gt;(n)\&amp;lt;8

when

n = n : we have only to choose a sufficiently large value of n

which is not a multiple of 100. But, when nQ is thus chosen, it

is not true that
&amp;lt;f&amp;gt; (n) \

&amp;lt; S when n ^ n : all the multiples of 100

which are greater than ?? are exceptions to this statement.

(4) If
&amp;lt;f&amp;gt; (n) is always greater than I, we can replace

\&amp;lt;f&amp;gt;(n) l\ by &amp;lt;j&amp;gt;(ri)

I. Thus the test whether I/n tends to the

limit as n tends to oo is simply whether
~L/n&amp;lt;8

when n = ^ .
-

If however
(/&amp;gt; (n)

=
( I)

n
/n, then I is again 0, but $(ri) l is some

times positive and sometimes negative. In such a case we must

state the condition in the form
| &amp;lt;/&amp;gt; (n) I

\

&amp;lt; 8, for example, in

this particular case, in the form
| $ (n) \

&amp;lt; 8.

(5) The limit I may itself be one of the actual values of

(f) (n).
Thus if

&amp;lt;/&amp;gt;
(n)

= for all values of n, it is obvious that

lim
(/&amp;gt; (n) 0. Again, if we had, in (2) and (3) above, altered

the value of the function, when n is a multiple of 100, to

instead of to 1, we should have obtained a function
&amp;lt;f&amp;gt;

(n) which

is equal to when n is a multiple of 100 and to I/n otherwise.

The limit of this function as n tends to x is still obviously zero. I

This limit is itself the value of the function for an infinite number

of values of n, viz. all multiples of 100.

On the other hand the limit itself need not (and in general will

not) be the value of the function for any value of n. This is .

sufficiently obvious in the case of &amp;lt; (n)
=

1/n. The limit is zero
;

but the function is never equal to zero for. any value of n.

The reader cannot impress these facts too strongly on his

mind. A limit is not a value of the function : it is something

quite distinct from these values, though it is defined by its relations
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to them and may possibly be equal to some of them. For the
functions

* = 0, 1,

the limit is equal to all the values of
&amp;lt;/&amp;gt; (n) : for

&amp;lt;fr(n)

=
l/n, (-l)/w, l + (l/w), 1 + {(-!)

it is not equal to any value of
&amp;lt;/&amp;gt; (w) : for

&amp;lt; (n) = (sin Jwr)/ra, 1 + {(sin J?wr)/7i}

(whose limits as w tends to oo are easily seen to be and 1, since
sin \n-7r is never numerically greater than 1) the limit is equal to
the value which

c/&amp;gt; (n) assumes for all even values of n, but the
values assumed for odd values of n are all different from the limit
and from one another.

(6) A function may be always numerically very large when
n is very large without tending either to + oo or to - oo . A
sufficient illustration of this is given by $ (n) = ( l)

n
n. A function

can only tend to + oo or to - oo if, after a certain value of n,
it maintains a constant sign.

Examples XXIII. Consider the behaviour of the following functions
of x as n tends to oo :

1. &amp;lt; (ri)=n
k
,
where k is a positive or negative integer or rational fraction.

If k is positive, then nk tends to + oo with n. If k is negative, then lim nk= 0.

If k= 0, then nk= 1 for all values of n. Hence lim nk= I .

The reader will find it instructive, even in so simple a case as this, to
write down a formal proof that the conditions of our definitions are satisfied.
Take for instance the case of &amp;gt;0. Let A be any assigned number, however
large. We wish to choose n so that nk

&amp;gt;& when n&amp;gt;n . We have in fact only
to take for n any number greater than #A. If e.g. &=4, then w4

&amp;gt; 10000 when
rc&amp;gt;ll, n*&amp;gt; 100000000 when ft

&amp;gt;

101, and so on.

2.
&amp;lt;fr(n)=pnt where pn is the nth prime number. If there were only

a finite number of primes then (n) would be defined only for a finite number
of values of n. There are however, as was first shown by Euclid, infinitely

many primes. Euclid s proof is as follows. If there are only a finite

number of primes, let them be 1, 2, 3, 5, 7, 11, ... N. Consider the number
1 + (1 .2.3.5.7.11 ... N}. This number is evidently not divisible by
any of 2, 3, 5, ... N

t
since the remainder when it is divided by any of

these numbers is 1. It is therefore not divisible by any prime save 1, and
is therefore itself prime, which is contrary to our hypothesis.

It is moreover obvious that
(n)&amp;gt;n

for all values of n (save n = I, 2, 3).
Hence (n)

-* -f oo .
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3. Let (ft) be the number of primes less than ft. Here again &amp;lt; (ft) --+ oo .

4. (ft)
=

[aft], where a is any positive number. Here

and so on
;
and

&amp;lt;f&amp;gt; (ft)
-* + o .

5. If (ft)
= 1000000/ft, then lim &amp;lt; (n) =0 : and if ^ (ri)

= ft/1000000, then

i/r (%)- -f oo . These conclusions are in no way affected by the fact that at first

&amp;lt;f&amp;gt; (ft) is much larger than ^ (ft), being in fact larger until ft= 1000000.

6. &amp;lt; (ft)
=

l/{ft
-

(
-

l)
n
},

ft - (
-
1), n{l-(- l)

n
}.

The first function tends

to 0, the second to + oo
,
the third does not tend either to a limit or to -f oo .

7.
&amp;lt;(ft)

=
(sinft#7r)/ft, where 6 is any real number. Here

\&amp;lt;$&amp;gt;(ri)\ &amp;lt;l/ft,

since sin nBir
|

&amp;lt;

1, and lim $ (ft)
= 0.

8.
(f) (ft)

= (sin ft#7r)/N/ft, (a cos
2 n6+ b sin2

nff)lnt
where a and 6 are any real

numbers.

9. $(ft)
= sinft#7r. If B is integral then

&amp;lt;(ft)

= for all values of ft, and

therefore lim $ (ft)
= 0.

Next let 8 be rational, e.^. 6=plq, where p and
&amp;lt;?

are positive integers. .

Let n= aq+ b where a is the quotient and b the remainder when n is divided

by q. Then sin (npirlq)
=

( l)
ap sin (bptrjg), Suppose, for example, p even

;

then, as n increases from to q 1, &amp;lt; (ft) takes the values

0, sin (jOTT/y), sin (2p7rlq\ ... sin {(y l^Tr/g).

When ft increases from
&amp;lt;?

to
2&amp;lt;?

- 1 these values are repeated ;
and so also

as ft goes from Zq to 3q 1, 3^ to 4^ 1, and so on. Thus the values of (ft)

form a perpetual cyclic repetition of a finite series of different values. It is

evident that when this is the case (ft) cannot tend to a limit, nor to + oo
,

nor to - oo
,
as n tends to infinity.

The case in which 6 is irrational is a little more difficult. It is discussed

in the next set of examples.

62. Oscillating Functions. DEFINITION. When
&amp;lt;f&amp;gt;

(n) does

not tend to a limit,, nor to + oo
, nor to oo

,
as n tends to oo

,
we

say that
&amp;lt;/&amp;gt; (n) oscillates as n tends to oc .

A function
(f&amp;gt;(n) certainly oscillates if its values form, as

in the case considered in the last example above, a continual

repetition of a cycle of values. But of course it may oscillate

without possessing this peculiarity. Oscillation is denned in a

purely negative manner : a function oscillates when it does not do

certain other things.
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The simplest example of an oscillatory function is given by

$(n) = (-!)&quot;,

which is equal to + 1 when n is even and to 1 when n is odd.

In this case the values recur cyclically. But consider

the values of which are

-1 + 1, l + (l/2), -l+(l/3), l + (l/4), -I + (1/5),....

When n is large every value is nearly equal to +1 or 1, and

obviously &amp;lt; (n) does not tend to a limit or to + oo or to co
,
and

therefore it oscillates: but the values do not recur. It is to be

observed that in this case every value of
&amp;lt;/&amp;gt;

(n) is numerically less

than or equal to 3/2. Similarly

(w)
= (-!) 100 + (1000/w)

oscillates. When n is large, every value is nearly equal to 100

or to 100. The numerically greatest value is 900 (for n = l).

But now consider &amp;lt; (n)
= (- l)

?l

n, the values of which are - 1, 2,

3, 4, 5, .... This function oscillates, for it does not tend to a

limit, nor to + oo
,
nor to oo . And in this case we cannot assign

any limit beyond which the numerical value of the terms does

not rise. The distinction between these two examples suggests a

further definition.

DEFINITION. If &amp;lt;f&amp;gt; (n) oscillates as n tends to oo
, then

&amp;lt;/&amp;gt;
(n) will

be said to oscillate finitely or infinitely according as it is or is not

possible to assign a number K such that all the values of $ (n) are

numerically less than K, i.e.
&amp;lt;f&amp;gt;(ri)\&amp;lt;

Kfor all values of n.

These definitions, as well as those of 58 and 60, are further

illustrated in the following examples.

Examples XXIV. Consider the behaviour as n tends to oo of the

following functions:

1. (_i), 5+ 3(-l) tt

, (1000000/-/0 + (-l)
n

,
1000000 (-!) + (Ijri).

2. (-l)
n
n, 1000000+ (-l)

n%.

3. 1000000-%, ( -l)
n

(1000000 -?t).

4. n {1 + (
-

l)
n
).

In this case the values of (n) are

0, 4, 0, 8, 0, 12, 0, 16, ....

The odd terras are all zero and the even terms tend to +00: &amp;lt; (n)

oscillates infinitely.



62] POSITIVE INTEGRAL VARIABLE 123

5. ft
2+ ( I)

n
2ft. The second term oscillates infinitely, but the first is

very much larger than the second when n is large. In fact &amp;lt; (ft)
&amp;gt;

ft
2 - 2ft and

ft
2 -2n=(ft-l) 2 -l is greater than any assigned value A if ft&amp;gt;l + /v/(A+ l).

Thus $ (ft)
-*

-f- oo . It should be observed that in this case $(2&+l) is

always less than &amp;lt; (2&), so that the function progresses to infinity by a con

tinual series of steps forwards and backwards. It does not however oscillate

according to our definition of the term.

7. sinft07r. We have already seen (Exs. xxm. 9) that
&amp;lt;(ft)

oscillates

finitely when 6 is rational, unless 6 is an integer, when &amp;lt; (ft)
=

0, &amp;lt; (%)- 0.

The case in which 6 is irrational is a little more difficult. But it is not

difficult to see that
&amp;lt;f&amp;gt;(n)

sSll oscillates finitely. We can without loss of

generality suppose 0&amp;lt;0&amp;lt;1. In the first place |(/&amp;gt;(ft)|&amp;lt;l.
Hence

&amp;lt;j&amp;gt;(ri)

must oscillate finitely or tend to a limit. We shall consider whether the

second alternative is really possible. Let us suppose that

lim sin ndir= I.

Then, however small 8 may be, we can choose ft so that sin ndrr lies between

1-8 and l+ d for all values of n greater than or equal to nQ . Hence

sin (ft+1) 07T-sinft#7r is numerically less than 28 for all such values of ft,

and so
|

sin07r cos (n+^dn \&amp;lt;8.

Hence cos (ft+ J) 6ir = cos ndir cos ^drr sin nQir sin B-rr

must be numerically less than 8j \

sin
-|

6ir
|. Similarly

cos (ft ^) 07r = cos ndrr cos | Bit + sin nOrr sin
-|

6ir

must be numerically less than 8/ \

sin \Bu \
\
and so each of cos nQ-rr cos \ BTT,

sin ft#7r sin #?r must be numerically less than
fi/ 1

sin #TT
|.

That is to say,

cos nO-rr cos % ^?r is very small if n is large, and this can only be the case

if cos ndn is very small. Similarly sin nQir must be very small, so that I

must be zero. But it is impossible that cos ndrr and sin nBir can both be

very small, as the sum of their squares is unity. Thus the hypothesis that

sinft07r tends to a limit I is impossible, and therefore sin ndir oscillates

as ft tends to oo.

The reader should consider with particular care the argument
cos nd-rr cos % BIT is very small, and this can only be the case if cos nQn

is very small 5

. Why, he may ask, should it not be the other factor cos$#ir

which is very small 5

? The answer is to be found, of course, in the meaning

of the phrase very^small as used in this connection. When we say (ft)

is very smalf for large values of ft, we mean that we can choose ft so that

&amp;lt;(?i)&quot;is numerically smaller than any assigned number, if n is sufficiently

large. Such an assertion is palpably absurd when made of a fixed number

such as cos#7r, which is not zero.

Prove similarly that cos ndir oscillates finitely, unless 6 is an even integer.

8. siiift#7r-h(lAO&amp;gt; siiift^7r+ l, sinft#7r+ ft, ( l)
n sin n6ir.

9. a cosft$7T + 6 sin ^$77, sin2 ft07r, a cos2 nQir + b sin2 n6n.



124 LIMITS OF FUNCTIONS OF A [iV

10. a+ bn + (-I}
n

11. n sin ndn. If n is integral, then
&amp;lt;p (n)=Q, (w) -*(). If is rational

but not integral, or irrational, then (ft) oscillates infinitely.

12. 7i (acos
2 ft#7r + 6sin2

ft$7r). In this case
&amp;lt;f)(n)

tends to -f-oo if a and

b are both positive, but to - GO if both are negative. Consider the special

cases in which a=0, 6&amp;gt;0,
or

a&amp;gt;0, 6=0, or a=0, 6= 0. If a and b have

opposite signs &amp;lt; (n) generally oscillates infinitely. Consider any excep
tional cases.

13. sin (ft
2
07r). If 6 is integral, then (ft)-^O. Otherwise

&amp;lt;f&amp;gt;(ri)
oscillates

finitely, as may be shown by arguments similar to though more complex
than those used in Exs. xxni. 9 and xxiv. 7*.

14. sin (n ! BIT). If & has a rational value pfq, then n ! B is certainly

integral for all values of n greater than or equal to q. Hence (n) -*-0. The
case in which 6 is irrational cannot be dealt with without the aid of considera

tions of a much more difficult character.

15. cos (n ! 0?r), a cos2 (n ! 6ir} + b sin2
(n ! 0?r), where 6 is rational.

16. an - [6ft], (
-

l)
n

(&amp;lt;m

-
[&&amp;gt;*])

17. [v/?0, (
-

1)
B [vH V^ -

[Jri\.

18. 2%e smallest prime factor of n. When n is a prime, (n) n. When
ft is even, (?i)

= 2. Thus (ft) oscillates infinitely.

19. The largest prime factor of n.

20. The number of days in the year n A.D.

Examples XXV. 1. If &amp;lt;(^ + ao and
^(n)&amp;gt;0(?i) for all values of

n, then ^ (n)
-* + oo .

2. If (ra)-*-0, and
| ^ (w) |

&amp;lt;

| (w) |

for all values of ?i, then ^ (i)-*0.

3. If lim (n) \

=
0, then lim (w)

= 0.

4. If (ft) tends to a limit or oscillates finitely, and | A/A (11) \

&amp;lt;

| (?i) |

when

n&amp;gt;,nQ,
then ^(^) tends to a limit or oscillates finitely.

5. If (H) tends to + GO
,
or to co

,
or oscillates infinitely, and

f() !!.*&amp;lt;*) I

when %^w ,
then \^ (%) tends to + co or to -co or oscillates infinitely.

6.
* If (w) oscillates and, however great be n

Ql
we can find values of n

greater than n for which
\//- (ft) &amp;gt; (ft), and values of n greater than nQ for

which -^ (ft) &amp;lt; (ft), then ^ (ft) oscillates . Is this true ? If not give an

example to the contrary.

7. If (n)-*-l as ft-*- co
,
then also (ft +&amp;gt;)-, p being any fixed integer.

[This follows at once from the definition. Similarly we see that if (ft) tends

to + co or - co or oscillates so also does (n+p).~\

8. The same conclusions hold (except in the case of oscillation) ifp varies

with n but is always numerically less than a fixed positive integer ^V
j
or if p

varies with n in any way, so long as it is always positive.

* See Bromwich s Infinite Series, p. 485. % i^ \. t

h
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9. Determine the least value of n Q for which it is true that

(a) w2+ 2ra&amp;gt;999999 (ra&amp;gt;w ), (6) n2+ 27i&amp;gt; 1000000
(w&amp;gt;w ).

10. Determine the least value of nQ for which it is true that

(a) w + (-l)
n

&amp;gt;1000 (rc&amp;gt;Ho), (6) w + (-l)&amp;gt; 1000000 (ra&amp;gt;w ).

11. Determine the least value of nQ for which it is true that

(a)
2
+2&amp;gt;A (n&amp;gt;wo), (6) %+ (-l)

n
&amp;gt;A

(ra&amp;gt;w ),

A being any positive number.

[(a) 72 =[V/(A+ 1)]: (6) =1 + [A] or 2+ [A], according as [A] is odd or

even, i.e. rc =l + [A] + |{l + (-l)
[A]

}.]

12. Determine the least value of nQ such that

(a) ^2+ l)&amp;lt;-0001, (6) (l/^) + {(-l)y?i
2
}&amp;lt;-00001,

when n^nQ . [Let us take the latter case. In the first place

and it is easy to see that the least value of %
,
such that (n+l)/n

2
&amp;lt; -000001

when w&amp;gt;io,
is 1000002. But the inequality given is satisfied by = 1000001,

and this is the value of w required.]

63. Some general theorems with regard to limits.

A. The behaviour of the sum of two functions whose
behaviour is known.

THEOREM I. If $ (ri) and ^ (n) tend to limits a, b, then

(f&amp;gt; (n) + ^r (n) tends to the limit a + b.

This is almost obvious*. The argument which the reader will

* There is a certain ambiguity in this phrase which the reader will do well to

notice. When one says such and such a theorem is almost obvious one may
mean one or other of two things. One may mean it is difficult to doubt the truth

of the theorem ,
the theorem is such as common-sense instinctively accepts , as

it accepts, for example, the truth of the propositions 2 + 2= 4 or the base-angles

of an isosceles triangle are equal . That a theorem is obvious in this sense does

not prove that it is true, since the most confident of the intuitive judgments of

common sense are often found to be mistaken; and even if the theorem is true,

the fact that it is also obvious is no reason for not proving it, if a proof can be

found. The object of mathematics is to prove that certain premises imply certain

conclusions; and the fact that the conclusions may be as obvious as the premises

never detracts from the necessity, and often not even from the interest of the proof.

But sometimes (as for example here) we mean by this is almost obvious

something quite different from this. We mean a moment s reflection should not

only convince the reader of the truth of what is stated, but should also suggest to

him the general lines of a rigorous proof. And often, when a statement is

obvious in this sense, one may well omit the proof, not because the proof is in

any sense unnecessary, but because it is a waste of time and space to state in detail

what the reader can easily supply for himself.
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at once form in his mind is roughly this : when n is large, &amp;lt; (n) is

nearly equal to a and ty (n) to b, and therefore their sum is nearly

equal to a + b . It is well to state the argument quite formally,

however.

Let S be any assigned positive number (e.g. 001, 0000001, ...).

We require to show that a number n can be found such that

|(w) + f (n)-a-b &amp;lt;S .................. (1),

when n = n . Now by a proposition proved in
Chap.^III (more

generally indeed than we need here) the modulus of the sum of

two numbers is less than or equal to the sum of their moduli.

Thus

It follows that the desired condition will certainly be satisfied -if

n can be so chosen that

\$(n)-a\ + \1r(n)-b &amp;lt;S ............... (2),

when nn Q . But this is certainly the case. For since lim
&amp;lt;/&amp;gt;(n)

= a

we can, by the definition of a limit, find ?? x so that
j $ (n) a

\

&amp;lt; B

when n ^ n1} and this however small B may be. Nothing prevents

our taking 8 = S, so that
| &amp;lt;f&amp;gt;

(n) -a &amp;lt; JS when n^nlt Similarly

we can find n2 so that
| ty (n)

- b
\

&amp;lt; ^8 when n^n2 . Now take ?i

to be the greater of the two numbers ni} n 2 . Then &amp;lt; (n) a &amp;lt; JS

and
| ^]r (n) b

\

&amp;lt; ^B when n = n
,
and therefore (2) is satisfied and

the theorem is proved.

The argument may be concisely stated thus: since lim$(?i)= a and

lim
\//- (ft)

=
6, we can choose %, n2 so that

!$()- I &amp;lt;J* (*i), I *(*)-& I &amp;lt;J* (nnji
and then, if n is not less than either HI or n 2 , *

and therefore lim (^ (n) +^ (n}}
= a+b.

64. Results subsidiary to Theorem I. The reader should

have no difficulty in verifying the following subsidiary results.

1. If &amp;lt;/&amp;gt;
(n) tends to a limit, but ty (n) tends to + &amp;lt;x&amp;gt; or to oo

or oscillates finitely or infinitely, then
&amp;lt;/&amp;gt;

(n) + ty (n) behaves like

*&amp;lt;n&amp;gt;

2. // (/&amp;gt; (n)
-^ + oo

,
and ^ (n) -+ + oo or oscillates finitely,

then
&amp;lt;/&amp;gt;

(n) + -fy (n) -^ + GO .
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In this statement we may obviously change 4- oo into oo

throughout.

3. If &amp;lt;f&amp;gt; (n)
-* oo and ^ (n)

- oo
, then

&amp;lt;/&amp;gt;
(n) 4-^ (n) may

ter^a
1

either to a limit or to + oo or o oo or may oscillate either

finitely or infinitely.
*-&amp;gt; * *j &quot;^5 ejOA* ^vj (TKSU. *

-

These ^ve^possibilities are illustrated in order by (i) &amp;lt;(n)=?i, ^f(n}= n,

(ii) &amp;lt;()=*, ^(n)-n, (iii) &amp;lt; (n)
=

n, +(n) = -n\ (iv) 0(w)- + (-l),

^ (n)=n, (v) (%)
= n2+ ( l)

n
n, ^ (w)

= - n2
. The reader should construct

j

additional examples of each case.

4. If &amp;lt;p (n)
-* 4- oo and ty (n) oscillates infinitely, then

&amp;lt; (n) + -/r (n) may tend to + oo or oscillate infinitely, but cannot

tend to a limit, or to oo
, or oscillate finitely.

For \^ (n)
= {$ (?i) +^ (n)}

-
(w) ; and, if (%) + ^r(w) behaved in any of the

three last ways, it would follow, from the previous results, that
\//&amp;gt; (n) -*- oo

,

which is not the case. As examples of the two cases which are possible,

consider (i) &amp;lt;t&amp;gt;(n)

= n\ ty(n)= (-\}
n
n, (ii) (j)(n)

=
n, ^-(n)= (-l)

nn2
. Here

again the signs of + oo and GO may be permuted throughout.

5. // &amp;lt; (n) and ty (n) both oscillate finitely, then
&amp;lt;f&amp;gt; (n) + ty (n)

must tend to a limit or oscillate finitely.

As examples take

(i) 4&amp;gt;M
=(-m *()= (- 1)&quot;

+1
, (ii) *(*) =*()= (-!).

6. If (j) (n) oscillates finitely, and ^r (n) infinitely, then

&amp;lt;t&amp;gt;(n)
+ i{r (n) oscillates infinitely.

For (n) is in absolute value always less than a certain constant, say K.

On the other hand ^ (n), since it oscillates infinitely, must assume values

numerically greater than any assignable number (e.g. 10/T, 100^, ...). Hence

(f)(n)+^(n) must assume values numerically greater than any assignable
number (e.g. 9^, 99#, ...). Hence &amp;lt; (n)+^(ri) must either tend to +00 or

- oo or oscillate infinitely. But if it tended to + oo then

would also tend to +00 ,
in virtue of the preceding results. Thus (n)+^ (n}

cannot tend to +00, nor, for similar reasons, to -co: hence it oscillates

infinitely.

7. If both &amp;lt; (n) and ^r (n) oscillate infinitely, then (j)(n) + ^ (n)

may tend to a limit, or to + oo
,
or to oo

, or oscillate either finitely

or infinitely.

Suppose, for instance, that (%)
=

( l)
n
n, while \js(n) is in turn each of

the functions (-l)
+ 1

w, {l + (-l)
w + 1

} n, -{l + (-l)&quot;}n, (- l)
n + 1

(w+l),

( l)
n n. We thus obtain examples of all five possibilities.
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The results 1 7 cover all the cases which are really distinct.

Before passing on to consider the product of two functions, we

may point out that the result of Theorem I may be immediately
extended to the sum of three or more functions which tend to

limits as n -* co .

65. B. The behaviour of the product of two functions

whose behaviour is known. We can now prove a similar

set of theorems concerning the product of two functions. The

principal result is the following.

THEOREM II. If Km &amp;lt; (n) = a and Km ty (n)
=

b, then

Km
(j) (n) &quot;v/r (n)

= ab.

Let
(f&amp;gt; (n)

= +
&amp;lt;/&amp;gt;! (n), ^(n) = b + ^l (n\

so that Km fa (n)
= and Km ^ (n)

= 0. Then

$ (n) ty (n)
= ab + a^ (n) + bfa (n) + fa (n) fa (n).

Hence the numerical value of the difference
&amp;lt;/&amp;gt; (n) ty (n) ab is

certainly not greater than the sum of the numerical values of

afa (n), bfa (n)} fa (n) fa (n). From this it follows that

Km
{ $ O) ^ (n)

-
ab}

=
0,

which proves the theorem.

The following is a strictly formal proof. We have

!&amp;lt;()* (*)
- ab

I
=

I

a^ (*) i

+
I

b(
t&amp;gt;i ()! +

! & (*0 1 1 *i (
%

) I

Assuming that neither a nor b is zero, we may choose nQ so that

when n &amp;gt;w . Then

which is certainly less than 5 if 8 &amp;lt; % \

a \b\. That is to say we can choose

HQ so that
| (n) ^(n) ab\&amp;lt;8

when n&amp;gt;n
,
and so the theorem follows. The

reader should supply a proof for the case in which at least one of a and b is

zero.

We need hardly point out that this theorem, like Theorem I,

may be immediately extended to the product of any number of

functions of n. There is also a series of subsidiary theorems

concerning products analogous to those stated in 64 for sums.

We must distinguish now six different ways in which
&amp;lt;/&amp;gt; (n) may

behave as n tends to oo . It may (1) tend to a limit other than
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zero, (2) tend to zero, (3a) tend to + oo
, (36) tend to - oc

,

(4) oscillate finitely, (5) oscillate infinitely. It is not necessary, as

a rule, to take account separately of (3a) and (36), as the results

for one case may be deduced from those for the other by a change
of sign.

To state these subsidiary theorems at length would occupy, more space
than we can afford. We select the two which follow as examples, leaving the

verification of them to the reader. He will find it an instructive exercise to I

formulate some of the remaining theorems himself.

(i) If (n) -a- + QO and ^ (ri) oscillates finitely, then &amp;lt;

(ii) ^ (ri) must tend
to + oo or to oo or oscillate infinitely.

Examples of these three possibilities may be obtained by taking (ri) to

be n and \^ (ri) to be one of the three functions 2 + (
-

l)
n

,
2 -

(
-

l)
n

, (
-

l)
w

.

(ii) If &amp;lt;f&amp;gt;(ii)

and ty(ri) oscillate finitely, then
&amp;lt;f&amp;gt; (ri) ty(ri) must tend to a

limit (which may be zero] or oscillate finitely.

For examples, take (a] $ (ri)
=+ (n)

=
(
-
1), ^ 0(n)

= i + (_i)
V^(w) = l-(-l)n

,
and (c) 0(w)= cosi7i7r, ^(ri) = am$nir.

A particular case of Theorem II which is important is that
\

in which ty (n) is constant. The theorem then asserts simply
that lim

k&amp;lt;f) (n)
= kci if lim $ (n) = a. To this we may join the

subsidiary theorem that if
&amp;lt;f&amp;gt;(ri)-*-+ao

then k(f)(n)-++ao or

k
&amp;lt;f) (ri)

-*- - GO
, according as k is positive or negative, unless k = 0,

when of course &&amp;lt; (n)
= for all values of n and lim k$ (n) = 0.

And if $ (n) oscillates finitely or
infinitely, then so does

k&amp;lt;f&amp;gt; (n),

unless k = 0.

66. C. The behaviour of the difference or quotient of
two functions whose behaviour is known. There is, of

course, a similar set of theorems for the difference of two given
functions, which are obvious corollaries from what precedes. In
order to deal with the quotient

we begin with the following theorem.

THEOREM III. If lim (n) = a, and a is not zero, then

r 1 1
lim

-j-r-T-
= -

.

&amp;lt;t&amp;gt; (n) a

Let (n)
= a+ fa (n),

H.
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so that lim fa (n)
= 0. Then

J__l = | .() |

(n) a
|

a
\ j

a + fa (n) \

and it is plain, since lim fa (n) = 0, that we can choose n Q so that

this is smaller than any assigned number 8 when n = n .

From Theorems II and III we can at once deduce the principal

theorem for quotients, viz.

THEOREM IV. If lim
&amp;lt;f&amp;gt; (n) a and lim

-fy (n) b, and b is not

zero, then

The reader will again find it instructive to formulate, prove,

and illustrate by examples some of the subsidiary theorems

corresponding to Theorems III and IV.

67. THEOREM V.
IfR{&amp;lt;!&amp;gt; (n), ^ (n), % (n), ...} is any rational

function o/ &amp;lt;(??), ^r (n), %(^), ...
,
i.e. any function oftJteform

P
{&amp;lt;/&amp;gt; (n), + (n), X (n), . . . }/Q [&amp;lt;#&amp;gt; (n), + (n), x (n), ...},

where P and Q denote polynomials in
&amp;lt;f&amp;gt; (n), i|r (n), % (n), ...: and if

lim
&amp;lt;j) (n)

= a, lim
\|r (n)

=
b, lim % (n) c, ... ,

and Q(a, b, c, ...)=j=0;

then lim R
{&amp;lt;f&amp;gt; (ri), ^ (n), % (n), . .

.}
= R (a, b, c, . .

.).

For P is a sum of a finite number of terms of the type

where A is a constant and p, q, ... positive integers. This term,

by Theorem II (or rather by its obvious extension to the product

of any number of functions) tends to the limit fiapbq ..., and so P
tends to the limit P (a, b. c, ...), by the similar extension of

Theorem I. Similarly Q tends to Q (a, b, c, ...); and the result

then follows from Theorem IV.

68. The preceding general theorem may be applied to the

following very important particular problem : what is the behaviour

of the most general rational function of n, viz.

Q ^_~

as n tends to oc *
?

* We naturally suppose that neither a nor & is zero.
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In order to apply the theorem we transform S (n) by writing
it in the form

The function in curly brackets is of the form . JR
[&amp;lt;f&amp;gt; (n)} , where

0(n)=l/w, and therefore tends, as n tends to oo
,
to the limit

R (0) = a /b . Now m,*-*-*- if p &amp;lt; q ;
np-* = 1 and w ?-?-*- 1 if

p = q ;
and n*-?-*. + oo ifp &amp;gt; q. Hence, by Theorem II,

lim 8 (n)
=

(p &amp;lt; 5),

S (n)
- + oo

(p&amp;gt;q,
a /b positive),

S (n)
-*- co

(p&amp;gt; q, do/bo negative).

Examples XXVI. 1. What is the behaviour of the functions

n+l
as n-*~x&amp;gt;l

2. Which (if any) of the functions

(w cos2 ^w TT +sin2
^nir}l{n (cos^^mr + n sin2

|WTT)}

tend to a limit as n -- oo ?

3. Denoting by (w) the general rational function of n considered above,
show that in all cases

,

8(n) S(ri)

69. Functions of n which increase steadily with n. A
special but particularlyjimportant class of functions of n is formed

by those whose variation as n tends to oo is always in the same

direction, that is to say those which always increase (or always

decrease) as n increases. Since - $ (n) always increases if
&amp;lt;f&amp;gt; (n)

always decreases, it is not necessary to consider the two kinds of

functions separately; for theorems proved for one kind can at

once be extended to the other.

DEFINITION. Thefunction
&amp;lt;/&amp;gt; (n) mil be said to increase steadily

with n if $ (n + 1) ^ $ (n) for all values of n.

92
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It is to be observed that we do not exclude the case in which

&amp;lt;/&amp;gt;
(n) has the same value for several values of n

;
all we exclude is

possible decrease. Thus the function

whose values for n 0, 1, 2, 3, 4, ... are

1,1,5,5,9,9,...

is said to increase steadily with n. Our definition would indeed

include even functions which remain constant from some value of n

^ ^onwards; thus
&amp;lt;(n)

= 1 steadily increases according to our definition.

However, as these functions are extremely special ones, and as

there can be no doubt as to their behaviour as n tends to oo
,
this

apparent incongruity in the definition is not a serious defect.

There is one exceedingly important theorem concerning

functions of this class.

THEOREM. //
c/&amp;gt; (n) steadily increases with n, then either

(i) (j&amp;gt; (n) tends to a limit as n tends to oo
,
or (ii) &amp;lt; (n)

-* + oo . ^

That is to say, while there are in general ^^alternatives as to

the behaviour of a function, there are two only for this special

kind of function. A

This theorem is a simple corollary of Dedekind s Theorem

(17). We divide the real numbers f into two classes L and R,

putting f in L or R according as
&amp;lt;/&amp;gt;

(n) ^ f for some value of n

(and so of course for all greater values), or &amp;lt; (n) &amp;lt; f for all

values of n.

The class L certainly exists; the class R may or may not.

If it does not, then, given any number A, however large, &amp;lt;/&amp;gt;
(n) &amp;gt; A

for all sufficiently large values of n, and so

$ (n)
-* + oo .

If on the other hand R exists, the classes L and R form a

section of the real numbers in the sense of 17. Let a be the

number corresponding to the section, and let 8 be any positive

number. Then &amp;lt; (n) &amp;lt; a + 8 for all values of n, and so, since 8 is

arbitrary, $ (?i) ^ a. On the other hand $ (n) &amp;gt; a 8 for some

value of n, and so for all sufficiently large values. Thus

a 8 &amp;lt;

&amp;lt;j) (n) ^ a

V\V&amp;gt;f C
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for all sufficiently large values of n
; i.e.

&amp;lt; (n) + a.

It should be observed that in general (n) &amp;lt; a for all values of n
;

for if

&amp;lt; (n) is equal to a for any value of n it must be equal to a for all greater

values of n. Thus &amp;lt; (n) can never be equal to a except in the case in which

the values of $ (n) are ultimately all the same. If this is so, a is the largest

member of L ; otherwise L has no largest member.

COR. 1. If (f&amp;gt; (n) increases steadily ivith n, then it will tend to a

limit or to + oo according as it is or is not possible to find a number

K such that $ (n) &amp;lt; Kfor all values of n. v^c TWt Ut )%? (Wtv\ ^
We shall find this corollary exceedingly useful later on. ^
COR. 2. If (f&amp;gt; (n) increases steadily with n, and

&amp;lt;f&amp;gt; (n) &amp;lt; K for
all values of n, then $ (n) tends to a limit and this limit is less than

or equal to K.

It should be noticed that the limit may be equal to K : if e.g.

&amp;lt;f&amp;gt;
(n)

= 3 (1/ri), then every value of &amp;lt; (n) is less than 3, but the

limit is equal to 3.

COR. 3.
If(f&amp;gt; (n) increases steadily with n, and tends to a limit,

then

&amp;lt;f&amp;gt; (n) lim
(f&amp;gt; (n)

for all values ofn.

The reader should write out for himself the corresponding
theorems and corollaries for the case in which

cf&amp;gt; (n) decreases as n

increases.

70. The great importance of these theorems lies in the fact

that they give us (what we have so far been without) a means of

deciding, in a great many cases, whether a given function of n

does or does not tend to a limit as n -* oc
,
without requiring us to

be able to guess or otherwise infer beforehand what the
limitjis.__ If /

we know what the limit, if there is one, must be, we can use the

test

| (/&amp;gt; (n)
- I &amp;lt; 8 (n n ) :

as for example in the case of (n) = 1/n, where it is obvious that

the limit can only be zero. But suppose we have to determine

whether
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tends to a limit. In this case it is not obvious what the limit, if

there is one, will be : and it is evident that the test above, which

involves I, cannot be used, at any rate directly, to decide whether

I exists or not.

Of course the test can sometimes be used indirectly, to prove by means of

a reductio ad absurdum that I cannot exist. If e.g. &amp;lt;f&amp;gt;(n}

= (- l)
w

,
it is clear

that I would have to be equal to 1 and also equal to -
1, which is obviously

impossible.

71. Alternative proof of Weierstrass s Theorem of 19. The results

of 69 enable us to give an alternative proof of the important theorem

proved in 19.

If we divide PQ into two equal parts, one at least of them must contain

infinitely many points of S. We select the one which does, or, if both do, we

select the left-hand half
;
and we denote the selected half by P1 Q^ (Fig. 28).

If PQi is the left-hand half, Pl is the same point as P.

Fig. 28.

Similarly, if we divide P\Q\ into two halves, one at least of them must

contain infinitely many points of S. We select the half P
2 $2 which does so,

or, if both do so, we select the left-hand half. Proceeding in this way we can

define a sequence of intervals

PQ, PI&, Pa Q2t PA, .-,

each of which is a half of its predecessor, and each of which contains infinitely

many points of S.

The points P, P1? P2 ,
... progress steadily from left to right, and so Pn

tends to a limiting position T. Similarly Qn tends to a limiting position T .

But TT is plainly less than Pn Qn ,
whatever the value ofn; and Pn Qn , being

equal to P$/2
n

,
tends to zero. Hence T coincides with T, and Pn and Qn

both tend to T.

Then T is a point of accumulation of S. For suppose that is its

coordinate, and consider any interval of the type (| d, +8). If n
is sufficiently large, Pn Qn will lie entirely inside this interval*. Hence

(-$&amp;gt; + $) contains infinitely many points of S.

72. The limit of oc
n as n tends to oo . Let us apply the

results of 69 to the particularly important case in which

$ (n) = xn. If x = 1 then $ (n) = 1, lim $ (n)
= 1, and if x = then

&amp;lt;f)(n)

= Q, lim (tt)=0, so that these special cases need not detain us.

* This will certainly be the case as soon as PQj2
n

&amp;lt; 6.
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First, suppose x positive. Then, since
&amp;lt;f&amp;gt;
(n + 1) = x&amp;lt;p (n), (/&amp;gt; (n)

increases with n if x &amp;gt; 1, decreases as n increases if x &amp;lt; 1.

If x &amp;gt; 1, then xn must tend either to a limit (which must

obviously be greater than 1) or to +00. Suppose it tends to a

limit 1. Then Km &amp;lt; (n + 1) = lim
cf&amp;gt; (n) = I, by Exs. xxv. 7

;
but

lim
&amp;lt;f&amp;gt; (n + 1) = lim

x&amp;lt;f&amp;gt; (n)
= x lim &amp;lt; (n) xl,

and therefore l=xl: and as x and are both greater than 1, this

is impossible. Hence

xn _^ _j_ QQ
(#&amp;gt;

1
).

Example. The reader may give an alternative proof, showing by the

binomial theorem that xn &amp;gt;l + n8 if 8 is positive and #=l + d, and so that

xn -*- + oo .

On the other hand xn is a decreasing function if x &amp;lt; 1, and

must therefore tend to a limit or to oo . Since xn is positive

the second alternative may be ignored. Thus lim xn = I, say, and

as above I = xl, so that I must be zero. Hence

Example. Prove as in the preceding example that (l/#)
n tends to + oo if

,
and deduce that xn tends to 0.

We have finally to consider the case in which x is negative.

If 1 &amp;lt; x &amp;lt; and x = y, so that &amp;lt; y &amp;lt; 1, then it follows from

what precedes that lim y
n = and therefore lim xn = 0. If x = 1

it is obvious that xn oscillates, taking the values 1, 1 alterna

tively. Finally if x &amp;lt; 1, and x y, so that y &amp;gt; 1, then y
n tends

to + x ,
and therefore xn takes values, both positive and negative,

numerically greater than any assigned number. Hence xn oscillates

infinitely. To sum up :

&amp;lt; (?i)
= #n -- + oo (x &amp;gt; 1),

lim (n)
= 1 (x = 1),

lim (n)
= (- 1 &amp;lt; x &amp;lt; 1),

&amp;lt;/&amp;gt;
(n) oscillates finitely (x 1),

&amp;lt;/&amp;gt; (n) oscillates infinitely (x &amp;lt; 1).

Examples XXVII*. 1. If &amp;lt; (n) is positive and
(f)(n+I)&amp;gt;K&amp;lt;J&amp;gt; (n), where

K
&amp;gt;1,

for all values of ?i, then (n) -*~+ oo .

* These examples are particularly important and several of them will be made
\

use of later in the text. They should therefore be studied very carefully.
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[For &amp;lt;}&amp;gt; (n)&amp;gt; A&amp;gt; (n-V) &amp;gt;K
2

&amp;lt;f&amp;gt; (n
-

2) ... &amp;gt;A^~i &amp;lt; (1),

from which the conclusion follows at once, as ATn--oo
.]

2. The same result is true if the conditions above stated are satisfied

only when ?i&amp;gt;?? .

3. If
(j&amp;gt;(ri)

is positive and &amp;lt; (?i+ l)&amp;lt;/f0(w), where
0&amp;lt;K&amp;lt;1, then

lim (w)
= 0. This result also is true if the conditions are satisfied only when

n^n .

4. If
\&amp;lt;f&amp;gt;(n

+ l)\&amp;lt;K\(j&amp;gt;(n)
when n&amp;gt;n

,
and

0&amp;lt;A&quot;&amp;lt;1,
then lim

&amp;lt;j&amp;gt;(n)

= Q.

5.
If&amp;lt;f&amp;gt;(n}

is positive and
\im{&amp;lt;f)(n+ l}}/{(j)(n)}

=
l&amp;gt;l,

then (ft)
-- + oo .

[For we can determine nQ so that {$ (7? + !)}/{&amp;lt; (ri)}&amp;gt;K&amp;gt;l
when %&amp;gt;w : we

may, e.g., take A&quot; half-way between 1 and 1. Now apply Ex. L]

6. If lim
{&amp;lt;f&amp;gt;(n

+ !)}/{&amp;lt; (n)}
=

l,
where I is numerically less than unity,

then
lim&amp;lt;j)(n)

0. [This follows from Ex. 4 as Ex. 5 follows from Ex. 1.]

7. Determine the behaviour, as ?i-^oc, of $(n}=rix
n

,
where r is any

positive integer.

[If#=0 then
&amp;lt;j)(n)

= Q for all values of n, and &amp;lt; (?I)H.O. In all other cases

First suppose # positive. Then &amp;lt;(?*)-*+ oo if o?&amp;gt;l (Ex. 5) and 0(w)-*-0 if

#&amp;lt;1 (Ex. 6). If #=1, then (%)=7i
r -*-+oo . Next suppose x negative.

Then
| $(ri) \=n

r
\

x
\

n tends to +00 if
|#|&amp;gt;1

and to if
|^|&amp;lt;1.

Hence

^ (n) oscillates infinitely if #&amp;lt;- 1 and
cf&amp;gt; (n)-*0 if -

1&amp;lt;^&amp;lt;0.]

8. Discuss n~ Txn in the same way. [The results are the same, except

that &amp;lt;(w)-0
when x=\ or 1.]

9. Draw up a table to show how nkxn behaves as n -*- oo
,
for all real

values of #, and all positive and negative integral values of L

[The reader will observe that the value of k is immaterial except in the

special cases when #=1 or -1. Since lim {(n+ l)/n}
k
=I, whether Tc be

positive or negative, the limit of the ratio $ (rc + 1 )/$(%) depends only on

A
,
and the behaviour of (n) is in general dominated by the factor xn. The

factor n* only asserts itself when x is numerically equal to 1.]

10. Prove that if x is positive then $x+\ astt-*-co . [Suppose, e.g., x&amp;gt;\.

Then #, Jxt $x, ... is a decreasing sequence, and $x&amp;gt;\
for all values of n.

Thus $x+l, where ?&amp;gt;1. But if Z&amp;gt;1 we can find values of n, as large as

we please, for which $x&amp;gt;l
or x&amp;gt;l

n
; and, since &quot;-*- + &amp;lt; as w-*-oo, this

is impossible.]

11. tfn-*l. [For
n +

\f(n + l)&amp;lt;Vn
if (w+ l)&amp;lt;ra

+ 1 or \l + (l/n)}
n

&amp;lt;n,

which is certainly satisfied if ?i&amp;gt;3 (see 73 for a proof). Thus #n decreases

as n increases from 3 onwards, and, as it is always greater than unity, it tends

to a limit which is greater than or equal to unity. But if $n-*lt
where

&amp;gt;1,

then n&amp;gt;l
n

,
which is certainly untrue for sufficiently large values of n,

since l
n
ln-*- + ao with n (Exs. 7, 8).]
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12. $(n !)- + 00 . [However large A may be, n ! &amp;gt; An if n is large enough.

For if un= A.
n
/n\ then n + 1/wn=A/(ft+l), which tends to zero as ?i-*oo, so

that un does the same (Ex. 6).]

13. Show that if - 1&amp;lt; x &amp;lt; I then

ra(m-l) ... (m n+l) n __fm\ ,Un= ~~ ^*
tends to zero as w-*-oo .

[If m is a positive integer, WB for n &amp;gt; m. Otherwise

unless #8=0.]

(l\
n

1 + -
) . A more difficult problem which
/

can be solved by the help of 69 arises when
&amp;lt;j&amp;gt;(ri)

=
{1 + l/n}

n
.

It follows from the binomial theorem* that

j , i , ,&quot;

1
&quot; ^

1.2 n2 1.2. ..

The (j9 + l)th term in this expression, viz.

is positive and an increasing function of n, and the number

of terms also increases with n. Hence
(
1 + )

increases with n,
\ ft/

and so tends to a limit or to + oo
,
as n -*~ oo .

But

1\ 1 1

(&amp;gt;+j)

+...1.21.2.3 1.2. 3. ..7i

f 1\
Thus ( 1 + -

)
cannot tend to + x

,
and so

\ n/

(l\
n

1 + -
)
= Q

n)

where e is a number such that 2 &amp;lt; e ^ 3.

* The binomial theorem for a positive integral exponent, which is what is used

here, is a theorem of elementary algebra. The other cases of the theorem belong

to the theory of infinite series, and will be considered later.
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74. Some algebraical lemmas. It will be convenient to prove at

this stage a number of elementary inequalities which will be useful to us
later on.

(i) It is evident that if a&amp;gt;l and r is a positive integer then

Multiplying both sides of this inequality by a- 1, we obtain

TLVu ( \fcfl
rar (a-l)&amp;gt;a

r -l
,

and adding r(a
r -

1) to each side, and dividing by r (r+ 1), we obtain

Similarly we can prove that

r + l _r
(2).

It follows that if r and s are positive integers, and
r&amp;gt;s,

then

o-l 0.-1 l-f
&amp;lt;

l-f
r s r s

Here
0&amp;lt;/3&amp;lt;l&amp;lt;a.

In particular, when 5=1, we have

0) ..................... (4).

(ii) The inequalities (3) and (4) have been proved on the supposition
that r and s are positive integers. But it is easy to see that they hold under

the more general hypothesis that r and s are any positive rational numbers.

Let us consider, for example, the first of the inequalities (3). Let r=a/b,

s=c/d, where a, 6, c, d are positive integers; so that ad&amp;gt;bc. If we put

a=yM,
the inequality takes the form

and this we have proved already. The same argument applies to the re

maining inequalities ;
and it can evidently be proved in a similar manner that

a -K^o-l), l-j8-&amp;gt;(l-/3) *1 ................... (5),

if s is a positive rational number less than 1.

(iii) In what follows it is to be understood that all the letters denote

positive numbers, that r and s are rational, and that a and r are greater

than 1, and s less than 1. Writing 1//3 for a, and I/a for /3, in (4), we

obtain

rf-Kfar-i (-!), l-^^- a-^) ............... (6).

Similarly, from (5), we deduce

a-l&amp;gt;Sa-
1
(a-l), 1 - /S^S/S

8 &quot; 1
(1 -/3) ............... (7).

Combining (4) and (6), we see that

rar
- l

(a-l)&amp;gt;a
r
-I&amp;gt;r(a-I) ........................ (8).
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Writing x\y for a, we obtain

(x-y} ..................... (9)

if
x&amp;gt;y&amp;gt;Q.

And the same argument, applied to (5) and (7), leads to

*-
(x-y}&amp;lt;x*-y*&amp;lt;sy&amp;gt;-i (x-y] .................. (10).

Examples XXVIII. 1. Verify (9) for r=2, 3, and (10) for s=, $.

2. Show that (9) and (10) are also true if
y&amp;gt;x&amp;gt;0.

3. Show that (9) also holds for r&amp;lt;0. [See Chrystal s Algebra, vol. ii,

pp. 4345.]

4. If &amp;lt;(w)-W, where l&amp;gt;0,
as n-*-oo, then $ fc-*Zfc

,
& being any rational

number.
&amp;lt;\

rf^Y^&amp;lt;* ^u-
&amp;lt;^&amp;gt;*

/

-&amp;gt;^&quot;

[We may suppose that &&amp;gt;0, in virtue of Theorem III of 66; and that

^l &amp;lt; &amp;lt;

&amp;lt; 2, as is certainly the case from a certain value of n onwards. If

or /-
(

according as &amp;lt;&amp;gt;2 or &amp;lt;&amp;lt;. It follows that the ratio of
|

&amp;lt;* Z*| and | ?|

lies between & (^)
fc-1 and *

(20*&quot;
1

. The proof is similar when &amp;lt;k &amp;lt;1. The
result is still true when =0, if k &amp;gt; 0.]

5. Extend the results of Exs. xxvu. 7, 8, 9 to the case in which r or k
are any rational numbers.

75. The limit of n ($x -
1). If in the first inequality (3) of 74 we

put r=!/(-!), s= l/n, we see that

when a&amp;gt;l. Thus if
&amp;lt;f&amp;gt;(n)

= n (#a- 1) then () decreases steadily as n in

creases. Also (%) is always positive. Hence (n) tends to a limit Z as
-*

,
and &amp;gt;0.

|^&amp;gt; t |
&quot;i s

Again if, in the first inequality (7) of 74, we put s= ljnt
we obtain

Thus l&amp;gt;l
-(l/a)&amp;gt;0. Hence, if

a&amp;gt;l,
we have

lim *U/a -!)=/(&amp;lt;),
--00

where
/(a)&amp;gt;0.

Next suppose /3&amp;lt;1,
and let /3

= I/a ; then n (#/3
-

1)= - n (^fa
-

l)/#a. Now
w/a-l)-^/(a), and (Exs. xxvn. 10)

/v/a--l.

Hence, if /3
=

l/a&amp;lt;l, we have

n(^-l)^-/(a).

Finally, if #= 1, then w (^- 1)
= for all values of w.
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Thus we arrive at the result : the limit

lim?i(^-l)

defines a function of xfor all positive values of x. This function f (x} possesses
the properties

and is positive or negative according as x&amp;gt; 1 or x &amp;lt; 1. Later on we shall be

able to identify this function with the Napierian logarithm of x

Example. Prove that/ (xy) =/(#) +/ (y). [Use the equations

76. Infinite Series. Suppose that.w(w) is any function of

n defined for all values of n. If we add up the values of u(v)
for v = 1, 2, . . . n, we obtain another function of n, viz.

8(n) = u(I)+u(Z) + ... + u (n),

also defined for all values of n. It is generally most convenient

to alter our notation slightly and write this equation in the form

sn = u1 + u.2 + ... +un ,

n

or, more shortly, sn = 2 uv .

If now we suppose that sn tends to a limit s when n tends

to oo
,
we have

n
lim 2 uv

= s.

This equation is usually written in one of the forms

00

the dots denoting the indefinite continuance of the series of u s.

The meaning of the above equations, expressed roughly, is

that by adding more and more of the us together we get nearer

and nearer to the limit s. More precisely, if any small positive

number & is chosen, we can choose n (S) so that the sum of the first

n (8) terms, or any of greater number of terms, lies between s S

and s + &
)
or in symbols

s S &amp;lt; sn &amp;lt; s + 8,

if n = n (8). In these circumstances we shall call the series

a convergent infinite series, and we shall call s the sum of the

series, or the sum of all the terms of the series.



75-77] POSITIVE INTEGRAL VARIABLE 141

Thus to say that the series u
l
+ u

z + ... converges and has the

sum s, or converges to the sum s or simply converges to s, is merely

another way of stating that the sum sn = u + u2 + + un of the

first n terms tends to the limit s as n -* oo
,
and the consideration

of such infinite series introduces no new ideas beyond those with

which the early part of this chapter should^already have made

the reader familiar. In fact the sum sn is merely a function $ (n),

such as we have been considering, expressed in a particular form.

Any function
&amp;lt;f&amp;gt;

(n) may be expressed in this form, by writing

4&amp;gt; (n)
= (!) + ft (2)

-
(1)} + ... + ft (n) -&amp;lt;f&amp;gt;(n- I)} ;

and it is sometimes convenient to say that
&amp;lt;/&amp;gt;

(n) converges (instead

of tends ) to the limit I, say, as n -&amp;gt; oo .

If sn -- + oo or sn -* oo
,
we shall say that the series u 1 -}-u2 + ...

is divergent or diverges to + 00, or oo
,
as the case may be.

These phrases too may be applied to any function
&amp;lt;/&amp;gt;

(n) : thus if

(j)(n) -*~+ &amp;lt;& we may say that
(/&amp;gt; (n) diverges to + oo . If sn does

not tend to a limit or to + oo or to oo
,
then it oscillates finitely or

infinitely : in this case we say that the series ul +u2 + ... oscillates

finitely or infinitely*.

77. General theorems concerning infinite series. When
we are dealing with infinite series we shall constantly have

occasion to use the following general theorems.

(1) If Wj + t&jH-... is convergent, and has the sum s, then

a + Ul -f uz + ... is convergent and has the sum a + s. Similarly

-}-^2 4-... is convergent and has the sum

(2) If w 1 + M2 +... is convergent and has the sum s, then

w-jn+i + w TO+2 -f . . . is convergent and has the sum

s u1 u2 ... um .

(3) If any series considered in (1) or (2) diverges or oscillates,

then so do the others.

(4) If ^ 1 + u 2 + . . . is convergent and has the sum s, then

kut + ku 2 + ... is convergent and has the sum ks.

* The reader should be warned that the words divergent and oscillatory

are used differently by different writers. The use of the words here agrees with

that of Bromwich s Infinite Series. In Hobson s Theory of Functions of a Eeal

Variable a series is said to oscillate only if it oscillates finitely, series which

oscillate infinitely being classed as divergent . Many foreign writers use divergent

as meaning merely not convergent .
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(5) If the first series considered in (4) diverges or oscillates,
then so does the second, unless k 0.

(6)
^

If Wj + u2 + . . . and vl + v2 + . . . are both convergent, then
the series (u, + vj + (u2 + vz) + . . . is convergent and its sum is the
sum of the first two series.

All these theorems are almost obvious and may be proved at
once from the definitions or by applying the results of 6366 to
the sum * = Wj + w, + . . . + 1^. Those which, follow are of a some
what different character.

(7) Ifui+u2 +... is convergent, then lim un = 0.

For un = sn -sn-lt and sn and sn_i have the same limit s.

Hence lim un s s = 0.

The reader may be tempted to think that the converse of the theorem is

true and that if lim wn=0 then the series 2wn must be convergent. That this
is not the case is easily seen from an example. Let the series be

so that un =lfn. The sum of the first four terms is

The sum of the next four terms is i+ + ^+ .i.&amp;gt;|=.| ; the sum of the next
eight terms is greater than &=4, and so on. The sum of the first

terms is greater than

and this increases beyond all limit with n : hence the series diverges to + oo .

(8) If Uj_ + u2 + u3 + . . . is convergent, then so is any series

formed by grouping the terms in brackets in any way to form new

single terms, and the sums of the two series are the same.

The reader will be able to supply the proof of this theorem. Here again
the converse is not true. Thus 1-1 + 1-1 + .. . oscillates, while

or + + 0+ ... converges to 0.

(9) If every term un is positive (or zero), then the series 2wn

must either converge or diverge to + oo . If it converges, Ms sum
must be positive (unless all the terms are zero, when of course its

sum is zero).

For sn is an increasing function of n, according to the definition

of 69, and we can apply the results of that section to sn .
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(10) // every term un is positive (or zero), then the necessary

and sufficient condition that the series 2wn should be convergent is

that it should be possible to find a number K such that the sum of

any number of terms is less than K; and, ifK can be so found, then

the sum of the series is not greater than K.

This also follows at once from 69. It is perhaps hardly

necessary to point out that the theorem is not true if the condition

that every un is positive is not fulfilled. For example

1-1+1-1+.. .

obviously oscillates, sn being alternately equal to 1 and to 0.

(11) If u + u 2 + . . ., vl + v2 + . . are two series of positive (or

zero) terms, and the second series is convergent, and if un ^ Kvny

where K is a constant, for all values of n, then the first series is also

convergent, and its sum is less than or equal to that of the second.

For if vl + v2 + . . .
= t then v

l + v2 + . . . + vn t for all values of

n, and so ?^ + u2 + . . . + un ^ Kt
;
which proves the theorem.

Conversely, if %un is divergent, and vn ^ Kunt then 2vn is

divergent.

78. The infinite geometrical series. We shall now con

sider the geometrical series, whose general term is un = rn
~l

. In

this case

except in the special case in which r = 1, when

sn = l + 1 + ... + 1 =n.

In the last case sn -* + oo . In the general case sn will tend to a

limit if and only if rn does so. Referring to the results of 72

we see that the series 1 + r + ?-
2 + . . . is convergent and has the sum

1/(1 r) if and only ifI&amp;lt;r&amp;lt;
1.

If r = 1, then sn = n, and so sn -*- + oo
;
i.e. the series diverges to

+ oo . If r = 1, then sn 1 or sn = according as n is odd or

even : i.e. sn oscillates finitely. If r &amp;lt; 1, then sn oscillates infinitely.

Thus, to sum up, the series 1 + r + r2 + . . . diverges to + oo ifr^l,

converges to 1/(1 r) if 1 &amp;lt; r &amp;lt; 1, oscillates finitely if r = 1,

and oscillates infinitely ifr&amp;lt;
1.

Examples XXIX. 1. Recurring decimals. The commonest example
of an infinite geometric series is given by an ordinary recurring decimal.
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Consider, for example, the decimal -21713 This stands, according tcrtne

ordinary rules of arithmetic, for

_2_ J_ 7 1
_3_ J^ _3_ _ 217, I?. //i

1 \_ 2687
10

&quot;*&quot;

102
&quot;*&quot;

103
+

104 + 1Q6
T

i 6T i 7
+ ~

1000
+

105
/ \ 102

/
~

12375

The reader should consider where and how any of the general theorems of

77 have been used in this reduction.

2. Show that in general

......
(N/

r v -L 4 -*
the denominator containing n 9 s and m O s. r

( p r L ^
3. Show that a pure recurring decimal is always equal to a proper

fraction whose denominator does not contain 2 or 5 as a factor.

ljfZ\
4. A decimal with m non-recurring and n recurring decimal figures is

equal to a proper fraction whose denominator is divisible by 2m or 5m but by
no higher power of either.

5. The converses of Exs. 3, 4 are also true. Let r=p[q, and suppose first

that q is prime to 10. If we divide all powers of 10 by q we can obtain at most

q different remainders. It is therefore possible to find two numbers n^ and

%2 ,
where n 2 &amp;gt;n1} such that 10Wl and 10rl2

give the same remainder. Hence

10n - 10%2= 10&quot;
2

(10
Wl - W2 -

1) is divisible by q, and so 10&quot;- 1, where %=w 1
-w2 ,

is divisible by q. Hence r may be expressed in the form Pj(lO
n

1), or in the

form \
t : trtr-l ^ P ^ P

t^-.^y w
+ w* +

-&amp;gt;

i.e. as a pure recurring decimal with, n figures. If on the other hand q= 2a 5^ Q,

where Q is prime to 10, and m is the greater of a and /3, then 10m r has a de- A -

nominator prime to 10, and is therefore expressible as the sum of an integer
and a pure recurring decimal. But this is not true of 10M r, for any value of

p.
less than m ; hence the decimal for r has exactly m non-recurring figures.

6. To the results of Exs. 25 we must add that of Ex. i. 3. Finally, if k,

we observe that ^999 _=
!0
+

10~2
+

103
+ &quot;

we see that every terminating decimal can also be expressed as a mixed

recurring decimal whose recurring part is composed entirely of 9 s. For

example, 21 7 = 2 169. Thus every proper fraction can be expressed as a

recurring decimal, and conversely.

7. Decimals in general. The expression of irrational numbers as

non-recurring decimals. Any decimal, whether recurring or not, corresponds

to a definite number between and 1. For the decimal 1 a2 34... stands

for the series
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Since all the digits ar are positive, the sum sn of the first n terms of this

series increases with n, and it is certainly not greater than -9 or 1. Hence
5n tends to a limit between and 1.

Moreover no two decimals can correspond to the same number (except in

the special case noticed in Ex. 6). For suppose that 1 a2 3 ..., -b^bz ... are
two decimals which agree as far as the figures ar _ 1? br _ ly while ar &amp;gt;br .

&amp;gt;br + I&amp;gt;br br + l br + 2 ... (unless 6r + 1 ,
br + 2 ,

... are all 9V), and so

It follows that the expression of a rational fraction as a recurring decimal

(Exs. 26) is unique. It also follows that every decimal which does not
recur represents some irrational number between and 1. Conversely, any-
such number can be expressed as such a decimal. For it must lie in one of
the intervals

0, 1/10; 1/10, 2/10; ... ; 9/10, 1.

If it lies between r/10 and
(/ + 1)/10, then the first figure is r. By subdividing

this interval into 10 parts we can determine the second figure; and so on.
But (Exs. 3, 4) the decimal cannot recur. Thus, for example, the decimal

1-414..., obtained by the ordinary process for the extraction of /2, cannot
recur.

8. The decimals 1010010001000010... and 2020020002000020..., in
which the number of zeros between two 1 s or 2 s increases by one at each

stage, represent irrational numbers.

9. The decimal 11101010001010..., in which the nth figure is 1 if n is

prime, and zero, otherwise, represents an irrational number. [Since the
number of primes is infinite the decimal does not terminate. Nor can it

recur: for if it did we could determine m and p so that m, m+p, m + 2p,

m+3p, ... are all prime numbers
; and this is absurd, since the series includes

m + mp.]*

Examples XXX. 1. The series rm+ rm + 1 + ...is convergent if - 1
&amp;lt; r &amp;lt; 1

and its sum is l/(l-r)-l-r- ... -a-&quot;*-
1

( 77, (2)).

2. The series r + r + i+ ... is convergent if -
1&amp;lt; r &amp;lt; 1, and its sum is

1*1(1
-

r) ( 77, (4)). Verify that the results of Exs. 1 and 2 are in agreement.

3. Prove that the series 1 + 2r+2r+ ... is convergent, and that its sum
is (l+r)/(l-r), (a) by writing it in the form -l + 2(l+r+r2+ ...), (/3) by

writing^
in the form 1 +2 (r + r*+ ...), (y) by adding the two series

l+r+ -;

&amp;lt;2+ ..., r+r2 +.... In each case mention which of the theorems of
77 are used in your proof.

* All the results of Exs. xxix may be extended, with suitable modifications, to
decimals in any scale of notation, for a fuller discussion see Bromwich, Infinite \

Series, Appendix I.

H- 10
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4. Prove that the arithmetic series

is always divergent, unless both a and b are zero. Show that, if b is not

zero, the series diverges to +00 or to -co according to the sign of b
}
while if

6=0 it diverges to +00 or - oo according to the sign of a.

5. What is the sum of the series

(1
-

r) + (r
- r2

) + (?
2
-?-)+...

when the series is convergent ? [The series converges only if -
l&amp;lt;r^l. Its

sum is 1, except when r=l, when its sum is 0.]

rz rz

6. Sum the series ?-
2 + ^ + /,

,2 x 2 + .... [The series is always con

vergent. Its sum is 1 4-r2, except when r=0, when its sum is 0.]

7. If we assume that 1 4- r 4- r
2+ . . . is convergent then we can prove that its

sum is 1/(1 -r) by means of 77, (1) and (4). For if l +r+r2+ ... =s then

S. Sum the series r+

when it is convergent. [The series is convergent if -l&amp;lt;l/(l+r)&amp;lt;l, i.e. if

r&amp;lt;
- 2 or if

r&amp;gt;0,
and its sum is 1 4-r. It is also convergent when r=0, when

its sum is 0.]

9. Answer the same question for the series

r r r r~

10. Consider the convergence of the series

and find their sums when they are convergent.

11. If 0&amp;lt;a&amp;lt;l then the series a + air+a2 r
2+ ... is convergent for

0^r&amp;lt;l, and its sum is not greater than l/(l-r).

12. If in addition the series aQ + i + 2+ . .. is convergent, then the series

ao _l_ air+ a2r2_|__ is convergent for
0&amp;lt;r&amp;lt;l,

and its sum is not greater than

the lesser of a -f i + a2+ ... and l/(l-r).

13. The series 1 +
1
+

1~&quot;2

+
1 2 3

+ &amp;gt; &quot;

is convergent. [For 1/(1 . 2 . . . n)
&amp;lt; 1 /2

n ~ l
.]
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14. The series

1 +
lT2

+
1.2.3.4+ - l

+
l7273 + 1.2.3.475 + -

are convergent.

15. The general harmonic series

where a and 6 are positive, diverges to 4- oo .

,[Fartvl/(0+*ft)&amp;gt;l/{ft(a+()}. Now compare with

1G. Show that the series

is convergent if and only if un tends to a limit as n

17. If ! + w2+ 3 + ... is divergent then so is any series formed by
grouping the terms in brackets in any way to form new single terms.

18. Any series, formed by taking a selection of the terms of a convergent
series of positive terms, is itself convergent.

79. The representation of functions of a continuous
real variable by means of limits. In the preceding sections

we have frequently been concerned with limits such as

lim $n 0),
-*)

and series such as

tfi (0) + u2 (as) + ... = lim {^ (x) + uz (a) + ... + un ()},
W-&amp;gt; oo

in which the function of n whose limit we are seeking involves,

besides n, another variable x. In such cases the limit is of course

a function of x. Thus in 75 we encountered the function

f(x) = lim n (\/x 1):
n-*-oo

and the sum of the geometrical series 1 + x + #2 + . . . is a function

of x, viz. the function which is equal to 1 /(I x) if 1 &amp;lt; x &amp;lt; 1 and

is undefined for all other values of x.

Many of the apparently arbitrary or unnatural functions

considered in Ch. II are capable of a simple representation of this

kind, as will appear from the following examples.
102
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Examples XXXI. 1.
&amp;lt;$&amp;gt;
n (x)

= x. Here n does not appear at all in the

expression of &amp;lt; n (#), and &amp;lt;p (#)
= lim

&amp;lt;f)
n (x} x for all values of x.

2. &amp;lt; (x)
= x/n. Here &amp;lt; (x)= lim

&amp;lt;f)
n (x}

= for all values of x.

3.
&amp;lt;p
n (x}

= nx. If #
&amp;gt;0, $n (#)-*-+ co

;
if #&amp;lt;0,

(f&amp;gt;
n (x)-*--cc : only when

4 =0has
&amp;lt;j&amp;gt;

n (x) a limit (viz. 0) as TI^OO. Thus ((#) = when #= and is

not denned for any other value of x.

4. &amp;lt;&amp;gt;n x = Inx, nx

5. $n (x}
= x\ Here

&amp;lt;(ff)
= 0, (-!&amp;lt;#&amp;lt;!); &amp;lt;(#)

=
!, (#=1); and (a?)

is not denned for any other value of x.

6.
&amp;lt;(#)

=
#&quot;(!-#). Here

&amp;lt;(#)
differs from the

&amp;lt;j&amp;gt;(x)

of Ex. 5 in that

it has the value when x l.

7.
(J)n (x)

= x/n. Here
&amp;lt;/&amp;gt;

(#) differs from the &amp;lt; (a?) of Ex. 6 in that it has

the value when x= l as well as when #= 1.

8.
&amp;lt;k(*0

=
a&quot;/(a + l). [0(^) = 0,(-l&amp;lt;^&amp;lt;l);^Cr)

=^(^=l);0Gr) = l,

(#&amp;lt;
1 or

x&amp;gt;I) ,
and 0(a?) is not denned when x= 1.]

9. n (^)=^/(^-l), l/(^+l), !/(- 1), l/(s&quot;+or), l/(&quot;-o?-).

10. n (^)
= (^

n
-l)/(^

n+ l), (w^
n -l)/(^n

-fl), (a? -%)/( +w). [In the

first case ^(a?)
= l when

|a?|&amp;gt;l, 0(^)=-l when
|a?|&amp;lt;l, (f&amp;gt;(x)

= when o?=l

and
^&amp;gt; (x) is not denned when x= l. The second and third functions differ

from the first in that they are defined both when #=1 and when x 1 : the

second has the value 1 and the third the value - 1 for both these values of
x.~]

11. Construct an example in which
&amp;lt;(#)

=
!, (|#|&amp;gt;1); ^&amp;gt; (*)= !,

and
&amp;lt;(#)

=
(), (x=l and = -1).

12. ^n (a7)
= *{(o*-l)/(

a
+l)}

a
, /(A*+

13. B (a;)
=

{&quot;/(a7) + flr(^)}/(+l). [Here &amp;lt;#&amp;gt; (x)=f (x\ (\
x

\
&amp;gt; 1) ;

0(*)-^(*X (I*I&amp;lt;1)J ^W-itfW+^^Bi (^=1); ^d (a?) is undefined

when x= 1.]

14.
&amp;lt;^&amp;gt;
n (a;)

=
(2/Tr) arc tan (ra?). [^ (x)

=
1, (^ &amp;gt; 0) &amp;lt;; (.r)

=
0, (o?= 0) ;

(jb(^)= 1, (#&amp;lt;0).
This function is important in the Theory of Numbers,,

and is usually denoted by sgn x.]

15.
(j)n (x)

= smnzir. [0(^) = when x is an integer; and
&amp;lt;(#)

is

otherwise undefined (Ex. xxiv. 7).]

16. If
&amp;lt;(#)

= sin (n!#7r) then
^&amp;gt;(o?)

= 0for all rational values of x (Ex.

xxiv. 14). [The consideration of irrational values presents greater difficulties.]

17. &amp;lt;(.)
=

(cos
2
#71- )

n
.

[&amp;lt;(#)
= except when x is integral, when

$M-W
18. If ^Y &amp;gt; 1752 then the number of days in the year JV A.D. is

lim (365 + (cos
2 JMr )

n -
(cos

2^N*Y+ (
cos2 4 iu^&quot;-)&quot;}-
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80. The bounds of a bounded aggregate. Let S be any system or

aggregate of real numbers s. If there is a number K such that s&amp;lt;K for

every s of
,
we say that S is bounded above. If there is a number k such that

s &amp;gt; for every s, we say that S is bounded below. If S is both bounded above

and bounded below, we say simply that S is boulided.

Suppose first that S is bounded above (but not necessarily below). There

will be an infinity of numbers which possess the property possessed by K ;

any number greater than K, for example, possesses it. We shall prove that

among these numbers there is a least*, which we shall call M. This number J/

is not exceeded by any member of S, but every number less than M is exceeded

by at least one member of S.

We divide the real numbers into two classes L and R, putting into L or

R according as it is or is not exceeded by members of S. Then every belongs
to one and one only of the classes L and R. Each class exists

;
for any

number less than any member of S belongs to L, while K belongs to R.

Finally, any member of L is less than some member of S, and therefore less

than any member of R. Thus the three conditions of Dedekind s Theorem

( 17) are satisfied, and there is a number M dividing the classes.

The number M is the number whose existence we had to prove. In the

first place, M cannot be exceeded by any member of S. For if there were such

a member s of /S, we could write *= Af+rj, where
rj

is positive. The number

Af+fa would then belong to Z, because it is less than s, and to R, because it is

greater than M\ and this is impossible. On the other hand, any number less

than M belongs to Z, and is therefore exceeded by at least one member of S.

Thus M has all the properties required.

This number M we call the upper bound of S, and we may enunciate the

following theorem. Any aggregate S which is bounded above has an upper
bound M. No member of S exceeds M; but any number less than M is exceeded

by at least one member of S.

In exactly the same way we can prove the corresponding theorem for an

aggregate bounded below (but not necessarily above). Any aggregate S which

is bounded below has a lower bound m. No member of S is less than m ; but

there is at least one member of S which is less than any number greater than m.

It will be observed that, when S is bounded above, M&amp;lt; K, and when S is

bounded below, m &amp;gt; k. When S is bounded, k &amp;lt; m &amp;lt; M &amp;lt; K.

81. The bounds of a bounded function. Suppose that &amp;lt; (ri) is a func

tion of the positive integral variable n. The aggregate of all the values $ (n)

defines a set S, to which we may apply all the arguments of 80. If S is

bounded above, or bounded below, or bounded, we say that &amp;lt; (n) is bounded

* An infinite aggregate of numbers does not necessarily possess a least member.
The set consisting of the numbers

ill l

2 3
&quot;

n 1 &quot;

for example, has no least member.
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above, or bounded below, or bounded. If (71) is bounded above, that is to

say if there is a number K such that
&amp;lt;p (n) ^ K for all values of n, then there

is a number M such that

(i) $ (n) ^Mfor all values of n ;

(ii) if 8 is any positive number then $ (n) &amp;gt; M-
This number M we call the upper bound of

bounded below, that is to say if there is a number k such that $ (n)

values of
,
then there is a number m such that

(i) &amp;lt;p (n) ^ m for all values of n ;

{ii) if 8 is any positive number then $ (n) &amp;lt; m+ 8for at least one value of n.

This number m we call the lower bound of &amp;lt; (n}.

If K exists, M&amp;lt;K; if k exists, m &amp;gt;&;
and if both k and K exist then

82. The limits of indetermination of a bounded function. Suppose ( \
(

that (n) is a bounded function, and M and m its upper and lower bounds.

Let us take any real number |, and consider now the relations of inequality

which may hold between and the values assumed by cf&amp;gt; (n) for large values

of n. There are three mutually exclusive possibilities :

(1) &amp;gt;(p(n)
for all sufficiently large values of n;

(2) ^ (j) (n) for all sufficiently large values of n
;

(3) &amp;lt;&amp;lt;(ft)
for an infinity of values of n, and also

&amp;gt;&amp;lt;(ft)
for an

infinity of values of n.

In case (1) we shall say that is a superior number, in case (2) that it is

an inferior number, and in case (3) that it is an intermediate number. It is

plain that no superior number can be less than m, and no inferior number

greater than M.

Let us consider the aggregate of all superior numbers. It is bounded

below, since none of its members are less than m, and has therefore a lower

bound, which we shall denote by A. Similarly the aggregate of inferior

numbers has an upper bound, which we denote by X.

We call A and X respectively the upper and lower limits of indetermination

of $ (n) as n tends to infinity ;
and write

A=lim
&amp;lt;(%),

X= lim$(7i).

These numbers have the following properties :

(1) wi&amp;lt;X&amp;lt;A^J/&quot;;

(2) A and X are the upper and lower bounds of the aggregate of intermediate

numbers, if any such exist
;

(3) if 8 is any positive numbej, then &amp;lt; (n) &amp;lt; A + 8 for all sufficiently large

values of n, and $ (n) &amp;gt;
A 8 for an infinity of values of n

;

(4) similarly (n) &amp;gt; X - 8 for all sufficiently large values of n, and

() &amp;lt; X + 8 for an infinity of values of n
;
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(5) the necessary and sufficient condition that &amp;lt; (ti) should tend to a limit

is that A=X, and in this case the limit is I, the common value of X and A.

Of these properties, (1) is an immediate consequence of the definitions
;

and we can prove (2) as follows. If A=X=
,
there can be at most one inter

mediate number, viz. I, and there is nothing to prove. Suppose then that

A
&amp;gt; X. Any intermediate number is less than any superior and greater than

any inferior number, so that X ^ |
&amp;lt; A. But if X

&amp;lt; &amp;lt; A then must be

intermediate, since it is plainly neither superior nor inferior. Hence there are

intermediate numbers as near as we please to either X or A.

To prove (3) we observe that A+ 5 is superior and A-d intermediate or

inferior. The result is then an immediate consequence of the definitions
;
and

the proof of (4) is substantially the same.

Finally (5) may be proved as follows. If A= X=
,
then

for every positive value of 8 and all sufficiently large values of ft, so that

(ft)
-&amp;gt;. l. Conversely, if $ (ri)

-*
I,
then the inequalities above written hold

for all sufficiently large values of n. Hence I - d is inferior and l+ d superior,

so that

and therefore A X &amp;lt; 2& As A X ^ 0, this can only be true if A = X.

Examples XXXII. 1. Neither A nor X is affected by any alteration in

any finite number of values of &amp;lt; (11).

2. If (n)
= a for all values of n, then m= X = A =M= a.

3. If
(f&amp;gt; (n}

= 1 In, then m = X= A= and M= 1.

4. If $(ft)
= (-l)

n
,
then w =X=-l and \=M=l.

5. If $(w) = (-l)
MM tnen m=-l, X= A= 0, M=l.

6.
If&amp;lt;/)(70

= (-l)
n
{l + (l/w)}, then m=-2, X=-l, A = l, M=.

7. Let (ri)
= sin n6n, where 6&amp;gt; 0. If 6 is an integer then m = X= A=M= 0.

If is rational but not integral a variety of cases arise. Suppose, e.g., that

6=plq, p and q being positive, odd, and prime to one another, and
&amp;lt;?&amp;gt;!.

Then
&amp;lt;f&amp;gt;(n)

assumes the cyclical sequence of values

smQoTr/gO, sin (2/i7r/^), ......
, sin{(2q- Vprr/q}, sin (Zqpirlq), ......

It is easily verified that the numerically greatest and least values of (ri) are

cos (77/2^) and
cos(7r/2&amp;lt;?),

so that

m=X= - COS (ir/2q\ \=^M=COs(ir/2q}.

The reader may discuss similarly the cases which arise when p and q are

not both odd.

The case in which 6 is irrational is more difficult : it may be shown that

in this case m =X= - 1 and A=M\, It may also be shown that the values

of (ri) are scattered all over the interval (
-

1, 1) in such a way that, if is
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any number of the interval, then there is a sequence ?i1} ?i2
&amp;gt;

...... such that

$(%)~*&quot; as ^~*&quot;
*

The results are very similar when &amp;lt; (n) is the fractional part of n6.

83. The general principle of convergence for a bounded function.

The results of the preceding sections enable us to formulate a very important

necessary and sufficient condition that a bounded function
cf&amp;gt; (n) should tend

to a limit, a condition usually referred to as the general principle of convergence

to a limit.

THEOREM 1. The necessary and sufficient condition that a bounded function

(j) (n) should tend to a limit is that, when any positive number 8 is given, it should

to find a number n (8) such that

for all values of% and n2 such that ft2 &amp;gt; % ^ nQ (8).

In the first place, the condition is necessary. For if
&amp;lt;f&amp;gt;(n)-*-l

then we

can find nn so that

when n &amp;gt; n
,
and so

a ................................. (i)

when n
t ^ HO an^ n2 = no-

In the second place, the condition is sufficient. In order to prove this we

have only to show that it involves X = A. But if X &amp;lt;A then there are, however

small 8 may be, infinitely many values of n such that
&amp;lt;(w)&amp;lt;X+ 8 and

infinitely many such that &amp;lt; (n) &amp;gt; A - 8 ;
and therefore we can find values of

HI and 7i2 ,
each greater than any assigned number ?i

,
and such that

(w2 )
-

&amp;lt; (nj &amp;gt; A - X -
28,

which is greater than (A
-

X) if 8 is small enough. This plainly contradicts

the inequality (1). Hence X= A, and so
(j) (n} tends to a limit.

84. Unbounded functions. So far we have restricted ourselves to

bounded functions ;
but the general principle of convergence is the same

for unbounded as for bounded functions, and the words a bounded function

may be omitted from the enunciation of Theorem 1.

In the first place, if
&amp;lt;f&amp;gt;

(n) tends to a limit I then it is certainly bounded ;
for

all but a finite number of its values are less than + 8 and greater than 1-8.

In the second place, if the condition of Theorem 1 is satisfied, we have

whenever HI &amp;gt;n and ^2 = ^0- Let us cnoose some particular value n^ greater

than nQ . Then
(n^

- 8 2 )&amp;lt; (%) + 8

when n 2 ^w . Hence &amp;lt; (n) is bounded
;
and so the second part of the proof of

the last section applies also.

* A number of simple proofs of this result are given by Hardy and Littlewood,

&quot; Some Problems of Diophantine Approximation&quot;, Acta Hathematica, vol. xxxvii.
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The theoretical importance of the general principle of convergence can

hardly be overestimated. Like the theorems of 69, it gives us a means of

deciding whether a function $(ri) tends to a limit or not, without requiring

us to be able to tell beforehand what the limit, if it exists, must be ; and

it has not the limitations inevitable in theorems of such a special character

as those of 69. But in elementary work it is generally possible to dispense

with it, and to obtain all we want from these special theorems. And it will

be found that, in spite of the importance of the principle, practically no

applications are made of it in the chapters which follow.* We will only

remark that, if we suppose that

we obtain at once a necessary and sufficient condition for the convergence of

an infinite series, viz :

THEOREM 2. The necessary and sufficient condition for the convergence

of the series u\ + u%+ is that, given any positive number d, it should be

possible to find nQ so that

I ^+1 +^+2+ ... + w
na )&amp;lt;

8

for all values of n\ and n% such that

85. Limits of complex functions and series of complex
terms. In this chapter we have, up to the present, concerned

ourselves only with real functions of n and series all of whose

terms are real. There is however no difficulty in extending our

ideas and definitions to the case in which the functions or the

terms of the series are complex.

Suppose that
(f&amp;gt; (n) is complex and equal to

p (n) + ia- (n),

where p (n), a- (n) are real functions of n. Then if p (n) and a- (n)

converge respectively to limits r and s as n -* oo
, we shall say that

&amp;lt;j&amp;gt; (n) converges to the limit l = r + is, and write

lim &amp;lt; (n)
= /.

Similarly, when un is complex and equal to vn + iwn ,
we shall say

that the series

is convergent and has the sum I = r + is, if the series

are convergent and have the sums r, s respectively.

* A few proofs given in Ch. VIII can be simplified by the use of the principle.
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To say that ul + u2 + us + ... is convergent and has the sum
I is of course the same as to say that the sum

converges to the limit I as n -&amp;gt; oo .

In the case of real functions and series we also gave definitions

of divergence and oscillation, finite or infinite. But in the case

of complex functions and series, where we have to consider the

behaviour both of p (n) and of a- (n), there are so many possibilities

that this is hardly worth while. When it is necessary to make
further distinctions of this kind, we shall make them by stating
the way in which the real or imaginary parts behave when taken

separately.

86. The reader will find no difficulty in proving such

theorems as the following, which are obvious extensions of

theorems already proved for real functions and series.

(1) If lim
(f&amp;gt;(n)

= l then lim (f)(n + p)l for any fixed value

of p.

(2) If u1 + u2 + ... is convergent and has the sum I, then

a -f b + c + . . . + k + z^j + u2 + . . . is convergent and has the sum
a + b + c + ... + k + l, and up+1 + up+2 + ... is convergent and has

the sum I u u2 . . . up .

(3) If lim
(f&amp;gt; (n) = I and lim ^ (n) = m, then

lim
{(f) (n) + ty (n)}

= l + m.

(4) If lim
&amp;lt;j) (n)

=
I, then lim

k&amp;lt;j&amp;gt; (n)
= kl

(5) If lim
&amp;lt;f&amp;gt; (n)

= I and lim
\fr (n)=m, then

wxi&amp;lt;f&amp;gt;(n)ifr(n)**lm.

(6) If Wj + u2 + . . . converges to the sum I, and ^ + v2 + . . . to

the sum m, then (M.J + v^ + (uz+ v2) + ... converges to the sum l+m.

(7) If M! + uz + . . . converges to the sum I then ki^ + kuz + . . .

converges to the sum kl.

(8) If Wj + u2 4- u3 + ... is convergent then lim un 0.

(9) If MJ + u2 + u 3 + . . . is convergent, then so is any series

formed by grouping the terms in brackets, and the sums of the two

series are the same.
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As an example, let us prove theorem (5). Let

Then p(ri)-*~r, &amp;lt;r(ri)-*~s, p (tt)W, &amp;lt;r (w)W.

But
&amp;lt;p (n) ^ (n)

= pp
- cro- + i (per + p &amp;lt;r),

and pp
- o-o- -* rr - ss

, p&amp;lt;r
+ p a- - rs + r s ;

so that (p (ri) ^ (ri)
-* rr - ss + i (rs + r s),

i.e. (p (ri) ^ (ri)
-*- (r+ is) (/ -f is

)
= Im.

The following theorems are of a somewhat different character.

(10) In order that
&amp;lt;j&amp;gt;

(n) p (n) + ia- (n) should converge to

zero as n -*~ oo
,
it is necessary and sufficient that

should converge to zero.

If p(ri) and
&amp;lt;r(ri)

both converge to zero then it is plain that

does so. The converse follows from the fact that the numerical value of p or

&amp;lt;r cannot be greater than v/(p
2+ o&quot;

2
)

(11) More generally, in order that
&amp;lt;f&amp;gt;(n)

should converge to a

limit I, it is necessary and sufficient that

should converge to zero.

For (p(ri)-l converges to zero, and we can apply (10).

(12) Theorems 1 and 2 of 8384 are still true when

$ (n) and un are complex.

We have to show that the necessary and sufficient condition that
&amp;lt;(?i)

should tend to I is that

|^W-^(i)l&amp;lt;* .............................. (1)

when ?i2 &amp;gt; HI ^n .

If
&amp;lt;p (ri)-*-l then p (ri)-*r and a- (n)-*~s, and so we can find numbers 7i and

nQ

&quot;

depending on 8 and such that

I PW -PW !&amp;lt;H I cr(na) -r (nO |&amp;lt;H

the first inequality holding when n2 &amp;gt; n^ ^w ,
and the second when n2 &amp;gt; n^ ^n &quot;.

Hence

when n%&amp;gt;ni ~n ,
where nQ is the greater of

n&amp;lt;j
and

no&quot;.
Thus the condition

(1) is necessary. To prove that it is sufficient we have only to observe that

I P (2)-p (%) 1^10 (* 2)-0 (l) I

&amp;lt; S

when w2 &amp;gt;% ^o. Thus p (n} tends to a limit r, and in the same way it may
be shown that o- (ri) tends to a limit s.
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87. The limit of zn as n - x
, z being any complex

number. Let us consider the important case in which &amp;lt; (n) zn.

This problem has already been discussed for real values of z in

72.

If z* -* I then zn+l I, by (1) of 86. But, by (4) of 86,

zn^ = zzn -^zl,
~

and therefore I = zl, which is only possible if (a) I = or (b) z = 1.

If z = 1 then Km zn =l. Apart from this special case the limit,

if it exists, can only be zero.

Now if z = r (cos + i sin 0), where r is positive, then

zn = rn (cos nO + i sin nO),

so that
|

zn
|

= rn . Thus sn
|

tends to zero if and only if r &amp;lt; 1
;

and it follows from (10) of 86 that

lim zn =

if and only if r &amp;lt; 1. In no other case does zn converge to a limit,

except when 0=1 and zn -* 1.

88. The geometric series 1 + z + z* + . . . when z is

complex. Since

unless z\ y
when the value of sn is n, it follows that the series

1 -f # + z* + ... is convergent if and only if r \z &amp;lt; 1.

sum w/ie/i convergent is 1/(1 #).

Thus if z r (cos 0+i sin 0)
= r Cis 0, and r &amp;lt; 1, we have

or 1 + r Cis + r2 Cis 2 (9 + . . .
=

1/(1
- r Cis 0)

= (lr cos + ir sin 0)/(l
- 2r cos + r2

).

Separating the real and imaginary parts, we obtain

1 + r cos + r2 cos 20 + . . .
=

(1
- r cos 0)/(l

- 2r cos + r2

),

r sin + ?-
2 sin 20 + . . .

= r sin 01(1
- 2r cos 6 + r2

),

provided r &amp;lt; 1. If we change into + TT, we see that these

results hold also for negative values of r numerically less than 1.

Thus they hold when - 1 &amp;lt; r &amp;lt; 1.
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Examples XXXIII. 1. Prove directly that (f)(n)
= rn cosn0 converges

to when r&amp;lt; 1 and to 1 when r= I and 6 is a multiple of 2ir. Prove further

that if r= l and 6 is not a multiple of 2ir, then
&amp;lt;(rc)

oscillates finitely; if

r&amp;gt;l and 6 is a multiple of 27r, then &amp;lt; (w)-^+ co
;
and if r&amp;gt; 1 and &amp;lt;9 is not a

multiple of STT, then $ () oscillates infinitely.

2. Establish a similar series of results for $ (n)
= rn sin w0.

3. Prove that zm+zm + l+ ... = zml(l
-
z\

if and only if
j

s
|

&amp;lt;
1. Which of the theorems of 86 do you uso ?

4. Prove that if - 1&amp;lt; r &amp;lt;
I then

1 + 2r cos 6+ 2r2 cos 20+ . . .
=

(1
- r2)/(l

- 2r cos + r2
).

5. The series 1

converges to the sum 1 / (l - -^\
= 1 + z if

\ z{(l +z)\&amp;lt;l.
Show that this

condition is equivalent to the condition that z has a real part greater than -\.

MISCELLANEOUS EXAMPLES ON CHAPTER IV.

1. The function
&amp;lt;j&amp;gt;(ri)

takes the values 1, 0, 0, 0, 1, 0, 0, 0, 1, ... when

7i= 0, 1, 2, .... Express &amp;lt;p(n)
in terms of n by a formula which does not

involve trigonometrical functions.
[&amp;lt;

(rc)
= J (1 + (

- 1
}
n+ in+ (

-
*)&quot;}]

2. If (ri) steadily increases, and ^ (ri) steadily decreases, as n tends to

oo
,
and if ^ (n)&amp;gt;&amp;lt;j&amp;gt;(ri)

for all values of n, then both (ri)
and ^ (w) tend to

limits, and lim&amp;lt;()^lim^(?0. [This is an intermediate corollary from

69.]

3. Prove that, if

then
(jf) (?i+ 1) &amp;gt; (?0 and ^ (n+ 1) &amp;lt; ^ (ri). [The first result has already been

proved in 73.]

4. Prove also that \^ (ri) &amp;gt; (w) for all values of rc- : and deduce (by means

of the preceding examples) that both
&amp;lt;f&amp;gt;(ri)

and ^(n) tend to limits as n

tends to GO .
*

5. The arithmetic mean of the products of all distinct pairs of positive

integers whose sum is n is denoted by Sn . Show that lim ( n/?i
2
)
=

l/6.

(Math. Trip. 1903.)

* A proof that lim {^ (n)
-

(n)} =0, and that therefore each function tends to

the limit e, will be foiind in Chrystal s Algebra, vol. ii, p. 78. We shall however

prove this in Ch. IX by a different method.
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6. Prove that if Xi = %{x+ (Alx}}, a^ifo+ C^M)}* and so on, x and
A being positive, then \\mxn=*JA.

[Prove first that f
n

&quot;

IA
= fe4^ .]

7. If (ri) is a positive integer for all values of w, and tends to QO with n,

then x tends to if 0&amp;lt;#&amp;lt;1 and to +00 if #&amp;gt;1. Discuss the behaviour

of 4?
,
as 7i-* co

,
for other values of x.

8.* If an increases or decreases steadily as n increases, then the same is

true of (! -f a 2+ . . . + #n)M-

9. If #n + i
=*/(+#n), an(^ ^ and #1 are positive, then the sequence xlt #2l

#3, ... is an increasing or decreasing sequence according as x\ is less than or

greater than a, the positive root of the equation x*=x + k
t
and in either case

x-*~a as ?i--co.

10. If # + i
= ^/(l+#n) and k and x\ are positive, then the sequences

#i) #3&amp;gt;
x

b-&amp;gt;

an^ ^25 -^45 ^6? are one an increasing and the other a decreasing

sequence, and each sequence tends to the limit a, the positive root of the

equation #2
-fx= k.

11. The function /(#) is increasing and continuous (see Ch. V) for all

values of sc, and a sequence #j, #2 ,
#3 , ... is denned by the equation

#n + i=/(#n)- Discuss on general graphical grounds the question as to

whether xn tends to a root of the equation #=/(#). Consider in particular

the case in which this equation has only one root, distinguishing the cases in

which the curve y=f(x) crosses the line y= x from above to below and from

below to above.

12. If #j, #2 are positive and #n + 1
= (^n +-^n-i)j then the sequences #l5 #3 ,

#5, ... and
.a?2&amp;gt; #4&amp;gt; #6&amp;gt;

are one a decreasing and the other an increasing

sequence, and they have the common limit J (xi+ 2#2).

13. Draw a graph of the function y denned by the equation

,. - ,,, , m .= hm- .* ^
.

-

(Math. Trip. 1901.)X +J.

14. The function y= lim

is equal to except when x is an integer, and then equal to 1. The function

x n&amp;lt;&amp;gt;xsm*irx

n-*-oo

is equal to (5;) unless ^ is an integer, and then equal to

15. Show that the graph of the function

* Exs. 8 12 are taken from Bromwich s Infinite Series.
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is composed of parts of the graphs of
&amp;lt;(#)

and ^(x), together with (as a rule)

two isolated points. Is y denned when (a) x= 1, (6) x= -
1, (c) x= 1

16. Prove that the function y which is equal to when x is rational, and

to 1 when x is irrational, may be represented in the form

y= lim
s&amp;lt;7?i{sin

2
(w! irx)},

TO-*- 00

where sgnx- lim (2/7r) arc tan (nx\

as in Ex. xxxi. 14. [If x is rational then sin2
(m ! 7r.r), and therefore

sgn (sin
2
(m ! nx)},~is equal to zero from a certain value of m onwards : if

x is irrational then sin2
(m \ irx) is always positive, and so sgn (sin

2
(m ! irx)}

is always equal to 1.]

Prove that y may also be represented in the form

1 - lim [lim (cos (m I 7rx)}
2n

].

18. If |*|&amp;lt;|a|,then
- = --

(l + - + -2 + ...);2-a a\ a a2
/

andif ,|&amp;gt;|a|,then
-=

19. Expansion of (^0+5)/(a2
2+2^+ c) in powers of z. Let a, 3

be the roots of az* + 2bz+ c=0, so that a02 -f-2&.s+ c=a(- a)(z-/3). We
shall suppose that A, B, a, 6, c are all real, and a and unequal. It is then

easy to verify that

Az+B I
_

a (a -ft) \z^a^ z-ft

There are two cases, according as 52
&amp;gt; ac or 62

&amp;lt; ac.

(1) If 62 &amp;gt;ac then the roots a, ft are real and distinct. If \z is less than

either |a| or |/3| we can expand I/(z a) and lj(zft) in ascending powers of z

(Ex. 18). If \z\
is greater than either |a| or

\ft\ we must expand in descending

powers of z; while if \z\ lies between |a| and
\ft\ one fraction must be ex

panded in ascending and one in descending powers of . The reader should

write down the actual results. If \z\ is equal to a or
|/3|

then no such

expansion is possible.
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(2) If b2
&amp;lt;ac then the roots are conjugate complex numbers (Ch. Ill

43), and we can write

a= pCis(p, /3=p Cis(-&amp;lt;p),

where p
2=

a/3
=

c/a, p cos
&amp;lt;p

= % (a+ /3)
= -

6/a, so that cos = -

If
1

2
1

&amp;lt; p then each fraction may be expanded in ascending powers of z.

The coefficient of zn will be found to be

Ap sin ncp+B sin {

If
|s|&amp;gt;p

we obtain a similar expansion in descending powers, while if
\ z\
=

no such expansion is possible.

20. Show that if
\z\&amp;lt;l

then

[The sum to n terms is -

__
,

2
- r

.]

21. Expand L](z-a)
2 in powers of z, ascending or descending according

as
\z\&amp;lt;

a
|

or
|s|&amp;gt;|a|.

22. Show that if 62= ac and
|

az
\

&amp;lt;
\

b
\

then

a?

where pn={(-a)
n
/b

n + 2
} {(n+ l)aB-nbA}-, and find the corresponding ex

pansion, in descending powers of 2, which holds when
|a|&amp;gt;|6|.

23. Verify the result of Ex. 19 in the case of the fraction 1/(1 +z
2
). [We

have

24. Prove that if
\z\&amp;lt;\

then

^-^sin^+ l).}.

25. Expand (l+z)/(l+z
2
\ (l + 22)/(l + ^3) and (l +^22

)/(l+^) in ascend

ing powers of z. For what values of z do your results hold ?

26. If a/(a+ bz + C22
)
= 1 +p&+p2z

2
+... then

(Math. Trip. 1900.)

27. If lim sn
= l then

^
&amp;gt;1

lim

[Let =?+ #. Then we have to prove that (*i-K2 + .-. + O/w tends to

zero if tn does so.
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We divide the numbers ^, t2 ,
... tn into two sets tlt t2 , ...,tp and tp + l ,

fp + 2, ) tn- Here we suppose that p is a function of n which tends to oo

as %-ao, but more slowly than n, so that p-+-cc and p/n-*-0 : e.g. we might
suppose p to be the integral part of Jn.

Let be any positive number. However small 8 may be, we can choose
nQ so that fp + 1 , fp + 2 * are all numerically less than %8 when ft&amp;gt;ft

,
and so

But, if A is the greatest of the moduli of all the numbers t
lt t2 , ..., we

have

and this also will be less than %8 when n&amp;gt;nQ) if nQ is large enough, since

p/n -*- as n-*- x . Thus

when n&amp;gt;n
;
which proves the theorem.

The reader, if he desires to become expert in dealing with questions about

limits, should study the argument above with great care. It is very often

necessary, in proving the limit of some given expression to be zero, to split it

into two parts which have to be proved to have the limit zero in slightly
different ways. When this is the case the proof is never very easy.

The point of the proof is this : we have to prove that (ti + t
z+ ... + tn )/n is

small when n is large, the t s being small when their suffixes are large. We
split up the terms in the bracket into two groups. The terms in the first

group are not all
jsmall,

but their number is small compared with n. The
number in the second group is not small compared with n, but the terms are

all small, and their number at any rate less than n, so that their sum is small

compared with n. Hence each of the parts into which (tl+ t2+... + tn)jn
has been divided is small when n is large.]

28. If &amp;lt; (n)
-

(n
-

1) -^ I as rc-*. oo
,
then (n)/n-^l.

[If (ri)
= s

l +82 + ...+8n then
&amp;lt;j&amp;gt; (n}-&amp;lt;$&amp;gt; (n- !)

= *, and the theorem re

duces to that proved in the last example.]

29. If *= (1
-

(
-

l)
n
},

so that sn is equal to 1 or according as n is odd
or even, then (*l +*j+.,.+*)/n--! as ?I--QO.

[This example proves that the converse of Ex. 27 is not true : for sn

oscillates as M-*-OO
.]

30. If cn ,
sn denote the sums of the first n terms of the series

then

n. 11



CHAPTER V

LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE.

CONTINUOUS AND DISCONTINUOUS FUNCTIONS

89. Limits as x tends to oo . We shall now return to

functions of a continuous real variable. We shall confine our

selves entirely to one-valued functions*, and we shall denote such

a function by &amp;lt;/&amp;gt;
(as). We suppose x to assume successively all

values corresponding to points on our fundamental straight line

A, starting from some definite point on the line and progressing

always to the right. In these circumstances we say that x

tends to infinity, or to oo
,
and write x ^ cc . The only difference

between the c

tending of n to oo discussed in the last chapter, and

this tending of x to oo
,

is that x assumes all values as it tends

to oo
,
i.e. that the point P which corresponds to x coincides in

turn with every point of A to the right of its initial position,

whereas n tended to GO by a series of jumps. We can express this

* distinction by saying that x tends continuously to oo .

As we explained at the beginning of the last chapter, there is

a very close correspondence between functions
f

of x and functions

I

of n. Every function of n may be regarded as a selection from

the values of a function of x. In the last chapter we discussed

the peculiarities which may characterise the behaviour of a

function $ (n) as n tends to oo . Now we are concerned with the

same problem for a function &amp;lt; (at) ;
and the definitions and

theorems to which we are led are practically repetitions of those

of the last chapter. Thus corresponding to Def. 1 of 58 we

have :

* Thus *Jx stands in this chapter for the one-valued function + xAr and not (as

in 26) for the two-valued function whose values are +*Jx and -
x/a?.
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DEFINITION 1. The function
&amp;lt;j&amp;gt; (x) is said to tend to the limit I

as x tends to GO
if, when any positive number 8, however small, is

assigned, a number x (8) can be chosen such that, for all values of
x equal to or greater than x (8),

&amp;lt;/&amp;gt; (x) differs from I by less than 8,

i.e. if

\$(x)-l &amp;lt;8

wlien x = x (8).

When this is the case we may write

lim &amp;lt; (x)
=

I,

a?-*-co

or, when there is no risk of ambiguity, simply lim
&amp;lt;f&amp;gt; (x)

=
/, or

&amp;lt;f&amp;gt; (x) -*- 1. Similarly we have :

DEFINITION 2. The function &amp;lt; (x) is said to tend to oo with

x
if, when any number A, hoiuever large, is assigned, we can choose

a number x (&) such that

$ (x) &amp;gt; A
when x ^ x (A).

We then write

&amp;lt;f&amp;gt;
(x) -^ oo .

Similarly we define &amp;lt; (x) -* cc *, Finally we have :

DEFINITION 3. If the conditions of neither of the two preceding

definitions are satisfied, then
&amp;lt;/&amp;gt;

(x) is said to oscillate as x tends

to oo . If | &amp;lt;/&amp;gt;
(x) |

is less than some constant K when x = x^t then

4&amp;gt;(x)
is said to oscillate finitely, and otherwise infinitely.

The reader will remember that in the last chapter we con

sidered very carefully various less formal ways of expressing the

facts represented by the formulae
(ft (n) -*

I,
&amp;lt;f&amp;gt;

(n) -* oo . Similar

modes of expression may of course be used in the present case.

Thus we may say that
&amp;lt;/&amp;gt; (x) is small or nearly equal to I or large

when x is large, using the words small
, nearly ,

(

large in

a sense similar to that in which they were used in Ch. IV.

* We shall sometimes find it convenient to write
+&amp;lt;x&amp;gt;,

a;-*- + oo,0(o;)-*- + Go

instead of oo
, a;-*-oo, &amp;lt; (#)- GO.

t In the corresponding definition of 62, we postulated that
| (n) |

&amp;lt;K for all

values of n, and not merely when n &amp;gt;. nQ . But then the two hypotheses would have
been equivalent; for if |0()| &amp;lt; K when w&amp;gt;r?

, then
\&amp;lt;p(n)\&amp;lt;K

for all values

of n, where K is the greatest of 0(1), 0(2), ... , 0( -1) and K. Here the

matter is not quite so simple, as there are infinitely many values of x less than XQ.

112
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Examples XXXIV. 1. Consider the behaviour of the following functions

x\ a*
t [a], x-[x], [x\

The first four functions correspond exactly to functions of n fully dis

cussed in Ch. IV. The graphs of the last three were constructed in Ch. II

(Exs. xvi. 1, 2, 4), and the reader will see at once that [a?]-*- oo
,
x - \x\ oscillates

finitely, and [#] + *J{x
-

[x]} -* co .

One simple remark may be inserted here. The function $(x )
= x-[x]

oscillates between and 1, as is obvious from the form of its graph. It is

equal to zero whenever x is an integer, so that the function
(f&amp;gt; (n) derived

from it is always zero and so tends to the limit zero. The same is true if

(j) (x]
= sin #77, &amp;lt; (n)

= sin mr = 0.

/It

is evident that
&amp;lt;(#)-*-

or
&amp;lt;(#)-*-oo

or ^ (#)-- oo involves the corre

sponding property for $ (ri), but that the converse is by no means always

2. Consider in the same way the functions :

(sin#7r)/#, #sin#7r, (# sin #?r)
2
, tan^Tr, a cos2 XTT + b sin2 #71-,

illustrating your remarks by means of the graphs of the functions.

3. Give a geometrical explanation of Def. 1, analogous to the geometrical

explanation of Ch. IV, 59.

4. If
(f&amp;gt; (x)-**l t

and I is not zero, then $ (x) cos XTT and $ (#) sin #?r oscillate

finitely. If $ (#)-- oo or
&amp;lt;(#)-- oo, then they oscillate infinitely. The

graph of either function is a wavy curve oscillating between the curves

y=$(*) and y -$(#).

5. Discuss the behaviour, as x-*~ oo
,
of the function

y=f (x) COS2 Xir +F (x] sin2 xrr
t

where /(a;) and F (x} are some pair of simple functions (e.g. x and x2
). [The

graph of y is a curve oscillating between the curves y=-j(x}, y=F(x}J\

90. Limits as x tends to oo . The reader will have no

difficulty in framing for himself definitions of the meaning of the

assertions x tends to oo
,
or x -&amp;gt; oo and

lim (x) =1, $ (x)
-* oo

,
&amp;lt;j&amp;gt;

(x)
-^ oo .

a:-*- co

In fact, if x = y and
&amp;lt;p (x)

=
&amp;lt;f) ( y)

=
ty (y), then y tends

to oo as x tends to oo
,
and the question of the behaviour of

&amp;lt;j&amp;gt;
(x) as x tends to oo is the same as that of the behaviour of

\lr (y) as y tends to oo .
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91. Theorems corresponding to those of Ch. IV, 6367.
The theorems concerning the sums, products, and quotients of functions

proved in Ch. IV are all true (with obvious verbal alterations which the

reader will have no difficulty in supplying) for functions of the continuous

variable x. Not only the enunciations but the proofs remain substantially
the same.

92. Steadily increasing or decreasing functions. The definition C (

which corresponds to that of 69 is as follows : the function $ (x) will }

be said to increase steadily with x if 0(^2)=^&amp;gt;(^i) whenever x^x-^. In

many cases, of course, this condition is only satisfied from a definite value

of x onwards, i.e. when x.2 &amp;gt;&\
#. The theorem which follows in that section

requires no alteration but that of n into x : and the proof is the same, except
for obvious verbal changes.

If
&amp;lt;(#2)&amp;gt;$&amp;lt;X)&amp;gt;

tne possibility of equality being excluded, whenever

i&amp;gt;

then
&amp;lt;(#)

will be said to be steadily increasing in the

We shall find that the distinction is often important (cf. 108

ue, wenever
he stricter sense. 1 1

8 109). t
V\

* f

The reader should consider whether or no the following functions

increase steadily with x (or at any rate increase steadily from a certain

value of x onwards): x^-x, #+sin#, #+ 2sin#, ^2+ 2sin^, [#], [#] + sin#,

\x\+*]\x
-

[#]}. All these functions tend to oo as #- oo .

93. Limits as x tends to 0. Let &amp;lt; (x) be such a function

of x that lim
&amp;lt;/&amp;gt;

(x)
=

I, and let y \\x. Then

say. As x tends to oo
, y tends to the limit 0, and

i/r (y) tends to

the limit I.

Let us now dismiss x and consider ty (y) simply as a function

of y. We are for the moment concerned only with those values

of y which correspond to large positive values of as, that is to say
with small positive values of y. And ^r (y) has the property that

by making y sufficiently small we can make
&amp;lt;fy (y) differ by as

little as we please from I. To put the matter more precisely,

the statement expressed by lim (x)
= I means that, when any

positive number 8, however small, is assigned, we can choose

XQ so that
| &amp;lt;p

(oc) I &amp;lt; 8 for all values of x greater than or equal X

to a? . But this is the same thing as saying that we can choose

7/0
=

l/a? so that
| i|r (y) I

\

&amp;lt; 8 for all positive values of y less than v (

or equal to y .

We are thus led to the following definitions :
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A. //, when any positive number B, however small, is assigned,
we can choose yQ (B) so that

when &amp;lt; y y (B), then we say that $ (y) tends to the limit I as y
tends to by positive values, and we write

lim
&amp;lt;f&amp;gt; (y) = I.

y++Q

B. If, when any number A, however large, is assigned, we can

choose
2/0 (A) so that

when &amp;lt; y
&amp;lt;

y (A), /?&amp;lt;?n we say /*a
&amp;lt;(?/)

terccfo to oo as

to &?/ positive values, and we write

- oo .

We define in a similar way the meaning of &amp;lt; (?/) tends to

the limit I as y tends to by negative values
, or lim (f)(y)

= l

when y -^ . We have in fact only to alter &amp;lt; y &amp;lt;

y (B) to

?/ (5) = y &amp;lt; in definition A. There is of course a corresponding

analogue of definition B, and similar definitions in which

as y -* + or y
- 0.

If lim 6(y) = l and lim
&amp;lt;b(y)

=
l, we write simply

V++0 y+ -0

lim

This case is_so important that it is worth while to give a formal

definition.
f

If, when any positive number S, however small, is assigned, we
can choose y (8) so that, for all values of y different from zero but

numerically less than or equal to y (B), &amp;lt;/&amp;gt; (y) differs from I by less

than B, then we say that &amp;lt; (y) tends to the limit I as y tends to 0,

and write

lim &amp;lt; (y)
= I

y+ o

So also, if &amp;lt; (y)
-* co as y -* + and also as y -*

0, we say
that &amp;lt; (y)

-* oo as ?/ -* 0. We define in a similar manner the

statement that -*- co as -* 0.
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Finally, if
&amp;lt;f&amp;gt; (y) does not tend to a limit, or to co

,
or to

oo
,
as y -* + 0, we say that

&amp;lt;f&amp;gt; (y) oscillates as y -* + 0, finitely

or infinitely as the case may be; and we define oscillation as

y -* in a similar manner.

The preceding definitions have been stated in terms of a

variable denoted by y : what letter is used is of course immaterial,

and we may suppose x written instead of y throughout them.

94. Limits as x tends to a. Suppose that
&amp;lt;l&amp;gt;(y)-**l

as

y -* 0, and write

y = x-a, &amp;lt;j&amp;gt; (y)
=

&amp;lt;j&amp;gt; (x
-

a) = ^ (x).

If y -* then x -* a and ^r (x) -*
I, and we are naturally led to

write

lim
i/r (x)

= l
t

*-&amp;gt;

or simply lim ty (x)
= I or ^r (x) -* Z, and to say that

&amp;gt;|r (a;)
tends to

the limit I as x tends to a. The meaning of this equation may
be formally and directly defined as follows: if, given S, we can

always determine e(8) so that

when &amp;lt; x a
\

^ e (B), then

lim
(f&amp;gt; (x)

= L

By restricting ourselves to values of x greater than a, i.e. by

replacing 0&amp;lt;\x
a

|

^ e (8) by a&amp;lt;x a + e (8), we define *

c/&amp;gt;
(#)

tends to when x approaches a from the right , which we may
write as

lim
&amp;lt;p (x)

= I.

In the same way we can define the meaning of

lim cf&amp;gt; (x) = I. \ }

Thus lim
cf&amp;gt;(x)

= l is equivalent to the two assertions
a;-*- a

lim $ (a?)
=

I, lim
&amp;lt;jf&amp;gt;

(a?)
= L

\\
x-**a+Q a?-*-a-0

We can give similar definitions referring to the cases in which

&amp;lt;(a?)-*-oo
or

&amp;lt;(#)-
x as -^-a through values greater or less

than a
;
but it is probably unnecessary to dwell further on these

definitions, since they are exactly similar to those stated above in
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the special case when a 0, and we can always discuss the

behaviour of
&amp;lt;j&amp;gt;(%)

as x-*-a by putting x a y and supposing
that 7/^0.

/f M
95. Steadily increasing or decreasing functions. If there is a number

^ 6 such that 0(# )^ &amp;lt;(#&quot;)
whenever a-e&amp;lt;x &amp;lt;x&quot;&amp;lt;a+ ,

then
&amp;lt;(#)

will be

said to increase steadily in the neighbourhood of x=a.

Suppose first that x&amp;lt;a, and put y=\l(a-x}. Then y-^co as x--a 0,

and
&amp;lt;b(x}

=
ty(y} is a steadily increasing function of y, never greater than $(a).

It follows from 92 that &amp;lt; (a?) tends to a limit not greater than $ (a). We
shall write

lim
&amp;lt;f(a?)

= 0(a+0).
JJ -* + ()

We can define (a
-

0) in a similar manner
;
and it is clear that

It is obvious that similar considerations may be applied to decreasing

functions.

& If
&amp;lt;$)(x }&amp;lt;$(x&quot;},

the
possibility

of equality being excluded, whenever

!
a &amp;lt;x &amp;lt;x&quot;&amp;lt;a+ e, then

&amp;lt;(#)
will be said to be steadily increasing in the

96. Limits of indetermination and the principle of convergence.
All of the argument of 80 84 may be applied to functions of a con

tinuous variable x which tends to a limit a. In particular, if $(#) is

.4 bounded in an interval including a
(i.e.

if we can find e, .Xf, and K so that

sHfr(x}&amp;lt;K when a e &amp;lt;#
&amp;lt; a+ e) *, then we can define X and A, the lower and

X upper limits of indetermination of (x} as #--, and prove that the necessary

and sufficient condition that ^ (x}-*-l as x-~a is that X= A= . We can also

establish the analogue of the principle of convergence, i.e. prove that the

necessary and sufficient condition that (x] should tend to a limit as x-**a is

that, when d is given, we can choose e (6) so that
\ (o?2)

- $ (#1) j
&amp;lt;

Examples XXXV. 1. If

as x-*~ a, then (#) +^ (a?)W+ ^, $(x] ^(x}-+ll ,
and

&amp;lt;t&amp;gt;

unless in the last case / = 0.

[We saw in 91 that the theorems of Ch. IV, 63 et seq. hold also for

functions of x when #-*-oc or#---oo. By putting x\\y we may extend

them to functions of ?/, when y-*-0, and by putting y=z-a to functions of 0,

when 0-*-a.

* For some further discussion of the notion of a function bounded in an interval

see 102.
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The reader should however try to prove them directly from the formal

definition given above. Thus, in order to obtain a strict direct proof of the

first result he need only take the proof of Theorem I of 63 and write

throughout x for n, a for oo and 0&amp;lt; \x
- a &amp;lt;e for n &amp;gt;n

.]

2. If m is a positive integer then xm -*~Q as #-*0.

3. If m is a negative integer then #m---f oo as #^+0, while #&quot;*- oo or

^m^ + oo as x-*~-0, according as m is odd or even. If m= then xm \

and xm -*-\.

4. lim (a+ bx+ cx2+ ... +kxm}
= a.

5. lim \(a + bx+ ... -4-#
m
)/(a + /5#+ ... + K.^)}= a/a, unless a=0. Ifa=0

arid a=t=0, /3=t=0, then the function tends to +00 or - oo
,
as #-*-+ (), according

as a and /3 have like or unlike signs; the case is reversed if #-* (). The

case in which both a and a vanish is considered in Ex. xxxvi. 5. Discuss the

cases which arise when a=t=0 and more than one of the first coefficients in the

denominator vanish.

6. lim xm = am
,
if m is any positive or negative integer, except when a=

*-*

and m is negative. [If m&amp;gt;0, put x=y + a and apply Ex. 4. When
w&amp;lt;0,

the result follows from Ex. 1 above. It follows at once that lim P (x}-P (a),

if P (x) is any polynomial.]

7. lim R (x}
=R (a), if R denotes any rational function and a is not one

x-*&amp;gt;a

of the roots of its denominator.

8. Show that lim xm=am for all rational values of m, except when a=0
v-^a

and m is negative. [This follows at once, when a is positive, from the in

equalities (9) or (10) of 74. For
|

xm - am
\

&amp;lt;
H

\

x - a
\ ,
where H is the greater

of the absolute values of mxm ~ l and mam ~ l
(cf. Ex. xxviri. 4). If a is negative

we write x= y and a= - b. Then

97. The reader will probably fail to see at first that any proof

of such results as those of Exs. 4, 5, 6, 7, 8 above is necessary.

He may ask why not simply put a; = 0, or x = a1 Of course

we then get a, a/a, am
,
P (a), R (a) It is very important that he

should see exactly where
ffiejis wrong) We shall therefore consider

this point carefully before passing on to any further examples.

The statement lim
(f&amp;gt;(x)

= l

x-*Q *

is a statement about the values of &amp;lt; (x) when x has any value
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distinct from but differing by little from zero *. It is not a statement

about the value of &amp;lt; (x) ivhen x = 0. When we make the state

ment we_assert that, when x is nearly equal to zero,
&amp;lt;j&amp;gt;(x)

is nearly

equal to I. We assert nothing whatever about what happens
when x is actually equal to 0. So far as we know,

&amp;lt;f&amp;gt;
(x) may

not be defined at all for # = 0; or it may have some value

other than I. For example, consider the function defined for all

values of x by the equation &amp;lt; (x)
= 0. It is obvious that

Now consider the function ty (x) which differs from &amp;lt; (x) only in

that
-fy (x)

= 1 when x = 0. Then

for, when x is nearly equal to zero, ty (x) is not only nearly but

exactly equal to zero. But
-^r (0)

= 1. The graph of this function

consists of the axis of x, with the point x = left out, and one

isolated point, viz. the point (0, 1). The equation (2) expresses

the fact that if we move along the graph towards the axis of y,

from either side, then the ordinate of the curve, being always equal

to zero, tends to the limit zero. This fact is in no way affected

by the position of the isolated point (0, 1).

The reader may object to this example on the score of

artificiality : but it is easy to write down simple formulae repre

senting functions which behave precisely like this near # = 0.

One is

N where [1
-

x-] denotes as usual the greatest integer not greater

than 1 - &. For if x = then ^ (x)
=

[!]
= !; while if &amp;lt; x &amp;lt; 1,

or - 1 &amp;lt; x &amp;lt; 0, then &amp;lt; 1 - x* &amp;lt; 1 and so ^ (x) = [1
- x2

]
= 0.

Or again, let us consider the function

y = x/x

already discussed in Ch. II, 24, (2). This function is equal

to 1 for all values of x save x = 0. It is not equal to 1 when

x = Q: it is in fact not defined at all for x = 0. For when we say

* Thus in Def. A of 93 we make a statement about values of y such that

Q&amp;lt;y&amp;lt;yQ ,
the first of these inequalities being inserted expressly in order to

exclude the value w = 0.
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that
&amp;lt;f&amp;gt;

(x) is defined for x we mean (as we explained in Ch. II,

I.e.) that we can calculate its value for x = by putting x ==

in the actual expression of
(f&amp;gt; (x). In this case we cannot. When

we put as = in &amp;lt; (x) we obtain 0/0, which is a meaningless

expression. The reader may object divide numerator and de

nominator by x . But he must admit that when x = this is

impossible. Thus y = as
/as is a function which differs from y = 1

solely in that it is not defined for x 0. None the less

lim (x/x)
= 1,

for x/x is equal to 1 so long as x differs from zero, however small

the difference may be.

Similarly &amp;lt;/&amp;gt;
(x)

=
{(x + I)

2

!}/,
= x + 2 so long as x is not

equal to zero, but is undefined when x = 0. None the less

lim
&amp;lt;j&amp;gt; (x)

= 2.

On the other hand there is of course nothing to prevent the

limit of $ (x) as x tends to zero from being equal to &amp;lt; (0), the value

of $ (x) for x=Q. Thus if
&amp;lt;j)(x)=x

then (0)
= and lim &amp;lt; (x)

= 0.

This is in fact, from a practical point of view, i.e. from the point

of view of what most frequently occurs in applications, the

ordinary case.

Examples XXXVI. 1 . lim (x
2- a2

)/(#
-

a)= 2a.
x-*-a

2. lim (x
m am)/(# a)

=mam ~ !
, if m is any integer (zero included).

*-*

3. Show that the result of Ex. 2 remains true for all rational values

of m, provided a is positive. [This follows at once from the inequalities

(9) and (10) of 74.]

4. lim (x
7 - %&+ 1)/(^

- &B2+ 2)
= 1 . [Observe that x - 1 is a factor of

x+l
both numerator and denominator.]

5. Discuss the behaviour of

as x tends to by positive or negative values.

[If m &amp;gt; n, lim (x)
= 0. If m= n, lim (x)

= a /6 . If m &amp;lt;
n and n - m is

even, (#) -*-+ x or &amp;lt; (x)
- - co according as /6 &amp;gt;

or or /6 &amp;lt; 0- Ifm&amp;lt;n and

n - M is odd, &amp;lt; (#)-- + oo as #-*-+ () and &amp;lt;(.*?)---
co as .v-^-0, or &amp;lt;(#)-*--oo

as o;--+ and
&amp;lt;(#)-* + 00 as #-*-(), according as /6 &amp;gt;0 or /6 &amp;lt;0.]
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6. Orders of smallness. When x is small x2 is very much smaller,

#3 much smaller still, and so on : in other words

lim(o;
2
/#)

=
0, lim (#3/#

2
)=0, ....

x-*-Q a;-*-0

Another way of stating the matter is to say that, when x tends to 0,

tf
2
,
x3

,
... all also tend to 0, but x2 tends to more rapidly than x, x3 than

#2
,
and so on. It is convenient to have some scale by which to measure

the rapidity with which a function, whose limit, as x tends to 0, is 0,

diminishes with x, and it is natural to take the simple functions x, x2
,
x3

,
...

as the measures of our scale.

We say, therefore, that (x} is of the first order of smallness if &amp;lt; (x}Jx

tends to a limit other than as x tends to 0. Thus 2x+3x2+x7 is of the

first order of smallness, since lim (2x+ 3x2+ x7
)/x= 2.

Similarly we define the second, third, fourth, ... orders of smallness. It

must not be imagined that this scale of orders of smallness is in any way
complete. If it were complete, then every function (x) which tends to zero

with x would be of either the first or second or some higher order of smallness.

This is obviously not the case. For example $(#)=#7/6 tends to zero more

rapidly than x and less rapidly than x2
.

The reader may not unnaturally think that our scale might be made

complete by including in it fractional orders of smallness. Thus we might

say that #7/5 was of the th order of smallness. We shall however see later

on that such a scale of orders would still be altogether incomplete. And
as a matter of fact the integral orders of smallness defined above are so

much more important in applications than any others that it is hardly

necessary to attempt to make our definitions more precise.

Orders of greatness. Similar definitions are at once suggested to

meet the case in which
&amp;lt;j&amp;gt;(x)

is large (positively or negatively) when x is

small. We shall say that &amp;lt; (x) is of the &th order of greatness when x is small

if $ (x)lx~
k=xjc

(f)(x) tends to a limit different from as x tends to 0.

These definitions have reference to the case in which #-*-(). There are of

course corresponding definitions relating to the cases in which #-*&amp;lt; or x-^a.

Thus if #*&amp;lt; (x) tends to a limit other than zero, as x-*-cc
,
then we say that

cf)(x) is of the &th order of smallness when x is large: while if (x
-

)
fc

&amp;lt; (x)

tends to a limit other than zero, as x-*-a, then we say that &amp;lt; (x) is of the &th

order of greatness when x is nearly equal to a.

*7. lim v/(l+^) =Hm v/(l-.r) = l. [Put l+x=y or l-xyt
and use

Ex. xxxv. 8.]

8. lim
(v/(l +#) - J(l - x)}/x=l. [Multiply numerator and denominator

* In the examples which follow it is to be assumed that limits as x -* are

required, unless (as in Exs. 19, 22) the contrary is explicitly stated.
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9. Consider the behaviour of (N/(l +xm)
- V(l - xm)}/x

n as x-*~0, m and n

being positive integers.

10.

12. Draw a graph of the function

Has it a limit as #--0 ? [Here y=l except for #= 1, J, ^, J, when y is

not denned, and y-*-l as #-*().]

, . sm x
.,

13. lim ----=1.
x

[It may be deduced from the definitions of the trigonometrical ratios* that

if x is positive and less than \K then

sin x
cos#&amp;lt;

------

x

&quot;- ..

2
&amp;lt;^

2 Hence lim (l
- ^^Wo, and lim ^^=1.

o;^-+0\ * / -*-+0 *

As is an even function, the result follows.]x

:Ll2!f= i 15. iim
&amp;gt;!H^7= a. IS this true if a= CH

,. arc sin x r r&amp;gt; . T
16. lim - = 1. [rut#=sm v.jx

tailor ,. arc tan cur
17. lim = a, lim =0.

x x

cosec x cot x , ,_,.! + cos
18. lim = k. 19. lim

x x+i tan^ 7i

* The proofs of the inequalities which are used here depend on certain pro

perties of the area of a sector of a circle which are usually taken as geometrically

iutuitive ;
for example, that the area of the sector is greater than that of the

triangle inscribed in the sector. The justification of these assumptions must be

postponed to Ch. VII.
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20. How do the functions sin(l/#), (I/a?) sin (!/#), #sin(l/#) behave

as #--0 ? [The first oscillates finitely, the second infinitely, the third

tends to the limit 0. None is defined when #=0. See Exs. xv. 6, 7, 8.]

21. Does the function

tend to a limit as x tends to ? [No. The function is equal to 1 except when
sin

( l/#)
= 0; i.e. when #=!/-, 1 /-, ..., I/TT, l/2rr, .... For these values the

formula for y assumes the meaningless form 0/0, and y is therefore not defined

for an infinity of values of x near #= 0.]

22. Prove that if m is any integer then [x]-*-m and # [#]-*() as

.r-*-m + 0, ai:d [V]--wi-l, # [#]-*-! as #--m-0.

98. Continuous functions of a real variable. The

reader has no doubt some idea as to what is meant by a continuous

curve. Thus he would call the curve C in Fig. 29 continuous,

the curve C generally continuous but discontinuous for as = f and

Either of these curves may be regarded as the graph of a

function $ (x). It is natural to call a function continuous if its

graph is a continuous curve, and otherwise discontinuous. Let us

take this as a provisional definition and try to distinguish more

precisely some of the properties which are involved in it.

In the first place it is evident that the property of the

function y = &amp;lt;f&amp;gt;(x)

of which C is the graph may be analysed into

some property possessed by the curve at each of its points.

To be able to define continuity for all values of x we must first

define continuity for any particular value of x. Let us there

fore fix on some particular value of a?, say the value x = j-
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corresponding to the point P of the graph. What are the

characteristic properties of &amp;lt; (x) associated with this value of x ?

In the first place &amp;lt;/&amp;gt; (x) is defined for x %. This is obviously
essential. If &amp;lt; (f) were not denned there would be a point

missing from the curve.

Secondly &amp;lt; (x) is defined for all values of x near x = %\ i.e. we
can find an interval, including x = f in its interior, for all points
of which

cj) (as) is defined.

Thirdly if x approaches the value % from either side then &amp;lt; (x)

approaches the limit
&amp;lt;/&amp;gt;

(f ).

The properties thus defined are far from exhausting those

which are possessed by the curve as pictured by the eye of

common sense. This picture of a curve is a generalisation from

particular curves such as straight lines and circles. But they are

the simplest and most fundamental properties : and the graph of

any function which has these properties would, so far as drawing
it is practically possible, satisfy our geometrical feeling of what a

continuous curve should be. We therefore select these properties
as embodying the mathematical notion of continuity. We are thus

led to the following

DEFINITION. The function &amp;lt;j&amp;gt; (x) is said to be continuous for
x % if & tends to a limit as x tends to % from either side, and
each of these limits is equal to &amp;lt; (f).

We can now define continuity throughout an interval. The
function

&amp;lt;/&amp;gt;(#)

is said to be continuous throughout a certain

interval of values of x if it is continuous for all values of x in that

interval. It is said to be continuous everywhere if it is continuous

for every value of x. Thus [x] is continuous in the interval

(e, 1 *), where e is any positive number less than J ;
and 1 and x

are continuous everywhere.

If we recur to the definitions of a limit we see that our

definition is equivalent to
&amp;lt;j&amp;gt;

(x) is continuous for x^ify given 8,

we can choose e (8) so that
| &amp;lt;(#)- &amp;lt;(f) |

&amp;lt; S
I/&quot;

=
|

#- ? |

= 6 (3) .

We have often to consider functions defined only in an interval

(a, b). In this case it is convenient to make a slight and obvious
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change in our definition of continuity in so far as it concerns the

particular points a and b. We shall then say that
&amp;lt;f&amp;gt; (x) is con

tinuous for x = a if
&amp;lt;f&amp;gt; (a + 0) exists and is equal to

&amp;lt;/&amp;gt; (a), and for

x = b if &amp;lt; (6 0) exists and is equal to
&amp;lt;/&amp;gt; (6).

99. The definition of continuity given in the last section may
be illustrated geometrically as follows. Draw the two horizontal

lines y =
&amp;lt;f&amp;gt;

(f)
- B and y = &amp;lt; (f) + 8. Then

| (a)
-

(f) |

&amp;lt; 8 ex

presses the fact that the point on the curve corresponding to x lies

Fig. 30.

between these two lines. Similarly |

x f |
^ e expresses the fact

that x lies in the interval ( e, +e). Thus our definition asserts

that if we draw two such horizontal lines, no matter how close

together, we can always cut off a vertical strip of the plane by
two vertical lines in such a way that all that part of the curve

which is contained in the strip lies between the two horizontal

lines. This is evidently true of the curve C (Fig. 29), whatever

value may have.

We shall now discuss the continuity of some special types of

functions. Some of the results which follow were (as we pointed

out at the time) tacitly assumed in Ch. II.

Examples XXXVII. 1. The sum or product of two functions continuous

at a point is continuous at that point. The quotient is also continuous

unless the denominator vanishes at the point. [This follows at once from

Ex. xxxv. 1.]

2. Any polynomial is continuous for all values of x. Any rational

fraction is continuous except for values of x for which the denominator

vanishes. [This follows from Exs. xxxv. 6, 7.]
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3. njx is continuous for all positive values of x (Ex. xxxv. 8). It is not
defined when x &amp;lt; 0, but is continuous for x= Q in virtue of the remark made at
the end of 98. The same is true of # */, where m and n are any positive
inteers of which n is even.

4. The function xm/n
,
where n is odd, is continuous for all values of x.

5. Ijx is not continuous for .r= 0. It has no value for #=0, nor does it

d to a limit as #--0. In

by positive or negative values.

tend to a limit as #--0. In fact ljx-+. + oo or I/a;-*-
- oo according as A-

6. Discuss the continuity of
#-&quot;/, where m and n are positive integers,

for xQ.

7. The standard rational function R ix] = P (x)jQ (x} is discontinuous for

x=a, where a is any root of Q(jc)
= 0. Thus (#

2
+l)/(^

2 -3#+ 2) is discon
tinuous for x=l. It will be noticed that in the case of rational functions a

discontinuity is always associated with (a) a failure of the definition for a
particular value of x and (6) a tending of the function to + oo or - oo as x
approaches this value from either side. Such a particular kind of point of

discontinuity is usually described as an infinity of the function. An infinity
is the kind of discontinuity of most common occurrence in ordinary work.

8. Discuss the continuity of

J{(x -a)(b- x)}, V {(x -a)(b- x}}, J{(x
-

a)l(b
-

.-v)}, Z/{(x
-

)/(&
-

.r}}

9. sin x and cos x are continuous for all values of x.

[We have sin (x+ /i)
- sin #=2 sin %k cos (x + \h],

which is numerically less than the numerical value of h.]

10. For what values of x are tau#, cot
.v, sec x, and coscc v continuous

or discontinuous ?

n - If /(y) is continuous for ;/
=

^, and
&amp;lt;f&amp;gt; (x) is a continuous function of

x which is equal to 9 when # =
, then/{0 (x}} is continuous for #=.

12. If (#) is continuous for any particular value of #, then any poly
nomial in $ (x\ such as a (0 (#)} +..., is so too.

13. Discuss the continuity of

l/(acos
2
.?-f&sin2

^), v/(2 + cos #), x (l+sin#), 1/7(1 + sin.r).

14. sin
(1/.-C), ^-sin (l/^), and .v

2 sin (1 /.v) are continuous except for #=0.

15. The function which is equal to a; sin (1 /A
1

) except when #= 0, and to

zero when ^7=0, is continuous for all values of x.

16. \x\ and #-[#] are discontinuous for all integral values of x.

17. For what (if any) values of x are the following functions discon
tinuous : [.^J, yx], *J(x-\x\\

n.
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18. Classification of discontinuities. Some of the preceding examples

suggest a classification of different types of discontinuity.

(1) Suppose that (x) tends to a limit as x+a either by values less

than or by values greater than a. Denote these limits, as in 95, by (f&amp;gt; (a 0)

and (a+ 0) respectively. Then, for continuity, it is necessary and sufficient

that (x) should be defined for x= a, and that (a
-

0)
=

(a)
=

(a + 0). Dis

continuity may arise in a variety of ways.

(a) (a 0) may be equal to (a+0), but 0(a) may not be defined, or

may differ from (a- 0) and 0(a+0). Thus if $ (o?)
= #sin (l/#) and a= 0,

(0
-
0) = (0+ 0) =0, but O) is not defined for x = 0. Or if

(a?)
=

[1
- a2

]

anda= 0, (0-0) = $ (0 + 0) = 0, but 0(0) = 1.

(j3) (a 0) and $ (a+0) may be unequal. In this case (a) may be

equal to one or to neither, or be undefined. The first case is illustrated

by (x)
=

\x\, for which (0-0)= -
1, (0+0)=0 (0)

=
;
the second by

(#)
=

[#]
-

[
_ x\ for which (0

-
0)
= -

1, (0 + 0)
= 1

, (0)
=

;
and the third

by (.r)
= [.?]+# sin (I/A-), for which (0

-
0)
= -

1, (0 + 0)
=

0, and (0) is

undefined.

In any of these cases we say that (x) has a simple discontinuity at

x= a. And to these cases we may add those in which 0(#) is defined only
on one side of x= a, and (a-0) or (a+ 0), as the case may be, exists, but

(#) is either not defined when x=a or has when x=a a value different from

$(&amp;lt;*-0)
or 0(o + 0).

It is plain from 95 that a function which increases or decreases steadily

in the neighbourhood of x= a can have at most a simple discontinuity for x a.

(2) It majr be the case that only one (or neither) of (a 0) and (a + (V

exists, but that, supposing for example (a+ 0) not to exist, (#)-- + 00 or

(#)--
- oo as x-**a + 0, so that (x) tends to a limit or to + oo or to oo as

x approaches a from either side. Such is the case, for instance, if (x)= \lx or

(x}
= 1/x

2
,
and a = 0. In such cases we say (cf. Ex. 7) that x= a is an infinity

of (x). And again we may add to these cases those in which (j?)-*- +QO

or (#)-- ocas #--a from one side, but (x) is not defined at all on the

other side of x=a.

(3) Any point of discontinuity which is not a point of simple discon

tinuity nor an infinity is called a point of oscillatory discontinuity. Such

is the point #=0 for the functions sin (I/a
1

)* C
1 /^) g in (I/-2

-

1

)-

19. What is the nature of the discontinuities at x Q of the functions

20. The function which is equal to 1 when x is rational and to when

x is irrational (Ch. II, Ex. xvi^ 10) is discontinuous for all values of x. So too

is any function which is defined only for rational or for irrational values cf x.
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21. The function which is equal to as when x is irrational and to \

J{( l +P2
)i( l + f)} when x is a rational fraction p/q (Ch. II, Ex. XVL 11) is 1 k

discontinuous for all negative and for positive rational values of
&quot;#,

but \

continuous for positive irrational values.

22. For what points are the functions considered in Ch. IV, Exs. xxxi
discontinuous, and what is the nature of their discontinuities ? [Consider,

e.g., the function y= lim xn (Ex. 5). Here y is only defined when - 1 &amp;lt;.?;&amp;lt;! :

it is equal to when -1&amp;lt;^&amp;lt;1 and to 1 when x=\. The points x=l and
x= I are points of simple discontinuity.]

j

100. The fundamental property of a continuous function.

It may perhaps be thought that the analysis of the idea of a con

tinuous curve given in 98 is not the simplest or most natural

possible. Another method of analysing our idea of continuity is the

following. Let A and B be two points on the graph of $ (x) whose
coordinates are #

,
&amp;lt;/&amp;gt;(# ) and xlt

&amp;lt;/&amp;gt;(^) respectively. Draw any
straight line X which passes between A and B. Then common
sense certainly declares that if the graph of &amp;lt; (x) is continuous it

must cut \.

If we consider this property as an intrinsic geometrical

property of continuous curves it is clear that there is no real

loss of generality in supposing \ to be parallel to the axis of x.

In this case the ordinates of A and B cannot be equal: let us

suppose, for definiteness, that &amp;lt; (a^) &amp;gt;

&amp;lt;f&amp;gt; (a? ). And let X be the

line y = 7;, where &amp;lt;

(a? ) &amp;lt; 77 &amp;lt;

&amp;lt;/&amp;gt;
(x^. Then to say that the graph

of
&amp;lt;(#)

must cut \ is the same thing as to say that there is a

value of x between a- and x for which
&amp;lt;f) (x)

=
77.

We conclude then that a continuous function
cj&amp;gt; (x} must

possess the following property : if

&amp;lt;/&amp;gt;&amp;gt;

=
2/0, &amp;lt;HO

=
yi&amp;gt;

and 7/0 &amp;lt; 77 &amp;lt; yl ,then there is a value of x between x and x-^for which

(f&amp;gt;(x)

=
77. In other words as x varies from XQ to &\, y mast assume

at least once every value between yQ and yl .

We shall now prove that if
&amp;lt;/&amp;gt; (x) is a continuous function of x in

the sense defined in ^8 then it does in fact possess this property.

There is a certain range of values of x, to the right of &, for which

$(a )&amp;lt;r).
For

&amp;lt;(^ )&amp;lt;?;,
and so

&amp;lt;/&amp;gt;
(x) is certainly less than 77 if
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(f&amp;gt; (x)
&amp;lt;f&amp;gt;

(a? ) is numerically less than 77 c (# ).
But since &amp;lt; (a;)

is continuous for X XQ) this condition is certainly satisfied if x is

near enough to a? . Similarly there is a certain range of values,

to the left of a?, ,
for which &amp;lt; (a;) &amp;gt; 77.

Let us divide the values of a? between a* and xl into two classes

L, R as follows :

(1) in the class L we put all values f of # such that &amp;lt; (a;) &amp;lt; 77

when x = f and for all values of a? between # and f ;

(2) in the class R we put all the other values of a*, i.e. all

numbers f such that either &amp;lt; () = 17 or there is a value of a? between

a? and f for which &amp;lt; (a;) = 77.

Then it is evident that these two classes satisfy all the

conditions imposed upon the classes L, R of 17, and so constitute

a section of the real numbers. Let f be the number corresponding
to the section.

First suppose &amp;lt; (f ) &amp;gt; 77, so that f belongs to the upper class :

and let
(/&amp;gt;

(f )
=

77 -f &, say. Then (f ) &amp;lt; ?; and so

for all values of f less than f ,
which contradicts the condition of

continuity for x = f .

Next suppose &amp;lt;/&amp;gt;
(f )

=
rj
- k

&amp;lt;TJ. Then, if f is any number

greater than f ,
either

(/&amp;gt; (f
x

) ^ 77 or we can find a number &quot;

between f and f such that
&amp;lt;f)(j;&quot;)^rj.

In either case we can

find a number as near to f as we please and such that the corre

sponding values of
&amp;lt;/&amp;gt;(#)

differ by more than jc. And this again
contradicts the hypothesis that

&amp;lt;/&amp;gt; (a?) is continuous for a? = f .

Hence
&amp;lt;/&amp;gt;

( )
=

97, and the theorem is established. It should

be observed that we have proved more than is asserted explicitly

in the theorem; we have proved in fact that f is the least value

of x for which
(f) (x)

=
rj. It is not obvious, or indeed generally

true, that there is a least among the values of x for which a

function assumes a given value, though this is true for continuous

functions.

It is easy to see that the converse of the theorem just proved is not

true. Thus such a function as the function (x) whose graph is represented
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by Fig. 31 obviously assumes at least once every value between (# ) and
4&amp;gt; (

xi) jet (#) is discontinuous. Indeed it is not even true that $ (#) must
be continuous when it assumes each value once and once only. Thus let (x)
be defined as follows from #=0 to #=1. If 57= let (V) = 0; if 0&amp;lt;o? &amp;lt; 1

let (#)
= !-#; and if x=l let (#) = !. The graph of the function is

shown in Fig. 32; it includes the points 0, C but not the points ^4, B. It
is clear that, as x varies from to 1, (#) assumes once and once only every
value between (0)

= and 0(1) = 1
;
but 0f.r) is discontinuous&quot;for^-=0 and

Fig. 31.
Fig. 32.

As a matter of fact, however, the curves which usually occur in elementary
mathematics are composed of a finite number of pieces along which y always
varies in the same direction. It is

easy^to
show that if

?/
=

(#) always varies
in the same direction, i.e. steadily increases or decreases, as x varies from
,r

t ,
to tfj, then the two notions of continuity are really equivalent, i.e. that if

(#) takes every value between (# ) and (^) then it must be a continuous
function in the sense of 98 For let be any value of x between XQ and
*i. As^| through values less than

,&amp;lt;(#) tends to the limit 0(-0)
( 95). Similarly as x-*~j; through values greater than

, (x) tends to the
limit (1+ 0). The function will be continuous for x= if and only if

But if either of these equations is untrue, say the first, then it is evident that
&amp;lt;t&amp;gt;(x)

never assumes any value which lies between (-0) and (), which
is contrary to our assumption. Thus (x) must be continuous. The net
result of this and the last section is consequently to show that our commqrL-
sense notion of what we mean by continuity is substantially accurate, and
capable of precise statement in mathematical terms.

101. In this and the following paragraphs we shall state and

prove some general theorems concerning continuous functions.
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THEOREM!. Suppose that
&amp;lt;(a?)

is continuous for a? = f, and

that
&amp;lt;/&amp;gt;()

is positive. Then we can determine a positive number e

such that
&amp;lt;/&amp;gt;
(f) ts positive throughout the interval (f e, 4- e).

For, taking =
&amp;lt;()

in the fundamental inequality of p. 175,

we can choose e so that

throughout (f e, f+ e), and then

&amp;gt;i*(f)&amp;gt;o,

so that &amp;lt; (a?) is positive. There is plainly a corresponding theorem

referring to negative values of &amp;lt; (a?).

THEOREM 2. //*
^&amp;gt; (a?)

is continuous for x = f, and &amp;lt; (a;) vanishes

for values of x as near to f 0,9 we please, or assumes, for values of
x as near to f as we please, both positive and negative values, then

This is an obvious corollary of Theorem 1. If
&amp;lt;/&amp;gt;

(f) is not zero,

it must be positive or negative ;
and if it were, for example, positive,

it would be positive for all values of x sufficiently near to f ,
which

contradicts the hypotheses of the theorem.

102. The range of values of a continuous function. Let

us consider a function &amp;lt; (a?) about which we shall only assume at

present that it is defined for every value of x in an interval (a, b).

The values assumed by (f&amp;gt;
(x) for values of a;, in (, b) form an

i aggregate S to which we can apply the arguments of 80, as we

applied them in 81 to the aggregate of values of a function of n.

If there is a number K such that $ (x) ^ K, for all values of x in

question, we say that
(/&amp;gt;

(x} is bounded above. In this case
&amp;lt;/&amp;gt;

(a?)

possesses an upper bound M : no value of $ (x) exceeds M, but any

number less than M is exceeded by at least one value of
tf&amp;gt;(x).

Similarly we define bounded below
,

lower bound ,
bounded

,
as

applied to functions of a continuous variable x.

THEOREM 1.
If&amp;lt;f&amp;gt; (x) is continuous throughout (a, b), then it is

bounded in (a, b).
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We can certainly determine an interval (a, f), extending to

the right from a, in which
&amp;lt;/&amp;gt;

(#) is bounded. For since
(/&amp;gt; (x) is

continuous for x = a, we can, given any positive number & however

small, determine an interval (a, f) throughout which
&amp;lt;p (x) lies

between &amp;lt; (a) 8 and
&amp;lt;/&amp;gt; (a) + 8; and obviously &amp;lt;/&amp;gt; (#) is bounded in

}his interval. ^fy\^ ^U^+cT
Now divide the points f of the interval (a, b) into two classes

L, R, putting f in L if
(j&amp;gt; (f) is bounded in (a, f), and in J? if this

is not the case. It follows from what precedes that L certainly

exists: what .we propose to prove is that R does not. Suppose
that R does exist, and let ft be the number corresponding to the

section whose lower and upper classes are L and R. Since
(/&amp;gt; (x)

is continuous for x = /3, we can, however small B may be, determine

an interval (j3 ij, j3 + rj)
*
throughout which

*09)-*&amp;lt;f ()&amp;lt;&amp;gt;&amp;lt;#)
+&

Thus $ (x) is bounded in (/3 ?;, $ + 77). Now /3 77 belongs to L.

Therefore
&amp;lt;(#)

is bounded in (a, /3 ?;): and therefore it is

bounded in the whole interval (a, /3 4- 77). But ft + 77 belongs to .72

and so &amp;lt; (V) is rco bounded in (a, ft + 77). This contradiction

shows that R does not exist. And so
(f&amp;gt;

(x) is bounded in the

whole interval (a, b),

THEOREM 2. If &amp;lt;j&amp;gt; (x) is continuous throughout (a, b), and M
and m are its upper and lower bounds, then

&amp;lt;/&amp;gt;
(x) assumes the values

M and m at least once each in the interval.

For, given any positive number S, we can find a value of x for

which M- $ (x) &amp;lt; 8 or 1/{M - &amp;lt;j&amp;gt; (x)} &amp;gt; l/S. Hence 1/{M
-

&amp;lt;j&amp;gt; (x)}

is not bounded, and therefore, by Theorem 1, is not continuous.

But
M&amp;lt;f&amp;gt;(x)

is a continuous function, and so I/{M &amp;lt;/&amp;gt;(#)!

is

continuous at any point at which its denominator does not vanish

(Ex. xxxvu. 1). There must therefore be one point at which

the denominator vanishes: at this point (f&amp;gt;(x)=
M. Similarly it

may be shown that there is a point at which
&amp;lt;/&amp;gt;

(x) m.

The proof just given is somewhat subtle and indirect, and it

may be well, in view of the great importance of the theorem,

to indicate alternative lines of~~proof. It will however be con

venient to postpone these for a moment f.

* If jS
= 6 we must replace this interval by (8-rj, j8),

and p + rj by /3, throughout

the argument which fo lows.

f See 104.
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Examples XXXVIII. 1. If $(#) = !/# except when #= 0, and
&amp;lt;/&amp;gt;(

=
when .r= 0, then

&amp;lt;j&amp;gt;(x)
has neither an upper nor a lower bound in any

interval which includes #=0 in its interior, as e.g. the interval
( 1, +1).

2. If $ (x}
=

\lx- except when # = 0, and 0(o7)=0 when #= 0, then
&amp;lt;(#)

has the lower bound 0, but no upper bound, in the interval (-1, +1).

3. Let
&amp;lt;f&amp;gt; (x}

= sin (I/a:) except when #= 0, and &amp;lt;f&amp;gt;(x)

= Q when x= 0. Then

(x) is discontinuous for 57= 0. In any interval ( 8, +8} the lower bound is

1 and the upper bound 4-1, and each of these values is assumed by $ (x) an

infinity of times.

4. Let &amp;lt; (#)
= # -

[.]. This function is discontinuous for all integral

values of x. In the interval (0, 1) its lower bound is and its upper bound 1.

It is equal to when #=0 or x\, but it is never equal to 1. Thus
&amp;lt;fi (x)

never assumes a value equal to its upper bound.

5. Let
&amp;lt;j)(.v)

= when x is irrational, and &amp;lt; (x)
= q when x is a rational

fraction pjq. Then (x) has the lower bound 0, but no upper bound, in any
interval (a, 6). But if

&amp;lt;p (.#)
=

( l)
p

&amp;lt;?

when x=p/q, then $ (#) has neither an

upper nor a lower bound in any interval.

103. The oscillation of a function in an interval. Let

&amp;lt;f&amp;gt; (x) be any function bounded throughout (a, b), and M and m
its upper and lower bounds. -We shall now use the notation

M (a, b), m (a, b) for M, m, in order to exhibit explicitly the de

pendence of M and m on a and b, and we shall write

0(a, b)
= M(a,b)-m(a, b).

This number (a, b), the difference between the upper and

lower bounds of
&amp;lt;/&amp;gt;

(x) in (a, b), we shall call the oscillation of &amp;lt;/&amp;gt;
(x)

in (a, b). The simplest of the properties of the functions M (a, b),

m (a, b), (a, b) are as follows.

(1) If a = c ^ b then M (a, b) is equal to the greater of M (a, c)

and M(c, b), and m (a, b) to the lesser ofm (a, c) and m (c, b).

(2) M (a, b) is an increasing, m (a, b) a decreasing, and (a, b)

an increasing function of b.

(3) (a, b)^0 (a, c) + (c, b).

The first two theorems are almost immediate consequences of

our definitions. Let p be the greater ofM (a, c) and M (c, b), and

let B be any positive number. Then
&amp;lt;/&amp;gt;

(x) ^ /JL throughout (a, c)

and (c, b}, and therefore throughout (a, b) ;
and &amp;lt; (#) &amp;gt;

/-t
B

somewhere in (a, c) or in (c, b), and therefore somewhere in (a, b\
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Hence M (a, b)
=

//,.
The proposition concerning m may be proved

similarly. Thus (1) is proved, arid (2) is an obvious corollary.

Suppose now that /I/a is the greater and M2 the less ofM (a, c)

and M (c, b), and that m^ is the less and m2 the greater of m (a, c)

and in (c, b). Then, since c belongs to both intervals, &amp;lt; (c) is not

greater than AF2 nor less than m.2 . Hence M2 ^ m 2 ,
whether these

numbers correspond to the same one of the intervals (a, c) and

(c, 6) or not, and

(a, b)
=M

1
- m

1
^ M + M.2

- m^ - m 2 .

But (a, c) + (c, 6)
= J/x + M.2

- n^ - m.2 ;

and (3) follows.

104. Alternative proofs of Theorem 2 of 102. The most straight

forward proof of Theorem 2 of 102 is as follows. Let be any number of

the interval (a, 6). The function M (a, ) increases steadily with and never

exceeds M. We can therefore construct a section of the numbers In

putting in L or in It according as M(a, ) &amp;lt;M or J/(#, |)
= M. Let /3 be

the number corresponding to the section. If a &amp;lt; /3 &amp;lt; b, we havo

for all positive values of
/,
and so

#03-17,

by (1) of 103. Hence ( (#) assumes, for values of .r as near as we please to

/3, values as near as we please to J/, and so, since (x) is continuous, &amp;lt; (3)

must be equal to M.

If /3
= a then J/(a, a + ^^J/&quot;.

And if 3 = 6 then 3/(a, 6-?;) &amp;lt; Jf, and

so M(b T], b}=M. In either case the argument may be completed as

before.

The theorem may also be proved by the method of repeated bisection

used in 71. If M is the upper bound of (a?) in an interval PQ, and PQ
is divided into two equal parts, then it is possible to find a halfP

} Ql in which

the upper bound of (x) is also M. Proceeding as in 71, we construct a

sequence of intervals PQ. Pv Qi^ P^Qz, in each of which the upper bound

of (x) is M. These intervals, as in 71, converge to a point T, and it is

easily proved that the value of
&amp;lt;p (x) at this point is M.

105. Sets of intervals on a line. The Heine-Borel

Theorem. We shall now proceed to prove some theorems con

cerning the oscillation of a function which are of a somewhat

abstract character but of very great importance, particularly, as

we shall see later, in the theory of integration. These theorems

depend upon a general theorem concerning intervals on a line.
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Suppose that we are given a set of intervals in a straight

line, that is to say an aggregate each of whose members is an

interval (a, /3). We make no restriction as to the nature of

these intervals; they may be finite or infinite in number; they

may or may not overlap*; and any number of them may bo

included in others.

It is worth while in passing to give a few examples /&amp;gt;f

sets of intervals to

which we shall have occasion to return later.

(i) If the interval (0, 1) is divided into n equal parts then the n intervals

thus formed define a finite set of non-overlapping intervals which just cover

up the line.

(ii) We take every point of the interval (0, 1), and associate with the

interval ( e, + e), where e is a positive number less than 1, except that

with we associate (0, ) and with 1 we associate (1-f, 1), and in general we

reject any part of any interval which projects outside the interval (0, 1). We
thus define an infinite set of intervals, and it is obvious that many of them

overlap with one another.

(iii) We take the rational points p\q of the interval (0, 1), and associate

with o the interval

where e is positive and less than 1. We regard as 0/1 and 1 as 1/1 : in

these two cases we reject the part of the interval which lies outside (0, 1). We
obtain thus an infinite set of intervals, which plainly overlap with one another,

since there are an infinity of rational points, other than p/qy
in the interval

associated with plq.

The Heine-Borel Theorem. Suppose that we are given an

interval (a, b), and a- set of intervals I each of whose members is

included in (a, b). Suppose further that I possesses the following

properties :

(i) every point of (a, b), other than a and b, lies inside
]&quot;

at

least one interval of I ;

(ii) a is the left-hand end point, and b the right-hand end

point, of at least one interval of I.

Then it is possible to choose a finite number of intervals from
the set I which form a set of intervals possessing the properties (i)

and (ii).

* The word overlap is used in its obvious sense: two intervals overlap if they

have points in common which are not end points of either. Thus {0, -|) and (^, 1)

overlap. A pair of intervals such as (0, ^) and (^, 1) may be said to abut.

t That is to say in and not at an end of.
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We know that a is the left-hand end point of at least one

interval of /, say (a, a a ).
We know also that a-^ lies inside at least

one interval of /, say (a/, 2 ). Similarly a2 lies inside an interval

(a/, a3) of /. It is plain that this argument may be repeated in

definitely, unless after a finite number of steps an coincides with b.

If an does coincide with b after a finite number of steps then

there is nothing further to prove, for we have obtained a finite set

of intervals, selected from the intervals of /, and possessing the

properties required. If an never coincides with b, then the points

a l5 2 ,
a3 , ... must (since each lies to the right of its predecessor)

tend to a limiting position, but this limiting position may, so far

as we can tell, lie anywhere in (a, b).

Let us suppose now that the process just indicated, starting

from a, is performed in all possible ways, so that we obtain all

possible sequences of the type a lt a.2 , 3 ,
.... Then we can prove

that there must be at least one such sequence which arrives at b

after a finite number of steps.

a a
j

a
x

a 2 a 2 $ o 3 |
Q I, b

Fig. 33.

There are two possibilities with regard to any point f between

a and 6. Either (i) f lies to the left of some point an of some

sequence or (ii) it does not. We divide the points f into two

classes L and R according as to whether (i) .or (ii) is true. The

class L certainly exists, since all points of the interval (a, a
x )

belong to L. We shall now prove that R does not exist, so that

every point f belongs to L.

If R exists then L lies entirely to the left of R, and the classes

Z, R form a section of the real numbers between a arid, b, to

which corresponds a number f . The point f lies inside an interval

of /, say (f , f &quot;),
and f belongs to L, and so lies to the left of

some term a of some sequence. But then we can take (f , f &quot;)

as the interval (a,/, an+i) associated with an in our construction

of the sequence a lt a2 ,
a 3 , ...; and all points to the left of

f&quot;

lie to the left of an+1 . There are therefore points of L to the

right of f ,
and this contradicts the definition of R. It is

therefore impossible that R should exist.
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Thus every point f belongs to L. Now b is the right-hand
end point of an interval of /, say (&,, b), and ^ belongs to L.

Hence there is a member an of a sequence al} a2 ,
as ,

... such that

an &amp;gt;b l
. But then we may take the interval (an

f

,
an+l ) corre

sponding to an to be (6l5 6), and so we obtain a sequence in which
the term after the nth coincides with b, and therefore a finite set

of intervals having the properties required. Thus the theorem is

proved.

It is instructive to consider the examples of p. 186 in the light of this

theorem.

(i) Here the conditions of the theorem are not satisfied the points

1/n, 2/n, 3/w, ... do not lie inside any interval of I

(ii) Here the conditions of the theorem are satisfied. The sot of

intervals

(0, 2f ), (e, 3*), (2*, 4e), ..., (l-2 f
, 1),

associated with the points e, 2e, 3e, ..., 1 -
e, possesses the properties re

quired.

(iii) In this case we can provo, by using the theorem, that there arc,

if e is small enough, points of (0, 1) which do not lie in any interval of /.

If every point of (0, 1) lay inside an interval of / (with the obvious

reservation as to the end points), then we could find a finite number of intervals

of / possessing the same property and having therefore a total length greater

than 1. Now there are two intervals^ total length 2f, for which
&amp;lt;?=!,

and \

q-l intervals, of total length 2e(^-l)/^
3

,
associated with any other value

of q. The sum of any finite nuBrber of intervals of / can therefore not be
,

greater than 2e times that of the scries

V i - ~L 113
-^r e p +P+33+43+

which will be shown to be convergent in Ch. VIII. Hence it follows that, if

e is small enough, the supposition that every point of (0, 1) lies inside an

interval of / leads to a contradiction.

The reader may be tempted to think that this proof is needlessly

elaborate, and that the existence of points of the interval, not in any interval

of /, follows at once from the fact that the sum of all these intervals is less

than 1. But the theorem to which he would be appealing is (when the set of

intervals is infinite) far from obvious, and can only be proved rigorously by
some such use of the Heine-Borel Theorem as is made in the text.

108. We shall now apply the Heine-Borel Theorem to the

proof of two important theorems concerning the oscillation of a

continuous function.
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THEOREM I. If
c/&amp;gt;

(x} is continuous throughout the interval

(a, b), tli en we can divide (a, b) into ajfcnite number of sub-intervals -

(a, tfj), (#!, tf^X (#n&amp;gt; &) ?n eac^ f which the oscillation of &amp;lt;/&amp;gt;
(x) is

less than an assigned positive number B.

Let f be any number between a and 6. Since $ (#) is con

tinuous for x=-%, we can determine an interval (f e, f + e) such

that the oscillation of &amp;lt; (a?) in this interval is less than 8. It is

indeed obvious that there are an infinity of such intervals corre

sponding to every f and every B, for if the condition is satisfied for

any particular value of e, then it is satisfied afortiori for any smaller

value. What values of e are admissible will naturally depend upon

f ;
we have at present no reason for supposing that a value of e

admissible for one value of f will be admissible for another. We
shall call the intervals thus associated with f the ^-intervals of %.

If f = a then we can determine an interval (a, a -f e). and so an

infinity of such intervals, having the same property. These we

call the ^-intervals of a, and we can define in a similar manner the

^-intervals of 6.

Consider now the set / of intervals formed by taking all the

S-intervals of all points of (a, b). It is plain that this set satisfies

the conditions of the Heine-Borel Theorem
; every point interior

to the interval is interior to at least one interval of /, and a and b

are end* points of at least one such interval. We can therefore

determine a set / which is formed by a finite number of intervals

of /, and which possesses the same property as / itself.

The intervals which compose the set 1 will in general overlap

as in Fig. 34. But their end

points obviously divide up

(a, 6) into a finite set of in-
a b

tervals I&quot; each of which is

included in an interval of /
,
and in each of which the oscillation

of
&amp;lt;j&amp;gt;

(a) is less than B. Thus Theorem I is proved.

THEOREM II. Given any positive number B, we can find a

number rj such that, if the interval (a, b) is divided in any manner

into sub-intervals of length less than 77, then the oscillation of,^(x)

in each of them will be less than B.

&amp;lt;**
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Take B
l &amp;lt; 5, and construct, as in Theorem I, a finite set of sub-

intervals j in each of which the oscillation of
&amp;lt;f&amp;gt;

(x) is less than Blt

Let 77 be the length of the least of these sub-intervals j. If

now we divide (a, b) into parts each of length less than rj, then any
such part must lie entirely within at most two successive sub-

intervals j. Hence, in virtue of (3) of 103, the oscillation of
&amp;lt;/&amp;gt;

(a?),

in one of the parts of length less than ?;, cannot exceed twice the

greatest oscillation of $ (x) in a sub-interval jt
and is therefore

less than 2S1? and therefore than B.

This theorem is of fundamental importance in the theory of

definite integrals (Ch. VII). It is impossible, without the use of

this or some similar theorem, to prove that a function continuous

throughout an interval necessarily possesses an integral over that

interval.

107. Continuous functions of several variables. The
notions of continuity and discontinuity may be extended to

functions of several independent variables (Ch. II, 31 et seg.).

Their application to such functions, however, raises questions
much more complicated and difficult than those which we have

considered in this chapter. It would be impossible for us to

discuss these questions in any detail here
;
but we shall, in the

sequel, require to know what is meant by a continuous function of

two variables, and we accordingly give the following definition.

It is a straightforward generalisation of the last form of the de

finition of 98.

The function cf&amp;gt;
(x, y) of the two variables x and y is said to be

continuous for x = f, y = TJ if] given any positive number B, how

ever small, we can choose e (B) so that

when ^ x % \

^ e (B) and ^
| y TJ

\

^ e (B); that is to say if we

can draw a square, whose sides are parallel to the axes of coordinates

and of length 2e (B), whose centre is the point (, vj), and which is such

that the value of (f&amp;gt; (x, y) at any point inside it or on its boundary

differs from &amp;lt; (f, ??) by less than B.*

This definition of course presupposes that
&amp;lt;f&amp;gt; (x, y) is defined at

all points of the square in question, and in particular at the point

* The reader should draw a figure to illustrate the definition.
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(f, 77). Another method of stating the definition is this : &amp;lt; (x, y) is

continuous for #=f, y=r] if (/&amp;gt;(#, y) -*-&amp;lt;/&amp;gt;(, v} when x-*~%, y~^y
in any manner. This statement is apparently simpler; but it

contains phrases the precise meaning of which has not yet been

explained and can only be explained by the help of inequalities

like those which occur in our original statement.

It is easy to prove that the sums, the products, and in general
the quotients of continuous functions of two variables are them
selves continuous. A polynomial in two variables is continuous for

all values of the variables
;
and the ordinary functions of x and y

which occur in every-day analysis are generally continuous, i.e.

are continuous except for pairs of values of x and y connected by

special relations.

The reader should observe carefully that to assert the continuity of

&amp;lt;f) (x, y} with respect to the two variables x and y is to assert much more

than its continuity with respect to each variable considered separately. It is

plain that if
&amp;lt;f&amp;gt; (x, y} is continuous with respect to x and y then it is certainly

continuous with respect to x (or y} when any fixed value is assigned to
?/

(or a:).
But the converse is by no means true. Suppose, for example, that

\)
when neither x nor y is zero, and (x, ?/)=0 when either x ory is zero. Then
if y has any fixed value, zero or not, (j) (x, y} is a continuous function of ,r,

and in particular continuous for x=
;
for its value when x is zero, and it

tends to the limit zero as x-*-0. In the same way it may be shown that

$ (Xj y} is a continuous function of
?/.

But
&amp;lt;f&amp;gt; (x, y) is not a continuous function

of x andy for x=0, y = Q. Its value when ^-= 0, y = is zero
;
but if x and

y tend to zero along the straight line y = ax, then

$ (x, //)
=r|^ &amp;gt;

Km $ (x, y} =-^ ,
T

^
which may have any value between 1 and 1.

108. Implicit functions. We have already, in Oh. II, met with

the idea of an implicit function. Thus, if x arid y are connected by the

relation

jl
i-jgf-y-*-o ................................. (i),

then y is an implicit function of x.

But it is far from obvious that such an equation as this does rejdlyjlefine
a function y of x, or several such functions. In Ch. II we were content to

taKeThis for granted. We are now in a position to consider whether the

assumption we made then was justified.
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We shall find the following terminology useful. Suppose that it is possible
to surround a point (a, 6), as in 107, with a square throughout which
a certain condition is satisfied. We shall call such a square a neighbourhood
of (a, 6), and say that the condition in question is satisfied in the neighbour
hood of (a, 6), or near (a, 6), meaning by this simply that it is possible to find

soiw square throughout which the condition is satisfied. It is obvious that

similar language may be used when we are dealing with a single variable, the

square being replaced by an interval on a line.

THEOREM. If .(i) f(x,y} is a continuous function of x a,id y in the

neighbourhood of (a, 6),

(ii) /(a, &)=0,

(iii) f(x,y) is, for all values of x in the neighbourhood of a, a steadily

increasing function of y, in the stricter sense of 95, t$H ;^^&amp;lt;
t (x M* ) N^Vu*

then (1) there is a unique function y= ^&amp;gt; (x} which, when substituted in the

equation f (x, y)
=

0, satisjies it identically for all values of x in the neighbour
hood of a,

(2) (#) is continuous for all values of x in the neighbourhood of a.

In the figure the square represents a neighbourhood of (a, 6) through
out which the conditions (i) and (iii) are

satisfied, and P the point (a, b). If we

take Q and R as in the figure, it follows from

(iii) that f(x, y} is positive at Q and negative

at R. This being so, and f(x, y} being con

tinuous at Q and at R, we can draw lines QQ
and 111? parallel to OX, so that RQ is parallel

to OY and f(x, y} is positive at all points of

QQ and negative at all points of RR . In par
ticular /(#, y] is positive at Q and negative at

A
,
and therefore, in virtue of (iii) and 100,

vanishes once and only once at a point P on

Q Q

Fig. 35.

/&amp;lt;&quot;(/.
The same construction gives us a unique point at which

on each ordinate between RQ and R Q . It is obvious, moreover, that the

same construction can be carried out to the left of RQ. The aggregate of

points such as P gives us the graph of the required function y= (f&amp;gt; (#).

It remains to prove that (x) is continuous. This is most simply effected

by using the idea of the limits of indetermination of (x) as x-*~a
( 96).

Suppose that x-+-a, and let X and A be the limits of indetermination of -0 (x)

as x-*~a. It is evident that the points (a, X) and (a, A) lie on QR. Moreover,
we can find a sequence of values of x such that $ (.r)-*-X when .7;-*- a through
the values of the sequence; and since / {#, (#;}

=
0, and /(#,?/) is a con

tinuous function of A- and y, we have

Hence X = 6; and similarly A=6. Thus (#) tends to the limit b as x-**a
t

and so (.r) is continuous for x=a. It is evident that we can show in
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exactly the same way that $(#) is continuous for any value of x in the

neighbourhood of a.

It is clear that the truth of the theorem would not be affected if we were

to change increasing to decreasing
3

in condition (iii).

As an example, let us consider the equation (1), taking a= 0, 6=0. It is

evident that the conditions (i) and (ii) are satisfied. Moreover

has, when x, y, and y are sufficiently small, the sign opposite to that of

?/-/. Hence condition (iii) (with decreasing
5 for increasing )

is satisfied.

It follows that there is one and only one continuous function y which
satisfies the equation (1) identically and vanishes with x.

The same conclusion would follow if the equation were

y*-xy-y-*= 0. Vi *.,(.**}
The function in question is in this case

yf{i+*-V(i+*+*%
where the square root is positive. The second root, in which the sign of the

square root is changed, does not satisfy the condition of vanishing with x.

There is pjiejaoint in the proof which the reader should be careful to ob
serve. We supposed that the hypotheses of the theorem were satisfied *m
the neighbourhood of (a, 6) ,

that is to say throughout a certain square
* = # ^ + *

, ^-e^y^fj + e. The conclusion holds in the neighbourhood
of x a\ that is to say throughout a certain interval e!

&amp;lt; # ^ +^ . There
is nothing to show that the ^ of the conclusion is the e of the hypotheses, and I

indeed this is generally untrue.

109. Inverse Functions. Suppose in particular that /(a?, y) is of the

form F(y]
- x. We then obtain the following theorem.

If F(y] is afunction of y, continuous and steadily increasing (or decreasing},
in the stricter sense of 95, in the neighbourhood of y= b, and F(b} = a, then

there is a unique continuous function y= &amp;lt;fr(x)
which is equal to b when x = a

and satisfies the equation F(y} = x identically in the neighbourhood of x=a.

The function thus defined is called the inverse function of F(y}.

Suppose for example that y*=x, a= 0, 6= 0. Then all the conditions of

the theorem are satisfied. The inverse function is x=%y.
If we had supposed that y^

= x then the conditions of the theorem would

notjhave been satisfied, for y
2 is not a steadily increasing function of y in any

interval which includes y= : it decreases when y is negative and increases

when y is positive. And in this case the conclusion of the theorem does not

hold, for y
2=x defines two functions of x, viz. y ^Jx and y= *Jxt

both of

which vanish when #=0, and each of which is defined only for positive values

of x, so that the equation has sometimes two solutions and sometimes none.

The reader should consider the more general equations

H. / 1.3
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in the same way. Another interesting example is given by the equation

y*-y-x= 0,

already considered in Ex. xiv. 7.

Similarly the equation &my= x

has just one solution which vanishes with #, viz. the value of arc sin x which

vanishes with x. There are of course an infinity of solutions, given by the

other values of arc sin x (cf. Ex. xv. 10), which do not satisfy this condition.

So far we have considered only what happens in the neighbourhood of a

particular value of x. Let us suppose now that F(y] is positive and steadily

increasing (or decreasing) throughout an interval (a, 6). Given any point
of (a, b\ we can determine an interval i including ,

and a unique and con

tinuous inverse function fa (x} defined throughout i.

From the set 1 of intervals i we can, in virtue of the Heine-Borel Theorem,

pick out a finite sub-set covering up the whole interval (a, b) ;
and it is plain

that the finite set of functions fa (#), corresponding to the sub-set of intervals i

thus selected, define together a unique inverse function $ (x) continuous

throughout (a, b).

We thus obtain the theorem : if x= F(y], where F(y] is continuous and

increases steadily and strictly from A to B as x increases from a to 6, then there

is a unique inverse function y= $(x} which is continuous and increases steadily

and strictly from a to b as x increases from A to B.

It is worth while to show how this theorem can be obtained directly with

out the help of the more difficult theorem of 108. Suppose that A &amp;lt; &amp;lt; B,

and consider the class of values of y such that (i) a
&amp;lt;y

&amp;lt; 6 and (ii) F(y] &amp;lt;

.

This class has an upper bound
rj,

and plainly F(rfi&amp;lt;.
If F(rj) were less

than
,
we could find a value of y such that y &amp;gt;rj

and F(y}&amp;lt;%, and
T)
would

not be the upper bound of the class considered. Hence F(rj) = . The

equation F(y} = has therefore a unique solution # = 77
=

&amp;lt;()&amp;gt;
saJ 5

an(^

plainly 77
increases steadily and continuously with |, which proves the theorem.

MISCELLANEOUS EXAMPLES ON CHAPTER V.

1. Show that, if neither a nor b is zero, then

ax* + bxn
- 1 + ...+ = axn (1 + tx\

where cx is of the first order of smallness when x is large.

2. If P(x} = axn+bxn
~ l + ...+, and a is not zero, then as x increases

P(x) has ultimately the sign of a
;
and so has P(x+\}-P(x\ where X is

any constant.

3. Show that in general

where a= a/A, ft
= (bA -aB)/A

2
,
and ez is of the first order of smallness when

c is large. Indicate any exceptional cases.
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4. Express (ax
2+ bx+ c)/(Ax

2+Bx+C)
in the form a+ (ftfa;) + (y/x*) (l+ x\

where cx is of the first order of smallness when x is large.

5. Show that lim *Jx{J(x+a}- Jx}= %a.

[Use the formula

X-*-

6. Show that V(#+a)=V#+ J(a/&amp;lt;/#) (1 +ex ), where ex is of the first order
of smallness when x is large.

7. Find values of a and ft such that N/(cu?
2
-f 2bx+ c)

- ax - ft has the limit
zero as x-*- QO

;
and prove that lim x y(ax* + 2bx + c)

- ax-
ft}
=

(ac
- 62)/2a.

8. Evaluate lim x

9. Prove that (sec x - tan #)-*-0 as x-*~%n.

10. Prove that (#) = 1 - cos (1
- cos x} is of the fourth order of smallness

when x is small
; and find the limit of &amp;lt; (#)/#* as x-+Q.

11. Prove that &amp;lt; (a?) =# sin (sin a?)
- sin2 x is of the sixth order of smallness

when x is small
; and find the limit of &amp;lt; (rf/x

6 as x-&amp;gt;-0.

12. From a point P on a radius 0^ of a circle, produced beyond the circle,
a tangent PT is drawn to the circle, touching it in T, and TN is drawn per
pendicular to OA. Show that NAjAP^l as P moves up to A.

13. Tangents are drawn to a circular arc at its middle point and its
extremities

;
A is the area of the triangle formed by the chord of the arc and

the two tangents at the extremities, and A the area of that formed by the
three tangents. Show that A/A ^4 as the length of the arc tends to zero.

14. For what values of a does {a+ sin (!/#)}/# tend to (1) oo
, (2) -x,

as a?-^0? [To GO if
a&amp;gt;l, to -co if &amp;lt;_l: the function oscillates if

-ISaJSL]

.15.^
If

&amp;lt;(#)
=

1/0 when a?=p/q, and 0(*) = when x is irrational, then
(x) is continuous for all irrational and discontinuous for all rational values

of x.

16. Show that the function whose graph is drawn in Fig. 32 may be repre
sented by either of the formulae

1 - x+ [x] -[!-#], l-x- lim (cos
2n + 1

irx).

17. Show that the function 0(#) which is equal to when #=0, to \-xwhen
()&amp;lt;*&amp;lt;, to \ when x= \, to f- A- when

J&amp;lt;#&amp;lt;1, and to 1 when
,r= l, assumes every value between and 1 once and once only as x increases
from to 1, but is discontinuous for x=Q, x=$, and #=1. Show also that
the function may be represented by the formula&quot;

13-2
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P along the curve from either side. We have now to distinguish

two cases, a general case and an exceptional one.

ON M NX
Fig. 36.

The general case is that in which ty is not equal to JTT, so that

PT is not parallel to OF. In this case RPQ tends to the limit

-v/r,
and

RQ/PR^tanRPQ
tends to the limit tan

&amp;gt;|r.

Now

RQ/PR - (NQ - MP)/MN= {&amp;lt;f&amp;gt; (x + h)
- $ (x)}/h ;

and so
rlim -

*
tan (1).

The reader should be careful to note that in all these equa
tions all lengths are regarded as affected with the proper sign,

so that (e.g.) RQ is negative in the figure when Q lies to the left

of P
;
and that the convergence to the limit is unaffected by the

sign of h.

Thus the assumption that the curve which is the graph of

&amp;lt;f&amp;gt; (x) has a tangent at P, which is not perpendicular to the axis of

x, implies that
&amp;lt;/&amp;gt;

(x) has, for the particular value of x corresponding

to P, the property that
{&amp;lt;f&amp;gt;

(x + h) &amp;lt;j&amp;gt;(x)}/h
tends to a limit when

h tends to zero.

This of course implies that both of

{0 (x + A)
- $ (.*)}/*, {&amp;lt;/&amp;gt; (x

-
A)
-

(*)}/(
-

A)

tend to limits when A--0 by positive values only, and that the two limits

are equal. If these limits exist but are not equal, then the curve y= (f&amp;gt; (x}

has an angle at the particular point considered, as in Fig. 37.

Now let us suppose that the curve has (like the circle or

ellipse) a tangent at every point of its length, or at any rate every
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portion of its length which corresponds to a certain range of

variation of x. Further let us suppose this tangent never per

pendicular to the axis of x : in the case of a circle this would of

course restrict us to considering an arc less than a semicircle.

Then an equation such as (1) holds for all values of x which fall

inside this range. To each such value of x corresponds a value of

tan ^ : tan ^r is a function of x, which is defined for all values of

x in the range of values under consideration, and which may be

calculated or derived from the original function
&amp;lt;$&amp;gt;(x).

We shall

call this function the derivative or derived function of
&amp;lt;/&amp;gt; (x), and

we shall denote it by

Another name for the derived function of &amp;lt; (x) is the differ

ential coefficient of &amp;lt; (x) ;
and the operation of calculating

&amp;lt;f) (x) from
&amp;lt;f&amp;gt;

(x) is generally known as differentiation. This

terminology is firmly established for historical reasons : see

115.

Before we proceed to consider the special case mentioned

above, in which
i/r
=

-|TT, we shall illustrate our definition by some

general remarks and particular illustrations.

111. Some general remarks. (1) The existence of a derived

function &amp;lt; (x) for all values of x in the interval a ^ x b implies

that
&amp;lt;f&amp;gt;

(x) is continuous at every point of this interval. For it is

evident that
{&amp;lt;

(x + h) &amp;lt;f&amp;gt; (x)}/h cannot tend to a limit unless

Hm
&amp;lt;/&amp;gt;(#

+ h) = cf&amp;gt; (x), and it is this which is the property denoted

by continuity.

(2) It is natural to ask whether the converse is true, i.e.

whether every continuous curve has a

definite tangent at every point, and

every function a differential coefficient

for every value of x for which it is

continuous.* The answer is obviously
No: it is sufficient to consider the ^ \

curve formed by two straight lines Fj
-

g 37

meeting to form an angle (Fig. 37).

* We leave out of account the exceptional case (which we have still to examine)
in which the curve is supposed to have a tangent perpendicular to OX: apart from

this possibility the two forms of the question stated above are equivalent.
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The reader will see at once that in this case
{&amp;lt;/&amp;gt;

(x + h)
&amp;lt;f&amp;gt; (x)}/h

has the limit tan/3 when h-*~0 by positive values and the limit

tan a when h -&amp;gt;-0 by negative values.

This is of course a case in which a curve might reasonably be said to have

two directions at a point. But the following example, although a little more

difficult, shows conclusively that there are cases in which a continuous curve

cannot be said to have either one direction or several directions at one of its

points. Draw the graph (Fig. 14, p. 53) of the function x sin (l/#). The

function is not denned for #=0, and so is discontinuous for #=0. On
the other hand the function defined by the equations

is continuous for #=0 (Exs. xxxvu. 14, 15), and the graph of this function

is a continuous curve.

But
&amp;lt;(#)

has no derivative for #= 0. For $ (0) would be, by definition,

lim {$ (h)
-

&amp;lt;p (0)}/A or lim sin (I/A) ;
and no such limit exists.

i It has even been shown that a function of x may be continuous and yet
~

\ have no derivative for any value of .r, but the proof of this is much more
^

difficult. The reader who is interested in the question may be referred to

Bromwich s Infinite Series, pp. 490-1, or Hobson s Theory of Functions

of a Real Variable, pp. 620-5.

(3) The notion of a derivative or differential coefficient was

suggested to us by geometrical considerations. But there is

nothing geometrical in the notion itself. The derivative &amp;lt; (x) of

a function $ (x) may be denned, without any reference to any kind

of geometrical representation of
&amp;lt;p (#), by the equation

and &amp;lt; (x) has or has not a derivative, for any particular value of x,

according as this limit does or does not exist. The geometry of

curves is merely one of many departments of mathematics in which

1 the idea of a derivative finds an application.

Another important application is in dynamics. Suppose that a particle is

moving in a straight line in such a way that at time t its distance from a fixed

point on the line is s = &amp;lt; (t).
Then the velocity of the particle at time t is

by definition the limit of

as A-*-0. The notion of velocity is in fact merely a special case of that of

the derivative of a function.



Ill, 112] DERIVATIVES AND INTEGRALS 201

Examples XXXIX. 1. If $ (x} is a constant then &amp;lt; (#)
= 0. Interpret

this result geometrically.

2. If
(f&amp;gt;(x)

= ax+ b then $ (#)
=

. Prove this (i) from the formal de

finition and (ii) by geometrical considerations.

3. If
(f) (x)=x

m
,
where m is a positive integer, then $ (#)

=

[For &amp;lt; (#)
= lim

The reader should observe that this method cannot be applied to
#&amp;gt;/,

where p/y is a rational fraction, as we have no means of expressing (#+ A)P/

as a finite series of powers of h. We shall show later on
( 118) that the result

of this example holds for all rational values of m. Meanwhile the reader

will find it instructive to determine &amp;lt; (x) when m has some special fractional

value (e.g. J), by means of some special device.]

4. If (x) sin #, then &amp;lt; (x)
= cos #

;
and if (#)

= cos x, then

&amp;lt; (#)
= - sin x.

[For example, if $ (#)
= sin #, we have

{&amp;lt; (#+A) - (#)}/A
=

(2 sin JA cos (x+ JA)}/Af

the limit of which, when k-&amp;gt;-0,
is cos

a?,
since lim cos (#+ ^A)

= cos # (the cosine

being a continuous function) and lim {(sin A)/A} = 1 (Ex. xxxvi. 13).]

5. Equations of the tangent and normal to a curve
y=&amp;lt;t&amp;gt;(x).

The

tangent to the curve at the point (# , y ) is the line through (# , y ) which

makes with OJTan angle ^, where tan
\|^
= (# ).

Its equation is therefore

and the equation of the normal (the perpendicular to the tangent at the

point of contact) is

(y
-
yo) &amp;lt; (#o)+x - ^o= o.

We have assumed that the tangent is not parallel to the axis of y. In

this special case it is obvious that the tangent and normal are X=XQ and

y=y respectively.

6. Write down the equations of the tangent and normal at any point of

the parabola #8
=4ay. Show that if # =

2a/wi, y = a/w
2

,
then the tangent

at # /o is .r

112. We have seen that if (#) is not continuous for a value

of x then it cannot possibly have a derivative for that value of x.

Thus such functions as \\x or sin (I/a?), which are not defined for

# = 0, and so necessarily discontinuous for x = 0, cannot have

derivatives for # = 0. Or again the function [#], which is discon

tinuous for every integral value of x, has no derivative for any
such value of #.
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Example. Since [#] is constant between every two integral values of #,

its derivative, whenever it exists, has the value zero. Thus the deriva

tive of [#], which we may represent by [#] ,
is a function equal to zero for

all values of x save integral values and undefined for integral values. It

is interesting to note that the function 1 -.- has exactly the samesm trx

properties.

We saw also in Ex. xxxvu. 7 that the types of discontinuity
which occur most commonly, when we are dealing with the very

simplest and most obvious kinds of functions, such as polynomials
or rational or trigonometrical functions, are associated with a

relation of the type

(j) (x)
-* + 00

or
&amp;lt;f&amp;gt; (x) -*- oo . In all these cases, as in such cases as those con

sidered above, there is no derivative for certain special values of x.

Fig. 38.

N /T,
\ & ^

In fact, as was pointed out in 111, (1), all discontinuities of$(x) are

also discontinuities of &amp;lt;f&amp;gt; (x). But the converse is not true, as we

may easily see if we return to the geometrical point of view of 110

and consider the special case, hitherto left aside, in which the graph
of

&amp;lt;/&amp;gt; (x) has a tangent parallel to Y. This case may be subdivided

into a number of cases, of which the most typical are shown in

Fig. 38. In cases (c) and (d) the function is two valued on one side

of P and not defined on the other. In such cases we may consider

the two sets of values of &amp;lt; (x), which occur on one side of P or the

other, as defining distinct functions fa(x) and fa(x), the upper

part of the curve corresponding to fa (x).
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The reader will easily convince himself that in (a)

as h -9-0, and in (6)

while in (c)

and in (d)

(&amp;lt;/&amp;gt;! (a; + A)
- & O)}//* 0)

, {, (a? + A)
-

&amp;lt; 2 (#)}//*-^+ oo
,

though of course in (c) only positive and in (d) only negative

values of h can be considered, ajact which by itself would preclude

the existence of a derivative.

We can obtain examples of these four cases by considering the

functions defined by the equations

^5 y*
= x, (b) f = -x, (c) 7/

2 =
#, (d) y*

= -x,

the special value of x under consideration being x = 0.

113. Some general rules for differentiation. Through
out the theorems which follow we assume that the functions

f(x) and F(x) have derivatives / (X) and F (x) for the values of

x considered.

(1) // (/&amp;gt; (x) =/(#) + F (x), then
&amp;lt;/&amp;gt;

(x) has a derivative

f -/() +&amp;gt;(&amp;gt;

(2) //&quot;&amp;lt;/&amp;gt; (x)
= kf (x), where k is a constant, then

&amp;lt;j&amp;gt; (x) has a

derivative

We leave it as an exercise to the reader to deduce these results

from the general theorems stated in Ex. xxxv. 1. \^ \

(3) If (f&amp;gt;
(x) =f(x)F(x), then &amp;lt; (x) has a derivative

For A faWlim- ^ &quot; *&quot; ^
\

v J ^ f
&quot; ^ &quot; r~

*
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has a

/(*}

(4) If $ (x) = f r
,

/*e/i
(/&amp;gt; (#) 7*as a derivative

(
-

In this theorem we of course suppose that f(x) is not equal to

zero for the particular value of x under consideration. Then

/ / \ i -*-~
vv t(\\ $ W = lim T

;V^M 5-WJ n

f( }

(5) If (/&amp;gt; (x)
= -. ,

then
&amp;lt;f&amp;gt; (x) has a derivative

^~.
\ I st\

f (x} F (x} f (x) F (x) **V

[F(x)Y ^ ~ ^ V
This follows at once from (3) and (4). .

7 * H V x v /%/

(6) 7/
1

^&amp;gt; (ic)
= F

{/&quot;(#)},
Me?i

^&amp;gt; (x) has a derivative

For let

Then k+Q as ^0, and k/h-*f (a;). And

r r= lim ^---^-^ x lim
A;

j

This theorem includes (2) and (4) as special cases, as we see on

taking F(x) = kx or F(x) = I/a?. Another interesting special case

is that in which f(x) = ax + b : the theorem then shows that the

derivative of F (ax -f b) is aF (ax + b).

Our last theorem requires a few words of preliminary explana

tion. Suppose that x = ^r (y), where ^r (y) is continuous and

steadily increasing (or decreasing), in the stricter sense of 95, in

a certain interval of values of y. Then we may write y = (/&amp;gt; (x),

where
&amp;lt;/&amp;gt;

is the inverse function ( 109) of
-ty.

(7) If y = (/&amp;gt; (x\ where
&amp;lt;/&amp;gt;

is the inverse function ofty, so that

x = ^r (y), and ty (y) has a derivative ty (y) which is not equal to

zero, then &amp;lt; (x) has a derivative
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For if
(/&amp;gt;
(x + h} = y + k, then k * as h-^0, and

The last function may now be expressed in terms of x by means

of the relation y = $ (x), so that
&amp;lt;fi(x)

is the reciprocal of ty {&amp;lt;f&amp;gt; (x)}.

This theorem enables us to differentiate any function if we know

the derivative of the inverse function.

114. Derivatives of complex functions. So far we have

supposed that y = &amp;lt;t&amp;gt;
(#) is a purely real function of x. If y is a

complex function
&amp;lt;f&amp;gt; (x) + i\jr (x), then we define the derivative of y

as being &amp;lt;$&amp;gt;
(x) + i-fy (x). The reader will have no difficulty in

seeing that Theorems (1) (5) above retain their validity when

&amp;lt;/&amp;gt;(#)

is complex. Theorems (6) and (7) have also analogues for

complex functions, but these depend upon the general notion of

a function of a complex variable
,
a notion which we have en

countered at present only in a few particular cases.

115. The notation of the differential calculus. We have

already explained that what we call a derivative is often called a

differential coefficient. Not only a different name but a different

notation is often used
;
the derivative of the function y = &amp;lt;/&amp;gt; (x)

is often denoted by one or other of the expressions

Of these the last is the most usual and convenient : the reader

must however be careful to remember that dyjdx does not mean
\

a certain number dy divided by another number dx : it means

the result of a certain operation Dx or d/dx applied to y = (/&amp;gt; (x) ,
i

the operation being that of forming the quotient {&amp;lt; (x + h) &amp;lt; (x)}jh |

and making h-*~Q.

Of course a notation at first sight so peculiar would not have been

adopted without some reason, and the reason was as follows. The denomi

nator h of the fraction (0 (sc+ h)
- $ (#)}/A is the difference of the values x+ h,

x of the independent variable x
; similarly the numerator is the difference of

the corresponding values (#+A), (x] of the dependent variable y. These

differences may be called the increments of x and y respectively, and denoted

by 8x and dy. Then the fraction is &//&i
%

,
and it is for many purposes

convenient to denote the limit of the fraction, which is the same thing as
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&amp;lt; (#) hy dy\dx. But this notation must for the present be regarded as

(purely

symbolical. The dy and dx which occur in it cannot be separated,
and standing by themselves they would mean nothing : in particular dy and

dx do not mean lim dy and lim &?, these limits being simply equal to zero.

The reader will have to become familiar with this notation, but so long as it

puzzles him he will be wise to
avoid_it by writing the differential coefficient in

the form Dxy, or using the notation &amp;lt; (#),
&amp;lt;f&amp;gt; (x), as we have done in the

preceding sections of this chapter.

In Ch. VII, however, we shall show how it is possible to define the symbols
dx and dy in such a way that they have an independent meaning and that

the derivative dyldx is actually their quotient.

The theorems of 113 may of course at once be translated into

this notation. They may be stated as follows :

(2) ify = tyi,

( ) v y y\y*&amp;gt;
ien

^x

(6) if y is a function of x, and z a function of y, then

dz dz dy
dx dy dx

Examples XL. 1. If y=y\y^s then

and if y=y^ ...yn then

dy
S-

In particular, if y = z
n

,
then dyldx= nzn

~ 1
(dzjdx) ;

and if y=xn
y
then

dyldx=nx
n
~\ as was proved otherwise in Ex. xxxix. 3.
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2. If y=yly2 ...yn then

l^ = i^l + I^2, +i^
y dx y1

dx y2 dx yn dx

T ,. , .,. ^ 1 dy n dz
In particular, if y= 2n

,
then -

-^- = 7- .

y dx z dx

116. Standard forms. We shall now investigate more

systematically the forms of the derivatives of a few of the

simplest types of functions.

A. Polynomials. If
&amp;lt;/&amp;gt;

(x)
= a,x

n + a.x^1 +... + , then

&amp;lt; (/p)
=

naox&quot;-
1 + (n-l) aix

n~2 + . . . + an_j.

It is sometimes more convenient to use for the standard form of a

polynomial of degree n in x what is known as the binomial form,
viz.

2x
n~*+ ... + a ft .

In this case

&amp;gt; (a;)
= n

The binomial form of $ (x) is often written symbolically as

and then
&amp;lt;/&amp;gt;

(a?)
= n (a ,

alt ..., rt^j^, I)
71 &quot;1

.

We shall see later that
&amp;lt;/&amp;gt; (#) can always be expressed as the

product of n factors in the form

&amp;lt;t&amp;gt;
(a?)

= a (x
- aj (a?

- cr2) . . . (x
- an\

where the a s are real or complex numbers. Then

the notation implying that we form all possible products of n 1

factors, and add them all together. This form of the result holds

even if several of the numbers a are equal ;
but of course tl^en

some of the terms on the right-hand side are repeated. The

reader will easily verify that if

(f) (x) a (x
- a

lYlt

(x
- a2)

m* ... (x
-

a,)
m

,

then &amp;lt; (x)
= a ^ml (x

- a^- 1

(x
- a2)

m
* ...(#- a,)&quot;

1

&quot;.
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Examples XLI. 1. Show that if $ (#) is a polynomial then &amp;lt; (x) is

the coefficient of h in the expansion of (x+ A) in powers of h.

2. If
4&amp;gt;(%)

is divisible by (x a)
2

,
then &amp;lt; (#) is divisible by x a : and

generally, if &amp;lt; (#) is divisible by (x a)
m

,
then &amp;lt; (#) is divisible by (x-a)

m ~ l
.

3. Conversely, if $ (#) and (#) are 6o/i divisible by x - a, then &amp;lt; (47) is

divisible by (x- a)
2

;
and if $ (a?) is divisible by x - a and (x) by (#- a)&quot;*&quot;

1
,

then (x) is divisible by (#
-

a)&quot;

1
.

4. Show how to determine as completely as possible the multiple roots

of P(#)=0, where P (x) is a polynomial, with their degrees of multiplicity,

by mer,ns of the elementary algebraical operations.

[If HI is the highest common factor of P and P
,
H2 the highest common

factor of HI and P
,
//3 that of Jf2 and

P&quot;,
and so on, then the roots of

HlH3lff2
2=^ are the double roots of P=0, the roots of //2 //4/#3

2= the freWe

roots, and so on. But it may not be possible to complete the solution of

ff^/Hf^Q, //2 #4/#32
=0, .... Thus if P(*) = (ff-l)3(0s-a;-7)

a then

Hl ffs/ff2*=afi-x-
t

J and Hz ffi/ff3
*=x-l

;
and we cannot solve the first

equation.]

5. Find all the roots, with their degrees of multiplicity, of

6. If axt+ Zbx+c has a double root, i.e. is of the form a(#-a) 2
,
then

2 (oA*+ 6) must be divisible by # -
a, so that a= -

b/a. This value of x must

satisfy a#a+ 2&#+ c=0. Verify that the condition thus arrived at is

7. The equation !/(#- a) + l/(a;-6) + l/(a;-c)
= can have a pair of

equal roots only if a= b= c. (Math. Trip. 1905.)

8. Show that ax*+ 3 6.r2+ 3c#+ d=

has a double root if Gf2 + 4 Jff3= 0, where H=ao-b\ G= a2d-3abe+ 2bs
.

[Put a^+6=y, when the equation reduces to
(?/

3
-f 3ffy+ Gf=0. This

must have a root in common with

9. The reader may verify that if a, ft y, -8 are the roots of

a.r4+ 4fo;3+ 6c.r
2 + dx+ e= 0,

then the equation whose roots are

and two similar expressions formed by permuting a, /3, 7 cyclically, is

4&amp;lt;9

3 -
(?20-#3 =0,

where g%
= ae- 4bd+ 3c3

, ,9^3
= ce+ 26ccZ - ad2 -

eb&quot;

2 - c3 .

It is clear that if two of a, ft 7, 8 are equal then two of the roots of this cubic

will be equal. Using the result of Ex. 8 we deduce that
g&amp;lt;?

-
27#3

2 =0.



116, 117] DERIVATIVES AND INTEGRALS 209

10. Rolle s Theorem for polynomials. // (x} is any polynomial,
then between any pair of roots of &amp;lt;j&amp;gt;(x)

= Q lies a root of (x} = 0.

A general proof of this theorem, applying not only to polynomials but to
other classes of functions, will be given later. The following is an algebraical
proof valid for polynomials only. We suppose that a, are two successive

roots, repeated respectively m and n times, so that

where B (x] is a polynomial which has the same sign, say the positive si&amp;lt;m,
for

a&amp;lt;#&amp;lt;/3. Then

(^

say. Now F (a)
=m (a

-
0) (a) and F (0)= n (/3

-
a) 6 (0), which have opposite

signs. Hence F(x\ and so &amp;lt; (#), vanishes for some value of x between
a and

117. B. Rational Functions. If

whereP and Q are polynomials, it follows at once from 1 13, (5) that

R (x) = ^~~ ~ L^ ^ )

and this formula enables us to write down the derivative of any
rational function. The form in which we obtain it, however, may or

may not be the simplest possible. It will be the simplest possible if

Q (x) and Q (x) have no common factor, i.e. if Q (x) has no repeated
factor. But if Q(x) has a repeated factor then the expression
which we obtain for R (x) will be capable of further reduction.

It is very often convenient, in
differentiating a rational

function, to employ the method of partial fractions. We shall

suppose that Q(x), as in 116, is expressed in the form

Then it is proved in treatises on Algebra* that R (x) can be

expressed in the form

*
See, e.g., Chrystal s Algebra, vol. i, pp. 151 et seq.

u. u
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where H.(x) is a polynomial; i.e. as the sum of a polynomial and

the sum of a number of terms of the type

where a is a root of Q (a) = 0. We know already how to find the

derivative of the polynomial : and it follows at once from Theorem (4)

of 113, or, if a is complex, from its extension indicated in 114,

that the derivative of the rational function last written is

_pA (x- of)^
1

_ pA
&quot;(^o)*~&quot; (^-a)*

m
We are now able to write down the derivative of the general

rational function R (x), in the form

Incidentally we have proved that the derivative of x1 1
is mxm~ l

y

for all integral values of m positive or negative.

The method explained in this section is particularly useful

when we have to differentiate a rational function several times

(see Exs. XLV).

Examples XLII. 1. Prove that

_ - __ .

dx \l +x*J
~~

(1 +tf
8
)* dx \

2. Prove that

d atf+ Zbx+c \ _ (ax+ b} (Bx+ C)-(bx+c) (Ax+H)

3. If Q has a factor (#-a)
m

,
then the denominator of R (when R is

reduced to its lowest terms) is divisible by (x a)
w + 1 but by no higher power

of x -a. ^fiV - PfV\ / f* f \ t^ ^- A^f

4. In no case can the denominator of R have a simple factor x-a.

Hence no rational function (such as I/a?) whose denominator contains any

simple factor can be the derivative of another rational function.

118. C. Algebraical Functions. The results of the pre

ceding sections, together with Theorem (6) of 113, enable us to

obtain the derivative of any explicit algebraical function whatsoever.

The most important such function is xm,
where m is a rational

number. We have seen already ( 117) that the derivative of this
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function is mxm~l when m is an integer positive or negative ;
and

we shall now prove that this result is true for all rational values
of m. Suppose that y = xm = xP1

*, where p and q are integers and

q positive ;
and let z = xl

v, so that x = sfl- and y = gP. Then

dx

This result may also be deduced as a corollary from Ex. xxxvi.
3. For, if &amp;lt; (x) = xm

,
we have

h-**Q n

tin _ xm= lim ^- - = mxm~\
$+x S~-x

It is clear that the more general formula

T- (ax + b)
m = ma (ax + b)

1

holds also for all rational values of m.

The differentiation of implicit algebraical functions involves

certain theoretical difficulties to which we shall return in Ch. VII.

But there is no practical difficulty in the actual calculation of the

derivative of such a function : the method to be adopted will be
illustrated sufficiently by an example. Suppose that y is given by
the equation

3 +
y&quot;

-
Saxy = 0.

Differentiating with respect to x we find

* ay ( dyx &quot; + y j
~ a (y + x

i^ dx \
J dx

T dy x* ayand so -^-
~

.

dx
y*-

ax

Examples XLIII. 1. Find the derivatives of

2. Prove that

a 4-

3. Find the differential coefficient of y when

(i) o^2 + 2/i.ry+&y
2+ 2#o;+ 2/j/ + c=0, (ii) ^

142
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119. D. Transcendental Functions. We have already

proved (Ex. xxxix. 4) that

Dx sin x = cos x, Dx cos x = sin x.

By means of Theorems (4) and (5) of 113, the reader will

easily verify that

Dx tan x = sec2
x, Dx cot x = cosec2

x,

Dx sec x = tan x sec x, Dx cosec x = cot x cosec x.

And by means of Theorem (7) we can determine the derivatives

of the ordinary inverse trigonometrical functions. The reader

should verify the following formulae :

Dx arc sin x = + 1/V(1
~ #2

)&amp;gt;

Dx arc cos x = + 1/V(1 ^e
2
),

DZ arc tan a? = 1/(1 + x2

),
Dx arc cot # = 1/(1 + x-) }

Dx arc sec x = + 1/{#V(#
2 ~

!)}&amp;gt; A arc cosec x + l/{#\/(#
2

1)}.

In the case of the inverse sine and cosecant the ambiguous sign

is the same as that of cos (arc sin x\ in the case of the inverse

cosine and secant the same as that of sin (arc cos x).

The more general formulae

Dx arc sin (as/a)
= + l/\/(a

2 #2

),
Dx arc tan (x/a)

=
a/(#

2
4- a2

),

which are also easily derived from Theorem (7) of 113, are also

of considerable importance. In the first of them the ambiguous

sign is the same as that ofa cos {arc sin (x/a)}, since

aVU - O2

/a
2

)}
=

V&amp;lt;&amp;gt;

2 - x2

)

according as a is positive or negative.

Finally, by means of Theorem (6) of 113, we are enabled to

differentiate composite functions involving symbols both of alge

braical and trigonometrical functionality, and so to write down

the derivative of any such function as occurs in the following

examples.

Examples XLIV.* 1. Find the derivatives of

cosm #, sin.*?, cos#m
,

sin^m
,

cos (sin x\ sin (cos x\

cos x sin x
..
-

r,

-
, . r .

.V(a
2 cos2 x+ 62 sm2

x)

x arc sin x+ v/( 1 x2
), (

1 -f ^ ) arc tan Jx Jx.

* In these examples m is a rational number and a, b
t ... , a, /3, ... have such

values that the functions which involve them are real.
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2. Verify by differentiation that arc siri x -f arc cos x is constant for all

values of x between and 1, and arc tano7+arccot# for all positive values

of x.

3. Find the derivatives of

arc sin V(l
- #2

), arc sin (2^ ^(1 - #2
)}, arc tan (^

\\-ax
How do you explain the simplicity of the results ?

4. Differentiate

1 ax+b 1 ax+b

5. Show that each of the functions

SarcsinJ(^\ Cretan J(^\ arc sin
VK -)(*- ffl}

has the derivative

6 Prove that

rf
arc cos //cos30\) //

VVcos3
*;/ V V̂cos 6 cos 3^/

(Math. Trip. 1904.)
7 Show that

8. Each of the functions

fa cos x
arc cos r:T: I ) , ^ o^ ,* arc tan U / (

^ T ) tan
f //a-6
IV (s+6

has the derivative l/(a+ b cos 07).

9. If X= a + 6 cos 57+ c sin
07, and

y=
f

.

2 _;)2_ 2 x arc cos

then

10. Prove that the derivative of F[f {$ (x}}] is F [f {&amp;lt;f&amp;gt; (a?)}]/ (0 (#)} (^),
and extend the result to still more complicated cases.

11. If u and v are functions of x, then

Dx arc tan (ujv) = (vDx u - uDxv)/(u
2 + v2

).

12. The derivative of y= (tan x+ sec x}
m is my sec a?.

13. The derivative of y= cos x+ 1 sin ^ is ly.

14. Differentiate x cos
a?, (sin#)/.r. Show that the values of x for which

the tangents to the curves y=x cos
a?, y=(sin #)/# are parallel to the axis of x

are roots of cot x=x, tan #=.27 respectively.
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15. It is easy to see (cf. Ex. xvn.jT) that the equation sin .v=ax, where a

is positive, has no real roots except #=0 if
&amp;gt;1,

and if a&amp;lt; 1 a finite number of

roots which increases as a diminishes. Prove that the values of a for which

the number of roots changes are the values of cos |, where is a positive root

of the equation tan =. [The values required are the values of a for which

y= ax touches y=sin #.]

16. If (#)
=#2 sin (l/#) when x =4= 0, and

&amp;lt;f&amp;gt;
(0)

=
0, then

$ 0?)
= ZK sin (l/.r)

- cos (l/#)

when #4=0, and &amp;lt; (0)=0. ^nd ^ ^ )
is discontinuous for #= (cf. 111,

(2)).

17. Find the equations of the tangent and normal at the point (# , y )

of the circle j^+y^a2
.

[Here y= /v/(a
2 -^2

), dy\dx= -x\^(d
i
-x-\ and the tangent is

which may be reduced to the form XXQ +yyQ
= a1

. The normal is xyQ
- y?Q

= 0,

which of course passes through the origin.]

18. Find the equations of the tangent and normal at any point of the

ellipse (#/a)
2 + (#/&)

2= l and the hyperbola (#/a)
a -

(y/6)
2 = l.

19. The equations of the tangent and normal to the curve x=

y = ^r (t\ at the point whose parameter is t
t
are

120. Repeated differentiation. We may form a new function

&amp;lt;^

//

(^) from $ (x) just as we formed &amp;lt; (#) from (^). This

function is called the second derivative or second differential

coefficient
of (a?).

The second derivative of y=$(x) may also

be written in any of the forms

d*y

In exactly the same way we may define the nth derivative or

nth differential coefficient
of y = &amp;lt;/&amp;gt;

(a?),
which may be written in any

of the forms
d \

n d*t/

y, .

But it is only in a few cases that it is easy to write down a

general formula for the nth differential coefficient of a given

function. Some of these cases will be found in the examples

which follow.
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Examples XLV. 1. If $(x}=xm then

0W(^) =w (m-l)...(ra-n-fl) #
&quot;-

.

This result enables us to write down the nth derivative of any polynomial.

2. If
(f) (as)

= (ax+ b)
m then

In these two examples m may have any rational value. If m is a positive

integer, and
n&amp;gt;m,

then &amp;lt;(

w
) (#)

= 0.

3. The formula

dx

enables us to write down the nth derivative of any rational function expressed
in the standard form as a sum of partial fractions.

4. Prove that the nth derivative of 1/(1 #2
)
is

5. Leibniz Theorem. If y is a product ue, and we can form the

first n derivatives of u and v, then we can form the nth derivative of y by
means of Leibniz

1

Theorem, which gives the rule

where suffixes indicate difterentiations, so that un ,
for example, denotes the

nth derivative of u. To prove the theorem we observe that

(u y)2

and so on. It is obvious that by repeating this process we arrive at a

formula of the type

for r=l, 2, ... Ti1, and show that if this

is so then an + i,r( }
f r ?*= 1, 2, ... n. It will then follow by the

n\ /

principle of mathematical induction that
Ui r

= ( } for all values of n and

in question.

When we form (^^)n + 1 by differentiating (uv)n it is clear that the coefficient

of un + l - rvr is

This establishes the theorem.
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6. The nth derivative of xm /(a?) is

m ! m !

(-*)! (m

.*(*T
the series being continued for n 4- 1 terms or until it terminates.

7. Prove that Dx
n cos x= cos (a? 4- \n-rr}, Dx

n sin x sin (x+ 1?

8. If y= ^4 cos ma-+^ sin mx then Dx
2
y 4-m2

y= 0. And if

y= A cos mx+ B sin wi# -fPn (a?),

where Pn (x} is a polynomial of degree n, then

9. If a;
2D^y+ a? D^y + y= then

[Differentiate n times by Leibnitz Theorem.]

10. If Un denotes the nth derivative of (Lx +M )/(^
2 - ZBx + C\ then

[First obtain the equation when ?^=
;
then differentiate 7i times by

Leibnitz Theorem.]

11. The nth derivatives of a/(a?+x^ an(i xi(a?+ x2
). Since

\
a2

4- x2 2 \a? ai x + aij
*

we have

y^lt_l
\i ((a?-ai)

n + 1

and a similar formula for Dx
n

{a?/(a
2+ a:

2
)}.

If p = \/(a?
2
4- a2

), and 6&amp;gt; is the

numerically smallest angle whose cosine and sine are a?/p and a/p, then

x+ ai*=p Cis 6 and x-ai=p Cis (- 0), and so *

ZV* {a/(
2 + ^2

)}
=

{(
- l)7i !/2i} p-

1
- 1

[Cis (O+ 1) &amp;lt;9}

- Cis {- (n

= (- l)
nn I (a;

2+ a2
)-(

n + 1
)
/2 sin {(w + l) arc tan

(a/a?)}.

Similarly
2
)

~
(n + 1)/2 cos {(n+l) arc tan (a/a:)}.

12. Prove that

A.&quot; {(cos a:)/a;}
= {Pn cos (a: + ^TT) + Qn sin (a?

where Pn and Qn are polynomials in ^ of degree n and w - 1 respectively.

13. Establish the formulae

_i = _ =__-
dy~ /\dx) dy

z
dx*f \dx) dy* \dx* dx
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14. If 3/2=1 andyr =(l/r!)

1
I
z

f, *, = (!/*!) Dx z, then

1
! ?/9 I

Z2 Z3

15. IfW(y, z, tt
)

respect to #, then

z u

y&quot;

(Math. Trip. 1905.)

,
dashes denoting differentiations with

dyldx=-(ax + hy +g)l(hx+ by +/ )

- (abc+ 2/#A
-
a/

2 -
&amp;gt;#

2 - c/*
2

)/(/&amp;lt;
x + by+f}\

16. If

then

and

121. Some general theorems concerning derived func

tions. In all that follows we suppose that
(j&amp;gt;

(x) is a function of x

which has a derivative &amp;lt; (x) for all values of x in question. This

assumption of course involves the continuity of
&amp;lt;f).(x). ^

The meaning of the sign of &amp;lt;

(a?). THEOREM A. //*

&amp;lt; (# ) &amp;gt; /ie?i &amp;lt; (^) &amp;lt;

&amp;lt;^&amp;gt; (a? ) for all values of x less than XQ but

sufficiently near to XQ ,
and

&amp;lt;/&amp;gt;(#)&amp;gt; &amp;lt;/&amp;gt;(# ) for all values of x greater

than XQ but sufficiently near to x .

For
{(f) (xQ + h) &amp;lt;f) (x )}/h converges to a positive limit

&amp;lt;f&amp;gt; (ar ) as

h-^Q. This can only be the case if
c/&amp;gt;

(a? + h) $ (a? ) and h have

the same sign for sufficiently small values of h
t
and this is precisely

what the theorem states. Of course from a geometrical point of

view the result is intuitive, the inequality &amp;lt;/&amp;gt;
(x) &amp;gt; expressing

the fact that the tangent to the curve y = &amp;lt;/&amp;gt;
(x) makes a positive

acute angle with the axis of x. The reader should formulate for

himself the corresponding theorem for the case in which
&amp;lt;/&amp;gt; (x) &amp;lt; 0.

An immediate deduction from Theorem A is the following

important theorem, generally known a^Rolle s Theorem; In view

of_the great importance of this theorem it may be well to repeat
that its truth depends on the assumption of the existence of the

derivative
&amp;lt;f&amp;gt;

(x) for all values of x in question.
Ihe&quot;&quot;

THEOREM B. If (a)
= and

c/&amp;gt;
(6)

=
0, then there must be at

least one value of x which lies between a and b and for which

There are two possibilities : the first is that &amp;lt; (x) is equal to
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zero throughout the whole interval (a, b). In this case &amp;lt; (x) is

also equal to zero throughout the interval. If on the other hand

&amp;lt;p (x) is not always equal to zero, then there must be values of

x for which
&amp;lt;/&amp;gt;(#)

is positive or negative. Let us suppose, for

example, that &amp;lt; (x) is sometimes positive. Then, by Theorem 2 of

102, there is a value % of x, not equal to a or b, and such that $ (f)

is at least as great as the value of &amp;lt; (x) at any other point in

the interval. And &amp;lt; (f) must be equal to zero. For if it were

positive then
&amp;lt;(#) would, by Theorem A, be greater than

&amp;lt;/&amp;gt; (f) for

values of x greater than f but sufficiently near to f, so that there

would certainly be values of
&amp;lt;/&amp;gt;

(x) greater than
&amp;lt;/&amp;gt; (). Similarly we

can show that &amp;lt; () cannot be negative.

COR. 1. If (f&amp;gt; (a) &amp;lt;f&amp;gt;
(b)

=
k, then there must be a value of x

between a and b such that
(f&amp;gt; (x) 0.

We have only to put &amp;lt;/&amp;gt; (x) k
-fy (x) and apply Theorem B

to ^ (as).

COR. 2. If &amp;lt; (x) &amp;gt; for all values of x in a certain interval,

then
&amp;lt;f&amp;gt; (x) is an increasing function of x, in the stricter sense of 95,

throughout that interval.

Let X-L and x2 be two values of x in the interval in question,

and #! &amp;lt; #2 . We have to show that $ (x^) &amp;lt;

&amp;lt;j&amp;gt;
(a?2). In the first

place &amp;lt; (a^) cannot be equal to
&amp;lt;/&amp;gt; (#2) ; for, if this were so, there

would, by Theorem B, be a value of x between x and #2 for which

&amp;lt; (x)
= 0. Nor can

c/&amp;gt; (#a) be greater than &amp;lt;

(a?2). For, since &amp;lt; (X)

is positive, &amp;lt;/&amp;gt;
(#) is, by Theorem A, greater than &amp;lt; (a^) when # is

greater than a^ and sufficiently near to xlf It follows that there is

a value xs of # between ^ and X* such that &amp;lt; (x8)
=

c^&amp;gt; (^) ;
and so,

by Theorem B, that there is a value of x between xl and x.A for

which $ (x)
= 0.

COR, 3. The conclusion of Cor. 2 still holds if the interval

(a, b) considered includes a finite number of exceptional values of x

for which $ (x) does not exist, or is not positive, provided $ (x) is

continuous even for these exceptional values of x.

It is plainly sufficient to consider the case in which there is

one exceptional value of x only, and that corresponding to an end

of the interval, say to a. If a &amp;lt; x &amp;lt; x2 &amp;lt; b, we can choose a + e

so that a + e&amp;lt;xl ,
and

&amp;lt;& (x) &amp;gt; throughout (a + e, b), so that

&amp;lt;/&amp;gt;
(tfj &amp;lt;

&amp;lt; (%2 ), by Cor. 2. All that remains is to prove that
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&amp;lt; (a) &amp;lt;

&amp;lt;/&amp;gt; (ayj). Now
&amp;lt;/&amp;gt;
(X) decreases steadily, and in the stricter

sense, as x-^ decreases towards a, and so

&amp;lt;/&amp;gt;()

=
&amp;lt; (a + 0) = Km

&amp;lt;/&amp;gt; (X) &amp;lt; &amp;lt; (X).
ce,-*-a+0

COR. 4.
//&quot;&amp;lt;/&amp;gt; (#) &amp;gt; throughout the interval (a, b), and

(f&amp;gt;
(a) ^ 0,

then
cj&amp;gt; (&) is positive throughout the interval (a, 6).

The reader should compare the second of these corollaries very carefully
with Theorem A. If, as in Theorem A, we assume only that &amp;lt; fr) is positive
at a single point #=# ,

then we can prove that &amp;lt;

(^i)&amp;lt;^&amp;gt; (#2) when x\ and #2

are sufficiently near to # and x &amp;lt; XQ &amp;lt;
xz . For $ (x-fi &amp;lt; &amp;lt; (# ) and (a?2) &amp;gt; &amp;lt; (^o),

by Theorem A. But this does not prove that there is any interval including

XQ throughout which &amp;lt; (x) is a steadily increasing function, for the assumption
that xl and x2 lie on opposite sides of XQ is essential to our conclusion. We
shall return to this point, and illustrate it by an actual example, in a moment
(

122. Maxima and Minima
f
We shall say that the value $()

assumed by (/&amp;gt; (x) when x = is ^maximum if &amp;lt; (f) is greater than

any other value assumed by &amp;lt;/&amp;gt; (x) in the immediate neighbourhood
of x=%, i.e. if we can find an interval (f e, %+ e) of values of

x such that &amp;lt; (f) &amp;gt;&amp;lt;^&amp;gt;
(V) when f - e &amp;lt; x &amp;lt; and when f &amp;lt; a? &amp;lt; f+ e;

and we define a minimum in a similar manner. Thus in the figure
the points A correspond to maxima, the points B to minima of

B.,

Fig. 39.

the function whose graph is there shown. It is to be observed that

the fact that A s corresponds to a maximum and B^ to a minimum
is in no way inconsistent with the fact that the value of the

function is greater at Bl than at A 3 .

THEOREM C. A necessary condition for a maximum or

minimum value of $&amp;gt;(x)
at x=% is that

&amp;lt;// (f)
= 0.*

* A function which is continuous but has no derivative may have maxima and

minima. We are of course assuming the existence of the derivative.
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This follows at once from Theorem A. That the condition is not

sufficient is evident from a glance at the point G in the figure.

Thus if y = x3 then
&amp;lt;f&amp;gt;

(x) = 3#2
,
which vanishes when x = 0. But

x = does not give either a maximum or a minimum of a?, as is

obvious from the form of the graph of a? (Fig. 10, p. 45).

But there will certainly be a maximum at x = j~ if &amp;lt;f&amp;gt; (f) = 0,

&amp;lt; (x) &amp;gt; for all values of x less than but near to %, and
&amp;lt;$&amp;gt;

(x) &amp;lt;

for all values of x greater than but near to : and if the signs

of these two inequalities are reversed there will certainly be a

minimum. For then we can (by Cor. 3 of 121) determine an

interval (f e, f) throughout which
cf&amp;gt; (x) increases with x, and an

interval (f ,&quot; f 4- e) throughout which it decreases as x increases :

and obviously this ensures that &amp;lt; () shall be a maximum.

This result may also be stated thus. If the sign of &amp;lt; (x)

changes at x = % from positive to negative, then x = f gives

a maximum of &amp;lt; (x) : and if the sign of
&amp;lt;f&amp;gt; (x) changes in the

opposite sense, then as f gives a minimum.

123. There is another way of stating the conditions for a

maximum or minimum which is often useful. Let us assume

that
(f&amp;gt; (x) has a second derivative

&amp;lt;/&amp;gt;&quot;
(x) : this of course does not

follow from the existence of
&amp;lt;f&amp;gt;

(x), any more than the existence of

&amp;lt;f) (x) follows from that of &amp;lt; (x). But in such cases as we are

likely to meet with at present the condition is generally satisfied.

THEOREM D. // &amp;lt; (?)=0 and
&amp;lt;&quot;(?) + 0, then

&amp;lt;f&amp;gt;(x)

has a

maximum or minimum at x = %, a maximum if &amp;lt;&quot;() &amp;lt;0,
a

minimum if $&quot; (f) &amp;gt; 0. &amp;lt;

Suppose, e.g., that
&amp;lt;&quot;(?)&amp;lt;

0. Then, by Theorem A, $ (x) is

negative when x is less than f but sufficiently near to f, and

positive when x is greater than f but sufficiently near to f. Thus

x = gives a maximum.

124. In what has preceded (apart from the last paragraph) we have

assumed simply that (#) has a derivative for all values of x in the interval

under consideration. If this condition is not fulfilled the theorems cease to

be true. Thus Theorem B fails in the case of the function
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where the square root is to be taken positive. The graph of this function is

shown in Fig. 40. Here (- 1)
= 0(1) = 0: but (#), as is evident from the

figure, is equal to 1 if # is negative and to 1 if # is positive, and never

vanishes. There is no derivative for #=0, and no tangent to the graph
at P. And in this case #=0 obviously gives a maximum of 0(a?), but

(0)j as it does not exist, cannot be

equal to zero, so that the test for a

maximum fails.

The bare_existence of the derivative

(#), however, is all that we have as

sumed. And there is one_jtssumption
in particular that we have not made,
and that is that

(a?) itself is a con

tinuous function. This raises a rather -1 O
\ subtlejbut still a very interesting point. pjg 49
Can a function (#) have a derivative

for all values of # which is not itself continuous ? In other words can a

curve have a tangent at every point, and yet the direction of the tangent
not vary continuously ? The reader, if he considers, what the question means

and tries to answer it in the light of common sense, will probably incline

to the answer No. It is, however, not difficult to see that this answer is

wrong.

Consider the function (#) defined, when # 4= 0, by the equation

and suppose that 0(0) =0. Then 0(a?) is continuous for all values of #.

If #4=0 then

(#)
= 2# sin (!/#) cos (l/#) ;

while (0)= li

Thus (#) exists for all values of #. But (a?) is discontinuous for #=0;
for 2#sin (I/a?) tends to as #^0, and cos (1/0) oscillates between the limits

of indetermination 1 and 1, so that (#) oscillates between the same

limits.

What is practically the same example enables us also to illustrate the

point referred to at the end of 121. Let

(a?)
=#2 sin

(
1 /#) -f- a#,

where
0&amp;lt;a&amp;lt;l,

when #4=0, and 0(0)=0. Then (0)
= a&amp;gt;0. Thus the

conditions of Theorem A of 121 are satisfied. But if #4=0 then

(#)
= 2# sin (l/#) cos (I/a?) + a,

which oscillates between the limits of indetermination a- 1 and a+ 1 as #-*-0.

As a-l&amp;lt;0, we can find values of #, as near to as we like, for which

(#)&amp;lt;0; and it is therefore impossible to find any interval, including a?=0,

throughout which (a?) is a steadily increasing function of #.
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It is, however, impossible that $ (%} should have what was called in

Ch. V (Ex. xxxvii. 18) a simple discontinuity; e.g. that
&amp;lt;f) (x}-^a when

x-*- + 0, &amp;lt; (#)-sT&quot;when x^&amp;gt;~ 0, and $ (0)
=

c, unless a= b = c, in which case

4&amp;gt; (x) is continuous for #= 0. For a proof see 125, Ex. XLVII. 3.

Examples XLVI. 1?* Verify Theorem B when
&amp;lt; (x)

= (x- a)
m
(x
-

b}
n or

cf) (#)= (.v a)
m
(x b)

n
(x c)

p
,
where m, n, p are positive integers and a &amp;lt; b &amp;lt; c.

[The first function vanishes for x=a and xb. And

4j &amp;lt; (a?)
=

(37
-

a)
m - *

(.2?
-

&)
- 1

{(m+ n}x- ml) - na]

vanishes for x=(mb+na)l(m-\-n\ which lies between a and 6. In the

second case we have to verify that the quadratic equation

(m +n +p) x* {m (b+ c) -fn (c+ a)+p (a+ b}} x + mbc + nca +pab =

has roots between a and b and between b and c.]

2. Show that the polynomials

%xP+ 3^2 - 1 2#+ 7, 3^4 + 8^3 - G^-2 - 24.?+19
are positive when x&amp;gt;l.

3. Show that ^7 - sin a? is an increasing function throughout any interval

of values of x, and that tan.r-.2- increases as x increases from -|TT to \TT.

For what values of a is ax sin^7 a steadily increasing or decreasing function

of xl

4. Show that tan 57 x also increases from X=^TT to ^=|TT, from #=3-r
to x= \ TT, and so on, and deduce that there is one and only one root of the

equation tan#=# in each of these intervals (cf. Ex. xvii. 4). K ^ (r

5. Deduce from Ex. 3 that sin #-#&amp;lt;() if
^&amp;gt;0, from this that

cos^;-l + ^.i
2

&amp;gt;0,
and from this that sin^-^+ -i^3 &amp;gt;0. And, generally,

prove that if

and
,r&amp;gt;0,

then C2m and SZm +i are positive or negative according as m is odd

or even.

6. If f(x) and
/&quot; (x} are continuous and have the same sign at every

point of an interval (a, 5), then this interval can include at most one root of

either of the equations/(.r)=0,/ (#)=0.

7. The functions w, v and their derivatives u
,

v are continuous

throughout a certain interval of values of x, and uv u v never vanishes

at any point of the interval. Show that between any two roots of u=
lies one of v= 0, and conversely. Verify the theorem when U-CGSX, v= sin.r.

[If v does not vanish between two roots of w= 0, say a and /3, then the

function ufv is continuous throughout the interval (a, (3} and vanishes at its

extremities. Hence (u/v) =(u v uv )lv
2 must vanish between a and /3, which

contradicts our hypothesis.] ^ ^
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8. Determine the maxima and minima (if any) of (x I)
2
(#+ 2), Xs -3x,

2.c3 -3^2 -36^+10, 4^3 -18^2+ 27.r-7, 3^-4^+ 1, a6 - 15^ + 3. In each

case sketch the form of the graph of the function.

[Consider the last function, for example. Here &amp;lt; (x)
= 5x2

(x
2

9), which

vanishes for x = 3, #=0, and #=3. It is easy to see that x -3 gives a

maximum and x=3 a minimum, while x=0 gives neither, as &amp;lt; (#) is negative
on both sides of #=0.]

9. Discuss the maxima and minima of the function (x
-

a)
m
(x b}

n
,
where

m and n are any positive integers, considering the different cases which occur

according as m and n are odd or even. Sketch the graph of the function.

10. Discuss similarly the function (x
-
a) (x

-
6)

2
(x

-
c)

3
, distinguishing

the different forms of the graph which correspond to different hypotheses as

to the relative magnitudes of a, 6, c.

11. Show that (ax+ b)/(cx+ d) has no maxima or minima, whatever

values
, 6, c, d may have. Draw a graph of the function.

12. Discuss the maxima and minima of the function

y-

when the denominator has complex roots.

[We may suppose a and A positive. The derivative vanishes if

This equation must have real roots. For if not the derivative would always
have the same sign, and this is impossible, since y is continuous for all values

of #, and y-*~a/A as x-*~+ cc or x-^-- oo . It is easy to verify that the curve

cuts the line y= a/A in one and only one point, and that it lies above this

line for large positive values of x, and below it for large negative values, or

vice versa, according as ~b\a&amp;gt;B\A or b{a&amp;lt;BjA. Thus the algebraically

greater root of (1) gives a maximum if b}a&amp;gt;B/A, a minimum in the contrary

case.]

13. The maximum and minimum values themselves are the values of X

for which axP+ 2bx + c-\(Ax2+ l2Bx+ C) is a perfect square. [This is the

condition that y=\ should touch the curve.]

14. In general the maxima and minima of R (x}
=P (x)/Q (x) are among

the values of X obtained by expressing the condition that P(x) \Q(x) = Q

should have a pair of equal roots.

15. If Ax2+ 2Bx+ C=0 has real roots then it is convenient to proceed as /^
follows. We have

where \= bAafi, p.
= cA-aC. Writing further for \x + p and

rj
for

(A/X-) (Ay a), we obtain an equation of the form

-j) (-*)}.
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This transformation from (#, y] to (, 77) amounts only to a shifting of the

origin, keeping the axes parallel to themselves, a change of scale along each

axis, and (if X &amp;lt; 0) a reversal in direction of the axis of abscissae
;
and so a

minimum of y, considered as a function of #, corresponds to a minimum of
rj

considered as a function of
,
and vice versa, and similarly for a maximum.

The derivative of
77
with respect to vanishes if

or if g*=pq. Thus there are two roots of the derivative if p and q have the

same sign, none if they have opposite signs. In the latter case the form of

the graph of
77

is as shown in Fig. 41 a.

Fig. 41 a.

n
Fig. 416 Fig. 41 c.

When p and q are positive the general form of the graph is as shown in

Fig. 41 6, and it is easy to see that =\J(pq} gives a maximum and =
&amp;gt;J(pq)

a minimum.*

In the particular case in which p q the

function is

and its graph is of the form shown in Fig. 41 c.

The preceding discussion fails if A=0, i.e.

if a/A = b/B. But in this case we have

Fig. 42.

say, and dy\dx= gives the single value x= -|(.r1 -f #.2)- On drawing a graph
it becomes clear that this value gives a maximum or; minimum according as

fj,
is positive or negative. The graph shown in Fig. 42 corresponds to the

former case.

[A full discussion of the general function y= (ax
2+ %bx+ c}l(Ax?+ ZBx+ C\

by purely algebraical methods, will be found in Chrystal s Algebra, vol i,

pp. 464-7.]

16. Show that (x -a) (x /3)/(#-y) assumes all real values as x varies, if

y lies between a and /3, and otherwise assumes all values except those included

in an interval of length 4 v/(|a-y | /3 -y | ).

* The maximum is -
l/(-v/P

-
\/2)

2
&amp;gt;

latter is the greater.

minimum - which the
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17. Show that

can assume any real value if &amp;lt;c &amp;lt; 1, and draw a graph of the function in

this case. (Math. Trip. 1910.)

18. Determine the function of the form (ax
2+ 2bx+ c)/(Ax

2+2,Bx+C)
which has turning values (i.e. maxima or minima) 2 and 3 when x= l and

3;*= -1 respectively, and has the value 2-5 when #= 0. (Math. Trip. 1908.)

19. The maximum and minimum of (x+ a) (x+ b)l(xa) (a; -6), where a
and b are positive, are

20. The maximum value of (#
-

l)
2
/(#+ 1)

3 is ^.

21. Discuss the maxima and minima of

a? (tf-l)/(aa + 3a?+ 3), arY(#-l) (A- -3)3,

(#- I)
2
(3^

2- 2#- 37)/(.*?+ 5)
2
(3.v

2 - 14.r - 1).

(#a*A. TVip. 1898.)

[If the last function be denoted by P(x}jQ(x\ it will be found that

22. Find the maxima and minima of a cos x+ b sin x. Verify the result

by expressing the function in the form A cos (a; a).

23. Find the maxima and minima of

a2 cos2 x + b2 sin2
x, A cos2 x+2H cos x sin x+B sin2 #.

24. Show that sin (#+a)/sm (#+ &) has no maxima or minima. Draw
a graph of the function.

25. Show that the function

has an infinity of minima equal to and of maxima equal to

- 4 sin a sin 6/sin
2
(a

-
b). (Math. Trip. 1909.)

26. The least value of a2 sec2 x+ b2 cosec2 x is (a+ 6)
2

.

27. Show that tan 3# cot 2# cannot lie between $ and
f-.

28. Show that, if the sum of the lengths of the hypothenuse and another

side of a right-angled triangle is given, then the area of the triangle is a
maximum when the angle between those sides is 60. (Math. Trip. 1909.)

29. A line is drawn through a fixed point (a, 6) to meet the axes OX, OY
in P and Q. Show that the minimum values of PQ} OP+OQ, and OP. OQ
are respectively (a

2/3 + 6
2/3

)

3/2
, (V + v/^)

2
,
and 4ab.

H. 15
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30. A tangent to an ellipse meets the axes in P and Q. Show that the

least value of PQ is equal to the sum of the semiaxes of the ellipse.

31. Find the lengths and directions of the axes of the conic

[The length r of the semidiameter which makes an angle 9 with the axis

of x is given by
cos sin + b sin2 0.

The condition fora maximum or minimum value of r is tan20=2A/( -6).

Eliminating 6 between these two equations we find

32. The greatest value of xmy
n

,
where x and v are positive and

33. The greatest value of ax+ by, where x and y are positive and

= 3K 2
,

is

[If ax+ by is a maximum then a + b(dy/dx) = Q. The relation between x

and y gives (2^+y) + (#+2y) (dy!dx}
= Q. Equate the two values of dy/dx.]

34. If and $ are acute angles connected by the relation aseed 4- &sec$ = c,

where a, 6, c are positive, then a cos + 6 cos is a minimum when =
0.

125. The Mean Value Theorem. We can proceed now to

the proof of another general theorem of extreme importance, a

theorem commonly known as The Mean Value Theorem or The

Theorem of the Mean .

THEOREM. If $ (x) has a derivative for all values of x in the

interval (a, b), then there is a

value % of x between a and b,

such that

-* (a)- (ft ,-) (&
Before we give a strict proof

of this theorem, which is perhaps

the most important theorem in

the Differential Calculus, it will

be well to point out its obvious

geometrical meaning. This is

simply (see Fig. 43) that if the
Fig. 43.

&amp;lt;/
\ &amp;lt;

curve APB has a tangent at all points of its length then there
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must be a point, such as P, where the tangent is parallel to AB.
For &amp;lt; () is the tangent of the angle which the tangent at P
makes with OX, and

{&amp;lt;/&amp;gt;
(6)

- $ (a)}/(b
-

a) the tangent of the angle
which AB makes with OX.

It is easy to give a strict analytical proof. Consider the

function

which vanishes when x = a and a? = 6. It follows from Theorem B
of 121 that there is a value for which its derivative vanishes.

But this derivative is

which proves the theorem. It should be observed that it has not

been assumed in this proof that
&amp;lt;/&amp;gt; (as) is continuous.

It is often convenient to express the Mean Value Theorem in

the form

&amp;lt;/&amp;gt;(&)

= ( (a) + (b
-

a) $ [a + (b
-

a)},

where is a number lying between and 1. Of course a+ 0(b a)

is merely another way of writing some number f between a and b .

If we put b = a + h we obtain

&amp;lt;]&amp;gt;(a
+ h) =

&amp;lt;l&amp;gt; (a) + h$ (a + 6h),

which is the form in which the theorem is most often quoted.

Examples XLVII. 1. Show that

is the difference between the ordinates of a point on the curve and the

corresponding point on the chord.

2. Verify the theorem when $ (#) =xi and when &amp;lt; (x)
= x3

.

[In the latter case we have to prove that (6
3 3

)/(6 a) = 3 2
,
where

a&amp;lt;&amp;lt;b; i.e. that if (6
2 + a6 + 2

)
= 2 then lies between a and 6.]

3. Establish the theorem stated at the end of 124 by means of the Mean
Value Theorem.

[Since &amp;lt; (0)
=

e, we can find a small positive value of x such that

$(0)}/# is nearly equal to c\ and therefore, by the theorem, a small

positive value of | such that () is nearly equal to c, which is inconsistent

with lim $ (#)
=

,
unless a= c. Similarly b= c.]

*^+o
152
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30. A tangent to an ellipse meets the axes in P and Q. Show that the

least value of PQ is equal to the sum of the semiaxes of the ellipse.

31. Find the lengths and directions of the axes of the conic

[The length r of the semidiameter which makes an angle with the axis

of x is given by
1/7-2

= a cos2 0-f2A cos & sin d+ b sin2 Q.

The condition for a maximum or minimum value of r is tan2#=2/i/( -&).

Eliminating 6 between these two equations we find

{a -(l/^} (6 -(!/*)} = A*.]

32. The greatest value of xmy
n

,
where x and v are positive and

=
k, is

33. The greatest value of ax+ by, where x and y are positive and

[If ax+ by is a maximum then a + b(dy/dx) = Q. The relation between x

and y gives (2# +y) + (a?+ 2#) (cfy/ote)
= 0. Equate the two values of dy/dx.]

34. If 6 and $ are acute angles connected by the relation asec0 + 6sec0 = c,

where a, 6, c are positive, then a cos + b cos is a minimum when =
0.

125. The Mean Value Theorem. We can proceed now to

the proof of another general theorem of extreme importance, a

theorem commonly known as The Mean Value Theorem or The

Theorem of the Mean .

THEOREM. If (x) has a derivative for all values of x in the

interval (a, b), then there is a

value % of x between a and b,

such that

*&amp;lt;)-*()- .&amp;lt;-)? (ft

Before we give a strict proof

of this theorem, which is perhaps

the most important theorem in

the Differential Calculus, it will

be well to point out its obvious

geometrical meaning. This is

simply (see Fig. 43) that if the

0(0]

O

Fig. 43.

curve APE has a tangent at all points of its length then there
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must be a point, such as P, where the tangent is parallel to AB.
For (f) is the tangent of the angle which the tangent at P
makes with OX, and

{&amp;lt;/&amp;gt; (b) $ (a)}/(b a) the tangent of the angle
which AB makes with OX.

It is easy to give a strict analytical proof. Consider the

function

which vanishes when x = a and x = b. It follows from Theorem B
of 121 that there is a value f for which its derivative vanishes.

But this derivative is

o a

which proves the theorem. It should be observed that it has not

been assumed in this proof that
&amp;lt;/&amp;gt; (x) is continuous.

It is often convenient to express the Mean Value Theorem in

the form

&amp;lt;/&amp;gt;(&)

=
&amp;lt; (a) + (b

-
a) &amp;lt; {a + 6 (b

-
a)},

where 6 is a number lying between and 1. Of course a+ 0(ba)
is merely another way of writing some number f between a and b .

If we put b = a + h we obtain

(a + h) =
(f&amp;gt; (a) + h(f&amp;gt; (a + 0/i),

which is the form in which the theorem is most often quoted.

Examples XLVII. 1. Show that

is the difference between the ordinates of a point on the curve and the

corresponding point on the chord.

2. Verify the theorem when &amp;lt; (#) =xz and when &amp;lt; (#)
= ^3

.

[In the latter case we have to prove that (&
3 a3

)/(6 )
= 3 2

,
where

o &amp;lt; &amp;lt;& ;
i.e. that if (&

2+ a&+ 2
)=

2 then lies between a and 6.]

3. Establish the theorem stated at the end of 124 by means of the Mean
Value Theorem.

[Since &amp;lt; (0)
=

c, we can find a small positive value of x such that

i$(#) $(0)}/ is nearly equal to c; and therefore, by the theorem, a small

positive value of such that () is nearly equal to c, which is inconsistent

with lim
(.r)

= a, unless a= c. Similarly 6 = c.l

a;^-+o

152
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4. Use the Mean Value Theorem to prove Theorem (6) of 113, assuming

that the derivatives which occur are continuous.

[The derivative of F{f(x)} is by definition

_

h

But, by the Mean Value Theorem, f(x+ Ii) =f (x) +hf (), where is a number

lying between x and x+ h. And

where & is a number lying between/ (x) and/ (x) +hf (). Hence the deriva

tive of F{f(x}} is

since +x and 1 --/(#) as A-*-0.]

126. The Mean Value Theorem furnishes us with a proof of a

result which is of great importance in what follows : if &amp;lt;f&amp;gt;
(a)

= 0,

throughout a certain interval of values of x, then &amp;lt; (x) is constant

throughout that interval.

For, if a and b are any two values of as in the interval, then

&amp;lt;/&amp;gt; (b)
-

(a)
=

(b
-

a) &amp;lt;j&amp;gt; {a + (b
-

a)}
= 0.

An immediate corollary is that if &amp;lt; (x) tf (x), throughout a

certain interval, then the functions
(f&amp;gt; (x} and ty (x) differ through

out that interval by a constant.

127. Integration. We have in this chapter seen how we can

find the derivative of a given function
&amp;lt;f&amp;gt;

(x) in a variety of cases,

including all those of the commonest occurrence. It is natural to

consider the converse question, that of determining a function

whose derivative is a given function.

Suppose that ^ (x) is the given function, , Then we wish to

determine a function such that &amp;lt; (x)
=

ty (x). A little reflection

shows us that this question may really be analysed into three

parts.

(1) In the first place we want to know whether such a

function as &amp;lt; (x) actually exists. This question must be carefully

distinguished from the question as to whether (supposing that

there is such a function) we can find any simple formula to

express it.

(2) We want to know whether it is possible that more than

one such function should exist, i.e. we want to know whether our



125-127] DERIVATIVES AND INTEGRALS 229

problem is one which admits of a unique solution or not
;
and

if not, we want to know whether there is any simple relation

between the different solutions which will enable us to express all

of them in terms of any particular one.

(3) If there is a solution, we want to know how to find an

actual expression for it.

It will throw light on the nature of these three distinct ques
tions if we compare them with the three corresponding questions

which arise with regard to the differentiation of functions.

(1) A function &amp;lt; (x) may have a derivative for all values of as,

like xm
,
where m is a positive integer, or sin x. It may generally,

but not always have one, like tyx or tana; or sec#. Or again
it may never have one : for example, the function considered in

Ex. xxxvn.^20, which is nowhere continuous, has obviously no

derivative for any value of x. Of course during this chapter we

have confined ourselves to functions which are continuous except for

some special values of x. The example of the function {/a?, how

ever, shows that a continuous function may not have a derivative

for some special value of x, in this case x = 0. Whether there

are continuous functions which never have derivatives, or con

tinuous curves which never have tangents, is a further question
which is at present beyond us. Common-sense says No : but, as

we have already stated in 111, this is one of the cases in which

higher mathematics has proved common-sense to be mistaken.

But at any rate it is clear enough that the question has &amp;lt; (x)

a derivative
&amp;lt;/&amp;gt; (x) ? is one which has to be answered differently

in different circumstances. And we may expect that the converse

question is there a function $ (x) of which
i/r (x) is the deriva

tive ? will have different answers too. We have already seen

that there are cases in which the answer is No : thus if
i/r (x) is

the function which is equal to a, 6, or c according as x is less than,

equal to, or greater than 0, then the answer is No (Ex. XLVII. 3), / ,

unless a = b = c.

This is a case in which the given function is discontinuous.

In what follows, however/we shall always suppose ^(x) continuous.

And then the answer is Yes : if ty(x) is continuous then there is

always a function &amp;lt; (x) such that (x)
=

ty (x). The proof of this

will be given in Ch. VII.
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(2) The second question presents no difficulties. In the case

of differentiation we have a direct definition of the derivative

which makes it clear from the beginning that there cannot

possibly be more than one. In the case of the converse problem
the answer is almost equally simple. It is that if

&amp;lt;f&amp;gt; (x) is one

solution of the problem then
&amp;lt;f&amp;gt;(x)

+ C is another, for any value of

the constant C, and that all possible solutions are comprised in

the form $ (x) + C. This follows at once from 126.

(3) The practical problem of actually finding &amp;lt; (a?) is a fairly

simple one in the case of any function defined by some finite com

bination of the ordinary functional symbols. The converse problem
is much more difficult. The nature of the difficulties will appear

more clearly later on.

DEFINITIONS. If ty (x) is the derivative of &amp;lt; (#), then we call

&amp;lt;f&amp;gt; (x) an integral or integral function of ty (.?;).
The operation

of forming ty (x)from &amp;lt;j&amp;gt;
(x) we call integration.

We shall use the notation

It is hardly necessary to point out that \...dx like djdx must, at

present at any rate, be regarded purely as a symbol of operation :

the I and the dx no more mean anything when taken by them

selves than do the d and dx of the other operative symbol djdx.

128. The practical problem of integration. The results

of the earlier part of this chapter enable us to write down at once

the integrals of some of the commonest functions. Thus

r xm^ f f

\xmdx=-=-
,

I cos xdx = sin x
}

I sin xdx cos#...(l).
J m+l J J

These formulae must be understood as meaning that the

function on the right-hand side is one integral of that under

the sign of integration. The most general integral is t&amp;gt;f course

obtained by adding to the former a constant C, known as the

arbitrary constant of integration.
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There is however one case of exception to the first formula, that

in which m= 1. In this case the formula becomes meaningless,
as is only to be expected, since we have seen already (Ex. XLII. 4)
that I/a cannot be the derivative of any polynomial or rational

fraction.

That there really is a function F(x) such that Dx F(x) \\x
will be proved in the next chapter. For the present we shall be

content to assume its existence. This function F (x) is certainly
not a polynomial or rational function

; and it can be proved that

it is not an algebraical function. It can indeed be proved that

F(x) is an essentially new function, independent of any of the

classes of functions which we have considered yet, that is to say

incapable of expression by means of any finite combination of the

functional symbols corresponding to them. The proof of this is

unfortunately too detailed and tedious to be inserted in this book;

but some further discussion of the subject will be found in Ch. IX,

where the properties of F(x) are investigated systematically.

Suppose first that x is positive. Then we shall write

(2),

and we shall call the function on the right-hand side of this

equation the logarithmic function : it is defined so far only for

positive values of x.

Next suppose x negative. Then x is positive, and so log ( x)

is defined by what precedes. Also

d^ , -!_!

so that, when x is negative,

*) (3).

The formulae (2) and (3) may be united in the formulae

log 101 . ...(4),

where the ambiguous sign is to be chosen so that + x is positive :

these formulae hold for all real values of x other than x = 0.
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The most fundamental of the properties of log x which will be proved in

Ch. IX are expressed by the equations

log 1=0, log (I/a?)
= -

log a?, log xy = log x+ log y,

of which the second is an obvious deduction from the first and third. It is

not really necessary, for the purposes of this chapter, to assume the truth of

any of these formulae
;
but they sometimes enable us to write our formulae

in a more compact form than would otherwise be possible.

It follows from the last of the formulae that log.r
2

is equal to 21og# if

x &amp;gt;
and to 2 log (

-
x) if x &amp;lt; 0, and in either case to 2 log x

\

. Either of the

formulae (4) is therefore equivalent to the formula

dx- =

The five formulae (1) (3) are the five most fundamental

standard forms of the Integral Calculus. To them should be

added two more, viz.

f-^L =arc tana?, f-^-- = + arc sin** ...... (6).
J 1 +x* J y(l-#r)

129. Polynomials. All the general theorems of 113 may of

course also be stated as theorems in integration. Thus we have,

to begin with, the formulae

l

......... (1),

(2).

Here it is assumed, of course, that the arbitrary constants are

adjusted properly. Thus the formula (1) asserts that the sum of

any integral of f(x) and any integral of F (x) is an integral of

/(*) + ?(*),

These theorems enable us to write down at once the integral

of any function of the form S A vfv (x\ the sum of a finite number

of constant multiples of functions whose integrals are known. In

particular we can write down the integral of any polynomial:

thus

r . , atfc
n+l

a^(c
n

I (a,x
n + a,x

n-1 + . . . + an) dx = p
+ + . . . + a nx.

* See 119 for the rule for determining the ambiguous sign.
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130. Rational Functions. After integrating polynomials
it is natural to turn our attention next to rational functions.
Let us suppose R (x) to be any rational function expressed in the

standard form of 117, viz. as the sum of a polynomial II (x) and
a number of terms of the form Aj(x - a)

p
.

We can at once write down the integrals of the polynomial
and of all the other terms except those for which p = l, since

A , A I
dx

p-l (x
-

a)P~i

whether a be real or complex ( 117).

The terms for which p = 1 present rather more difficulty.
It follows immediately from Theorem (6) of 113 that

In particular, if we take f(x) = ax -f b, where a and b are real,
and write

&amp;lt;/&amp;gt;(&)

for F (x) and ty (x) for F (x), so that
&amp;lt;/&amp;gt; (x) is an

integral of ty (x), we obtain

f 1

J
~
a^^

aa *

(

Thus, for example,

f dx I,
j
= -

log \ax + b ,

J ax + b a

and in particular, if a is real,

I
- = log I

x a I.

J x a.

We can therefore write down the integrals of all the terms in

R (x) for which p = 1 and a is real. There remain the terms for

which p = 1 and a is complex.

In order to deal with these we shall introduce a restrictive

hypothesis, viz. that all the coefficients in R (x) are real. Then if

a = 7 + Si is a root of Q (x) 0, of multiplicity m, so is its con

jugate a = 7 -&, ;
and if a partial fraction Ap/(asa)p occurs in

the expression of R (x), so does Apj(x
-

O)P, where Ap is conjugate
to Ap . This follows from the nature of the algebraical processes

by means of which the partial fractions can be found, and which
are explained at length in treatises on Algebra*.

*
See, for example, Chrystal s Algebra, vol. i, pp. 151-9.
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Thus, if a term (X -f /u)/(x .7 Si) occurs in the expression
of R (x) in partial fractions, so will a term (X /**)/(#

&quot;&quot; 7 + ^0 i

and the sum of these two terms is

This fraction is in reality the most general fraction of the form

Ax + B

where b* &amp;lt; ac. The reader will easily verify the equivalence of

the two forms, the formulae which express X, ^, 7, B in terms of

A, B, a, b, c being

where A = ac 62
,
and D = aB bA.

If in (3) we suppose F {f(x)} to be log \f(x) |,
we obtain

i (5);

and if we further suppose that f(x) = (x X)
2 + /-i

2
,
we obtain

dx = log {(x
-

X)
2 + /i

2

}.

(x
-

X)
2 +

And, in virtue of the equations (6) of 128 and (4) above, we

have
/#-X\

Ix = 2o arc tan f
-

j
.

These two formulae enable us to integrate the sum of the two

terms which we have been considering in the expression of R (#);

and we are thus enabled to write down the integral of any real

rational function, if all the factors of its denominator can be deter

mined. The integral of any such function is composed of the sum

of a polynomial, a number of rational functions of the type

A 1

p - 1 (x
-

a)*-
1

a number of logarithmic functions, and a number of inverse tangents.

It only remains to add that if a is complex then the rational

function just written always occurs in conjunction with another in

which A and a are replaced by the complex numbers conjugate to

them,and that the sum of the two functions is a real rational function.
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Examples XLVIII. 1. Prove that

D

(where X=ax2+2bx+ c) if
A&amp;lt;0,

and

, A . D

if A &amp;gt; 0, A and D having the same meanings as on p. 234.

2. In the particular case in which ac= b2 the integral is

--
-,

--
7\ H log I ax+ b I.

a(ax+b) a

3. Show that if the roots of Q(x}=Q are all real and distinct, and P(x)
is of lower degree than Q (x\ then

the summation applying to all the roots a of Q (#)
= 0.

[The form of the fraction corresponding to a may be deduced from the

facts that

as x-^aJ

4. If all the roots of Q (x] are real and a is a double root, the other roots

being simple roots, and P (x] is of lower degree than Q (x\ then the integral
is A/(x-a) +A \og\ x- a

\
+ 2 .Clog |

x- ft ,
where

and the summation applies to all roots /3 of Q (x}
= Q other than a.

r dx
5. Calculate I

-^

[The expression in partial fractions is

__ _

4 (^7- I)
2 2 (a;

-
1) 8 (#-*)* 8 (x -i) 8&amp;gt;-fi)

a 8 (x+i)

and the integral is

6. Integrate

x

(x-a)(x-b}(x-cY
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7. Prove the formulae :

131. Note on the practical integration of rational functions.

The analysis of 130 gives us a general method by which we can find the

integral of any real rational function R(x\ provided we can solve the equation

&amp;lt;2(#)
= 0. In simple cases (as in Ex. 5 above) the application of the method

is fairly simple. In more complicated cases the labour involved is some

times prohibitive, and other devices have to be used. It is not part of the

purpose of this book to go into practical problems of integration in detail.

The reader who desires fuller information may be referred to Goursat s Cours

d?Analyse, second ed., vol. i, pp. 246 et seq., Bertrand s Calcul Integral, and

Dr Bromwich s tract Elementary Integrals (Bowes and Bowes, 1911).

If the equation $(#)=0 cannot be solved algebraically, then the method of

partial fractions naturally fails and recourse must be had to other methods*.

132. Algebraical Functions. We naturally pass on next to

the question of the integration of algebraical functions. We have

to consider the problem of integrating y, where y is an algebraical

function of x. It is however convenient to consider an apparently

more general integral, viz.

I R (x, y) dec,

where R (x, y) is any rational function of x and y. The greater

generality of this form is only apparent, since (Ex. XIV. 6) the

function R (x, y) is itself an algebraical function of x. The choice

of this form is in fact dictated simply by motives of convenience :

such a function as

px 4. q + V(a#2 + 2foe 4- c)

px + q
-

*J(aa? -f 2bx + c)

is far more conveniently regarded as a rational function of x and

the simple algebraical function *J(ax* + 2^ + c), than directly as

itself an algebraical function of x.

* See the author s tract &quot; The integration of functions of a single variable&quot;

(Cambridge Tracts in Mathematics, No. 2, second edition, 1915). This does not

often happen in practice.
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133. Integration by substitution and rationalisation.

It follows from equation (3) of 130 that if
\^(x)dx=&amp;lt;$&amp;gt;(x)

then

{/}/ ^= {/( )} (1).

This equation supplies us with a method for determining the

integral of ^r (x) in a large number of cases in which the form of

the integral is not directly obvious. It may be stated as a rule as

follows: put x=f(t), where f (t) is anyfauction of a new variable

t which it may be convenient to choose
; multiply by f (t), and

determine (if possible) the integral of ty {f(t)}f (t) , express the

result in terms of x. It will often be found that the function of t

to which we are led by the application of this rule is one whose

integral can easily be calculated. This is always so, for example,

if it is a rational function, and it is very often possible to choose

the relation between x and t so that this shall be the case. Thus

the integral of R (\/x), where R denotes a rational function, is

reduced by the substitution x=tf to the integral of 2tR(t
2

),

i.e. to the integral of a rational function of t. This method of

integration is called integration by rationalisation, and is of

extremely wide application.

Its application to the problem immediately under consideration

is obvious. If we can find a variable t such that x and y are both

rational functions oft, say x = Ri(t), y R2 (t), then

JR (x, y) dx =
JR (Rtf), R,(t)} RJ(t)dtt

and the latter integral, being that of a rational function of t, con be

calculated by the methods o/ 130.

It would carry us beyond our present range to enter upon any

general discussion as to when it is and when it is not possible to

find an auxiliary variable t connected with x and y in the manner

indicated above. We shall consider only a few simple and inter

esting special cases.

134. Integrals connected with conies. Let us suppose
that x and y are connected by an equation of the form

ax2 + 2hxy + bif + Zgx + 2fy + c =
;

in other words that the graph of y, considered as a function of x
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is a conic. Suppose that (, rj) is any point on the conic, and

let x f = X, y 7)
= Y. If the relation between x and y is

expressed in terms of X and F, it assumes the form

aX2 + 2hXY + 6F2 + 2GX + 2FY = 0,

where F=h + bri+f, G = a% + hrj + g. In this equation put
Y=tX. It will then be found that X and F can both be

expressed as rational functions of t, and therefore x and y can

be so expressed, the actual formulae being

_ &amp;lt;-

2 (g + ffi) 2* (G^_Ft}_
2

&quot;
&quot;&quot; ~

*

Hence the process of rationalisation described in the last section

can be carried out.

The reader should verify that

hx + by +/= - i
(a + 2/rf + fo2) ,

( dx ^ r dt
so that 7

--
y
---

&amp;gt;

= - 2 --^----r- .

jhx + by+f ] a+2ht + bP

When h2
&amp;gt; ab it is in some ways advantageous to proceed as

follows The conic is a hyperbola whose asymptotes are parallel

to the lines

ax1
-f Zhxy + by*

= 0,

or b (y
-

fix) (y
- ^ x) = 0,

say If we put y /JLX
=

t, we obtain

and it is clear that x and y can be calculated fr6m these equations
as rational functions of t. We shall illustrate this process by an

application to an important special case.

f
fly.

135. The integral \~r/ 2 A
. . Suppose in particular that

J Y (CIX -p 2tOX -J~ G)

y
2= ax2 + 2bx+ c, where a&amp;gt;0. It will be found that, if we put y+XfJa=t,
we obtain

(1).

n ^
\&quot;

~ i *v &quot; &quot;&quot;&quot;

Oj.

~dl~ // /x_i_A\&quot;2
&quot; ~~

and so

fdx _ f dt
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If in particular a=l, 6= 0, c=a2
,
or a=l, 6= 0, c= -a2

,
we obtain

equations whose truth may be verified immediately by differentiation. With

these formulae should be associated the third formula

dx
(3),

which corresponds to a case of the general integral of this section in which

a &amp;lt; 0. In (3) it is supposed that a &amp;gt; ;
if a &amp;lt; then the integral is arc sin (xj \

a
|)

(cf. 119). In practice we should evaluate the general integral by reducing it

(as in the next section) to one or other of these standard forms.

The formula (3) appears very different from the formulae (2) : the reader

will hardly be in a position to appreciate the connection between them until

he has read Ch. X.

136. The integral I -r. r xr^---: dx. This integral can
J \/(ax + 26uH-c)

be integrated in all cases by means of the results of the preceding
sections. It is most convenient to proceed as follows. Since

\x + p = (X/a) (ax + b) + //,
-

(\b/a),

we have

f (\x + p) dx _ \ .,
2 9

, N / X6\ f dx

) V
~ V(f f &quot; &quot;

a

In the last integral a may be positive or negative. If a is

positive we put x \Ja + (&/V0 = t&amp;gt;

when we obtain

where tc = (ac b2
)/a. If a is negative we write A for a and

put x JA -
(b/^A) = t, when we obtain

_1_ f dt

^-a)J ^- K -

It thus appears that in any case the calculation of the integral

may be made to depend on that of the integral considered in

135, and that this integral may be reduced to one or other

of the three forms

dt dt dt
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137. The integral I(\x + n}*j(ax
2 +2bx+c)dx. In exactly the same

way we find

/&quot;(

and the last integral may be reduced to one or other of the three forms

In order to obtain these integrals it is convenient to introduce at this point

another general theorem in integration.

138. Integration by parts. The theorem of integration by

parts is merely another way of stating the rule for the differentia

tion of a product proved in 113. It follows at once from

Theorem (3) of 113 that

jf (x) F(x) dx =f(x) F (x)
-
jf(x)

F (x) dx.

It may happen that the function which we wish to integrate is

expressible in the form f (x)F(x\ and that f (x) F (x) can be

integrated. Suppose, for example, that
(j&amp;gt; (x)

=
x^r (#), where ty (x)

is the second derivative of a known function % (x). Then

&amp;lt;f&amp;gt; (x) dx = xx&quot; 0) dx = XX 0) - X 0) dx = XX () - X (*)

We can illustrate the working of this method of integration by applying

it to the integrals of the last section. Taking

/(#)
we obtain

a lydx= (ax+ l}y- [

, (ax+fyy ac-b2
[dx .

so that (fo- - + -- -
,

and we have seen already ( 135) how to determine the last integral.

Examples XLIX. 1 Prove that if a &amp;gt;0 then

a2 - tf
2
) + a2 arc sin Or/a).
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2. Calculate the integrals /
.- U(a2 -x2

)dx by means of the
J vv x~) J

substitution #=asin0, and verify that the results agree with those obtained
in 135 arid Ex. 1.

3. Calculate \x(x+a)
m
dx, where m is any rational number, in three

ways, viz. (i) by integration by parts, (ii) by the substitution (x+a)
m=t

t
and

(iii) by writing (#+a) - a for x
;
and verify that the results agree.

4. Prove, by means of the substitutions ax+ b=l/t and #=!/M, that (in
the notation of 130 and 138)

fdx _ax + b fxdx bx -\- c

J y
3
~

Ay J ~f
&quot;

by

5. Calculate
J ^ where

b&amp;gt;a,
in three ways, viz. (i) by

the methods of the preceding sections, (ii) by the substitution (b
-
x]l(x a} = t

2
,

and (iii) by the substitution #=acos2 + &siri2 0; and verify that the results

agree.

6. Integrate ,/{( -a) (b
-
x}} and J{(b

-
x}l(x -a)}.

7. Show, by means of the substitution 2x+ a+ b = %(a-b} (t
2+ (l/t)

2
},

or by multiplying numerator and denominator by J(x+ a)
- J(x + 6), that if

a
&amp;gt; b then

8. Find a substitution which will reduce I .
--_ to the

J (x+ afi*+ (x a)
3/2

integral of a rational function. (Math. Trip. 1899.)

9. Show that / R{x, y(ax+ b)}dv is reduced, by the substitution

ax+b=yn
,
to the integral of a rational function.

10. Prove that

&quot;

(x}F(x}dx=f (x] F(x}-f(X]
F (x) + / F&quot;(x) dx

and generally

ffn(x)F(*)d*-fW(s)F(x)-/*-*W^

11. The integral I (1 +x^x^ dx, where p and q are rational, can be found

in three cases, viz. (i) if p is an integer, (ii) if q is an integer, and (iii) if

p + q is an integer. [In case (i) put x=us
,
where s is the denominator of q ;

in case (ii) put 1 +#=*, where s is the denominator of p ; and in case (iii) put
1 +x=xt8

,
where s is the denominator of p.]

^ 16
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12. The integral / xm (ax
n
-\-b}

l dx can be reduced to the preceding

integral by the substitution axn =bt. [In practice it is often most con

venient to calculate a particular integral of this kind by a formula of

reduction (cf. Misc. Ex. 39).]

13. The integral I R {#, J(ax+b\ *J(cx-\-d}} dx can be reduced to that of

a rational function by the substitution

4*= -(6/a){*+ (l/0}
2
-(rf/c) ( -(I/OP-

14. Reduce I R (x, y) dx, where y
2
(x -y}= #2

,
to the integral of a rational

function. [Putting y=tx we obtain x= lj{t
2
(1
-

*)}, y= l/{t (1
-

1)}.]

15. Reduce the integral in the same way when (a) y(x-y}*=x,

(b)
;

(
2+#2

)
2=a2

Or
2
-3/

2
). [In case (a) put x-y= t: in case (6) put

.r
2+y2= t (x

-y\ when we obtain x= a*t (t*+ a?)/(t*+ a4
), y= a?t (t

2 - a2
)/(*

4+ a4
).]

16.

17. If (^
2
+3/

2
)

2=2c2 (^-/)then 9 2-,
= -

s log* * x-y J

139. The general integral I R (a, y} dx, where y
z=axz

The most general integral, of the type considered in 134, and associated with

the special conic y
2=a

(1),

where X=yz=axi+ Zbx+ c. We suppose that R is a real function.

The subject of integration is of the form P/Q, where P and Q are poly

nomials in x and *]X. It may therefore be reduced to the form

(A + BJX)(C-D,JX)

where A, 2?,... are rational functions of x. The only new problem which

arises is that of the integration of a function of the form F v/A , or, what is

the same thing, QIJX, where G is a rational function of x. And the integral

~ dx .. (2)

can always be evaluated by splitting up G into partial fractions. When we

do this, integrals of three different types may arise.

(i) In the first place there may be integrals of the type

/:
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where m is a positive integer. The cases in which ra=0 or m= l have been

disposed of in 136. In order to calculate the integrals corresponding to

larger values of m we observe that

where a, /3, y are constants whose values may be easily calculated. It is clear

that, when we integrate this equation, we obtain a relation between three

successive integrals of the type (3). As we know the values of the integral
for m = and m 1, we can calculate in turn its values for all other values of m.

(ii) In the second place there may be integrals of the type

/ (̂ TZ &amp;gt;,

where p is real. If we make the substitution x-p= \\t then this integral is

reduced to an integral in t of the type (3).

(iii) Finally, there may be integrals corresponding to complex roots of the

denominator of O. We shall confine ourselves to the simplest case, that in

which all such roots are simple roots. In this case (cf. 130) a pair of con

jugate complex roots of G gives rise to an integral of the type

Lx+M
x

(5).

In order to evaluate this integral we put

where p and v are so chosen that

a^-^b(fJ.+ v) + c= 0,

so that
fji
and v are the roots of the equation

This equation has certainly real roots, for it is the same equation as

equation (1) of Ex. XLVI. 12
;
and it is therefore certainly possible to find

real values of
p.

and v fulfilling our requirements.

It will be found, on carrying out the substitution, that the integral (5)

assumes the form

R
l (&amp;gt;+ &

tdt

,
&amp;lt;2+ a

i

J/ t^* s
, +& (6)-

The second of these integrals is rationalised by the substitution

t

which gives

f
dt = f

du

j (at*+ /3) v/(y*
2 + 5)

~
J /3 + (ad

-
y) V?

162
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Finally, if we put t= 1/w in the first of the integrals (6), it is transformed into

an integral of the second type, and may therefore be calculated in the manner

just explained, viz. by putting u/^(y+du
2
)
=

u, i.e.

Examples L. 1. Evaluate

dx f dx
f

dx

+\y /(*+l)V(l+2*-*^)

2. Prove that

C siw O / //y /&amp;gt;\

I ^ = _A_ /( ^n )

j(x-p] *J{(x-p}(x-q}} q-p \ \x-pj

3. If a^
2+ cA2= - v &amp;lt; then

J (hx+ g] J(ax^+ c) \fv [_ ch agx J*

4. Show that I
^

r -
,
where ?/

2= a^&amp;lt;2 + 26^7+ c, may be expressed in one
J (% &o) y

or other of the forms

-T log

according as a^ 2+ 26^ + c is positive and equal to y
2 or negative and equal

to -2 2
-

5. Show by means of the substitution y= J(ax*
-\-

&amp;lt;

2J}x+ c)l(x-p) that

dx
( dy

+ c) J V(ty
2-

/*)

where A= p
2+ 2fy + c, p.

= ac-b2
. [This method of reduction is elegant but

less straightforward than that explained in 139.]

6. Show that the integral

dx

JxJ(&amp;lt;

is rationalised by the substitution #=(l+y2
)/(3 y

2
). (Math. Trip. 1911.)

7. Calculate

(#+l)dk

* The method of integration explained here fails if alA = bjB; but then the

integral may be reduced by the substitution ax + b = t. For further information

concerning the integration of algebraical functions see Stolz, Grundzuge der

Differential-und-integralrechnung, vol. i, pp. 331 etseq.; Bromwich, Elementary

Integrals (Bowes and Bowes, 1911). An alternative method of reduction has been

given by Sir G. Greenhill: see his A Chapter in the Integral Calculus, pp. 12 et

seq ,
and the author s tract quoted on p. 236.
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8. Calculate

#2+ 12#+ 8) v/(5^+ 2# -
7)

*

[Apply the method of 139. The equation satisfied by p and v is
2+ 3 + 2=0, so that /x=-2, i/=-l, and the appropriate substitution is

x= -
(%t+ l)/(t+ 1). This reduces the integral to

tdt

The first of these integrals may be rationalised by putting /^(9^-4)= M and
the second by putting I/J(9t

2 -
4)
=

v.]

, !_,_

9. Calculate

x + 5) x/(7#
2 - 22^+ 19)

(J/^A. Trip. 1911.)

10. Show that the integral I # (#, y} dx, where y
2= ax2+ Zbx+ c, is ration

alised by the substitution t= (x-p)l(y+ q\ where (p, q) is any point on the

conic y*=aaP+ 2bx+ c. [The integral is of course also rationalised by the

substitution t=(x-p)\(y-q} : cf. 134.]

140. Transcendental Functions. Owing to the immense

variety of the different classes of transcendental functions, the

theory of their integration is a good deal less systematic than
that of the integration of rational or algebraical functions. We
shall consider in order a few classes of transcendental functions

whose integrals can always be found.

141. Polynomials in cosines and sines of multiples of x.

We can always integrate any function which is the sum of a

finite number of terms such as

A cosm ax sinm a# cosn bx smn bx. . .
,

where m, m, n, ri, ... are positive integers and a, b, ... any real

numbers whatever. For such a term can be expressed as the
sum of a finite number of terms of the types

a cos {(pa + qb + ...)#[, /3sin {(pa + qb + ...)#}

and the integrals of these terms can be written down at once.
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Examples LI. 1. Integrate sin3 .r cos2 2#. In this case we use the

formulae

sin3 x= |(3 sin x- sin 3#), cos2 Zx= % (1 + cos 4#).

Multiplying these two expressions and replacing sin x cos 4#, for example,

by 2 (sin 5.V sin 3x\ we obtain

(7 sin x - 5 sin 3#+ 3 sin 5.17 sin 7#) dx

~\~$ cos x+ 4
5
s cos ^x ~

Bff cos 5^+ 112 cos ^x-

The integral may of course be obtained in different forms by different

methods. For example

/ sin3 x cos2 %xdx= I (4 cos
4 x 4 cos2 x 4- 1) (1 cos2

x] sin xdx^

which reduces, on making the substitution cosx=t, to

I (4Z
6 - 8t*+ 5Z2 - 1

)
dt= f cos7 x - f cos5^+ 1 cos3 x - cos x.

It may be verified that this expression and that obtained above differ only by
a constant.

2. Integrate by any method cos ax cos bx, sin ax sin bx, cos ax sin for,

cos2
.17,

sin3^
,
cos4x, cos .r cos 2# cos 3.37, cos

3 %x sin2
3.r, cos6 ^7 sin7 .r. [In cases of

this kind it is sometimes convenient to use a formula of reduction (Misc.

Ex. 39).]

142. The integrals I xn cos x dx, \ xn sin x dx and associated

integrals. The method of integration by parts enables us to

generalise the preceding results. For

I xn cos xdx= xn sin x n \ xn
~l sin x dx,

I xn sin x dx = xn cos x + n \ xn
~l cos x dx,

and clearly the integrals can be calculated completely by a

repetition of this process whenever n is a positive integer. It

follows that we can always calculate I xn cos ax dx and I xn sin axdx

if n is a positive integer ;
and so, by a process similar to that of

the preceding paragraph, we can calculate

P (x, cos ax, sin ax, cos bx, sin bx, . . .) dx,

^here P is any polynomial.
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Examples LII. 1. Integrate x sin x, a;
3 cos A1

,
^2 cos2

a;, X* sin2 x sin2 2#,

x sin 2 x cos4 .r, #3 sin3 J#.

2. Find polynomials P and Q such that

I{(3*-1) cos#+ (l -2#) sin a?)
cfa= P cos*- 4- $ sin a?.

3. Prove that lxn cosxdx=Pn cos #+
&amp;lt;?n snl

#&amp;gt;

where

143. Rational Functions of cos # and sin x. The integral

of any rational function of cos x and sin x may be calculated by
fche substitution tan \x t. For

l- 2
. 2t doc 2

so that the substitution reduces the integral to that of a rational

function of t.

Examples LIII. 1. Prove that

I sec xdx= log |

sec x+ tan x
\ ,

/ cosec x dx= log |

tan \x J.

[Another form of the first integral is log |

tan (\ir+%x ) |
; a third form is

| log j (1 + sin #)/( I - sin x) \ .]

2. \iax\.xdx= log| cos x\, icoto7c?.v=log|sin A*
I,

/sec2 ,#c?*=tan*,

I cosec2
a? efo;= - cot x, I tan x sec xdx= sec #-, I cot # cosec xdx= cosec .r.

[These integrals are included in the general form, but there is no need to

use a substitution, as the results follow at once from 119 and equation (5)

of 130.]

3. Show that the integral of 1 /(a+ 6 cos*), where a+ b is positive, may
be expressed in one or other of the forms

arc tan
j
t

where *=tan \x, according as a2
&amp;gt; 62 or a2

&amp;lt; b2 . If a2=62 then the integral

reduces to a constant multiple of that of sec2 \x or cosec2 \x, and its value

may at once be written down. Deduce the forms of the integral when a-f b

is negative.

4. Show that if y is defined in terms of x by means of the equation

(a+ b cos x}(a-b cos y) = a2 62
,

where a is positive and a- &amp;gt;
62

,
then as x varies from to n one value of y

also varies from to TT. Show also that

v/(
2 b2

} sin y sin* dx _ sin?/
111 x~

a- b cosy a+ 6cos x dy
~
a- b cosy
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and deduce that if
&amp;lt; x &amp;lt; ir then

dx 1 /a cos x+ b\
-,- arc cos I = \

. 7 // O 7 0\ &amp;lt;** ^ ^V^O I ,
~

I ff

a -f o cos # ^(a* 62
) \a+ 6 cos #/

Show that this result agrees with that of Ex. 3.

5. Show how to integrate 1 /(a + b cos x+ c sin x). [Express b cos x+ c sin x
in the form J(b*+c

2
) cos (a? -a).]

6. Integrate (a+ 6 cos x+ c sin #)/(a -f /3 cos # 4- y sin .r)

[Determine A, p.,
v so that

a + b cos #+ c sin x= A-f /* (a + /3 cos ^+ y sin #)+ j/ ( /3 sin x+y cos
57).

Then the integral is

/&quot; dx
ux+v logla-f ficosx+ysmx +A : .1

J a+ /3 cos A-+ y sin a?
J

7. Integrate l/(acos
a #-f 26 cos^?sm^+ c siii 2

^?). [The subject of inte

gration may be expressed in the form l/(A+J5cos 2#-f(7sin 2.r), where

A=^(a+ c), JB=^(a c], C=b : but the integral may be calculated more

simply by putting tan#=, when we obtain

/sec
2 xdx f dt

a+ 2b tan x+ c tan2
a; /a-f-2i

144. Integrals involving arc sin a?, arc tan a?, and log a;. The

integrals of the inverse sine and tangent and of the logarithm can

easily be calculated by integration by parts. Thus

r f scdx
\ arc sin xdx-x arc sin x -

\ ~jj-
= x arc sin x + V(l - ^2

),
J J Vv-*- ^ /

r r ^^
I arc tan xdx x arc tan a? I = = a? arc tan a? J log (1 + a?

2

),
y J 1 + X&quot;

\ log xdx x log x\dx = x (log a; 1).

It is easy to see that if we can find the integral of y =/(V)
then we can always find that of x (y\ where &amp;lt; is the function

inverse to/ For on making the substitution y =f(x) we obtain

\&amp;lt;l&amp;gt;(y)dy=\ xf (x) dx = xf(x)
-

\f(x) dx.

The reader should evaluate the integrals of arc sin y and arc tan y
in this way.

Integrals of the form

I P (x, arc sin x) dx, I P (x, log x} dx,
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where P is a polynomial, can always be calculated. Take the

first form, for example. We have to calculate a number of integrals

of the type I xm (arc sin x)
n dx. Making the substitution x = sin y,

we obtain I y
n sinm y cosydy, which can be found by the method of

142. In the case of the second form we have to calculate a number

of integrals of the type I xm (log x)
n dx. Integrating by parts we

obtain

I X (log X)
_.__

and it is evident that by repeating this process often enough we

shall always arrive finally at the complete value of the integral.

145. Areas of plane curves. One of the most important

applications of the processes of integration which have been

explained in the preceding sections is to the calculation of areas

of plane curves. Suppose that PQPP (Fig. 44) is the graph of

a continuous curve y = &amp;lt;/&amp;gt;
(x) which lies wholly above the axis of x,

P being the point (x, y) and P the point (x + h,y + &), and h being
either positive or negative (positive in the figure).

P

O NI N N*

Fig. 44.

The reader is of course familiar with the idea of an area
,
and

in particular with that of an area such as ONPP . This idea we
shall at present take for granted. It is indeed one which needs

and has received the most careful mathematical analysis : later on

we shall return to it and explain precisely what is meant by
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ascribing an area to such a region of space as ONPP . For the

present we shall simply assume that any such region has associated

with it a definite positive number (ONPP ) which we call its

area, and that these areas possess the obvious properties indicated

by common sense, e.g. that

(PRP ) + (NN RP) = (NN P P), (N,NPP, ) &amp;lt; (ONPP \

and so on.

Taking all this for granted it is obvious that the area

is a function of x
;
we denote it by &amp;lt;I&amp;gt; (#). Also &amp;lt;J&amp;gt; (x) is a

continuous function. For

&amp;lt;|&amp;gt; (x + h)
-

&amp;lt;$&amp;gt; (x)
= (NN P P)

= (NN RP) + (PRF) = hcf&amp;gt; (x) + (PRP ).

As the figure is drawn, the area PRP is less than hk. This is

not however necessarily true in general, because it is not neces

sarily the case (see for example Fig. 44 a) that the arc PP
should rise or fall steadily from P to P. But the area PRPf

is always less than \h\\ (h), where \ (h) is the greatest distance of

any point of the arc PP from PR. Moreover, since
&amp;lt;/&amp;gt; (as)

is a

continuous function, \(h)-+0 as h-*- 0. Thus we have

where \pQi)\&amp;lt;\ (h) and \ (h) -^0 as h 0. From this it follows

at once that &amp;lt;E&amp;gt; (x) is continuous. Moreover

= lim {#, () + M (h)}
=

h-**Q

Thus the ordinate of the curve is the derivative of the area, and the

area is the integral of the ordinate.

We are thus able to formulate a rule for determining the

area ONPP,. Calculate &amp;lt;&amp;gt;

(x), the integral of $ (x). This involves

an arbitrary constant, which we suppose so chosen that 3&amp;gt; (0) = 0.

Then the area required is &amp;lt;

(x).

If it were the area iV^PP^ which was wanted, we should of course deter

mine the constant so that * (a?i)
= 0, where x^ is the abscissa of P^ If the

curve lay below the axis of x, &amp;lt;J&amp;gt; (x) would be negative, and the area would be

the absolute value of * (x).
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146. Lengths of plane curves. The notion of the length
of a curve, other than a straight line, is in reality a more difficult

one even than that of an area. In fact the assumption that P P
(Fig. 44) has a definite length, which we may denote by S(x),
does not suffice for our purposes, as did the corresponding as

sumption about areas. We cannot even prove that S (a) is con

tinuous, i.e. that lim {8 (F)
- S (P)}

= 0. This looks obvious

enough in the larger figure, but less so in such a case as is shown
in the smaller figure. Indeed it is not possible to proceed further,

with any degree of rigour, without a careful analysis of precisely
what is meant by the length of a curve.

It is however easy to see what the formula must be. Let

us suppose that the curve has a tangent whose direction varies

continuously, so that &amp;lt; (#) is continuous. Then the assumption
that the curve has a length leads to the equation

{8 (x + h)-S (x)}/h
= \PP\lh = (PP /h) x ((PP J/PP ),

where {PP }
is the arc whose chord is PP . Now

and & = &amp;lt; +
&)-&amp;lt;/&amp;gt; (so)

=
hfi (f),

where ( lies between x and x + h. Hence

lim (PP /h)
= lim V{1

If also we assume that

lim{PP }/PP =
l,

we obtain the result

S (x)
= lim {S

and so 8
(,*?)

=
J V{1 + W&amp;gt; (X&amp;gt;]

2

}
dx.

Examples LIV. 1. Calculate the area of the segment cut off from the

parabola y= xi
\^a by the ordiuate x=%, and the length of the arc which

bounds it.

2. Answer the same questions for the curve a
&amp;lt;

?/
2=^3

, showing that the

length of the arc is

3. Calculate the areas and lengths of the circles

by means of the formulae of 145 146.
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4. Show that the area of the ellipse (#
2
/a

2
) + (//6

2
)
= 1 is irab.

5. Find the area bounded by the curve y sin x and the segment of the

axis of x from #=0 to #=2?r. [Here &amp;lt;(#)=- cos #, and the difference

between the values of - cos x for #=0 and x=1ir is zero. The explanation of

this is of course that between X=TT and x=Zir the curve lies below the axis

of #, and so the corresponding part of the area is counted negative in applying

the method. The area from .r=0 to x=ir is -cos 7r + cosO= 2
;
and the

whole area required, when every part is counted positive, is twice this,

i.e. is 4.]

6. Suppose that the coordinates of any point on a curve are expressed

as functions of a parameter t by equations of the type x=$(t\ y=^r(t\
&amp;lt; and

&amp;gt;// being functions of t with continuous derivatives. Prove that

if x steadily increases as t varies from t to &amp;lt; 1} then the area of the region

bounded by the corresponding portion of the curve, the axis of ar, and the two

ordinates corresponding to t and l5 is, apart from sign, A (ti)A ( ),
where

7. Suppose that G is a closed curve formed of a single loop and not

met by any parallel to either axis in more than two points. And suppose

that the coordinates of any point P on the curve can be expressed as in Ex. 6

in terms of t,
and that, as t varies from t to tit P moves in the same

direction round the curve and returns after a single circuit to its original

position. Show that the area of the loop is equal to the difference of the

initial and final values of any one of the integrals

dx ,

this difference being of course taken positively.

8. Apply the result of Ex. 7 to determine the areas of the curves

given by

&amp;lt;

u
&amp;gt;

9. Find the area of the loop of the curve x*+y*=Zaxy. [Putting

y=to we obtain #=3a/(l+ 3
), y=3a 2

/(l + 3
).

As t varies from towards

oo the loop is described once. Also

dx dy\, , [ t,dfy\, , f 9a2
*
2 3 2

;*-!)*-~V^
which tends to as ^-oc . Thus the area of the loop is fa

2
.]

10. Find the area of the loop of the curve

11. Prove that the area of a loop of the curve #=asin2, y=asint is

. (Math. Trip. 1908.)
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12. The arc of the ellipse given by x=acost
) y=6sin, between the

points t=ti and t= t2 ,
is F(t^) F(ti\ where

F(t]= aL/(l-e2 sin2
*) dt,

e being the eccentricity. [This integral cannot however be evaluated in

terms of such functions as are at present at our disposal.]

13. Polar coordinates. Show that the area bounded by the curve

r=f(6\ where /(0) is a one-valued function of 0, and the radii 0=0i5
=

2 ,
is

F(02}-F(0i), where F(6}= ^lr
2 d0. And the length of the corresponding

arc of the curve is $ (02)
-

&amp;lt;l&amp;gt; (0^, where

$
&quot;-A/H3W-

Hence determine (i) the area and perimeter of the circle r=2asin0;
(ii) the area between the parabola r=|Zsec

2
^0 and its latus rectum, and the

length of the corresponding arc of the parabola ; (iii) the area of the limagon
r=a + bcos0, distinguishing the cases in which

a&amp;gt;b,
a= b, and a&amp;lt;b ;

and (iv) the areas of the ellipses 1 /r
2= a cos2 + 2A cos sin + 6 sin2 and

/r=l + ecos0. [In the last case we are led to the integral I-
^

which may be calculated (cf. Ex. LIII. 4) by the help of the substitution

(1 +e cos 6} (1
- ecos 0)= 1 - e2

.]

14. Trace the curve 20=(//) + (r/a), and show that the area bounded

by the radius vector =
,
and the two branches which touch at the point

r=a, 0=1, is a2
(

2
-l)

3/2
. (Math. Trip. 1900.)

15. A curve is given by an equation p= f(r\ r being the radius vector

and p the perpendicular from the origin on to the tangent. Show that the

calculation of the area of the region bounded by an arc of the curve and two

radii vectores depends upon thai of the integral 1 1 ^
1

2
.

MISCELLANEOUS EXAMPLES ON CHAPTER VI.

1. A function /(#) is defined as being equal to 1 +x when
^&amp;lt;0,

to x when
#&amp;lt;1, to 2-.? when

1&amp;lt;#&amp;lt;2,
and to 3x-x2 when ^&amp;gt;2. Discuss the

continuity of /(#) and the existence and continuity of / (#) for #=0, #=l,
and tf=2.

(Math. Trip. 1908.)

2. Denoting a, ax+b, ax2+ 2bx+ c, ... by u
,
ult u2 , ..., show that

and UQ u4
- 4^ u3 + 3w2

2 are independent of x.
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18. The roots of a cubic /(#) = are a, /3, y in ascending order of magni
tude. Show that if (a, /3) and (/3, y) are each divided into six equal sub-intervals,
then a root of / (#)

= will fall in the fourth interval from /3 on each side.

What will be the nature of the cubic in the two cases when a root of/ (#)
=

falls at a point of division? (Math. Trip. 1907.)

19. Investigate the maxima and minima of /(#), and the real roots of

/(#) = 0, /(#) being either of the functions

x - sin x- tan a (1
- cos x\ x- sin x - (a

- sin a)
- tan ^a (cos a

- cos x\

and a an angle between and TT. Show that in the first case the condition for

a double root is that tan a a should be a multiple of IT.

20. Show that by choice of the ratio X : p,
we can make the roots of

\(ax
2+ bx+c)+p,(a x2+ b x+ c )=Q real and having a difference of any mag

nitude, unless the roots of the two quadratics are all real and interlace
;
and

that in the excepted case the roots are always real, but there is a lower limit

for the magnitude of their difference. (Math. Trip. 1895.)

[Consider the form of the graph of the function (ax*+ bx+ c)j(a x
2+ b x+ c

} :

cf. Exs. XLVI. 12 et seq.]

21. Prove that TT
&amp;lt;-^

r

*\
&amp;lt; 4 V^ V

#(!-#)-

when &amp;lt; x &amp;lt; 1, and draw the graph of the function.

22. Draw the graph of the function

77 COt TTX
x x\

23. Sketch the general form of the graph of y, given that

_

24. A sheet of paper is folded over so that one corner just reaches the

opposite side. Show how the paper must be folded to make the length of the

crease a maximum.

25. The greatest acute angle at which the ellipse (#
2
/a

2
) -f (y

2
/6

2
)
= 1 can

be cut by a concentric circle is arc tan {(a
2 62

)/26}. (Math. Trip. 1900.)

26. In a triangle the area A and the semi-perimeter s are fixed. Show that

any maximum or minimum of one of the sides is a root of the equation

5(^-s)^
2+ 4A2=0. Discuss the reality of the roots of this equation, and

whether they correspond to maxima or minima.

[The equations a+ 6 + c=2s, s(s- a) (s-b} (s-c)= A2 determine a and b

as functions of c. Differentiate with respect to c, and suppose that da/dc=0.

It will be found that b = c, s-b=s-c= %a, from which we deduce that
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This equation has three real roots if s4 &amp;gt; 27A2
,
and one in the contrary

case. In an equilateral triangle (the triangle of minimum perimeter for a

given area) s4= 27A2
;

thus it is impossible that s4 &amp;lt;27A
2

. Hence the

equation in a has three real roots, and, since their sum is positive and their

product negative, two roots are positive and the third negative. Of the two

positive roots one corresponds to a maximum and one to a minimum.]

27. The area of the greatest equilateral triangle which can be drawn
with its sides passing through three given points A, B, G is

a, 6, c being the sides and A the area of A DC. (Math. Trip. 1899.)

28. If A, A are the areas of the two maximum isosceles triangles which

can be described with their vertices at the origin and their base angles on the

cardioid r=a (1 +cos 0), then 256AA = 25a4
&amp;gt;J5. (Math. Trip. 1907.)

29. Find the limiting values which (x
2

4y -f 8)/(y
2 - 6#+ 3) approaches

as the point (x, y) on the curve x2
y 4x2 -4xy+y2+I6x 2y-7 = ap

proaches the position (2, 3). (Math. Trip. 1903.)

[If we take (2, 3) as a new origin, the equation of the curve becomes
2

&amp;gt;7~

2
4-J?

2
=0, and the function given becomes

(

2 + 4 ^r})/(r}
2+ 6rj 6). If

we put 77
=

tg, we obtain g= (1
- t

2
){t, r)

= l t
2

. The curve has a loop branching
at the origin, which corresponds to the two values t= - 1 and t=l. Expressing
the given function in terms of t, and making t tend to 1 or 1, we obtain the

limiting values -f,
-

.]

30. If f(x)=-. r ,

sin x sin a (x- a} cos a

then -T- { lim / (x)} lirn / (x) f sec
3 a T

5
g sec a.

da x^-a x-*-a

(Math. Trip. 1896.)

31 . Show that if
&amp;lt;f&amp;gt; (x}

= 1 /(1+ #2
) then &amp;lt;(

n
) (x}

= Qn (#)/( 1 + x?}
n +

\ where

Qn (x) is a polynomial of degree n. Show also that

(i)

(ii)

(iii)

(v) all the roots of Qn=0 are real and separated by those of Qn _ l
= 0.

32. If /(#), (x\ \lr (a?) have derivatives when a &amp;lt; x 6, then there is

a value of lying between a and b and such that

f(a} 0(a) ^( )

(6) ^ (6)

=0.

n. 17
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[Consider the function formed by replacing the constituents of the third

row by /(a?), $ (a?), \^ (#). This theorem reduces to the Mean Value Theorem

( 125) when $(x} = x and

33. Deduce from Ex. 32 the formula

/(&)-/()

34. If ( (#)-- as #--oo, then
&amp;lt;j&amp;gt; (x)/g -+&amp;gt;a. If &amp;lt; (#)-*- then

(#)
-- oc . [Use the formula

&amp;lt;(#)
&amp;lt; (# )

= (# #
) (), where # &amp;lt; &amp;lt; #.]

35. If (x}-*-a as x-*-ao
,
then (.r) cannot tend to any limit other than

zero.

36. If
&amp;lt;j&amp;gt;

($} +
&amp;lt;!&amp;gt; (x}-*~ a as #--oo, then

&amp;lt;p(x}-*~a
and (#)-- 0.

[Let &amp;lt;f&amp;gt;(x}

= a-\-fy(x\ so that
\/r (#) + \J/ (#)-*(). If

i// (#) is of constant

sign, say positive, for all sufficiently large values of #, then ^ (#) steadily

increases and must tend to a limit I or to &amp;lt;x&amp;gt; . If
\j/ (#)-- QO then

\//&amp;gt; (#) -*~ - oo
,

which contradicts our hypothesis. If -fy-(x}-*~l then i// (#)--, and this

is impossible (Ex. 35) unless =0. Similarly we may dispose of the case in

which ty (x) is ultimately negative. If
v//- (57) changes sign for values of x which

surpass all limit, then these are the maxima and minima of
&amp;gt;// (x}. If x has

a large value corresponding to a maximum or minimum of ^r(ar), then

^ (#) + \// (#) is small and
*// (#)=0, so that

*// (^) is small. A fortiori are the

other values of ^ (x} small when x is large.

For generalisations of this theorem, and alternative lines of proof, see a

paper by the author entitled &quot;Generalisations ofa limit theorem of Mr Mercer,&quot;

in volume 43 of the Quarterly Journal of Mathematics. The simple proof
sketched above was suggested by Prof. E. W. Hobson.]

37. Show how to reduce fsL J(^] , /(^+^)1 &amp;lt;fe to
J IV \mx+ nj V \**+//

the integral of a rational function. [Put inx+n= l/t and use Ex. XLIX. 13.]

38. Calculate the integrals :

dx

f rfia; [cQ&xBmxdx f
I 77^
-

. .. . .--:
-

r-^ .
,

-
r-j- , / COS6C Xj(8fSG

J (2 sm^a?)(2+ smo7 sin2* ) J cos4 ^7+ sm4
A- j

/#-f sina? .
/&quot; /&quot;,

&amp;gt; I ^
-

**i /
aro sec x dx, I (arc sin xdx,

Jl+cos^ J J^

x arc sin x ,
/&quot;arc

sin x

/*

/arc

tan # , /&quot;arc tana; nog(a
2
+/3

2^2
) , Hog (a

^ ^
J (TT^F^ J ^~ &quot; ^

J (a +
-f/3.r)
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39. Formulae of reduction, (i) Show that

[Put #-|-p = , ^--|^
2 =A: then we obtain

dt I dt 1 t
2 dt

and the result follows on integrating by parts.

A formula such as this is called a formula of reduction. It is most useful

when n is a positive integer. We can then express I r in terms
/ (x*+px+ q}

n

f dx
of I f^rr . . yt -! &amp;gt;

and so evaluate the integral for every value of n in

turn.]
. ! .\Wk

*
-

,

(ii) Show that if 1^ q
= \x* (1 +x} dx then

and obtain a similar formula connecting lptQ with /p _i &amp;gt;3 + 1 . Show also, by
means of the substitution x= y/(l +y), that

(iii) Show that if X= a+ bx then

\x*X-Wdx= (32a
2 - 24a6^+ 2l62 s

)
A&quot;

3/4
/231 61

/iHM/7/r(TT

(v) If / = I ^n cos /3.r cfo? and / = I .r
11 sin^ rfa7 then

/3/n= o;
n sin 3^ -nJn . v , &Jn= - a;

n cos /3.r+ w/B _ l
.

172
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(vi) If In= lcosn xdx and Jn= /sin* a?etc then

nJ= -

(vii) If In= (tMFxdx then (n- 1) (7n

(viii) If 7
m&amp;gt; n

= / cosm ^ sin&quot; xdx then

= cosm ~ !
a? sinn + ! * -f (m- 1) 7m_ 2, n .

[We have

(m+ 1
)
/m,

= -
\ sinn

- 1 x
-^ (cos

+ l
x} dx

which leads to the first reduction formula.]

(ix) Connect 7m , n = /sinw ^ sin 71^7 dx with /m _ 2, n . (J/a^A. ?W&amp;gt;. 1897.)

(x) If ImHaPooa&Pxdx then

xm ~ l cosecw
~ l x (m sin x + (n 2) x cos x] . (Math. Trip. 1 896.

)

(xi ) If / = / (a+ b cos #)
~ ndx then

(xii) If 7n = I (a cos2 x+ 2A cos # sinx -f 6 sin2
x)

~ ndx then

Un=-^.
(Math. Trip. 1898.)

(xiii) If Imtn

40. If n is a positive integer then the value of \xm (log#)
w dx i

rm + 1 SQ?S* _ ^Gog^)*- 1
, nCn-DGog^)&quot;- _

,

(-1)&quot;&quot;!

(

41. Show that the most general function
&amp;lt;p(x),

such that &amp;lt;&quot; + 2
(/)
= for

all values of x, may be expressed in either of the forms A cos ax+ B sin ax,

),
where A, B, p, are constants. [Multiplying by 20 and
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integrating we obtain
&amp;lt;

2+a2 2= a262
,
where b is a constant, from which we

deduce that ax= I . _ .]

42. Determine the most general functions y and z such that y + a&amp;gt;2
=

0,
and z

o&amp;gt;3/=0,
whereto is a constant and dashes denote differentiation with

respect to x.

43. The area of the curve given by

._ , sinasin$ .- . sinacos0
l-cos2asin 2

(
y ^

I -cos2asin2

where a is a positive acute angle, is |TT (1 + sin a)
2
/sin a. (Math. Trip. 1904.)

44. The projection of a chord of a circle of radius a on a diameter is of

constant length 2a cos j8 ;
show that the locus of the middle point of the chord

consists of two loops, and that the area of either is a2
(/3 cos /3 sin /3).

(Math. Trip. 1903.)

45. Show that the length of a quadrant of the curve (#/)*+ (y/6)$
= 1 is

(a?+ ab + b2)l(a+ b). (Math. Trip. 1911.)

46. A point A is inside a circle of radius a, at a distance b from the

centre. Show that the locus of the foot of the perpendicular drawn from
A to a tangent to the circle encloses an area TT (a

2 + ^6
2
). (Math. Trip. 1 909. )

47. Prove that if (a, 6, c, /, g, %?, y, 1)
2= is the equation of a conic, then

dx PT

where PT, PT7
are the perpendiculars from a point P of the conic on the

tangents at the ends of the chord lx+my + n=Q, and a, /3 are constants.

(Math. Trip. 1902.)

48. Show that

will be a rational function of # if and only if one or other of AC-B2 and
265 is zero.*

49. Show that the necessary and sufficient condition that

where / and F are polynomials of which the latter has no repeated factor,

should be a rational function of x, is that f F -fF&quot; should be divisible by F.

(Math. Trip. 1910.)

50. Showthat racosa+flsing+y^
J (I e cos off

is a rational function of cos x and sin x if and only if ae+y=0 ; and determine
the integral when this condition is satisfied. (Math. Trip. 1910.)

* See the author s tract quoted on p. 236.



CHAPTER VII

ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND
INTEGRAL CALCULUS

147. Higher Mean Value Theorems. In the preceding

chapter ( 125) we proved that if f(x) has a derivative f (x)

throughout the interval (a, b) then

where a&amp;lt;%&amp;lt;b;
or that, if f(x) has a derivative throughout

(a, a + h), then

where &amp;lt; Ol &amp;lt; 1. This we proved by considering the function

which vanishes when # = a and when # = b.

Let us now suppose that / (x) has also a second derivative

/&quot; (a;) throughout (a, b), an assumption which of course involves

the continuity of the first derivative / (#}, and consider the

function

This function also vanishes when x a and when x = 6
;
and its

derivative is

and this must vanish ( 121) for some value of x between a and b

(exclusive of a arid b). Hence there is a value f of x, between
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a and b, and therefore capable of representation in the form

a + 2 (6
-

a), where &amp;lt; 2 &amp;lt; 1, for which

-
}/&quot;.&amp;lt;&

If we put b = a + h we obtain the equation

which is the standard form of what may be called the Mean Value

Theorem of the second order.

The analogy suggested by (1) and (2) at once leads us to

formulate the following theorem :

Taylor s or the General Mean Value Theorem. //

f(x) is a function of x which has derivatives of the first n orders

throughout the interval (a, 6), then

f(b) =/() + (6
- a)f (a) +

(
~

,^V&quot; () + ..-

+ \
~

&quot;&quot;

/(&quot;-
)

(a) + ~^-
/&quot;&quot;(),

\i ii
~~

j. ) I n I

where a&amp;lt; f &amp;lt; fr
;
and ifb = a + h then

f(a + h) =f(a) + hf (a) + \l?f&quot; (a) + ...

1

hn &quot;

f &amp;lt;-(&amp;lt;* I

hn

(n-l) \

J ^ } n I

where &amp;lt; dn &amp;lt; 1.

The proof proceeds on precisely the same lines as were adopted
before in the special cases in which n = 1 and n = 2. We consider

the function

where Fn (a) =f(b) -f(x)-(b- x)f (x}
- *-^ f&quot; ()-...

_(b-xT^
(n
-

1) !

J

This function vanishes for x = a and x = b] its derivative is

and there must be some value of x between a and b for which

the derivative vanishes. This leads at once to the desired result.
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In view of the great importance of this theorem we shall give
at the end of this chapter another proof, not essentially distinct

from that given above, but different in form and depending on

the method of integration by parts.

Examples LV. 1. Suppose that f(x) is a polynomial of degree r.

Then /(
n

) (#) is identically zero when n &amp;gt; r, and the theorem leads to the

algebraical identity

) + /&quot; (a) + ...+

2. By applying the theorem to /(a?)
=

l/#, and supposing x and

positive, obtain the result

1 _ 1 _ h_
A2

_ (
- l)-i-i

x+h~x~ x*
+
x?~

&quot; +
xn

+

1 1 A A2
(-l)&quot;-

1^- 1

(-1)
MAW

[Since --
r
= ---

5 + -5 - ... + -----
f-
--

r\ ,^+ A a? a* a8 xn ^
&(x+hY

we can verify the result by showing that xn (x-\-h] can be put in the form

)
n + 1

,
or that xn + l

&amp;lt;x
n
(x+ h) &amp;lt;(x + h)

n + 1
,
as is evidently the case.]

3. Obtain the formula

A2 A3

sin (x + A)
= sin x+ h cos x - sin x -- cos ^-f ...

z ! 3 .

the corresponding formula for cos (.-j-A), and similar formulae involving

powers of A extending up to A2n + 1
.

4. Show that if m is a positive integer, and n a positive integer not

greater than wi, then

Show also that, if the interval (#, ^ + A) does not inclvide ^=0, the formula

holds for all real values of m and all positive integral values of n
;
and that,

even if #&amp;lt;0&amp;lt;#+ A or #+ A
&amp;lt; &amp;lt; #, the formula still holds if m-n is

positive.

5. The formula / (x+ A) =/ (.r) +hf (x + 6-fi) is not true if / (x)
= 1 /# and

#&amp;lt;0&amp;lt;#+ A. [For/(#+A)-/(#)&amp;gt;0 and A/ (a?+^A)= -A/(#+ 0iA)
2

&amp;lt; it

is evident that the conditions for the truth of the Mean Value Theorem arc

not satisfied.]

6. If #=-, A=2a, /(#) = ff1/3
,
then the equation

is satisfied by #1
= ^ iV v/3 - [This example shows that the result of the

theorem may hold even if the conditions under which it was proved are

not satisfied.]
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7. Newton s method of approximation to the roots of equations. Let

| be an approximation to a root of an algebraical equation/ (a?)
=

0, the actual

root being + h. Then

so that A - - -- -
JA .

It follows that in general a better approximation than x= is

If the root is a simple root, so that /( + /*)* 0, we can, when h is small

enough, find a positive constant K such that )/ (x) \

&amp;gt; K for all the values of
x which we are considering, and then, if h is regarded as of the first order of

smallness, /() is of the first order of smallness, and the error in taking-
{/(I)//

7

()} as the root is of the second order.

.8. Apply this process to the equation #2=2, taking = 3/2 as the first

approximation. [We find A= -
1/12, +A= 17/12= 1-417..., which is quite a

good approximation, in spite of the roughness of the first. If now we repeat
the process, taking =17/12, we obtain + A= 577/408= l-414215..., which
is correct to 5 places of decimals.

9. By considering in this way the equation ;r
2 -l-y=0, where y is

small, show that ^(1 +y) = 1 + Jy - {^/(2 +y}} approximately, the error being
of the fourth order.

10. Show that the error in taking the root to be -
(/// )

-
1 (/

2
/&quot;//

/3
),

where is the argument of every function, is in general of the third order.

11. The equation sin#=o#, where a is small, has a root nearly equal to
TT. Show that (1 -a) TT is a better approximation, and (1

- a + a2) a better
still. [The method of Exs. 710 does not depend on /(#)= being an
algebraical equation, so long as/ and/ are continuous.]

12. Show that the limit when h+0 of the number n which occurs in
the general Mean Value Theorem is l/(?i+ l), provided that /(

w + 1

)(#) is

continuous.

[For/(^4-A) is equal to each of

/(-)+.+;!&amp;gt;(*+), /+...+ /wW
where 6n + l as well as Bn lies between and 1. Hence

But if we apply the original Mean Value Theorem to the function /()
taking ^nA in place of A, we find
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where 6 also lies between and 1. Hence

from which the result follows, since
/(&quot;

+ ^ (x + 6Bnh) and f(
n + 1) (x + dn + ik) tend

to the same limit /(
n + 1

)( as h-*-0.]

1 3. Prove that {f(x + 2A)
-

2/(a? + A) +/(#)}/A
2

-*-/&quot; (a?) as A-*-0, provided

that/&quot; (a?) is continuous. [Use equation (2) of 147.]

14. Show that, if the/(
n

)
(a?) is continuous for # = 0, then

where or= /(
r
)(0)/r! and ea --() as #--0.

15. Show that if

where ex and T/^ tend to zero as#--0, then =6
,
a

1
= 6 1 , ..., an= bn . [Making

#-.0 we see that a =6 . Now divide by x and afterwards make &*--0.

We thus obtain ^=6^ and this process may be repeated as often as is

necessary. It follows that if f(x} = a
(&amp;gt;

+ al x+a&amp;lt;1x*+ ... + (an+ fx)x
n

,
and the

first n derivatives off(x} are continuous, then ar =f(
r
)(0)/r !.]

148. Taylor s Series. Suppose that f(x) is a function all

of whose differential coefficients are continuous in an interval

(a 7j, 0.4-7?) surrounding the point x = a. Then, if h is numeri

cally less than 77, we have

f(a + h) =f(a) + hf (o) + . . . +
(-^yj/&quot;

1 -&quot; () + &quot;/&quot;&quot; (a + * A).

where &amp;lt; n &amp;lt; 1, for all values of n. Or, if

we have f (a + h) Sn = Rn .

Now let us suppose, in addition, that we can prove that

Rn ^0 as ji^oo . Then

/(a + A) = Urn S. =/(a) + A/ () + J/&quot; () + -..
--X &quot;

This expansion of /(a+/i) is known as Taylor s Series.

When a = the formula reduces to

*
It is in fact sufficient to suppose that/(

w
&amp;gt;

(0) exists. See E. H. Fowler, &quot;The

elementary differential geometry of plane curves&quot; (Cambridge Tracts in Mathe

matics, No. 20, p. 104).
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which is known as Maclaurin s Series. The function Rn is known

as Lagrange s form of the remainder.

The reader should be careful to guard himself against supposing that the

continuity of all the derivatives of/(#) is a sufficient condition for the validity

of Taylor s series. A direct discussion of the behaviour of Rn is always

essential.

Examples LVL 1. Let /(#)= sin x. Then all the derivatives of f(cc}

are continuous for all values of x. Also |/
n

(^c) |

&amp;lt; 1 for all values of x and n.

Hence in this case
|

Rn
\

hn\n !, which tends to zero as 71-3-00 (Ex. xxvu. 12)

whatever value h may have. It follows that

! 3 !

for all values of x and A. In particular

, A3 A*
smA= A + ...,

for all values of A. Similarly we can prove that

A2 A3 . A2 A 1

cos (x+ A)
= cos ^7 Asm ^ cos#+ sin.r+... }

cos A= l
-j
+ ~r~\~

2. The Binomial Series. Let f(x} = (\+x}
m

,
where m is any rational

number, positive or negative. Then f(
n

) (x}
=m (m- l)...(m

- n -f 1) (1 -f- x}
~ n

and Maclaurin s Series takes the form

\2 +....

When m is a positive integer the series terminates, and we obtain the

ordinary formula for the Binomial Theorem with a positive integral exponent.

In the general case

and in order to show that Maclaurin s Series really represents (l+#)
m for

any range of values of x when m is not a positive integer, we must show that

Rn-*~Q for every value of x in that range. This is so in fact if -
!&amp;lt;#&amp;lt;!,

and may be proved, when ^ x
&amp;lt; 1, by means of the expression given above

for Rn ,
since (1 + 6nx}

m ~ n
&amp;lt; 1 if n &amp;gt; m, and (j zn-^0 as n-^ oo (Ex. xxvu. 13).

But a difficulty arises if -1
&amp;lt;.r&amp;lt;0,

since l + 6nx&amp;lt;l and (l + n#)
&quot;~ B

&amp;gt; 1 if

n&amp;gt;m; knowing only that &amp;lt; 6n &amp;lt; l,we cannot be assured that 1 + 6nx is not

quite small and (\ + Bnx]
m ~ n

quite large.

In fact, in order to prove the Binomial Theorem by means of Taylor s

Theorem, we need some different form for Rn ,
such as will be given later

( 162).
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149. Applications of Taylor s Theorem. A. Maxima
and minima. Taylor s Theorem may be applied to give greater
theoretical completeness to the tests of Ch. VI, 122 123,

though the results are not of much practical importance. It

will be remembered that, assuming that
&amp;lt;/&amp;gt; (x) has derivatives of

the first two orders, we stated the following as being sufficient

conditions for a maximum or minimum of &amp;lt;&amp;gt; (x) at x % : for a

maximum,
&amp;lt;^ (f)

= 0, ^
/7

(f)&amp;lt;0; for a minimum, $ (f)
= 0,

^&amp;gt;

//

(|
:

)&amp;gt;0.

It is evident that these tests fail if &amp;lt;&quot; (f) as well as &amp;lt; () is zero.

Let us suppose that the first n derivatives

&amp;lt;/&amp;gt;, $ (x\ ..., &amp;lt;p&amp;gt;(#)

are continuous, and that all save the last vanish when x = f. Then,
for sufficiently small values of h,

In order that there should be a maximum or a minimum this

expression must be of constant sign for all sufficiently small

values of h, positive or negative. This evidently requires that n

should be even. And if n is even there will be a maximum or a

minimum according as
&amp;lt;/&amp;gt;

(n
&amp;gt;

(f) is negative or positive.

Thus we obtain the test: if there is to be a maximum or

minimum the first derivative which does not vanish must be an even

derivative, and there will be a maximum if it is negative, a minimum

if it is positive.

Examples LVII. 1. Verify the result when $ (x)
= (x

-
a)
m

,
m being a

positive integer, and =a.

2. Test the function (x
-

a)
m
(x
-

&amp;gt;)

n
,
where m and n are positive integers,

for maxima and minima at the points x=a, x=b. Draw graphs of the

different possible forms of the curve y=(x a)
m
(x-b}

n
.

a? x3 x5
3. Test the functions sin# a, sin^-^7 + ,

sin
X-X+-Q ^ , ...,

X* X*1 X^
cos# 1, cos.r-l+ , cos#-l+ ^7,

... for maxima or minima at ^-=0.

150. B. The calculation of certain limits. Suppose

that/(#) and
&amp;lt;f&amp;gt; (x) are two functions of x whose derivatives / (x)

and $ (x) are continuous for x = t;-
and that /( ) and &amp;lt; (f) are

both equal to zero. Then the function
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is not defined when x = f. But of course it may well tend to a

limit as a?-*-f.

Now /(*)=/(*) -/(f) = (*-f)/ te),

where x^ lies between f and x
;
and similarly &amp;lt;f&amp;gt; (x)

=
(a; f)

&amp;lt; (*2),

where #2 also lies between f and #. Thus

We must now distinguish four cases.

(1) If neither/ () nor
&amp;lt;/&amp;gt;
() is zero, then

(2) !/() = 0,0 ()*&amp;lt;),
then

(3) If/ (f) =}= 0, &amp;lt; (?) =0, then /(?)/ (x) becomes numerically

very large as x-*-%\ but whether
/(#)/&amp;lt;/&amp;gt; (a?) tends to oo or oo

,

or is sometimes large and positive and sometimes large and

negative, we cannot say, without further information as to the way
in which (#)-*0 as x-^%.

(4) If/
/

(^)
= 0, &amp;lt; (f)=0, then we can as yet say nothing about

the behaviour of/(#)/( (sc) as a?-*-0.

But in either of the last two cases it may happen that /(#)
and

(f&amp;gt; (x) have continuous second derivatives. And then

/&amp;lt;*)

= /(*) -/(?) T (f
&quot; f)/ (?) - K*

*W = * (ar)
- * (f)

-
(^
-

f) f (?) - J(- f)

where again xl and a;3 lie between f and a?
;
so that

We can now distinguish a variety of cases similar to those

considered above. In particular, if neither second derivative

vanishes for x=%, we have

It is obvious that this argument can be repeated indefinitely,
and we obtain the following theorem: suppose thatf(x) and

&amp;lt;f&amp;gt;(x)

and their derivatives, so far as may be wanted, are continuousfor
# = {. Suppose further that f (p]

(x) and
&amp;lt;f&amp;gt;W (x) are the first

derivatives off(x) and
&amp;lt;f&amp;gt; (x) which do not vanish when x = %. Then

(2) ifp&amp;gt;q,
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(3) if p&amp;lt;q,
and q

- p is even, either
/(#)/&amp;lt;(#)- +00 or

*- oo
, the sign being the same as that off(p)

(?)/&amp;lt;

(3)
(f);

(4) if p&amp;lt;q
and q-p is odd, either

/(/&amp;lt;/&amp;gt; 0*0 -* + or

f(x)l$(x) 00 as x-^^-\-0,the sign being the same as that of
fw (f)/&amp;lt;p&amp;gt; (f), wfoYe t/ ar-^f-0 fo wgrw HUM* 6e reversed.

This theorem is in fact an immediate corollary from the

equations

Examples LVIII. 1. Find the limit of

as #-*-!. [Here the functions and their first derivatives vanish for #=1,
and/ (I)=(+!), 0&quot;(1)=2.]

2. Find the limits as #-0 of

(tan 37 - #)/(#
- sin #), (tan ^^ - % tan .r)/(w sin x- sin wo;).

3. Find the limit of x {V(x
2+ a2

)
-
#} as x-*- oc . [Put x= 1/y.]

4. Prove that

lim (a?
- W) cosec^Tr = (-^^

,
UrnJ Jcosec ^TT -

/

(
~

1)n 1 = (~ 1^
* -*-* * x-^n^-n \ (X-ft)*] 6

n being any integer ;
and evaluate the corresponding limits involving cot x-ir.

5. Find the limits as x-*~Q of

G. (sin x arc sin # - x*)\x*--^ (tan ^7 arc tan x - x2
)/afi-&amp;gt;- 1, as z-*~0.

151. C. The contact of plane curves. Two curves are

said to intersect (or cut) at a point if the point lies on each of them.

They are said to touch at the point if they have the same tangent
at the point.

Let us suppose now that /(a?), &amp;lt;

(a?) are two functions which

possess derivatives of all orders continuous for # = and let us

consider the curves y =/(#), y = $ (#). In general /(f) and &amp;lt; (f )

will not be equal. In this case the abscissa x = f does not corre

spond to a point of intersection of the curves. If however
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f () = &amp;lt;&amp;gt; (f), the curves intersect in the point x=%,
Let us suppose this to be the case. Then

in order that the curves should not only

cut but touch at this point it is obviously

necessary and sufficient that the first

derivativesf (x), &amp;lt;/&amp;gt; (x) should also have

the same value when x = .

The contact of the curves in this

case may be regarded from a different

point of view. In the figure the two

curves are drawn touching at P, and QR

=&amp;lt;()

/y=0(s)

J /?=/(*)

is equal to
f&amp;gt; (f + h) -/(f + A), or, since *(?)=/(), * (?)=/(& to

where lies between and 1. Hence

lim -

when h^O. In other words, when the curves touch at the point

whose abscissa is f, the difference of their ordinates at the point

whose abscissa is % + h is at least of the second order of smallness

when h is small.

The reader will easily verify that lim (QRIJi) = &amp;lt;f&amp;gt;

r

() -/ (|) when the curves

cut and do not touch, so that QR is then of the first order of smallness only.

It is evident that the degree of smallness of QR may be taken

as a kind of measure of the closeness of the contact of the curves.

It is at once suggested that if the first n 1 derivatives of f
and

&amp;lt;f&amp;gt;

have equal values when x = g,
then QR will be of the

?ith order of smallness; and the reader will have no difficulty

in proving that this is so and that

Hm^ =
~{&amp;lt;P (?)-/&quot;()}.

We are therefore led to frame the following definition :

Contact of the nih order. If /() = (/&amp;gt;
(f), / (f)

=
&amp;lt;/&amp;gt;

(f),

...,
/&amp;lt; () = &amp;lt;&amp;lt;&amp;gt;(),

but /(n+1) ()4:

&amp;lt;P

+1)
(), then the curves

y =f(x\ y &amp;lt;j) (x) will be said to have contact of the nth order

at the point whose abscissa is %.

The preceding discussion makes the notion of contact of the

?ith order dependent on the choice of axes, and fails entirely
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when the tangent to the curves is parallel to the axis of y. We can

deal with this case by taking y as the independent and x as the

dependent variable. It is better, however, to consider x and y as

functions of a parameter t. An excellent account of the theory will

be found in Mr Fowler s tract referred to on p. 266, or in de la

Vallee Poussin s Cours d Analyse, vol. ii, pp. 396 et seq.

Examples LIX. 1. Let $ (x}
=ax+ b, so that

y=&amp;lt; (x) is a straight line.

The conditions for contact at the point for which x=% are /() = + 6,

/ ()= If we determine a and 6 so as to satisfy these equations we find

a=f () &=/()- 1/ ()&amp;gt;
and the equation of the tangent to y=-f(x] at the

point x= is

or y-f ()= (#-)/ (). Of. Ex. xxxix. 5.

2. The fact that the line is to have simple contact with the curve

completely determines the line. In order that the tangent should have

contact of the second order with the curve we must have
/&quot; () = &amp;lt;&quot; (), i.e.

/&quot;()
= 0. A point at which the tangent to a curve has contact of the

second order is called a point of inflexion.

3. Find the points of inflexion on the graphs of the functions So4 - 6/r3 + 1,

2#/(l -f#2
),

sin x, a cos2 x -f 6 sin2 #, tan #, arc tan #.

4. Show that the conic aa?+2hxy+fy*+2g+2fy+c==Q cannot have a

point of inflexion. [Here ax+ hy+g+ (hx+ by +/) y 1
= and

suffixes denoting differentiations. Thus at a point of inflexion

or a

or (6 - A2
) {oa

2
-f2^^+ 6y

2+2^+ 2/?/} -fa/
2 -

But this is inconsistent with the equation of the conic unless

of*
-
2fgh+ bff

2= c (ab
- A2

)
*

or abc+ 2fgh-af
2 -bg

z -ch2=0
,

and this is the condition that the conic

should degenerate into two straight lines.]

5. The curve y= (ax
2
-\-

/2bx+ c)/(ax
2+ 2l[3x+ y) has one or three points of

inflexion according as the roots of cu7
2 + 2/3^+y=0 are real or complex.

[The equation of the curve can, by a change of origin (cf. Ex. XLVI. 15), be

reduced to the form

where p, q are real or conjugate. The condition for a point of inflexion will

be found to be 3 3pq+pq (p+ &amp;lt;?)

= 0, which has one or three real roots

according as (pq ( p q}\ is positive or negative, i.e. according as p and q are

real or conjugate.]
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6. Discuss in particular the curves y= (l #)/(! +#2
), y= (1

- #2
)/(l +#2

),

7. Show that when the curve of Ex. 5 has three points of inflexion, they
lie on a straight line. [The equation

3
3pqg+pq(p+ q)

= can be put in

the form ( p)(-q)(+p+ g) + (p &amp;lt;?)

2 =
0, so that the points of inflexion

lie on the line g +A(-)*r+ + = or A

8. Show that the curves y=xsmx, y= (s\\\x)lx have each infinitely

many points of inflexion.

9. Contact of a circle with a curve. Curvature*. The general

equation of a circle, viz.

contains three arbitrary constants. Let us attempt to determine them so

that the circle has contact of as high an order as possible with the curve

y=f(x) at the point (, ^), where
17 =/(). We write m , rj2 for / (),/&quot; ().

Differentiating the equation of the circle twice we obtain

&)yi= .............................. (2),

%2=o .............................. (3).

If the circle touches the curve then the equations (1) and (2) are satisfied

when #=, y= rj, y 1
= r

)l
. This gives (^-a)/7l

= -(^-&) = r/v/(l+77l
2
). If

the contact is of the second order then the equation (3) must also be satisfied

when y2
=

r)Z . Thus 6=77 + {(1 -f^
2
)/^} ; and hence we find

^2 7/2 r;2

The circle which has contact of the second order with the curve at the point

(, 77)
is called the circle of curvature, and its radius the radius of curvature.

The measure of curvature (or simply the curvature) is the reciprocal of the

radius : thus the measure of curvature
is/&quot; ()/{! + [/ ()]

2
}

3/2
,
or

10. Verify that the curvature of a circle is constant and equal to the

reciprocal of the radius
;
and show that the circle is the only curve whose

curvature is constant.

11. Find the centre and radius of curvature at any point of the conies

12. In an ellipse the radius of curvature at P is CD3
/ab, where CD is

the semi-diameter conjugate to CP.

* A much fuller discussion of the theory of curvature will be found in Mr Fowler s

tract referred to on p. 272.

H. 18
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13. Show that in general a conic can be drawn to have contact of the

fourth order with the curve y=/(#) at a given point P.

[Take the general equation of a conic, viz.

ax* + Ihxy+ by*+ tyx+ 2fy+ c= 0,

and differentiate four times with respect to x. Using suffixes to denote

differentiation we obtain

If the conic has contact of the fourth order, then these five equations must

be satisfied by writing |, 77, 71, 172, 173 &amp;gt; *U fo11 #
#&amp;gt; 3/i, #2, ya, #4- We have thus

just enough equations to determine the ratios a : b : c : f : g : h.]

14. An infinity of conies can be drawn having contact of the third order

with the curve at P. Show that their centres all lie on a straight line.

[Take the tangent and normal as axes. Then the equation of the conic is

of the form 2y=a#2+ 2A#y+&3/
2
,
and when x is small one value of y may be

expressed (Ch. V, Misc. Ex. 22) in the form

y= Jotf
2+ (iA + e^ xs

,

where fx-~Q with x. But this expression must be the same as

where fx -*Q with x, and so a=f&quot; (0), /*=/
&quot;

(0)/3/&quot; (0), in virtue of the result

of Ex. LV. 15. But the centre lies on the line ax+hy*=Q.]

15. Determine a parabola which has contact of the third order with the

ellipse (#/a)
2
+(y/6)

2=l at the extremity of the major axis.

16. The locus of the centres of conies which have contact of the third

order with the ellipse (#/a)
2+ (y/6)

2= l at the point (a cos a, b sin a) is the

diameter x\(a cos a) =yl(b sin a). [For the ellipse itself is one such conic.]

152. Differentiation of functions of several variables.

So far we have been concerned exclusively with functions of a

single variable as, but there is nothing to prevent us applying the

notion of differentiation to functions of several variables x, y, ....

Suppose then that /(a?, y) is a function of two* real variables

x and y, and that the limits

* The new points which arise when we consider functions of several variables

are illustrated sufficiently when there are two variables only. The generalisations

of our theorems for three or more variables are in general of an obvious character.
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exist for all values of x and y in question, that is to say that

f(x,y) possesses a derivative dfjdx or Dxf(x,y) with respect to x
and a derivative df/dy or Dyf(x, y) with respect to y. It is usual

to call these derivatives the partial differential coefficients of/, and
to denote them by

dy

or

or simply//,// OTfx,fy . The reader must not suppose, however,
that these new notations imply any essential novelty of idea:

partial differentiation with respect to x is exactly the same

process as ordinary differentiation, the only novelty lying in the

presence in / of a second variable y independent of x.

In what precedes we have supposed x and y to be two real

variables entirely independent of one another. If x and y were
connected by a relation the state of affairs would be very different.

In this case our definition of// would fail entirely, as we could

not change x into x + h without at the same time changing y.
But then f(x,y) would not really be a function of two variables

at all. A function of two variables, as we defined it in Ch. II,

is essentially a function of two independent variables. If y depends
on x, y is a function of x, say y = &amp;lt; (x) ;

and then

/(a, ?)=/{*,(*)}
is really a function of the single variable x. Of course we may also

represent it as a function of the single variable y. Or, as is often

most convenient, we may regard x and y as functions of a third

variable t, and then f (xt y), which is of the form
/{&amp;lt;/&amp;gt; (t\

is a function of the single variable t.

Examples LX. 1. Prove that if x=rcos0, y=rsih0, so that r=
0arctan(y/x), then

2. Account for the fact that *l and
*1/(). [When

we were considering a function y of one variable x it followed from the
definitions that dy/dx and cfo/rfy were reciprocals. This is no longer the

182
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case when we are dealing with functions of two variables. Let P (Fig. 46)

\&amp;gt;e the point (#, y} or (r, 0}. To find 3r/3# we must increase #, say by an

increment MMi= 8x, while keeping y constant. This brings P to PI. If

along OPl we take OP = OP, the increment of r is P P^fir, say; and

9r/9.r=lim(Sr/6\tf). if on the other hand we want to calculate 3#/3r, x and

y being now regarded as functions of r

and 0, we must increase r by Ar, say,

keeping 6 constant. This brings P to

P2 ,
where PP2=Ar: the corresponding

increment of x is MMi = A#, say ;
and

Now Aa?=&z?* : but Ar=t=6Y. Indeed it is

easy to see from the figure that

lim (6Y/6X)
= lim (PA / PPi) = cos 0,

but lim (Ar/Atf)
= lim (PP2 / PA)= sec 0,

so that lim (Sr/Ar)
= cos2

0.

The fact is of course that 3#/3r and

dr/dx are not formed upon the same hypothesis as to the variation of P.]

3. Prove that if z=f(ax + by) then b (dz/dx)
= a (3z.%).

4. Find dXjdx, 3JT/3;/, ... when X+Y=x, Y=xy. Express x as

3^/37,

=A
, Y+Z=xy, Z=xyz; express

functions of X, Y and find

5. Find 3JT/3^, ... when

x, y, z in terms of X, 7, ^ and find 3^7/9JT, ....

[There is of course no difficulty in extending the ideas of the last section

to functions of any number of variables. But the reader must be careful to

impress on his mind that the notion of the partial derivative of a function of

several variables is only determinate when all the independent variables are

specified. Thus if u=x+y+ z, x, y, and z being the independent variables,

then 3w/3#= l. But if we regard u as a function of the variables #, x+y= T],

and x+y +z=, so that u=
,
then 3w/3#=0.]

153. Differentiation of a function of two functions.

There is a theorem concerning the differentiation of a function

of one variable, known generally as the Theorem of the Total

Differential Coefficient, which is of very great importance and

depends on the notions explained in the preceding section re

garding functions of two variables. This theorem gives us a rule

for differentiating

with respect to t.

* Of course the fact that &x = 8x is due merely to the particular value of Ar

that we have chosen (viz. PP2)- Any other choice would give us values of Ax, A/

proportional to those used here.
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Let us suppose, in the first instance, that /(a?, y) is a function
of the two variables x and y, and that /, , / are continuous
functions of both variables ( 107) for all of their values which
come in question. And now let us suppose that the variation of
as and y is restricted in that (x, y) lies on a curve

where $ and ^ are functions of t with continuous differential

coefficients (t\ ty (t). Then /(a?, y) reduces to a function of the

single variable t, say F(t). The problem is to determine F
(t).

Suppose that, when t changes to t + r, x and y change to

x + t;
and y + ?;. Then by definition

; [/ (&amp;lt; (* + T), ^ (&amp;lt;
+ T)) -/ {0 (*), ^ (0}]

lim \f(x + &y+&amp;lt;n) -/(&amp;lt;*, y)}

But, by the Mean Value Theorem,

5&quot;]

TJ

where ^ and each lie between and 1. As r-^0, f -^0 and

7?^0, and f/T^ (0&amp;gt; yr+ (t: also

/; (, y).

Hence

F (t)
= A/{* (0, ^ (0) =// (^, y) f (0 +// (, y) * (0,

where we are to put a? = ^(Q, y = ^(t) after carrying out the

differentiations with respect to a? and y. This result may also be

expressed in the form

dfjdf_dx dfdy
dt dx dt dy dt

Examples LXI. 1. Suppose (0 = (1-O/(1 + ^
2
) J ^(0 = 2*/(1 + *

2
), so

that the locus of (x, y} is the circle xP+y
2= l. Then

4&amp;gt; (0= -
4tl(l + 1^, V (0 = 2 (1

-

where ^7 and y are to be put equal to (1
- *

2
)/(l + Z

2
) and 2i/(l + t

2
) after

carrying out the differentiations.
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We can easily verify this formula in particular cases. Suppose, e.g.,

that /(a?, y) = x2 + y
z

. Then fx = 2#, //= 2y, and it is easily verified that

F1

(t)=Zx&amp;lt;$(t)+$yy (t)Q, which is obviously correct, since F(t)*=l.

2. Verify the theorem in the same way when (a) x=tm
, y=l t

r
\

f(x, y}=x+y; (6) x= a cos t, y= a sin t, f(x, y)
= x*+f.

3. One of the most important cases is that in which t is x itself. We
then obtain

Dxf{x, + (x}}=Dxf(x, y) +Dyf(x, y} + (*).

where y is to be replaced by ^ (#) after differentiation.

It was this case which led to the introduction of the notation 8//8o?, 8//8y.

For it would seem natural to use the notation df\dx for either of the functions

D*f{x, ^ (#)} and Dxf(x, y\ in one of which y is put equal to ^(#) before

and in the other after differentiation. Suppose for example that y=l-x
and /(#, y)= x.+y. Then D*/ (#, 1 - #)= Z)x 1 = 0, but Dxf(x, y)= 1.

The distinction between the two functions is adequately shown by
denoting the first by dffdx and the second by 9//8a?, in which case the

theorem takes the form

.

dx dy dx

though this notation is also open to objection, in that it is a little misleading
to denote the functions /{#, ^ (#)} and f(xt y\ whose forms as functions of x
are quite different from one another, by the same letter /in df\dx and

9//&amp;lt;k.

4. If the result of eliminating t between x=$ (*), y=^(t] is /(a?, y)
=

0,

then

5. If a? and
;/ are functions of

t, and r and 6 are the polar coordinates of

(#,#), then/= (^a/+yy)/r, (9 = (a?/
-
ytf)/r*9 dashes denoting differentiations

with respect to .

154. The Mean Value Theorem for functions of two
variables. Many of the results of the last

f
chapter depended

upon the Mean Value Theorem, expressed by the equation

&amp;lt;(
+

)-&amp;lt; O) = hf (as + 6h),

or as it may be written, if y = (#),

Now suppose that z =f(x, y) is a function of the two inde

pendent variables x and y, and that a? and y receive increments

h, k or 8x, Sy respectively: and let us attempt to express the

corresponding increment of z
t viz.

in terms of h, k and the derivatives of z with respect to x and y.
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Let/ (as + ht, y + kt)
= F(t). Then

where &amp;lt; &amp;lt; 1. But, by 153,

F (t)
= Dtf(x + ht,y + kt)

= hfx (x + ht,y + kt) + kfy (as + ht,y + kt).

Hence finally

& =f(x+h, y+k) -f(x, y)=hfx (x + 0h, y+ 6k) + kfy (x + 0h, y+ 0k),

which is the formula desired. Since fx t fy
f

are supposed to be

continuous functions of x and y, we have

fx (x + 6h,y + 0k) =/* (*, y) + M ,

fy (x + 0h, y + 0k) =fy (x, y) + r)htk ,

where e^k and ij h&amp;gt;k

tend to zero as h and k tend to zero. Hence

the theorem may be written in the form

^ =
(/* + ) * + (/!, + *7)fy ............... (1),

where e and rj are small when Sx and Sy are small.

The result embodied in (1) may be expressed by saying that the

equation

is approximately true; i.e. that the difference between the two

sides of the equation is small in comparison with the larger of Sx

and %*. We must say the larger of Sx and Sy because one of

them might be small in comparison with the other; we might
indeed have Sx = or Sy = 0.

It should be observed that if any equation of the form dz=

i.s approximately true in this sense, we must have \=fx , /*=/ For we

have
& -fx &V ~fy ty=efa+ r) Sy, 8z - \fa -/%= f fa+ rf 8y

where e, T;,
*

, ?/ all tend to zero as 8x and by tend to zero
;
and so

(\-fx ) &*+ (/*-/ ) ty= p dx+p toj

where p and p tend to zero. Hence, if f is any assigned positive number, we

can choose &amp;lt;r so that

for all values of &r and 8y numerically less than &amp;lt;r. Taking dy=*Q we obtain

I (X -fx ) fa\&amp;lt;\fa ,
or \\-fx |

&amp;lt; f, and, as may be as small as we please,

this can only be the case if \=fx
f
. Similarly fi=fv -

* Or with \5x\ + \dy\ or
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155. Differentials. In the applications of the Calculus,

especially in geometry, it is usually most convenient to work with

equations expressed not, like equation (1) of 154, in terms of the

increments Sx, Sy, Sz of the functions x, y, z, but in terms of what

are called their differentials dx, dy, dz.

Let us return for a moment to a function y = / (x) of a single

variable x. Iff (x) is continuous then

8y=.{/() + e}& ..................... (1),

where e-^0 as Sx-*-Q: in other words -the equation

fy=/&* ........................... (2)

is approximately true. We have up to the present attributed

no meaning of any kind to the symbol dy standing by itself. We
now agree to define dy by the equation

dy=f(x)Sx ........................... (3).

If we choose for y the particular function x, we obtain

dx = Sx ........................... (4),

so that dy=f (x)dx........................... (5).

If we divide both sides of (5) by dx we obtain

where dy/dx denotes not, as heretofore, the differential coefficient

of y, but the quotient of the differentials dy, dx. The symbol

dy/dx thus acquires a double meaning ;
but there is no incon

venience in this, since (6) is true whichever meaning we choose.

The equation (5) has two apparent advantages over (2). It is exact and

not merely approximate, and its truth does not /depend on any assumption as

to the continuity of/ (a?). On the other hand it is precisely the fact that we

can, under certain conditions, pass from the exact equation (5) to the approxi

mate equation (2), which gives the former its importance. The advantages of

the differential notation are in reality of a purely technical character. These

technical advantages are however so great, especially when we come to deal

with functions of several variables, that the use of the notation is almost

inevitable.

When / (#) is continuous, we have

. .

when &r-*0. This is sometimes expressed by saying that dy is the principal

part of 8y when dx is small, just as we might say that ax is the principal

part of ctx+ bx* when x is small.
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We pass now to the corresponding definitions connected with

a function z of two independent variables x and y. We define the

differential dz by the equation

dt-f, Sx+f;Sy ..................... (7).

Putting z = oo and z y in turn, we obtain

dx=$x, dy = By ........................ (8),

so that dz f^dx +fy dy ........................ (9),

which is the exact equation corresponding to the approximate

equation (1) of 154. Here again it is to be observed that the

former is of importance only for reasons of practical convenience

in working and because the latter can in certain circumstances be

deduced from it.

One property of the equation (9) deserves special remark. We saw in

153 that if z-f(x, y\ x and y being not independent but functions of a

single variable t, so that z is also a function of t alone, then

dz _ df dx 3/ dy

di~~faditydi

Multiplying this equation by dt and observing that

, dx .
T

dii ,
j

dz .

dx=
j- dt, d

V=-ft &amp;lt;**&amp;gt;

dz=
~dt

we obtain dz=fx dx+fy dy,

which is the same in form as (9). Thus the formula which expresses dz in terms

of dx and dy is the same whether the variables x and y are independent or not.

This remark is of great importance in applications.

It should also be observed that if z is a function of the two independent

variables x and y, and

then \=fx
f

, /*=/ This follows at once from the last paragraph of 154.

It is obvious that the theorems and definitions of the last three sections

are capable of immediate extension to functions of any number of variables.

Examples LXII. 1. The area of an ellipse is given by A = irab, where

,
b are the semiaxes. Prove that

dA da db

and state the corresponding approximate equation connecting the increments

of the axes and the area.
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2. Express A, the area of a triangle ABC, as a function of (i) a, B, C,

(ii) A y b, c, and (iii) a, b, c, and establish the formulae

dA n da cdB bdC dA db do= 2
1 r rH =

~&amp;lt;

= cot A d-A + -r- -{ .

A a asmB asmC A be
dA=R (cos Ada+ cos Bdb+ cos Cdc\

where R is the radius of the circumcircle.

3. The sides of a triangle vary in such a way that the area remains

constant, so that a may be regarded as a function of b and c. Prove that

da cos B da _ cos C
db cos A do

~
cos A

[This follows from the equations

7 da 77 da 7 . , ~ /_,da= ^rdb -i- ~- do. cos ,4aa + cos/&amp;gt;rt6+ cos Cdc=0.
db do

4. If a, 6, c vary so that R remains constant, then

da db do
1 1

~= 0,
cos A cos B cos C

, da cos A da cos A
and so - = ^ ,

s- = 77 .

9o cos JD co cos (7

[Use the formulae a= 2/2 sin -4, ..., and the facts that R and -4 4- -5+ (7 are

constant.]

5. If 2 is a function of w and v, which are functions of x and y, then

dz _ dz du dz dv dz __dz du dz
dv_

dx~ du dx dv dx dy~~ du dy dv dy

[We have

dz dz , du , du 7 , dv , dv 7
dz= ^ du -f- ^ dv. du= dx+ ?r- du. dv= ^ dx -\- ^ dy.

du dv ox oy
&quot; dx dy

&quot;

Substitute for du and dv in the first equation and compare the result with

the equation
dz , dz ,

6. Let z be a function of x and y, and let JT, F, Z be defined by the

equations

Then Z may be expressed as a function of X and Y. Express dZjdX,

dZ/dYin terms of dzfix, dz/dy. [Let these differential coefificients be denoted

by PI Q an^ Pi g- Then dz - pdx qdy= 0, or
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Comparing this equation with dZPdX- QdY=0 we see that

- c3

_
- C3

7. If

then Q=aBX+b3 Y+c3 Z.

(Math. Trip. 1899.)

8. Differentiation of implicit functions. Suppose that /(#,#) and its

derivative fy (x, y} are continuous in the neighbourhood of the point (a, 6),

and that

f(a,b)=0, /6 (a, 6) 4=0.

Then we can find a neighbourhood of (a, 6) throughout which / (#, ?/)
has

always the same sign. Let us suppose, for example, that / (x, y) is positive

near (a, b). Then /(#, y) is, for any value of x sufficiently near to a, and for

values of y sufficiently near to 6, an increasing function of y in the stricter

sense of 95. It follows, by the theorem of 108. that there is a unique
continuous function y which is equal to b when x=a and which satisfies the

equation / (x, y)
= for all values of x sufficiently near to a.

Let us now suppose that /(#,.y) possesses a derivative ft fay) which is

also continuous near (a, 6). If /(.#, 3/)
=

0, a=a+ h, y=b+ k, we have

where and ^

or

tend to zero with h and k. Thus

dx

). The equation of the tangent to the curve /(#, 2/)
= 0, at tho point

vn . is

156. Definite Integrals and Areas. It will be remembered

that, in Ch. VI, 145, we assumed that, if f(x) is a continuous

function of x, and PQ is the

graph of y=f(x), then the

region PpqQ shown in Fig. 47

has associated with it a definite

number which we call its area.

It is clear that, if we denote

Op and Oq by a and #, and

allow x to vary, this area is a

function of x, which we denote O p

\&amp;gt;yF(x). Fig. 47.
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Making this assumption, we proved in 145 that F (x) =/(#),
and we showed how this result might be used in the calculation

of the areas of particular curves. But we have still to justify

the fundamental assumption that there is such a number as the

area F(x).

We know indeed what is meant by the area of a rectangle,

and that it is measured by the product of its sides. Also the

properties of triangles, parallelograms, and polygons proved by
Euclid enable us to attach a definite meaning to the areas of

such figures. But nothing which we know so far provides us with

a direct definition of the area of a figure bounded by curved lines.

We shall now show how to give a definition of F(x) which will

enable us to prove its existence.*

Let us suppose f(so) continuous throughout the interval (a, b),

and let us divide up the interval into a number of sub-intervals

by means of the points of division #
, #i %z&amp;gt; &amp;gt; n, where

a = # &amp;lt; xl &amp;lt; . . . &amp;lt; ocn^ &amp;lt; xn = b.

Further, let us denote by the interval (#, ocv+l), and by mv the

lower bound ( 102) off(x) in
,
and let us write

s = w S + m l
Sx + . . . + mn Bn = 2m, 8,,

say.

It is evident that, ifM is the upper bound off(x) in (a, b), then

sM(b a). The aggregate of values of s is therefore, in the

language of 80, bounded above, and possesses an upper bound

which we will denote by j.
No value of s exceeds j,

but there are

values of s which exceed any number less thanj.

In the same way, ifMv is the upper bound of/(a?) in
,
we can

define the sum

It is evident that, if m is the lower bound off(x) in (a, b), then

S = m (b
-

a). The aggregate of values of S is therefore bounded

below, and possesses a lower bound which we will denote by ^7.

No value of S is less than J, but there are values of 8 less than any

number greater than J.

* The argument which follows is modelled on that given in Goursat s Gours

d Analyse (second edition), vol. i, pp. 171 et seq. ;
but Goursat s treatment is much

more general.
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It will help to make clear the significance of the sums s and S if

we observe that, in the simple case

in which /(a?) increases steadily
from x= a to x=b, m v is /(#)
arid Mv is f(xv + l}. In this case s

is the total area of the rectangles
shaded in Fig. 48, and S is the

area bounded by a thick line. In

general s and S will still be areas,

composed of rectangles, respectively
included in and including the curvi

linear region whose area we are

trying to define.

We shall now show that no

sum such as s can exceed any
sum such as S. Let s

}
S be the sums corresponding to one mode of

subdivision, and s
,
S those corresponding to another. We have

to show that s S and s S.

We can form a third mode of subdivision by taking as dividing
points all points which are such for either s, S or s, S . Let s, S
be the sums corresponding to this third mode of subdivision.
Then it is easy to see that

Fig. 48.

.(1).

For example, s differs from s in that at least one interval 8V which
occurs in s is divided into a number of smaller intervals

so that a term m v v of s is replaced in s by a sum

where m
Vtl , w,j2 ,

... are the lower bounds of f(x) in 8
V)1) 8V 2 , ....

But evidently m Vtl ^ mv) mv^ ^m v ,...,so that the sum just written
is not less than m Sv . Hence s ^ s; and the other inequalities (1)
can be established in the same way. But, since s S, it follows
that

S MI S 3 ff,

which is what we wanted to prove.

It also follows that j J. For we can find an s as near to j
as we please and an S as near to J as we please*, and so j &amp;gt;J

would involve the existence of an s and an S for which s &amp;gt; S.

* The s and the S do not in general correspond to the same mode of subdivision.
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So far we have made no use of the fact that f(x) is continuous.

We shall now show that j = J, and that the sums s, S tend to the

limit J when the points of division xv are multiplied indefinitely
in such a way that all the intervals 8V tend to zero. More pre

cisely, we shall show that, given any positive number e, it is possible
to find B so that

whenever 8V &amp;lt; $ for all values of v.

There is, by Theorem II of 106, a number 8 such that

Mv mv &amp;lt; e/(b a),

whenever every 8V is less than S. Hence

But S-s = (S-J) + (J-j) + (j
-

s) ;

and all the three terms on the right-hand side are positive, and
therefore all less than e. As J j is a constant, it must be zero.

Hence j = J and 0^j-s&amp;lt;e, 0^8- J&amp;lt;, as was to be proved.

We define the area of PpqQ as being the common limit of s and

S, that is to say J. It is easy to give a more general form to this

definition. Consider the sum

o- = 2/A
where / denotes the value of f(x) at any point in $. Then &amp;lt;r

plainly lies between s and S, and so tends to the limit J when the

intervals tend to zero. We may therefore define the area as

the limit of a-.

157. The definite integral. Let us now
__ suppose that/(#)

is a continuous function, so that the region bounded by the curve

y =/(#), the ordinates x = a and x = 6, and the axis of a, has a

definite area. We proved in Ch. VI, 145, that if F(x) is an

integral function of/(#), i.e. if

F (x)=f(x\ F(x)=\f(x)dx,
then the area in question is F(b) F(a).

As it is not always practicable actually to determine the form

of F (x), it is convenient to have a formula which represents the

area PpqQ and contains no explicit reference to F (x). We shall

write
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The expression on the right-hand side of this equation may
then be regarded as being defined in either of two ways. We

may regard it as simply an abbreviation for F(b) F(a), where

F(x) is some integral function of /(a?), whether an actual formula

expressing it is known or not
;
or we may regard it as the value of

the area PpqQ, as directly defined in 156.

rb

The number f(x] dx
rb

(/&amp;lt;*)J a

is called a definite integral; a and b are called its lower and

upper limits; f(x] is called the subject of integration or

integrand; and the interval (a, b) the range of integration.

The definite integral depends on a and b and the form of the

function /(#) only, and is not a function of as. On the other hand

the integral function

F(x)=!f(x)dx

is sometimes called the indefinite integral o

The distinction between the definite and the indefinite integral is merely

/bf(x}dx=F(b}-F(a) is a
a

function of 6, and may be regarded as a particular integral function of /(&).

On the other hand the indefinite integral F (x) can always be expressed by
means of a definite integral, since

But when we are considering indefinite integrals or integral functions !

we are usually thinking of a relation between two functions, in virtue of which I

one is the derivative of the other. And when we are considering a *
definite

integral we are not as a rule concerned with any possible variation of the

limits. Usually the limits are constants such as and 1
;
and

is not a function at all, but a merejiumber.

It should be observed that the integral / f(t)dtt having a differential
J a

coefficient/^), is a fortiori a continuous function of #.

Since 1/x is continuous for all positive values of #, the investigations of

the preceding paragraphs supply us with a proof of the actual existence of the

function log #, which we agreed to assume provisionally in 128.



288 ADDITIONAL THEOREMS IN THE CALCULUS [VII

158. Area of a sector of a circle. The circular functions.

The theory of the trigonometrical functions cos x, sin x, etc., as

usually presented in text-books of elementary trigonometry, rests

on an unproved assumption. An angle is the configuration formed

by two straight lines OA, OP; there is no particular difficulty in

translating this geometrical definition into purely analytical

terms. The assumption comes at the next stage, when it is assumed

that angles are capable of numerical measurement, that is to say
that there is a real number x associated

with the configuration, just as there is

a real number associated with the region

PpqQ of Fig. 47. This point once ad

mitted, cos# and sin a? may be defined

in the ordinary way, and there is no

further difficulty of principle in the

elaboration of the theory. The whole

digiciilty lies in the question, what is the

A

Fig. 49.

x which occurs in cos x and sin x ? To answer this question, we

must define the measure of an angle, and we are now in a position

to do so. The most natural definition would be this: suppose that

AP is an arc of a circle whose centre is and whose radius is

unity, so that OA = OP = 1. Then x, the measure of the angle, is

the length of the arc AP. This is, in substance, the definition

adopted in the text-books, in the accounts which they give of the

theory of circular measure . It has however, for our present pur

pose, a fatal defect; for we have not proved that the arc of a curve,

even of a circle, possesses a length. The notion of the length of a

curve is capable of precise mathematical analysis just as much as

that of an area; but the analysis, although of the same general

character as that of the preceding sections, is decidedly more

difficult, and it is impossible that we should give any general

treatment of the subject here.

We must therefore found our definition on the notion not of

length but of area. We define the measure of the angle AOP as

twice the area of the sector AOP of the unit circle.
\

Suppose, in particular, that A is y = and that QP is y = moc,

where m &amp;gt; 0. The area is a function of m, which we may denote

by &amp;lt; (m). If we write p for (1 + m*)~f, P is the point (&amp;gt;, m^), and
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we have

&amp;lt;/&amp;gt;
(m) = \mtf + [V(l

~
x*) dec.

J v-

Differentiating with respect to m, we find \^ s

-

Thus the analytical equivalent of our definition would be to define

arc tan m by the equation
dt

. l+ 2

and the whole theory of the circular functions could be worked out

from this starting point, just as the theory of the logarithm is

worked out from a similar definition in Ch. IX. See Appendix III.

Examples LXIII. Calculation of the definite from the indefinite

integral. 1. Show that

/
xndx=- T ,

J a n+ l

and in particular that / xndx= -.

f
b

, smmb-sinma f
b

.

2. I cosmxax= , /si
J a m J a

b
_,

tunmb- tanma f
b

. _cosma-cosmb

_ dx , C l dx
3 -

[There is an apparent difficulty here owing to the fact that arc tan x is a

many valued function. The difficulty may be avoided by observing that, in

the equation
dt

arc tan x must denote an angle lying between -\ir and TT. For the integral
vanishes when #= and increases steadily and continuously as x increases.

Thus the same is true of arc tan x, which therefore tends to \ir as x -*- oo .

In the same way we can show that arc tan x -*- - \K as x -*- x . Similarly,
in the equation

dt

o v^i-t -;

where
-1&amp;lt;^&amp;lt;1, arc sin x denotes an angle lying between -\K and

Thus, if a and b are both numerically less than unity, we have

f
b dx

I ~?h -2\
= arc sm o arc sm a.]

,J=L, r
O ^/ 3 J Q

4.

H. 19
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5. I

Jo
s = tr- if - 7r&amp;lt;a&amp;lt;7r, except when a= 0, when the
2

tr-
a+ x2 2sma

value of the integral is
,
which is the limit of |a cosec a as a--0.

6. ( &amp;gt;J(l-x
2
)dx=%ir, \ J^-

Jo J o

7 I
* d =

, f T9 ,
if a

&amp;gt;
I b I . [For the form of the indefinite

J a+ 6cos^ V(-&)
integral see Exs. LIII. 3, 4. If

|

a
\&amp;lt;\

b
\

then the subject of integration has an

infinity between and TT. What is the value of the integral when a is

negative and -
a&amp;gt;\

b
\ ?]

8 |
-= 5

X
lf) . o

= -^-r
,

if a and 6 are positive. What is the

J a2 cos2 x+ b2 sin2 x 2ab

value of the integral when a and b have opposite signs, or when both are

negative ?

9. Fourier s integrals. Prove that if m and n are positive integers then

cos 771.37 sin nx dx
o

is always equal to zero, and

/cos
mx cos nx dx. I sin mx sin nx dx

o Jo

are equal to zero unless m=n, when each is equal to ?r.

10. Prove that I &quot;cos mx cos nx dx and I &quot;sin mx sin nx dx are each equal
Jo J o

to zero except when m=n, when each is equal to |TT ;
and that

/&quot; 271
/&quot;&quot;&quot;

I cos mx sin nxdx=^ -

7 ,
I cos mx sin nxdx= 0,

J n*-m* JQ

according as n m is odd or even.

159. Calculation of the definite integral from its defini

tion as the limit of a sum. In a few cases we can evaluate a

definite integral by direct calculation, starting from the definitions

of 156 and 157. As a rule it is much simpler to use the

indefinite integral, but the reader will find it instructive to work

through a few examples.

/5
xdx by dividing (a, 6) into n equal

a,

parts by the points of division a=x
() , x^ x2 , ..., xn=b, and calculating the

limit as n -*- oo of
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[This sum is

which tends to the limit (6
2 - a2

) as rc -*- QO . Verify the result by graphical

reasoning.]

/b
x^dx in the same way.

rb

3. Calculate / xdx, where 0&amp;lt;a&amp;lt;
&amp;gt;, by dividing (a, 6) into rc parts by

J a

the points of division a, ar, ar2
,

... arn
~ l

,
arn

,
where rn b/a. Apply the same

/I
#m dx.

^

/b
rb

cos mx dx and / sin mx dx by the method of Ex. 1.
i J a

5. Prove that n 2 -5- $ *-! as n-*~co .

* *

[This follows from the fact that

rc

,

^

which tends to the limit I
--- -

9 as n -* oo
,
in virtue of the direct definition

J o 1 + ^&quot;

of the integral.]

6. Prove that - \
*

&amp;gt;J(n

z - r2
)
+ %n. [The limit is

/ ^(1 - ^2
) efo?.]n r=0 J o

160. General properties of the definite integral. The
definite integral possesses the important properties expressed

by the following equations.*

/to*.
J a

This follows at once from the definition of the integral by means of the

integral function F(x\ since F(b}-F(a)= ~{F(d}-F(b}}. It should be

observed that in the direct definition it was presupposed that the upper
limit is greater than the lower

;
thus this method of definition does

not apply to the integral I f(x} dx when a&amp;lt;b. If we adopt this definition

J &*

as fundamental we must extend it to such cases by regarding the equation (1)

as a definition of its right-hand side.

* All functions mentioned in these equations are of course continuous, as the

definite integral has been denned for continuous functions only.

192
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(2)
(&quot;/(*)

&amp;lt;&=&amp;lt;&amp;gt;.

r
a

/&amp;lt;

^ + r/o)^^6

(4) [ &/0) dx = kf f(x) dx.

f

*

{/&amp;lt;
+ * ()} ^ =

f V&amp;lt;

J a ^ a

The reader will find it an instructive exercise to write out formal proofs

of these properties, in each case giving a proof starting from (a) the definition

by means of the integral function and (/3) the direct definition.
* -

,t H&amp;gt;t

v*n^V&amp;lt;i Uw. *

The following theorems are also important.
*
i

*

rb

(6) ///(^) = when a^x^b, then f(x) dx ^ 0.
J a

We have only to observe that the sum s of 156 cannot be negative. It

will be shown later (Misc. Ex. 41) that the value of the integral cannot be

zero unless /(#) is always equal to zero : this may also be deduced from the

second corollary of 121.

(7) IfH ^ f(x) K when a^x^b, then

(x) dx K(b- a).

This follows at once if we apply (6) to /(a?)
- If and K-f(x).

(8)

where % lies between a and b.

This follows from (7). For we can take H to be the least and K the

greatest value of f(x] in (a, b}. Then the integral is equal to
rj (b a), where

?7
lies between H and K. But, since f (x] is continuous, there must be a

value of for which /()= ; ( 100).

If F(x] is the integral function, we can write the result of (8) in the form

so that (8) appears now to be only another way of stating the Mean Value

Theorem of 125. We may call (8) the First Mean Value Theorem for

Integrals.
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(9) The Generalised Mean Value Theorem for inte

grals. If (f&amp;gt; (x) is positive, and H and K are defined as in (7), then

H{ j&amp;gt;(x)d9*\ f(x)$(x)dx^K\
b

&amp;lt;j&amp;gt;(x)dx;

J a J a J a

and
f f(x) &amp;lt; (x) dx =/() (

*

(/&amp;gt; (x) dx,
J a J a

where % is defined as in (8).

This follows at once by applying Theorem (6) to the integrals

( *{/(*) -H}^ (x} dx, I \K-f(x}} (*) dx.
J a J a

The reader should formulate for himself the corresponding result which
holds when

&amp;lt;p (x) is always negative.

(10) The Fundamental Theorem of the Integral Cal
culus . The function

has a derivative equal to f(x).

This has been proved already in 145, but it is convenient to

restate the result here as a formal theorem. It follows as a

corollary, as was pointed out in 157, that F (x) is a continuous

function of x.

Examples LXV. 1. Show, by means of the direct definition of the
definite integral, and equations (1) (5) above, that

fa [a ra

(i) /
&amp;lt;p (A-

2
)
dx 2 / (x

2
) dx, I #0(.

2
) dx=Q ;

J - J J -a

(ii) I (cos x} dx= /

*
&amp;lt; (sin x} dx= \ \ &quot;0 (sin x] dx :

Jo Jo JQ
rrmr rK

Jo Jo

m being an integer. [The truth of these equations will appear geometrically
intuitive, if the graphs of the functions under the sign of integration are

sketched.]

2. Prove that / -, dx is equal to tr or to according as n is odd or
j o sin x

sn. [Use the formula (sin 7w?)/(sin x)= 2 cos {(n
-

1) x} + 2 cos {(71
-

3) x} + .. .,

5 last term being 1 or 2 cos xJ\

3. Prove that I sin nx cot xdx is equal to or Lo TT according as n is odd

or even.
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4. If &amp;lt; (#)
= + i cos x + 6j sin x + 2 cos 2# + . . . + a n cos ?*o; + bn sin w#,

and & is a positive integer not greater than , then

cos#&amp;lt;(#)cfo;=7rajt, I BID** &amp;lt;(*)&amp;lt;**-&,

^

If &amp;gt;rc then the value of each of the last two integrals is zero. [Use

Ex. LXIII. 9.]

5. If
(f&amp;gt; (x}=a + ai cos x+ a2 cos 2# +...+ cos w#, and k is a positive

integer not greater than n, then

I&quot;
&amp;lt;f)(x)dz=

7ra
, f

Jo Jo

yf & &amp;gt; n then the value of the last integral is zero. [Use Ex. LXIII. 10.J

6. Prove that if a and b are positive then ^
___ =

-^
.

[Use Ex. LXIII. 8 and Ex. 1 above.]

/&

/&quot;&

/dip ^ ^dk,
a Jo

8. Prove that

&amp;lt; [
*&quot;&quot;

sinn + J
.rdx &amp;lt; f sinn^^, &amp;lt;

|
tann + x x dx &amp;lt; I

&quot;&quot;

tan&quot; x dx.

Jo Jo ^o

9*. If n&amp;gt;\ then -5&amp;lt; [^ --^-^.&amp;lt;-5M. [The first inequality follows

Jo v\*&quot;** /

from the fact that V(l - ^
2n

)&amp;lt; 1, the second from the fact that

10. Prove that * &amp;lt;

-f)
&amp;lt;

11. Prove that (3#+8)/16 &amp;lt; 1/^(4-3^ + ^
3
)&amp;lt;W(4- 3a?) if

and hence that M
^(4-

12. Prove that 573&amp;lt; P^-^-^-SOS. [Put^=l+w: then re

place 2 + 3w2+ %3
by 2+ 4w2 and by 2 + 3w2

.]

13. If a and
(f&amp;gt;

are positive acute angles then

f

J 1 - sin2 a sin2 x) J(l - sin2 sin2
&amp;lt;)

*

If a=$= 7r, then the integral lies between 523 and 541.

14. Prove that I f /(*) dx \

I I/O) |

dx.

\ J a Jo,

[If o- is the sum considered at the end of 156, and a- the corresponding

sum formed from the function |/(#) |,
then

|

&amp;lt;r

| ^ o- .J

/b
I p. . , ,

/(.r) &amp;lt;^&amp;gt;
(^) gbr

I

^ 3/ I |9(*)| ax.

a J a

* Exs. 913 are taken from Prof. Gibson s Elementary Treatise on the Calculus.
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161. Integration by parts and by substitution. It

follows from 138 that

(

b

f(x) # (x) dx =/(&) * (b) -/(a) &amp;lt; (a)
- /V (*) &amp;lt; (*) d*.

J a J a

This formula is known as the formula for integration of a

definite integral by parts.

Again, we know ( 133) that if F(t) is the integral function of

),
then

Hence, if $ (a)
=

c,
cf&amp;gt; (b) d, we have

I

d

f(t) dt=F(d)-F(c) = F{&amp;lt;f&amp;gt; (&)}
- F

{&amp;lt; (a)} -/*/{* (*)} f (x) dx;
J c J a

which is the formula for the transformation of a definite integral

by substitution.

The formulae for integration by parts and for transformation

often enable us to evaluate a definite integral without the labour

of actually finding the integral function of the subject of integra

tion, and sometimes even when the integral function cannot be

found. Some instances of this will be found in the following

examples. That the value of a definite integral may sometimes

be found without a knowledge of the integral function is only to

be expected, for the fact that we cannot determine the general

form of a function F(x) in no way precludes the possibility that

we may be able to determine the difference F(b) F(a) between

two of its particular values. But as a rule this can only be

effected by the use of more advanced methods than are at

present at our disposal.

Examples LXVI. 1. Prove that

(

b

xf&quot; (x] dx={bf (6) -/(&)}
- {af (a) -/(a)}.

J a

rb

2. More generally, I xmf(
m + V (x)dx=F(b}-F(a\ where

J a

**/^*)-*^- 1/^-^
3. Prove that

r\ ri
I arc smxdx=^7T 1, 1 #aro
Jo Jo
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4. Prove that if a and b are positive then

x cosxsmxdx TT

I,o

[Integrate by parts and use Ex. LXIII. 8.]

5. if fl (x}=
\

x

Jo

then f,(x}= ^y, JJ

[Integrate repeatedly by parts.]

6. Prove by integration by parts that if um n I xm (\ x}
n
dx, where m

Jo
and n are positive integers, then (m+n + 1) w7n&amp;gt;n

= ?iw
m&amp;gt;w

_1 ,
and deduce that

m ! n !

7. Prove that if un= I tann a? o?.r then un + wn _ 2
= l/(w 1). Hence

7o
evaluate the integral for all positive integral values of n.

[Put tann #=tann ~ 2
.r (sec

2 # 1) and integrate by parts.]

8. Deduce from the last example that un lies between l/{2(w 1)} and

/Jn-
9. Prove that if un \

smn #c?# then un {(n- l)/ft) wn-2- [Write
7 o

sin71
&quot;1 x sin a? for sinn # and integrate by parts.]

10. Deduce that un is equal to

2.4.6..(n-l) i ^^..(n-l)
3.5.7..W 2. 4.6.. 7i

according as n is odd or even.

- 11. The Second Mean Value Theorem. If /(#) is a function of #

&quot;which has a differential coefficient of constant sign for all values of x from

x=a to x=b, then there is a number between a and b such that

) dx.f V(*) (*) to=/(a) f% (.*) ^+/(6) [
J a J a J

Then[Let (
X

J a

f

*

f(x)&amp;lt;t&amp;gt;(x}dx=
(

b

f(x}* (x}dx=f(b}*(b}- (*
Ja Ja Ja

by the generalised Mean Value Theorem of 160 : i.e.

r i)

J a

which is equivalent to the result given.]
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12. Bonnet s form of the Second Mean Value Theorem. If/ (of) is

of constant sign, and/ (6) and /()-/(&) have the same sign, then

f
y

where JT lies between a and 6. [For /(&)* (6)+ {/()-/(&)} *()= /

where
/*

lies between ^ () and * (6), and so is the value of * (a?) for a value

of x such as X The important case is that in which 0^/(6) &amp;lt;l/(#

Prove similarly that iff (a) and/ (6) -/(a) have the same sign, then

where X lies between a and 6. [Use the function *()=/ (#) d#. It

will be found that the integral can be expressed in the form

The important case is that in which 0^f(a]

13. Prove that!/ ^^ dx
&amp;lt;^

if X &amp;gt;X&amp;gt;0. [Apply the first

formula of Ex. 12, and note that the integral of sin x over any interval what
ever is numerically less than 2.]

14. Establish the results of Ex. LXV. 1 by means of the rule for sub
stitution, [In (i) divide the range of integration into the two parts (

-
a, 0),

(0, a), and put x= -y in the first. In (ii) use the substitution x=\ir y to

obtain the first equation : to obtain the second divide the range (0, ?r) into

two equal parts and use the substitution x=%ir+y. In (iii) divide the range
into m equal parts and use the substitutions ^=7r+y, #=27r+y, ....]

1 5. Prove that
\ F(x}dx={ F(a + b-x] dx.
J a J a

1 6. Prove that / cosm x sinm x dx= 2
~m

I cos x dx.
Jo Jo

17. Prove that / X(fr(smx)dx=^Tr $ (sin .r) cfo;. [Put #=77 y. \

Jo Jo

18. Prove that /
-^

|

n
-^- dx=\ir

i
.

19. Show by means of the transformation #=acos2 + 6 sin2 6 that

J{(x -a)(b- x)} dx=lir(b- of.

20. Show by means of the substitution (a+ bcosx] (a -bcosy) = a2 b2

that

l(a+ b cos x)
~ n dx= (a2 - 62

)

-
(
n ~ i) \(a-b cos y}

n~l
dy,

Jo Jo

when n is a positive integer and a &amp;gt;
\

b
|,
and evaluate the integral when

9i=l, 2, 3.
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21. If m and n are positive integers then

[

b

(x-a}
m (b-xYdx=(b-a}m + + i-

m!n!

Ja (m+n+I)\*

[Put x= a + (b
-

a) y, and use Ex. 6.]

162. Proof of Taylor s Theorem by Integration by
Parts. We shall now give the alternative form of the proof of

Taylor s Theorem to which we alluded in 147.

Let f(x) be a function whose first n derivatives are continuous,

and let

Fn (*) =/(&) -/(*) - (6
- x)f (*)-...- __/t^i (*)

Then F,: (x)
= - (

\~^f (*),

and so

Fn (a)
= J?

1

,, (6)
-

I

&quot;

Fn (x) dx = J f (6
-

*)-/&amp;lt;&amp;gt;

&amp;gt;

(&amp;lt;r)
^

a \&quot;

~~
*^ ! ^ a

If now we write a + A for 6, and transform the integral by putting
x a-\-th, we obtain

7-n-i

/(a + h) =/() + A/ (a) + . . . +
(-^TT)-!

/(n
&quot;

1)
&amp;lt;

a
&amp;gt;

+* W-

where Bn =r-^fvJ^l -*)&quot;-/
1&quot;1

(a + th)dt ...... (2).
\n ) ij o

Now, if p is any positive integer not greater than n, we have,

by Theorem (9) of 160,

f
1

(i
_

t)
n~lf (n)

(a + th) dt = I

l

(l
-

Jo o

= (1
-

6)
n
-Pfw (a + Oh) (1

-
^ o

where &amp;lt; 6 &amp;lt; 1. Hence

If we take p = ?i we obtain Lagrange s form of J?n ( 148). If

on the other hand we take p = 1 we obtain Cauchy s form, viz.

(l-0)n-i/w(a-f-flA)a
**

* The method used &quot;in 147 can also be modified so as to obtain these

alternative forms of the remainder.



161-164] AND INTEGRAL CALCULUS 299

163. Application of Cauchy s form to the Binomial Series. If

f (x}
=

(\-\-x)
m

)
where m is not a positive integer, then Cauchy s form of the

remainder is

^--^Trlfe^
Now (1 0)/(l + 0#) is less than unity, so long as -1&amp;lt;#&amp;lt;1, whether

x is positive or negative; and (\ + 6x}
m ~ l is less than a constant K for

all values of n, being in fact less than (l + l^l)
7*1

&quot; 1 if wi&amp;gt;l and than

(l-\x\)
m - 1 if m&amp;lt;l Hence

say But pn-*-0 as w-^oo
, by Ex. xxvn. 13, and so Rn -*~0. The truth of the

Binomial Theorem is thus established for all rational values of m and all

values of x between 1 and 1. It will be remembered that the difficulty in

using Lagrange s form, in Ex. LVI. 2, arose in connection with negative

values of x.

164. Integrals of complex functions of a real variable.

So far we have always supposed that the subject of integration in

a definite integral is real. We define the integral of a complex
function f(x) ty (x) + i-fy (x) of the real variable x, between the

limits a and 6, by the equations
rb rb rb rb

J a J a J a J a

and it is evident that the properties of such integrals may be

deduced from those of the real integrals already considered.

There is one of these properties that we shall make use of

later on. It is expressed by the inequality

...(!)*.

This inequality may be deduced without difficulty from the

definitions of 156 and 157. If has the same meaning as in

156,
&amp;lt;/&amp;gt;

and ^ are the values of
&amp;lt;/&amp;gt;

and -^ at a point of BV} and

iijr v} then we have

rb rb
t
rb

I fdx = I
&amp;lt;t&amp;gt;

dx + i I tydx = lim 2 &amp;lt; $ v + i Km S ^r v $v

J a J a J a

lim 2
(&amp;lt;

4- ityv) $v = lim
/&quot;$,

rb

and so I fdx =
|

lim %fv &v
= lim S/r5, | ;

J a

* The corresponding inequality for a real integral was proved in Ex. LXV. 14.
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while f |/|^ = lim2|/,|Sr .

J a

The result now follows at once from the inequality

It is evident that the formulae (1) and (2) of 162 remain

true whenf is a complex function
&amp;lt;f&amp;gt;

4- ity

MISCELLANEOUS EXAMPLES ON CHAPTER VII.

1. Verify the terms given of the following Taylor s Series :

(1)

(2)

(3)

(4)

2. Show that if f(x) and its first n+ 2 derivatives are continuous, and

y&amp;gt;

+
i) (0)4=0, and 6n is the value of 6 which occurs in Lagrange s form of the

remainder after n terms of Taylor s Series, then

where ex -^0 as #--0. [Follow the method of Ex. LV. 12.]

3. Verify the last result when/ (a?)
= !/(!+ #). [Here

4. Show that if/(#) has derivatives of the first three orders then

/ (6) =/ (a) +1 (6
-

a) {/ (a) +/ (6)}
-& (b

-
a)

3
/&quot; (a),

where a &amp;lt; a &amp;lt; b. [Apply to the function

/ (*) -/() -
J (*

-
) {/ () +/ (*))

-
(E&quot;a)

3

C/(6)
~
/(a)

~
4 (&

&quot;

arguments similar to those of 147.]

5. Show that under the same conditions

6. Show that if/(#) has derivatives of the first five orders then

/ (6) =/ ()+*(*-) [/ ()+/W + 4/ i* (
a + 6 1

~
2 H S a (

6 -
)
5/

7. Show that under the same conditions

() + i (6 -){/ ()+/ (b)}
~
ft (

6 - )
2
(/ (

6
) -/&quot; (

a + 7^ (
6 ~
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8. Establish the formulae

301

/()

where /3 lies between a and 6, and

/() /(&) /(&amp;lt;0 !

/ \ I i /

/()

A (a) A (6) A(c)
|

A (a) A (3) A&quot;(&amp;gt;)

where j8 and y lie between the least and greatest of a, 6, c. [To prove (ii)

consider the function

/()

g(a} g(b] g(

h (a) h (6) A
(

a)(x- b)

/()

A (a) A (6) A (c)

which vanishes when x=a, x=b, and #=c. Its first derivative, by Theorem B
of 121, must vanish for two distinct values of x lying between the least and

greatest of a, 6, c; and its second derivative must therefore vanish for a value

y of x satisfying the same condition. We thus obtain the formula

A (a) A (b} A (c) A (a) A (6) A&quot;(y)

The reader will now complete the proof without difficulty.]

9. If F(x) is a function which has continuous derivatives of the first n

orders, of which the first n- 1 vanish when #= 0, and A &amp;lt;

F(&quot;) (x}
&amp;lt; B when

&amp;lt; x ^ A, then A (x
n
jn \}&amp;lt;,F(x}^B (x

n
/n !) when &amp;lt; x ^ A.

Apply this result to

and deduce Taylor s Theorem.
(*-!)!

10. If A$(*) 4 (*)-$(+A), Afc
1
^ ()

7)
has derivatives of the first n orders, then

a?)},
and so on, and

where | lies between x and x+ nh. Deduce that if
(f&amp;gt;(

n
) (x} is continuous then

{Ah
n

(t&amp;gt; (x)}lh
n -^

(
-

1)&quot;
&amp;lt;W (a?) as A ^- 0. [This result has been stated already

when n= 2, in Ex. LV. 13.]

1 1. Deduce from Ex. 10 that xn ~ m&h
nxm -^m (m - 1

) . . . (m -n+ l)h
n as

j; -^ x
,
m being any rational number and n any positive integer. In

particular prove that
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12. Suppose that y =&amp;lt;(#) is a function of x with continuous derivatives

of at least the first four orders, and that $ (0)
=

0,
&amp;lt;$&amp;gt;

(0)
=

1, so that

y= (x)
=X+ 2#2+ 3X3+ ( 4 -f f

where ex^ as #-*0. Establish the formula

x=^ (y )=y- 2y
2
-f (2a2

2 -
3) y

3

where ey
-&amp;gt;- as y^-0, for that value of x which vanishes with y \

and prove
that

as # -- 0.

13. The coordinates (, 77)
of the centre of curvature of the curve x=f(t\

y= F(t), at the point (#, y), are given by

and the radius of curvature of the curve is

dashes denoting differentiations with respect to t.

14. The coordinates (, 17)
of the centre of curvature of the curve

27a?/
2 =4. 3

,
at the point (#, y), are given by

3a(+#) + 2#2
=0, 77=4y+ (9ay)/.t . (J/aA. Trip. 1899.)

15. Prove that the circle of curvature at a point (x, y) will have contact

of the third order with the curve if (l+yi
2
)y3= 3y1y2

2 at that point. Prove

also that the circle is the only curve which possesses this property at every

point ;
and that the only points on a conic which possess the property

are the extremities of the axes. [Cf. Ch. VI, Misc. Ex. 10 (iv).]

1 6. The conic of closest contact with the curve y= ax2+ bx3+ ex*+ . . . + kxn
,

at the origin, is a3
y = a*x2+ a2

bxy+(ac-b*)y
2

. Deduce that the conic of

closest contact at the point (, rj)
of the curve y=/(#) is

where T=(y--n}--ni (x- 1̂ .
, (Math. Trip. 1907.)

17. Homogeneous functions.* If u=xn
f(y/x, z/x, ...) then u is un

altered, save for a factor Xn
,
when x,y,z, ... are all increased -in the ratio A : 1.

In these circumstances u is called a homogeneous function of degree n in the

variables #, y, z, .... Prove that if u is homogeneous and of degree n then

du du &quot;du

x*-+ y ^r+ z ^ +... = nu.
air-9 dy oz

This result is known as Euler s Theorem on homogeneous functions.

18. If u is homogeneous and of degree n then du/dx, du/dy, ... are

homogeneous and of degree n 1.

* In this and the following examples the reader is to assume the continuity of

all the derivatives which occur..
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19. Let/(#, y)
= be an equation in x and y (e.g. #

n+yn -#=0), and let

F(x, y, z}=0 be the form it assumes when made homogeneous by the intro

duction of a third variable z in place of unity (e.g. x
n
-\-y

n xzn
~ l =

Qi).
Show

that the equation of the tangent at the point (, rj)
of the curve/(#, y)

= is

where Ff t F^, F$ denote the values of Fx ,
Fy ,

Fz when x=g,y=r), z= = I.

20. Dependent and independent functions. Jacobians or functional

determinants. Suppose that u and v are functions of x and y connected by
an identical relation

&amp;lt;f&amp;gt;(u, v)=0 (1).

Differentiating (1) with respect to x and y, we obtain

90 cu 90 dv 90 du 90 dv

du 9.Z- dv dx du dy dv 9y

and, eliminating the derivatives of 0,

=
vl vv

= u*v - u v*= (
3

)&amp;gt;

where ux ,
uy ,

vx ,
vy are the derivatives of u and v with respect to x and y.

This condition is therefore necessary for the existence of a relation such

as (1). It can be proved that the condition is also sufficient ;
for this we must

refer to Goursat s Cours tfAnalyse, vol. i, pp. 125 et seq.

Two functions u and v are said to be dependent or independent according

as they are or are not connected by such a relation as (1). It is usual to call

/the Jacobian or functional determinant of u and v with respect to x and y,

and to write

J= 3(u, v}

9&amp;gt;,y)

Similar results hold for functions of any number of variables. Thus three

functions u, v, w of three variables #, y, z are or are not connected by a

relation (u, v, w)=0 according as

uy

J=

does or does not vanish for all values of x, y, z.

21. Show that ax2+ 2/o;y+ 6y
2 and Ax2 + 2Hxy + By1 are independent

unless a\A li\H= b/B.

22. Show that ax2+ by
i +cz2+ l2lfyz+ 2,gzx+ l

2,kxy can be expressed as a

product of two linear functions of x, y, and z if and only if

abc+ 2fgk
- af

2 -
bg*

- ck2= 0.

[Write down the condition that px+qy+rz and p x+q y+ r z should be

connected with the given function by a functional relation.]
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23. If u and v are functions of and
?;,

which are themselves functions

of x and y, then

_

9 to y) s
(&amp;gt; &amp;gt;?)

9 to y)

Extend the result to any number of variables.

24. Let/ (#) be a function of x whose derivative is \\x and which vanishes

when x\. Show that if u=f (x} +f (y ),
v= xy, then ux vy uyvx= 0, and hence

that u and v are connected by a functional relation. By putting y= l, show

that this relation must be/(#)+/(y) =f(xy). Prove in a similar manner that

if the derivative of f(x) is 1/(1 +#2
), and /(0)=0, then f(x] must satisfy the

equation

25. Prove that if/ (a?)
=

[

*
...

*

... then
J o vC 1 f*)

26. Show that if a functional relation exists between

then / must be a constant. [The condition for a functional relation will be

found to be

/ (*)/ (y)/ () {/(y) -/(*)} {/(*) -/(*)} (/(^) -/(y)&amp;gt;
=

-l

27. If /(y, 2), /(z, x\ and /to y) are connected by a functional relation

then /to x) is independent of x. (Math. Trip. 1909.)

28. If -M=0, v=0, w= are the equations of three circles, rendered

homogeneous as in Ex. 19, then the equation

8
(a?, y, 2)

represents the circle which cuts them all orthogonally. (Math. Trip. 1900.)

29. If A, B, C are three functions of x such that

A A A&quot;

B B B&quot;

C C C&quot;

vanishes identically, then we can find constants X, p, v such that

vanishes identically ;
and conversely. [The converse is almost obvious. To

prove the direct theorem let a=BC -B C, .... Then a = BC&quot;-B&quot;C, ...,

and it follows from the vanishing of the determinant that /3y /3

/

y= 0, ... ;

arid so that the ratios a : : y are constant. But aA+$B+ yC=0.]

30. Suppose that three variables x, y, z are connected by a relation in

virtue of which (i) z is a function of x and y, with derivatives zx %, and (ii) x

is a function of y and 2, with derivatives a?y ,
xz . Prove that
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[We have dz= zxdx+ zv%, dx=xydy + xzdz

The result of substituting for dx in the first equation is

dz= (zxxv+zy)dy+ zxxe dz,

which can be true only if zxxy+zy
= Q

t
zxxz =\I\

31. Four variables x, y, z, u are connected by two relations in virtue of

which any two can be expressed as functions of the others. Show that

where y* denotes the derivative of y, when expressed as a function of z and u,

with respect to z. (Math. Trip. 1897.)

32. Find A, B, C, A so that the first four derivatives of

vanish when #=0
; and A, JB, C, D, X, /* so that the first six derivatives of

~a+x

i:

vanish when #=0.

33. If a &amp;gt; 0, ac- b2 &amp;gt; 0, and xl &amp;gt; x0) then

p _ _dx__
J Xo

ax*+ 2bx+c
o
ax*+ 2bx+c *J(ac-

the inverse tangent lying between and IT.*

34. Evaluate the integral /
-

^
ma --. For what values of a is

J _! 1 2xcosa + x-

the integral a discontinuous function of a ? (Math. Trip. 1904.)

[The value of the integral is \ir if Zmr
&amp;lt;a&amp;lt;(2n+ l) TT, and --|TT if

(2n
-

1) TT &amp;lt; a &amp;lt; 2ft7r, TI being any integer ;
and if a is a multiple of

TT.]

35. If a^2+ 26^7+c&amp;gt;0 when ^ ^^^^,/(^) = v/(^2+ 26^-l-c), and

according as is positive or negative. In the latter case the inverse

tangent lies between and |TT. [It will be found that the substitution

t=
X ^? reduces the integral to the form 2 [ r^aJ
y+yo Jo i- 2 J

/a

c?r

--77=5
-

ov=j7r. (J/a^, ^n&amp;gt;. 1913.)*TV\a ~^ /

37. Ifa&amp;gt;lthen f

1 ^ ^2^=7r{a- x/(a
2 -

1)}.

* In connection with Exs. 33 35, 38, and 40 see a paper by Dr Bromwich
in vol. xxxv of the Messenger of Mathematics.

H. 20
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38.
Ifj0&amp;gt;l, 0&amp;lt;2&amp;lt;1,

then

l dx

o P ~ * - -
2 /&amp;gt;

+ ? sn*

where o&amp;gt; is the positive acute angle whose cosine is (l+pq}/(p+ q).

39. If a &amp;gt; b &amp;gt; 0, then [

** sin^^ = *
{a
_

x/(a
2 _

62)} .

J a - b cos ft
2 c

(Math. Trip. 1904.)

40. Prove that if a &amp;gt; x/(&
2+ c2 ) then

d6 2/

J o

n

the inverse tangent lying between and TT.

rb
41. lff(x) is continuous and never negative, and I f(x)dx=0, then

y a

y(a;)=0 for all values of # between a and ft. [If/ (#) were equal to a positive

number ^ when 0;= ^, say, then we could, in virtue of the continuity of /(#),

find an interval (-d, ^-f ) throughout which
f(x}&amp;gt;^k and then the value

of the integral would be greater than
.]

42. Schwarz s inequality for integrals. Prove that

ab
\2 rb rb

&amp;lt;t&amp;gt;+dx)

&amp;lt;

tfdx] y*dx.
a / J a J a

[Use the definitions of 156 and 157, and the inequality

(Ch. I, Misc. Ex. 10).]

43. If pB (a;)-
IP

nomial of degree n, which possesses the property that

43. If pB(a;)-_L^^{(a._ a)( /
3- a

.)} f
then P

tt (*) is a poly-
IP
~ a

)
n \

/.

if 6(x] is any polynomial of degree less than n. [Integrate by parts m+l
times, where m is the degree of 6 (#), and observe that 0(m + 1

)

(A-)
=

O.]

ffi

44. Prove that I Pm (x) Pn (x)dx=0ifm* n, but that if m= n then the
J a

value of the integral is (/3 a)/(2w + 1).

45. If Qn (x) is a polynomial of degree n, which possesses the property

fft
that I Qn (x] 6 (x) dx= if 6 (x) is any polynomial of degree less than n, then

J a.

Qn (x) is a constant multiple of Pn (x}.

[We can choose * so that Qn KPn is of degree n- 1 : then
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and so { (On - KPn)
2 dx= 0.

J *

Now apply Ex. 41.J

46. Approximate Values of definite integrals. Show that the error

/b (x) dx is less

a,

than ^M(b-a) 3
,
where M is the maximum of

| 0&quot;(#) |

in the interval (a, b) ;

and that the error in taking (b a) {^ (a+ b}} is less than ^M (b
-

a)
3

. [Write

/ (#)
=

(x} in Exs. 4 and 5.] Show that the error in taking

i
(b
-

a} [0 (a) + (6) + 40 {$ (a + 6)}]

as the value is less than ^fe^M (b
-
a)

5
,
where M is the maximum of 0(

4
)(#).

[Use Ex. 6. This rule, which gives a very good approximation, is known as

Simpson s Rule. It amounts to taking one-third of the first approximation

given above and two-thirds of the second.]

Show that the approximation assigned by Simpson s Rule is the area

bounded by the lines x=a, x=b,y= 0, and a parabola with its axis parallel
to OF and passing through the three points on the curve y=0(#) whose
abscissae are a, \ (a+ 6), b.

It should be observed that if (x} is any cubic polynomial then 0(
4

) (x}
=

0,

and Simpson s Rule is exact. That is to say, given three points whose
abscissae are a, J (a+ b), b, we can draw through them an infinity of curves

of the type y=a+/3x+yx2+ 8x3
;
and all such curves give the same area. For

one curve 5= 0, and this curve is a parabola.

47. If (x} is a polynomial of the fifth degree, then

(a?) dx= Jg (50 (a) + 80 (J) + 50 03)},

a and /3 being the roots of the equation #2 - #+^= 0. (Math. Trip. 1909.)

48. Apply Simpson s Rule to the calculation of TT from the formula

/I

fin

j-^2- [The result is 7833.... If we divide the integral into two,

from to | and to 1, and apply Simpson s Rule to the two integrals

separately, we obtain 7853916.... The correct value is -7853981....]

49. Show that 8-9 &amp;lt; (V(4+ ^)^&amp;lt;9. (Math. Trip. 1903.)
} 3

50. Calculate the integrals

1 1

to two places of decimals. [In the last integral the subject of integration is

not defined when #=0 : but if we assign to it, when #=0, the value 1, it

becomes continuous throughout the range of integration.]

202



CHAPTER VIII

THE CONVERGENCE OF INFINITE SERIES AND
INFINITE INTEGRALS

165. IN Ch. IV we explained what was meant by saying

that an infinite series is convergent, divergent, or oscillatory, and

illustrated our definitions by a few simple examples, mainly
derived from the geometrical series

and other series closely connected with it. In this chapter we

shall pursue the subject in a more systematic manner, and prove

a number of theorems which enable us to determine when the

simplest series which commonly occur in analysis are convergent.

We shall often use the notation

and write ^u
n&amp;gt;

or simply 2un ,
for the infinite series uQ -\-ul -{-ii2+ . .. .*

o

166. Series of Positive Terms. The, theory of the con

vergence of series is comparatively simple when all the terms of

the series considered are positive f. We shall consider such series

*
It is of course a matter of indifference whether we denote our series by

Ui + U2+... (as in Ch. IV) or by UQ+ U
I +... (as here). Later in this chapter we

shall be concerned with series of the type a + a
1
x + a2x

2+ ...: for these the latter

notation is clearly more convenient. We shall therefore adopt this as our standard

notation. But we shall not adhere to it systematically, and we shall suppose that u
:

is the first term whenever this course is more convenient. It is more convenient,

for example, when dealing with the series 1 + 4 + $ + ... ,
to suppose that t*n=l/

and that the series begins with Wj ,
than to suppose that wn =l/(n + l) and that the

series begins with MO . This remark applies, e.g., to Ex. LXVII. 4.

t Here and in what follows positive
*
is to be regarded as including zero.
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first, not only because they are the easiest to deal with, but also

because the discussion of the convergence of a series containing
negative or complex terms can often be made to depend upon
a similar discussion of a series of positive terms only.

When we are discussing the convergence or divergence of a

series we may disregard any finite number of terms. Thus, when
a series contains a finite number only of negative or complex terms,
we may omit them and apply the theorems which follow to the

remainder.

167 It will be well to recall the following fundamental
theorems established in 77.

A. A series of positive terms must be convergent or diverge
to oo

, and cannot oscillate.

B. The necessary and sufficient condition that %un should be

convergent is that there should be a number K such that

w + MI + . . . + un &amp;lt; K
for all values of n,

C. The comparison theorem. If %un is convergent, and
vn ^ un for all values of n, then %vn is convergent, and %vn ^ 2un .

More generally, if vn ^Kun ,
where K is a constant, then 2vn

is convergent and *5Lvn ^K^un . And if %un is divergent, and
vn ~ Kun ,

then 2&amp;lt;vn is divergent*

Moreover, in inferring the convergence or divergence of 2? n

by means of one of these tests, it is sufficient to know that the

test is satisfied for sufficiently large values of n, i.e. for all values

of n greater than a definite value ?? . But of course the con

clusion that v ITSiin does not necessarily hold in this case.

A particularly useful case of this theorem is

D. If %un is convergent (divergent) and un/vn tends to a limit

other than zero as n -*- oo
,
then 2vn is convergent (divergent).

168. First applications of these tests. The one important
fact which we know at present, as regards the convergence of any

* The last part of this theorem was not actually stated in 77, but the reader

will have no difficulty in supplying the proof.
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special class of series, is that Hr11
is convergent if r &amp;lt; 1 and

divergent if r^l.* It is therefore natural to try to apply

Theorem C, taking un rn . We at once find

1. The series %vn is convergent if vn ^ Krn
,
where r &amp;lt; 1,/br all

sufficiently large values of n.

When K 1, this condition may be written in the form vn
l n ^ r.

Hence we obtain what is known as Cauchy s test for the con

vergence of a series of positive terms ; viz.

2. The series *vn is convergent if v^ ln ^ r, where r &amp;lt; 1, for

all sufficiently large values of n.

There is. a corresponding test for divergence, viz.

2a. The series %vn is divergent if vn
l n ^ 1 for an infinity of

values of n.

This hardly requires proof, for vn
lln = 1 involves vn = l. The

two theorems 2 and 2a are of very wide application, but for

some purposes it is more convenient to use a different test of

convergence, viz.

3. The series Zvn is convergent if vn+i/v = r
&amp;gt;

wnere r &amp;lt;

l&amp;gt;/
or

all sufficiently large values of n.

To prove this we observe that if vn+i/vn = r when n = n then

Vn Vn-i Vno+i
&amp;lt;

^o r .

n ~ ^ 7 ~^~ n = ro^n-i vn~2 ^?i
&quot;

and the result follows by comparison with the convergent series 2rn .

This test is known as d Alembert s test. We shall see later that

it is less general, theoretically, than Cauchy g, in that Cauchy s

test can be applied whenever d Alembert s can, and sometimes

when the latter cannot. Moreover the test for divergence which

corresponds to d Alembert s test for convergence is much less

general than the test given by Theorem 2a. It is true, as the

reader will easily prove for himself, that if vn+l/vn ^ r = 1 for all

values of n, or all sufficiently large values, then %vn is divergent.

But it is not true (see Ex. LXVII. 9) that this is so if only

vn+l/vn ^r^l for an infinity of values of ?i, whereas in Theorem 2a

* We shall use r in this chapter to denote a number which is always positive

or zero.
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our test had only to be satisfied for such an infinity of values,

None the less d Alembert s test is very useful in practice, because

when vn is a complicated function vn+1/vn is often much less

complicated and so easier to work with.

In the simplest cases which occur in analysis it often happens
that vn+l/vn or vn

lln tends to a limit as n -*- oo .* When this limit

is less than 1, it is evident that the conditions of Theorems 2 or

3 above are satisfied. Thus

4. Ifvnlln or vn+Jvn tends to a limit less than unity as n -*- oo
,

then the series 2vn is convergent.

It is almost obvious that if either function tend to a limit

greater than unity, then %vn is divergent. We leave the formal

proof of this as an exercise to the reader. But when vn
l!n or

0+i/tV, tends to 1 these tests generally fail completely, and they
fail also when vn

lln or vn+l/vn oscillates in such a way that, while

always less than 1, it assumes for an infinity of values of n values

approaching indefinitely near to 1. And the tests which involve

vn+i/vn fail even when that ratio oscillates so as to be sometimes
less than and sometimes greater than 1. When vn

lln behaves in

this way Theorem 2a is sufficient to prove the divergence of the

series. But it is clear that there is a wide margin of cases in

which some more subtle tests will be needed.

Examples LXVII. 1. Apply Cauchy s and d Alembert s tests (as

specialised in 4 above) to the series 2wV, where k is a positive rational

number.

[Here vn + l lvn={(n+ I)/n}
k
r-^r, so that d Alembert s test shows at once

that the series is convergent if r &amp;lt; I and divergent if /&amp;gt;!. The test fails if

r= 1 : but the series is then obviously divergent. Since lim nlln= 1 (Ex. xxvn.

11), Cauchy s test leads at once to the same conclusions.]

2. Consider the series 2(Ank+Bnk ~ 1 + ... +A&quot; }r
n

. [We may supposed
positive. If the coefficient of rn is denoted by P(ri), then P(n)/n

k-*~A and,

by D of 167, the series behaves like 2?i*rn
.]

3. Consider ffiS+.
&quot;

+ f &quot;

(^&amp;gt;0,a&amp;gt;0).

[The series behaves like 2?i
k- lrn. The case in which r=l, k&amp;lt;l requires

further consideration.]

*
It will be proved in Ch. IX (Ex. LXXXVII. 86) that if vn+l/vn -** I then vn

l/n -* I.

That the converse is not true may be seen by supposing that vn= l when n is odd
and v = 2when n is even.
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4. We have seen (Ch. IV, Misc. Ex. 17) that the series

l

are convergent. Show that Cauchy s and d Alembert s tests both fail when

applied to them. [For lim unl/H= lim (un + ,/wn)
=

1.]

5. Show that the series 2w~ p
,
where p is an integer not less than 2, is

convergent. [Since lim {*(+!)...(n+p-!)}/* =1, this follows from the

convergence of the series considered in Ex. 4. It has already been shown
in 77, (7) that the series is divergent if

/?
= l,and it is obviously divergent if

6. Show that the series

anl + fin
l
~ l + ... + K

is convergent if l&amp;gt;Jc+ \ and divergent if l&amp;lt;.lc+ \.

7. If mn is a positive integer, and mn + i&amp;gt;mn ,
then the series 2rmn is con

vergent if r
&amp;lt;

1 and divergent if r &amp;gt; 1. For example the series 1 + r +r*+ ?-
9+ . . .

is convergent if r
&amp;lt;

1 and divergent if r &amp;gt;1.

8. Sum the series l + 2r+2r4 +... to 24 places of decimals when r= l

and to 2 places when r= *9. [If *=*!, then the first 5 terms give the

sum 1*2002000020000002, and the error is

2r*5+ 2^6+ . . . &amp;lt;2r
25+ 2r36 + 2r47+ . . .

= 2r25/(l
- r11

) &amp;lt;3/10

25
.

If r= 9, then the first 8 terms give the sum 5*458..., and the error is less

than 2^/(l-?*i7)&amp;lt; -003.]

9 If
&amp;lt;&amp;lt;&&amp;lt;!,

then the series a+ & + a2+ 62 4-a3
-|-... is convergent.

Show that Cauchy s test may be applied to this series, but that d Alembert s

test fails. [For

r r r r
10. Theseries

l+r+^j + ^|
+ ... and l+r+ + p + ... are convergent

for all positive values of r.

11. If 2wn is convergent then so are 2^^rl

2 and

12. If 2w
re

2 is convergent then so is 2un /n. [For 2un /n&amp;lt;un
2 + (Iln

2
) and

2 (1/w
2
)

is convergent.]

13. Show that l4- + 4^.-l+-l-4.... and
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[To prove the first result we note that

- i
+p+p+&quot;*-*4

by-Theorems (8) and (6) of 77.]

14. Prove by a reductio ad absurdum that 2 (I In) is divergent. [If the

series were convergent we should have, by the argument used in Ex. 13,

or

which is obviously absurd, since every term of the first series is less than the

corresponding term of the second.]

169. Before proceeding further in the investigation of tests

of convergence and divergence, we shall prove an important general
theorem concerning series of positive terms.

Dirichlet s Theorem.* The sum of a series of positive
terms is the same in whatever order the terms are taken.

This theorem asserts that if we have a convergent series of

positive terms, u + wx + u.2 + . . . say, and form any other series

out of the same terms, by taking them in any new order, then the

second series is convergent and has the same sum as the first.

Of course no terms must be omitted : every u must come some
where among the v s, and vice versa.

The proof is extremely simple. Let s be the sum of the series

of u a. Then the sum of any number of terms, selected from the

us, is not greater than s. But every v is a u, and therefore the

sum of any number of terms selected from the v s is not greater
than s. Hence %vn is convergent, and its sum t is not greater
than s. But we can show in exactly the same way that s ^ t.

Thus s = t.

170. Multiplication of Series of Positive Terms. An
immediate corollary from Dirichlet s Theorem is the following
theorem : if u + wx + 2 + . . . and v + v: + v2 + . . . are two conver

* This theorem seems to have first been stated explicitly by Diriclilet in 1837.

It was no doubt known to earlier writers, and iu particular to Cauchy.
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series of positive terms, and s and t are their respective sums,

then the series

(U2 V + U1 V1 + M Va +
is convergent and has the sum st.

Arrange all the possible products of pairs um vn in the form of

a doubly infinite array

UV

We can rearrange these terms in the form of a simply infinite

series in a variety of ways. Among these are the following.

(1) We begin with the single term UOVQ for which m+ n = 0;

then we take the two terms u^, u^ for which m + n = 1
;
then

the three terms u.2v ,
ur vlt u v2 for which m + n = 2

;
and so on.

We thus obtain the series

of the theorem.

(2) We begin with the single term UQ VO for which both

suffixes are zero; then we take the terms U^VQ, ul vl) u
()
vl which

involve a suffix 1 but no higher suffix
;
then the terms u.2 v ,

u2v^

u.2 Vt, u^, u v.2 which involve a suffix 2 but no higher suffix
;
and

so on. The sums of these groups of terms are respectively equal to

U VQ , (U + Mj) (V + Vi)
- U V

,

(U + U! + Uz) (&amp;gt;o
+ Vi + V2)

- Oo + Ui) (V + Vj), . . .

and the sum of the first n + 1 groups is

and tends to 5^ as n - oo . When the sum of the series is formed

in this manner the sum of the first one, two, three, ... groups

comprises all the terms in the first, second, third, ... rectangles

indicated in the diagram above.

The sum of the series formed in the second manner is st.

But the first series is (when the brackets are removed) a rearrange

ment of the second; and therefore, by Dirichlet s Theorem, it con

verges to the sum st. Thus the theorem is proved.
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Examples LXVIII. 1 Verify that if r
&amp;lt; 1 then

2.* If either of the series w +% + ..., v
()
+ v1 + ... is divergent, then so is

the series Vo + (% l o + Vi) + (
w2 vo+ wi y i +uQ v2 ) + ..., except in the trivial

case in which every term of one series is zero.

3. If the series ^ + w-, + ..., t +#! + ..., WQ+ WI + ... converge to sums

, s, t, then the series 2AA ,
where \k= 2um vn ivp ,

the summation being extended

to all sets of values of m, n, p such that m +n+p= k, converges to the

sum rst.

4. If &quot;S,un and 2vn converge to sums s and
,
then the series 2wn ,

where
wn= 2uivm ,

the summation extending to all pairs I,
m for which lm= n,

converges to the sum st.

171. Further tests for convergence and divergence.
The examples on pp. 311 313 suffice to show that there are

simple and interesting types of series of positive terms which

cannot be dealt with by the general tests of 168. In fact, if

we consider the simplest type of series, in which un+l/un tends

to a limit as n ^ oo
, the tests of 168 generally fail when this limit

is 1. Thus in Ex. LXVII. 5 these tests failed, and we had to fall

back upon a special device, which was in essence that of using
the series of Ex. LXVII. 4 as our comparison series, instead of

the geometric series.

The fact is that the geometric series, by comparison with which the tests

of 168 were obtained, is not only convergent but very rapidly convergent,
far more rapidly than is necessary in order to ensure convergence. The tests

derived from comparison with it are therefore naturally very crude, and much
more delicate tests are often wanted.

We proved in Ex. xxvu. 7 that n*rn -*-0 as tt^-oo, provided r&amp;lt;l,
what

ever value k may have; and in Ex. LXVII. 1 we proved more than this,

viz. that the series 2nkrn is convergent. It follows that the sequence

r, r2
,
r3

, ..., rn
, ..., where

?&amp;lt;!, diminishes more rapidly than the sequence
I
-

k^
2
-

*, 3
- *

}
. . .

}
n ~

fc

,
. . . . This seems at first paradoxical if r is not much less

than unity, and k is large. Thus of the two sequences

5 95

whose general terms are (|)
n and n~ 12

,
the second seems at first sight to

decrease far more rapidly. But this is far from being the case
;

if only we

go far enough into the sequences we shall find the terms of the first sequence

very much the smaller. For example,

(2/3)
4
=16/81&amp;lt;l/5, (2/3)

1

2&amp;lt;(l/5)3&amp;lt;(l/10)
2
, (2/3)

1

oo&amp;lt;(i/io)i60)

while 1000- 12= 10- 36
;

* In Exs. 2 4 the series considered are of course series of positive terms.
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so that the 1000th term of the first sequence is less than the 10130th part of

the corresponding term of the second sequence. Thus the series 2 (2/3)
n is

far more rapidly convergent than the series 2w~ 12
,
and even this series is

very much more rapidly convergent than 2?i~ 2.*

172. We shall proceed to establish two further tests for the

convergence or divergence of series of positive terms, Maclaurin s

(or Cauchy s) Integral Test and Cauchy s Condensation

Test, which, though very far from being completely general, are

sufficiently general for our needs in this chapter.

In applying either of these tests we make a further assumption
as to the nature of the function un ,

about which we have so far

assumed only that it is positive. We assume that un decreases

steadily with n: i.e. that vn+l ^ un for all values of n. or at any rate

all sufficiently large values.

This condition is satisfied in all the most important cases. From one

point of view it may be regarded as no restriction at all, so long as we are

dealing with series of positive terms : for in virtue of Dirichlet s theorem

above we may rearrange the terms without affecting the question of con

vergence or divergence ;
and there is nothing to prevent us rearranging the

terms in descending order of magnitude, and applying our tests to the series of

decreasing terms thus obtained.

But before we proceed to the statement of these two tests,

we shall state and prove a simple and important theorem, which

we shall call Abel s Theoremf. This is a one-sided theorem in

/
that it gives a sufficient test for divergence only and not for

convergence, but it is essentially of a more elementary character

than the two theorems mentioned above.

t

173. Abel s (or Pringsheim s) Theorem. If 2wn is a convergent series of

positive and decreasing terms, then Km nun= 0.

Suppose that nun does not tend to zero. Then it is possible to find a

positive number d such that nun 2i$ for an infinity of values of n. Let n be

the first such value of n
;
n2 the next such value of n which is more than

* Five terms suffice to give the sum of 2n~ 12
correctly to 7 places of decimals,

whereas some 10,000,000 are needed to give an equally good approximation to 2/i~ 2
.

A large number of numerical results of this character will be found in Appendix III

(compiled by Mr J. Jackson) to the author s tract Orders of Infinity (Cambridge,

Math. Tracts, No. 12).

f This theorem was discovered by Abel but forgotten, and rediscovered by

Pringsheim.
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twice as large as n
} ;

n3 the next such value of n which is more than twice

as large as ?i
2 ;

and so on. Then we have a sequence of numbers n^ n%, n3 ,
...

such that w2 &amp;gt; 2^1? ^3 &amp;gt; 2^2 ,
... and so n2

- n 1 &amp;gt;-|n2 ,
nz ni&amp;gt;^n3 ,

...
;

and also niuni &amp;gt;d,
n
2
um &amp;gt;,

.... But, since un decreases as n increases,

we have

2

&amp;gt;

ja,

and so on. Thus we can bracket the terms of the series 2 un so as to obtain

a new series whose terms are severally greater than those of the divergent

series

and therefore 2wn is divergent.

Examples LXIX. 1. Use Abel s theorem to show that 2 (!/TI) and

2 {I I(an+ b)} are divergent. [Here nun -+-l or nun-*-lja.]

2. Show that Abel s theorem is not true if we omit the condition that un

decreases as n increases. [The series

1 +
2^
+ 32+4+52 + 62

+
72
+ ^ +

9
+

^Q2
+ &amp;gt;

--&amp;gt;

in which un=ljn or 1/ra
2
, according as n is or is not a perfect square, is

convergent, since it may be rearranged in the form

and each of these series is convergent. But, since nun -=1. whenever u is a

perfect square, it is clearly not true that -*- 0.]

3. The converse of AbeVs theorem is not true, i.e. it is not true that, if un

decreases with n and lim nun=Q, then 2?/ is convergent.

[Take the series 2 (Ijn] and multiply the first term by 1, the second by ,

the next two by -, the next four by J, the next eight by J-, and so on. On

grouping in brackets the terms of the new series thus formed we obtain

and this series is divergent, since its terms are greater than those of

i+i-Hi-i+i-H-,
which is divergent. Bub it is easy to sec that the terms of the series

i+KJ+i/i+i-i+M+i-H-
satisfy the condition that nu*-+~Q. In fact nun=\\v if 2&quot;~

2
&amp;lt; Ji

&amp;lt;

2&quot;&quot;

1

,
and
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V\ iv
v

174. Maclaurin s (or Cauchy s) Integral Test. * If un
I decreases steadily as n increases, we can write un &amp;lt; (n) and

suppose that
&amp;lt;j&amp;gt; (n) is the value assumed, when x n, by a con

tinuous and steadily decreasing function &amp;lt; (x) of the continuous

variable x. Then, if v is any positive integer, we have

&amp;lt;0-i) = &amp;lt;/&amp;gt;0)^&amp;lt;0)

when v 1 ^ x v. Let

-!)- I
J vv-l v-l

so that O-lf -7- 9 \V ) 9 \V) V y -;;

Then 2)^ is a series of positive terms, and

v2 + vs + ... +vn ^0(l)-0(w) ^
(/&amp;gt;(!).

Hence Sv,, is convergent, and so v2 + v3 + ... +vn or

tends to a positive limit as n^-oo .

Let us write &amp;lt;l&amp;gt; (f) = I
(a;) c?^?,

J\

so that &amp;lt;I&amp;gt; (f) is a continuous and steadily increasing function of .

Then
u 1 +H 2 + ...+^l_1 -O(n)

tends to a positive limit, not greater than (1), as n -^- oo . Hence

^,u v is convergent or divergent according as &amp;lt;1&amp;gt; (n) tends to a limit

or to infinity as n-^oo
,
and therefore, since &amp;lt;I&amp;gt; (n) increases

steadily]

according as 4&amp;gt; (f) tends to a limit or to infinity s f -* oo . Hence

iy &amp;lt;/&amp;gt; (a;) i*5 a function of x which is positive and continuous for all

values ofx greater than unity, and decreases steadily as x increases,

then the series

&amp;lt;/&amp;gt;(!)
+ .(2)+...

does or does not converge according as

. does or does not tend to a limit I as % -* oo
; and, in the first case,

the sum of the series is not greater thanj^ (1) + 1.

* The test was discovered by Maclaurin and rediscovered by Cauchy, to whom
it is usually attributed.
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The sum must in fact be less than
&amp;lt;(!)+ For it follows from (6) of

160, and Ch. VII, Misc. Ex. 41, that v v j&amp;gt;(v-l)-&amp;lt;l&amp;gt;(v),
unless

&amp;lt;(#)
=

&amp;lt;(*)

throughout the interval (v
-

1, v) ;
and this cannot be true for all values of v.

Examples LXX. 1. Prove that

2. Prove that -TT&amp;lt;|
&amp;lt;& (Math. Trip. 1909.)

i QJ -)-?i

3. Prove that if m &amp;gt; then

_L __ _
(m-f l)

2
(m+

175. The series S~s
. By far the most important applica

tion of the Integral Test is to the series

l-s + 2-s +3-s +...+n-s
+...,

where s is any rational number. We have seen already (77 and f7
f -

Exs. LXVII. 14, LXIX. 1) that the series is divergent when 5 = 1.

If s then it is obvious that the series is divergent. If

s &amp;gt; then un decreases as n increases, and we can apply the test.

Here

unless 5=1. If s &amp;gt; 1 then g
1-*-* as f-^ x ,

and

*&amp;lt;0^y&amp;lt;*
-!)-,

say. And if s &amp;lt; 1 then f
1~*-*. GO as f -- x

,
and so &amp;lt;

(f) -*- oo .

Thus ^ series ^n~s
is convergent ifs&amp;gt;l, divergent if s ^ 1, and in

the first case its sum is less than s/(s 1).

So far as divergence for s&amp;lt;l is concerned, this result might have
been derived at once from comparison with 2 (1/ra), which we already know
to be divergent.

It is however interesting to see how the Integral Test may be applied to

the series 2 (1/w), when the preceding analysis fails. In this case

and it is easy to see that *()-*- as -*~ oo . For if &amp;gt;2
n then
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But by putting x= Zru we obtain

[*+l dx = [*du
]* x

~~

J 1 u

and so &amp;lt;J&amp;gt;

()&amp;gt; I
-

,
which shows that $ (|)

-- oo as -*-oo .

Examples LXXI. 1. Prove by an argument similar to that used above,

and without integration, that 3&amp;gt; () = /
,
where s&amp;lt;l, tends to infinity with

y i #

2. The series 2w~ 2
,

Sw.&quot;
3 /2

,
2?i~ 11/10 are convergent, and their sums are

not greater than 2, 3, 11 respectively. The series 27i~ 1/2
,

2&amp;gt;i~
10

/
n are

divergent.

3. The series 2?is
/&amp;lt;X+

a
)&amp;gt;

where
a&amp;gt;0,

is convergent or divergent accord-

ng as t&amp;gt;l+s or t &amp;lt; I+s. [Compare with 2?i*~*.]

4. Discuss the convergence or divergence of the series

2 (! 7i
s
i + a2n

s
*+ . . . + aknSk}l(b^+ b2n tz+ . . . + &

zn\
where all the letters denote positive numbers and the s s and s are rational

and arranged in descending order of magnitude.

5. Prove that

(Math. Trip. 1911.)

6. If (n) -^1&amp;gt;I then the series 2n
~ $ (

n
) is convergent. If

&amp;lt;j&amp;gt; (n) -*- 1 &amp;lt; 1

then it is divergent.

176. Cauchy s Condensation Test. The second of the

two tests mentioned in 172 is as follows: if un = (f&amp;gt;(n)
is a

decreasing function of n, then the series
2&amp;lt;/&amp;gt;,(n)

is convergent or

divergent according as S2n
(2

W
) is convergent or divergent.

We can prove this by an argument which we have used

already ( 77) in the special case of the series 2 (I/ft)- In the

first place

f(3)+ $(4) 5 2* (4),

2) + . . .

If 22w
&amp;lt;(2

n
) diverges then so do 22n+1

((2
n+1

) and 2 2&quot; &amp;lt; (2
n+1

)&amp;gt;

and then the inequalities just obtained show that
2&amp;lt;(ft) diverges.
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On the other hand

40 (4),

and so on. And from this set of inequalities it follows that

if 2 2n
(/&amp;gt; (2

n
) converges then so does 2

&amp;lt;/&amp;gt; (w). Thus the theorem is

established.

For our present purposes the field of application of this test is

practically the same as that of the Integral Test. It enables us

to discuss the series 2 n~s with equal ease. For 2 n~* will converge
or diverge according as 2 2W 2~ns

converges or diverges, i.e. ac

cording as s &amp;gt; 1 or s 1.

Examples LXXII. I: Show that if a is any p6sitive integer greater
than 1 then

2&amp;lt;(n)
is convergent or divergent according as 2an0(an)

is

convergent or divergent. [Use the same arguments as above, taking groups
of a, a2

,
a3

,
... terms.]

2. If 22 7i

(2
W
) converges then it is obvious that lim 2W (2

ft

)
= 0. Hence

deduce Abel s Theorem of 173.

177. Infinite Integrals. The Integral Test of 174 shows

that, if
&amp;lt;/&amp;gt; (x) is a positive and decreasing function of #, then the

series 2
&amp;lt;/&amp;gt; (n) is convergent or divergent according as the integral

function 4&amp;gt; (x) does or does not tend to a limit as x -*- x . Let
us suppose that it does tend to a limit, and that

rx
lim

(f&amp;gt;(t)dt
= l.

X-**X&amp;gt; J 1

Then we shall say that the integral

$ (t) dt

is convergent, and has the value l\ and we shall call the

integral an infinite integral.

So far we have supposed (f&amp;gt; (t) positive and decreasing. But it

is natural to extend our definition to other cases. Nor is there

any special point in supposing the lower limit to be unity. We
are accordingly led to formulate the following definition :

If(f&amp;gt; (t) is a function oft continuous when t = a, and

lim I
&amp;lt;f&amp;gt;(t)dt

=1,
x -* J a

H. 21



322 THE CONVERGENCE OF INFINITE SERIES [VIII

then we shall say that the infinite integral

t ...........................(1)

is convergent and has the value I.

The ordinary integral between limits a and A, as defined in

Ch. VII, we shall sometimes call in contrast a finite integral.

On the other hand, when

-00,

we shall say that the integral diverges to oo
,
and we can give a

similar definition of divergence to oo . Finally, when none of

these alternatives occur, we shall say that the integral oscillates,

finitely or infinitely, as x -* oo .

These definitions suggest the following remarks.

If we write
f.se

I

J a

then the integral converges, diverges, or oscillates according as 3&amp;gt; (x) tends to

a limit, tends to oo (or to oo
),

or oscillates, as x -&amp;gt;- oo . If &amp;lt;J&amp;gt; (x) tends to a

limit, which we may denote by $ (oo ), then the value of the integral is * (oo ).

More generally, if &amp;lt;l&amp;gt; (a?) is any integral function of $ (x\ then the value of the

integral is $ (oo )
-

3&amp;gt; (a).

(ii) In the special case in which (] is always positive it is clear

that
&amp;lt;(#)

is an increasing function of x. Hence the only alternatives are

convergence and divergence to oo .

(iii) The integral (1) of course depends on a, but is quite independent of
t,

and is in no way altered by the substitution of any other letter for t (cf.

(iv) Of course the reader will not be puzzled by the use of the term

infinite integral to denote something which has a definite value such as

2 or \ir. The distinction between an infinite integral and a finite integral

is similar to that between an infinite series and a finite series : no one supposes
that an infinite series is necessarily divergent.

/ 4&amp;gt;(f)dt
was defined in 156 and 157 as a simple

a

limit, i.e. the limit of a certain finite sum. The infinite integral is therefore

the limit of a limit, or what is known as a repeated limit. The notion of the

Infinite integral is in fact essentially more complex than that of the finite

integral, of which it is a development.
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(vi) The Integral Test of 174 may now be stated in the form : if &amp;lt; (x) is ^

positive and steadily decreases as x increases, then the infinite series 2 $ (n) and the 1
r oo

infinite integral I
&amp;lt;/&amp;gt; (x) dx converge or diverge together. V V

(vii) The reader will find no difficulty in formulating and proving theorems
for infinite integrals analogous to those stated in (1) (6) of 77. Thus the k

/&amp;gt;

r* i

(x) dx is convergent, and
b&amp;gt;a, then

r
I &amp;lt; (x} dx is convergent and
J b .

r rb /

I &amp;lt;

(..r)
dx=

/ (/?;)
dx+ I $ (x) dx.

J a J a J b

178. The case in which
&amp;lt;f&amp;gt; (#) is positive. It is natural

to consider what are the general theorems, concerning the con

vergence or divergence of the infinite integral (1) of 177,

analogous to theorems A D of 167. That A is true of integrals
as well as of series we have already seen in 177, (ii). Corre

sponding to B we have the theorem that the necessary and sufficient

condition for the convergence of the integral (1) is that it should be

possible to find, a constant K such that

I
&amp;lt;f&amp;gt;(t)dt&amp;lt;K

J a

for all values of x greater than a.

Similarly, corresponding to C, we have the theorem : if
rx
I $ (x) dx is convergent, and

-fy (x) K&amp;lt;f&amp;gt; (x) for all values of x

greater than a, then I ^r (x) dx is convergent and
J a

rx r oo

I \lr (x) dx ^ K \
d&amp;gt; (x) dx.

Ja Ja

We leave it to the reader to formulate the corresponding test for

divergence.

We may observe that D Alembert s test ( 168), depending
as it does on the notion of successive terms, has no analogue for

integrals ;
and that the analogue of Cauchy s test is not of much

importance, and in any case could only be formulated when we
have investigated in greater detail the theory of the function

212
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$ (x)
= rx

,
as we shall do in Ch. IX. The most important special

tests are obtained by comparison with the integral

/:* &amp;lt;&amp;gt;&amp;gt;

whose convergence or divergence we have investigated in 175,
and are as follows : if &amp;lt;/&amp;gt;

(x) &amp;lt; Kar , where s&amp;gt;l, when x^a, then
r oo

&amp;lt;/&amp;gt; (as) dx is convergent ;
and if &amp;lt;f&amp;gt;

(a) &amp;gt; Kx~s
, where s &amp;lt;

1, when

, then the integral is divergent ;
and in particular, if

lira xs

(j&amp;gt; (x)
=

I, where I &amp;gt; 0, then the integral is convergent or

divergent according as s &amp;gt;l or s ^ 1.

There is one fundamental property of a convergent infinite series in

regard to which the analogy between infinite series and infinite integrals
breaks down. If

2(j&amp;gt;(n)
is convergent then

(j&amp;gt;(n}-*-0;
but it is not always

true, even when $ (a?) is always positive, that if /
&amp;lt;f&amp;gt;(x)dx

is convergent

then
&amp;lt;J&amp;gt;(#)-.0.

Consider for example the function $ (x) whose graph is indicated by the
thick line in the figure. Here the height of the peaks corresponding to the

points x\ t 2, 3, ... is in each case unity, and the breadth of the peak corre-

a

x = a

1 2 3 X

Fig. 50.

spending to x=n is 2/(rc + l)
2

. The area of the peak is l/(n+l)
2
, and it is

evident that, for any value of
,

/&quot;
1

I $ (#) cfa? &amp;lt; 2 3,

/oo
(f) (x) dx is convergent ;

but it is not true that &amp;lt; (x}
o

Examples LXXIII. 1. The integral

where a and A are positive and a is greater than the greatest root of the

denominator, is convergent if s&amp;gt;r-\-\ and otherwise divergent.
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2. Which of the integrals

r~ [ r dx r v- r x^dx r*
Ja&amp;gt;J* JaX*13

)*+*&quot; /a^H? 1

] a &amp;lt;*+^ J a

are convergent? In the first two integrals it is supposed that a&amp;gt;0, and
in the last that a is greater than the greatest root (if any) of the de

nominator.

3. The integrals

/cos#cff,
I sinxdjc, I cos (ax+ ft) dx

a J a J a

oscillate finitely as -^oo .

4. The integrals

I ^costfcfa?, / #2
sin#o?.r, / xn cos (or -f /3) dx,

J a J a J a

where n is any positive integer, oscillate infinitely as -*~oo .

/a(f&amp;gt; (#)^ tends to a limit as -*- oo
,
then we

rm

say that I $(x}dx is convergent and equal to I. Such integrals possess
J -oo

properties in every respect analogous to those of the integrals discussed in the

preceding sections : the reader will find no difficulty in formulating them.

&amp;lt;5. Integrals from - oo to -f oo . If the integrals

(

a

&amp;lt;t&amp;gt;(x}dx,
( $(x}dx

J -oo J a

are both convergent, and have the values k, I respectively, then we say that

f %(*)&amp;lt;*
J -oo

is convergent and has the value k+ 1.

7. Prove that

dx

J

8. Prove generally that

/

provided that the integral I
&amp;lt;^&amp;gt;

(.r
2
)
o?.r is convergent.

J o

/co

^
an

^(^*)d!rifl convergent then I
x&amp;lt;f)(x

2
)d.v= Q.

J -oo
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10. Analogue of Abel s Theorem of 173. If $ (x] is positive and
rcc

steadily decreases, and I
&amp;lt;j&amp;gt;(x)dx

is convergent, then
x&amp;lt;$&amp;gt;(x}-*~0.

Prove this
J a

(a) by means of Abel s Theorem and the Integral Test and (6) directly, by
arguments analogous to those of 173.

f
xn+l

11. If a= XQ &amp;lt; $i &amp;lt; #2 &amp;lt; . . . and #- oo
,
and un= I $ (x) dx^ then the

/*,

convergence of I (x)dx involves that of &quot;2,un . If
&amp;lt;$&amp;gt;(%)

is always positive
J a

the converse statement is also true. [That the converse is not true in

general is shown by the example in which
&amp;lt;(#)

= cos #, xn= nir. \

179. Application to infinite integrals of the rules for

substitution and integration by parts. The rules for the

transformation of a definite integral which were discussed in

161 may be extended so as to apply to infinite integrals.

(1) Transformation by substitution. Suppose that

(1)

is convergent. Further suppose that, for any value of f greater

than a, we have, as in 161,

b

where a=f(b), =/(T). Finally suppose that the functional

relation x=f(t) is such that #-^oo astf-^oo. Then, making r

and so tend to oo in (2), we see that the integral

r&amp;lt;t&amp;gt;{f(t)}fG)&amp;lt;b
..................... (3)

J b

is convergent and equal to the integral (1).

On the other hand it may happen that f -* oo as r~*- oo

or as T-*- c. In the first case we obtain

^ $(x)dx= lim
(

T

&amp;lt;t&amp;gt;{f(t)}f(t)
J a T-*- -&amp;lt;xJb

dt

- lim
T-&amp;gt;-- oo r

In the second case we obtain

I
&amp;lt;t&amp;gt;(x)dx

=
\imr&amp;lt;t&amp;gt;{f(t)}f(t)dt ............ (4X

J a r-*-cJ b

We shall return to this equation in 181.



178, 179] AND INFINITE INTEGRALS 327

There are of course corresponding results for the integrals
ra r

I
&amp;lt;/&amp;gt; (#) dx, I $ (as) doc,

J - oo J oo

which it is not worth while to set out in detail : the reader will

be able to formulate them for himself.

Examples LXXIV. 1. Show, by means of the substitution x= t
a

,

that if s &amp;gt; 1 and a &amp;gt; then

and verify the result by calculating the value of each integral directly.

of

/oo

2. If / $ (x] dx is convergent then it is equal to one or other
J a

f f(a-ft/a.
a I

$(o*+)&amp;lt;ft,
-a I (b(at+fl)dt.

J (a-0)/a J -a&amp;gt;

according as a is positive or negative.

3. If $ (x) is a positive and steadily decreasing function of #, and a and

j8 are any positive numbers, then the convergence of the series 2 &amp;lt; (ri) implies
and is implied by that of the series

2&amp;lt;/&amp;gt;(&amp;lt;m
+ /3).

[It follows at once, on making the substitution x=at+j3, that the

integrals

| &amp;lt;(#)&amp;lt;&?,

Ja

converge or diverge together. Now use the Integral Test.]

4. Show that

/
Jx

, 2
dx = |TT.

[Put x=$ and integrate by parts.]

6. If (x)-*-k as x-&amp;gt;-cc
,
and $ (^ )-&amp;gt;-^

as x- oo
,
then

[ {$(x-a}-$(x-V)}dx=-(a-l&amp;gt;}(h-]c).
J _oo

[For f^ {d)(x-a}-d)(x-b}}dx= I

*

d)(x-a)dx-\ &amp;lt;t&amp;gt;(x-b}dx

J _ J -? J -?

= (
*~ a

&amp;lt;t&amp;gt;(t}dt-(

~ b

$(t)dt= f~
~

J -- a J --6 /--
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The first of these two integrals may be expressed in the form

(a-b)k+ / pdt,
J -f -a

where p-*-0 as -*-oo, and the modulus of the last integral is less than or

equal to
|

a b
\
K, where K is the greatest value of p throughout the interval

( I a, &). Hence

!*(-&)*.

The second integral may be discussed similarly.]

(2) Integration by parts. The formula for integration by

parts ( 161) is

[*/(*) f (*) dx =/(?) &amp;lt; (?) -/(a) (a)
-

f*/ (*) &amp;lt; (*) cfo.

J a J a

Suppose now that f-*-oo . Then if any two of the three terms

in the above equation which involve f tend to limits, so does the

third, and we obtain the result

(a?) dx = lirn /(f) &amp;lt;/&amp;gt;
(f) f(a) $ (a)

There are of course similar results for integrals to oo
,
or from

00 tO 00 .

Examples LXXV. 1. Show that

/*
^m^

n
-

AOT+n &amp;gt;

then
(
I T ^ j

n= W(w4- -!)}/_!,. Hence prove that j
rm, n=m ! (tt-

T 00
y&m

jf\
&amp;lt;lx

4. Show similarly that if /m , n
=

I n ... + ;

then
J o U-T# ;

Verify the result by applying the substitution ^7= ^
2 to the result of Ex. 3.

180. Other types of infinite integrals. It was assumed,

in the definition of the ordinary or finite integral given in

Ch. VII, that (1) the range of integration is finite and (2) the

subject of integration is continuous.

It is possible, however, to extend the notion of the definite

integral so as to apply to many cases in which these conditions
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are not satisfied. The infinite integrals which we have discussed

in the preceding sections, for example, differ from those of Ch. VII

in that the range of integration is infinite. We shall now suppose

that it is the second of the conditions (1), (2) that is not satisfied.

It is natural to try to frame definitions applicable to some such

cases at any rate. There is only one such case which we shall

consider here. We shall suppose that
(f&amp;gt; (x) is continuous throughout

the range of integration (a, A) except for a finite number of values

of x, say x = , f2 ,
. . ., and that

(j&amp;gt;(x)+tt
or &amp;lt; (x)

- oo as x tends

to any of these exceptional values from either side.

It is evident that we need only consider the case in which

(a, A) contains one such point f. When there is more than one such

point we can divide up (a, A) into a finite number of sub-intervals

each of which contains only one
; and, if the value of the integral

over each of these sub-intervals has been defined, we can then

define the integral over the whole interval as being the sum of

the integrals over each sub-interval. Further, we can suppose
that the one point f in (a, A) comes at one or other of the

limits a, A. For, if it comes between a and A, we can then
fA

define I
&amp;lt;f&amp;gt; (x) dx as

J a

r fA
6 (x) dx -f 6 (x) dx,

J a J

assuming each of these integrals to have been satisfactorily de

fined. We shall suppose, then, that
(f
= a

;
it is evident that the

definitions to which we are led will apply, with trifling changes, to

the case in which f= A.

Let us then suppose &amp;lt; (x) to be continuous throughout (a, A)
except for x = a, while

&amp;lt;/&amp;gt;(#)

-*-oo as x-*-a through values greater
than a. A typical example of such a function is given by

where s &amp;gt;

; or, in particular, if a = 0, by &amp;lt; (x) x~s
. Let us

therefore consider how we can define

when s &amp;gt; 0.
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r -.-.

The integral I y
s~2

dy is convergent if s &amp;lt; 1 ( 175) and means

lim I y
s~ 2

dy. But if we make the substitution y = 1 /#, we
1}-*-OC / I/A

obtain

I y
s ~&quot;

dy = I x~s dx.
J \\A J 1/r,

C A
Thus lim / x~s

dx, or, what is the same thing,

f

x~s
dx,

{*
lim
e-*-+ 0^ e

exists provided that s &amp;lt; 1 ;
and it is natural to define the value of

the integral (1) as being equal to this limit. Similar considerations
rA

lead us to define I (x a)~
s dx by the equation

J a,

CA rA
I (x a )~~

s dx = lim I (x a)~
s dx.

Ja e^+Qj a+ e

We are thus led to the following general definition: if the integral

a+e

tends to a limit I as e-^-f 0, we shall say that the integral
rA
I

(f) (x) dx
- a,

is convergent and has the value I.

Similarly, when &amp;lt;(#)-^oo as x tends to the upper limit A
t
we

rA
define (f)(x)dx as being

J a
rA-e

lim / d&amp;gt; (x) dx :

and then, as we explained above, we can extend our definitions to

cover the case in which the interval (a, A) contains any finite

number of infinities of (as).

An integral in which the subject of integration tends to GO

or to oo as x tends to some value or values included in the range

of integration will be called an infinite integral of the second kind :

the first kind of infinite integrals being the class discussed in

111 et seq. Nearly all the remarks (i) (vii) made at the end of

177 apply to infinite integrals of the second kind as well as to

those of the first.
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181. We may now write the equation (4) of 179 in the form

(1).

The integral on the right-hand side is defined as the limit, as T-*-C, of the

corresponding integral over the range (6, r), i.e. as an infinite integral of the
second kind. And when {/(*)} / (t] has an infinity at t=c the integral is

essentially an infinite integral. Suppose for example, that (#)
= (!+ ^)~

m
,

where
l&amp;lt;m&amp;lt;2, and a=0, and that /(*) = */(! -) Thei1 6= 0, c=l, and (1)

becomes

and the integral on the right-hand side is an infinite integral of the second
kind.

On the other hand it may happen that $ {/ (*)}/ (0 is continuous for t=c.

In this case

&quot;(t)dt
f 7)

is a finite integral, and

lira

J {/(/)} / (*)*=

in virtue of the corollary to Theorem (10) of 160. In this case the
substitution x=*f(t) transforms an infinite into a finite integral. This case
arises if m^ 2 in the example considered a moment ago.

Examples LXXVI. 1. If
&amp;lt;(#)

is continuous except for x=a, while

&amp;lt;jy (#)-- oo as d?--a, then the necessary and sufficient condition that / (#) dx
J a

should be convergent is that we can find a constant K such that

A

a+e

for all values of e, however small (cf. 178).

It is clear that we can choose a number A between a and A, such that

&amp;lt; (#) is positive throughout (a, 4
). If $ (#) is positive throughout the

whole interval (a, A) then we can of course identify A and A. Now

[
A

C A C-A
(#) dx=\ &amp;lt; (.v) do? + I

7 -
j a-e 7 ^1

The first integral on the right-hand side of the above equation increases

as f decreases, and therefore tends to a limit or to oo
;
and the truth of the

result stated becomes evident.

If the condition is not satisfied then I 0(#)d#-*-oo . We shall then say

FA
*&quot;

that the integral I &amp;lt; (#) dx diverges to oo . It is clear that, if
(/&amp;gt; (#)

-. oo
7 a

as o;-*-a+0, then convergence and divergence to oo are the only alternatives

for the integral. We may discuss similarly the case in which
&amp;lt;(#)-- -co .
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2. Prove that

if 5 &amp;lt; 1, while the integral is divergent if s ^ 1.

3. If (f)(x}-*~cc as x * a + and $ (x) &amp;lt;K(x a)~
8
,
where s

&amp;lt; 1, then
CA

\ &amp;lt;f&amp;gt;(x}dx
is convergent; and if

&amp;lt;(#)&amp;gt; K(x a)~ t
where s^l, then the

J a

integral is divergent. [This is merely a particular case of a general com

parison theorem analogous to that stated in 178.]

4. Are the integrals

A dx f A dx ( A dx

dx [ A dx [A dx [ A dx

convergent or divergent 1

5. The integrals / =-r- , / ,7
-

c are convergent, and the value of
J -il/x 7a-ix/(^-)

each is zero.

6. The integral I

X
is convergent. [The subject of integration

tends to QO as x tends to either limit.]

r TT cfT
7. The integral I

-
\i

ig convergent if and only if s&amp;lt; 1.

/i*

Xs

. i-
t
dx is convergent if t &amp;lt; s + 1.

9. Show that
|

-^-^
cfcp, where A &amp;gt; 0, is convergent ifp &amp;lt; 2. Show also

J o **

that, if
&amp;lt;p

&amp;lt; 2, the integrals

/&quot;&quot;sinx

T f^sinx ,
/&quot;

3;r sin^ J7-- d^, ---- dx. I --dx....
X^ ] ^ J 2;r XP

alternate in sign and steadily decrease in absolute value. [Transform the

integral whose limits are kir and ( + !) by the substitution x = /C7r+y.]

10. Show that / ^^-dx, where
0&amp;lt;^&amp;gt;&amp;lt;2,

attains its greatest value

when A =TT. (-3/aM. 7^n&amp;gt;. 1911.)

11 The integral I (cos x)
1

(sin x}
mdx is convergent if and only if I &amp;gt;

-
1,

7o

12. Such an integral as
/

^ X
,
where 5&amp;lt;1,

does not fall directly
J o * f -^

under any of our previous definitions. For the range of integration is infinite
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and the subject of integration tends to oo as x -^- + 0. It is natural to
define this integral as being equal to the sum

l+x

provided that these two integrals are both convergent.

The first integral is a convergent infinite integral of the second kind
if 0&amp;lt;s&amp;lt;l. The second is a convergent infinite integral of the first kind if

s &amp;lt; 1. It should be noted that when s &amp;gt; 1 the first integral is an ordinary
finite integral ;

but then the second is divergent. Thus the integral from to
oo is convergent if and only if

&amp;lt; s &amp;lt; 1.

/*
x*~ l

T ~t
d% is convergent if and only if &amp;lt; s &amp;lt;t.

14. The integral /

~ x
dx is convergent if and only if

&amp;lt; s
&amp;lt; 1,

J o i x
&amp;lt; t &amp;lt; 1. [It should be noticed that the subject of integration is undefined

when #=1; but (^
8 ~ 1 -^- 1

)/(l -#)-*- t-s as x-^l from either side
; so that

the subject of integration becomes a continuous function of x if we assign to it

the value t s when x=\.

It often happens that the subject of integration has a discontinuity which
is due simply to a failure in its definition at a particular point in the range
of integration, and can be removed by attaching a particular value to it at
that point. In this case it is usual to suppose the definition of the subject
of integration completed in this way. Thus the integrals

f &quot;&quot; sin mx , [~
dx, I

J o & Jo

&quot; sn mx ,

dx
sin x

are ordinary finite integrals, if the subjects of integration are regarded as

having the value in when #=0.]

15. Substitution and integration by parts. The formulae for trans
formation by substitution and integration by parts may of course be extended
to infinite integrals of the second as well as of the first kind. The reader
should formulate the general theorems for himself, on the lines of 179.

16. Prove by integration by parts that if s
&amp;gt; 0, t &amp;gt; 1, then

-

18. If 0&amp;lt;*&amp;lt;1 then
JO
^- ^fll^ r*^*
l+# Jo l + ! Jo l + t

19.

ip. 1909.)
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20. Show, by means of the substitution at=t/(I
-

1\ that if I and m are

both positive then

21. Show, by means of the substitution x=ptJ(p-}-\ t\ that if
I, m, and

p are all positive then

o

22. Prove that f

*

-j-
-

-f-
-- = * and

/&quot;

*

-. - ^r- = *ir (a+ 6),/^{(*-)(6~)} JaV{(#-a)(6-tf)}
&quot;

(i) by means of the substitution x= a+ (b
-

a] t
2
, (ii) by means of the substitu

tion (6 x}l(x a)= t
t
and

(iii) by means of the subs fitution x= a cos2
1+ b sin2

1.

23. If s &amp;gt;

- 1 then

24. Establish the formulae

25. Prove that

J

[Put tr=sin2 ^ and use Ex. LXIII. 8.J (J/a^A TV-ip. 1912.)

182. Some care has occasionally to be exercised in applying the rule

for transformation by substitution. The following example affords a good
illustration of this.

Let J=r
(.

2
-6^+13)&amp;lt;&7.

We find by direct integration that .7=48. Now let us apply the substitution

which gives x= 3 *J(y 4). Since y= 8 when x 1 and y= 20 when x= 7, we

appear to be led to the result

The indefinite integral is

1
(y_ 4)3/2+ 4 (y- 4)V2,

and so we obtain the value ^-, which is certainly wrong whichever sign we
choose.
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The explanation is to be found in a closer consideration of the relation

between x and y. The function &3 -6x+I3 has a minimum for #=3, when

y= 4. As x increases from 1 to 3, y decreases from 8 to 4, and dx\dy is

negative, so that

dx 1

As x increases from 3 to 7, y increases from 4 to 20, and the other sign must
be chosen. Thus

a formula which will be found to lead to the correct result.

Similarly, if we transform the integral /
dx=ir by the substitution

J o

#=arc sin y, we must observe that ck/cfy 1/V(1 -y2
)or dx/dy= -

1/^(1 -?/
2
)

according as ^ # &amp;lt; TT or ^TT &amp;lt; x &amp;lt;

TT.

Example. Verify the results of transforming the integrals

f
I

f 77

/ (4aP
- x+ Jg- ) cfo, / cos2 ^ &amp;lt;ir

y o y o

by the substitutions 4x2 -x+^=yy
#=arc siny respectively.

183. Series of positive and negative terms. Our defini

tions of the sum of an infinite series, and the value of an infinite

integral, whether of the first or the second kind, apply to series

of terms or integrals of functions whose values may be either

positive or negative. But the special tests for convergence or

divergence which we have established in this chapter, and the

examples by which we have illustrated them, have had reference

almost entirely to the case in which all these values are positive.
Of course the case in which they are all negative is not essentially
different, as it can be reduced to the former by changing un into

un or $ (x) into &amp;lt; (x).

In the case of a series it has always been explicitly or tacitly
assumed that any conditions imposed upon un may be violated for

a finite number of terms : all that is necessary is that such a
condition (e.g. that all the terms are positive) should be satisfied

from some definite term onwards. Similarly in the case of an
infinite integral the conditions have been supposed to be satisfied

for all values of x greater than some definite value, or for all values
of x within some definite interval (a, a +8) which includes the
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value a near which the subject of integration tends to infinity.

Thus our tests apply to such a series as

n2 -10

since n2 10 &amp;gt; when n ^ 4, and to such integrals as

[
l l-2x

,

s
&amp;lt;**

-
7

-
^&amp;gt;3

Jo V#o

since 3# 7 &amp;gt; when x &amp;gt; f ,
and 1 2# &amp;gt; when &amp;lt; x &amp;lt; J.

But when the changes of sign of wn persist throughout the series,

i.e. when the number of both positive and negative terms is in

finite, as in the series 1 + J J + . . .
;
or when

(/&amp;gt; (a?) continually

changes sign as x -* oo
,
as in the integral

f sin a; ,

7 (&
,

Ji &
or as a; -*-

or, where a is a point of discontinuity of
&amp;lt;/&amp;gt;

(a;), as in

the integral

[
A

. / 1 \ dx
sm -- --

;

J a \x a/ x a

then the problem of discussing convergence or divergence becomes

more difficult. For now we have to consider the possibility of

oscillation as well as of convergence or divergence.

We shall not, in this volume, have to consider the more

general problem for integrals. But we shall, in the ensuing

chapters, have to consider certain simple examples of series con

taining an infinite number of both positive and negative terms.

184. Absolutely Convergent Series. Let us then consider

a series ^un in which any term may be either positive or

negative. Let

so that an = un if un is positive and an = - un if un is negative.

Further, let vn = vn or vn = 0, according as un is positive or negative,

and wn = un or wn = 0, according as un is negative or positive ;

or, what is the same thing, let vn or wn be equal to an according

as un is positive or negative, the other being in either case equal

to zero. Then it is evident that vn and wn are always positive, and

that

un = vn - wnt an = vn + wn .
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If, for example, our series is l-(l/2)
2 + (l/3)

2 -
..., then un= (

-
l)

n ~ l

/n
2

and an= l/ri
2
,
while vn= I/n

2 or vn=0 according as n is odd or even and
wn= l/n

2 or wn
= according as n is even or odd.

We can now distinguish two cases.

A. Suppose that the series 2 n is convergent. This is the

case, for instance, in the example above, where 2 n is

Then both ^vn and ^wn are convergent : for (Ex. xxx. 18) any
series selected from the terms of a convergent series of positive
terms is convergent. And hence, by theorem (6) of 77, 2wn or

S (vn wn) is convergent and equal to %vn ^wn .

We are thus led to formulate the following definition.

DEFINITION. When 5orn or S
|

un is convergent, the series %un
is said to be absolutely convergent.

And what we have proved above amounts to this : if %un is

absolutely convergent then it is convergent, so are the series formed

by its positive and negative terms taken separately ;
and the sum of

the series is equal to the sum of the positive terms plus the sum

of the negative terms.

The reader should carefully guard himself against supposing that the

statement an absolutely convergent series is convergent
J

is a mere tautology.
When we say that 2wn is absolutely convergent we do not assert directly
that 2wn is convergent: we assert the convergence of another series 2|zn|,
and it is by no means evident a priori that this precludes oscillation on

the part of 2 un .

Examples LXXVII. 1. Employ the general principle of convergence

( 84) to prove the theorem that an absolutely convergent series is con

vergent. [Since 2
|

un
\

is convergent, we can, when any positive number d is

assigned, choose nQ so that

when w2 &amp;gt; ^i = &quot;o-
-4 fortiori

I *, + 1 + n, + 2+ + U nJ &amp;lt; 5,

and therefore 2ww is convergent.]

2. If &quot;2a n is a convergent series of positive terms, and
|

bn \

&amp;lt; Kan ,
then

2&n is absolutely convergent.

3. If 2an is a convergent series of positive terms, then the series 2 w .r
n is

absolutely convergent when l^.v^l.

H. 22
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4. If 2 an is a convergent series of positive terms, then the series 2 an cos w0,

2 an sin nB are absolutely convergent for all values of 6, [Examples are

afforded by the series 2rn cos?i0, 2rn sin$ of 88.]

5. Any series selected from the terms of an absolutely convergent series

is absolutely convergent. [For the series of the moduli of its terms is a

selection from the series of the moduli of the terms of the original series.]

6. Prove that if 2 un
\

is convergent then

|

2 U H (^2 U n ,

and that the only case to which the sign of equality can apply is that in

which every term has the same sign.

185. Extension of Dirichlet s Theorem to absolutely

convergent series. Dirichlet s Theorem ( 169) shows that the

terms of a series of positive terms may be rearranged in any way
without affecting its sum. It is now easy to see that any abso

lutely convergent series has the same property. For let 2,un be

so rearranged as to become ^un
f

,
and let ,/, vn ,

wn be formed

from un as ctn ,
vn ,

wn were formed from un . Then San is con

vergent, as it is a rearrangement of 2crn ,
and so are Sv , Sttfo j

which are rearrangements of 2vw , 2wn - Also, by Dirichlet s

Theorem, 2vn = %vn and 2wn = Zwn ,
and so

186. Conditionally convergent series. B. We have

now to consider the second case indicated above, viz. that in

which the series of moduli 2 n diverges to oo .

DEFINITION. If 2ttn is convergent, but 2
|

wn
I divergent, the

original series is said to be conditionally convergent.

In the first place we note that, if %un is conditionally con

vergent, then the series 2&amp;lt;vn , ^wn of 184 must both diverge to oo .

For they obviously cannot both converge, as this would involve

the convergence of 2 (vn + wn) or 2crn . And if one of them, say
Zwn , is convergent, and 2vw divergent, then

N N N
2un = 2vn -2wn ........................ (1),000

and therefore tends to oo with N, which is contrary to the

hypothesis that %un is convergent.

Hence 2vw , 2&amp;lt;wn are both divergent. It is clear from equa
tion (1) above that the sum of a conditionally convergent series
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is the limit of the difference of two functions each of which tends

to oo with n. It is obvious too that %un no longer possesses the

property of convergent series of positive terms (Ex. xxx. 18), and

all absolutely convergent series (Ex. LXXVII. 5), that any selection

from the terms itself forms a convergent series. And it seems more

than likely that the property prescribed by Dirichlet s Theorem

will not be possessed by conditionally convergent series
;
at any

rate the proof of 185 fails completely, as it depended essentially

on the convergence of %vn and ^,wn separately. We shall see in a

moment that this conjecture is well founded, and that the theorem

is not true for series such as we are now considering.

187. Tests of convergence for conditionally convergent
series. It is not to be expected that we should be able to find

tests for conditional convergence as simple and general as those

of 167 et seq. It is naturally a much more difficult matter to

formulate tests of convergence for series whose convergence, as is

shown by equation (1) above, depends essentially on the cancelling
of the positive by the negative terms. In the first instance there

are no comparison tests for convergence of conditionally convergent

series.

For suppose we wish to infer the convergence of 2vn from

that of ^un We have to compare

V + Vl + . . . + Vn ,
U + Mj -f . . . + Un .

If every u and every v were positive, and every v less than the

corresponding u, we could at once infer that

VQ + V: + . . . + Vn &amp;lt; UQ + . . . + Unt

and so that %vn is convergent. If the u s only were positive and

every v numerically less than the corresponding u, we could infer

that

I % |
+K |

+ . .. +
|

Vn
|

&amp;lt; U + ... + Unt

and so that Svn is absolutely convergent. But in the general case,

when the us and v s are both unrestricted as to sign, all that we

can infer is that

|V |+ V, -f ... +
|

Vn
|

&amp;lt; U +...+\Un\.

This would enable us to infer the absolute convergence of 2vro

from the absolute convergence of *2&amp;lt;un \
but if Swn is only con

ditionally convergent we can draw no inference at all.

99 9
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Example. We shall see shortly that the series l-*+i - + ... is con

vergent. But the series + $+ + + ... is divergent, although each of its

terms is numerically less than the corresponding term of the former series.

It is therefore only natural that such tests as we can obtain

should be of a much more special character than those given in

the early part of this chapter.

188. Alternating Series. The simplest and most common

conditionally convergent series are what is known as alternating

series, series whose terms are alternately positive and negative.

The convergence of the most important series of this type is

established by the following theorem.

If $ (??) is a positive function of n which tends steadily to

zero as n-^ oo
,
then the series

*(0)-$ (!) +
&amp;lt;#&amp;gt;
(2)-...

is convergent, and its sum lies between
&amp;lt;/&amp;gt;

(0) and
&amp;lt;j&amp;gt;

(0) &amp;lt;f&amp;gt; (1).

Let us write
&amp;lt;/&amp;gt;

, fa, ... for
&amp;lt;/&amp;gt;(0),

&amp;lt; (1), ...
;
and let

sn =
&amp;lt;/&amp;gt;o

-
fa + &amp;lt;k -...+(- l)

?l
.

Then

Hence s
,
s2 ,

s4 , ..., s2n ,
... is a decreasing sequence, and therefore

tends to a limit or to oo
,
and slt s3 ,

ss , ..., szn+1 ,
... is an in

creasing sequence, and therefore tends to a limit or to GO . But

lim (Szn+iSzn)
= lini (- l)

2n+1
(j)2n+l

= 0, from which it follows that

both sequences must tend to limits, and that the two limits must

be the same. That is to say, the sequence s
_)t
slt ...,sn ,

... tends to

a limit. Since s = &amp;lt;

&amp;gt;

s1
=

(j)

-
&amp;lt;j&amp;gt;

lt it is clear that this limit lies

between
&amp;lt;p

and &amp;lt;

&amp;lt;/&amp;gt;!.

Examples LXXVIII. 1. The series

where a&amp;gt;0,
are conditionally convergent.

2. The series 2 (- l)
n
(%+ )-, where a&amp;gt;0,

is absolutely convergent if

, conditionally convergent if 0&amp;lt;^1, and oscillatory if s&amp;lt;0.
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3. The sum of the series of 188 lies between sn and *n + 1 for all values

of n
;
and the error committed by taking the sum of the first n terms instead

of the sum of the whole series is numerically not greater than the modulus of

the (w+ l)th term.

4. Consider the series

which we suppose to begin with the term for which w= 2, to avoid any
difficulty as to the definitions of the first few terms. This series may be

written in the form

SN (-1)&quot; _(z2&amp;gt; (-i)nn

Jn J

or

say. The series 2
-fyn is convergent ;

but 2 xn is divergent, as all its terms are

positive, and limw^n=l. Hence the original series is divergent, although it

is of the form 02 -03+ 04- &amp;gt;

where n -*~0. This example shows that the

condition that $n should tend steadily to zero is essential to the truth of the

theorem. The reader will easily verify that ^(2/1+ 1) 1
&amp;lt; \/(2?i) + 1, so that

this condition is not satisfied.

5. If the conditions of 188 are satisfied except that $n tends steadily
to a positive limit I, then the series 2

(
-

l)
n

&amp;lt; n oscillates finitely.

6. Alteration of the sum of a conditionally convergent series by
rearrangement of the terms. Let s be the sum of the scries 1 - 1

and S2n the sum of its first 2n terms, so that

Now consider the series

in which two positive terms are followed by one negative term, and let t3n

denote the sum of the first 3n terms. Then

11 1

2n~+I

Now

since the sum of the terms inside the bracket is clearly less than

; and

l{m
^n\2

+^ + +^ liml^
by 156 and 158. Hence

-~
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and it follows that the sum of the series (1) is not s, but the right-hand side of

the last equation. Later on we shall give the actual values of the sums of the

two series : see 213 and Ch. IX, Misc. Ex. 19.

It can indeed be proved that a conditionally convergent series can always
be so rearranged as to converge to any sum whatever, or to diverge to co or

to x . For a proof we may refer to Bromwich s Infinite Series, p. 68.

7. The series 1 +_-_ + _-+_+... diverges to x . [Here

where s2n= 1 - -.- + ...
j-- ,

which tends to a limit as n-*~ oo
.]

189. Abel s and Dirichlet s Tests of Convergence. A more general

test, which includes the test of 188 as a particular test case, is the following.

Dirichlet s Test. If
&amp;lt;f)
n satisfies the same conditions as in 188, and 2an

is any series which converges or oscillates finitely, then the series

is convergent.

The reader will easily verify the identity

where sw=a + ai+ ... +an . Now the series
((/&amp;gt; $i) + ($i $2) + --- is con

vergent, since the sum to n terms is
0o~&amp;lt;K

and lim0B=0; and all its

terms are positive. Also since 2 n ,
if not actually convergent, at any rate

oscillates finitely, we can determine a constant K so that
|

sv
|

&amp;lt; K for all

values of v. Hence the series

2
(&amp;lt; -$,, + 1 )

is absolutely convergent, and so

tends to a limit as n -*- oo . Also n ,
and therefore sn

&amp;lt;j)
n ,

tends to zero

And therefore

tends to a limit, i.e. the series 2av (f)v is convergent.

Abel s Test. There is another test, due to Abel, which, though of less-

frequent application than Dirichlet s, is sometimes useful.

Suppose that
&amp;lt;j&amp;gt;

n&amp;gt;

as in Dirichlet s Test, is a positive and decreasing

function of n, but that its limit as n -*- oo is not necessarily zero. Thus we

postulate less about &amp;lt; n ,
but to make up for this we postulate more about

2an viz. that it is convergent. Then we have the theorem : if (j&amp;gt;

n is a positive

and decreasing function of n, and 2 n is convergent, then 2 an &amp;lt; n is convergent.

For W has a limit as n -*-cc, say I : and Km ($w
-

1)
= 0. Hence, by

Dirichlet s Test, 2 an (&amp;lt;-) is convergent; and as 2 w is convergent it

follows that 2an
&amp;lt;j)n

is convergent.
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This theorem may be stated as follows : a convergent series remains con

vergent if we multiply its terms by any sequence of positive and decreasing
factors.

Examples LXXIX. 1. Dirichlet s and Abel s Tests may also be established

by means of the general principle of convergence ( 84). Let us suppose,
for example, that the conditions of Abel s Test are satisfied. We have

identically

l + ...+av .

The left-hand side of (1) therefore lies between
h&amp;lt;f)m and H(f)m ,

where h and
H are the algebraically least and greatest of sm, m ,

s
m&amp;lt;m + l , ..., s

m&amp;lt;n
. But,

given any positive number 8, we can choose m so that sm, |

&amp;lt; when m 21 m0t

and so

when
n&amp;gt;m&amp;gt;mQ. Thus the series 2an

&amp;lt;j)
n is convergent.

2. The series 2 cos nd and 2 sin n& oscillate finitely when 6 is not a

multiple of ?r. For, if we denote the sums of the first n terms of the two
series by sn and tn ,

and write 2=Cis0, so that \z\
= l and =+=!, we have

,-, =[T^|=fT--T|
;

and so
|

*
|

and
[

tn \

are also not greater than 2/ 1

1 - z
\

. That the series are

not actually convergent follows from the fact that their nth terms do not tend

to zero (Exs. xxiv. 7, 8).

The sine series converges to zero if 6 is a multiple of IT. The cosine

series oscillates finitely if 6 is an odd multiple of ir and diverges if 6 is an

even multiple of TT.

It follows that if n is a positive function of n which tends steadily to

zero as n-*- oo
,
then the series

2 ft
cos ?id, 2

ff)n sin nQ

are convergent, except perhaps the first series when 6 is a multiple of 2?r. In

this case the first series reduces to
2^&amp;gt;w ,

which may or may not be conver

gent : the second series vanishes identically. If 2
(f&amp;gt;n is convergent then both

series are absolutely convergent (Ex. LXXVII. 4) for all values of 6, and the

whole interest of the result lies in its application to the case in which

2$n is divergent. And in this case the series above written are con

ditionally and not absolutely convergent, as will be proved in Ex. LXXIX. 6.

If we put 6 = rr in the cosine series we are led back to the result of 188,

since cos nn = (- l)
n

.

3. The series 2n~ 8
cosn0, 2n~ 8 smn0 are convergent if

s&amp;gt;0,
unless (in

the case of the first series) 6 is a multiple of 2n- and &amp;lt;s
&amp;lt; 1.
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4. The series of Ex. 3 are in general absolutely convergent if
s&amp;gt;l,

conditionally convergent if 0&amp;lt;s
&amp;lt;

1, and oscillatory if s (finitely if 5 =
and infinitely if

s&amp;lt;0).
Mention any exceptional cases

5. If 2a tt?i~
a is convergent or oscillates finitely, then 3.ann~ l is convergent

when t&amp;gt;s.

6. If
(f)n is a positive function of n which tends steadily to as n -*- oc

,

and 20n is divergent, then the series 2&amp;lt; w cos?i#, 2$TC sin7i0 are not absolutely

convergent, except the sine-series when 6 is a multiple of tr. [For suppose,

e.g., that 2$w cosn()
\

is convergent. Since cos2 $ ^
j

cos nd
\ ,

it follows that

2
&amp;lt;f)

n cos
2 nB or

(1+oos 2*0)

is convergent. But this is impossible, since 20n is divergent and 2$n cos 2??0,

by Dirichlet s Test, convergent, unless 6 is a multiple of ir. And in this

case it is obvious that 2&amp;lt; n |cos?i0| is divergent. The reader should write

out the corresponding argument for the sine-series, noting where it fails

when 6 is a multiple of
rr.J

190. Series of complex terms. So far we have confined

ourselves to series all of whose terms are real. We shall now
consider the series

%un = ?,(vn + iwn),

where vn and wn are real. The consideration of such series does

not, of course, introduce anything really novel. The series is

convergent if, and only if, the series

are separately convergent. There is however one class of such

series so important as to require special treatment. Accordingly
we give the following definition, which is an obvious extension of

that of 184.

DEFINITION. The series ^un ,
where un = vn + iwn , is said to be

absolutely convergent if the series 2&amp;lt;vn and 2wn are absolutely

convergent.

THEOREM. The necessary and sufficient condition for the absolute

convergence of 2w n ** the convergence of 2 |

un \

or S */(vn
z + wn*).

For if 2wn is absolutely convergent, then both of the series

2
|

vn
| , 2

|

wn
j

are convergent, and so S
{ \vn \

+
|

wn
\ }

is con

vergent : but

|

Un
|

= VOn2 + Wn) ^\Vn
\

+ \Wn
\

t
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and therefore 2
|

un
\

is convergent. On the other hand

Vn |

^ V0 2 + Wj\
|

Wn I

^ V(V + Wn2

),

so that 2
|

vw
|

and S
|

wn are convergent whenever 2
|

wn
|

is con

vergent.

It is obvious that aft absolutely convergent series is convergent,

since its real and imaginary parts converge separately. And
Dirichlet s Theorem ( 169, 185) may be extended at once to

absolutely convergent complex series by applying it to the

separate series 2un and 2wn .

The convergence of an absolutely convergent series may also be deduced

directly from the general principle of convergence (cf. Ex. LXXVII. 1). We leave

this as an exercise to the reader.

191. Power Series. One of the most important parts of

the theory of the ordinary functions which occur in elementary

analysis (such as the sine and cosine, and the logarithm and

exponential, which will be discussed in the next chapter) is that

which is concerned with their expansion in series of the form

^anxn. Such a series is called a power series in x. We have

already come across some cases of expansion in series of this kind

in connection with Taylor s and Maclaurin s series ( 148). There,

however, we were concerned only with a real variable x. We shall

now consider a few general properties of power series in z, where

z is a complex variable.

A. A power series %anzn may be convergent for all values of z,

for a certain region of values, or for no values except z 0.

It is sufficient to give an example of each possibility.

1. The series 2 r is convergent for all values of yri~^ For if un= then

as n -&amp;gt;- QO
,
whatever value z may have. Hence, by d Alembert s Test, 2 un

\

is

convergent for all values of z, and the original series is absolutely con

vergent for all values of z. We shall see later on that a power series, when

convergent, is generally absolutely convergent.

2. The series 2n\ zn is not convergent for any value of z except 2= 0.

For if un= n\ zn then
|

? B + 1 1/|
un \

= (n+ V)\z\, which tends to oo with n
t
unless

2= 0. Hence (cf. Exs. xxvu. 1, 2, 5) the modulus of the nth term tends to GO

with n; and so the series cannot converge, except when 2= 0. It is obvious

that any power series converges when 2=0.
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3. The series 2zn is always convergent when
\z\&amp;lt;l t

and never convergent
when

|

z
\

&amp;gt; 1. This was proved in 88. Thus we have an actual example of
each of the three possibilities.

192. B. If a power series 2 anz
n

is convergent for a par
ticular value of z, say zl

= ^ (cos 1 + i sin ^), then it is absolutely

convergent for all values of z such that \z\ &amp;lt;rl .

For lim anzf = 0, since 2aw^n
is convergent, and therefore we

can certainly find a constant K such that
|

anz^
n

\
&amp;lt; K for all

values of n. But, if z
\

= r &amp;lt; r1} we have

and the result follows at once by comparison with the convergent
geometrical series 2 (r/r^

11
.

In other words, if the series converges at P then it converges

absolutely at all points nearer to the origin than P.

Example. Show that the result is true even if the series oscillates

finitely when z=zlf [If sH= Oo+ aiZl + ...+an z1
n then we can find K so that

sn \&amp;lt;K for all values of n. But
|

anzf \

=
\ ^-v-i I

^
| ^-i |

+K \&amp;lt;%K&amp;gt;

and the argument can be completed as before.]

193. The region of convergence of a power series.

The circle of convergence. Let z = r be any point on the

positive real axis. If the power series converges when z = r then
it converges absolutely at all points inside the circle z r. In

particular it converges for all real values of z less than r.

Now let us divide the points r of the positive real axis into

two classes, the class at which the series converges and the class

at which it does not. The first class must contain at least the

one point z = 0. The second class, on the other hand, need not

exist, as the series may converge for all values of z. Suppose
however that it does exist, and that the first class of points
does include points besides z = Q. Then it is clear that every
point of the first class lies to the left of every point of the second
class. Hence there is a point, say the point z = R, which divides

the two classes, and may itself belong to either one or the other.

Then the series is absolutely convergent at all points inside the

circle \z\=R.
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For let P be any such point. We can draw a circle, whose

centre is and whose radius is

less than R, so as to include P \ p /

inside it. Let this circle cut OA
in Q. Then the series is con

vergent at Q, and therefore, by
Theorem B, absolutely conver

gent at P.

On the other hand the series

cannot converge at any point P Flg * 51 *

outside the circle. For if it converged at P it would converge

absolutely at all points nearer to than P
;
and this is absurd,

as it does not converge at any point between A and Q (Fig. 51).

So far we have excepted the cases in which the power series

(1) does not converge at any point on the positive real axis

except z = Q or (2) converges at all points on the positive real

axis. It is clear that in case (1) the power series converges
nowhere except when z 0, and that in case (2) it is absolutely

convergent everywhere. Thus we obtain the following result: a

power series either

(1) converges for z and for no other value of z
,
or

(2) converges absolutely for all values of z
;
or

(3) converges absolutely for all values of z within a certain

circle of radius R, and does not converge for any value

of z outside this circle.

In case (3) the circle is called the circle of convergence
and its radius the radius of convergence of the power series.

It should be observed that this general result gives absolutely

no information about the behaviour of the series on the circle of

convergence. The examples which follow show that as a matter

of fact there are very diverse possibilities as to this.

Examples LXXX. 1. The series l+az+ a?zz +... ,
where a &amp;gt; 0, has a

radius of convergence equal to I/a. It does not converge anywhere on its

circle of convergence, diverging when 2= I/a and oscillating finitely at all other

points on the circle.

z z2 z3

2. The series -^ + % + 02+ ... has its radius of convergence equal to 1
;

it converges absolutely at all points on its circle of convergence.
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3. More generally, if
|

an + l
\ j\

an \

-* X, or
|

a n
\

l/n
-&amp;gt;- X, as n -- oo

,
then the

series a + a 1 2+ a
2

2+ ... 1ms 1/X as its radius of convergence. In the first case

lira
i
a n + iZ

n + l
\/\

an zn =X||,
which is less or greater than unity according as U

|

is less or greater than

1/X, so that we can use D Alembert s Test ( 168, 3). In the second case we
can use Cauchy s Test

( 168, 2) similarly.

4. The logarithmic series. The series

is called (for reasons which will appear later) the logarithmic series. It

follows from Ex. 3 that its radius of convergence is unity.

When z is on the circle of convergence we may write z=cosd-\-i sin#,

and the series assumes the form

The real and imaginary parts are both convergent, though not absolutely

onvergent, unless 6 is an odd multiple of ?r (Exs. LXXIX. 3, 4). If & is an odd

multiple of ir then z 1, and the series assumes the form 1
-| J ...,

and so diverges to oo . Thus the logarithmic series converges at all points

of its circle of convergence except the point z= 1.

5. The binomial series. Consider the series

-
8)

J3+ ___
O !

If m is a positive integer then the series terminates. In general

= I m-n\
~&quot;

\an

so that the radius of convergence is unity. We shall not discuss here the

question of its convergence on the circle, which is a little more difficult.*

194. Uniqueness of a power series. If 2an z
n is a power series which

is convergent for some values of z at any rate besides 2= 0, and f(z) is its

sum, then it is easy to see that/ (2) can be expressed in the form

where fa -*-0 as z |-*-0. For if
p.

is any number less than the radius of con

vergence of the series, and
|^j&amp;lt;/z,

then
|

n |/z
n

&amp;lt;A ,
where A is a constant

(cf. 192), and so

l/-
G*-l*l)

* Sec Bromwich, Infinite Series, pp. 225 et seq. ; Hobson, Plane Trigonometry

(3rd edition), pp. 268 et seq.
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where K is a number independent of z. It follows from Ex. LV. 15 that

if 2an&*=2bn&* for all values of z whose modulus is less than some
number ^ then an= bn for all values of n. This result is capable of considerable

generalisations into which we cannot enter now. It shows that the same

function f(z) cannot be represented by two different power series.

195. Multiplication of Series. We saw in 170 that if

%un and 2vn are two convergent series of positive terms, then

Sttn, x 2vn = 2w, where

wn = uQvn + u^n-! + ... + unv .

We can now extend this result to all cases in which ^un and %vn
are absolutely convergent ;

for our proof was merely a simple

application of Dirichlet s Theorem, which we have already ex

tended to all absolutely convergent series.

Examples LXXXI. 1. If
|

z
\

is less than the radius of convergence
of either of the series 2an zn

,
2bn zn,

then the product of the two series is

2cnz
n

,
where cB=a &n+ a

1
&B _ 1+ ... + aB & .

2. If the radius of convergence of 2an z
n is /?, and f(z) is the sum of

the series when
|

z
\

&amp;lt; R, and \z\ is less than either R or unity, then

f(z)/(l-z)= 2s
tl
zn

,
where sn=a ()+ a1 + ...+.

3. Prove, by squaring the series for 1/(1 -z\ that 1/(1 z)
2=I+2z+ 3z2+ ...

if
z\&amp;lt;l.

4. Prove similarly that 1/(1 --s)
3= l+32+622 + ..., the general term

being %(n+ l)(n + 2)z
n

.

5. The Binomial Theorem for a negative integral exponent. If

,
and m is a positive integer, then

_ ...

(l-z)
m 1.2 1.2...n

[Assume the truth of the theorem for all indices up to m. Then, by Ex.

11(1- z)
m + J= 2*, where

. ~~
as is easily proved by induction.]

6. Prove by multiplication of series that if

and
|

z
|

&amp;lt; 1, then/(w, z)f(m , z} =f(m+m 9 z}. [This equation forms the basis of

Euler s proof of the Binomial Theorem. The coefficient of zn in the product
series is
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This is a polynomial in m and m : but when m and m are positive

integers this polynomial must reduce to r
n +m

j
?

jn virtue of the Binomial

Theorem for a positive integral exponent, and if two such polynomials are

equal for all positive integral values of m and m then they must be equal

identically.]

7. If f(z)
= l + z+

|-|
+ .-. then f(z)f(z }=f(z+ z

}. [For the series for

f(z) is absolutely convergent for all values of z : and it is easy to see that if

zn z n
,, n

-, ,
^=

,
then wn= -

.]

a if

then C(z+z }
= C(z}C(z }-S(z)S(z \ S(z+z )

= S(z} C(z ) + C(z} S (z
f

),

and {CW + {S (*)}*
= !.

9. Failure of the Multiplication Theorem. That the theorem is not

always true when 2un and 2vn are not absolutely convergent may be seen by

considering the case in which

_ (-1)&quot;
&quot;&quot;-&quot;-

Then

But J{(r+ 1) (n+ 1 - )} ^$(n + 2), and so \wn \&amp;gt; (2n + 2)/(w + 2), which tends

to 2
; so that 2wn is certainly not convergent.

MISCELLANEOUS EXAMPLES ON CHAPTER VIII.

1. Discuss the convergence of the series Sw*{V(^ + l)
- 2Jn+J(n 1)},

where is real. ^ (Math. Trip. 1890.)

2. Show that 2wr
A*(w),

where Awn
= wn- wn + 1 ,

A2
?^

?l
= A (A n),

and so on, is convergent if and only if k &amp;gt; r+ s+ 1, except when s is a positive

integer less than k, when every term of the series is zero.

[The result of Ch. VII, Misc. Ex. 11, shows that Afc

(?i
8
) is in general of

order n*-*.]

3. Show that
00_n2+ 9n+ 5 _ _5_

1 (7i+l)(24+ 3)(2rc+ 5)(ra+4J
&quot;

36

(JfafA. TWp. 1912.)

[Resolve the general term into partial fractions.]
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4. Show that, if R (n) is any rational function of n, we can determine

a polynomial P (n) and a constant A such that 2{# (n)-P(n)-(A/n)} is

convergent. Consider in particular the cases in which R(n) is one of

the functions l/(an + b), (

5. Show that the series

1 l -J-

is convergent provided only that z is not a negative integer.

6. Investigate the convergence or divergence of the series

2 sin-, 2-sin-, 2(-l)sm-, 2^1-cos-V 2 (- \Yn (l -cos -Vn 9
.*

&quot; *
. \ / . \ /

where a is real.

7. Discuss the convergence of the series

...

i \ 2 3 w

where 6 and a are real. (Math. Trip. 1899.)

8. Prove that the series

in which successive terms of the same sign form groups of 1, 2, 3, 4, ... terms,

is convergent ;
but that the corresponding series in which the groups contain

1, 2, 4, 8, ... terms oscillates finitely. (Math. Trip. 1908.)

9. If ?i, 2
&amp;gt; s, ... is a decreasing sequence of positive numbers whose

limit is zero, then the series

are convergent. [For if (ui + u z+ ... +un)ln=-.vn then ^, v2 ,
v3 , ... is also a

decreasing sequence whose limit is zero (Ch. IV, Misc. Exs. 8, 27). This

shows that the first series is convergent ;
the second we leave to the reader.

In particular the series

are convergent.]

10. If Uo + Ui + u2+ ... is a divergent series of positive and decreasing

terms, then

11. Prove that if a&amp;gt;0 then lim 2
p -* -c n =

12. Prove that lim a 2 n~l~a= l. [It follows from 174 that

-l-I*&quot;*&quot;-!-. -1-a [

%
-1-a

/ 1

*

and it is easy to deduce that 2?t~
1~ a

lies between I/a and (l/a) + l.J
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13. Find the sum of the series 2 un ,
where

#n_#-n-i 1/1
for all real values of x for which the series is convergent. (Math. Trip. 1901.)

[If x
|

is not equal to unity then the series has the sum xj{(x
-

1) (x
2+ 1)}.

If 3;=1 then M=0 and the sum is 0. If x=-l then ww =|(-l)&quot;
+ 1 and

the series oscillates finitely.]

14. Find the sums of the series

(in which all the indices are powers of 2), whenever they are convergent.

[The first series converges only if
| z\ &amp;lt; 1, its sum then being z/(l -z); the

second series converges to zf(l -z)if\z\&amp;lt;l and to 1/(1 -z) if
|

z
\

&amp;gt; 1.]

15. If \an &amp;lt;1 for all values of n then the equation

cannot have a root whose modulus is less than ^, and the only case in which

it can have a root whose modulus is equal to | is that in which an= -
Cis(n0),

when z= l Cis (
-

ff)
is a root.

16. Recurring Series. A power series 2anz
n is said to be a recurring

series if its coefficients satisfy a relation of the type

an+p 1an _ 1 +p2an_2+...+pkan _ k=0 .................. (1),

where n&amp;gt;k and p l} pz , ..., pk are independent of ra. Any recurring series is

the expansion of a rational function of z. To prove this we observe in the

first place that the series is certainly convergent for values of z whose modulus

is sufficiently small. For let G be the greater of the two numbers

Then it follows from the equation (1) that \an \^Gan ,
where an is the

modulus of the numerically greatest of the preceding coefficients
;
and from

this that \an \&amp;lt;

KGn
,
where K is independent Of n. Thus the recurring series

is certainly convergent for values of z whose modulus is less than !/(?.

But if we multiply the series f(z}
= ^an zn by p& p2z

z
, ...pk z

k
,
and add

the results, we obtain a new series in which all the coefficients after the

(k- l)th vanish in virtue of the relation (1), so that

where P
,
P19 ..., P*_i are constants. The polynomial 1 +piz+p2 z*+

is called the scale of relation of the series.

Conversely, it follows from the known results as to the expression of any

rational function as the sum of a polynomial and certain partial fractions of

the type Al(z-a)
p

,
and from the Binomial Theorem for a negative integral
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exponent, that any rational function whose denominator is not divisible by z

can be expanded in a power series convergent for values of z whose modulus is

sufficiently small, in fact if
[2 1

&amp;lt; p, where p is the least of the moduli of the roots

of the denominator (cf. Ch. IV, Misc. Exs. 18_et seq.}. And it is easy to see,

by reversing the argument above, that the series is a recurring series. Thus
the necessary and sufficient condition that a power scries should be a recurring
series is that it should be the expansion of such a rational function of z.

17. Solution of Difference-Equations. A relation of the type of (1)

in Ex. 16 is called a linear difference-equation in a n with constant coefficients.

Such equations may be solved by a method which will be sufficiently ex

plained by an example. Suppose that the equation is

Consider the recurring power series 1an zn. We find, as in Ex. 16, that its

sum is

a
())z* = A l

_

A 2 B
1-22 +

l-22 2

where A lt A 2 ,
and B are numbers easily expressible in terms of o, a

lt and 2 .

Expanding each fraction separately we see that the coefficient of zn is

The values of Jn A%, B depend upon the first three coefficients a
, a^ 2 ,

which may of course be chosen arbitrarily.

18. The solution of the difference-equation un 2 cos 6 un _ j + un _ 2
= ig

un=A cos nB+B sin n6, where A and B are arbitrary constants.

19. If un is a polynomial in n of degree ,
then 2wn 2n is a recurring

series whose scale of relation is (1
-

z)
k + l

. (Math. Trip. 1904.)

20. Expand 9/{(s 1) (z+ 2)
2
} in ascending powers of z.

(Math. Trip. 1913.)

21. Prove that iff(n) is the coefficient of zn in the expansion of zj(l +
in powers of 2, then

(1) /(N)+/(-l)+/(n-2HO, (2) /()= (3B -

where a&amp;gt;3 is a complex cube root of unity. Deduce that f(ri) is equal to

or 1 or - 1 according as n is of the form 3& or 3 + 1 or 3k+ 2, and verify
this by means of the identity z/(l + z+z2

)=z (1
-

z)j(l -z3
).

22. A player tossing a coin is to score one point for every head he turns

up and two for every tail, and is to play on until his score reaches or passes
a total n. Show that his chance of making exactly the total n is (2 + (

-
J)}.

(Math. Trip. 1898.)

[Ifpn is the probability then pn=% (pn -\+Pn-z) also p =
1, /?!

=
.]

H. 23
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23. Prove that

if n is a positive integer and a is not one of the numbers 1, -2, ..., n.

[This follows from splitting up each term on the right-hand side into partial

fractions. When a &amp;gt; 1, the result may be deduced very simply from the

equation

/V !_&amp;lt;**- P(i-ff){i-(i-*)}^Jo 1 # Jo x

by expanding (1 -#)/(! -a?) and l-(l-#)n in powers of x and integrating

each term separately. The result, being merely an algebraical identity, must

be true for all values of a save 1, 2, ..., n.]

24. Prove by multiplication of series that

;^ (

-l).-^ =5
/ 1 I ng

o n ! i n . n ! A 2 3 */ *

[The coefficient of zu will be found to be

\fn\ \fn

Now use Ex. 23, taking a= 0.]

25. If An-^A and Bn-^B as w-^oo
,
then

[Let ^4 n
= ^4 + fn . Then the expression given is equal to

A
Bl+B2+ ... +Bn

.

c1Bn+ 2
Bn _ l+ ... + nB^-- -i-

The first term tends to AB (Ch. IV, Misc. Ex. 27). The modulus of

the second is less than /3{| ^ |

+ |e2 )
+ ... +

1

eB |}M where /3 is any number

greater than the greatest value of
j

$
|

: and this expression tends to zero.]

26. Prove that if cn= al bn+ a2 bn _i+ ...+an b l and

4 n

then

and C 1 + C2 -f... + Cn=^i

Hence prove that if the series 2an ,
26n are convergent and have the sums

A, B, so that A n-*~A, Bn+B, then

Deduce that if 2cw is convergent then its sum is A B. This result is known as

Abel s Theorem on the multiplication of Series. We have already seen

that we can multiply the series 2an ,
2&n in this way if both series are

absolutely convergent : Abel s Theorem shows that we can do so even if

one or both are not absolutely convergent, provided only that the product series
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27. Prove that

[Use Ex. 9 to establish the convergence of the series.]

28. For what values of m and n is the integral / sinw x (1
- cos x}

n dx

convergent ? [If m + 1 and m+ 2n+ 1 are positive.]

29. Prove that if a &amp;gt; 1 then

30. Establish the formulae

In particular, prove that if n &amp;gt; 1 then

[In this and the succeeding examples it is of course supposed that the

arbitrary functions which occur are such that the integrals considered have a

meaning in accordance with the definitions of 177 et seq.]

31. Show that if ^y= ax-(bjx\ where a and b are positive, then y in

creases steadily from - co to GO as x increases from to oo . Hence show that

32. Show that if 2y = ax+ (&/#), where a and b are positive, then two
values of x correspond to any value of y greater than *J(ab\ Denoting the

greater of these by x and the less by #
2 ,

show that, as y increases from

*J(ab) towards co, x increases from *J(b/a) towards oo
,
and x-2 decreases

from J(b/ct) to 0. Hence show that .

/
and that

232
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33. Prove the formula

/o
7(seo

34. If a and b are positive, then

p &amp;lt;fa? TT r
00

=
J Q (38+ aa) (^2+ 62)

2 6 (a+ 6) Jo (^
2 + 2

) (* + &2
)

2 (a + 6)

Deduce that if a, /3,
and y are positive, and 2 &amp;gt;

ay, then

T
00

d^g _ TT f*

J o a^H- 2/3^ + y
~

2 V(2y^) J a

where A=p+ *J(ay}. Also deduce the last result from Ex. 31, by putting

/(^Brl/^+y
2
).

The last two results remain true when /3
2

&amp;lt;ay,
but their

proof is then not quite so simple.

35. Prove that if 6 is positive then

[
tfdx _TT_ f

afidx *

Jo (^^?+6^~ 26 J {(^-

36. Extend Schwarz s inequality (Ch. VII, Misc. Ex. 42) to infinite

integrals of the first and second kinds.

37. Prove that if
&amp;lt;(#)

is the function considered at the end of 178

then

38. Prove that

.

Establish similar results in which the limits of integration are and 1.

(Math. Trip. 1913.)



CHAPTER IX

THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS
OF A REAL VARIABLE

196. THE number of essentially different types of functions

with which we have been concerned in the foregoing chapters
is not very large. Among those which have occurred the most

important for ordinary purposes are polynomials, rational functions,

algebraical functions, explicit or implicit, and trigonometrical

functions, direct or inverse.

We are however far from having exhausted the list of functions

which are important in mathematics. The gradual expansion of

the range of mathematical knowledge has been accompanied by
the introduction into analysis of one new class of function after

another. These new functions have generally been introduced

because it appeared that some problem which was occupying the

attention of mathematicians was incapable of solution by means of

the functions already known. The process may fairly be compared
with that by which the irrational and complex numbers were first

introduced, when it was found that certain algebraical equations
could not be solved by means of the numbers already recognised.
One of the most fruitful sources of new functions has been the

problem of integration. Attempts have been made to integrate
some function /(#) in terms of functions already known. These

attempts have failed
;
and after a certain number of failures it

has begun to appear probable that the problem is insoluble.

Sometimes it has been proved that this is so
;
but as a rule such

a strict proof has not been forthcoming until later on. Generally
it has happened that mathematicians have taken the impossibility
for granted as soon as they have become reasonably convinced

of it, and have introduced a new function F (oc) defined by its
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possessing the required property, viz. that F (x) f(x). Starting

from this definition, they have investigated the properties of

F(x) ;
and it has then appeared that F (x) has properties which

no finite combination of the functions previously known could

possibly have; and thus the correctness of the assumption that

the original problem could not possibly be solved has been

established. One such case occurred in the preceding pages,

when in Ch. VI we defined the function log x by means of the

equation
(dx

log*-]-.

Let us consider what grounds we have for supposing logo; to be a really

new function. We have seen already (Ex. XLII. 4) that it cannot be a rational

function, since the derivative of a rational function is a rational function

whose denominator contains only repeated factors. The question whether it

can be an algebraical or trigonometrical function is more difficult. But it is

very easy to become convinced by a few experiments that differentiation will

never get rid of algebraical irrationalities. For example, the result of

differentiating v/(l +#) any number of times is always the product of J(l+x)

by a rational function, and so generally. The reader should test the

correctness of the statement by experimenting with a number of examples.

Similarly, if we differentiate a function which involves sin x or cos x, one

or other of these functions persists in the result.

We have, therefore, not indeed a strict proof that log x is a new function-

that we do not profess to give* but a reasonable presumption that it is.

We shall therefore treat it as such, and we shall find on examination that its

properties are quite unlike those of any function which we have as yet

encountered.

197. Definition of log x. We define log a?, the logarithm of x,

by the equation
r-dt

log*^
-.

We must suppose that x is positive, since (Ex. Lxxvi. 2) the \

integral has no meaning if the range of integration includes

the point a?=0. We might have chosen a lower limit other

than 1
;

but 1 proves to be the most convenient. With this

definition log 1=0.

We shall now consider how log x behaves as x varies from

towards oo . It follows at once from the definition that log x is a

* For such a proof see the author s tract quoted on p. 236.
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continuous function of x which increases steadily with x and has

a derivative

and it follows from 175 that log x tends to oo as x -^ oo .

If x is positive but less than 1, then logx is negative. For

dt l

Moreover, if we make the substitution t = l/u in the integral, we
obtain

*dt

Thus log x tends steadily to oo as x decreases from 1 to 0.

The general form of the graph of the logarithmic function is

shown in Fig. 52. Since the derivative of log x is I/a?, the slope of

Y

Fig. 52.

the curve is very gentle when as is very large, and very steep
when x is very small.

Examples LXXXII. 1. Prove from the definition that if u &amp;gt; then

[For log (l + u)= I
,
and the subject of integration lies between 1 and

J o * T*

11 ti

2. Prove that log (1 + u) lies between u and u ^j-
---

r when u is
2 2

(
1 -f- v.j

/u
tdf

1

---

3. If &amp;lt;
u

&amp;lt; 1 then u
&amp;lt; log (1

-
w) &amp;lt; /(!

-
w).

4. Prove that

[Use Ex. 1.]
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198. The functional equation satisfied by log a?. The

function log a? satisfies the functional equation

/(^)=/()+/(y) ..................... (i).

For, making the substitution t = yu, we see that

[** dt [
x du f

x du [
l/ydu

log xy = I -7:= =
I
---

Jj * Ji/y u J l u J l u

=
log x

-
log (l/y)

=
log x + log y ,

which proves the theorem.

Examples LXXXIII. 1. It can be shown that there is no solution of

the equation (1) which possesses a differential coefficient and is fundamentally
distinct from log x. For when we differentiate the functional equation, first

with respect to x and then with respect to y, we obtain the two equations

and so, eliminating / (xy\ xf ,(x] =yf (#) But if this is true for every pair

of values of x and yt
then we must have xf (x}

= 6V
,
or / (x}

=
C/x, where C

is a constant. Hence

x

and it is easy to see that (7 =0. Thus there is no solution fundamentally
distinct from log#, except the trivial solution /(#)= 0, obtained by taking
(7=0.

2. Show in the same way that there is no solution of the equation

which possesses a differential coefficient and is fundamentally distinct from

arc tan x.

199. The manner in which log x tends to infinity with x.

It will be remembered that in Ex. xxxvi. 6 we defined certain

different ways in which a function of x may tend to infinity with x,

distinguishing between functions which, when x is large, are of

the first, second, third, . . . orders of greatness. A function f (x)

was said to be of the fcth order of greatness when /(&)/#* tends to

a limit different from zero as as tends to infinity.

It is easy to define a whole series of functions which tend to

infinity with x, but whose order of greatness is smaller than the first.

Thus *Jx, %/x, $xt
. . . are such functions. We may say generally

that aa
,
where a is any positive rational number, is of the ath

order of greatness when x is large. We may suppose a as small
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as we please, e.g. less than 0000001. And it might be thought
that by giving a all possible values we should exhaust the

possible orders of infinity of f (x). At any rate it might be

supposed that if / (x) tends to infinity with x, however slowly, we
could always find a value of a so small that X* would tend to

infinity more slowly still; and, conversely, that if/(#) tends to

infinity with x, however rapidly, we could always find a value

of a so great that xa would tend to infinity more rapidly still.

Perhaps the most interesting feature of the function log x is its

behaviour as x tends to infinity. It shows that the presupposition
stated above, which seems so natural, is unfounded. The logarithm

of x tends to infinity with x, but more slowly than any positive power

of x, integral or fractional. In other words loga?
&amp;gt; oo but

..
for all positive values of a. This fact is sometimes expressed

loosely by saying that the order of infinity of log x is infinitely

small
;
but the reader will hardly require at this stage to be warned

against such modes of expression.

200. Proof that (log#)/#*-^0 as #-^00. Let /5 be any

positive number. Then 1/t &amp;lt; l/t
l~P when t &amp;gt; 1, and so

dt [* dt

T &amp;lt;

A ,--,-&amp;gt;

or
loga;&amp;lt;(aP-I)/ft&amp;lt;a?/p t

when x &amp;gt; 1. Now if a is any positive number we can choose a

smaller positive value of ft. And then

&amp;lt; (log x)lx* &amp;lt; op-a
//3 (sol).

But, since
a&amp;gt;ft,

x?
-a
/ft-*Q as x + oo

,
and therefore

201. The behaviour of log x as x -&amp;gt; + 0. Since

(log x)\af-
= y

a
log y

if x = 1/y, it follows from the theorem proved above that

lim y
a
log y lim (log #)/#&quot;

= 0.

y-*&amp;gt; + ZH^+OO

Thus logos tends to oo and log (1/x) logx to GO as x tends

to zero by positive values, but log (I/a?) tends to oo more slowly

than any positive power of I/a?, integral or fractional.
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202. Scales of infinity. The logarithmic scale. Let us consider once

more the series of functions

which possesses the property that, if f(x) and (x) are any two of the

functions contained in it, then/(#) and &amp;lt; (x) both tend to oo as o;-*-oo
,
while

/(.r)/0 (x) tends to or to oo according as f(x} occurs to the right or the

left of
&amp;lt;(&*)

in the series. We can now continue this series by the insertion

of new terms to the right of all those already written down. We can begin

with log #, which tends to infinity more slowly than any of the old terms.

Then ^(log-r) tends to oo more slowly than log#, $(logx) than J(log x\ and

so on. Thus we obtain a series

formed of two simply infinite series arranged one after the other. But this

is not all. Consider the function log log x, the logarithm of log x. Since

(log#)/#
a
-*-0, for all positive values of a, it follows on putting x=logy that

(log log y)/(log y)
a=

(log x)/x
a -^ 0.

Thus log log y tends to oo with y, but more slowly than any power of log y.

Hence we may continue our series in the form

x, v/.r, 4fo, . . . log x, v/(log x\ #(log#), ... log log x, v/(log log x\... #(log log x\ . . . ;

and it will by now be obvious that by introducing the functions log log log x,

log log log log #, ... we can prolong the series to any extent we like. By

putting x= \\y we obtain a similar scale of infinity for functions of y which

tend to oo as y tends to by positive values.*

Examples LXXXIV. 1. Between any two terms /(a?), F(x) of the series

we can insert a new term
&amp;lt;f) (x} such that &amp;lt; (x} tends to oo more slowly than

f(x) and more rapidly than F(x\ [Thus between Jx and $x we could insert

#6/12
. between v (log x} and x/(log a?) we could insert (log x)

5/12
. And, generally,

&amp;lt; (x} ij{f(x) F(x}} satisfies the conditions stated.]

2. Find a function which tends to oo more slowly than v/#, but more

rapidly than x a
,
where a is any rational number less than 1/2. [Jx/(log x} is

such a function; or ^F/(log#)*, where is any positive rational number.]

3. Find a function which tends to oo more slowly than Jx, but more

rapidly than Jxf(log #)
a

,
where a is any rational number. [The function

v/.r/(loglog#) is such a function. It will be gathered from these examples that

incompleteness is an inherent characteristic of the logarithmic scale of infinity.]

4. How does the function

/(*){* (loga?)
ft/

(log log xf}l{x* (log*)* (log log xf }

behave as x tends to oo ? [If a=t=|8 then the behaviour of

* For fuller information as to l scales of.infinity see the author s tract Orders

of Infinity ,
Camb. Math. Tracts, No. 12.
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is dominated by that of x a
~^. If a=/3 then the power of x disappears and

the behaviour of/ (x) is dominated by that of (log^)
a ~^

,
unless a = /3 ,

when

it is dominated by that of (loglog^)
a

&quot;~^&quot;. Thus /(#)-- ao if a &amp;gt; ft or

a= ft a
&amp;gt;/3 ,

ora=fta = ,
a&quot; &amp;gt;

j8&quot;,
and /(#) -^0 if a&amp;lt;ft

or a= ft a

5. Arrange the functions #/^(log #), #v/(lg #)/lg log# # log log #/\^(l

(# log log log .^/^/(log log #) according to the rapidity with which they tend

to infinity as #-9-00.

6. Arrange

log log xl(x log x\ (log x)lx, x log log xlJ(x*+ 1
), {J(x+ 1 }}!x (log xf

according to the rapidity with which they tend to zero as x-&amp;gt;-co .

7. Arrange

# log log (I/*), ^/{log(l/^)}, x/{^sino;log(l/^)}, (1 -cos^)log(l/^)

according to the rapidity with which they tend to zero as #-^+ 0.

8. Show that

Dx log log x= \j(x log x\ Dx log log log x= 1 \(x log x log log x\

and so on.

9. Show that

Dx (log ^)
a

=-- al(x (log ^p)

1 - a
},

Dx (log log ^)
a=

al{x log ar (log log .r)
1 ~

},

and so on.

203. The number e We shall now introduce a number,

usually denoted by e, which is of immense importance in higher
mathematics. It is, like TT, one of the fundamental constants

of analysis.

- We define e as the number whose logarithm is 1. In other

words e is defined by the equation

Since log x is an increasing function of x, in the stricter sense of

95, it can only pass once through the value 1. Hence our

definition does in fact define one definite number.

Now log xy = log x + log y and so

log x
2 = 2 log x, log o(? = 3 log x, . . . , log x

n = n log x,

where n is any positive integer. Hence

log en n log e = n.
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Again, if p and q are any positive integers, and epfq denotes the

positive qth root of ep
,
we have

p = log e*&amp;gt;
=

log (eP )v
=

q log e^,

so that loge
p!q

p/q. Thus, if y has any positive rational value,

and ey denotes the positive yth power of e, we have

loge^ = 2/ ........................... (1),

and log e~y = log ey = -
y. Hence the equation (1) is true for

all rational values of y, positive or negative. In other words the

equations

y = \ogx, x=ey ........................ (2)

are consequences of one another so long as y is rational and ey

has its positive value. At present we have not given any definition

of a power such as ey in which the index is irrational, and the

function ey is defined for rational values of y only.

Example. Prove that 2
&amp;lt;

e
&amp;lt; 3. [In the first place it is evident that r

and so 2 &amp;lt; e. Also

pd? 7 2

--i- P -= P &amp;lt;*}

&amp;lt; f
1

JiT^Ji * J* t~ Jo 2^ Jo

so that e &amp;lt; 3.]

204. The exponential function. We now define the ex

ponential function ey for all real values of y as the inverse of

the logarithmic function. In other words we write

x = &
if y = log x.

We saw that, as so varies from towards oo
, y increases

steadily, in the stricter sense, from oo towards oo . Thus to

one value of x corresponds one value of y, and conversely. Also y
is a continuous function of x, and it follows from 109 that x is

likewise a continuous function of y.

It is easy to give a direct proof of the continuity of the exponential function.

For if x= ey and x+ g=ey+r) then

Thus
|T? |

is greater than /(#+ )
if

&amp;gt;0,
and than |||/# if &amp;lt;0; and if

T)
is

very small must also be very small.



203-205] OF A REAL VARIABLE 365

Thus ey is a positive and continuous function of y which

increases steadily from towards oo as y increases from oo

towards oo . Moreover ey is the positive yih power of the number

e, in accordance with the elementary definitions, whenever y is

a rational number. In particular ey 1 when y = 0. The general

form of the graph of ey is as shown in Fig. 53.

X

Fig. 53.

205. The principal properties of the exponential
function. (1) If x = ey} so that y = logx, then dy/dx=I/x.
and

dx
-.- = x = ey.

dy

Thus the derivative of the exponential function is equal to the;

function itself. More generally, if x = eay then dx/dy aeay.

(2) The exponential function satisfies the functional equation

This follows, when y and z are rational, from the ordinary rules

of indices. If y or z, or both, are irrational then we can choose two

sequences yi,y2 , ..., yn , ... and zlf z.2 , ...,znt ... of rational numbers

such that lim yn = y, lim zn = z. Then, since the exponential

function is continuous, we have

ey x ez = lim ey* x lim e
zn lim ey*-

+zn = ey+z.

In particular ey x e~y = e
Q = 1, or e~y l/e

y
.

We may also deduce the functional equation satisfied by ey

from that satisfied by logx. For if y1
= logx1 , y2

= logx2 ,
so that

x
l
= eyt

,
x.2 = ey2, then y1 + y2

=
log x^ + log x2

=
log x^xz and

xx = 6* x e^.
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Examples LXXXV. 1. If dx\dy= ax then x= Kea
v, where K is a

constant.

2. There is no solution of the equation f(y+ z)=f(y}f(z) fundamentally
distinct from the exponential function. [We assume that f(y] has a differential

coefficient. Differentiating the equation with respect to y and z in turn, we
obtain

and so f(y]\f(y] f (z)lf(*\ and therefore each is constant. Thus if x=f(y]
then dx\dy~ax^ where a is a constant, so that x= Keay

(Ex. 1).]

3. Prove that (e
av - } )/?/-- a as y-*-Q. [Applying the Mean Value

Theorem, we obtain eav - I = ayew, where &amp;lt;
1 7; |

&amp;lt; \y \ .]

206. (3) The function ey tends to infinity ivith y more rapidly
than any power of y, or

lim y*/e*
= lim er^y*

=

as y ^ co
, for all values of a however great.

We saw that (loga?)/0?--0 as #-^co, for any positive value

of fi however small. Writing a for 1//3, we see that (log#)
tt

/#--0
for any value of a however large. The result follows on putting
x = ey . It is clear also that eiy tends to oo if 7 &amp;gt; 0, and to if

7 &amp;lt; 0, and in each case more rapidly than any power of y.

From this result it follows that we can construct a scale of infinity

similar to that constructed in 202, but extending in the opposite direction
;

i.e. a scale of functions which tend to oo more and more rapidly as #--oo.*

The scale is

y n-fi /v-3 aX z&amp;gt;2x /jZ2 pX3 flC
x

x, x
,
x

,
... e

,
e

,
... e,...,e,...,e,...,

where of course ex
*, ..., ee

*, ... denote e(
x?

), ..., e(
e
*\ ....

The reader should try to apply the remarks about the logarithmic scale,

made in 202 and Exs. LXXXIV, to this exponential scale also. The two scales

may of course (if the order of one is reversed) be combined into one scale

...log log or, ... log^, ... x, ... e* ... eG\ ...,

207. The general power ax. The function ax has been

defined only for rational values of x, except in the particular case

* The exponential function was introduced by inverting the equation y = \ogx
into x = ev

; and we have accordingly, up to the present, used y as the independent
and x as the dependent variable in discussing its properties. We shall now revert

to the more natural plan of taking x as the independent variable, except when it is

necessary to consider a pair of equations of the type y= logx, x = ev simultaneously,

or when there is some other special reason to the contrary.
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when a e. We shall now consider the case in which a is any

positive number. Suppose that x is a positive rational number

p/q. Then the positive value y of the power ap/q is given by
yi
= ap

;
from which it follows that

2 log y =P lg &amp;gt; lg y = (p/q) log a = a log a,

and so y = exlosa.

We take this as our definition of a* when x is irrational. Thus
10^2 = eV2logl . It is to be observed that ax

, when a? is irrational,

is denned only for positive values of a, and is itself essentially

positive; and that log a
x = x log a. The most important properties

of the function ax are as follows.

(1) Whatever value a may have, ax x ay = ax+y and (a
x
)v
= axv.

In other words the laws of indices hold for irrational no less than

for rational indices. For, in the first place,

ax x ay = exlosa x eyl 8a

and in the second

(a
x
)y
= evloga

*

(2) If a&amp;gt;l then a* = exlosa = e x
, where a is positive. The

graph of ax is in this case similar to that of e
x

,
and a*-^co

as x -* oo
,
more rapidly than any power of as.

If a &amp;lt; 1 then a* = exlosa = e~^x
, where is positive. The graph

of ax is then similar in shape to that of ex
,
but reversed as regards

right and left, and a*-^0 as #^oo, more rapidly than any

power of I/a?.

(3) ax is a continuous function of x, and

Dx a
x = Dxe

xlosa = exloga log a = ax log a.

(4) ax is also a continuous function of a, and

Da a
x = Da exlosa = exlosa

(as/a) = ara*-1
.

(5) (a*- l)/a; -Moga as x-^0. This of course is a mere

corollary from the fact that Dxa
x ax log a, but the particular

form of the result is often useful
;

it is of course equivalent to the

result (Ex. LXXXV. 3) that
(e&quot;* l)/a?

-*- a as x -* 0.

In the course of the preceding chapters a great many results involving
the function ax have been stated with the limitation that x is rational. The
definition and theorems given in this section enable us to remove this

restriction.
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208. The representation of e
x as a limit. In Ch. IV,

73, we proved that (l+(l/7i)j
n

tends, as n-^ao, to a limit

which we denoted provisionally by e. We shall now identify this

limit with the number e of the preceding sections. We can

however establish a more general result, viz. that expressed by
the equations

(/r
fl / /vA H

l +
)
= lim(l--) =e* (1).nf n-*-&amp;gt;\ nJ

As the result is of very great importance, we shall indicate alter

native lines of proof.

(1) Since

it follows that

lim^^-^=a?.
If we put h = 1/f, we see chat

lim f log f 1 + ^
= x

as f -*- oo or f -^ oo . Since the exponential function is con

tinuous it follows that

as f-^ooor -*- x : i.e. that

/ 7?\f / r\^
lim 1 + -)= lim 1 + =

If we suppose that f -* oo or f -^ oo through integral values

only, we obtain the result expressed by the equations (1).

(2) If n is any positive integer, however large, and x &amp;gt; 1, we have

or n(l-x-Vn
] &amp;lt;logx &amp;lt;n(x

l n
-l) ..................... (3).

Writing y for logA ,
so that y is positive and x= ev

,
we obtain, after some

simple transformations,

Now let
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Then
0&amp;lt;7 1 &amp;lt;772,

at any rate for sufficiently large values of n
; and by

(9) of 74,
1

(173
-

770 =yVM
which evidently tends to as n-^ao. The result now follows from the

inequalities (4). The more general result (2) may be proved in the same way,
if we replace l/n by a continuous variable h.

209. The representation of log# as a limit. We can also prove
(cf. 75) that

lim n
(
I x ~

l
&amp;gt;

n
]
= lim n (x

lin 1
)
= log x.

For n (x
l n -I}-n(l- x~ l in

]
= n (x

lln-
1) (1 -x~ l ln\

which tends to zero as tt^-oo, since ^O1 / 1

-!) tends to a limit
( 75) and

a,- l /n to 1 (Ex. xxvil. 10). The result now follows from the inequalities (3) of

208.

Examples LXXXVI. 1. Prove, by taking y= l and n=Q in the in

equalities (4) of 208, that 2 . 5 &amp;lt; e &amp;lt; 2 . 9.

2. Prove that if t&amp;gt; 1 then (*V _*- /)/(* -*-i) &amp;lt; l/n, and so that if

x &amp;gt; 1 then

x dt * dt I*/ Idt I/ I

Hence deduce the results of 209.

3. If n is a function of w such that n%n - J as rc -^ oo
, then (1 + n)

n-- ez
.

[Writing n log (1-f |n)
in the form

and using Ex. LXXXII. 4, we see that n log (1 + n)
^-

^.]

4. If rc n -^co, then (l + ^n)&quot;-*-oo ; and if l + n &amp;gt;0 and ^-*-oo, then

0.

5. Deduce from (1) of 208 the theorem that e* tends to infinity more

rapidly than any power of y.

210. Common logarithms. The reader is probably familiar

with the idea of a logarithm and its use in numerical calculation.

He will remember that in elementary algebra loga #, the logarithm
of x to the base a, is denned by the equations

x = ay, y= loga x.

This definition is of course applicable only when y is rational,

though this point is often passed over in silence.

H. 24



370 THE LOGARITHMIC AND EXPONENTIAL FUNCTIONS [iX

Our logarithms are therefore logarithms to the base e. For

numerical work logarithms to the base 10 are used. If

y = log X = \0ge X, Z = Iog10 X,

then x = & and also x = 10* = e
z logl

,
so that

logio#
= (lg^)/(loge 10).

Thus it is easy to pass from one system to the other when once

Ioge 10 has been calculated.

It is no part of our purpose in this book to go into details

concerning the practical uses of logarithms. If the reader is

not familiar with them he should consult some text-book on

Elementary Algebra or Trigonometry.*

Examples LXXXVII. 1. Show that

Dx e
ax cos bx= reax cos (bx+ 0), Dx e

ax sin bx= reax sin (bx+ 6}

where r=J(a? + b2), cos6= a[r, sin0= 6/r. Hence determine the nth deri

vatives of the functions e * cos bx, eax sin for, and show in particular that

Dx
n eax=an eax.

2. Trace the curve y=e~ ax smbx, where a and b are positive. Show

that y has an infinity of maxima whose values form a geometrical progression

and which lie on the curve

- (Math. Trip,

a cos bx+ b sin bx f ,,
. ,

7
a sin bx b cos bx

bxdx=

3. Integrals containing the exponential function. Prove that

a cos bx+ b sin bx f ,,
. ,

e&quot;

x cos bxdx= --^^-- e x
,

J
e

x sin bx

[Denoting the two integrals by 7, J, and integrating by parts, we obtain

al= eax cos bx + bJ, aJ= e
ax sin bx - bl.

Solve these equations for /and J.}

4. Prove that the successive areas bounded by the curve of Ex. 2 and the

positive half of the axis of x form a geometrical progression, and that their

sum is

b l+e-
a &quot;/b

2 + 62
!_&amp;lt;,/*

5. Prove that if a &amp;gt;
then

* See for example Chrystal s Algebra, vol. i, ch. xxi. The value of loge 10 is

2-302... and that of its reciprocal -434... .
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6. If 7n= feaxxn dx then aln= eaxxn -nln _ l . [Integrate by parts. It

follows that In can be calculated for all positive integral values of
n.~]

7. Prove that, if n is a positive integer, then

/
/ 2 n\

.,-^&amp;lt;fc. !

,-*(rf-i-f_!r
.r.-ij)

/oo
e~ xxndx= n\.

o

8. Show how to find the integral of any rational function of ex. [Put
#= logtt, when ex =it, dx/du= l/u, and the integral is transformed into that

of a rational function of
ft.]

9. Integrate

(c
2ex+a2e

~ x
) (

distinguishing the cases in which a is and is not equal to b.

10. Prove that we can integrate any function of the form P(x, eax
,
ebx

, ...),

where P denotes a polynomial. [This follows from the fact that P can be

expressed as the sum of a number of terms of the type Axm ekx
,
where m is a

positive integer.]

11. Show how to integrate any function of the form

P(x, eax
,

ebx
, ..., coslx, cosmx, ..., sinfo, siumx, ...).

/oo

12. Prove that / e-^R(x}dx\ where X&amp;gt;0 and a is greater than
J a

the

greatest root of the denominator of R (x), is convergent. [This follows from

the fact that e^x tends to infinity more rapidly than any power of x.]

13. Prove that I e-*x2+wdx, where X &amp;gt; 0, is convergent for all values of
-
- 00

r
p.,

and that the same is true of I e-^z+^xn
dx^ where n is any positive

J -oo

integer.

14. Draw the graphs of e*
2

,
e~*

2

,
xex

,
xe~x,xe

x
*,
xe~ xZ

,
and xlogx, deter

mining any maxima and minima of the functions and any points of inflexion

on their graphs.

15. Show that the equation ea&amp;lt;

x =bx, where a and b are positive, has two
real roots, one, or none, according as b &amp;gt; ae, b= ae, or b

&amp;lt;
ae. [The tangent

to the curve y= e&amp;lt; at the point (, e&amp;lt;*)
is

jr-**-**(*-),
which passes through the origin if =!, so that the line y=aex touches the

curve at the point (I/a, e). The result now becomes obvious when we draw
the line y= bx. The reader should discuss the cases in which a or b or both

are negative.]

242
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16. Show that the equation ex= l+x has no real root except #=0, and

that ex=l +07-f i^o?
2 has three real roots.

17. Draw the graphs of the functions

log {x+ v/(^
2 + 1)}, log f

e-ax COS2

18. Determine roughly the positions of the real roots of the equations

log {07+^+ 1)}
=^, e _|| = _l_

j
e* sin ,;=7, e^sin^lOOOO.

19. The hyperbolic functions. The hyperbolic functions cosh x*
sinh

07, ... are denned by the equations

cosh x=^(e
x+ e~ *), sinh x= \ (e

x e
~
*),

tanh x (sinh o7)/(cosh 07), coth o?= (cosh #)/(sinh #),

sech 07= l/(cosh 07), cosech 07= I/(sinh 07).

Draw the graphs of these functions.

20. Establish the formulae

cosh
(
-
x) = cosh 07, sinh

( x) = sinh x, tanh (
-
x) = - tanh 07,

cosh2
o? sinh2

o7=l, sech2
o?+ tanh2

o?=l, coth2 x cosech2
^?=1,

cosh 2^;= cosh2 ^+ sinh2
#, sinh 2o;= 2 sinh ^7 cosh ^7,

cosh (x+y) = cosh ^7 cosh y+ sinh .27 sinh ?/,

sinh (^7 +y) = sinh x cosh ?/ + cosh x sinh y.

21. Verify tho.t these formulae may be deduced from the corresponding

formulae in cos x and sin #, by writing cosh x for cos x and i sinh # for sin x.

[It follows that the same is true of all the formulae involving cos nx and

sin wo? which are deduced from the corresponding elementary properties of

cos# and siiio?. The reason of this analogy will appear in Ch. X.]

22. Express cosh# and sinh x in terms (a) of cosh 2^ (6) of sinh 2o?.

Discuss any ambiguities of sign that may occur. (Math. Trip. 1908.)

23. Prove that

jDxcosh#=8inh#, Dx sinhx= cosh .r, Z^tanh .r= sech2
#, /)xcoth#= - cosech2

#&amp;gt;

/)x sech 07= - sech # tanh 07, Dx cosech x cosech x coth #,

Z)a.logcosho?=tanho7, ^xlg sinh 07
1

= coth o?,

Z^j. arc tan ex=\ sech #, Z)z log |

tanh J 07
1

= cosech x.

[All these formulae may of course be transformed into formulae in inte

gration.]

*
Hyperbolic cosine : for an explanation of this phrase see Hobson s Trigo

nometry, ch. xvi.
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24. Prove that cosh x&amp;gt; 1 and 1 &amp;lt; tanh x &amp;lt; 1.

25. Prove that if y= cosh. then x=log{y^(y2
1)}, if^^sinha? then

or=log{?/+ v/(3/
2
+l)}, and if y= tanh. then ^=^ log {(1 +?/)/(! y)}. Account

for the ambiguity of sign in the first case.

26. We shall denote the functions inverse to cosh x, sinh x, tanh x by

arg cosh #, arg sinh #, arg tanh x. Show that arg cosh x is defined only when

#&amp;gt;1, and is in general two-valued, while arg sinh x is defined for all real

values of #, and arg tanh x when
-!&amp;lt;#&amp;lt;!, and both of the two latter

functions are one-valued. Sketch the graphs of the functions.

27. Show that if - \ ir &amp;lt; x &amp;lt; \r TT and y is positive, and cos x cosh y= 1, then

28. Prove that if a &amp;gt; then I

-j
--

^
= arg sinh (#/), and I ^ is

equal to arg cosh
(&amp;lt;xfa)

or to -
arg cosh

(
-
#/a), according as #&amp;gt; or x &amp;lt; 0.

f dx
29. Prove that if a&amp;gt; then I

^
---

^ is equal to (I/a) arg tanh (xja) or
] 30 a*

to (I/a) argcoth (#/), according as
|

a?
|

is less than or greater than a. [The
results of Exs. 28 and 29 furnish us with an alternative method of writing
a good many of the formulae of Ch. VI.]

30. Prove that

dx = 2 logy(a:
-
a) + ^(* - 6)} (a &amp;lt; b &amp;lt; x\

/.

/;

J7__^__(

= 2arctan
x/(^) (a&amp;lt;*&amp;lt;6).

x}} (x&amp;lt;a&amp;lt;b\

31. Prove that

(Math. Trip. 1913.)

32. Solve the equation a cosh x+ b sinh x=c, where c&amp;gt; 0, showing that it

has no real roots if 62 -f c2 2
&amp;lt;0,

while if 62+ c2 -a2
&amp;gt;0 it has two, one, or

no real roots according as a+ b and a- b are both positive, of opposite signs,

or both negative. Discuss the case in which b2+ cJ a2= 0.

33. Solve the simultaneous equations cosh x cosh y= a, sinh x sinh y = b.

34. xli* ^ 1 as #-*-oo. [For xl ix =e( l sx)/*
t
and (log #)/#-*- 0. Cf.

Ex. xxvu. 11.] Show also that the function xl
&amp;gt;

x has a maximum when
x= e, and draw the graph of the function for positive values of x.

35. ^-9-1 as #-*- + 0.
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36. If {/(n+ !)}/{/ (?i)]W, where
Z&amp;gt;0,

as ra-^oo, then

[For log/(rc+ l)-log/O)^log, and so (l/*)log/()-^logJ (Ch. IV, Misc.

Ex. 27).]

37. $(n \}/n -^ \\e as n -*- oo .

[Iff(ri)
= n~ n n\ then

{/&amp;gt; + !)}/{/ (w)}
=

(1 + (1/n)}
-&amp;gt;l

-^l/e. Now use

Ex. 36.]

38. #{(2^)!/(n!)
2
}-^4asw-^oc.

39. Discuss the approximate solution of the equation ex=ximm.

[It is easy to see by general graphical considerations that the equation
has two positive roots, one a little greater than 1 and one very large*, and one

negative root a little greater than 1. To determine roughly the size of the

large positive root we may proceed as follows. If e
x=ximm then

roughly, since 13 82 and 2*63 are approximate values of log 106 and log log 106

respectively. It is easy to see from these equations that the ratios log x : 13*82

and log log x : 2*63 do not differ greatly from unity, and that

x= 106
(13-82 +log log x) = 106

(13-82+ 2 63)
= 16450000

gives a tolerable approximation to the root, the error involved being roughly
measured by 106

(log log x- 2-63) or (10
6
log log.*;)/13 82 or (10

6 x 2 63)/13 82,

which is less than 200,000. The approximations are of course very rough,

but suffice to give us a good idea of the scale of magnitude of the root.]

40. Discuss similarly the equations ex=1000000 #1000000^ 6**= iooooooooo

211. Logarithmic tests of convergence for series and

integrals. We showed in Ch. VIII ( 175 et seq.) that

are convergent if s &amp;gt; 1 and divergent if s^l. Thus S(l/w) is

divergent, but S n~l~a
is convergent for all positive values of a.

We saw however in 200 that with the aid of logarithms we

can construct functions which tend to zero, as n-^ao, more

rapidly than l/n, yet less rapidly than n~ l~a
,
however small a may

be, provided of course that it is positive. For example l/(?zlog?i)

is such a function, and the question as to whether the series

n log n

* The phrase very large is of course not used here in the technical sense

explained in Ch. IV. It means a good deal larger than the roots of such equations

as usually occur in elementary mathematics . The phrase a little greater than

must be interpreted similarly.
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is convergent or divergent cannot be settled by comparison with

any series of the type S n~ s
.

The same is true of such series as

j__j_ y log log n

?*(logtt)
2

&quot;

7lV(logw)

It is a question of some interest to find tests which shall enable

us to decide whether series such as these are convergent or

divergent; and such tests are easily deduced from the Integral
Test of 174

For since

Dx (log x)
l~s = Dx log log x = :

,

a)(\ogx)
s

xlogx
we have

* dx _ (log fy-*
-

(log a)
1-*

[
dx

if a&amp;gt;l. The first integral tends to the limit -(\oga)
l~s

/(l -s)
as f

--- GO
,
if 5 &amp;gt; 1, and to oo if s &amp;lt; 1. The second integral tends

to GO . Hence the series and integral

__i_ r _d_x__
ogn)

s)
J a tf(lo~g^n(log

where n and a are greater than unity, are convergent if s&amp;gt;l,

divergent if s 1.

It follows, of course, that
&amp;lt;/&amp;gt;(??)

is convergent if
&amp;lt;/&amp;gt;

(n) is

positive and less than K/{n(logn)
s

],
where s &amp;gt; I, for all values of n

greater than some definite value, and divergent if
&amp;lt;j&amp;gt;

(n) is positive

and greater than K/(n log n) for all values of n greater than some

definite value. And there is a corresponding theorem for integrals

which we may leave to the reader.

Examples LXXXVIII. 1. The series

&quot;

^101/100

are convergent. [The convergence of the first series is a direct consequence
of the theorem of the preceding section. That of the second follows from

the fact that (log 7i)
100 is less than n^ for sufficiently large values of n, how

ever small j3 may be, provided that it is positive. And so, taking /3= 1/209,

(logtt)
100 n- 101 /100 is less than n ~m /m for sufficiently large values of n. The

convergence of the third series follows from the comparison test at the end of

the last section.]
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2. The series

n (log nfrt
&quot;

wioo/ioi ^og nyw
-
^ iog^ + j

are divergent.

3. The series

(log log n)

where
s&amp;gt;0,

are convergent for all values of p and
&amp;lt;?

; similarly the series

nl ~
(log TI) (log log w) ?i (log w)

1 - s
(log log yi)

are divergent.

4. The question of the convergence or divergence of such series as

n log n log log n n log w &amp;gt;/(log log n)

cannot be settled by the theorem of p. 375, since in each case the function

under the sign of summation tends to zero more rapidly than l/(?ilogn) yet

less rapidly than n~ l
(logn)&quot;

1

&quot;*,
where a is any positive number however

small. For such series we need a still more delicate test. The reader should

be able, starting from the equations

Dx (log*. X)
l~a=

j

-
;
-

;
--

Tl ,X log X Iog2 X. . .lOg*.] X (logfc X}*

where Iog2 x=.log log #, Iog3 #logloglog#, ..., to prove the following

theorem : the series arid integral

I_i r _
dx_

no n log n logo n... logfc _ i n (log* n}
B

J a % log x Iog2 x ... logfc _ l x (log* x)*

are convergent if s&amp;gt;\ and divergent /&amp;lt;!,
^ and a being any numbers

sufficiently great to ensure that logA 7i and logfc
# are positive when n^n$

or A- ^a. These values of n and a increase very rapidly as k increases :

thus log#&amp;gt;0 requires #&amp;gt;1, Iog2 ^&amp;gt;0 requires x&amp;gt;e, loglog^&amp;gt;0 requires

x &amp;gt; e
e
,
and so on

;
and it is easy to see that ee &amp;gt; 10, &*

&amp;gt; e
1Q

&amp;gt; 20,000,

ee
ee

&amp;gt; e2o,ooo &amp;gt; IQSOOO^

The reader should observe the extreme rapidity with which the higher

exponential functions, such as ee
*

and ee
,

increase with x. The same

remark of course applies to such functions as da* and daa
,
where a has

any value greater than unity It has been computed that 999 has 369,693,100

figures, while 101010 has of course 10,000,000,000. Conversely, the rate of

increase of the higher logarithmic functions is extremely slow. Thus to make

log log log log x &amp;gt; I we have to suppose x a number with over 8000 figures.*

* See the footnote to p. 362.
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5. Prove that the integral / -
I log ( -)! dx, where &amp;lt; a &amp;lt; 1, is con

vergent if s
&amp;lt; 1, divergent if s2i 1. [Consider the behaviour of

as f-*--fO. This result also may be refined upon by the introduction of

higher logarithmic factors.]

6. Prove that I -jlog(-H dx has no meaning for any value of s.

fThe last example shows that s &amp;lt; 1 is a necessary condition for convergence
at the lower limit : but {log(l/#)}

8 tends to GO like (1 -x}
B
,
as #-^1-0, if s

is negative, and so the integral diverges at the upper limit when s
&amp;lt; 1.]

7. The necessary and sufficient conditions for the convergence of

I

1

xa ~ 1

jlog
f-W dx are a &amp;gt; 0, s &amp;gt;

- 1.

Examples LXXXIX. 1. Euler s limit. Show that

tends to a limit y as n--oo, and that 0&amp;lt;y^l. [This follows at once from

174. The value of y is in fact -577..., and y is usually called Euler s

constant.]

2. If a and b are positive then

tends to a limit as n-*-co .

3. If &amp;lt;
s

&amp;lt; 1 then

tends to a limit as n-*~ oo .

4. Show that the series

+..

is divergent. [Compare the general term of the series with l/

Show also that the series derived from 2 n~ 8
,
in the same way that the above

series is derived from 2 (Ifri), is convergent if s &amp;gt;
1 and otherwise divergent.

5. Prove generally that if 2wn is a series of positive terms, and

8^=^ + 112+ ... +iin ,

then 2(wn/s/l _i) is convergent or divergent according as 2?in is convergent or
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divergent. [If 2un is convergent then 5n _j tends to a positive limit I, and so

2(ttK_i) is convergent. If 2un is divergent then *
rt _i--oo, and

wn/* - 1 &amp;gt; log {1 + (
wn/sn _ 0} = log (*B/ n _ j)

(Ex. LXXXII. 1) ;
and it is evident that

log (
S .

2/Sl ) + log (*3/*2 ) + . . . + log (Sn/Sn _ j)
= log (*/*!)

tends to oo as n-*~ oc
.]

6. Prove that the same result holds for the series 2 (un/sn). [The proof
is the same in the case of convergence. If 2un is divergent, and un &amp;lt;sn _ l

from a certain value of n onwards, then *n &amp;lt;2*n _ 1 ,
and the divergence of

2 (*/*) follows from that of 2 (ujs^. If on the other hand un &amp;gt;sn _ l for

an infinity of values of n, as might happen with a rapidly divergent series,
then unjsn &amp;gt; for all these values of w.]

7. Sum the series !- + -.... [We have

by Ex. 1, y denoting Euler s constant, and n ,
fn being numbers which tend

to zero as n^&amp;gt;- oo . Subtracting and making 7i-*-oo we see that the sum of the

given series is log 2. See also 213.]

8. Prove that the series

oscillates finitely except when C= y, when it converges.

212. Series connected with the exponential and log
arithmic functions. Expansion of ex by Taylor s Theorem.
Since all the derivatives of the exponential function are equal

to the function itself, we have

x _ #_
2 xn~l x

0x+
2!

4 f
(n- l)!

+
?i!

e

where 0&amp;lt; 6&amp;lt; 1. But xn\n !--9 as n^ GO
,
whatever be the value of x

(Ex. xxvu. 12); and eex &amp;lt; e
x

. Hence, making n tend to oo
,
we have

The series on the right-hand side of this equation is known as

the exponential series. In particular we have

+
2]
+ &quot; +

^j
+ (

&amp;lt;&amp;gt;

and so
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a result known as the exponential theorem. Also

a* = e*^&quot;=

for all positive values of a.

The reader will observe that the exponential series has the property of

reproducing itself when every term is differentiated, and that no other series

of powers of x would possess this property : for some further remarks in this

connection see Appendix II.

The power series for ex is so important that it is worth while to investigate
it by an alternative method which does not depend upon Taylor s Theorem.
Let

and suppose that x
&amp;gt; 0. Then

1.2 \n) l.*...n

which is less than En (x). And, provided n&amp;gt;x, we have also, by the binomial
theorem for a negative integral exponent,

Thus

But
( 208) the first and last functions tend to the limit ex as

n-*&amp;lt;x&amp;gt;,
and

therefore En (x) must do the same. From this the equation (1) follows when
x is positive ; its truth when x is negative follows from the fact that the

exponential series, as was shown in Ex. LXXXI. 7, satisfies the functional

equation f(x)f(y] =f(x+y\ so that/ (#)/ (
-
x) =/(0)= 1.

Examples XO. 1. Show that

_
..., -,

-
....

2. If x is positive then the greatest term in the exponential series is the

[#] + l)-th, unless x is an integer, when the preceding term is equal to it.

3. Show that n
\&amp;gt;(n{e}

n
. [For nn/n I is one term in the series for en

.]

4. Prove that en= (n
n
jn !) (2 +Sx+ 2), where

and i/ = l/; and deduce that n ! lies between 2 (w/e?)
n and 2 (n+ 1) (n/e}

n
.

5. Employ the exponential series to prove that e* tends to infinity more
rapidly than any power of x. [Use the inequality ex &amp;gt;x

n
/n !.]
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6. Show that e is not a rational number. [If e=p/q, where p and q are

integers, we must have

or, multiplying up by q \
,

2! q\

and this is absurd, since the left-hand side is integral, and the right-hand
side less than {!/(?+ !)}+ {!/(?+ 1)}

2+ ...

7. Sum the series I Pr (n)
^

,
where Pr (n) is a polynomial of degree r

in n. [We can express Pr (n} in the form

and

8. Show that

2 ^=

and that if /Sn= ! 3+ 23+ ...+w3 then

2 Sfj=i (4^-

In particular the last series is equal to zero when x= - 2. (Math. Trip. 1904.)

9. Prove that 2 (nfn l}
=

e, 2 (w
2
/^ !)

=
2e, 2 (w

3
/^ !)

=
50, and that 2 (n

k
/n !),

where is any positive integer, is a positive integral multiple of e.

10. Prove that 2 (

(^^; =
{(^

2 -3^+ 3) e*+^2
-3}/*

2
.

[Multiply numerator and denominator by ft+1, and proceed as in Ex. 7.]

11. Determine a, b, c so that {(x+ a}e
x+ (bx+ c)}/x

3 tends to a limit as
~kv _L /

tf-^-0, evaluate the limit, and draw the graph of the function
x+a

12. Draw the graphs of l + #, l+x+%x\ l + tf+J^ + ^B
3
,
and compare

them with that of ex.

13. Prove that $--l-|.# 4.... -( !).__ |s positive or negative

according as n is odd or even. Deduce the exponential theorem.
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14. If

X =
e*, A !

= e*-l, JT2= e*-l-A-, Jf3 = e* - 1 - # - (#2/2 !), ...,

then dXvldx**Xv -i. Hence prove that if &amp;gt;0 then

Xi(t) I*XQ dx&amp;lt;t*, Xi(t}={
t

X
l dx&amp;lt;l

t

xe*dx&amp;lt;e
t ^xdx=~e\Jo Jo Jo Jo *

and generally Xv (t) &amp;lt; e*. Deduce the exponential theorem.

15. Show that the expansion in powers of p of the positive root of

x2+P= a2
begins with the terras

a {I- \p log a+ %p2
log a (2 + log a}} . (Math. Trip. 1909.)

213. The logarithmic series. Another very important

expansion in powers of x is that for log (1 + x). Since

and 1/(1 + 1)
= 1 1-\- tf . . . if t is numerically less than unity, it is

natural to expect* that log (1 -f x) will be equal, when 1 &amp;lt; x &amp;lt; 1,

to the series obtained by integrating each term of the series

1 t + 1
2

. . . from =0 to t=x, i.e. to the series x #2 + J&
3

....

And this is in fact the case. For
/_ 1 \m fm

+ 1)
= i - 1 + 1

2 -... + (- 1)--
-L ~h t

and so, if x &amp;gt; 1,

r* ^
m^

where Hm = y- .

J -L + ^

We require to show that the limit of Rm ,
when m tends to oo

&amp;gt;

is zero. This is almost obvious when &amp;lt; x = 1
; for then Rm is

positive and less than

/,

x /v,m+i

/mj/ _ _~~
i 1m + 1

and therefore less than l/(m 4- 1). If on the other hand

we put
= it and x = f, so that

-1-
~~

* See Appendix II for some further remarks on this subject.
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which shows that Rm has the sign of ( l)
ni

. Also, since the

greatest value of 1/(1
-

u) in the range of integration is 1/(1
-

f),

we have

o &amp;lt;

i

R
,n |

&amp;lt;

j-rf/*

and so Rm -* 0.

Hence log (1

provided that 1 &amp;lt;
a? ^ 1 . If # lies outside these limits the series

is not convergent. If x = 1 we obtain

a result already proved otherwise (Ex. LXXXIX. 7).

214. The series for the inverse tangent. It is easy to

prove in a similar manner that

rx fit rx

arc tan * = I f^-l (l-t* + t*-...)dt
J o -1- + i Jo

= a? -

provided that -l^x^l. The only difference is that the proof is

a little simpler; for, since arc tan,-?? is an odd function of a?, we need

only consider positive
values of x. And the series is convergent

when x = - 1 as well as when x = 1. We leave the discussion to the

reader. The value of arc tan x which is represented by the series

is of course that which lies between - \TT and \ir when - 1 ^ x ^ 1,

and which we saw in Ch. VII (Ex. LXIII. 3) to be the value

represented by the integral. If x = 1, we obtain the formula

ExamplesXCI.

3. Prove that if x is positive then

(Math. Trip. 1911.)

4 Obtain the series for log(l+ff) and arc tan x by means of Taylor s

theorem.

[A difficulty presents itself in the discussion of the remainder in the
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first series when x is negative, if Lag-range s form Rn= ( l}
n ~ lxnl{n (\ + 6x}

n
]

is used
; Cauchy s form, viz.

#=:(- 1)&quot;-

1

(i
-

ey-^x&quot;i(\ +6xy,
should be used (cf. the corresponding discussion for the Binomial Series,

Ex. LVI. 2 and 163).

In the case of the second series we have

Dx
n arc tan x=Dx

n ~ l
{1 1(1 +.r

2
)}

=
(
-

l)
1
-

1^ -
1) ! (#

2+ 1)
~/2 sin {n arc tan (!/#)}

(Ex. XLV. 11), and there is no difficulty about the remainder, which is obviously
not greater in absolute value than 1/n.*]

5. If
y&amp;gt;0

then

[Use the identity y= (\ +^~^ J
/( 1

~^~y)
s series may be used to

calculate log 2, a purpose for which the series 1 J+ ..., owing to the

slowness of its convergence, is practically useless. Put y= 2 and find log 2

to 3 places of decimals.]

6. Find log 10 to 3 places of decimals from the formula

log 10= 3 log 2 + log (1 + |).

7. Prove that

log \T^/
2 &quot;

if x &amp;gt; 0, and that

if ^&amp;gt;2. Given that log 2= 6931471... and log 3= 1-0986123..., show, by
putting ^-=10 in the second formula, that log 11 = 2-397895....

(Math. Trip. 1912.)

8. Show that if log 2, log 5, and log 11 are known, then the formula

log 13 = 3 log 11 +log 5 - 9 log 2

gives log 13 with an error practically equal to 00015. (Math. Trip. 1910.)

9. Show that

where a= argtanh (1/31), 6=arg tanh (1/49), c= arg tanh (1/161).

[These formulae enable us to find log 2, log 3, and log 5 rapidly and with

any degree of accuracy.]

* The formula for Dx
n arc tan x fails when x= Q, as arc tan (I/a;) is then

undefined. It is easy to see (cf. Ex. XLV. 11) that arc tan (l/) must then be

interpreted as meaning ?r.
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10. Show that

|?r
= arctan (l/2)+ arctan (1/3)

= 4 arc tan (1/5) -arc tan (1/239),

and calculate ir to 6 places of decimals.

11. Show that the expansion of (1 + #)
1 + a: in powers of x begins with the

terms 1 + x+x2+ %x\ (Math. Trip. 1910.)

12. Show that

approximately, for large values of x. Apply the formula, when #=10, to

obtain an approximate value of Iog10 e, and estimate the accuracy of the result.

(Math. Trip. 1910.)

13. Show that log
_-=

i x \i & /

if - 1&amp;lt; x &amp;lt; 1. [Use Ex. LXXXI. 2.]

14. Using the logarithmic series and the facts that Iog10 2 3758= -3758099...

and Iog10 e= 4343..., show that an approximate solution of the equation

#=100 Iog10 # is 237-58121. (Math. Trip. 1910.)

15. Expand log cos x and log (sin x\x) in powers of x as far as #*, and

verify that, to this order,

log sin x= log x - -fa log cos x+ log cos %x.

(Math. Trip. 1908.)

16. Show that f

*

f^r
=^-^+^9 - if -l^tf^l. Deduce that

J i
&quot;T ?

l_^+ i_... = { 7r + 2log(N/2 + l)}/4 v/2. (Math. Trip. 1896.)

[Proceed as in 214 and use the result of Ex. XLVIII. 7.J

17. Prove similarly that

18. Prove generally that if a and b are positive integers then

1 l 1 _ f l
t
a~ l dt

a~~a~+b
+
a+ 2b~ &quot;~J o l + t

b

and so that the sum of the series can be found. Calculate in this way the

sums of 1- + -... and -

215. The Binomial Series. We have already ( 163)

investigated the Binomial Theorem



214, 215] OF A REAL VARIABLE 385

assuming that -!&amp;lt;#&amp;lt;! and that ra is rational. When m is

irrational we have

Dx (1 -f x)
m =

{m/(l + x)}

so that the rule for the differentiation of (1 + x)
m remains the

same, and the proof of the theorem given in 163 retains its

validity. We shall not discuss the question of the convergence
of the series when x = 1 or # = !.*

Examples XOII. 1. Prove that if -!&amp;lt;#&amp;lt;! then

2. Approximation to quadratic and other surds. Let N/J^ be a

quadratic surd whose numerical value is required. Let N* be the square
nearest to M

;
and let MN^+ x orMNz x

t
x being positive. Since x

c.mnot be greater than N, xjN 2 is comparatively small and the surd

JM=N ij{l (x/JV
2
)} can be expressed in a series

which is at any rate fairly rapidly couvergentrand may be very rapidly so.

Thus

Let us consider the error committed in taking 8j
3
g- (the value given by

the first two terms) as an approximate value. After the second term the
terms alternate in sign and decrease. Hence the error is one of excess, and
is less than 32

/64
2
,
which is less than 003.

3 If x is small compared with N 2 then

the error being of the order x^fN 1
. Apply the process to

[Expanding by the binomial theorem, we have

the error being less than the numerical value of the next term, viz.

Also

fix
=:x_ /,

2

the error being less than #*/32#
7

. The result follows. The same method

may be applied to surds other than quadratic surds, e.g. to 4/1031.]

* See Bromwich, Infinite Series, pp. 150 ct seq. ; Hobson, Plane Trigonometry
(3rd edition), p. 271.

H. 25
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4. IfM differs from N 3
by less than 1 per cent, of either then %M differs

from fN+% (M/N 2
) by less than AT/90000. (Math. Trip. 1882.)

5. If M=N*+x, and x is small compared with N, then a good approxi
mation for $M is

56 56 A 3

Show that when ^V=10, #=1, this approximation is accurate to 16 places

of decimals. (Math. Trip. 1886.)

6. Show how to sum the series

where Pr (ri) is a polynomial of degree r in n.

[Express Pr (ri) in the form A + Ain+A 2n (n -1) + ... as in Ex. xc. 7.]

/771\ /7/2\

7. Sum the series 2rt ( )
xn. 2 w2

I
)
^n and prove that

o \nj o W

216. An alternative method of development of the theory of the

exponential and logarithmic functions. We shall now give an outline of

a method of investigation of the properties of ex and log x entirely different

in logical order from that followed in the preceding pages. This method
/vi2

starts from the exponential series l + #+
g-j-
+ .... We know that this series

is convergent for all values of x, and we may therefore define the function

exp x by the equation

+ .............................. (1).

We then prove, as in Ex. LXXXI. 7, that

exp # x exp y= exp (#-!-?/) ........................... (2).

expA-1 h h2

Again -^ =l+2 l

+
2]
+ ...

where p (A) is numerically less than

so that p (A) -* as A-*~0. And so

exp (x+h) exp# /exp A IN
-i-- - = exp# E-j -^-exi

ft \ ti J
as A -^- 0, or

Dx exp ^=exp x (3).

Incidentally we have proved that exp# is a continuous function.

We have now a choice of procedure. Writing y= ex.px and observing

that exp =
1, we have

vdt
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and, if we define the logarithmic function as the function inverse to the

exponential function, we are brought back to the point of view adopted earlier

in this chapter.

But we may proceed differently. From (2) it follows that if n is a positive

integer then

(exp #)
n
=exp nx, (exp l)

n
=exp n.

If x is a positive rational fraction m/?z, then

{exp (m/n)}
n= exp m= (exp 1

)
m

,

and so exp (m/ri) is equal to the positive value of (exp 1 )
m/w

. This result may
be extended to negative rational values of x by means of the equation

exp.# exp ( &)= !
;

and so we have

say, where e= exp 1 = 1 + 1 + + + ...,

for all rational values of x. Finally we define ex
, when x is irrational, as

being equal to exp x. The logarithm is then defined as the function inverse

to exp x or ex.

Example. Develop the theory of the binomial series

1 +

where - 1 &amp;lt;x &amp;lt; 1, in a similar manner, starting from the equation

/ (m, x}f(m t x) =/(m 4-m x}

(Ex. LXXXI. 6). , ~

MISCELLANEOUS EXAMPLES ON CHAPTER IX*.

1. Given that Iog10 e= 4343 and that 2 10 and 321 are nearly equal to powers
of 10, calculate Iog10 2 and Iog103 to four places of decimals.

(Math. Trip. 1905.)

2. Determine which of (^e) and
(s^2)

&quot;

7r

is the greater. [Take logarithms
and observe that V3/(V3 +i0 &amp;lt; I V3

&amp;lt; 6929 &amp;lt; log 2
-J

3. Show that Iog10 n cannot be a rational number if n is any positive

integer not a power of 10. [If n is not divisible by 10, and \og10n=plq, we

have 10p = ?i9
,
which is impossible, since 10P ends with and nq does not.

If n 10 ct
^\

7

,
where N is not divisible by 10, then Iog10N and therefore

log10tt=a+logIO A
r

cannot be rational.]

* A considerable number of these examples are taken from Bromwich s Infinite Series.

252
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4. For what values of x are the functions log x, log log #, log log log a?, ...

(a) equal to (6) equal to 1 (c) not defined ? Consider also the same question

for the functions to, llx, lllx, ..., where to= log- x

5. Show that

is negative and increases steadily towards as x increases from towards co .

[The derivative of the function is

r*+r *(&amp;lt;*+ !)&quot;(*+*)

as is easily seen by splitting up the right-hand side into partial fractions.

This expression is positive, and the function itself tends to zero as x -* cc
,

since

log (tf+r)=log*?+,

where cx 0, and !-(*) + (*} -.. = 0.]
\ i / \*/

6. Prove that

(Math. Trip. 1909.)

7. If x&amp;gt;
- 1 then w&amp;gt;&amp;gt; (1 +x) (log (1 + #)}

2
. (Math. Trip. 1906.)

[Put 1 +x=e*&amp;gt; and use the fact that sinh &amp;gt;
when &amp;gt; 0.]

8. Show that (log (
1 + #)}/# and #/{(! + x} log (1 + x)} both decrease steadily

as x increases from towards GO .

9. Show that, as x increases from -1 towards co
,

the function

(I+x)~ llx assumes once and only once every value between and 1.

(Math. Trip. 1910.)

10. Show that

11 Show that---
N

- - - decreases steadily from 1 to as x increases

log(l-Kr) x

from 1 towards oo . [The function is undefined when #=0, but if we

attribute to it the value when #=0 it becomes continuous for a?=0. Use

Ex. 7 to show that the derivative is negative.]

12. Show that the function (log
-
log #)/(- a?), where is Positive &amp;gt;

decreases steadily as x increases from to
,
and find its limit as #-*-.

13. Show that ex &amp;gt; MxN,
where M and N are large positive numbers, f

x is greater than the greater of 2 log M and 16 A72
.

[It is easy to prove that log#&amp;lt;2vto; and so the inequality given is

certainly satisfied if

and therefore certainly satisfied if
%x&amp;gt; log J/, %x&amp;gt; 2#V#.
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14. If/(#) and
&amp;lt;/&amp;gt;(#)

tend to infinity as #-*-oo, and / (#)/&amp;lt; (#)- ,

then/(#)/# (or)
-* oo. [Use the result of Ch. VI, Misc. Ex. 33.] By taking

f(x}=x
a

, &amp;lt;(#)
=
log #, prove that (log #)/#&quot;-*-() for all positive values of a.

15.
If/&amp;gt;

and
&amp;lt;?

are positive integers then

as ft -- oo . [Cf. Ex. LXXVIII. 6.]

16. Prove that if a? is positive then n log {|(1+#V)}-^. _| iog x as

ra -*- QO . [We have

where w=4 (1
- ^1

/). Now use 209 and Ex. LXXXII. 4.]

17. Prove that if a, and b are positive then

[Take logarithms and use Ex. 16.]

18. Show that

where y is Euler s constant (Ex. LXXXIX. 1) and fn -&amp;gt;- as n -&amp;gt; co .

19. Show that

the series being formed from the series 1 - i + - ... by taking alternately two

positive terms and then one negative. [The sum of the first 3n terms is

where en and *n tend to as n -&amp;gt;- x . (Cf. Ex. LXXVIII. 6).]

20. Show that l-i_

21. Prove that

where Sn= !+ + ... + -, 2^= 1 + 0+...+,.; . Hence prove that the sum
^ iv O ^?i I

of the series when continued to infinity is

- 3+ log 3 -f 2 log 2. (Math. Trip. 1905.)

22. Show that
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23. Prove that the sums of the four series_
747i

2 -! 7 47i2 -l 7 (2w+ !)*-! 7(2*1+1)*-!

are
, JTT

-
J, J, log 2 -

respectively.

24. Prove that % ! (a/n)
n tends to or to oo according as a

&amp;lt; e or a&amp;gt; e.

[If un =n\(ajri)n then ^n+1 /i/tt=a{l + (l/7i)}-&quot;--a/e. It can be shown

that the function tends to oo when a= e: for a proof, which is rather beyond
the scope of the theorems of this chapter, see Bromwich s Infinite Series,

pp. 461 et seq.]

25. Find the limit as #-- oo of

\b +b 1x+...+

distinguishing the different cases which may arise. (Math. Trip. 1886.)

26. Prove that

diverges to oo . [Compare with 2 (x/n).] Deduce that if x is positive then

..i (+*)/! * &amp;lt;a

n / _27\

as 7i -a- oo . [The logarithm of the function is 2 log f 1 + -
L]

27. Prove that if x &amp;gt;

- 1 then

2!

(Math. Trip. 1908.)

[The difference between l/(#+ l)
2 and the sum of the first n terms of the

series is

28. No equation of the type

where A, B, ... are polynomials and a, & ... different real numbers, can hold

for all values of x. [If a is the algebraically greatest of a, ,
...

,
then the term

,4e
aa;

outweighs all the rest as .#-- oo
.]

29. Show that the sequence

al
= e

t
a2=ee

\ a3
= e e&amp;lt;

*, ...

tends to infinity more rapidly than any member of the exponential scale.

[Let e
l (x} ex

, e% (x)
= ee\(

x
\ and so on. Then, if ek (x} is any member of the

exponential scale, an &amp;gt;
ek (n} when n &amp;gt; &.]
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30. Prove that

where a is to be put equal to ty (x} and /3 to (a?) after differentiation.

Establish a similar rule for the differentiation of .r -^ a^ /
*.

31. Prove that if Dx
n e~ x&amp;lt;i = e- x&amp;lt;i

&amp;lt;i&amp;gt;

n (x) then (i) $(#) is a polynomial of

degree n, (ii) (f)n + i
= 2.# $,-{- 0n ,

and (iii) all the roots of &amp;lt; n=0 are real and

distinct, and separated by those of
^&amp;gt;n _ 1

= 0. [To prove (iii) assume the truth

of the result for n= 1, 2, ... *, and consider the signs of
(j)K ,

l
for the n values

of x for which
&amp;lt;f&amp;gt;K
= and for large (positive or negative) values of #.]

32. The general solution of f(xy}=_f(x)f(y\ where / is a differentiate

function, is xa
,
where a is a constant : and that of

is cosh ax or cos.r, according as/&quot;(0) is positive or negative. [In proving
the second result assume that / has derivatives of the first three orders.

Then

where ey and tv tend to zero with y. It follows that /(0) = 1, / (0) = 0,

/&quot;(*)=/&quot;(&amp;lt;&amp;gt;)/(#),
so that a= ^{/&quot;(0)}

or a=
J{-f&quot; (0)}.]

33. How do the functions * 8in (1/x)
,
*

sin2 {l/x
\ a-

00***
behave as x+ + ?

34. Trace the curves y= tan x e
tan x

. y= sin x log tan ^ ^7.

35. The equation ex=ax+ b has one real root if a&amp;lt;0 or a= 0, 6 &amp;gt;0. If

a &amp;gt;
then it has two real roots or none, according as a log a &amp;gt;

b - a or

a lo a &amp;lt; 6 - a.

36. Show by graphical considerations that the equation
has one, two, or three real roots if a &amp;gt; 0, none, one, or two if a

&amp;lt;0;
and show

how to distinguish between the different cases.

37. Trace the curve y= -
log ( ) , showing that the point (0, i) is

x \ x J

a centre of symmetry, and that as x increases through all real values, y
steadily increases from to 1. Deduce that the equation

1, fe
x-T

- lo

has no real root unless
0&amp;lt;a&amp;lt;l,

and then one, whose sign is the same as

that of a.-\- [In the first place

I. fe
x -l

(
-

1. /sinhi.*

^iog (

-J-
x \ 2^

is clearly an odd function of x. Also

dy 1
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The function inside the large bracket tends to zero as x -&amp;gt;-

;
and its

derivative is

x \fflnh

which has the sign of x. Hence dy/dx&amp;gt;0 for all values of #.]

38. Trace the curve y = e llx
&amp;lt;J(x

2+ 2#), and show that the equation

has no real roots if n is negative, one negative root if &amp;lt;a &amp;lt; a= e
1

and two positive roots and one negative if a &amp;gt; a.

1C* Vn
39. Show that the equation / (x)

= I +x -f + . . . +
^

= has one real

root if n is odd and none if n is even.

[Assume this proved for n=l, 2, ... 2. Then f2k + i (x)
= has at least

one real root, since its degree is odd, and it cannot have more since, if it

had, f &amp;lt;zk + \(x}
Glcfzk(x} would have to vanish once at least. Hence/2fc+ i(#) =

has just one root, and so
f&amp;lt;&+2 (#)

= cannot have more than two. If it has

two. say a and (3,
then f zk + z (

A&amp;gt;

)
or /2A: + i (#) niust vanish once at least between

a and /3, say at y.
And

/ * 2 (y) =/ -H i (y) +r~ &amp;gt; 0.

But /2t + 2(A ) is a^so positive when # is large (positively or negatively), and

a glance at a figure will show that these results are contradictory. Hence

/2t + 2 (V)=0 has no real roots.]

40. Prove that if a and b are positive and nearly equal then

approximately, the error being about J {(a
-

b}/a}
s

. [Use the logarithmic

series. This formula is interesting historically as having been employed by

Napier for the numerical calculation of logarithms.]

41. Prove by multiplication of series that if - 1 &amp;lt; x &amp;lt; I then

42. Prove that

where fx -* with x.

/ ^ xn\
43. The first n+ 2 terms in the expansion of log ( 1 + #+

^-,
+ . . . +

jjyl
in

powers of x are

*&amp;gt;

f 1 * ^2

4./.l^~~
^21(71 4-3)

;

(Math. Trip. 1899.)
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44. Show that the expansion of

ezp, -*---...--

in powers of x begins with the terms

&quot;
n + l

~ 2 u*u^.^ (Math - TriP 1909 )

n

45. Show that if 1 &amp;lt;x &amp;lt; 1 then

[Use the method of Ex. xcn. 6. The results are more easily obtained by
differentiation; but the problem of the differentiation of an infinite series is

beyond our range.]

46. Prove that
o x+a)(x+ b) a

z. na - lo

P -f*---=
*

log(-Y
Jo (x+a)(x+ b) a-b b

\bj

Jo

a\]

J
J

/&quot;

J p
provided that a and 5 are positive. Deduce, and verify independently, that

each of the functions

a- 1- log a, aloga-
is positive for all positive values of a.

47. Prove that if a, /3, y are all positive, and /3
2

&amp;gt;ay,
then

y)) .

Jo

while if a is positive and
ay&amp;gt;/3

2 the value of the integral is

that value of the inverse tangent being chosen which lies between and TT.

Are there any other really different cases in which the integral is convergent?

48. Prove that if a&amp;gt; -I then

du

Ji
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and deduce that the value of the integral is

if 1 &amp;lt; a &amp;lt; 1
,
and

if a&amp;gt; 1. Discuss the case in which a = 1.

49. Transform the integral / ^ -, where a&amp;gt;0,
in the same

JO ^*T*^^^ -T 1J

ways, showing that its value is

! y_ 2S2 ~ arg a+ 1

/i
arc tan xdx JTT \ log 2.

51. If
0&amp;lt;a&amp;lt;l, 0&amp;lt;/3&amp;lt;1,

then

1 1-f
log

-

52. Prove that if a&amp;gt; b&amp;gt; then

dQ

cosh 6+ b sinh
&amp;lt;J(a

2 -

53. Prove that

and deduce that if &amp;gt;0 then

r iog- .= log a.
2a

[Use the substitutions x=\jt and ^=aw.]

54. Prove that I log (
1

+&quot;2 )
dx= ira if a&amp;gt;0. [Integrate by parts.]

J o \ x J



CHAPTER X

THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL,
AND CIRCULAR FUNCTIONS

217. Functions of a complex variable. In Ch. Ill we

defined the complex variable

z = x + iy *,

and we considered a few simple properties of some classes of

expressions involving z, such as the polynomial P(z). It is

natural to describe such expressions as functions of z, and in

fact we did describe the quotient P (z)/Q (z), where P (z) and Q (z)

are polynomials, as a rational function . We have however given
no general definition of what is meant by a function of z.

It might seem natural to define a function of z in the same

way as that in which we defined a function of the real variable

x, i.e. to say that Z is a function of z if any relation subsists

between z and Z in virtue of which a value or values of Z corre

sponds to some or all values of z. But it will be found, on closer

examination, that this definition is not one from which any profit

can be derived. For if z is given, so are x and y, and conversely :

to assign a value of z is precisely the same thing as to assign a

pair of values of x and y. Thus a function of z
, according to

the definition suggested, is precisely the same thing as a complex

function

f(x,y) + ig(x,y\

of the two real variables x and y. For example

x iy, xy, \

z *J(x
2 + ^/

2
),

am z = arc tan (yfx)

are functions of z\ The definition, although perfectly legitimate,

* In this chapter we shall generally find it convenient to write x + iy rather

than x + yi.
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is futile because it does not really define a new idea at all. It is

therefore more convenient to use the expression function of the

complex variable z in a more restricted sense, or in other words

, to pick out, from the general class of complex functions of the

two real variables x and y, a special class to which the expression
shall be restricted. But if we were to attempt to explain how
this selection is made, and what are the characteristic properties
of the special class of functions selected, we should be led far

beyond the limits of this book. W^e shall therefore not attempt
to give any general definitions, but shall confine ourselves entirely

to special functions defined directly.

218. We have already defined polynomials in z ( 39),

rational functions of z ( 46), and roots of z ( 47). There is

no difficulty in extending to the complex variable the definitions

of algebraical functions, explicit and implicit, which we gave

( 26 27) in the case of the real variable x. In all these cases

we shall call the complex number z, the argument ( 44) of the

point z, the argument of the function f {z) under consideration.

The question which will occupy us in this chapter is that of defining

and determining the principal properties of the logarithmic, ex

ponential, and trigonometrical or circular functions of z. These

functions are of course so far defined for real values of z only, the

logarithm indeed for positive values only.

We shall begin with the logarithmic function. It is natural

to attempt to define it by means of some extension of the definition

t*dt
log x = I (x &amp;gt; 0) ;

and in order to do this we shall find it necessary to consider

briefly some extensions of the notion of an integral.

219. Real and complex curvilinear integrals. Let AB
be an arc C of a curve defined by the equations

where
&amp;lt;f)

and ty are functions of t with continuous differential

coefficients
(f)

and ty ;
and suppose that, as t varies from td to tl}

the point (x, y) moves along the curve, in the same direction, from

A toB.
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Then we define the curvilinear integral

(1),

where g and h are continuous functions of x and y, as being equi

valent to the ordinary integral obtained by effecting the formal

substitutions x =
(/&amp;gt;

(t), y = ^r (t), i.e. to

We call C the path of integration.

Let us suppose now that

so that z describes the curve C in Argand s diagram as t varies.

Further let us suppose that

f(z) = u + iv

is a polynomial in z or rational function of z.

Then we define

f(*)d* (2)

I (u + iv) (dec +-idy),
c

which is itself defined as meaning

I (udx vdy) + i I (vdx + udy).
J c J c

220. The definition of Log f. Now let f=f-M*7;be any

complex number. We define Log f, the general logarithm of f,

by the equation

where C is a curve which starts from 1 and ends at f and does

not pass through the origin. Thus (Fig. 54) the paths (a), (6), (c)

are paths such as are contemplated in the definition. The value

of Log z is thus defined when the particular path of integration

has been chosen. But at present it is not clear how far the value

of Log z resulting from the definition depends upon what path is

chosen. Suppose for example that f is real and positive, say
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equal to f. Then one possible path of integration is the straight

line from 1 to
,
a path which we may suppose to be denned by

Y

Fig. 54.

the equations x = t, y = 0. In this case, and with this particular

choice of the path of integration, we have

so that Log f is equal to log f, the logarithm of f according to the

definition given in the last chapter. Thus one value at any rate

of Log f, when f is real and positive, is log . But in this case, as

in the general case, the path of integration can be chosen in an

infinite variety of different ways. There is nothing to show that

I every value of Log is equal to log ;
and in point of fact we

shall see that this is not the case. This is why we have adopted
the notation Log f, Log f instead of log f, log f. Log f is (possibly

at any rate) a many valued function, and log f is only one of its

values. And in the general case, so far as we can see at present,

three alternatives are equally possible, viz. that

we may always get the same value of Log f, by whatever

path we go from 1 to f;

we may get a different value corresponding to every

different path ;

we may get a number of different values each of which

corresponds to a whole class of paths :

and the truth or falsehood of any one of these alternatives is in

no way implied by our definition.

(1)

(2)

(3)
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221. The values of Log f, Let us suppose that the polar

coordinates of the point z = % are p and
(/&amp;gt;,

so that

f= p (cos &amp;lt;t&amp;gt;

+ i sin
&amp;lt;).

We suppose for the present that - TT
t&amp;gt;

&amp;lt; TT, while p may have

any positive value. Thus f may have any value other than zero

or a real negative value.

The coordinates (#, y) of any point on the path C are functions

of t, and so also are its polar coordinates (r, 0). Also

x + iy \dt dt

in virtue of the definitions of 219. But x = r cos 0, y = r sin 0, and

dx . dy f ~dr . d6\ . f . Q dr n db
T- + * -r (

cos v -r,.
r smv ^r-) + i (sm v -

7 + r cos -j-
dt dt \ dt dt \ dt dt

so that

where [log r] denotes the difference between the values of log r at

the points corresponding tot = tj_
and =

,
and [0] has a similar

meaning.

It is clear that

[log r]
=

log /&amp;gt;

-
log 1 = log p ;

but the value of [0] requires a little more consideration. Let us

suppose first that the path of integration is the straight line from

1 to f.
The initial value of is the amplitude of 1, or rather

one of the amplitudes of 1, viz.

2&7T, where k is any integer. Let

us suppose that initially
= 2kir.

It is evident from the figure that

increases from 2&7T to 2/C7r + &amp;lt;

as t moves along the line. Thus

and, when the path of integration

is a straight line, Log f = log p + i&amp;lt;j&amp;gt;
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We shall call this particular value of Logf the principal
value. When f is real and positive, f= p and $ = 0, so that the

principal value of Log f is the ordinary logarithm log f. Hence it

will be convenient in general to denote the principal value of

Log f by log f. Thus

log f = log p + {(/&amp;gt;,

and the principal value is characterised by the fact that its

imaginary part lies between TT and TT.

Next let us consider any path (such as those shown in Fig. 56)

such that the area or areas included

between the path and the straight

line from 1 to f does not include

the origin. It is easy to see that

[0] is still equal to
&amp;lt;/&amp;gt;. Along the

curve shown in the figure by a

continuous line, for example, 0,

initially equal to 2&?r, first de

creases to the value

2/J7T - XOP
and then increases again, being equal to 2&7T at Q, and finally

to 2&7T 4-
&amp;lt;/&amp;gt;.

The dotted curve shows a similar but slightly more

complicated case in which the straight line and the curve bound

two areas, neither of which includes the origin. Thus if the path

of integration is such that the closed curve formed by it and the

line from 1 to does not include the origin, then

Log f= log
=

log p -f if.

On the other hand it is easy

to construct paths of integration

such that [0] is not equal to
&amp;lt;/&amp;gt;.

Consider, for example, the curve

indicated by a continuous line in

Fig. 57. If is initially equal

to 2&7T, it will have increased

by 2?r when we get to P and

by 4?r when we get to Q; and its

final value will be 2kjr + 4?r +
&amp;lt;/&amp;gt;,

so that [0]
= 4-7T + 6 arid Fig. c?.

Log f = log p + i (47T +
&amp;lt;/&amp;gt;).

|Y
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In this case the path of integration winds twice round the

origin in the positive sense. If we had taken a path winding
k times round the origin we should have found, in a precisely

similar way, that [$]
= 2kjr + &amp;lt; and

Log f= log/? 4- i (2&7T + $).

Here k is positive. By making the path wind round the origin

in the opposite direction (as shown in the dotted path in Fig. 57),

we obtain a similar series of values in which k is negative.

Since
| \=p, and the different angles 2k TT -f &amp;lt;f&amp;gt; are the different

values of am f, we conclude that every value of log |
f |
+ i am ? is

a value of Log f ;
and it is clear from the preceding discussion

that every value of Log f must be of this form.

We may summarise our conclusions as follows : the general

value of Log f is

log |
f

|

+ i am =
log p + i (2/for -I-

&amp;lt;),

where k is any positive or negative integer. The value of k is

determined by the path of integration chosen. If this path is a

straight line then k = and

In what precedes we have used f to denote the argument of

the function Log f,
and (f, 97) or (p, &amp;lt;/&amp;gt;)

to denote the coordinates of

f ;
and z

t (x, y), (r, 6) to denote an arbitrary point on the path of

integration and its coordinates. There is however no reason now

why we should not revert to the natural notation in which z is used

as the argument of the function Log z, and we shall do this in

the following examples.

Examples XCIII. 1. We supposed above that
-ir&amp;lt;6&amp;lt;-rr, and so

excluded the case in which z is real and negative. In this case the straight
line from 1 to z passes through 0, and is therefore not admissible as a path of

integration. Both IT and n- are values of am 2, and 6 is equal to one or

other of them: also r= z. The values of Logs are still the values of

log |

z
\
+ iam 2, viz.

where k is an integer. The values log ( z} + iri and log (
-

z}
- ni correspond

to paths from 1 to z lying respectively entirely above and entirely below the

real axis. Either of them may be taken as the principal value of Log z, as

convenience dictates. We shall choose the value log( z)+ 7ri corresponding
to the first path.

H. 26
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2. The real and imaginary parts of any value of Log z are both continuous

functions of x and y, except for #= 0, y= 0.

3. The functional equation satisfied by Log z. The function Logz
satisfies the equation

Log^^Logsi+Logf] ........................... (1),

in the sense that every value of either side of this equation is one of the values

of the other side. This follows at once by putting

Zl
= TI (cos 61 4- i sin 61), z2

= r% (cos 6%+ i sin
2),

and applying the formula of p. 401. It is however not true that

Iog01 32 =log01+ log$2 .............................. (2)

in all circumstances. If, e.g.,

z
l
= zz =$( I+ iN/3) = cos ITT -f i sin jj TT,

then Iog 1 =log02 =i- rfc an(* logZi+log^^Trt, which is one of the values of

LogZiZ2 ,
but not the principal value. In fact Iogz1 z2

= -7n.

An equation such as (1), in which every value of either side is a value

of the other, we shall call a complete equation, or an equation which is

completely true.

4. The equation Log 2m=w Logs, where m is an integer, is not completely

true : every value of the right-hand side is a value of the left-hand side, but

the converse is not true.

5. The equation Log (1/2)
= -Log z is completely true. It is also true

that log (1/2)= logz, except when z is real and negative.

6. The equation

is true if z lies outside the region bounded by the line joining the points z= a,

=6, and lines through these points parallel to OX and extending to infinity

in the negative direction.

7. The equation

is true if z lies outside the triangle formed by the three points 0, a, b.

8. Draw the graph of the function I (Log x) of the real variable x. [The

graph consists of the positive halves of the lines y= 2kir and the negative

halves of the lines y= (2k + 1) TT.]

9. The function /(a?) of the real variable #, defined by

T/ O) =pn + (q-p)I (log a?),

is equal to p when x is positive and to q when x is negative.
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10. The function / (a?) defined by

is equal to p when #&amp;gt;1,
to q when

0&amp;lt;^7&amp;lt;1,
and to r when

11. For what values of z is (i) logz (ii) any value of Logz (a) real or

(6) purely imaginary?

12. Ifz=x+iy then Log Log 2= log .ft+ i (e+2#r), where

and 6 is the least positive angle determined by the equations

cos : sin 9 : 1 : : log r : + 27r : x/{(log r)
2+ (0+ 2for)

2
}.

Plot roughly the doubly infinite set of values of Log Log (1 + 1^/3), indicating

which of them are values of log Log (1 + tV3) and which of Log log (1 +i v/3).

222. The exponential function. In Ch. IX we defined

a function ey of the real variable y as the inverse of the function

y = log x. It is naturally suggested that we should define a function

of the complex variable z which is the inverse of the function

Log*.

DEFINITION. If any value of Log z is equal to f, we call z the

exponential of % and write

z = exp

Thus z exp f if f= Log ar. It is certain that to any given

value of z correspond infinitely many different values of f. It

would not be unnatural to suppose that, conversely, to any given

value of f correspond infinitely many values of z, or in other words

that exp f is an infinitely many-valued function of f This is

however not the case, as is proved by the following theorem.

THEOREM. The exponential function exp f is a one-valued

function of f.

For suppose that

Zl
-

T! (cos 0! + i sin #0, ^2 = ^2 (cos 6., + i sin 2)

are both values of exp f. Then

and so log rx + * (0! + 2??i7r)
=

log ra + i (02 + 2ri7r),

where m and n are integers. This involves

log r*!
= log ?-2 , 0j 4- 2w7r = 2 + 2n7r.

Thus rx
= r2) and 0! and 2 differ by a multiple of 2?r. Hence

262
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COROLLARY. If %is real then exp f=ef
, the real exponential

function of f defined in Ch. IX.

For if z = e* then logs = f, i.e. one of the values of Logz is f.

Hence 2 = exp f.

223, The value of exp f. Let f= f + ^ and

z = exp f = r (cos + i sin 0).

Then + i*rj
= Log s = log r + i (6 + 2m-7r),

where m is an integer. Hence f = log r, 77
= + 2mir t

or

r = e*,
=

77
- 2-nnr

;

and accordingly

exp (f + 117)
= e (cos 77 + i sin

77).

If 77
= then exp f = e*, as we have already inferred in 222.

It is clear that both the real and the imaginary parts of exp (f + irj)

are continuous functions of f and 77 for all values of and 77.

224. The functional equation satisfied by exp f. Let

?i
= ?i + Wi , ?2

= f2 +^2 . Then

exp x exp fa = ef i

(cos ^ + z sin 77^ x e& (cos 77,, + i sin
773)

= e* i+f&amp;gt;

{cos (77X + 772) -{- i sin
(77, + 772)}

= exp (?, + ).

The exponential function therefore satisfies the functional relation

/(fi+ ?*)=/(?i) /(&), an equation which we have proved already
( 205) to be true for real values of fj and fa .

225. The general power a*. It might seem natural, as

exp f =e* when f is real, to adopt the same notation when f is

complex and to drop the notation exp f altogether. We shall not

follow this course because we shall have to give a more general
definition of the meaning of the symbol e* : we shall find then
that e$ represents a function with infinitely many values of which

exp f is only one.

We have already defined the meaning of the symbol a^ in a
considerable variety of cases. It is defined in elementary Algebra
in the case in which a is real and positive and f rational, or a real

and negative and f a rational fraction whose denominator is odd.

According to the definitions there given a* has at most two values.
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In Ch. Ill we extended our definitions to cover the case in which

a is any real or complex number and f any rational number p/q;
and in Ch. IX we gave a new definition, expressed by the equation

which applies whenever f is real and a real and positive.

Thus we have, in one way or another, attached a meaning to

such expressions as

but we have as yet given no definitions which- enable us to attach

any meaning to such expressions as

(l+i)^, -2
, (3 + 202+3i

.

We shall now give a general definition of a$ which applies to all

values of a and f, real or complex, with the one limitation that

a must not be equal to zero.

DEFINITION. The function at is defined by the equation

a* = exp (f Log a)

where Log a is any value of the logarithm of a.

We must first satisfy ourselves that this definition is consistent

with the previous definitions and includes them all as particular

cases.

(1) If a is positive and f real, then one value of f Log a, viz.

flog a, is real: and exp (flog a)
= e* loea

,
which agrees with the

definition adopted in Ch. IX. The definition of Ch. IX is, as

we saw then, consistent with the definition given in elementary

Algebra ;
and so our new definition is so too.

(2) If a = e
r
(cos ty + i sin

-v/r),
then

Log a = r 4- i (^r + 2 WITT),

exp {(p/q) Log a\
= &* * Cis {(p/q) (ifr + 2m7r)},

where m may have any integral value. It is easy to see that if ra

assumes all possible integral values then this expression assumes q

and only q different values, which are precisely the values of apl&amp;lt;*

found in 48. Hence our new definition is also consistent with

that of Ch. III.



406 THE GENERAL THEORY OF THE LOGARITHMIC, [x

226. The general value of G Let

f = + irj, a = o- (cos A/T + i sin ^)
where TT &amp;lt; r/^Tr, so that, in the notation of 225, a = e

r or

r = log &amp;lt;r.

Then

fLog a = (f + 117) {log &amp;lt;r + i ty + 2wwr)J
= + O/,

where

L = f log a- - rj (ijr + 2m7r), 3f = 97 log &amp;lt;r + f (^ -f- 2??i7r) ;

and a^= exp (f Log a) = eL (cos M + i sin M).

Thus the general value of a* is

e fiog&amp;lt;r-,r+2n,r)
[cos {^ log o- + (^ + 2w7r)}

+ i sin
{r) log o- + f (^ + 2m7r)}].

In general cf is an infinitely many-valued function. For

I a I _ e log&amp;lt;r-r,W+2mn)

has a different value for every value of m, unless 77
= 0. If on the

other hand 77
= 0, then the moduli of all the different values of a&amp;lt;=

are the same. But any two values differ unless their amplitudes
are the same or differ by a multiple of 2?r. This requires that

f (^r + 2wi7r) and f (^r + 2w7r), where m and n are different integers,

shall differ, if at all, by a multiple of 2?r. But if

then f = k/(m n) is rational. We conclude that a* is infinitely

many-valued unless %is real and rational. On the other hand we

have already seen that, when is real and rational, a$ has but a

finite number of values.

The principal value of a$ exp (f Log a) is obtained by giving Log a its

principal value, i.e. by supposing m= in the general formula.. Thus the

principal value of a* is

t log 0-7^ /

Two particular cases are of especial interest. If a is real and positive

and f real, then &amp;lt;r

= a, -v^
= 0, =, 17

=
0, and the principal value of c is

e^loga
,
which is the value defined in the last chapter. If |a|

= l and ( is

real, then &amp;lt;r

=
l, |=f, 17

=
0, and the principal value of (cos^+isin^ is

cos
fi/r+ i sin f^r. This is a further generalisation of De Moivre s Theorem

(45,49).
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Examples XOIV. 1. Find all the values of i\ [By definition

i*=exp (i Log i).

But
f

=cos^7r4-isin^7r, Log i

where k is any integer. Hence

All the values of i* are therefore real and positive.]

2. Find all the values of (1 + i)*, i 1 +
\ (l+i)

l + i
.

3. The values of a
,
when plotted in the Argand diagram, are the vertices

of an equiangular polygon inscribed in an equiangular spiral whose angle is

independent of a. (Math. Trip. 1899.)

[If as= r (cos 6 + i sin 6] we have

r= e
f logr-i,r+2miO 6=

r} log a+ ^ (^+ 2W7r) ;

and all the points lie on the spiral ?W^ fr)2)/^~^.]

4. The function e^. If we write e for a in the general formula, so that

log &amp;lt;r

=
l, A//-

= 0, we obtain

e*= ef
- 2m7n

(cos (77 -|- 2i7r) + i sin (17 + 2i7r)}.

The principal value of e^ is e^ (cos 77+ isin i;),
which is equal to exp ( 223).

In particular, if is real, so that
17
=

0, we obtain

e^ (cos 2mjr+ 1 sin 2w7rf)

as the general and as the principal value,
*
denoting here the positive

value of the exponential defined in Ch. IX.

5. Show that Log e^ (1 + 2wiri ) + 2wwz, where m and ^ are any integers,

and that in general Log c has a double infinity of values.

6. The equation \ja=a~^ is completely true (Ex. xcni. 3): it is also true

of the principal values.

7. The equation a*xb
&amp;lt;

*= (ab)
&amp;gt; is completely true but not always true of

the principal values.

8. The equation a^xa^ = a^
+ ^ is not completely true, but is true of the

principal values. [Every value of the right-hand side is a value of the left-

hand side, but the general value of a^xa^ ,
viz.

exp { (log a+ Zmiri) + (loga+2niri)} ,

is not as a rule a value of af
+ ? unless m=n.]

9. What are the corresponding results as regards the equations

Log af= Log a, (a?f= (a?)*
= a# ?

10. For what values of is (a) any value (6) the principal value of e*

(i)
real (ii) purely imaginary (iii) of unit modulus ?
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11. The necessary and sufficient conditions that all the values of af should
be real are that 2 and

{rj log |

a
\
+ am a}/?r, where am a denotes any value of

the amplitude, should both be integral. What are the corresponding con
ditions that all the values should be of unit modulus ?

12. The general value of
| #*+#-*!, where

&amp;gt;(),
is

e~(m
~ n)V[2 (cosh 2 (m+ w) TT+COS (2 log#)}].

13. Explain the fallacy in the following argument : since e^
miri=e^n = I

where m and n are any integers, therefore, raising each side to the power i

we obtain e- Zm7r=e~2n\

14. In what circumstances are any of the values of #*, where x is real,
themselves real ? [If x&amp;gt;0 then

#*= exp (x Log x) = exp (x log x) Cis 2i7r#
,

the first factor being real. The principal value, for which m= 0, is always
real.

If x is a rational fraction pj(2q + l\ or is irrational, then there is no other
real value. But if x is of the form p{2q, then there is one other real value,
viz. -

exp (x log x\ given by m= q.

ltx= -&amp;lt;0 then

The only case in which any value is real is that in which
=jo/(2&amp;lt;7+ l), when

m q gives the real value

The cases of reality are illustrated by the examples

15. Logarithms to any base. We may define f= Loga z in two different

ways. We may say (i) that = Loga z if the principal value of at is equal to z
;

or we may say (ii) that f = Loga z if any value of a is equal to z.

Thus if a=e then =Loge 2, according to the first definition, if the

principal value of [s equal to z, or if exp=z; and so Loge z is identical

with Log z. But, according to the second definition, =Loge if

or =(Log s)/(Log e), any values of the logarithms being taken. Thus

f=Lo? ._ Iog

so that is a doubly infinitely many-valued function of z. And generally,

according to this definition, Loga 2= (Logz)/(Loga).

16. Loge l=2m7r*7(l + 2tt7n), Logg (-l) = (2m+ l) 7n/(l + 2w7rO, where
and n are any integers.
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227. The exponential values of the sine and cosine.

From the formula

exp ( + irji)
= exp f (cos ij +i sin

77),

we can deduce a number of extremely important subsidiary

formulae. Taking = 0, we obtain exp (irj)
= cos 77 + i sin 77 ; and,

changing the sign of 77, exp ( itj)
= cosrj i sin 77. Hence

cos ij
=

{exp (177) + exp ( i

sin TI ^ i {exp (irj) exp ( i

We can of course deduce expressions for any of the trigonometrical

ratios of 77 in terms of exp (itf).

228. Definition of sin? and cos? for all values of ?.

We saw in the last section that, when ? is real,

cos?= {exp (;?) + exp (-;)} (la),

sin ?=-|;{exp(;?)- exp (-;?)} (1 6).

The left-hand sides of these equations are defined, by the ordinary

geometrical definitions adopted in elementary Trigonometry, only
for real values of ? The right-hand sides have, on the other

hand, been defined for all values of ?, real or complex. We are

therefore naturally led to adopt the formulae (1) as the definitions

of cos ? and sin ? for all values of ?. These definitions agree, in

virtue of the results of 227, with the elementary definitions for

real values of ?.

Having defined cos ? and sin ?, we define the other trigono

metrical ratios by the equations

sin ? cos ? 1 1
tan? = J, cot?=^ , sec? = -, cosec ?= -

-,,...(2).
cos? sm ? cos? sin?

It is evident that cos ? and sec ? are even functions of ?, and

sin ?, tan ?, cot ?, and cosec ? odd functions. Also, if exp (i?)
=

t,

we have

cos ?= J {* + (1/0), sin ?= - 1
i{t

-
(Ijt}},

cosa ?+sma

r=J[{*+(VO}
2

-{*-(VO!
3

]
= l (3).

We can moreover express the trigonometrical functions of

?+ ?
r

in terms of those of ? and ? by precisely the same formulae
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as those which hold in elementary trigonometry. For if exp (if) = tt

exp (if) = t , we have

1

:

= cos fcos f -sin sin&quot; .........(4);

and similarly we can prove that

sin(+ fHsinfcosf + cosfsinf ............ (5).

In particular

cos(f+ -j7r)
= -sin sin(f+j7r) = cos f ...... (6).

All the ordinary formulae of elementary Trigonometry are

algebraical corollaries of the equations (2) (6) ;
and so all such

relations hold also for the generalised trigonometrical functions

defined in this section.

229. The generalised hyperbolic functions. In Ex. LXXXVII. 19, we
defined cosh and sinh f, for real values of

, by the equations

cosh f= J {exp f+ exp (
-

fl}, sinh f= J {exp f-exp (-f)} ...... (1).

We can now extend this definition to complex values of the variable;
i.e. we can agree that the equations (1) are to define cosh and sinh for
all values of real or complex. The reader will easily verify the following
relations :

cos #= cosh & sin#=isinh& cosh i= cos f, sinh i{=i sin .

We have seen that any elementary trigonometrical formula, such as
the formula cos 2^= cos2 -sin2

,
remains true when is allowed to assume

complex values. It remains true therefore if we write cos i for cos f, sin i

for sin and cos2^ for cos 2; or, in other words, if we write cosh for cos f,
^ sinh f for sin

,
and cosh 2f for cos 2^. Hence

cosh 2= cosh 2 ^+ sinh2
^.

The same process of transformation may be applied to any trigonometrical

identity. It is of course this fact which explains the correspondence noted
in Ex. LXXXVII^ 21 between the formulae for the hyperbolic and those for the

ordinary trigonometrical functions.

230. Formulae for cos(|+^), sin(+^), etc. It follows from the
addition formulae that

cos
( + ir})

= cos | cos ir)
- sin sin iq

= cos cosh
rj
- i sin sinh

/,

sin ( + 117)= sin cos
irj + cos sin

irj
= sin cosh q + i cos sinh

rj.

These formulae are true for all values of and
77.

The interesting case
is that in which and

77
are real. They then give expressions for the real and

imaginary parts of the cosine and sine of a complex number.
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Examples XCV. 1. Determine the values of for which cos f and sin

are (i) real (ii) purely imaginary. [For example cos is real when 77=0 or

when | is any multiple of TT.]

2.
|

cos
( -f irf) \

= ^/(cos
2 + sinh2

77)
=V{ (cosh 277 + cos 2)},

|

sin
( + 777)

= V(sin
2 + sinh2

77)
= V{ (cosh fy

- cos 2)}.

[Use (e.g.} the equation |

cos (+* ?) |

=
v/{cos ( + z?7)

cos
( ir;)}.]

,. .. -
3. tan ( + 177)

= -/, cot (1+ 177)=
-

/ .

cosh 2?; + cos 2 cosh 2r;
- cos 2

[For example
si &quot; (1 + ?) cos (g-^iy) sin 2|-f sin 2^
cos (I + irj) cos (|

-
irf)

cos

which leads at once to the result given.]

cos

sin | cosh TJ I cos sinh 77

i
(coshv co;2|) ;

5. If
|
cos (% + ir)} 1

= 1 then sin2 = sinh2
77,

and if
|

sin (1 + ^) |

= 1 then

cos2 1= sinh2
?;.

6. If
|

cos (| -\-iri) |

=
1, then

sin (arn cos ( + ^)} = sin2 = sinh2
17.

7. Prove that Log cos
( + 177)

=^ + 15, where

^1 = log {J (cosh 277 + cos 2|)}

and jB is any angle such that

cos B sin 5 1

cos I cosh
77

sin | sinh 77 s/li (cosh 2?7 + cos 2|)}

Find a similar formula for Log sin (| 4-177).

8. Solution of the equation cos=a, where a is real. Putting

(=t- + ir), and equating real and imaginary parts, we obtain

cos cosh
77
=

a, sin | sinh
77
= 0.

Hence either
77
= or is a multiple of TT. If (i) 77

= then cos =
a, which is

impossible unless - 1 &amp;lt;a^l. This hypothesis leads to the solution

=2/(-7rarccosa,

where arc cos a lies between and %TT. If (ii)
= mir then cosh

77
=

( l)
m

a, so

that either a ^1 and m is even, or a&amp;lt;
- 1 and m is odd. If a= 1 then

77
=

0,

and we are led back to our first case. If
|

a
|&amp;gt;

1 then cosh
77
=

]

a
|,
and we

are led to the solutions

For example, the general solution of cos = -^ is =( + !) 7rilog3.
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9. Solve sin =a, where a is real.

10. Solution of cos = a +2/3, where /3=^0. We may suppose /3&amp;gt;0,

since the results when /3 &amp;lt;0 may be deduced by merely changing the sign of i.

In this case

cos cosh?7 = a, 8in|sinhi;= -/3 .................. (1),

and (a/cosh i7)
2+ (/3/sinh 77)2

= 1.

If we put cosh2
i)-=x we find that

or x= (A i A 2)
2
,
where

^l=W(
Suppose a &amp;gt;0. Then

AI&amp;gt; A 2 &amp;gt;0 and cosh rj=AiA 2 . Also

cos^=a/(cos

and since cosh
77 &amp;gt; cos we must take

The general solutions of these equations are

= 2&7rarccos
M&amp;gt; rj= log (Z+ X/(Z

2 -
1)} ............... (2),

where L= A l+A 2 , M=Ai~A 2 ,
and arc cosM lies between and |TT.

The values of
77
and thus found above include, however, the solutions of

the equations

cos cosh
77
=

a, sin sinh77=/3 ..................... (3),

as well as those of the equations (1), since we have only used the second of

the latter equations after squaring it. To distinguish the two sets of

solutions we observe that the sign of sin is the same as the ambiguous sign
in the first of the equations (2), and the sign of sinh

?/
is the same as the

ambiguous sign in the second. Since /3 &amp;gt; 0, these two signs must be different.

Hence the general solution required is

= 2/br [arc cosM- i log (L +V( 2 - 1
)}].

11. Work out the cases in which a &amp;lt;0 and a = in the same way.

12. If /3
= then Z= || a + 1

|

+
|

a- 1 and J/=
|

a + 1 |-| a-1
|

.

Verify that the results thus obtained agree with those of Ex. 8.

13. Show that if a and /3 are positive then the general solution of

sin =a+ i is

where arc sin J/ lies between and ^TT. Obtain the solution in the other

possible cases.

14. Solve tan =, where a is real. [All the roots are real.]
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15. Show that the general solution of tan =a-f ij3, where /3=}=0, is

where 6 is the numerically least angle such that

16. If z exp (TTI), where is real, and c is also real, then the modulus
of cos 2rrz cos 2?rc is

V[i (1+ cos 47rc+ cos (27rV2) + cosh (27rV2)
- 4 COS 2?rC COS (?r v/2) cosh (TT s/2)}].

1 7. Prove that
| exp exp ( + iij) \

= exp (exp cos
17),

R (cos cos (-Br7)}
= cos (cos cosh

77)
cosh (sin sinh

77),

I (sin sin
( + IT)}}

= cos (sin cosh
77) sinh (cos sinh

77).

18. Prove that |exp f |

tends to oo if moves away towards infinity along

any straight line through the origin making an angle less than TT with OX,
and to if moves away along a similar line making an angle greater than

TT with OX.

19. Prove that |cos| and jsin| tend to co if ^ moves away towards

infinity along any straight line through the origin other than either half of

the real axis.

20. Prove that tan tends to i or to i if f moves away to infinity

along the straight line of Ex. 19, to - i if the line lies above the real axis and
to i if it lies below.

231. The connection between the logarithmic and the inverse

trigonometrical functions. We found in Ch. VI that the integral of a

rational or algebraical function $ (#, a, /3, ...), where a, /3, ... are constants,
often assumes different forms according to the values of a, /3, ...

;
sometimes

it can be expressed by means of logarithms, and sometimes by means of

inverse trigonometrical functions. Thus, for example,

dx 1 x

*M^
=

v7a
arctan^ (1)

if a &amp;gt; 0, but
dx

if a &amp;lt; 0. These facts suggest the existence of some functional connection

between the logarithmic and the inverse circular functions. That there

is such a connection may also be inferred from the facts that we have ex

pressed the circular functions of in terms of exp i, and that the logarithm
is the inverse of the exponential function.

Let us consider more particularly the equation

*L-llc2-n2~ 9.,,
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which holds when a is real and ($-a)J(x+ a) is positive. If we could write

ia instead of a in this equation, we should be led to the formula

where C is a constant, and the question is suggested whether, now that we
have denned the logarithm of a complex number, this equation will not be
found to be actually true.

Now
( 221)

Log (x ia}= \ log (#
2+ a2 ) i (0+ 27r),

where k is an integer and &amp;lt; is the numerically least angle such that

cos0= ^/v/(^7
2+ a2

) and sin $= a/v/(^
2 + a2

). Thus

where I is an integer, and this does in fact differ by a constant from any
value of arc tan (x/a).

The standard formula connecting the logarithmic and inverse circular

functions is

(4),

where x is real. It is most easily verified by putting ^=tany, when the right-

hand side reduces to

1 T /cos V+ i sin ?A 1 -.

. Log .- . )
= -r-. Log (exp 2^v) =y+ TT,2^ \cosy-ismy/ 2i

where & is any integer, so that the equation (4) is
(

completely true (Ex. xcm.

3). The reader should also verify the formulae

arc cosx= - i Log {xi fj(l
- #2

)}, arc sin x=-i Log {ix J(I
- #2

)}...(5),

where - 1 &amp;lt;.^^1 : each of these formulae also is completely true.

Example. Solving the equation

where #= exp (iu\ with respect to y, we obtain y=xi^/(\ -x2
). Thus:

u=i Log y= - i Log [x i*J(l #2
)},

which is equivalent to the first of the equations (5). Obtain the remaining

equations (4) and (5) by similar reasoning.

232. The power series for exp^*. We saw in 212

that when z is real

Moreover we saw in 191 that the series on the right-hand side

* It will be convenient now to use z instead of f as the argument of the

exponential function.
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remains convergent (indeed absolutely convergent) when z is com

plex. It is naturally suggested that the equation (1) also remains

true, and we shall now prove that this is the case.

Let the sum of the series (1) be denoted by F(z). The series

being absolutely convergent, it follows by direct multiplication (as

in Ex. LXXXI. 7) that F (z) satisfies the functional equation

F(g)F(h) = F(z + h) .................. (2).

Now let z iy, where y is real, and F (z)=f (y). Then

andso

and so, if k
\

&amp;lt; 1,

Hence {/(&)
-

I\/k-*i as A; 0, and so

-

Now

f(y) = F(iy) = 1 + (iy) +

where (y) is an even and ^ (i/) an odd function of y, and so

{&amp;lt;#&amp;gt; (y)
- *

= Vf^(^)J
I

(-*}
and therefore

cos F+ i sin F,

where F is a function of y such that TT &amp;lt; F ^ TT. Since/ (y) has

a differential coefficient, its real and imaginary parts cos Fand sin F
have differential coefficients, and are a fortiori continuous functions

of y. Hence F is a continuous function of y. Suppose that F
changes to F + K when y changes to y + k. Then K tends to

zero with k, and

K _ fcos(F+/Q-cosF) /fcos(F+/Q-cosF]
j-{~ nr j/t TT r

Of the two quotients on the right-hand side the first tends to a
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limit when &-*0, since cos Y has a differential coefficient with

respect to y, and the second tends to the limit sin Y. Hence K/k
tends to a limit, so that Y has a differential coefficient with respect
to y.

Further f (y) ( sin Y-\- i cos Y) -=- .

But we have seen already that

f(y) = tf(y}
= - sin F+ i cos F.

Hence =1, Y = y + C,
ay

where G is a constant, and

/ (y)
= cos (y + 0) + i sin (y + O).

But /(O) = 1 when y = 0, so that C is a multiple of 2-7T, and

/ (y)
= cos y -f i sin y. Thus jP (iy)

= cos y + i sin y for all real

values of y. And, if # also is real, we have

F(x + iy)
= F (x) F (iy)

= exp # (cos y + i sin y) = exp (x + ty),

or

for all values of z.

233. The power series for cos z and sin z. From the

result of the last section and the equations (1) of 228 it follows

at once that

- Z* Z* . Z* Z*

ooM-1-jj + jj-.... mw-jj +
gp;..

for all values of z. These results were proved for real values of z

in Ex. LVI. 1.

Examples XCVI. 1. Calculate cos i and sin i to two places of decimals

by means of the power series for cos z and sin z.

2. Prove that
|

cos z
\

&amp;lt; cosh
|

z
\

and
|

sin z
\

&amp;lt; sinh \z\.

3. Prove that if
|

z
\

&amp;lt;
I then

|

cos z
\

&amp;lt;
2 and

j

sin z
\

&amp;lt; f |

z
|.

4. Since sin 2z=2 sin z cos z we have

Prove by multiplying the two series on the right-hand side ( 195) and

equating coefficients
( 194) that

22n
3

Verify the result by means of the binomial theorem. Derive similar identities

from the equations
cos2 z+ sin2 z= 1

,
cos 2z= 2 cos2 z - 1 = 1 - 2 sin2

z.
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5. Show that exp {(!+*&amp;gt;}
=2 2** exp(**)

6. Expand cos z cosh z in powers of z. [We have

cos z cosh z+ i sin 2 sinh 2= cos {(1
-

i) z}
= [exp {(1 +i) 2} + exp {

-
(1 + 1) 0}]

and similarly cos z cosh 2 - i sin 2 sinh = cos
(
1+ i) z

Hence cos z cosh 2= J 2 2in {l + (-!)} cos J W7r^=l-^ +^
8

- .......]

7. Expand sin 2 sinh z, cos sinh z, and sin a cosh z in powers of 2.

8. Expand sin2 z and sin3 2 in powers of z. [Use the formulae

sin2 2=1(1 -cos 22), sin3 2=(3 sin s- sin 82), ....

It is clear that the same method may be used to expand cos71 z and sinn
2,

where n is any integer.]

9. Sum the series

-, ,

cos z cos 22 cos 32 sin 2 sin 22 sin 32~ ~ &quot;*- ^= + ~ +

[Here

= exp (cos 2) (cos (sin z) + i sin (sin 2)},
and simil-irly

C- iS= exp {exp (
-

it)}
= exp (cos 2) {cos (sin 2)

- i sin (sin z)}.

Hence (7= exp (cos 2) cos (sin 2),
= exp (cos 2) sin (sin 2).]

10. Sum 1
...,

11. Sum l-
co

l^ + ^-...,
2?L

and the corresponding series involving sines.

12. Show that

1 +
4!

+
-g|-

+ . . . =i {cos (cos 2) cosh (sin 2) + cos (sin 2) cosh (cos 2)}.

13. Show that the expansions of cos (at+Ji) and sin (x+ K) in powers of h

(Ex. LVI. 1) are valid for all values of x and h, real or complex.

234. The logarithmic series. We found in 213 that

log(l + *) = *-i*2 + ^3 - ..................(1)

when z is real and numerically less than unity. The series on the

right-hand side is convergent, indeed absolutely convergent, when
H. 27
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z has any complex value whose modulus is less than unity. It is

naturally suggested that the equation (1) remains true for such

complex values of z. That this is true may be proved by a

modification of the argument of 213. We shall in fact prove
rather more than this, viz. that (1) is true for all values of z such

that
|

z
|

^ 1, with the exception of the value 1.

It will be remembered that log (1 + z) is the principal value of

Log (1 + 0), and that

where C is the straight line joining the points 1 and 1 + z in the

plane of the complex variable u.. We may suppose that z is not

real, as the formula (1) has been proved already for real values

of z.

If we put
z r (cos 6 + i sin 6) = r,

so that
|

r
\

&amp;lt;

1, and
u = I + &

then u will describe G as t increases from to r. And

/du
f
r dt

c u
~

J 1 + &amp;lt;

rif= if-
Jo

dt

where

It follows from (1) of 164 that

Cr fm

\*m\*l n^J o 1 +o

Now
1

1 + %t
|

or
|

w
|

is never less than -BT, the perpendicular from

on to the line C* Hence

1 f , rw+1 1
7?

&amp;lt;;

I i/mnj &amp;lt;

* Since z is not real, C cannot pass through when produced. The reader is

recommended to draw a figure to illustrate the argument.
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and so Rm -* as m -* oo . It follows from (2) that

log(l+*) = *-J*a + J*
3 - ............... (5).

We have of course shown in the course of our proof that the

series is convergent : this however has been proved already

(Ex. LXXX. 4). The series is in fact absolutely convergent when
z &amp;lt; I and conditionally convergent when

j
z

\

= 1.

Changing z into z we obtain

235. Now

log (1 + z)
=

log {(1 + r cos 6) + ir sin 6}
r sm e

i log (1 + 2r cos 6 + r2

) + i arc tan / r s

\1 + ? COS

That value of the inverse tangent must be taken which lies

between \TT and \ir. For, since 1 4- z is the vector represented

by the line from - 1 to z, the principal value of am (1 + z) always
lies between these limits when z lies within the circle

| z\
= 1.*

Since zm = rm (cos mO + i sin w#), we obtain, on equating the

real and imaginary parts in equation (5) of 234,

log (1 + 2r cos 6 + r2
)
= r cos - r2 cos 2(9 + i?

3 cos 3(9 - . . .,

arc tan (r^
-

~#)
= r s^n ^ &quot;

4 r2 s^n 2^ + i 7
3
S1n 3^ - ....

These equations hold when ^ r &amp;lt;

1, and for all values of ^, except
that, when r = l, 6 must not be equal to an odd multiple of TT.

It is easy to see that they also hold when 1 ^ r ^ 0, except that,

when r = 1
,
6 must not be equal to an even multiple of TT.

A particularly interesting case is that in which r = 1. In

this case we have

log (1+ z)
=

log (1 + Cis 6) = J log (2 + 2 cos (9) + i arc tan
(-

sm *
)

\1 4~ cos (//

if
7r&amp;lt;0&amp;lt;7r, and so

cos0-:J cos 2^ + J cos 3^ - ... =ilog(4cos
2

|0),

sin(9- J sin 2^ + J sin 36&amp;gt;
- ... = 0.

* See the preceding footnote.

272
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The sums of the series, for other values of 0, are easily found from

the consideration that they are periodic functions of 6 with the

period 2?r. Thus the sum of the cosine series is ^ log (4 cos2

\6) for

all values of 6 save odd multiples of TT (for which values the series

is divergent), while the sum of the sine series is (6 2kir) if

(2k !)TT &amp;lt; &amp;lt; (2/c + 1) TT, and zero if 6 is an odd multiple of TT.

The graph of the function represented by the sine series is shown

in Fig. 58. The function is discontinuous for 6 = (2k + 1) TT.

Fig. 58.

If we write iz and iz for z in (5), and subtract, we obtain

If z is real and numerically less than unity, we are led, by the results of

231, to the formula
arc tan z=zz

already proved in a different manner in 214.

Examples XCVII. 1. Prove that, in any triangle in which a&amp;gt;b,

7 7 2

logc=loga cos C PT^, cos 2(7-....
a 2a*

[Use the formula log c=| log (a
2+62 2ab cos C).]

2. Prove that if - l&amp;lt;r&amp;lt;l and
-\Tr&amp;lt;6&amp;lt;\ir

then

r sin 20 - %r
2 sin 40 + ^r

3 sin 60 - . . .
= 6- arc tan ifp--J

tan 0!- ,

the inverse tangent lying between ^n and ^TT. Determine the sum of the

series for all other values of 6.

3. Prove, by considering the expansions of log (l+iz) and log(l-w) in

powers of z, that if l&amp;lt;r&amp;lt;l then

r sin0 + r2 cos 20- r3 siri 30- %I
A cos 40+... =4 log (1 + 2r sin + r2

),

r cos 6 + \r* sin 20 -^ cos 30 - r4 sin 40+ . . .
= arc tan (

r cos -
|r3 cos 30 + ... = arc tan

the inverse tangents lying between -TT and ?r.
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4. Prove that

cos 0cos 6- $ cos 20 cos2 6+ 1 cos 3d cos3 6 ... = log (1 + 3 cos2 6],

sin &amp;lt;9 sin - sin 20 sin2 + 1 siri 30 sin3 - ... = arc cot (1 + cot 0+ cot2 0),

the inverse cotangent lying between -\ir and % TT
;
and find similar ex

pressions for the sums of the series

cos sin | cos 20 sin2 + . . ., sin cos -
^ sin 20 cos2 + ....

236. Some applications of the logarithmic series. The
exponential limit. Let z be any complex number, and h a real

number small enough to ensure that
hz\&amp;lt;l.

Then

log (1 + hz) = hz-% (hz)* + i
(hz)

3

and so

where

so that
&amp;lt;f&amp;gt; (h, z)-*-0 as /i^-0. It follows that

lim log(L+fe) = ^
fc^-O n

If in particular we suppose h = 1/w, where n is a positive integer,

we obtain

lim ft log (1 +
-

) z,
n-- \ W/

/ \
n

f / \)
lim

(
1 + -

)

= lim exp \n log 1 + -
) \
= exp z ...... (2).

w^-x\ w/ n-**A ( V W/J

and so

This is a generalisation of the result proved in 208 for real

values of z.

From (1) we can deduce some other results which we shall

require in the next section. If t and h are real, and h is sufficiently

small, we have

log (1 + tz + hz)
-

log (1 + tz) _ 1 , / hz

h ~h

which tends to the limit z/(l + tz) as h^O. Hence

te)}
= - .................. (3).



422 THE GENERAL THEORY OF THE LOGARITHMIC, [x

We shall also require a formula for the differentiation of

(1 + te)
m

,
where m is any number real or complex, with respect

to t. We observe first that, if
&amp;lt;()

=
-v/r (t) + ?% (t) is a complex

function of t, whose real and imaginary parts $ (t) and x (t)

possess derivatives, then

(exp )
=

((cos x + i sin % ) exp f }

=
{(cos % + * sin ^) -v|/ -f ( sin % + ^ cos x) % }

exp ^
=

(xj/ + i^ ) (cos % -f * sin x) exP ^
=

(i|r + iy ) exp (i/r + ix)
=

.&amp;lt; exp $,

so that the rule for differentiating exp ( is the same as when &amp;lt; is

real. This being so we have

= Ytz exp ^
m log (1 + **)

= mz(l +tz)
m-1

..................... (4).

Here both (1 + tz)
m and (1 + tz)

m~ l have their principal values

237. The general form of the Binomial Theorem. We
have proved already ( 215) that the sum of the series

is (1 + z)
m = exp fm log (1 + z)}, for all real values of m and all real

values of z between 1 and 1. If an is the coefficient of z11 then

m n

whether m is real or complex. Hence (Ex. LXXX. 3) the series

is always convergent if the modulus of z is less than unity, and we

shall now prove that its sum is still exp {m log (1 + z)},
i.e. the

principal value of (1 + z)
m

.

It follows from 236 that if t is real then

~
(1 + tz)

m = mz (1 + tz)
m
~\
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z and m having any real or complex values and each side having
its principal value. Hence, if

(/&amp;gt; (t)
=

(1 + tz)
m

,
we have

&amp;lt;(*) (t)
= m (m - 1) . . . (m - n + 1) zn (1 + tz)

m~n
.

This formula still holds if t = 0, so that

n
(0)_/m\

?i! ~w
Now, in virtue of the remark made at the end of 164, we have

...

where Rn =
^ftftfc

(1
~ On

~l

&amp;lt;l&amp;gt;

(n) (0 dt.

But if = r (cos # + 1 sin 6) then

1 + tz
|

= VO + 2r cos (9 + V) ^ 1 -
&amp;lt;r,

and therefore

|m(m-l)...(m-7i + l)|
f

1 (l-^-1

~(/r^i)T~
r

Jo &amp;lt;i=i?y

d(

\m(m- l)...(m-n + l)| (1
-

fl)&quot;&quot;

1 rn
&quot; -

where &amp;lt; &amp;lt; 1
;
so that (cf. 163)

say. But

&quot;
I

pn n

and so (Ex. xxvii. 6) /?n -*0, and therefore Rn-^Q, as n

Hence we arrive at the following theorem.

THEOREM. The sum of the binomial series

.i/ V2

is exp {m log(l + z}}, where the logarithm has its principal value,

for all values of m, real or complex, and all values of z such that

z\&amp;lt;l.

A more complete discussion of the binomial series, taking

account of the more difficult case in which
|

z =
1, will be found

on pp. 225 et seq. of Bromwich s Infinite Series.
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Examples XCVIII. 1. Suppose m real. Then since

we obtain

2 *=exp (m log (1 + 2r cos 0+r2

)} Cis m arc tan

is i
(

+ 2r cos 6 + r
m
Cis m arc tan -

all the inverse tangents lying between -|TT and \ir. In particular, if we

suppose 6=%ir, z=ir, and equate the real and imaginary parts, we obtain

T ~
(?)

T*+
\5 )

r5 ~ =
(* + rrf

H
sin

(m arc tan r
)-

2. Verify the formulae of Ex. 1 when m= l, 2, 3. [Of course when m is

a positive integer the series is finite.]

3. Prove that if &amp;lt; r
&amp;lt; I then

1.3 1.3.5.7 d /(.l _ f*4- ? * = / -(

2.4 2.4.6.8 V I

1 1-3.5 1 . 3 . 5 . 7 . 9
i5 _ /J,

2
r

2. 4. 6
r

2. 4. 6. 8.10
7&amp;lt; VI 2(l+r2

)

[Take m= ^ in the last two formulae of Ex. 1.]

4. Prove that if - J TT &amp;lt;#&amp;lt; rr then

COS W10= COSW

sin w(9 = cos^ tan 5- tari3 ^ + ... I
,

J

for all real values of m. [These results follow at once from the equations

cos m&+ i sin md = (cos 6+ i sin 6}
m= cosm (1 + ^ tan 0)

m
.]

5. We proved (Ex. LXXXI. 6), by direct multiplication of series, that

/(m, 2)
= 2 I

j

n
,
where

j

2
|&amp;lt;1,

satisfies the functional equation

/ (m, z]f(m , z) =f (m + m , z).

Deduce, by an argument similar to that of 216, and without assuming the

general result of p. 423, that if m is real and rational then

/ (m, z}
= exp {m log (1 +z)} .

6. If z and
p.

are real, and 1 &amp;lt; z &amp;lt; 1, then
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MISCELLANEOUS EXAMPLES ON CHAPTER X.

1. Show that the real part of ilog (l+i) is

e(+D/8 cos {%(4k+ 1) TT log 2},

where Jc is any integer.

2. If a cos 0+6 sin 0+c=0, where a, 6, c are real and c2 &amp;gt;

2+ &2
,
then

where m is any odd or any even integer, according as c is positive or negative,
and a is an angle whose cosine and sine are

a/&amp;gt;J(a

2+ 62
) and 6/&amp;gt;/(a

2
4- 62

).

3. Prove that if 6 is real and sin 6 sin
&amp;lt;p

= I then

&amp;lt;f&amp;gt;

=
(k+ fc)

TT Hog cot (for + 0),

where & is any even or any odd integer, according as sin 6 is positive or

negative.

4. Show that if x is real then

-7- exp {(a+ ib} x]= (a+ ib] exp {(a + ib) x],
ttvt/

exp

Deduce the results of Ex. LXXXVIL 3.

/

/CO

^
exp {

-
(a -f t6) #} c?.^=-

^,
and deduce the

results of Ex. LXXXVIL 5.

6. Show that if (#/a)
2+ (y/6)

2= l is the equation of an ellipse, and /(#, y)
denotes the terms of highest degree in the equation of any other algebraic

curve, then the sum of the eccentric angles of the points of intersection of the

ellipse and the curve differs by a multiple of 2?r from

-* {log/(,#)- log/ (a, -#)}.

[The eccentric angles are given by f(a cos a, 6 sin a) + ... =0 or by

/{*(
where u= exp ia

;
and 2a is equal to one of the values of i Log P, where P is

the product of the roots of this equation.]

7. Determine the number and approximate positions of the roots of the

equation tan z=az, where a is real.

[We know already (Ex. xvn. 4) that the equation has infinitely many real

roots. Now let z=x+iy, and equate real and imaginary parts. We obtain

sin 2#/(cos 2x+ cosh 2y)
= ax, sinh 2y/(cos 2#+ cosh 2y)

=
cry,

so that, unless x or y is zero, we have
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This is impossible, the left-hand side being numerically less, and the right-

hand side numerically greater than unity. Thus x=0 or
j/
= 0. If y= we

come back to the real roots of the equation. If x= Q then tanhy=a?/. It is

easy to see that this equation has no real root other than zero if a ^ or

a&amp;gt;l,
and two such roots if &amp;lt;a &amp;lt;1. Thus there are two purely imaginary

roots if 0&amp;lt;a&amp;lt;l ;
otherwise all the roots are real.]

8. The equation tanz=az+ &, where a and b are real and b is not equal

to zero, has no complex roots if a^O. If a&amp;gt;0 then the real parts of all the

complex roots are numerically greater than
| 6/2a |

.

9. The equation tan z= a/z, where a is real, has no complex roots, but

has two purely imaginary roots if a&amp;lt;0.

10. The equation tanz=atanh cz, where a and c are real, has an infinity

of real and of purely imaginary roots, but no complex roots.

11. Show that if a? is real then

eax cos&#=2

where there are ^(n+ l) or ^(n+ 2) terms inside the large brackets. Find

a similar series for eax sin bx.

12. If n $ (z, n) -&amp;gt; z as n^-x
,
then (1+0 (z, ri)}

n -*- exp z.

13. If ^ (if)
is a complex function of the real variable

,
then

[Use the formulae

=^+ *X lo = k log (^+ X
2
) + i arc tan

14. Transformations. In Ch. Ill (Exs. xxi. 21 et seq., and Misc. Exs.

22 et seq.) we considered some simple examples of the geometrical relations

between figures in the planes of two variables 2, Z connected by a relation

z=f(Z). We shall now consider some cases in which the relation involves

logarithmic, exponential, or circular functions.

Suppose firstly that

z= exp (irZIa), Z= (a/IT} Log z

where a is positive. To one value of Z corresponds one of z, but to one of z

infinitely many of Z. If x, y, r, 6 are the coordinates of z and JT, Y, U, 6

those of Z, we have the relations

. Xsse XI* Cos (irY/a), y= e&quot;

x/a sin (ff F/a),

X= (a/rr) log r, F= (0/7r) + 2ka,

where )fe is any integer. If we suppose that - ?r&amp;lt; 6^ TT, and that Log z has its

principal value logz, then &=0, and ^T is confined to a strip of its plane parallel

to the axis OX and extending to a distance a from it on each side, one point
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of this strip corresponding to one of the whole 0-plane, and conversely. By
taking a value of Log z other than the principal value we obtain a similar

relation between the z-plane and another strip of breadth 2a in the -plane.

To the lines in the Z-plane for which X and Y are constant correspond the

circles and radii vectores in the 2-plane for which r and 6 are constant. To
one of the latter lines corresponds the whole of a parallel to OX, but to a

circle for which r is constant corresponds only a part, of length 2a, of a

parallel to OY. To make Z describe the whole of the latter line we must
make z move continually round and round the circle.

15. Show that to a straight line in the Z-plane corresponds an equi

angular spiral in the z-plane.

16. Discuss similarly the transformation z=ccosh (wZ/a), showing in

particular that the whole z-plane corresponds to any one of an infinite

number of strips in the ^-plane, each parallel to the axis OX and of

breadth 2a. Show also that to the line X=XQ corresponds the ellipse

f__ _ _l
2

, f _L_1 2

=1
\C cosh (jya)J [c sinh (TTJT /a)/

and that for different values of X$ these ellipses form a confocal system ;
and

that the lines Y= Y correspond to the associated system of confocal hyper
bolas. Trace the variation of z as Z describes the whole of a lineXXQ or

Y YQ How does Z vary as z describes the degenerate ellipse and hyperbola
formed by the segment between the foci of the confocal system and the

remaining segments of the axis of xl

17. Verify that the results of Ex. 16 are in agreement with those of Ex. 14

and those of Ch. Ill, Misc. Ex. 25. [The transformation z= c cosh (nZj

may be regarded as compounded from the transformations

z2= exp (nZJa).]

18. Discuss similarly the transformation z=ctdinh(nZ}a) ) showing that

to the lines X=XQ correspond the coaxal circles

{x
- c coth (27rX /)}

2+#2= ca cosech2 (2vX /a\

and to the lines Y= YQ the orthogonal system of coaxal circles.

19. The Stereographic and Mercator s Projections. The points of a

unit sphere whose centre is the origin are projected from the south pole (whose
coordinates are 0, 0, 1) on to the tangent plane at the north pole. The
coordinates of a point on the sphere are

, 77, ,
and Cartesian axes OX, Y

are taken on the tangent plane, parallel to the axes of and
TJ.

Show that

the coordinates of the projection of the point are

and that #+M/= 2tan^$Cis&amp;lt;, where
(f)

is the longitude (measured from the

plane 77
= 0) and 6 the north polar distance of the point on the sphere.
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This projection gives a map of the sphere on the tangent plane, generally
known as the Stereographic Projection. If now we introduce a new complex
variable

Z= JT+iY= -ilog^z=i log \ (x+ iy)

so that
X=&amp;lt;$&amp;gt;, F=logcot0, we obtain another map in the plane of Z,

usually called Mercator s Projection. In this map parallels of latitude and

longitude are represented by straight lines parallel to the axes of X and Y
respectively.

20. Discuss the transformation given by the equation

Z-a

showing that the straight lines for which x and y are constant correspond to

two orthogonal systems of coaxal circles in the ^-plane.

21. Discuss the transformation

showing that the straight lines for which x and y are constant correspond to

sets of coufocal ellipses and hyperbolas whose foci are the points Z= a and

[We have *J(Z- a) + J(Z -b) = v/(6
-

a) exp ( x+ iy\

J(Z- a)
- J(Z- b)

= v/(6
-
a) exp (

- x - iy) ;

and it will be found that

\Z-a\ + \Z-b\ = \b-a\cosh2x, \Z-a\- Z-b\ = \
b-a\ cos 2y.J

22. The transformation z= Z\ If z=Z\ where the imaginary power
has its principal value, we have

exp (log r+ 10) =z= exp (i log Z)= exp (i log R -
0),

so that logr= 0, 0=log R-\- Zk-rr, where k is an integer. As all values of k

give the same point 2, we shall suppose that &=0, so that

logr=-e, 0=log# .............................. (1).

The whole plane of Z is covered when R varies through all positive

values and from - TT to n : then r has the range exp (- ) to exp TT and 6

ranges through all real values. Thus the Z-plane corresponds to the ring

bounded by the circles r=exp( TT), r^expTr; but this ring is covered

infinitely often. If however 9 is allowed to vary only between TT and ?r.

so that the ring is covered only once, then R can vary only from exp ( TT) to

exp TT, so that the variation of Z is restricted to a ring similar in all respects

to that within which z varies. Each ring, moreover, must be regarded as

having a barrier along the negative real axis which z (or Z) must not cross, as

its amplitude must not transgress the limits - TT and TT.
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We thus obtain a correspondence between two rings, given by the pair of

equations
z= Z\ Z=z~\

where each power has its principal value. To circles whose centre is the

origin in one plane correspond straight lines through the origin in the other.

23. Trace the variation of z when Z, starting at the point exp ?r, moves
round the larger circle in the positive direction to the point exp TT, along
the barrier, round the smaller circle in the negative direction, back along the

barrier, and round the remainder of the larger circle to its original position.

24. Suppose each plane to be divided up into an infinite series of rings

by circles of radii

Show how to make any ring in one plane correspond to any ring in the

other, by taking suitable values of the powers in the equations z=Z\ Z=z~i
.

25. If z=Zl
, any value of the power being taken, and Amoves along an

equiangular spiral whose pole is the origin in its plane, then z moves along an

equiangular spiral whose pole is the origin in its plane.

26. How does Z-zai
,
where a is real, behave as z approaches the origin

along the real axis. \Z moves round and round a circle whose centre is the

origin (the unit circle if zai has its principal value), and the real and imaginary
parts of Z both oscillate finitely.]

27. Discuss the same question for Z=za + bi
,
where a and b are any real

numbers.

28. Show that the region of convergence of a series of the type 2 a-n z na\
- X

where a is real, is an angle, i.e. a region bounded by inequalities of the type
do &amp;lt; am z &amp;lt; 61 [The angle may reduce to a line, or cover the whole plane.]

29. Level Curves. If f(z) is a function of the complex variable 0, we
call the curves for which |/(z)| is constant the level curves of f(z). Sketch
the forms of the level curves ot

z a (concentric circles), (z -a) (z- b) (Cartesian ovals),

(z
-

a)l(z
-

b) (coaxal circles), exp z (straight lines).

30. Sketch the forms of the level curves of (z-a) (z-b) (z- c),

(1 -fz/v/3 +zz
)/z. [Some of the level curves of the latter function are drawn in

Fig. 59, the curves marked i-vn corresponding to the values

10, 2- v/3 = -27, -40, 1-00, 2 00, 2+ x/3 = 3 73, 4 53

of \f(z) j.
The reader will probably find but little difficulty in arriving at a

general idea of the forms of the level curves of any given rational function
;

but to enter into details would carry us into the general theory of functions
of a complex variable.]
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Fig. 59.

Fig. 60. Fig. 61.
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31. Sketch the forms of the level curves of (i) zexpz, (ii) sinz. [See

Fig. 60, which represents the level curves of sin z. The curves marked i-vin

correspond to = 35, -50, -71, I OO, 1 41, 2 00, 2 -83, 4 00.]

32. Sketch the forms of the level curves of exp z-c, where c is a real

constant. [Fig. 61 shows the level curves of [expz 1|, the curves i-vn

corresponding to the values of k given by log =
1-00, --20, -

05, O OO,

05, -20, TOO.]

33. The level curves of sin z-c, where c is a positive constant, are

sketched in Figs. 62, 63. [The nature of the curves differs according as

to whether c&amp;lt;l or c&amp;gt;l. In Fig. 62 we have taken c=-5, and the curves

i-vni correspond to =-29, -37, 50, -87, 1-50, 2 60, 4-50, 779. Tn Fig. 63

we have taken c= 2, and the curves i-vn correspond to &=-58, 1-00, 173,

3-00, 5-20, 9-00, 15-59. If c= l then the curves are the same as those of

Fig. 60, except that the origin and scale are different.]

Fig. 62. Fig. 63.

34. Prove that if 0&amp;lt;0&amp;lt;7r then

cos 6+$ cos 30+ cos 50 + ... = log cot2
\6,

sin# + sin 3&amp;lt;9+sin 50 -}-... =J;7r,

and determine the sums of the series for all other values of 6 for which they
are convergent. [Use the equation

where 2= cos 0+r sin 6. When & is increased by IT the sum of each series

simply changes its sign. It follows that the first formula holds for all values

of 6 save multiples of TT (for which the series diverges), while the sum of the

second series is if
2k7r&amp;lt;6&amp;lt;(2k+I) TT, -\TT if (2+l) ?r&amp;lt;0&amp;lt;(2+2) r,

and if 6 is a multiple of TT.]
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35. Prove that if &amp;lt; 6 &amp;lt;Jn then

cos 6- ^ cos 30+ i cos 5(9 - ... = 77,

sin0- sin 30+ * sin 50 -...= log (see + tan 0)
2

;

and determine the sums of the series for all other values of 6 for which they
are convergent.

36. Prove that

cos 6 cos a+ \ cos 26 cos 2a+ i cos 30 cos 3a+ ...= log (4 (cos
- cos a)

2
},

unless 0-aor0 +aisa multiple of 2n-.

37. Prove that if neither a nor b is real then

dx = log (-a) -log (-6)
o (x-a)(x-V) a-b

each logarithm having its principal value. Verify the result when a=ci,
b= -

ci, where c is positive. Discuss also the cases in which a or b or both

are real and negative.

38. Prove that if a and ft are real, and
|8&amp;gt;0,

then

dx rri

Ifa

/oV,
What is the value of the integral when /3&amp;lt;0 ?

39. Prove that, if the roots of Ax2+ 2J3x+C=Q have their imaginary

parts of opposite signs, then

dx TTI

I
the sign of &amp;gt;J(IP-AC} being so chosen that the real part of

is positive.



APPENDIX I

(To CHAPTERS III, IV, V)

The Proof that every Equation has a Root

LET Z=P(z)= a
Q
z + ai zn -i + ... + an

be a polynomial in z, with real or complex coefficients. We can represent
the values of z and Z by points in two planes, which we may call the 2-plane
and the ^-plane respectively. It is evident that if z describes a closed path y
in the 2-plane, then Z describes a corresponding closed path r in the ^-plane.
We shall assume for the present that the path r does not pass through the

origin.

To any value of Z correspond an infinity of values of am Z, differing by
multiples of 2?r, and each of these values varies continuously as Z describes

r.* We can select a particular value of am Z corresponding to each point

Fig. A. Fig. B.

of r, by first selecting a particular value corresponding to the initial value

of Z, and then following the continuous variation of this value as Z moves

along r. We shall, in the argument which follows, use the phrase the

amplitude of Z^ and the formula am Z to denote the particular value of the

amplitude of Z thus selected. Thus amZ&quot; denotes a one-valued and con

tinuous function of X and Y, the real and imaginary parts of Z,

* It is here that we assume that r does not pass through the origin.

n. 28
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When Z, after describing r, returns to its original position, its amplitude

may be the same as before, as will certainly be the case if r does not enclose

the origin, like path (a) in Fig. B, or it may differ from its original value by

any multiple of 2-rr. Thus if its path is like (6) in Fig. B, winding once round

the origin in the positive direction, then its amplitude will have increased

by 2?r. These remarks apply, not merely to r, but to any closed contour in

the ^f-plane which does not pass through the origin. Associated with any
such contour there is a number which we may call the increment of am Z
when Z describes the contour

,
a number independent of the initial choice of

a particular value of the amplitude of Z.

We shall now prove that if the amplitude of Z is not the same when Z
returns to its original position, then the path of z must contain inside or on

it at least one point at which Z=0.

We can divide y into a number of smaller contours by drawing parallels

to the axes at a distance 81 from one another, as in Fig. C.* If there is,

on the boundary of any one of these contours, a point at which Z=0,
what we wish to prove is already established. We may therefore suppose

Fig. C. Fig. D.

that this is not the case. Then the increment of amZ, when z describes

y,
is equal to the sum of all the increments of amZ obtained by supposing

z to describe each of these smaller contours separately in the same sense as y.

For if z describes each of the smaller contours in turn, in the same sense,

it will ultimately (see Fig. D) have described the boundary of y once, and

each part of each of the dividing parallels twice and in opposite directions.

Thus PQ will have been described twice, once from P to Q and once from Q
to P. As z moves from P to Q, am Z varies continuously, since Z does not

pass through the origin ;
and if the increment of am Z is in this case 6, then

its increment when z moves from Q to P is 6
;

so that, when we add

up the increments of am Z due to the description of the various parts of the

smaller contours, all cancel one another, save the increments due to the

description of parts of y itself.

* There is no difficulty in giving a definite rule for the construction of these

parallels: the most obvious course is to draw all the lines x = kdlt y = kSlt where

k is an integer positive or negative.
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Hence, if am Z is changed when z describes y, there must be at least one

of the smaller contours, say yi ,
such that am Z is changed when z describes

yi. This contour may be a square whose sides are parts of the auxiliary

parallels, or may be composed of parts of these parallels and parts of the

boundary of y. In any case every point of the contour lies in or on the

boundary of a square AI whose sides are parts of the auxiliary parallels and

of length 8lm

We can now further subdivide yl by the help of parallels to the axes at a

smaller distance 52
from one another, and we can find a contour y2 &amp;gt; entirely

included in a square A2 ,
of side S2 and itself included in A1} such that sunZ

is changed when z describes the contour.

Now let us take an infinite sequence of decreasing numbers dA ,
S2 , &amp;gt;

5m , ..., whose limit is zero.* By repeating the argument used above, we can

determine a series of squares Al5 A 2 , ..., ATO ,
... and a series of contours -y^

72&amp;gt; ) ym &amp;gt;

sucn that (i) Am + i lies entirely inside A OT , (ii) ym lies entirely

inside Am , (iii) amZ is changed when z describes ym .

If
(#m&amp;gt; ym) and (xm+ 8m , ym+ Sm ) are the lower left-hand and upper right-

hand corners of A,n ,
it is clear that xlt x^, ..., xm ,

... is an increasing and

#1 + 81, #2 + 8g -&amp;gt; #m+8, ... a decreasing sequence, and that they have a

common limit XQ . Similarly ym and ym+8m have a common limit yQ ,
and

(#01 yo) is the one and only point situated inside every square Am . How
ever small d may be, we can draw a square which includes (#0&amp;gt; yo), and whose

sides are parallel to the axes and of length S, and inside this square a closed

contour such that am Z is changed when z describes the contour.

It can now be shown that

For suppose that P(xQ+ iy^ = a, where
|

a
=/&amp;gt;&amp;gt;0.

Since P(x+ iy] is a con

tinuous function of x and y, we can draw a square whose centre is (# , yo)

and whose sides are parallel to the axes, and which is such that

at all points x+ iy inside the square or on its boundary. At all such points

where
|

&amp;lt;/&amp;gt;
]

&amp;lt; %p. Now let us take any closed contour lying entirely inside

this square. As z describes this contour, Z=a +
&amp;lt;fr

also describes a closed

contour. But the latter contour evidently lies inside the circle whose centre

is a and whose radius is p, and this circle does not include the origin.

Hence the amplitude of Z is unchanged.

But this contradicts what was proved above, viz. that inside each square A?n

we can find a closed contour the description of which by z changes
Hence P (XQ+ v/ )

= 0.

* We may, e.g., take Sm=51/2
w*-1

.

282
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All that remains is to show that we can always find some contour such that

am Z is changed when z describes y. Now

Z= &amp;lt;

We can choose R so that

Kl

where is any positive number, however small
;
and then, if y is the circle

whose centre is the origin and whose radius is R, we have

where
|p|&amp;lt;5,

at all points on y. We can then show, by an argument
similar to that used above, that am(l+p) is unchanged as z describes

y in the positive sense, while am zn on the other hand is increased by 2ft7r.

Hence amZ is increased by Qmr, and the proof that Z=Q has a root is

completed.

We have assumed throughout the argument that neither r, nor any of the

smaller contours into which it is resolved, passes through the origin. This

assumption is obviously legitimate, for to suppose the contrary, at any stage
of the argument, is to admit the truth of the theorem.

We leave it as an exercise to the reader to infer, from the discussion

which precedes and that of 43, that when z describes any contour y in the

positive sense the increment of am Z is 2&7r, where k is the number of roots

of Z= inside y, multiple roots being counted multiply.

There is another proof, proceeding on different lines, which is often given.

It depends, however, on an extension to functions of two or more variables of

the results of 102 et seq.

We define, precisely on the lines of 102, the upper and lower bounds of a

function /(#, y\ for all pairs of values of x and y corresponding to any point

of any region in the plane of (#, y) bounded by a closed curve. And we

can prove, much as in 102, that a continuous function / (#, y} attains its

upper and lower bounds in any such region.

Now \Z\ = \P(x+ifi\

is a positive and continuous function of x and y. If m is its lower bound for

points on and inside
-y,

then there must be a point 2 for which
|
Z\ = m, and

this must be the least value assumed by \Z\. If w=0, then P(^ )
=

0, and

we have proved what we want. We may therefore suppose that i&amp;gt;0.

The point ZQ must lie either inside or on the boundary of y : but if y is

a circle whose centre is the origin, and whose radius R is large enough, then

the last hypothesis is untenable, since
|
P (z) \

-&amp;gt; co as
|

z
\

-* &amp;lt;x&amp;gt; . We rnay

therefore suppose that ZQ lies inside y.
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If we put Z=ZQ + ,
and rearrange P(z) according to powers of

,
we obtain

say. Let A k be the first of the coefficients which does not vanish, and let

I

A k (

=
/*, | |=p. We can choose p so small that

Then \P(*)-P(*o)-A t {*\&amp;lt;$pp*,

and \P(*)\&amp;lt;\P(*d + A k t*\ + tnft.

Now suppose that z moves round the circle whose centre is z and radius p.

Then
k

moves k times round the circle whose centre is P(zQ) and radius
|

A k ^
k
\=p.p^

and passes k times through the point in which this circle is intersected by
the line joining P(z ) to the origin. Hence there are k points on the circle

described by z at which
|
P (z } + A k

*
\

= \P (z ) | -/zp* and so

-/ip p=-/&amp;gt;tpw;

and this contradicts the hypothesis that m is the lower bound of
|

P (z) \

.

It follows that m must be zero and that P z = 0.

EXAMPLES ON APPENDIX I

1. Show that the number of roots of f(z) = Q which lie within a closed

contour which does not pass through any root is equal to the increment of

{log/(*)}/2,rt

when z describes the contour.

2. Show that if R is any number such that

lBj + l?.L -..!&amp;lt;* l^i
It

^
IP

&quot;*&quot;
+
R* &amp;lt;i&amp;gt;

then all the roots of zn+ a l z
n
.-

l + ...+ an=0 are in absolute value less than
R. In particular show that all the roots of 25 - 132 -7 = are in absolute

value less than 2.
3. Determine the numbers of the roots of the equation z2P + az+ 6=

where a and b are real and p odd, which have their real parts positive and

negative. Show that if
a&amp;gt;0, b&amp;gt;0 then the numbers are p- 1 and p+ 1 if

&amp;lt;0,
&&amp;gt;0 they are p + 1 and p- 1

; and if 6&amp;lt;0 they are p and p. Discuss
the particular cases in which a=0 or 6 = 0. Verify the results when p= l.

[Trace the variation of am
(z%&amp;gt;+ az+ 6) as z describes the contour formed

by a large semicircle whose centre is the origin and whose radius is R, and
the part of the imaginary axis intercepted by the semicircle.]

4. Consider similarly the equations
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5. Show that if a and /3 are real then the numbers of the roots of the

equation 22n+ a23
2n ~ 1

-f /3
2= which have their real parts positive and

negative are n-l and w+ 1, or n and n, according as n is odd or even.

(Math. Trip. 1891.)

6. Show that when z moves along the straight line joining the points

z= z^ = z
2 ,

from a point near zl to a point near 22) the increment of

am
(

- - +
z z

is nearly equal to TT.

7. A contour enclosing the three points 2= 2^ z= z2 ,
z=z3 is denned by

parts of the sides of the triangle formed by zlt 22 , 3 ,
and the parts exterior

to the triangle of three small circles with their centres at those points.

Show that when z describes the contour the increment of

-zl z-

is equal to 71-.

8. Prove that a closed oval path which surrounds all the roots of a cubic

equation f(z)=0 also surrounds those of the derived equation / (z)
= Q. [Use

the equation

where glt 2&amp;gt;

z3 are the roots of /(=0, and the result of Ex. 7.]

9. Show that the roots off (z)
= are the foci of the ellipse which touches

the sides of the triangle (zlt z^ z3) at their middle points. [For a proof see

Cesaro s Elementares Lekrbuch der algebraischen Analysis, p. 352.]

10. Extend the result of Ex. 8 to equations of any degree.

11. If f(z) and (z) are two polynomials in 2, and y is a contour which

does not pass through any root of f(z\ and
| &amp;lt;j&amp;gt;(z) |&amp;lt;|/() |

at all points on
7&amp;gt;

then the numbers of the roots of the equations r

which lie inside y are the same.

12. Show that the equations

ez= az, ez= azz
, e*=az^

where
a&amp;gt;e,

have respectively (i) one positive root (ii) one positive and one

negative root and (iii) one positive and two complex roots within the circle

1

2
1

= 1. (Math. Trip. 1910.)
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(To CHAPTERS IX, X)

A Note on Double Limit Problems

IN the course of Chapters IX and X we came on several occasions into

contact with problems of a kind which invariably puzzle beginners and

are indeed, when treated in their most general forms, problems of great

difficulty and of the utmost interest and importance in higher mathematics.

Let us consider some special instances. In 213 we proved that

where 1&amp;lt;#^1, by integrating the equation

between the limits and x. What we proved amounted to this, that

r _dt__ f

x

dt _
J I+~t~Jo

t

or in other words that the integral of the sum of the infinite series 1 - t+t2 -
...,

taken between the limits and x, is equal to the sum of the integrals of its

terms taken between the same limits. Another way of expressing this fact is to

say that the operations of summation from to oo
,
and of integration from

to x, are commutative when applied to the function (- l)
n w

,
i.e. that it does

not matter in what order they are performed on the function.

Again, in 216, we proved that the differential coefficient of the ex

ponential function
/%*2

exp^=l+.r+ ,

+ ...

is itself equal to exp #, or that
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that is to say that the differential coefficient of the sum of the series is equal
to the sum of the differential coefficients of its terms, or that the operations of

summation from to co and of differentiation with respect to x are commu
tative when applied to xn/n\.

Finally we proved incidentally in the same section that the function

exp x is a continuous function of x, or in other words that

...

a?

i.e. that the limit of the sum of the series is equal to the sum of the limits of

the terms, or that the sum of the series is continuous for #=, or that the

operations of summation from to oo and of making x tend to are com
mutative when applied to xn\n\.

In each of these cases we gave a special proof of the correctness of the

result. We have not proved, and in this volume shall not prove, any general
theorem from which the truth of any one of them could be inferred im

mediately. In Ex. xxxvn. 1 we saw that the sum of a finite number of con
tinuous terms is itself continuous, and in 113 that the differential coefficient

of the sum of a finite number of terms is equal to the sum of their differential

coefficients ; and in 160 we stated the corresponding theorem for integrals.
Thus we have proved that in certain circumstances the operations symbolised

by
lim..., Z&amp;gt;a;..., f...cZ*

are commutative with respect to the operation of summation of a finite number
of terms. And it is natural to suppose that, in certain circumstances which
it should be possible to define precisely, they should be commutative also with

respect to the operation of summation of an infinite number. It is natural to

suppose so : but that is all that we have a right to say at present.

A few further instances of commutative and non-commutative operations

may help to elucidate these points.

(1) Multiplication by 2 and multiplication by 3 are always commutative,
for

2x3x,t =3x2x^
for all values of x.

(2) The operation of taking the real part of z is never commutative with

that of multiplication by i, except when 2=0
;
for

i x R (x+ iy]
=

ix, R {i x (x+ iy}} -y.

(3) The operations of proceeding to the limit zero with each of two

variables x and y may or may not be commutative when applied to a

function f(x,y). Thus

lim
{
lim (#+y)}= lim #= 0, lim

{
lim (#+#)} limy=0 ;

-*.() y-*-Q X-*-Q y-*Q x-**Q y-*-0
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but on the other hand

lim (lim ^
)
= lim - = Km 1 = 1,

X+Q X x^
lira ilm -^ = lim = lim(-l)=-l.

oo

(4) The operations 2..., lim... may or may not be commutative. Thus
1 x-*~I

if x-*~l through values less than 1 then

(acf lV* ^1

limJ 2 V--xn
\=\\m log (!+#) log 2,

x-&amp;gt;~i ( i n J *-*-!

( IV* 1 00 (1)*im^.*U S 1 ^- = log2;
^i n j ! n

but on the other hand

lim -Is (#
n-#n + 1

)l=lim{(l-#) + (#-^2
) + ...}

= liml = l,

fh*-lU J x+l a?-*-!

The preceding examples suggest that there are three possibilities with

respect to the commutation of two given operations, viz. : (1) the operations

may always be commutative
; (2) they may never be commutative, except in

very special circumstances
; (3) they may be commutative in most of the ordinary

cases ivhich occur practically.

The really important case (as is suggested by the instances which we

gave from Ch. IX) is that in which each operation is one which involves

a passage to the limit, such as a differentiation or the summation of an

infinite series : such operations are called limit operations. The general

question as to the circumstances in which two given limit operations are

commutative is one of the most important in all mathematics. But to

-attempt to deal with questions of this character by means of general theorems

would carry us far beyond the scope of this volume.

We may however remark that the answer to the general question is on

the lines suggested by the examples above. If L and L are two limit

operations then the numbers LL z arid LLz are not generally equal, in the

strict theoretical sense of the word general . We can always, by the exercise

of a little ingenuity, find z so that LL z and^Z Z^ shall differ from one another.

But they are equal generally, if we use the word in a more practical sense,

viz. as meaning in a great majority of such cases as are likely to occur

naturally or in ordinary cases.
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Of course, in an exact science like pure mathematics, we cannot be satisfied

with an answer of this kind
;
and in the higher branches of mathematics the

detailed investigation of these questions is an absolute necessity. But for

the present the reader may be content if he realises the point of the remarks
which we have just made. In practice, a result obtained by assuming that

two limit-operations are commutative is probably true : it at any rate affords

a valuable suggestion as to the answer to the problem under consideration.

But an answer thus obtained must, in default of a further study of the general

question or a special investigation of the particular problem, such as we gave
in the instances which occurred in Ch. IX, be regarded as suggested only and
not proved.

Detailed investigations of a large number of important double limit

problems will be found in Bromwich s Infinite Series.
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(To 158 AND CHAPTER IX)

The circular functions

THE reader will find it an instructive exercise to work out the theory of

the circular functions, starting from the definition

f
x dt

(1) y=yO) = arctan^= -,. Df.*

The equation (1) defines a unique value of y corresponding to every real

value of x. As y is continuous and strictly increasing, there is an inverse

function x=x (y), also continuous and steadily increasing. We write

(2) ^=tf(y) = tany. Df.

If we define TT by the equation

(3) *-

then this function is defined for ^TT &amp;lt;y &amp;lt;%TT.

We write further

(4) cosy= L==, siny= = Df.

where the square root is positive; and we define cosy and siny, when y is - \ TT

or TT, so that the functions shall remain continuous for those values of y.

Finally we define cosy and siny, outside the interval ( -, JTT), by

(5) tan (y+ 7r)
= tan y, cos (y-f TT)= -cosy, sin (y + 7r)= -siny. Df.

We have thus defined cosy and siny for all values of y, and tany for all

values of y other than odd multiples of ?r. The cosine and sine are continuous

for all values of y, the tangent except at the points where its definition fails.

The further development of the theory depends merely on the addition

formulae. Write

and transform the equation (1) by the substitution

==
,
u= --

We find

~, . .~s ,
- du fx i du fx* du

arc tan

= arc tan xi + arc tan xz .

* These letters at the end of a line indicate that the formulae which it contains

are definitions.
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From this we deduce

(6) ,
1 - tan yi tan 3/2

an equation proved in the first instance only when ylt y.2 ,
and 3/1+3/2 lie in

(&quot;i
77

&quot;) if)? but immediately extensible to all values of yl and y2 by means of

the equations (5).

From (4) and (6) we deduce

cos (3/1+3/2)= (cos 3/j cos 3/2- sin yi sin 3/2)-

To determine the sign put 3/2=0. The equation reduces to cos y,
= cos y t ,

which shows that the positive sign must be chosen for at least one value of y2
&amp;gt;

viz. #2=0. It follows from considerations of continuity that the positive sign
must be chosen in all cases. The corresponding formula for sin(y1 +ya) nrny
be deduced in a similar manner.

The formulae for differentiation of the circular functions may now be de
duced in the ordinary way, and the power series derived from Taylor s

Theorem.

An alternative theory of the circular functions is based on the theory of

infinite series. An account of this theory, in which, for example, cos .2; is

defined by the equation

...

will be found in &quot;VThittaker and Watson s Modern Analysis (Appendix A).
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The infinite in analysis and geometry

SOME, though not all, systems of analytical geometry contain infinite

elements, the line at infinity, the circular points at infinity, and so on. The

object of this brief note is to point out that these concepts are in no way

dependent upon the analytical doctrine of limits.

In what may be called common Cartesian geometry ,
a point is a pair of

real numbers (#, y). A line is the class of points which satisfy a linear relation

ax+ by + c= 0, in which a and 6 are not both zero. There are no infinite elements,

and two lines may have no point in common.

In a system of real homogeneous geometry a point is a class of triads of

real numbers (#, y, z\ not all zero, triads being classed together when their

constituents are proportional. A line is a class of points which satisfy a linear

relation ax+ by+ cz=Q, where a, 6, c are not all zero. In some systems one

point or line is on exactly the same footing as another. In others certain

special points and lines are regarded as peculiarly distinguished, and it is on

the relations of other elements to these special elements that emphasis is laid.

Thus, in what may be called real homogeneous Cartesian geometry ,
those

points are special for which 2=0, and there is one special line, viz. the line

2=0. This special line is called the line at infinity .

This is not a treatise on geometry, and there is no occasion to develop the

matter in detail. The point of importance is this. The infinite of analysis

is a limiting and not an actual infinite. The symbol oo has, throughout

this book, been regarded as an incomplete symbol ,
a symbol to which no

independent meaning has been attached, though one has been attached to

certain phrases containing it. But the infinite of geometry is an actual and

not a limiting infinite. The line at infinity is a line in precisely the same

sense in which other lines are lines.

It is possible to set up a correlation between homogeneous and common
Cartesian geometry in which all elements of the first system, the special

elements excepted, have correlates in the second. The line ax+ by+ cz= 0, for

example, corresponds to the line ax+ by + c= 0. Every point of the first line

has a correlate on the second, except one, viz. the point for which 2= 0.

When (#, y, 2) varies on the first line, in such a manner as to tend in the limit

to the special point for which 2=0, the corresponding point on the second line

varies so that its distance from the origin tends to infinity. This correlation

is historically important, for it is from it that the vocabulary of the subject

has been derived, and it is often useful for purposes of illustration. It is how

ever no more than an illustration, and no rational account of the geometrical

infinite can be based upon it. The confusion about these matters so prevalent

among students arises from the fact that, in the commonly used text books of

analytical geometry, the illustration is taken for the reality.
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