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PREFACE TO THE THIRD EDITION

NO extensive changes have been made in this edition. The most
important are in §§ 80-82, which I have rewritten in accord-
ance with suggestions made by Mr S. Pollard.

The earlier editions contained no satisfactory account of the
genesis of the circular functions. I have made some attempt to
meet this objection in §158 and Appendix III. Appendix IV is also
an addition.

It is curious to note how the character of the criticisms I have
had to meet has changed. I was too meticulous and pedantic for
my pupils of fifteen years ago: I am altogether too popular for the
Trinity scholar of to-day. I need hardly say that I find such
criticisms very gratifying, as the best evidence that the book has
to some extent fulfilled the purpose with which it was written.

G. H. H.
August 1921

EXTRACT FROM THE PREFACE TO
THE SECOND EDITION

HE principal changes made in this edition are as follows.
I have inserted in Chapter I a sketch of Dedekind’s theory
of real numbers, and a proof of Weierstrass’s theorem concerning
points of condensation; in Chapter IV an account of ‘limits of
indetermination”’ and the ‘general principle of convergence’; in
Chapter V a proof of the ¢ Heine-Borel Theorem’, Heine’s theorem
concerning uniform continuity, and the fundamental theorem
concerning implicit functions; in Chapter VI some additional
matter concerning the integration of algebraical functions; and
in Chapter VII a section on differentials. I have also rewritten
in a more general form the sections which deal with the defini-
tion of the definite integral. In order to find space for these
insertions I have deleted a good deal of the analytical geometry
and formal trigonometry contained in Chapters II and III of
the first edition. These changes have naturally involved a
large number of minor alterations.
G. H. H.
October 1914
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EXTRACT FROM THE PREFACE TO THE
FIRST EDITION

THIS book has been designed primarily for the use of first

year students at the Universities whose abilities reach or
approach something like what is usually described as ¢scholarship
standard’. I hope that it may be useful to other classes of
readers, but it is this class whose wants I have considered first.
It is in any case a book for mathematicians: I have nowhere
made any attempt to meet the needs of students of engineering
or indeed any class of students whose interests are not primarily
mathematical.

I regard the book as being really elementary. There are
plenty of hard examples (mainly at the ends of the chapters): to
these I have added, wherever space permitted, an outline of the
solution. But I have done my best to avoid the inclusion of
anything that involves really difficult ideas. For instance, I make
no use of the ‘principle of convergence’: uniform convergence,
double series, infinite products, are never alluded to: and I prove
no general theorems whatever concerning the inversion of limit-
Gt and B In the last two
0z 0y dyox’
chapters I have occasion once or twice to integrate a power-series,
but I have confined myself to the very simplest cases and given
a special discussion in each instance. Anyone who has read this
book will be in a position to read with profit Dr Bromwich’s
Infinite Series, where a full and adequate discussion of all these
points will be found.

operations—I never even define

September 1908
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CHAPTER 1

REAL VARTABLES

1. Rational numbers. A fraction r =p/q, where p and ¢
are positive or negative integers, is called a rational number. We
can suppose (1) that p and ¢ have no common factor, as if they
have a common factor we can divide each of them by it, and
(i1) that ¢ is positive, since

-9 =(plg (=PI-D=p/a.
To the rational numbers thus defined we may add the ‘rational
number 0’ obtained by taking p = 0.-

We assume that the reader is familiar with the ordinary
arithmetical rules for the manipulation of rational numbers, The
examples which follow demand no knowledge beyond this.

Examples I. 1. If » and s are rational numbers, then #+s, » —s, rs, and
/s are rational numbers, unless in the last case s=0 (when #/s is of course
meaningless).

2. If \, m, and n are positive rational numbers, and = >n, then
A (m?—n?), 2xmn, and \ (m2+4n?) are positive rational numbers. Hence show
how to determine any number of right-angled triangles the lengths of all of
whose sides are rational.

3. Any terminated decimal represents a rational number whose denomi-
nator contains no factors other than 2 or 5. Conversely; any such rational
number can be expressed, and in one way only, as a terminated decimal.

[The general theory of decimals will be considered in Ch. IV.]

4. 'The positive rational numbers may be arranged in the form of a simple
series as follows:
. ) a8 3
%) {7 ng) %’ %; %; %) "}) 3 }7 B

Show that p/q is the [§ (p+¢—-1) (p+¢—2)+¢]th term of the series.

[In this series every rational number is repeated indefinitely. Thus 1
occurs as 1, 2, 2,.... We can of course avoid this by omitting every number

H. ; 1
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which has already occurred in a simpler form, but then the problem of deter-
mining the precise position of p/g becomes more complicated. ]

2. The representation of rational numbers by points
on a line. It is convenient, in many branches of mathematical
analysis, to make a good deal of use of geometrical illustrations.

The use of geometrical illustrations in this way does not, of
course, imply that analysis has any sort of dependence upon
geometry: they are illustrations and nothing more, and are em-
ployed merely for the sake of clearness of exposition. This being
S0, it is not necessary that we should attempt any logical analysis
of the ordinary notions of elementary geometry; we may be content
to suppose, however far it may be from the truth, that we know
what they mean.

Assuming, then, that we know what is meant by a straight
line, a segment of a line, and the length of a segment, let us take
a straight line A, produced indefinitely in both directions, and a
segment A,4, of any length. We call 4, the origin, or the point
0, and 4, the point 1, and we regard these points as representing
the numbers 0 and 1.

In order to obtain a point which shall represent a positive
rational number r = p/q, we choose the point 4, such that

Ay A, [4,A, =1,

4,4, being a stretch of the line extending in the same direction
along the line as 4,4,, a direction which we shall suppose to be
from left to right when, as in Fig. 1, the line is drawn horizontally
across the paper. In order to obtain a point to represent a

1
X
1
"

J 1 1 4
e Ay AT A,
Fig. 1.
negative rational number r = —s, it is natural to regard length as

a magnitude capable of sign, positive if the length is measured in
one direction (that of 4,4,), and negative if measured in the
other, so that AB=— BA; and to take as the point representing
r the point 4_, such that

Ad_j=—A_4,=— 4,4,
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We thus obtamn a point 4, on the line corresponding to every
rational value of », positive or negative, and such that

AA,=7r. 4,4,;

and if, as is natural, we take 4,4, as our unit of length, and write
A,A,=1, then we have
4,4, =1

We shall call the points 4, the rational points of the line.

3. Irrational numbers. If the reader will mark off on the
line all the points corresponding to the rational numbers whose
denominators are 1, 2, 3, ... in succession, he will readily convince
himself that he can cover the line with rational points as closely
as he likes. We can state this more precisely as follows: if we
take any segment BC on A, we can find as many rational points as
we please on BC.

Suppose, for example, that BC falls within the segment 4,4..
It is evident that if we choose a positive integer & so that

W OIS e N s b ) (@
and divide 4,4, into k equal parts, then at least one of the points
of division (say P) must fall inside BC, without coinciding with
either B or C. For if this were not so, BC would be entirely

included in one of the & parts into which 4,4, has been divided, .

which contradicts the supposition (1). But P obviously corre-
sponds to a rational number whose denominator is k. Thus at
least one rational point P lies between B and C. But then we
can find another such point @ between B and P, another between
B and @), and so on indefinitely; .e., as we asserted above, we can
find as many as we please. We may express this by saying that
BC 1ncludes znﬁmtely many rational points.

The meanmg of such phrases as ‘enfinitely many’ or ‘an infinity of’, in
such sentences as ¢ BC ineludes infinitely many rational points’ or ‘there are
an infinity of rational points on BC’ or ‘there are an infinity of positive
integers’, will be considered more closely in Ch. IV. The assertion ¢there are
an infinity of positive integers’ means ‘given any positive integer », however
large, we can find more than n positive integers’. This is plainly true

* The assumption that this is possible is oquivalent to the assumption of what
is known as the Axiom of Archimedes.

1-2



4 REAL VARIABLES [x

whatever # may be, e.g. for 2=100,000 or 100,000,000. The assertion means
exactly the same as ‘we can find as many positive integers as we please’.

The reader will easily convince himself of the truth of the following
assertion, which is substantially equivalent to what was proved in the second
paragraph of this section: given any rational number 7, and any positive
integer n, we can find another rational number lying on either side of » and
differing from 7 by less than 1/z. It is merely to express this differently to
say that we can find a rational number lying on either side of 7 and differing
from r by as little as we please. Again, given any two rational numbers
r and s, we can interpolate between them a chain of rational numbers in
which any two consecutive terms differ by as little as we please, that is to
say by less than 1/r, where » is any positive integer assigned beforchand.

From these considerations the reader might be tempted to
infer that an adequate view of the nature of the line could be
obtained by imagining it to be formed simply by the rational
points which lie on it. And it is certainly the case that if we
imagine the line to be made up solely of the rational points,
and all other points (if there are any such) to be eliminated,
the figure which remained would possess most of the properties
which common sense attributes to the straight line, and would,
to put the matter roughly, look and behave very much like
a line.

A little further consideration, however, shows that this view
would involve us in serious difficulties.

Let us look at the matter for a moment with the eye of
common sense, and consider some of the properties which we may
reasonably expect a straight line to possess if it is to satisfy the
idea which we have formed of it in elementary geometry.

The straight line must be composed of points, and any segment.
of it by all the points which lie between its end points. With
any such segment must be associated a certain entity called its
length, which must be a quantity capable of numerical measure-
ment in terms of any standard or unit length, and these lengths
must be capable of combination with one another, according to
the ordinary rules of algebra, by means of addition or multipli-
cation. Again, it must be possible to construct a line whose
length is the sum or product of any two given lengths. If the
length PQ, along a given line, is ¢, and the length QR, along
the same straight line, 1s b, the length PR must be a+b.
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Moreover, if the lengths OP, 0@, along one straight line, are
1 and «, and the length OR along another straight line is b,
and if we determine the length OS by Euclid’s construction (Euc.
vi. 12) for a fourth proportional to the lines OP, 0Q, OR, this
length must be ab, the algebraical fourth proportional to 1, a, b.
And it is hardly necessary to remark that the sums and products
thus defined must obey the ordinary ‘ laws of algebra’; viz.

a+b=b+a a+b+c)y=(+d)+c,
ab=>ba, a(bc)=(ab)e, a(b+c)=ab+ac

The lengths of our lines must also obey a number of obvious
laws concerning inequalities as well as equalities: thus if
A, B, C are three points lying along A from left to right, we must
have AB< AC, and so on. Moreover it must be possible, on our
fundamental line A, to find a point P such that 4,P is equal to
any segment whatever taken along A or along any other straight
line. All these properties of a line, and more, are involved in the
presuppositions of our elementary geometry.

Now it is very easy to sce that the idea of a straight line as
composed of a series of points, each corresponding to a rational
number, cannot possibly satisfy all these requirements. There are
various elementary geometrical constructions, for example, which
purport to c@truct a length @ such that 2 =2. TFor instance, we

A 1 B @ L 2 . M 1 N

Fig. 2.

may construct an isosceles right-angled triangle 4 BC such that
AB=AC=1. Then if BC=x, 2*=2. Or we may determine
the length # by means of Euclid’s construction (Euc. v1. 13) for
a mean proportional to 1 and 2, as indicated in the figure. Our
requirements therefore involve the existence of a length measured
by a number #, and a point P on A such that

ANR= el at =12
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But it is easy to see that there is mo rational number such that
its square is 2. In fact we may go further and say that there
is no rational number whose square is m/n, where m/n is any
positive fraction in its lowest terms, unless m and n are both
perfect squares.

For suppose, if possible, that

Plg*=m/n.

p having no factor in common with ¢, and m no factor 1 common
with n. Then np*=mg®. Every factor of ¢> must divide np? and
as p and ¢ have no common factor, every factor of ¢* must divide
n. Hence m=2Ag¢% where A is an integer. But this involves
m=2Ap*: and as m and n have no common factor, X must be unity.
Thus m =p? n= ¢ as was to be proved. In particular it follows,
by taking n=1, that an integer cannot be the square of a rational
number, unless that rational number is itself integral.

It appears then that our requirements involve the existence of
a number « and a point P, not one of the rational points already
constructed, such that A,P=, a>=2; and (as the reader will
remember from elementary algebra) we write & = /2.

The following alternative proof that no rational number can have its
" square equal to 2 is interesting.

Suppose, if possible, that p/g is a positive fraction, in its lowest terms,
such that (p/g)?=2 or p?=2¢% It is easy to see that this involves
(29—p2=2(p—-q)?; and so (2¢-p)/(p—g) is ahother fraction having the
same property. But clearly ¢<p<2¢, and so p—g¢<g. Hence there is
another fraction equal to p/¢ and having a smaller denominator, which
contradicts the assumption that p/g is in its lowest terms.

Examples II. 1. Show that no rational number can have its cube equal
to 2. i

9. Prove generally that a rational fraction p/q in its lowest terms cannot
be the cube of 2 rational number unless p and ¢ are both perfect cubes.

3. A more general proposition, which is due to Gauss and includes those
which precede as particular cases, is the following: an algebraical equation

24 p 2"t pa a2 L+ =0,
with integral coefficients, cannot have a rational but non-integral root.

[For suppose that the equation has a root a/b, where « and b are integers
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without a common factor, and & is positive. =Writing a/b for », and multiply-
ing by 6"~1, we obtain

- %:pla“‘1+p2aﬂ‘2b+... TPNbESL

a fraction in its lowest terms equal to an integer, which is absurd. Thus b=1,
and the root is @. It is evident that @ must be a divisor of p,.]

4. Show that if p,=1 and neither of
1+p1+ps+pstees 1=pr+pe—ps+...
is zero, then the equation cannot have a rational root.
5. Find the rational roots (if any) of
2t — 4% — 822+ 1324+ 10=0.
[The roots can only be integral, and so +£1, +2, +5, +10 are the only

possibilities : whether these are roots can be determined by trial. It is clear
that we can in this way determine the rational roots of any such equation.]

4. Irrational numbers (continued). The result of our
geometrical representation of the rational numbers is therefore to
suggest the desirability of enlarging our conception of ‘number’
by the introduction of further numbers of a new kind.

The same conclusion might have been reached without the use
of geometrical language. One of the central problems of algebra
is that of the solution of equations, such as

=Rl 2=

The first equation has the two rational roots 1 and —1. But,
if our conception of number is to be limited to the rational
numbers, we can only say that the second equation has no roots;
and the same is the case with such equations as #*=2, a*=7.
These facts are plainly sufficient to make some generalisation of
our idea of number desirable, if it should prove to be possible.

Let us consider more closely the equation «*= 2.

We have already seen that there is no rational number « which
satisfies this equation. The square of any rational number is
either less than or greater than 2. We can therefore divide the
rational numbers into two classes, one containing the numbers
whose squares are less than 2, and the other those whose squares
are greater than 2. We shall confine our attention to the positive
rational numbers, and we shall call these two classes the class L, or
the lower class, or the left-hand class, and the class R, or the upper
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class, or the right-hand class. It is obvious that every member of
R is greater than all the members of L. Moreover it is easy to
convince ourselves that we can find a member of the class L whose
square, though less than 2, differs from 2 by as little as we please,
and a member of B whose square, though greater than 2, also
differs from 2 by as little as we please. In fact, if-we carry out
the ordinary arithmetical process for the extraction of the square
root of 2, we obtain a series of rational numbers, viz.

1, 14, 141. 1414, 1:4142,...
whose squares

1, 196, 19881, 1999396, 1:99996164, ...

are all less than 2, but approach nearer and nearer to it; and by
taking a sufficient number of the figures given by the process we
can obtain as close an approximation as we want. And if we
increase the last figure, in each of the approximations given above,
by unity, we obtain a series of rational numbers

2, 15, 142, 1415, 14143, ...
whose squares

4, 225, 20164, 2002225, 2:00024449, ...
are all greater than 2but approximate to 2 as closely as we please.

The reasoning which precedes, although it will probably convince the
reader, is hardly of the precise character required by modern mathematics.
We can supply a formal proof as follows. In the first place, we can find
a member of L and a member of 2, differing by as little as we please. For
we saw in § 3 that, given any two rational numbers @ and b, we can construct
a chain of rational numbers, of which @ and b are the first and last, and in
which any two consecutive numbers differ by as little as we please. Let us
then take a member z of L and a member y of R, and‘interpolate between
them a chain of rational numbers of which # is the first and y the last, and
in which any two consccutive numbers differ by less than &, & being any
positive rational number as small as we please, such as ‘01 or ‘0001 or *000001.
In this chain there must be a last which belongs to Z and a first which belongs
to R, and these two numbers differ by less than o.

We can now prove that an @ can be found in L and a y in R such that
2—z% and y: -2 are as small as we please, say less than &, Substituting 6
for & in the argument which precedes, we see that we can choose # and y so
that y—2<}8; and we may plainly suppose that both # and y are less
than 2. Thus

ytr<4, g-2=(y-2)(ytz)<4(y-2)<d;
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and since #2<2 and y2>2 it follows a fortiors that 2— 2% and »%—2 are each
less than 8.

It follows also that there can be no largest member of L or
smallest member of R. For if « is any member of L, then #*< 2.
Suppose that #?=2—8. Then we can find a member 2, of L
such that 2;? differs from 2 by less than §, and so x> a? or @, > .
Thus there are larger members of L than ; and as « is any
member of L, it follows that no member of L can be larger than
all the rest. Hence L has no largest member, and similarly R has
no smallest. '

5. Irrational numbers (continued). We have thus divided
the positive rational numbers into two classes, L and R, such that
(1) every member of R is greater than every member of L, (ii) we
can find a member of Z and a member of B whose difference is as
small as we please, (iii) L has no greatest and R no least member.
Our common-sense notion of the attributes of a straight line, the
requirements of our elementary geometry and our elementary
algebra, alike demand the existence of a number x greater than all
the members of L and less than all the members of R, and of
@ corresponding point P on A such that P divides the points which
correspond to members of L from those which correspond to members
of R.

,.
-+
-r
+r
A4

Let us suppose for a moment that there is such a number z,
and that it may be operated upon in accordance with the laws of
algebra, so that, for example, 2? has a definite meaning. Then 2?
cannot be either less than or greater than 2. For suppose, for
example, that #* is less than 2. Then it follows from what pre-
cedes that we can find a positive rational number £ such that £ lies
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between 2* and 2. That is to say, we can find a member of L
greater than «; and this contradicts the supposition that « divides
the members of L from those of R. Thus a* cannot be less than
2, and similarly it cannot be greater than 2. We are therefore
driven to the conclusion that a?= 2, and that # is the number
which in algebra we denote by /2. And of course this number
/2 is not rational, for no rational number has its square equal to
2. It is the simplest example of what is called an irrational
number.

But the preceding argument may be applied to equations
other than a?=2, almost word for word; for example to «*=JN,
where IV is any integer which is not a perfect square, or to

=8 N = I =12

or, as we shall see later on, to 4*=38x+8. We are thus led to
believe in the existence of irrational numbers # and points P on
A such that « satisfies equations such as these, even when these
lengths cannot (as /2 can) be constructed by means of elementary
geometrical methods.

The reader will no doubt remember that in treatises on elementary algebra
the root of such an equation as 27=n is denoted hy #» or »!/4, and that a
meaning is attached to such symbols as

ﬁplq, n-bla
by means of the equations
nplq=(n1/q)p’ nPlap-rla=1,
And he will remember how, in virtue of these definitions, the ‘laws of 'indices’

such as
ArxE=nrt . (nr)a =nr

are extended so as to cover the case in which » and s are any rational numbers
whatever.

The reader may now follow one or other of two alternative
courses. He may, if he pleases, be content to assume that
¢irrational numbers’ such as 4/2, ¥/3, ... exist and are amenable to
the algebraical laws with which he is familiar*. If he does this
he will be able to avoid the more abstract discussions of the next
few sections, and may pass on at once to §§ 18 et seq.

If, on the other hand, he is not disposed to adopt so maive an

* This is the point of view which was adopted in the first edition of this book.
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attitude, he will- be well advised to pay careful attention to the
scctions which follow, in which these questions receive fuller
consideration *.

Examples ITI. 1. Find the difference between 2 and the squares of the
decimals given in § 4 as approximations to /2.

2. Find the differences between 2 and the squares of /
N
13 & 1 4 4.

3. Show that if m/n is a good approximation to /2, then (m+2n)/(m+n) ¢

is a better one, and that the errors in the two cases are in opposite directions.

Apply this result to continue the series of approximations in the last

example.

4. If x and y are approximations to /2, by defect and by excess respec-

tively, and 2 - 22<§, y*—2<§, then y —x<d.

5. The equation 2?=4 is satisfied by #=2. Examine how far the argu-
ment of the preceding sections applies to this equation (writing 4 for 2
throughout). [If we define the classes Z, R as before, they do not include all
rational numbers. The rational number 2 is an exception, since 22 is neither
less than or greater than 4.]

6. Irrational numbers (continued). In § 4 we discussed
a special mode of division of the positive rational numbers « into
two classes, such that 2? <2 .for the members of one class and
a? > 2 for those of the others. Such a mode of division is called a
section of the numbers in question It is plain that we could
equally well construct a section in which the numbers of the two
classes were characterised by the inequalities #* < 2 and a* > 2, or
<7 and 2*>7. Let us now attempt to state the principles
of the construction of such ‘sections’ of the positive rational
numbers in quite general terms.

Suppose that P and @ stand for two properties which are
mutually exclusive and one -of which must be possessed by every
positive rational number. Further, suppose that every such
number which possesses P is less than any such number which
possesses Q. Thus P might be the property ‘<2’ and @ the
property ‘a* >2” Then we call the numbers which possess P the
lower or left-hand class L and those which possess @ the upper or

* In these sections I have borrowed freely from Appendix I of Bromwich’s
Injinite Series.

¢
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right-hand class R. In general both classes will exist; but it may
happen 1n special cases that one is non-existent and that every
number belongs to the other. This would obviously happen, for
example, if P (or @) were the property of being rational, or of
being positive. For the present, however, we shall confine
ourselves to cases in which both classes do exist; and then it
follows, as in § 4, that we can find a member of L and a member
of B whose difference is as small as we please.

In the particular case which we considered in § 4, L had no
greatest member and R no least. This question of the existence
of greatest or least members of the classes is of the utmost im-
portance. We observe first that it is impossible in any case that
L should have a greatest member and R a least. For if I were
the greatest member of L, and  the least of R, so that I <, then
% (I+r) would be a positive rational number lying between ! and -
7, and so could belong neither to L nor to R; and this contradicts
our assumption that every such number belongs to one class or to
the other. This being so, there are but three possibilities, which
are mutually exclusive. Either (i) L has a greatest member [, or
(i) R has a least member 7, or (iii) Z has no greatest member and
R no least. »

The section of § 4 gives an-example of the last possibility. An example
of the first is obtained by taking P to be ‘2?2 <1’ and @ to be *2%2>1’;
here I=1. If Pis ‘a?< 1’ and @ is ‘2?21, we have an example of the
second possibility, with »=1. It should be observed that we do not obtain
a section at all by taking P to be ‘a?<1’ and @ to be *2?>1’; for the special
number 1 escapes classification (cf. Ex. 111, 5). s 11

7. Irrational numbers (continued). In the first two cases
we say that the section corresponds to a positive’ rational number
@, which is ! in the one case and 7 in the other. Conversely, it is
clear that to any such number @ corresponds a section which
we shall denote by a*. For we might take P and @ to be the
properties expressed by

TEq, TS

respectively, or by #< a and # Za. In the first case @ would be
the greatest member of L, and in the second case the least member

* Tt will be convenient to denote a section, corresponding to a rational number
denoted by an English letter, by the corresponding Greek letter.
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of R. There are in fact just two sections corresponding to any
positive rational number. In order to avoid ambiguity we select
one of them ; let us select that in which the number itself belongs -
to the upper class. In other words, let us agree that we will consider
only sections in which the lower cI;'s'spL has no greatest number.

DR

There being this correspondence between the positive rational
numbers and the sections defined by means of them, it would be
perfectly legitimate, for mathematical purposes, to replace the
numbers by the sections, and to regard the symbols which occur
in our formulae as standing for the sections instead of for the
numbers. Thus, for example, a > would mean the same as
a >d, if a and a’ are the sections which correspond to a and o’

But when we have in this way substituted sections of rational
numbers for the rational numbers themselves, we are almost forced
to a generalisation of our number system. For there are sections -
(such as that of § 4) which do not correspond to any rational
number. The aggregate of sections is a larger aggregate than that !
of the positive rational numbers; it includes sections corresponding
to all these numbers, and more besides. It is this fact which we
make the basis of our generalisation of the idea of number. We
accordingly frame the following definitions, which will however be
modified in the next section, and must therefore be regarded as
temporary and provisional.

A section of the nositive rational numbers, in which both classes
exist and the lower class has no greatest member, is called o
positive real number.

A positive real number which does not correspond to a positive
rational number is called a positive irrational number.

8. Real numbers. We have confined ourselves so far to
certain sections of the positive rational numbers, which we have
agreed provisionally to call positive real numbers” Before we
frame our final definitions, we must alter our point of view a
little. We shall consider sections, or divisions into two classes,
not merely of the positive rational numbers, but of all rational
numbers, including zero. We may then repeat all that we have
said about sections of the positive rational numbers in §§ 6, 7,
merely omitting the word positive occasionally.
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DEeFINITIONS. 4 section of the rational numbers, 1n which both
classes exist and the lower class has no greatest member, is called
@ real number, or simply ¢ number.

4 real nwmber which does not correspond to a rational number
is called an irrational number.

If the real number does correspond to a rational number, we
shall use the term ‘rational’ as applying to the real number also.

The term ‘rational number’ will, as a result of our definitions, be
ambiguous; it may mean the rational number of § 1, or the corresponding
real number. If we say that >}, we may be asserting cither of two different
propositions, one a proposition of elementary arithmetic, the other a proposition
concerning sections of the rational numbers. Ambiguities of this kind are
common in mathematics, and are perfectly harmless, since the relations
between different propositions are exactly the same whichever interpretation
is attached to the propositions themselves. From $>1 and 3>} we can
. infer >} ; the inference is in no way affected by any doubt as to whether
4, 3, and } are arithmetical fractions or real numbers. Sometimes, of course,
the context in which (e.g.) ‘3’ occurs is sufficient to fix its interpretation,
When we say (see § 9) that § <u/(}), we must mean by 4’ the real number }.

The reader should observe, moreover, that no particular logical importance
is to be attached to the precise form of definition of a ‘real number’ that we
have adopted. We defined a ‘real number’ as being a section, Z.e. a pair of
classes. We might equally well have defined it as being the lower, or the
upper, class; indeed it would be easy to define an infinity of classes of
entities each of which would possess the properties of the class of real
numbers. What is essential in mathematics is that its symbols should be
capable of some interpretation; generally they are capable of many, and
then, so far as mathematics is concerned, it does not matter which we adopt.
Mr Bertrand Russell has said that ‘mathematics is the science in which
we do not know what we are talking about, and do not care whether what
we say about it is true’, a remark which is expressed in the form of a
paradox but which in reality embodies a number of important truths. It
would take too long to analyse the meaning of Mr Russell’s epigram in detail,
but one at any rate of its implications is this, that the symbols of mathe-
matics are capable of varying interpretations, and that we are in general at
liberty to adopt whichever we prefer.

There are now three cases to distinguish. It may happen that
all negative rational numbers belong to the lower class and zero
and all positive rational numbers to the upper. We describe
this section as the real number zero. Or again it may happen
that the lower class includes some positive numbers. Such a section
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we describe as a positive real number. Finally it may happen
that some negative numbers belong to the upper class. Such
a section we describe as a negative real number*.

The difference between our present definition of a positive real number a
and that of § 7 amounts to the addition to the lower class of zero and all the
negative rational numbers. An example of a negative real number is given
by taking the property P of § 6 to be #4+1<0 and @ to be z+1>0.
This section plainly corresponds to the negative rational number —1. If we
took P to be 23< —2 and @ to be 23> —2, we should obtain a negative real
number which is not rational.

9. Relations of magnitude between real numbers. It
is plain that, now that we have extended our conception of
number, we are bound to make corresponding extensions of our
conceptions of equality, inequality, addition, multiplication, and so
on. We have to show that these ideas can be applied to the new
numbers, and that, when this extension of them is made, all the
ordinary laws of algebra retain their validity, so that we can
operate with real numbers in general in exactly the same way
as with the rational numbers of § 1. To do all this systematically
would occupy a considerable space, and we shall be content to
indicate summarily how a more systematic discussion would
proceed.

We denote a real number by a Greek letter such as &, 3, v, ... ;
the rational numbers of its lower and upper classes by the corre-
sponding English letters a, 4; b, B; ¢, C; ... The classes them-
selves we denote by (a), (4), ...

If a and B are two real numbers, there are three possibilities :

(1) every ais a b and every 4 a B; in this case (@) is identical
with (b) and (4) with (B);

* There are also sections in which every number belongs to the lower or to
the upper class. The reader may be tempted to ask why we do not regard these
sections also as defining numbers, which we might call the real numbers positive
and negative infinity.

There i3 no logical objection to such a procedure, but it proves to be incon-
venient in practice. The most natural definitions of addition and multiplication do
not work in a satisfactory way. Moreover, for a beginner, the chief difficulty in the
elements of analysis is that of learning to attach precise senses to phrases containing
the word *infinity’; and experience seems to show that he is likely to be confused by
any addition to their number.
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(i) every a is a b, but not all A’s are B’s; in this case (a) is
a proper part of (b)*, and (B) a proper part of (4);

(iii) every A is a B, but not all a’s are b’s.
These three cases may be indicated graphically as in Fig. 4.

In case (1) we write a=/, in case (ii) a< B, and in case
(iii) a>B. It is clear that, when
a and B are both rational, these 4 (i)
definitions agree with the ideas of a
equality and inequality between ) ' (i)
rational numbers which we began
by taking for granted; and that
any positive number is greater Fig. 4.
than any negative number.

+ (iii)

It will be convenient to define at this stage the negative —a
ot a positive number a. If (a), (4) are the classes which consti-
tute @, we can define another section of the rational numbers by
putting all numbers — A in the lower class and all numbers —a
in the upper. The real number thus defined, which is clearly
negative, we denote by —a. Similarly we can define — a when «
is negative or zero; if a is negative, —a is positive. It is plain
also that — (—a) =a. Of the two numbers a and — a one is always
positive (unless a=0). The one which is positive we denote by
|a| and call the modulus of a.

Examples IV. 1. Prove that 0= -0.

2. Prove that B=a, B<a, or 8>a according as a=f, a>f, or a<f.

3. If a=p and B=4, then a=y.

4. Ifa=<p, B<y,ora<f, B =y, then a<y.

5. Prove that —=8=—~a —B<-a, or —3> —aq, according as a=p, a<j3,
or a>f.

6. Prove that a>0 if a is positive, and a<0 if a is negative.

t

7. Prove that a<|al.
8. Prove that 1<{/2<4/3<2.
9.

Prove that, if a and 3 are two different real numbers, we can always
find an infinity of rational numbers lying between a and 8.

[All these results are immediate consequences of our definitions.]

* Le. is included in but not identical with (b).
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10. Algebraical operations with real numbers. We now
proceed to define the meaning of the elementary algebraical opera-
tions such as addition, as applied to real numbers in general.

(1) Addition. In order to define the sum of two numbers
a and B, we consider the following two classes: (i) the class (¢)
formed by all sums ¢=a+b, (ii) the class (C') formed by all snmns
C=A4+ B. Plainly ¢< Cin all cases.

Again, there cannot be more than one rational number which
does not belong either to (¢) or to (C). For suppose there were
two, say r and s, and let s be the greater. Then both » and s
must be greater than every ¢ and less than every C'; and so 0 —¢
cannot be less than s — . But

C=c=(d-a)+(B-b);

and we can choose a, b, 4, B so that both A —a and B—b
are as small as we like; and this plainly contradicts our
hypothesis.

If every rational number belongs to (¢c) or to (C), the classes (c),
(0) form a section of the rational numbers, that is to say, a number
. If there is one which does not, we add it to (C). We have
now a section or real number «, which must clearly be rational,
since it corresponds to the least member of (C). In any case
we call & the sum of a and B, and write

y=0a+ B.
If both a and B are rational, they are the least members of the upper

classes (4) and (B). In this case it is clear that a+B is the least member
of (C), so that our definition agrees with our previous ideas of addition.

(i1) Subtraction. We define @ — 8 by the equation
a—B=a+(-A)

The idea of subtraction accordingly presents no fresh difficulties.

Examples V. 1. Prove that a+(—a)=0.
2. Prove that a+0=0+a=a.

3. Prove that a+8=8+a. [This follows at once from the fact that the
classes (a+b) and (b+a), or (4+B) and (B+4), are the same, since, e.g.,
a+b=>b+a when a and b are rational.]

4. Prove that a+(8+y)=(a+8)+7.
1L 5
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5. Prove that a—a=0.
6. Prove that a— 8= —(8-a).

7. From the definition of subtraction, and Exs. 4, 1, and 2 above, it
follows that

(a=B)+B={a+(-B}+B=a+{(-B)+B}=a+0=a.
We might therefore define the difference a—B=1y by the equation y+B8=a.
8. Prove that a— (8- y)=a-B+7.
9. Give a definition of subtraction which does not depend upon a previous
definition of addition. [To define y=a— 4B, form the classes (c), (C) for which

¢=a-B, 0=4-b. It is easy to show that this definition is equivalent to
that which we adopted in the text.]

10. Prove that
llal-18l| = laxB| = |a|+|BI.

11. Algebraical operations with real numbers (con-
tinued). (1) Multiplication. When we come to multiplication,
it is most convenient to confine ourselves to positive numbers
(among which we may include 0) in the first instance, and to go
back for a moment to the sections of positive rational numbers
only which we considered in §§ 4—7. We may then follow practi-
cally the same road as in the case of addition, taking (¢c) to be (ab)
and (C) to be (AB). The argument is the same, except when we
are proving that all rational numbers with at most one-exception
must belong to (¢) or (C). This depends, as in the case of addi-
tion, on showing that we can choose @, 4, b, and B so that 0'— ¢ is
as small as we please. Here we use the identity

C—c=AB-ab=(A -a)B+a(B-D).

Finally we include negative numbers within the scope of our

definition by agreeing that, if @ and B are positive, then
(—0)B=-aB, a(-B)=-aB, (-a)(-B)=a8.

(iv) Division. In order to define division, we begin by de-
fining the reciprocal 1/a of a number a (other than zero). Con-
fining ourselves in the first instance to positive numbers and
sections of positive rational numbers, we define the reciprocal of a
positive number a by means of the lower class (1/4) and the upper

class (1/a). We then define the reciprocal of a negative number
—a by the equation 1/(—a)=—(1/a). Finally we define a/B by

the equation
a/B=ax (1/8).
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We are then in a position to apply to all real numbers, rational
or irrational, the whole of the ideas and methods of elementary
algebra. Naturally we do not propose to carry out this task in
detail. It will be more profitable and more interesting to turn
our attention to some special, but particularly important, classes
of irrational numbers.

Examples VI. Prove the theorems expressed by the following
formulae :

1. ax0=0xa=0. 2. axl=1xa=a. 3. ax(l/a)=1.
4. aB=Pa. o. a(By)=(aB)y. 6. a(B+vy)=aB+ay.
7. (a+B)y=ay+By. 8. [aB|=la||B].

12. The number /2. Let us now return for a moment to
the particular irrational number which we discussed in §§ 4—5.
We there constructed a section by means of the inequalities
2*< 2,2*>2. This was a section of the positive rational numbers
only; but we replace it (as was explained in § 8) by a section of
all the rational numbers. We denote the section or number thus
defined by the symbol /2.

The classes by means of which the product of /2 by itself is
defined are (i) (ae’), where @ and @’ are positive rational numbers
whose squares are less than 2, (ii) (AA’), where 4 and A’ are
positive rational numbers whose squares are greater than 2. These
classes exhaust all positive rational numbers save one, which can
only be 2 itself. Thus

 W2r=v2y2=2
(-V2r = (= v2) (- V)= V2 V2= (V2)=2.

Thus the equation ¢?= 2 has the two r0ots A/2 and — /2. Similarly
we could discuss the equations 2*=3, 2*=7, ... and the corre-
sponding irrational numbers /3, —/8, /7, ....

Again

13. Quadratic surds. A number of the form + #/a, where
@ is a positive rational number which is not the square of another
rational number, is called a pure quadratic surd. A number of
the form @ + +/b, where a is rational, and /b is a pure quadratic
surd, is sometimes called a mixed quadratic surd.
22
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The two numbers a + /b are the roots of the quadratic equation
22— 2ax+a?=b=0.

Conversely, the equation #2+2pz+¢=0, where p and ¢ are ratibnal, and
p*—g¢>0, has as its roots the two quadratic surds —p+./(p?—gq).

The only kind of irrational numbers whose existence was
suggested by the geometrical considerations of § 3 are these
quadratic surds, pure and mixed, and the more complicated
irrationals which may be expressed in a form involving the
repeated extraction of square roots, such as

V2 4+ V(2 +V2)+ V{2 + (2 +V2)).

It is easy to construct geometrically a line whose length is
equal to any number of this form, as the reader will easily see for
himself. That irrational numbers of these kinds only can be con-
structed by Euclidean methods (z.e. by geometrical constructions
with ruler and compasses) 1s a point the proof of which must
be deferred for the present* This property of quadratic surds
makes them especially interesting.

Examples VII. 1. Give geometricél constructions for
N2 J(@2+42), J2+J(E2+V2)

2. The quadratic equation aa?+2bx+c=0 has two real rootst if
b2 —ac>0. Suppose @, b ¢ rational. Nothing is lost by taking all three
to be integers, for we can multiply the equation by the least common
multiple of their denominators,

The reader will remember that the roots are {—=b+./(0*—ac)}/a. Tt is
easy to construct these lengths geometrically, first constructing 1/(62~ ac).
A much more elegant, though less straightforward, construction is the
following.

* See Ch, II, Misc. Exs. 22.

% Le. there are two values of z for which az?+2bz+c¢=0. If b2-ac<0 there
are no such values of . The reader will remember that in books on elementary
algebra the equation is said to have two ‘complex’ roots. The meaning to be
attached to this statement will be explained in Ch. III.

When b%2=ac the equation has only one root. For the sake of uniformity
it is generally said in this case to have ‘two equal’ roots, but this is a mere
* ) con_v_eitgm.
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Draw a circle of unit radius, & diameter P, and the tangents at the ends
of the diameters.

P

M

Q’ Y Q X
Fig. 5.
Take PP'= —2a/b and QQ'= —c/2b, having regard to sign*. Join P'Q)’,
cutting the circle in M and N. Draw PM and PN, cutting Q@' in X and Y.
Then QX and QY are the roots of the equation with their proper signst.

The proof is simple and we leave it as an exercise to the reader.
Another, perhaps even simpler, construction is the following. Zake a line
ADB of unit length. Draw BC= —2bja perpendicular to AB, and CD=c/a
perpendicular to BC and in the same direction as BA. On AD as diameter
describe a circle cutting BC in X and Y. Then BX and BY are the roots.

3. If ac is positive PP’ and @@’ will be drawn in the same direction.
Verify that 2’'@’ will not meet the circle if b2<ac, while if d2=ac it will be
a tangent. Verify also that if 6*=ac the circle in the second construction
will touch BC.

4. Prove that
NpD=VpxJa J(P'=pNe.

14. Some theorems concerning quadratic surds. Two
pure quadratic surds are said to be similar if they can be ex-
pressed as rational multiples of the same surd, and otherwise to be
dissimilar.  Thus

V8=2y2, WAE={V2,
and so 4/8, /23 are similar surds. On the other hand, if M and N
are integers which have no common factor, and neither of which
is a perfect square, /M and »/N are dissimilar surds. For suppose,

if possible,
‘\/ q \/u’ ‘\/ 8 u i

where all the letters denote integers.

* The figure is drawn to snit the case in which b and ¢ have the same and a
the opposite gign. The reader should draw figures for other cases.

+ I have taken this construction from Klein’s Legons sur certaines questions de
géométrie élémentaire (French translation by J. Griess, Paris, 1896).
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Then MN is evidently rational, and therefore (Ex. 1r. 3)}
integral. Thus MN = P? where P is an integer. Leta, b, c, ...
be the prime factors of P, so that

MN = a»b®c> ...,

where a, B, v, ... are positive integers. Then MN is divisible by
a*, and therefore either (1) M is divisible by a®, or (2) N is
divisible by a®, or (3) M and N are both divisible by a. The last
case may be ruled out, since M and N have no common factor.
This argument may be applied to each of the factors a®, b%, ¢», ...,
so that M must be divisible by some of these factors and N by
the remainder. Thus

-‘1[:1_)12: N=-P22;

where P,? denotes the product of some of the factors a®, b%, ¢¥, ...
and P the product of the rest. Hence M and N are both perfect
squares, which is contrary to our hypothesis.

TueoreM. If 4, B, C, D are rational and
A +NB=C+4D,
then either (i) A=C, B=D or (ii) B and D are both squares of
rational numbers.
For B — D is rational, and so is
NB—yD=C—-A.

If B is not equal to D (in which case it is obvious that 4 is also
equal to C), it follows that

VB +yD=(B = D)(B-yD)

is also rational. Hence /B and 4/D are rational.

CororLArY. If A+yB=C+ WD, then A—NB=C-,\D
(unless A/B and /D are both rational).

Examples VIII. 1. Prove ab ¢nitio that /2 and 4/3 are not similar
surds.

2. Prove that +/a and ./(1/a), where a is rational, are similar surds
(unless both are rational).

3. If @ and b are rational, then /a4 /b cannot be rational unless \/a and
Jb are rational. The same is true of ,/a—4/b, unless a=?.
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4. If JA+B=JC+JD,
then either (¢) A=C and B=D, or (b) A=D and B=C, or (¢) A/4, /B, /O,
JD are all rational or all similar surds. [Square the given equation and
apply the theorem above.]

5. Neither (a+/b)% nor (¢ —4/b)3 can be rational unless /b is rational.

6. Prove that if #=p+a/g, where p and ¢ are rational, then 2™, where
m is any integer, can be expressed in the form P+ @./g, where P and @
are rational. For example, '

(P+VeP=p*+g+2pVg, (P9 =p+3pg+(Bp*+9) Ve
Deduce that any polynomial in & with rational coefficients (.. any expression
of the form
AR N et S Y N

where ap, ... @, are rational numbers) can be expressed in the form P +@4/g.

7. If a+ /b, where b is not a perfect square, is the root of an algebraical ‘

equation with rational coefficients, then a—a/b is another root of the same
cquation.

8. Express 1/(p+i/g) in the form preseribed in Ex. 6. [Multiply
numerator and denominator by p -4/g.]

9. Deduce from Exs. 6 and 8 that any expression of the form G (#)/H (),
where @ () and H (x) are polynomials in & with rational coefficients, can be
expressed in the form P+ /g, where P and @ are rational.

10. If p, ¢, and p®—gq are positive, we can express o/(p+4/g) in the form
Nz +4/y, where

w=} {p+J(P*=9h y=3{p-J@F* -9}

11. Determine the conditions that it may be possible to express J/(p +4/¢),
where p and ¢ are rational, in the form y/2+4/y, where » and y are rational.

12. If a?-b is positive, the necessary and sufficient conditions that

Via+Jb)+(a=vb)
should be rational are that a2—b and } {a+4/(a?—b)} should both be squares
of rational numbers.

15. The continuum. The aggregate of all real numbers,
rational and irrational, is called the arithmetical continuum.

It is convenient to suppose that the straight line A of § 2
is composed of points corresponding to all the numbers of the
arithmetical continuum, and of no others*. The points of the

* This supposition is merely a hypothesis adopted (i) because it suffices for the
purposes of our geometry and (ii) because it provides us with convenient geometrical
illustrations of analytical processes. As we use geometrical language only for
purposes of illustration, it is not part of our business to study the foundations
of geometry.

t

«
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line, the aggregate of which may be said to constitute the linear
continuum, then supply us with a convenient image of the
arithmetical continuum.

We have considered in some detail the chief properties of a
few classes of real numbers, such, for example, as rational numbers
or quadratic surds. We add a few further examples to show how
very special these particular classes of numbers are, and how, to
put it roughly, they comprise only a minute fraction of the infinite
variety of numbers which constitute the continuum.

(i) Let us consider a more complicated surd expression such as
=(4+4/15)+ (4~ /15).
Our argument for supposing that the expression for z has a meaning might be
as follows. We first show, as in §12, that there is a number y=,/15 such that

#*=15, and we can then, as in § 10, define the numbers 4+./15, 4—./15.
Now consider the equation in z;,

22=4+15.
The right-hand side of this equation is not rational: but exactly the same
reasoning which leads us to suppose that there is a real number x such that
#3=2 (or any other rational number) also leads us to the conclusion that there
is a number z such that z3=4+4,/15, We thus define 2z =¢/(4+./15), and

similarly we can define zy=4/(4—4/1 ")) ; and then, asin § 10 we deﬁne 2=z +22
)

a3 3

o Louve e TEoA \,‘7
#=32+8. 9 3

[ evde e

- \‘\ And we might have given a direct proof of the»exis'tence of a unique number
1z such that 22=3z48. It is easy to see that there cannot be two such
numbers. For if 2°=32+8 and 2°=32+8, we find on subtracting and
dividing by z;—z that z2+2z2+22=3. But if 7 and 2z are positive z,3>8,
2°>8 and therefore 2,>2, 2,>2, 72+22+2%>12, and so the equation
just found is impossible. And it is easy to see that neither z nor z, can
be negative. For if z is negative and equal to —¢, ¢ is positive and
{3—3{+8=0, or 3-(2=8/{. Hence 3—(2>0, and so (<2 But then

8/¢ >4, and so 8/¢ cannot be equal to 3— {2 which is less than 3.
Hence there is at most one z such that 2=32z+8. And it cannot be

rational. For any rational root of this equation must be integral and a
factor of 8 (Ex. 11. 3), and it is easy to verify that no one of 1, 2, 4, 8 is a root,

Now it is easy to verify that

Thus z2=37+8 has at most one root and that root, if it exists, is positive
and not rational. We can now divide the positive rational numbers & into
two classes LR accordmg as B3 <3r+8 or 23>3x+8. Itis easy to see that
if 43>32x+8 and y is any number greater than #, then also y3>3y+8. For
suppose if possible 3*<3y+8. Then since #*>3x+8 we obtain on sub-
tracting y3—23% <3 (y—x), or y?+xy+2? <3, which is impossible; for y is
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positive and #>2 (since 23>8). Similarly we can show that if 23 <32z +8
and y <z then also y® <3y +8.

Finally, it is evident that the classes Z and R both exist; and they form
a section of the positive rational numbers or positive real number z which
satisfies the equation z3=32+8. The reader who knows how to solve cubic
equations by Cardan’s method will be able to obtain the explicit expression of
2 directly from the equation,

(it) The direct argument applied above to the equation
o* =38z +8 could be applied (though the application would be
a little more difficult) to the equation

=z +16.

and would lead us to the conclusion that a unique positive real
number exists which satisfies this equation. In this case, how-
ever, it is not possible to obtain a simple explicit expression
for # composed of any combination of surds. It can in fact
be proved (though the proof is difficult) that it is generally
impossible to find such an expression for the root of an equation
of higher degree than 4. Thus, besides irrational numbers which
can be expressed as pure or mixed quadratic or other surds, or
combinations of such surds, there are others which are roots of
algebraical equations but cannot be so expressed. It is only in
very special cases that such expressions can be found.

(iii) . But even when we have added to our list of irrational
numbers roots of equations (such as #* =« + 16) which cannot be
explicitly expressed as surds, we have not exhausted the different
kinds of irrational numbers contained in the continuum. Let us
draw a circle whose diameter is equal to 4,4, v.e. to unity. It is
natural to suppose* that the circumference of such a circle has a
length capable of numerical measurement. This length is usually
denoted by 7. And it has been shown+ (though the proof is un-
fortunately long and difficult) that this number 7 is not the
root of any algebraical equation with integral coefficients, such,
for example, as

mi=n, w=n w=7+n,
* A proof will be found in Ch. VIL

+ See Hobson’s Trigonometry (3rd edition), pp. 305 et seq., or the same writer’s
Squaring the Circle (Cambridge, 1913).
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where n is an integer. In this way it is possible to define a
number which is not rational nor yet belongs to any of the classes
of irrational numbers which we have so far considered. And this
number 7 is no isolated or exceptional case. Any number of other
examples can be constructed. In fact it is only special classes of
irrational numbers which are roots of equations of this kind, just

as it is only a still smaller class which can be expressed by means
of surds.

16. The continuous real variable. The ‘real numbers’
may be regarded from two points of view. We may think of
them as an aggregate, the ‘arithmetical continuum’ defined in
the preceding section, or individually. And when we think of
them individually, we may think either of a particular specified
number (such as 1, — 4, 4/2, or 7) or we may think of any number,
an unspecified number, the number . This last is our point of
view when we make such assertions as ‘2 is a number’, ‘@ is the
measure of a length’, ‘z may be rational or irrational, The «
which occurs in propositions such as these is called the continuous
real variable: and the individual numbers are called the values of
the variable.

A ‘variable’, however, need not necessarily be continuous.
Instead of considering the aggregate of all real numbers, we
might consider some partial aggregate contained in the former
aggregate, such as the aggregate of rational numbers, or the
aggregate of positive integers. Let us take the last case. Then
in statements about any positive integer, or an unspecified positive-
integer, such as ‘n is either odd or even’, n is called the variable,
a positive integral variable, and the individual positive integers
are its values.

Naturally ‘#’ and ‘n’ are only examples of variables, the
variable whose ‘field of variation’ is formed by all the real
numbers, and that whose field is formed by the positive integers.
These are the most important examples, but we have often to
consider other cases. In the theory of decimals, for instance, we
may denote by x any figure in the expression of any number as a
decimal. Then # is a variable, but a variable which has only ten
different values, viz. 0, 1, 2, 8,4, 5,6, 7, 8, 9. The reader should
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think of other examples of variables with different fields of varia-
tion. He will find interesting examples in ordinary life: policeian
z, the driver of cab «, the year z, the #th day of the week. The
values of these variables are naturally not numbers.

17. Sections of the real numbers. In §§ 4—7 we con-
sidered ‘sections’ of the rational numbers, 7.e. modes of division of
the rational numbers (or of the positive rational numbers only)
into two classes L and B possessing the following characteristic
properties:

(i) that every number of the type considered belongs to one
and only one of the two classes;

(ii) that both classes exist;
(iii) that any member of L is less than any member of R.

It is plainly possible to apply the same idea to the aggregate
of all real numbers, and the process is, as the reader will find in
later chapters, of very great importance.

Let us then suppose* that P and @ are two properties which
are mutually exclusive, and one of which is possessed by every
real number. Further let us suppose that any number which
possesses P is less than any which possesses @ We call the
numbers which possess P the lower or left-hand class L, and
those which possess @ the upper or right-hand class R.

Thus P might be £ £ 4/2 and @ be 2 >./2. Tt is important to observe
that a pair of properties which suffice to define a section of the rational
numbers may not suffice to define one of the real numbers. This is so, for
example, with the pair ‘z < /2’ and ‘x > /2’ or (if we confine ourselves
to positive numbers) with ‘22 < 2’ and ‘2% > 2’. Every rational number
possesses one or other of the properties, but not every real number, since in
either case /2 escapes classification.

There are now two possibilitiest. Either L has a greatest
member I, or R has a least member r, Doth of these events

* The discussion which follows is in many ways similar to that of §6. We
have not attempted to avoid a certain amount of repetition. The idea of a ‘section,’
first brought into prominence in Dedekind’s famous pamphlet Stetigkeit und)
irrationale Zahlen, is one which can, and indeed rgg&t, be grasped by every reader
of this book, even if he be one of those who prefer to omit the discussion of thel
notion of an irrational number contained in §§ 6—12.

+ There were three in § 6. "; I 4

'\_
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cannot occur. For if L had a greatest member /, and R a least
member 7, the number }({+r) would be greater than all members
of L and less than all members of R, and so could not belong to
either class. On the other hand one event must occur*.

For let L, and R, denote the classes formed from I and R by
taking only the rational members of L and R. Then the classes
L, and R, form a section of the rational numbers. There are now
two cases to distinguish.

It may happen that L, has a greatest member a. In this case
o must be also the greatest member of L. For if not, we could find
a greater, say 8. There are rational numbers lying between a and
B, and these, being less than B, belong to L, and therefore to L;;
and this is plainly a contradiction. Hence a is the greatest
member of L.

On the other hand it may happen that L, has no greatest
member. In this case the section of the rational numbers formed
by L, and R, is a real number a. This number & must belong
to L or to R. If it belongs to L we can shew, precisely as before,
that it is the greatest member of L, and similarly, if it belongs
to R, it is the least member of R.

Thus in any case either L has a greatest member or R a
least. Any section of the real numbers therefore ‘corresponds’ to
a real number in the sense in which a section of the rational
numbers sometimes, but not always, corresponds to a rational
number. This conclusion is of very great importance; for it shows
that the consideration of sections of all the real numbers does not
lead to any further generalisation of our idea of number. Starting
from the rational numbers, we found that the idea of a section of
the rational numbers led us to a new conception of a number, that
of a real number, more general than that of a rational number;
and it might have been expected that the idea of a section of the
real numbers would have led us to a conception more general still.
The discussion which precedes shows that this is not the case, and
that the aggregate of real numbers, or the continuum, has a kind
of completeness which the aggregate of the rational numbers
lacked, a completeness which is expressed in technical language
by saying that the continuum is closed.

* This was not the case in § 6.
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The result which we have just proved may be stated as follows:

Dedekind’s Theorem. If the real numbers are divided into
two classes L and R vn such a way that

(i)  every number belongs to one or other of the two classes,

(i1) each class contains at least one number,

(iii) any member of L is less than any member of R,
then there 1s a number a, which has the property that all the numbers
less than it belong to L and all the numbers greater than it to R.
The number a itself may belong to either class.

In applications we have often to consider sections not of e/l numbers but
of all those contained in an interval (B, y), that is to say of all numbers
2z such that B=2 <y. A ‘section’ of such numbers is of course a division of
them into two classes possessing the properties (i), (ii), and (iii). Such
a section may be converted into a section of afl numbers by adding to Z all
numbers less than 8 and to R all numbers greater than y. It is clear that
the conclusion stated in Dedekind’s Theorem still holds if we substitute ¢ the
real numbers of the interval (8, y)’ for ‘the real numbers’, and that the
number « in this case satisfies the inequalities 8 <a <7.

18. Points of accumulation. A system of real numbers, or
of the points on a straight line corresponding to them, defined in
any way whatever, is called an aggregate or set of numbers or
points. The set might consist, for example, of all the positive
integers, or of all the rational points,

It is most convenient here to use the language of geometry*.
Suppose then that we are given a set of points, which we will
denote by S. Take any point £, which may or may not belong to S.
Then there are two possibilities. Either (i) it is possible to choose
a positive number & so that the interval (£ — 8, £+ &) does not con-
tain any point of S, other than £ itself +, or (ii) this is not possible.

Suppose, for example, that § consists of the points corresponding to all
the positive integers. If £ is itself a positive integer, we can take & to be any
number less than 1, and (i) will be true; or, if ¢ is halfway between two
positive integers, we can take 8 to be any number less than 4. On the other
hand, if S consists of all the rational points, then, whatever the value of ¢,
(ii) is true; for any interval whatever contains an infinity of rational points.

* The reader will hardly require to be reminded that this course is adopted
solely for reasons of linguistic convenience.
+ This clause is of course unnecessary if £ does not itself belong to S.
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Let us suppose that (ii) is true. Then any interval (£ — §, £ + §),
however small its length, contains at least one point & which
belongs to S and does not coincide with &; and this whether £
itself be a member of S or not. In this case we shall say that £ is
a point of accumulation of S. It is easy to see that the interval
(E— 8, £+ &) must contain, not merely one, but infinitely many
points of S. For, when we have determined £, we can take an
interval (£ —8,, £+ 8,) surrounding £ but not reaching as far as &,.
But this interval also must contain a point, say &, which is a
member of S and does not coincide with £ Obviously we may
repeat this argument, with £ in the place of £; and so on
indefinitely. In this way we can determine as many points

fl’ EZJ 837 elely
as we please, all belonging to S, and all lying inside the interval
(-39, E+9).
\ A point of accumulation of S may or may not be itself a/ point
\of S. The examples which follow illustrate the various possibilities.

Examples IX. 1. If S consists of the points corresponding to the
positive integers, or all the integers, there are no points of accumulation.

2. If S consists of all the rational points, every point of the line is a
point of accumulation.

3. If S consists of the points 1, §, 1, ..., there is one point of accumula-
tion, viz. the origin.
4. If S consists of all the positive rational points, the points of accumula-
tion are the origin and all positive points.of the line.
"\ 19, Weierstrass’s Theorem. The general theory of sets
-_—‘i of points is of the utmost interest and importance in the higher
branches of analysis; but it is for the most part too difficult to be
included in a book such as this. There is however one funda-
mental theorem which is easily deduced from Dedekind’s Theorem
and which we shall require later.

THEOREM. If a set S contains infinitely many points, and is
entirely situated in an interval (a, B), then at least one point of the
interval is a point of accumulation of S.

We divide the points of the line A into two classes in the
following manner. The point P belongs to L if there are an
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infinity of points of S to the right of P, and to R in the contrary
case. Then it is evident that conditions (i) and (iii) of Dedekind’s
Theorem are satisfied; and since a belongs to L and B to R,
condition (1) is satisfied also.

Hence there is a point £ such that, however small be §, £—38
belongs to L and £+8 to R, so that the interval (£—96, £+ )
contains an infinity of points of 8. Hence £ is a point of accumu-
lation of S. -

This point may of course coincide with a or B, as for instance when a=0,
B=1, and S consists of the points 1, 4, },.... In this case 0 is the sole
point of accumulation.

MISCELLANEOUS EXAMPLES ON CHAPTER I.

1. What are the conditions that axz+dy+cz=0, (1) for all values of
%, Y, z; (2) for all values of #, y, z subject to av+By+yz=0; (3) for all-
values of #, g, z subject to both az+By+y2=0 and Azx+By+Cz=01?

2. Any positive rational number can be expressed in one and only one

way in the form
a2
1.2

where @y, @, ..., &; are integers, and

0=<a, 050;<2 0=0a;<3,..0<a <k

as

Ay
atystiest - tre s p

3. Any positive rational number can be expressed in one and one way
only’as a simple continued fraction
- S b ik Bl
e O] 4 N e
4 +¥ R
where @y, a3, ... are positive integers, of which the first only may be zero.

[Accounts of the theory of such continued fractions will be found in text-
books of algebra. For further information as to modes of representation of
rational and irrational numbers, see Hobson, Theory of Functions of a Real
Variable, pp. 46—49.]

4. Find the rational roots (if any) of 943 — 622 +152-10=0, X°

5. Aline 4B is divided at €' in aurea sectione (Euc. 1. 11)—i.e. 8o that
AL . AC=DBC% Show that the ratio 4C/4B is irrational.

[A direct geometrical proof will be found in Bromwich’s Infinite Series,
§ 143, p. 363.)

N ; ad +b
6. 4 is irrational. In what circumstances can Sy

where @, b, ¢, d

are rational, be rational?  ~.. 4!
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7. Some elementary inequalities. In what follows a;, ag, ... de-
note positive numbers (including zero) and P ¢ ... positive integers. Since
a;? —asP and @,9— ay? have the same sign, we have (e, — a,?) (a2 — as?) 20, or

aPt it a,Pr ez Padtaa,r ..., O CodiR ae P~ (1),

an inequality which may also be written in the form

alp+q+a2p‘{'q i alp+a21) ;94 as? (2
o —z (2 : ) .................. "
By repeated application of this formula we obtain
alp+q+r+-..+a2p+q+r+... < a1p+a2p alq+a2q alr+a2r 3
3 = 5 2 2 A o)
14
and in particular 2&'2_“5 = ((%@)P .............................. (4).

When p=g=1 in (1), or p=2 in (4), the inequalities are merely different
forms of the inequality a2+a?=2a,a,, which expresses the fact that the
arithmetic mean of two positive numbers is not less than their geometric
mean.

8. Generalisations for » numbers. If we write down the 3z (n—1)
inequalities of the type (1) which can be formed with % numbers > Oy 8 Ol y
and add the results, we obtain the inequality

nSaP*e=3al Sol...... 80 dAdo B0t 0h a0 b (5),
or (Zar*/n Z {(Za?)/n} {(ZaD/1} eeiivreierraeerannans (6).

Hence we can deduce an obvious extension of (3) which the reader may
formulate for himself, and in particular the inequality

(ZaP)/n Z{(Sa)/n}P..cciiirennnnans o000 (7.

9. The general form of the theorem concerning the arithmetic and
geometric means. An inequality of a slightly different character is
that which asserts that the arithmetic mean of @y A9y eeey dy 1S Ot lesy
than their geometric mean. Suppose that @, and a, are the greatest and
least of the s (if there are several greatest or least ‘o’s we may choose any
of them indifferently), and let G be their geometric mean. We may suppose
G > 0, as the truth of the proposition is obvious when G=0. If now we replace
a, and a, by

a/=0G, a/=a,a,/G,
we do not alter the value of the geometric mean ; and, since
@/ +a) ~a,-a,=(a,- G) (a,- DG 0, ¥
we certainly do not increase the arithmetic mean.

It is clear that we may repeat this argument until we have replaced each
of ay, a, ..., a, by G; at most » repetitions will be necessary. As the final
value of the arithmetic mean. is @, the initial value cannot have been less.
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10. Schwarz’s inequality. Suppose that @y, ay, ..., a, and by, by, ..., b,
are any two sets of numbers positive or negative. It is easy to verify the
identity

(3a,b,2=3a,% Sa? -3 (¢,b,— a.b,)%,
where » and s assume the values 1, 2, ..., #. It follows that
(Za,b,)2<2a,22b,3
an inequality usually known as Schwarz’s (though due originally to Cauchy).

11. If @y, ay, ..., @, are all positl(ve, and s,=a,+as+...+a,, then

2
(I+4a) (1+ay) ... (l+an)§1+sn+%+--.+%i:.
(Math. Trip. 1909.)

12. If @y, ag, ..., @, and by, by, ..., b, arc two sets of positive numbers,
arranged in descending order of magnitude, then

(mytag+ ...+ a,) (D14 bg+ ..o+ b,) Snaby +agde + ...+ a,b,),

13. Ifa,b,¢...kand 4, B, C, ... K are two sets of numbers, and all of -

the first set are positive, then
ad+bB+...+kK
a+b+..+k

lies between the algebraically least and greatest of 4, B, ..., K.

14. If Jp, Jgq are dissimilar surds, and a+b ./p+ca/g+d J(pg)=0,
where a, b, ¢, d are rational, then a=0, =0, ¢=0, d=0.

[Express o/p in the form M+ N /g, where M and ¥ are rational, and apply
the theorem of § 14.] ;

15. Show that if @ ./2 +b A/3+¢+/5=0, where a, b, ¢ are rational numbers,
then =0, =0, ¢=0.

16. Any polynomial in \/p and /g, with rational coefficients (i.e. any
sum of a finite number of terms of the form A4 (J/p)™ (J¢)?, where m and n
are integers, and A4 rational), can be expressed in the form

a+bJp+eg+dipy,
where a, b, ¢, d are rational.
a+bJp+e g
dteyp+fig

A+B Jp+CNg+Dpg,
where 4, B, C, D are rational. .
[Evidently
atba/pte/q_(a+bJpt+cag) (d+e/p—1i/g) _ at+BIp+yJe+3pg
d+eJp+fng (d+enp)i—r*q e+{Wp ]
where g, 3, etc. are rational numbers which can easily be found. The required
H, 3

17. Express , where @, b, ete. are rational, in the form
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reduction may now be easily completed by multiplication of numerator and
denominator by e—{a/p. For example, prove that
1 1
TFv2sy3- 2™ iv2-gv6l

18. 1If q, b, #, y are rational numbers such that
(ay—ba)*+4 (a-2)(b-y)=0,
then either (i) =a, y=0 or (ii) 1~ab and 1-zy are squares of rational
numbers, . (Math. Trip. 1903.)

19. If all the values of # and y given by
ax?+2hxy +byt=1, o2+ 2l zy+byP=1
(where a, %, b, &, I, b’ are rational) are rational, then
(h=EY=(a-d)(D-V), (abl—abd)?+4(ak—a'k) (D ~Vh)
are both squares of rational numbers. (Math. Trep. 1899.)

20. Show that 1/2 and /3 are cubic functions of \/24 /3, with rational
coefficients, and that \/2—./6+3 is the ratio of two linear functions of
2443, (Math. Trip. 1905.)

21. The expression
J{a+2ma/(a—m2)}+ o - 2ma/(a - m2)}
is equal to 2m if 2m? > a >m? and to 2{/(a—m?) if a > 2m?2

22. Show that any polynomial in §/2, with rational coefficients, can be
expressed in the form
a+b32+c¢d4,
where a, &, ¢ are rational.
More generally, if p is any rational number, any polynomial in ¥p with
rational coefficients can be expressed in the form

aytajatagald ... 4, 1a™")

where @, a,, ... are rational and a=7/p. For any such polynomial is of the
form

bo+b1a+bga2+ P +bk(lk,
where the U’s are rational. If £ =<m—1, this is already of the form required. If
k>m -1, let a” be any power of a higher than the (m—1)th. Then r=\m+s,

Am+s

: : . A g
where A is an integer and 0<s=<m-1; and a"=a =p“a’. Hence we can

get rid of all powers of a higher than the (m —1)th.

23. Express (¥2-1) and (J2-1)/(J2+1) in the form a+bJ/24c /4,
where a, b, ¢ are rational. [Multiply numerator and denominator of the
second expression by &/4-/2+1.}

24. If a+b2+¢i/4=0,
where a, b, ¢ are rational, then a=0, =0, ¢=0.
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[Let y=#/2. Then y*=2 and
¢y’ +by+a=0.
Hence 2¢y?+2by+ay*=0 or
ay®+2cy +2b=0.

Multiplying these two quadratic equations by @ and ¢ and subtracting,
we obtain (ab-—2¢?) y+a?—2bc=0, or y= —(a®—2bc)/(ab-2¢%), a rational
number, which is impossible. The only alternative is that ab—2¢2=0,
a?-2bc=0.

Hence ab=2¢% at=45b%2% If neither a nor b is zero, we can divide the
second equation by the first, which gives a3=20%: and this is impossible,
since /2 cannot be equal to the rational number a/b. Hence ab=0, ¢=0,
and it follows from the original equation that a, b, and ¢ are all zero.

As a corollary, if a+4bY2%c/d=d+ed2+f/4, then a=d, b=e¢, c=f.
It may be proved, more generally, that if

/

a0+a1p1.m+...+am_1p(m—l)/m=0,

p not being a perfect mth power, then ay=a,=...=a,,_;=0; but the proof is
less simple.]

25, If A+YB=C+23¥D, then either A=C, B=D, or B and D are both
cubes of rational numbers.

26. If JA+¥YB+YC=0, then either one of 4, B, C is zero, and the other
two equal and opposite, or /4, /B, J/C are rational multiples of the same

surd JX.
27. Find rational numbers q, 8 such that
N(T+54/2)=a+B/2.
28. If (@—%) b>0, then
3 9%+ a a—b3 3 93+ a - b3
\/{“‘“ 3 A/ () \/{“‘T \/(’%‘»

is rational. [Each of the numbers under a cube root is of the form
a—b%\\3
tron/ ()

29. If a=/p, any polynomial in a is the root of an equation of degree n,
with rational coefficients,

where a and B8 are rational.]

[We can express the polynomial (# say) in the form
z=li+ma+...+ra™ Y,

where {4y, my, ... are rational, as in Ex, 22,
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Similarly =l +mpa+t...+r5a™Y,

ar=l,+muat...+7,a®N

Hence Lyw+ Ly +...+ L=,
where 4 is the determinant

ll my oo 7y

and Ly, Ly, ... the minors of 7;, {5, ....]

30. Apply this process to x=p+4/g, and deduce the theorem of § 14.

31. Show that y=a+bp"®+cp*® satisfies the equation
Y*—3ay®+3y (a®—bep) — a® — bp — 3p? + Babep =0.
32. Algebraical numbers. We have seen that some irrational numbers
(such as A/2) are roots of equations of the type
e+ a4 ...+ a,=0,

. where a,, aj, ..., @, are integers. Such irrational numbers are called alge-
braical numbers: all other irrational numbers, such as = (§ 15), are called
transcendental numbers. Show that if 2 is an algebraical number, then so are

ka, where £ is any rational number, and o™ " where m and n are any integers,

33. If z and y are algebraical numbers, then so are £+y,«— ¥, #y and zy.
[We have equations  agz™+ayzm~14.,.+a,,=0,
boy™ + by~ 1+ ... +b,=0,

where the o’s and b’s are integers. Write w+y =2, y=2-2 in the second,
and eliminate 2. We thus get an equation of similar form

cpzP+ 2P 4. 40y =0,
satisfied by z. Similarly for the other cases.}

1
T

34. If aZ*+a 2”1+, +a, =0,

where a,, aj, ..., a, are any algebraical numbers, then z is an algebraical
number. [We have n+1 equations of the type

=
ao,rar"nr'i‘al,r“rmr +---+am,.1=0 (r=0,1, ..., m),

in which the coefficients @, ry @y, ry «.. are integers Eliminate ay. a;, .
between these and the original equation for .]

200Gt

35. Apply this process to the equation #%— 24,/2+4/3=0.
[The result is 28— 1628+ 581% - 4822+9=0.]
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36. Find equations, with rational coefficients, satisfied by

Levaads, SEEVE v eViis-vE, J2+0

37. If 23=x+1, then s¥*=q,2+b,+c¢,/», where

1= Fbny b1 =Cnt+bptcn, Crir=ay+cn

38. If a8+4+25-24—2%+2%+1=0 and y=2*—a?+x -1, then y satisfies
a quadratic equation with rational coefficients. (HMath. Trip. 1903.)

[It will be found that y%+y+1=0.]



CHAPTER II

FUNCTIONS OF REAL VARIABLES

20. The idea of a function. Suppose that # and y are
two continuous real variables, which we may suppose to be repre-
sented geometrically by distances 4,P =2, B,Q =y measured
from fixed points A,, B, along two straight lines A, M. And
let us suppose that the positions of the points P and @ are not
independent, but connected by a relation which we can imagine
to be expressed as a relation between x and y: so that, when
P and # are known, @ and y are also known. We might,
for example, suppose .that y=a, or y =2, or {2, or 2°+1. In
all of these cases the value of z determines that of y. Or
again, we might suppose that the relation between # and y is
given, not by means of an explicit formula for y in terms of =,
but by means of a geometrical construction which enables us to -
determine ¢ when P is known.

In these circumstances y is said to be a function of #. This
notion of functional dependence of one variable upon another is
perhaps the most important in the whole range of higher mathe-
matics. In order to enable the reader to be certain that he
understands it clearly, we shall, in this chapter, illustrate it by
means of a large number of examples.

But before we proceed to do this, we must point out that
the simple examples of functions mentioned above possess three
characteristics which are by no means involved in the general
idea of a function, viz.:

(1) vy is determined for every value of x;

(2) to each value of @ for which y is given corresponds one
and only one value of y;

(8) the relation between # and y is expressed by means of
an analytical formula, from which the value of y corresponding to
a given value of  can be calculated by direct substitution of the
latter.
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It is indeed the case that these particular characteristics are
possessed by many of the most important functions. But the con-
sideration of the following examples will make it clear that they
are by no means essential to a function. All that is essential is
that there should be some relation between « and y such that to
some values of # at any rate correspond values of ¥.

Examples X. 1. Let y=zor 2z or Jz or 224+1 Nothing further need
be said at present about cases such as these.

2. Let y=0 whatever be the value of #. Then y is a function of #, for we
can give z any value, and the corresponding value of y (viz. 0) is known. In
this case the functional relation makes the same value of y correspond to all
values of 2. The same would be true were y equal to 1 or —} or »/2 instead
of 0. Such a function of x is called a constant.

3. Let y*=a. Then if 2 is positive this equation defines fwo values of ¥
corresponding to each value of z, viz. /2. If 2=0, y=0. Hence to the
particular value O-of 2 corresponds one and only one value of y. But if x is
negative there is no value of y which satisfies the equation. That is to say,

4

/s

the function y is not defined for negative values of z. This function therefore |

possesses the characteristic (3), but neither (1) nor (2).

4. Consider a volume of gas maintained at a constant temperature and
contained in a cylinder closed by a sliding piston*.

Let A be the area of the cross section of the piston and W its weight.
The gas, held in a state of compression by the piston, exerts a certain pressure
po per unit of area on the piston, which balances the weight W, so that

Let #, be the volume of the gas when the system is thus in equilibrium.
If additional weight is placed upon the piston the latter is forced downwards.
The volume (v) of the gas diminishes; the pressure (p) which it exerts
upon unit area of the piston increases. Boyle’s experimental law asserts that
the product of p and v is very nearly constant, a correspondence which, if
exact, would be represented by an equation of the type

PV=Q surernren e R o R S elee S, (),
where a is a number which can be determined approximately by experiment.

Boyle’s law, however, only gives a reasonable approximation to the facts
provided the gas is not compressed too much. When » is decreased and p
increased beyond a certain point, the relation between them is no longer
expressed with tolerable exactness by the equation (i). It is known that a

* I borrow this instructive example from Prof. H. S. Carslaw’s Introduction to
the Calculus.
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much better approximation to the true relation can then be found by means
of what is known as ‘van der Waals’ law’, expressed by the equation

(p+g§> - P (if),

where a, 8, y are numbers which can also be determined approximately by
experiment.

Of course the two equations, even taken together, do not give anything
like a complete account of the relation between p and ». This relation is no
doubt in reality much more complicated, and its form changes, as v varies,
from a form nearly equivalent to (i) to a form nearly equivalent to (it). But,
from a mathematical point of view, there is nothing to prevent us from con-
templating an ideal state of things in which, for all values of » not less than
a certain value V, (i) would be exactly true, and (ii) exactly true for all
values of » less than V. And then we might regard the two equations as
together defining p as a function of ». It is an example of a function which
for some values of » is defined by one formula and for other values of v is
defined by another,

This function possesses the characteristic (2). to any value of » only one
value of p corresponds: but it does not possess (1). For pis not defined as
a function of v for negative values of »; a ‘negative volume’ means
nothing, and so negative values of » do not present themselves for considera-
tion at all.

5. Suppose that a perfectly elastic ball is dropped (without rotation)
from a height 1gr* on to a fixed horizontal plane, and rebounds continually.

The ordinary formulae of elementary dynamics, with which the reader is
probably familiar, show that A=1g¢2 if 0<t<r, h=3g (2r—1)? if r<¢=3r, and
generally

5 h=1g (nr—1)?
if 2n—1)r=<¢=(2n+1)7, % being the depth of the ball, at time ¢, below its
original position. Obviously % is a function of ¢ which is only defined for
positive values of ¢, ,

™ 6. Suppose that y is defined as being the largest prime factor of x. This
is an instance of a definition which only applies to a particular class of values
of z, viz. integral values. = ‘The largest prime factor of 1} or of /2 or of =’
means nothing, and so our defining relation fails to define for such values of
as these. Thus this function does not possess the characteristic (1). It does
possess (2), but not (3), as there is no simple formula which expresses y in
terms of 2.

N 7. Let y be defined as the denominator of x when x 13 expressed in its
lowest terms. This is an example of a function which is defined if and only
if » is rational. Thus y=7 if z=—11/7: but y is not defined for x=4/2, ‘the
denominator of /2’ being a meaningless form of words.
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8. Let y be defined as the keight in inches of policeman Cx, in the
Metropolitan Police, at 5.30 p.m. on 8 Aug. 1907. Then y is defined for a
certain number of integral values of x, viz. 1, 2, ..., &V, where & is the total
number of policemen in division C at that particular moment of time.

21. The graphical representation of functions. Sup-
pose that the variable y is a function of the variable z. It will
generally be open to us also to regard « as a function of y, in virtue
of the functional relation between # and y.- But for the present we
shall look at this relation from the first point of view. We shall
then call z the independent variable and y the dependent variable;
and, when the particular form of the functional relation is not
specified, we shall express it by writing

y=f(
(or F (z), ¢ (z), ¥ (), ..., as the case may be).

The nature of particular functions may, in very many cases, be
illustrated and made easily intelligible as follows. Draw two lines
0X, OY at right angles to one another v
and produced indefinitely in both direc-
tions. We can represent values of z
and y by distances measured from O
along the lines OX, OY respectively, B
regard being paid, of course, to sign,
and the positive directions of measure- : g
ment being those indicated by arrows
in Fig. 6.

B 4

Let a be any value of 2 for which
y is defined and has (let us suppose)
the single value b Take 04 =a, B"—--—"p"
OB =0, and complete the rectangle Fig. 6.
OAPB. Imagine the point P marked on the diagram. This
marking of the point P may be regarded as showing that the
value of y for # =a is .

If to the value @ of z correspond several values of y (say
b, ¥, b”), we have, instead of the single point P, a number of
points P, P’, P".

We shall call P the point (a, b); @ and b the coordinates of P
referred to the axes 0OX, OY; a the abscissa, b the ordinate of P;
OX and OY the awis of # and the awis of y, or together the
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axes of coordinates, and O the origin of coordinates, or simply
the origin.

Let us now suppose that for all values @ of & for which y is
defined, the value b (or values b, ¥/, b”,...) of y, and the corre-
sponding point P (or points P, P, P”, ...), have been determined.
We call the aggregate of all these points the graph of the
function .

To take a very simple example, suppose that y is defined as
a function of # by the equation
Az +By+C=0..cccc0rvieennranrnn.. (1),

where 4, B, C are any fixed numbers*. Then y is a function of
which possesses all the characteristics (1), (2), (3) of § 20. It is
easy to show that the graph of y vs a straight line. The reader is
in all probability familiar with one or other of the various proofs
of this proposition which are given in text-books of Analytical
Geometry.

We shall sometimes use another mode of expression. We
shall say that when 2 and y vary in such a way that equation (1)
is always true, the locus of the pownt (z, y) vs a straight line, and
we shall call (1) the equation of the locus,and say that the equation
represents the locus. This use of the terms ‘locus’, ‘equation of
the locus’ is quite general, and may be applied whenever the
relation between z and y is capable of being represented by an
analytical formula.

~ The equation Az + By + C =0 is the general equation of the first
degree, for Az + By + C is the most general polynomial in z and y
which does not involve any terms of degree higher than the first
in z and y. Hence the general equation of the first degree repre-
sents @ straight line. It is equally easy to prove the converse
proposition that the equation of any straight line vs of the first
degree.

- We may mention a few further examples of interesting geo-
metrical loci defined by equations. An equation of the form

(#—a)+(y—By=p"

* If B=0, y does not occur in the equation. We must then regard y as a
function of z defined for one value only of z, viz. = - C/d, and then having all
values.
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or 2+ 1y + 2Gx + 2Fy + C =0,
where G2+ F*— C >0, represents a circle. The equation
Ax*+ 2Hxy + By +2Gz 4+ 2Fy + C=0
(the general equation of the second degree) represents, assuming
that the coefficients satisfy certain inequalities, a conic section,

t.e. an ellipse, parabola, or hyperbola. For further discussion of
these loci we must refer to books on Analytical Geometry.

22. Polar coordinates. In what precedes we have determined
the position of P by the lengths of its coordinates OM=x, MP = y.
If OP=r and MOP =0, 6 being an
angle between 0 and 27 (measured in
the positive direction), it is evident that N A

& =rcos 0, y=rsiné,
r=N(2?+4%), cos@:sinf:l:uz:y:r, y

and that the position of P is equally well 0
determined by a knowledge of » and .  © z ™
We call » and 6 the polar coordinates Fig. 7.

of P. The former, it should be observed, is essentially positive *.

If P moves on a locus there will be some relation between »
and 6, say » =f () or 0 =F (r). This we call the polar equation
of the locus. The polar equation may be deduced from the (=, y)
equation (or vice versa) by means of the formulae above.

Thus the polar equation of a straight line is of the form
rcos(f —a)=p,
where p and « are constants. The equation »=2a cos  represents

a circle passing through the origin; and the general equation of
a circle is of the form

724 ¢~ 2rccos (6 —a) = A2
where 4, ¢, and « are constants.

* Polar coordinates are sometimes defined so that » may be positive or negative.
In this case two pairs of coordinates—e.g. (1,0) and (-1, 7)—correspond to the
same point. The distinction between the two systems may be illustrated by means
of the equation I/r=1-¢cosf, where >0, e>1. According to our definitions r
must be positive and therefore cos #<1/e: the equation represents one branch only
of a hyperbola, the other having the equation —I/r=1-ecosd. With the system
of coordinates which admits negative values of r, the equation represents the whole
hyperbola.
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23. Further examples of functions and their graphical
representation. The examples which follow will give the
reader a better notion of the infinite variety of possible types of
functions.

A. Polynomials. A polynomial in z is a function of the
form

Q™+ a, 2™ L g,

where a,, @y, ..., @, are constants. The simplest polynomials are
the simple powers y =z, 2%, 2?, ..., 2™, .... The graph of the function
a™ is of two distinet types, according as m is even or odd.

First let m=2. Then three points on the graph are (0, 0),
(1,1), (-1,1). Any number of additional points on the graph
may be found by assigning other special values to «: thus the
values

z=4% 2, 3,-1, -2, 8
give y=44,9 1 49

If the reader will plot off a fair number of points on the graph, he
will be led to conjecture that the

form of the graph is something

like that shown in Fig. 8, If

he draws a curve through the

special points which he has proved (-1,1)
to lie on the graph and then tests
its accuracy by giving 2 new
values, and calculating the cor-
responding values of ¥, he will
find that they lie as near to the curve as it is reasonable to expect,
when the inevitable inaccuracies of drawing are considered. The
curve is of course a parabola.

P y:ﬁﬁ

(0,0)
~¢ Fig. 8,

There is, however, one fundamental question which we cannot
answer adequately at present. The reader has no doubt some
notion as to what is meant by a continuous curve, a curve without
breaks or jumps; such a curve, in fact, as is roughly represented
in Fig. 8. The question is whether the graph of the function
y=a?is in fact such a curve. This cannot be proved by merely
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constructing any number of isolated points on the curve, although
the more such points we construct the more probable it will
appear.

This question cannot be discussed properly until Ch. V. In
that chapter we shall consider in detail what our common sense
idea of continuity really means, and how we can prove that such
graphs as the one now considered, and others which we shall
consider later on in this chapter, are really continuous curves.
For the present the reader may be content to draw his curves as
common sense dictates.

1t is easy to see that the curve y =22 is everywhere convex to the axis of .
Let Py, P; (Fig. 8) be the points (zy, #:?), (#1, #:2). Then the coordinates of
a point on the chord Py P, a,,se £=NZo+ p¥1, Yy =A2¢*+ px,% where X and p are

positive numbers whose sum is 1. And 2
§= 2= (0 ) O\ ) — (4 ) =N (2 = ) 20, ;3»\
N
>

~

-s0 that the chord lies entirely above the curve. R

The curve y = a* is similar to ¥y =2? in general appearance, but
flatter near O, and steeper beyond the points 4, A’ (Fig. 9),
and y = a™, where m is even and greater than 4, is still more so,
As m gets_larger and larger the flatness and steepness grow
more and more pronounced, until the curve is practically indis-
tinguishable from the thick line in the figure.

y=x3

Y=

Fig. 9. Fig. 10.

The reader should next consider the curves given by y=a™,
when m is odd. The fundamental difference between the two
cases is that whereas when m is even (— )™= 2™, so that the

X

"J

\M/

=

|

curve is symmetrical about OY, when m is odd (— #)" = — a™, so
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that y is negative when « is negative. Fig. 10 shows the curves
y=w, y=2°% and the form to which y=a™ approximates for
larger odd values of m

It is now easy to see how (theoretically at any rate) the graph
of any polynomial may be constructed. In the first place, from
the graph of y = 2™ we can at once derive that of Ca™, where C is
a constant, by multiplying the ordinate of every point of the
curve by C. And if we know the graphs of f(z) and F (=), we
can find that of () + F () by taking the ordinate of every point
to be the sum of the ordinates of the corresponding points on the
two original curves.

The drawing of graphs of polynomials is however so much
facilitated by the use of more advanced methods, which will be
explained later on, that we shall not pursue the subject further
here.

Examples XI. 1. Trace the curves y="7s% y=345, y=a1.

[The reader should draw the curves carefully, and all three should be
drawn in one figure*. He will then realise how rapidly the higher powers
of # increase, as # gots larger and larger, and will see that, in such a
polynomial as

2104 325 4 Tt

(or even 210+ 3025 +7002%), it is the first term which is of really preponderant
importance when # is fairly large. Thus even when x=4, #'°> 1,000,000,
while 3025 < 35,000 and 7004 << 180,000; while if £=10 the preponderance
of the first term is still more marked.]

2. Compare the relative magnitudes of 212 1,000,0002%, 1,000,000,000,0002
when x=1, 10, 100, etc.

[The reader should make up a number of examples of this type for himself.
This idea of the relative rate of growth of different functions of x is one with
which we shall often be concerned in the following chapters.]

3. Draw the graph of as?+2bz+c

[Here y — {(ac—b%)/a} =a {z+(bja)}?. If we take new axes parallel to the
old and passing through the point #= —b/a, y=(ac—b%/a, the new equation
is ¥ =as’2  The curve is a parabola.]

4, Trace the curves y=a3—-32+1, y=a2 (- 1), y=2(z-1)%

* It will be found convenient to take the scale of measurement along the axis
of y a good deal smaller than that along the axis of «, in order to prevent the
figure becoming of an awkward size.
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24. B. Rational Functions. The class of functions which
ranks next to that of polynomials in simplicity and importance
1s that of rational functions. A rational function is the quotient
of one polynomial by another: thusif P (z), Q (x) are polynomials,
we may denote the general rational function by

P (2)
Q@)

In the particular case when Q () reduces to unity or any other
constant (t.e. does not involve ), R () reduces to a polynomial:
thus the class of rational functions includes that of polynomials

as a sub-class. The following points concerning the definition
should be noticed.

R(z)=

(1) We usually suppose that P (z) and @ (+) have no common factor z+a
or 7 +ax?~14+ba?=24... 4k, all such factors being removed by division.

(2) It should however be observed that this removal of common factors |
does as a rule change the function. Consider for example the function z/z,
which is a rational function. On removing the common factor z we obtain
1/1=1. But the original function is not always equal to 1: it is equal to 1
only so long as #+0. If #=0 it takes the form 0/0, which is meaningless.
Thus the function #/z is equal to 1 if 240 and is undefined when z=0. It
therefore differs from the function 1, which is always equal to 1.

(3) Such a function as

)/ Grs)

may be reduced, by the ordinary rules of algebra, to the form
2% (x-2)
_ @-1F@+1)’

which is a rational function of the standard form. But here again it must be
noticed that the reduction is not always legitimate. In order to calculate the
value of a function for a given value of & we must substitute the value for &
in the function in the form tn which it is given. In the case of this function
the values #= -1, 1, 0, 2 all lead to a meaningless expression, and so the
function is not defined for these values. The same is true of the reduced
form, so far as the values —1 and 1 are concerned. But #=0 and =2 give
the value 0. Thus once more the two functions are not the same.

(4) But, as appears from the particular example considered under (3),
there will generally be a certain number of values of z for which the function
is not defined even when it has been reduced to a rational function of the
standard form. These are the values of z (if any) for which the de-
nominator vanishes. Thus (22-7)/(#2—32+2) is not defined when z=1
or 2.
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(5) Generally we agree, in dealing with expressions such as those con-
sidered in (2) and (3), to disregard the exceptional values of # for which such
processes of simplification as were used there are illegitimate, and to reduce
our function to the standard form of rational function. The reader will
easily verify that (on this understanding) the sum, product, or quotient of
two rational functions may themselves be reduced to rational functions of
the standard type. And generally @ rational function of a rational function
18 dtself a rational function: i.e. if in z=P(y)/Q (y), where P and @ are
polynomials, we substitute y=P; (2)/@, (), we obtain on simplification an
equation of the form z=P, (2)/@, (2).

(6) It is in no way presupposed in the definition of a rational function
that the constants which occur as coefficients should be rational numbers.
The word rational has reference solely to the way in which the variable 2
appears in the function. Thus

224 544/3
T 2-w
is a rational function

The use of the word rational arises as follows. The rational function
P (2)/Q (x) may be generated from x by a finite number of operations upon
a3, includinx_rltllj_ip,liga,ﬂon of z by itself or a constant, addition of terms
thus obtained, and division of one function, obtained by such mult multiplications
and additions, by another. In so far as the variable # is concerned, this pro-
cedure is very much like that by which all rational numbers can be obtained
from unity, a procedure exemplified in the equation

5 14+141+1+1
37 1+1+1

Again, any function which can be deduced from # by the elementary
operations mentioned above, using at each stage of the process functions
which have already been obtained from # in the same way, can be reduced to
the standard type of rational function. The most general kind of Tunction
which can be obtained in this way is sufficiently illustrated by the example

» 2r+7
(x2+1 i =372 /(17“"9@*
T 9x+1
which can obviously be reduced to the standard type of rational function.

25. The drawing of graphs of rational functions, even more
than that of polynomials, is immensely facilitated by the use of
methods depending upon the differential calculus. We shall
therefore content ourselves at present with a very few examples,

Examples XII. 1. Draw the graphs of y=1/2, y=1/a% y=1/a3, ...,

[The figures show the graphs of the first two curves. It should be
observed that, since 1/0, 1/0%, ... are meaningless expressions, these functions
are not defined for 2=0.]
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2. Trace y=z+(1/z), x—(1/2), 2?4+(1/a?), 22— (1/2?) and azx+(b/z)
taking various values, positive and negative, for ¢ and b.

3. Trace
_ﬁil (.z'+1 2 1 2241,
T2=-1" \a-1)° (@-12 2-1°
4. Trace y=1/(x—a)(®—0b), 1/(x—a)(z-Db) (z—c), where a<b<ec.

5. Sketch the general form assumed by the curves y=1/2" as m
becomes larger and larger, considering separately the cases in which m is

odd or even.
Rt Vo 4
RN
y=1/a?
Fig. 11. Fig. 12,

26. C. Explicit Algebraical Functions. The next im-
portant class of functions is that of explicit algebraical functions.
These are functions which can be generated from # by a finite
number of operations such as those used in generating rational
functions, Gogether withya finite number of operations of root
extraction. Thus

V(A +7) = y(1—2)
ST i—ey Vat@+ya)
2+ x4 4/3\}
(?/\3/ 2—m )
are explicit algebraical functions, and so is ™" (i.e. ™), where m
and n are any integers.

It should be noticed that there is an ambiguity of notation
involved in such an equation as y=4/z. We have, up to the
present, regarded (e.g.) 4/2 as denoting the positive square root
of 2, and it would be natural to denote by /z, where « is any

. 4
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positive number, the positive square root of #, in which case
y=+x would be a one-valued function of x It is however
often more convenient to regard 4/ as standing for the two-valued
function whose two values are the positive and negative square
roots of .

The reader will observe that, when this course is adopted, the
function 4/« differs fundamentally from rational functions in two
respects. In the first place a rational function is always defined
for all values of # with a certain number of isolated exceptions.
But /2 is undefined for a whole range of values of z (ie. all
negative values). Secondly the function, when # has a value
for which it is defined, has generally two values of opposite signs.

The function +/z, on the other hand, is one-valued and defined
for all values of .
Examples XIII. 1. J{(#-a)(b-a)}, where a<b, is defined only for
a=x2b. If a<w<b it has two values : if #=a or b only one, viz. 0.
2. Consider similarly
iz -a) (e=b) (w=0)} (a<b<o)
Nig@-ah)l, JHz-a) (b-2)} (a<b),

NA+2)—J(1-2) ‘
Vo) Fi=a)y Vet

3. Trace the curves 2=z, y°=z, y?=25
4, Draw the graphs of the functions y=./(a2-22), y=>b{1- (2%a?)}.
27. D. Implicit Algebraical Functions. It is easy to
verify that if
. VA +2)— Y (1—a)
I VAF o)+ (I-a)

pryy-ges
or if y =z + s(z+ V),
then Y=y +4y+1)a=0.
Each of these equations may be expressed in the form
Y+ Ry i+ Bu=0.eiinen, (1),

where R, R,, ..., R, are rational functions of #: and the reader
will easily verify that, if y is any one of the functions considered
in the last set of examples, y satisfies an equation of this form.
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It is naturally suggested that the same is true of any explicit
algebraic function. And this is in fact true, and indeed not
difficult to prove, though we shall not delay to write out a formal
proof here. An example should make clear to the reader the lines
on which such a proof would proceed. Let
_z+ N+ e+ Vol + V(1 +2)
y_w—Vx+ Vig+ v} — V(1 +a)°
Then we have the equations
_retutvtw
Cz—utv—w
W=z V=z+tu wW=1+g

£

and we have only to eliminate u, v, w between these equations in
order to obtain an equation of the form desired.

We are therefore led to give the following definition : @ function
y=f () will be said to be an algebraical function of x if it is the
root of an equation such as (1), i.e. the root of an equation of the
m* degree in y, whose coefficients are rational functions of «. There
1s plainly no loss of generality in supposing the first coefficient to
be unity.

This class of functions includes all the explicit algebraical
functions considered in § 26. But it also includes other functions
which cannot be expressed as explicit algebraical functions. For
it is known that in general such an equation as (1) cannot be
solved explicitly for ¥ in terms of «, when m is greater than 4,
though such a solution is always possible if m=1, 2, 3, or 4 and
in special cases for higher values of m.

The definition of an algebraical function should be compared
with that of an algebraical number given In the last chapter
(Misc. Exs. 32). » 3 6

Examples XIV. 1. If m=1,y is a rational function,

2. If m=2, the equation is 32+ Ry + R;=0, so that

y=3{- Rt J(B?-4Ry))}.
This function is defined for all values of # for which R2Z4R,. It has two
values if 2212>4R; and one if R2=4R,.

If m=3 or 4, we can use the methods explained in treatises on Algebra for
the solution of cubic and biquadratic equations. But as a rule the process is
complicated and the results inconvenient in form, and we can generally study
the properties of the function beﬁgr by means of the original equation. oS

42
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3. Consider the functions defined by the equations
Y =2 ~a?=0, y*-%y+a2=0, yt-2y%+22=0,
in each case obtaining y as an explicit function of #, and stating for what
values of & it is defined.
4. Find algebraical equations, with coefficients rational in z, satisfied by
each of the functions
Ne+N(lz), Je+¥(x), N@+N2), NizHy (@+V o))
6. Consider the equation yi=a2
[Here y2=t+a. If # is positive, y=~: if negative, y=~(—2). Thus the
function has two values for all values of # save x=0.]
6. An algebraical function of an algebraical function of z is itsclf an
algebraical function of .
[For we have
Y+ B (B)ym 4.+ Ry, (2)=0,
where 248 (o) ..+ 8, (2) =0
Eliminating z we find an equation of the form
P+ Ty (@) yP~1+4...+ T, (2)=0.
Here all the capital letters denote rational functions,]
7. An example should perhaps be given of an algebraical function which

cannot be expressed in an explicit algebraical form. Such an example is the
function y defined by the equation

e Aatidt
" But the proof that we cannot find an explicit algebraical expression for y in
terms of z is diﬁ_i_@lt, and cannot be attempted here,

28. Transcendental functions. All functions of « which
are not rational or even algebraical are called transcendental
functions. This class of functions, being defined in so purely
negative a manner, naturally includes an infinite variety of whole
kinds of functions of varying degrees of simplicity and importance,
Among these we can at present distinguish two kinds which are
particularly interesting.

E. The direct and inverse trigonometrical or circular
functions. These are the sine and cosine functions of elementary
trigonometry, and their inverses, and the functions derived from
them. We may assume provisionally that the reader is familiar
with their most important properties *.

* The definitions of the circular functions given in elementary trigonometry pre-
suppose that any sector of a circle has associated with it a definite number called its

area. How this assumption is justified will appear in Ch. VIL ¢, L o

Cf;.
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Examples XV. 1. Draw the graphs of cosz, sin#, and acos z+bsinz.

[Since @ cosz+bsinz=g cos (x —a), where B=,/(a?+b?), and a is an angle
whose cosine and sine are a/s/(a?+02) and b//(a?+02), the graphs of these
three functions are similar in character.]

2. Draw the graphs of cos?#, sin?z, acos?x+40bsin2z.

3. Suppose the graphs of f(x) and F (x) drawn. Then the graph of
S () cos? x4+ F (x)sin?z
is a wavy curve which oscillates between the curves y=£(»), y=F (). Draw
the graph when f(2)=w, F(z)=2"

4. Show that the graph of cospz+cosgx lies between those of
2c0s% (p—-g)x and ~2cos i (p+¢q) 2, touching each in turn. Sketch the
graph when (p—¢)/(p+¢) is small. (Math. Trip. 1908.)

5. Draw the graphs of z+sinz, (1/z)+sinz, xsinz, (sin z)/z.

6. Draw the graph of sin (1/z).

[If y=sin (1/z), then y =0 when x=1/mm, where m isany integer. Similarly
y=1 when #=1/(2m+%)= and y=—1 when #=1/(2m—3) 7. The curve is
entirely comprised between the lines y= -1 and y=1 (Fig. 13). It oscillates
up and down, the rapidity of the oscillations becoming greater and greater as
« approaches 0. _For =0 the function is undefined. When 2 is large v is
small*, The negatlve half of the curve is similar in character to the positive

At el R T
7. Draw the graph of xsin (1/z). \ b e

WV T
\ [

[This curve is comprised between the lines y= — 2 and y=x just as the
last curve is comprised between the lines y= —1 and y=1 (Fig. 14).]

W

Fig. 13. Fig. 14.

* See Chs. IV and V for explanations as to the precise meaning of this phrase,
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8. Draw the graphs of #?sin (1/2), (1/2)sin (1/2), sin?(1/z), {xsin (1/2)}2,
a cos? (1/x)+bsin? (1/x), sin 2 +sin (1/z), sinzsin (1/z).

9. Draw the graphs of cos4?, sin? a cosz?4bsin a2,

10. Draw the graphs of arccosz and arcsin 2.

[If y=arccosz, x=cosy. This enables us to draw the graph of z, con-
sidered as a function of y, and the same curve shows ¥ as a function of z.
It is clear that y is only defined for —1=2x=1, and is infinitely many-
valued for these values of #. As the reader no doubt remembers, there is,
when - 1<z<1, a value of y between 0 and 7, 8aY a, and the other values
of y are given by the formula 2ar +a, where # is any integer, positive or
negative.]

11. Draw the graphs of

tana, cotx, secx, cosecw, tan?z, cot?ws, sec? x, cosec?s,

12. Draw the graphs of arctanz, arccot, arcsecs, arccosecz. Give
formulae (as in Ex. 10) expressing all the values of each of these functions
in terms of any particular value.

13. Draw the graphs of tan (1/z), cot (1/x), sec (1/2), cosec(1/z)

14, Show that cos 2 and sin = are not rational functions of z.

[A function is said to be periodic, with period @, if £ (z)=f (2 +a) for all
values of x for which f(z) is defined. Thus cos# and sin # have the period
2w, It is easy to see that no periodic function can be a rational function,
unless it is a constant. For suppose that

F(@)=P()[Q (x),

where P and @ are polynomials, and that f () =# (#+ a), each of these equations
holding for all values of #. Let #(0)=4#. Then the equation P (%)~ £Q (2)=0
is satisfied by an infinite number of \values of #, viz. =0, a, 20, etc., and

\ therefore for all values of . Thus f(2)=# for all values of z, te. f(z)is a
. constant.] n M oA &

15. Show, more generally, that no function with a period can be an
algebraical function of z.
[Let the equation which defines the algebraical function be
' PP+ Ry e+ Ry =0, O
where Iy, ... are rational functions of 2. This may be put in the form
Pyym4 Prym=14...+ P, =0,
where Py, Py, ... are polynomials in 2. Arguing as above, we see that
Dok Pyhm=-14,. 4+ P, =0
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for all values of z. Hence y=# satisfies the equation (1) for all values of z,
and one set of values of our algebraical function reduces to a constant.

Now divide (1) by  — % and repeat the argument. Our final conclusion is
that our algebraical function has, for any value of z, the same set of values
kS F, ...; t.e. it is composed of a certain number of constants.]

16. The inverse sine and inverse cosine are not rational or algebraical
functions. [This follows from the fact that, for any value of z between —1
and +1, arc sin# and arc cos # have infinitely many values.]

29. F. Other classes of transcendental functions. Next
in importance to the trigonometrical functions come the expo-
nential and logarithmic functions, which will be discussed in
Chs. IX and X. But these functions are beyond our range at
present. And most of the other classes of transcendental func-
tions whose " properties have been studied, such as the elliptic
functions, Bessel's and Legendre’s functions, Gamma-functions,
and so forth, lie altogether beyond the scope of this book.
There are however some elementary types of functions which,
though of much less importance theoretically than the rational,
algebraical, or trigonometrical functions, are particularly instrue-
tive as illustrations of the possible varieties of the functional
relation.

Examples XVI. 1. Let y=[x], where [«] denotes the greatest integer ||
not greater than z. The graph is shown in Fig. 15«. The left-hand end
points of the thick lines, but not the right-hand ones, belong to the graph.

2. y=z-[x] (Fig. 150b.)

VAL C)( 2 )

Y

Y e N
| 1 |

(52 01 .1 \

Fig. 15a. Fig. 150.
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3. y=Wz-[z]}. (Fig 15¢) 4. y=[z]+J{z-[2]}. (Fig li’)ol.)lk
¥ -1 -4 SIS ol

y=@-[2]% [2]+(v-[2]2 4 -1 (-44YL o (oi‘,zl‘ \

6. y=[Val, [2*, Ve-[Va], 2*-[), [1-27%). 3

(=2}

Bk
'y
RS

Fig. 15¢. Fig. 154d.

7. Let y be defined as the largest prime factor of x (cf Exs. X. 6). ’
Then y is defined only for integral values of z. If

r=1,2,3,4,56,78,9 10,11, 12, 13, ...,
then ¥=1,2,3,2,53723, 511, 313, ...
The graph consists of a number of isolated points.

8. Let y be the denominator of x (Exs. x. 7). In this case y is defined
only for rational values of z. We can mark off as many points on the graph
as we please, but the result is not in any ordinary sense of the word a curve,
and there are no points corresponding to any irrational values of .

Draw the straight line joining the points (¥ -1, N), (¥, &), where NV is a
positive integer. Show that the number of points of the locus which He on
this line is equal to the number of positive integers less than and prime to 4,

9. Let y=0 when & is an integer, y=2 when z is not an integer. The
graph is derived from the straight line y =2 by taking out the points
000 (_1; _1)) (O) 0)’ (1; 1)) (2) 2)7 e
and adding the points (-1, 0), (0, 0), (1, 0), ... on the axis of z.

The reader may possibly regard this as an unreasonable function. Why,
he may ask, if y is equal to « for all values of x save integral values, should it
not be equal to  for integral values too 2 The answer is simply, why should
##? The function y does in point of fact answer to the definition of a
function: there is a relation between # and y such that when z is known y is
known. We are perfectly at liberty to take this relation to be what we please,
however arbitrary and apparently futile. This function y is, of course, a quite
different function from that one which is always equal to z, whatever value,
integral or otherwise, + may have.
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10. Let y=1 when  is rational, but =0 when z isirrational. The graph
consists of two series of points arranged upon the lines y=1 and y=0. To
the eye it is not distinguishable from two continuous straight lines, but in
reality an infinite number of points are missing from each line,

11. Let y=# when z is irrational and y=/{(1+»%/(1+¢%} when = is a
rational fraction p/g.

Fig. 16.

The irrational values of # contribute to the graph a curve in reality dis-
continuous, but apparently not to be distinguished from the straight line y=2.

Now consider the rational values of 2. First let  be positive. Then
V{1 4+pD)/(14¢%)} cannot be equal to p/q unless p=g, z.e. x=1. Thus all
the points which correspond to rational values of x lie off the line, except
the one point (1, 1). Again, if p<g, VI1+p)/(1+¢)} >plg; if p>g,
V{1 +p3/(1+9¢%)} <plg. Thus the points lie above the line y=2 if 0 <z <1,
belowif 2>1. If p and ¢ are large, o/{(1+p?)/(1+¢?)} is nearly equal to p/q.
Near any value of # we can find any number of rational fractions with large
numerators and denominators. Hence the graph contains a large number of
points which crowd round the line y=2. Its general appearance (for positive
values of z) is that of a line surrounded by a swarm of isolated points which
gets denser and denser as the points approach the line.

The part of the graph which corresponds to negative values of x consists
of the rest of the discontinuous line together with the reflections of all these
isolated points in the axis of . Thus to the left of the axis of y the swarm
of points is not round y =2 but round y= —, which is not itself part of the
graph. See Fig. 16.
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30. Graphical solution of equations containing a single
unknown number. Many equations can be expressed in the

form
i) = P ht)usasnir S TRTE o e ),

where f (#) and ¢ (z) are functions whose graphs are easy to draw.
And if the curves

y=r@), y=¢(@)
intersect in a point P whose abscissa is £ then £ is a root of the
equation (1).
Fxamples XVII. 1. The quadratic equation asz?+2br+4c¢=0. This

may be solved graphically in a variety of ways. For instance we may draw

the graphs of
y=az+2h, y=—cz,

whose intersections, if any, give the roots. Or we may tako
y=a2 y=—(2bzx+c)la.
But the most elementary method is probably to draw the circle
a (22 +y%) + 20z +c=0,
whose centre is (~b/a, 0) and radius {J/(6%—ac)}/a. The abscissae of its
intersections with the axis of  are the roots of the equation.
2. Solve by any of these methods
22422 -3=0, 22—Tz+44=0, 3224+2r-2=0.
3. The equation a™+ax+b=0. This may be solved by constructing

the curves y=am, y=—ax=>b. Verify the following table for the number of

roots of
azm4-ax+b=0:

b positive, two or none,
b negative, two*

(@) m even {

a positive, one, g
a negative, three or one.

®) modd {

Construct numerical examples to illustrate all possible cases.

4. Show that the equation tanz=az+b has always an infinite number
of roots.

5. Determine the number of roots of

& ; o q
\\-\“. X sinz=2, sinz=3r, sinz=lr, sinz=ii=.

6. Show that if a is small and positive (e.g. a="01), the equation
z—a=3}mwsin’z
has three roots. Consider also the case in which a is small and negative.
Explain how the number of roots varies as a vax\‘ies. B

o \\“\'\i)’ QV.) VX‘).:

W o e g
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31. Functions of two variables and their graphical
representation. In § 20 we considered two variables connected
by a relation. We may similarly consider three variables (z, y,
and 2) connected by a relation such that when the values of z and
y are both given, the value or values of z are known. In this case
we call z a function of the two variables  and y; « and y the
independent variables, z the dependent variable; and we express
this dependence of z upon « and y by writing

z=f( y).
The remarks of § 20 may all be applied, mutatis mutandis, to this
more complicated case.

" The method of representing such functions of two variables
graphically is exactly the same in principle as in the case of
functions of a single variable. We must take three axes, 0.X, 0Y,
0Z in space of three dimensions, each axis being perpendicular
to the other two. The point (a, b, ¢) is the point whose distances
from the planes Y0Z, Z0X, X0Y, measured parallel to 0X, 0Y,
0Z, are a, b, and ¢. Regard must of course be paid to sign,
lengths measured in the directions OX, OY, OZ being regarded
as positive. The definitions of coordinates, axes, origin are the
same as before.

Now let z=f(z, y).

As z and y vary, the point (z, y, 2) will move in space. The
aggregate of all the positions it assumes is called the locus of the
point (z, y, 2) or the graph of the function 2z =f(z,y). When the
relation between 2, %, and z which defines 2z can 'be expressed in an
analytical formula, this formula is called the equation of the locus.
It is easy to show, for example, that the equation

Az+By+Cz+D=0
(the general equation of the first degree) represents a plane, and
that the equation of any plane is of this form. The equation
(o aP+(y - BF + (=) ="
or o+t + 22+ 2Fx+ 2Gy +2Hz + C=0,
where F2+ G2+ H*— C >0, represents a sphere; and so on. For

proofs of these propositions we must again refer to text-books of
Analytical Geometry.
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32. Curves in a plane. We have hitherto used the notation

to express functional dependence of y upon #. It is evident that
this notation is most appropriate in the case in which y is ex-
pressed explicitly in terms of # by means of a formula, as when
for example

y=a° sina, acos®x+ bsin*a.

We have however very often to deal with functional relations
which it is impossible or inconvenient to express in this form.
If, for example, ¥’—y—2=0 or &+ —ay=0, it is known
to be impossible to express y explicitly as an algebraical function
of w. If

2+ 12+ 26z +2Fy + C =0,
y can indeed be so expressed, viz. by the formula
y=—F+(F?*—a*~2Gz - O);
but the functional dependence of y upon @ is better and more
simply expressed by the original equation.
It will be observed that in these two cases the functional

relation is fully expressed by equating a function of the two
variables @ and y to zero, 1.e. by means of an equation

We shall adopt this equation as the standard method of
expressing the functional relation. It includes the equation (1)
as a special case, since y — f () 1 is a special form of a function of «
and y. We can then speak of the locus of the point (=, y) subject
to (@, y) =0, the graph of the function y defined by f(»,y)=0,
the curve or locus f(z, y) =0, and the equation of this curve or
locus.

There is another method of representing curves which is often
useful. Suppose that # and y are both functions of a third
variable ¢, which is to be regarded as essentially auxiliary and
devoid of any particular geometrical significance. We may write

B=F(), Y=F() correrrererrrrerrenns (3).

If a particular value is assigned to ¢, the corresponding values of
x and of y are known. Each pair of such values defines a point
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(#, y). If we construct all the points which correspond in this
way to different values of ¢, we obtain the graph of the locus
defined by the equations (3). Suppose for example

z=qcost, y=asint
Let ¢ vary from O to 2. Then it is easy to see that the point
(#, y) describes the circle whose centre is the origin and whose
radius is a. If ¢ varies beyond these limits, (z, y) describes the
circle over and over again. We can in this case at once obtain
a direct relation between x# and y by squaring and adding: we
find that 2?4+ 3 = ¢?, ¢ being now eliminated.

Examples XVIII. 1. The points of intersection of the two curves whose
equations are f(z, ¥)=0, ¢ (#, ¥)=0, where f and ¢ are polynomials, can be
determined if these equations can be solved as a pair of simultaneous equations
in # and y. The solution generally consists of a finite number of pairs of

values of # and y. The two equations therefore generally represent a finite
number of isolated points.

2. Trace the curves (z+y)?=1, zy=1, 22— y2=1.
3. The curve f(z, y)+A\¢(z, y)=0 represents a curve passing through
the points of intersection of f=0 and ¢=0.
4. 'What loci are represented by
(a) z=at+d, y=ct+d, (B) =z/a=2t/1+8), yla=1—12)/(1+),
when ¢ varies through all real values ?

33. Loci in space. In space of three dimensions there are
two fundamentally different kinds of loci, of which the simplest
examples are the plane and the straight line.

A particle which moves along a straight line has only one(
degree of freedom. Its direction of motion is fixed; its position
can be completely fixed by one measurement of position, e.g. by
its distance from a fixed point on the line. If we take the line as
our fundamental line A of Chap. I, the position of any of its points
is determined by a single coordinate @ A particle which moves
in a plane, on the other hand, has two degrees of freedom; its \ ™
position can only be fixed by the determination of two coordinates.

A locus represented by a single equation
z=f(zy)

plainly belongs to the second of these two classes of loci, and ‘is
called a surface. It may or may not (in the obvious simple cases
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it will) satisfy our common-sense notion of what a surface
should be.

The considerations of § 81 may evidently be generalised so
as to give definitions of a function f (=, y, 2) of three variables (or
of functions of any number of variables). And as in § 32 we
agreed to adopt f(#, y¥) =0 as the standard form of the equation
of a plane curve, so now we shall agree to adopt

f(‘”sy» 2)=0

as the standard form of equation of a surface.

The locus represented by two equations of the form z =f(z,y)
or f(z, v, 2)=0 belongs to the first class of loci, and is called
a curve. Thus a straight line may be represented by two equations
of the type Az+By+Cz+D=0. A circle in space may be
regarded as the intersection of a sphere and a plane; it may
therefore be represented by two equations of the forms

(@—ap+(y—RBr+(z—9)=p, Az+By+Cz+D=0.

Examples XIX. 1. What is represented by t/ree equations of the type
Sfl@, y,2)=0%

2. Three linear equations in general represent a single point. What are
the exceptional cases ?

3. What are the equations of a plane curve f(z, )=0 in the plane X0Y,
when regarded as a curve in space? [f(z, ¥)=0, 2=0.]

4. Cylinders. What is the meaning of a single equation f(#, y)=0,
considered as a locus in space of three dimensions ?

[All points on the surface satisfy f (z, y)=0, whatever be the value of z. The
curve f(z, ¥)=0, =0 is the curve in which the locus cuts the plane X0Y.
The locus is the surface formed by drawing lines parallel to 0Z through all
points of this curve. Such a surface is called a cylinder.]

5 Graphical representation of a surface on a plane. Contour Maps.
It might seem to be impossible to represent a surface adequately by a
drawing on a plane; and so indeed it is: but a very fair notion of the
nature of the surface may often be obtained as follows. Let the equation of
the surface be z=f(x, ¥).

If we give z a particular value ¢, we have an equation f(#, y)=a, which
we may regard as determining a plane curve on the paper. We trace this
curve and mark it (). Actually the curve (@) is the projection on the plane
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XOY of the section of the surface by the plane z=a. We do this for all
values of o (practically, of course, for a selection of values of @). We obtain
some such figure as is shown in Fig. 17. It will at once suggest a contoured
Ordnance Survey map: and in fact this is the principle on which such maps
are constructed. The contour line 1000 is the projection, on the plane of the
sea level, of the section of the surface of the land by the plane parallel to the
plane of the sea level and 1000 ft. above it*.

\//1/066—_—/

Fig. 17.

6. Draw a series of contour lines to illustrate the form -of the surface
2z=23xy.

7. Right circular cones. Take the origin of coordinates at the
vertex of the cone and the axis of 2z along the axis of the cone; and let a be

the semi-vertical angle of the cone. The equation of the cone (which must , =

be regarded as extending both ways from its vertex) is #2432 —22tan? a=0.

8. Surfaces of revolution in general. The cone of Ex. 7 cuts Z0X in
two lines whose equations may be combined in the equation z%=z%tan?a.
That is to say, the equation of the surface generated by the revolution of
the curve y=0, #2=22tan? a round the axis of z is derived from the second of
these equations by changing 22 into #2+y2 Show generally that the equation
of the surface generated by the revolution of the curve y=0, x=f(z), round
the axis of z, is

@) =1 ()

9. Cones in general. A surface formed by straight lines passing
through a fixed point is called a cone: the point is called the wvertes. A
particular case is given by the right circular cone of Ex. 7. Show that the
equation of a cone whose vertex is O is of the form f(z/, z/y)=0, and that any
equation of this form represents a cone. ([If (z, 7, ) lies on the cone, so must
(Az, Ay, A2), for any value of A.] 5

* We assume that the effects of the earth’s curvature may be neglected.
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10. Ruled surfaces. OCylinders and cones are special cases of surfaces
composed of straight lines. Such surfaces are called ruled surfaces.

The two equations
L= azzt O N =0z R A A e 1)

represent the intersection of two planes, <.e. a straight line. Now suppose
that a, b, ¢, d instead of being fixed are functions of an auxiliary variable t.
For any particular value of ¢ the equations (1) give a line. As ¢ varies,
this line moves and generates a surface, whose equation may be found by
eliminating ¢ between the two equations (1). For instance, in Ex. 7 the
equations of the line which generates the cone are

x=ztanacos?, y=ztanasing,

where ¢ is the angle between the plane X0Z and a plane through the line and
the axis of 2.

Another simple example of a ruled surface may be constructed as follows.
Take two sections of a right circular cylinder perpendicular to the axis and
at a distance 7 apart (Fig. 18). We can imagine the surface of the cylinder
to be made up of a number of thin parallel rigid rods of length ¢, such as 1@,
the ends of the rods being fastened to two circular rods of radius a.

Now let us take a third circular rod of the same radius and place it
round the surface of the cylinder at a distance 4 from one of the first two
rods (see Fig. 18 a, where Pg=/). Unfasten the end @ of the rod @ and
turn PQ about P until @ can be fastened to the third circular rod in the
position @. The angle 0@ =a in the figure is evidently given by

2 —h2=q@%=(2a sin }a)%
Let all the other rods of which the cylinder was composed be treated in the
same way. We obtain a ruled surface whose form is indicated in Fig. 18 5.

It is entirely built up of straight lines; but the surface is curved everywhere,
and is in general shape not unlike certain forms of table-napkin rings (Fig. 18¢).

HH (I

Fig. 18D. Fig. 18¢.
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MISCELLANEOUS EXAMPLES ON CHAPTER IL

1. Show that if y=F (#)=(ax+b)/(cz — a) then x=F(y).

2, If f(x)=f(—x) for all values of =, f(») is called an even function.
If f{z)= —f(— ), it is called an odd function. Show that any function of ,
defined for all values of z, is the sum of an even and an odd function of x.

[Use the identity f (#)=4 {f (@) +f (- 2)} +3 {f (#) —f (=2)}.]
3. Draw the graphs of the functions

3sinz+4cosw, sin (% sin z‘> . (Math. Trip. 1896.)
4. Draw the graphs of the functions

. . sin & . sin 2\2
sin (@ cos? x4 b sin? z), T(a cos? z+bsin?z), <_—_x ) .

5. Draw the graphs of the functions « [1/x], =]/
6. Draw the graphs of the functions

(i) arccos(242—1)—2arc cos z,

x

o a .
(ii) arctan —arctan g —arctan z,
1-ax

where the symbols arccosa, arc tana denote, for any value of a, the least

positive (or zero) angle, whose cosine or tangent is a.

7. Verify the following method of constructing the graph of f{¢ (#)} by
means of the line y =« and the graphs of f(z) and ¢ (2): take 04 = along
0X, draw 4B parallel to OY ‘to meet y=¢ (x) in B, BC parallel to 0X to
meet y=x in C, CD parallel to OF to meet y=F () in D, and DP parallel to
0X to meet AB in P; then P is a point on the graph required. '

8. Show that the roots of #3+px+¢=0 are the abscissae of the points of

intersection (other than the origin) of the parabola y=2? and the circle
@4y +(p-1)y+gr=0.

9. The roots of #*+na®+pa?+ gz +r=0 are the abscissae of the points of

intersection of the parabola #2=y—4nx and the circle
2424+t —pretintg) 2+ (p—1-1n?) y+r=0.
10. Discuss the graphical solution of the equation
"+ ar?+br+c=0

by means of the curves y=a™, y=—aa?—~bs~c. Draw up a table of the

various possible numbers of roots.

11. Solve the equation sec 6 +cosec §=2 4/2; and show that the equation
sec @4 cosec =c has two roots between 0 and 2 if ¢2<8 and four if ¢?>8.

H. 9]
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12. Show that the equation
22=(2n+1) w (1 cos &),
where # is a positive integer, has 2n+3 roots and no more, indicating
their localities roughly. (Math. Trip. 1896.)
13, Show that the equation %fxsina=1 has four roots between — =
and 7.
14. Discuss the number and values of the roots of the equations
(1) cotz+x-§nr=0, (2) 2?+sin?z=1, (8) tanz=2x/(1+2?),
(4) sinz-x+}2°=0, (5) (1-cosx)tana—2+4sinz=0.

15. The polynomial of the second degree which assumes, when z=aq, b, ¢
the values q, 8, y is

pfE=E=0), g(e-0)(z-a) (s—a)(z-b)
@=b)(@a=0)" " G=c)(b—a) " Y (c=a)(c-b)’
Give a similar formula for the polynomial of the (n—1)th degree which
assumes, when £=ay, ag, ... ay, the values ay, ay, ... a,.

+

16. Find a polynomial in # of the second degree which for the values
0, 1, 2 of x takes the values 1/¢, 1/(c+1), 1/(¢c+2); and show that when
x=c+2 its value is 1/(c+1). . (Math. Trip. 1911.)

17. Show that if « is a rational function of g, and y is a rational function
of z, then dxy+ Bx+Cy+ D=0.

18. Ify is an algebraical function of z, then « is an algebraical function
of .

19. Verify that the equation

cosfma=1-

22
x4+ (x-1) \/(?:3_‘?)

is approximately true for all values of # between 0 and 1. [Take =0, 1, 1,
%, %, §, 1, and use tables. For which of these values is the formula exact ?]

20. What is the form of the graph of the functions,
e=[2]+ly) z=2+y-[2]-[4]"

21. What is the form of the graph of the functions z=sinz+siny,
z=ginxsiny, z=sinzy, z=sin (22+y%)?

22. Geometrical constructions for irrational numbers. In Chapter I
we indicated one or two simple geometrical constructions for a length equal to
A2, starting from a given unit length. We also showed how to construct
the roots of any quadratic equation ax*+ 2bz+c=0, it being supposed that
we can construct lines whose lengths are equal to any of the ratios of the
coefficients ¢, b, ¢, as is certainly the case if @, b, ¢ are rational. All these con-
structions were what may be called Euclidean constructions ; they depended
on the ruler and compasses only.
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It is fairly obvious that we can construct by these methods the length
measured by any irrational number which is defined by any combination of
square roots, however complicated. Thus

4 17+34/11 17-3J11
\/{\/(l7—3¢11)" x/(w +3J11)}
is a case in point. This expression contains a fourth root, but this is of
course the square root of a square root. We should begin by constructing
J11, e.g. as the mean between 1 and 11: then 1743411 and 17 -3./11, and
soon. Or these two mixed surds might be constructed directly as the roots of
- 342+190=0.

Conversely, only irrationals of this kind can be constructed by Euclidean
methods. Starting from a unit length we can construct any rational length.
And hence we can construct the line 42+ By + C=0, provided that the ratios
of 4, B, C are rational, and the circle

(z—a)*+(y-B)=p?
(or 2?2432+ 292 +2fy+c¢=0), provided that a, B, p are rational, a condition
which implies that g, £, ¢ are rational.

Now in any Euclidean construction each new point introduced into the
figure is determined as the intersection of two lines or circles, or a line and
a circle. But if the coefficients are rational, such a pair of equations as

Az 4 Dy+0=0, 2*+32+292+2fy+c=0

give, on solution, values of # and y of the form m+n\/p, where m, n, p are
rational: for if we substitute for # in terms of y in the second equation we
obtain a quadratic in ¥ with rational coeflicients. Hence the coordinates of
all points obtained by means of lines and circles with rational coefficients
are expressible by rational numbers and quadratic surds. And so the same
is true of the distance / {(z— x2)2+(/1— Y2)%} between any two points so
obtained.

With the irrational distances thus constructed we may proceed to construct
a number of lines and circles whose coefficients may now themselves involve
quadratic surds. It is evident, however, that all the lengths which we can
construct by the use of such lines and circles are still expressible by square
roots only, though our surd expressions may now be of a more complicated
form. And this remains true however often our constructions are repeated.
Hence Euclidean methods will construct any surd expression involving square
roots only, and no others.

One of the famous problems of antiquity was that of the duplication of
the cube, that is to say of the construction by Euclidean methods of a
length measured by &/2. It can be shown that /2 cannot be expressed by
means of any finite combination of rational numbers and square roots, and so
that the problem is an impossible one. See Hobson, Squaring the Circle,
Pp. 47 et seq.; the first stage of the proof, viz. the proof that y/2 cannot be a
root of a quadratic equation ax?+2bz+c¢=0 with rational coefficients, was
given in Ch. I (Mise. Exs. 24). )
"3y 52
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23. Approximate quadrature of the circle. Let O be the centre of
a circle of radius £ On the tangent at 4 take AP=22R and AQ=13R,
in the same direction. On A0 take AN=0P and draw NX parallel to
0@ and cutting 4P in M. Show that

AM|R=13 \146,

and that to take A} as being equal to the circumference of the circle would
lead to a value of & correct to five places of decimals. If R is the earth’s
radius, the error in supposing 4 M to be its circumference is less than 11 yards.

24. Show that the only lengths which can be constructed with the ruler
only, starting from a given unit length, are rational lengths.

25. Constructions for ¥/2. O is the vertex and S the focus of the
parabola y?=4z, and P is one of its points of intersection with the parabola
22=2y. Show that OP meets the latus rectum of the first parabola in a point
@ such that SQ=2.

26, Take a circle of unit diameter, a diameter O4 and the tangent at 4.
Draw a chord 0BC cutting the circle at B and the tangent at ¢, On this
line take O =BC, Taking O as origin and 04 as axis of z, show that the
locus of M is the curve

(@47 5=g?=0
(the Cissoid of Diocles). Sketch the curve. Take along the axis of y a length
0D=2. Let AD cut the curve in P and OP cut the tangent to the circle
at 4 in @. Show that 4¢=2¥2,



CHAPTER III
COMPLEX NUMBERS

34, Displacements along a line and in a plane. The
‘real number’ «, with which we have been concerned in the two
preceding chapters, may be regarded from many different points
of view. It may be regarded as a pure number, destitute of
geometrical significance, or a geometrical significance may be
attached to it in at least three different ways. It may be re-
garded as the measure of a length, viz. the length 4,P along the
line A of Chap. I. It may be regarded as the mark of a point,
viz. the point P whose distance from 4, is #. Or it may be
regarded as the measure of a displacement or change of position
on the line A. It is on this last point of view that we shall now
concentrate our attention.

Imagine a small particle placed at P on the line A and then
displaced to . We shall call the displacement or change of
position which is needed to transfer the particle from P to @ the

displacement PQ. To specify a displacement completely three
things are needed, its magnitude, its sense forwards or backwards
along the line, and what may be called its point of application,
i.e. the original position P of the particle. But, when we are
thinking merely of the change of position produced by the dis-
placement, it is natural to disregard the point of application and
to consider all displacements as equivalent whose lengths and
senses are the same. Then the displacement is completely speci-
fied by the length PQ =«, the sense of the displacement being
fixed by the sign of . We may therefore, without ambiguity,

speak of the displacement [«]*, and we may write PQ=[z]

* 1t is hardly necessary to caution the reader against confusing this use of the
symbol [«] and that of Chap. II (Exs. xv1. and Misc. Exs.). g
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We use the square bracket to distinguish the displacement []
from the length or number #*. If the coordinate of P is a, that
of @ will be a +; the displacement [«] therefore transfers a
particle from the point & to the point a+a.

We come now to consider displacements in @ plane. We may
define the displacement PQ as before. But now more data are
required in order to specify it completely. We require to know:
(1) the magnitude of the displacement, w.e. the length of the
straight line PQ; (ii) the direction of the displacement, which is
determined by the angle which PQ makes with some fixed line in
the plane; (iii) the sense of the displacement; and (iv) its point
of application. Of these r