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PREFACE

The favorable reception of the First Edition of this volume

appears to have sustained the authors' belief in the need of a

book on mathematics beyond the calculus, written from the

point of view of the student of applied science. The chief

purpose of the book is to help to bridge the gap which separates

many engineers from mathematics by giving them a bird's-eye

view of those mathematical topics which are indispensable in

the study of the physical sciences.

It has been a common complaint of engineers and physicists

that Ae usual courses in advanced calculus and differential

equations place insufficient emphasis on the art of formulating

physical problems in mathematical terms. There may also be a

measure of truth in the criticism that many students with pro-

nounced utilitarian leanings are obliged to depend on books

that are more distinguished for rigor than for robust uses of

mathematics.

This book is an outgrowth of a course of lectures offered by
one of the authors to students having a working knowledge of the

elementary calculus. The keynote of the course is the practical

utility of mathematics, and considerable effort has been made to

select those topics which arc of most frequent and immediate use

in applied sciences and which can be given in a course of one

hundred lectures. The illustrative material has been chosen for

its value in emphasizing the underlying principles rather than

for its direct application to specific problems that may confront

a practicing engineer.

In preparing the revision the authors have been greatly aided

by the reactions and suggestions of the users of this book in both

academic and engineering circles. A considerable portion
of the material contained in the First Edition has been rear-

ranged and supplemented by further illustrative examples, proofs,

and problems. The number of problems has been more than

doubled. It was decided to omit the discussion of improper

integrals and to absorb the chapter on Elliptic Integrals into
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much enlarged chapters on Infinite Series and Differential

Equations. A new chapter on Complex Variable incorporates
some of the material that was formerly contained in the chapter
on Conformal Representation. The original plan of making
each chapter as nearly as possible an independent unit, in order

to provide some flexibility and to enhance the availability of the

book for reference purposes, has been retained.

I. S. S.

E. S. S.

MADISON, WISCONSIN,

September, 1941.
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HIGHER MATHEMATICS
FOR ENGINEERS AND

PHYSICISTS

CHAPTER I

INFINITE SERIES

It is difficult to conceive of a single mathematical topic that

occupies a more prominent place in applied mathematics than

the subject of infinite series. Students of applied sciences meet

infinite series in most of the formulas they use, and it is quite

essential' that they acquire an intelligent understanding of the

concepts underlying the subject.

The first section of this chapter is intended to bring into

sharper focus some of the basic (and hence more difficult) notions

with which the reader became acquainted in the first course in

calculus. It is followed by ten sections that are devoted to a

treatment of the algebra and calculus of series and that represent

the minimum theoretical background necessary for an intelligent

use of series. Some of the practical uses of infinite series are

indicated briefly in the remainder of the chapter and more fully

in Chaps. II, VII, and VIII.

1. Fundamental Concepts. Familiarity with the concepts
discussed in thig section is essential to an understanding of the

contents of this chapter.

FUNCTION. The variable y is said to be a function of the variable

x if to every value of x under consideration there corresponds at least

one value of y.

If x is the variable to which values are assigned at will, then

it is called the independent variable. If the values of the variable

y are determined by the assignment of values to the independent
1
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variable x, then y is called the dependent variable. The functional

dependence of y upon x is usually denoted by the equation*

V =
/(*)

Unless a statement to the contrary is made, it will be supposed
in this book that the variable x is permitted to assume real

values only and that the corresponding values of y are also real.

In this event the function f(x) is called a real function of the real

variable x. It will be observed that

(1-1) y =

does not represent a real function of x for all real values of x, for

the values of y become imaginary if x is negative. In order that

the symbol f(x) define a real function of x, it may be necessary to

restrict the range of values that x may assume. Thus, (1-1)

defines a real function of x only if x ^ 0. On the other hand,

y \/x 2 1 defines a real function of x only if \x
> I.

SEQUENCES AND LIMITS. Let some process of construction

yield a succession of values

Xij 2*2, #3, ,
XH) ,

where it is assumed that every x t is followed by other terms.

Such a succession of terms is called an infinite sequence. Exam-

ples of sequences are

(a) 1, 2, 3, , n, ,

,,,1 11 1 / iw i
!

(6)
2'

-
4

1

8'

~
16'

' ' ' '<-*> V
(c) 0,2,0, 2, -, ! + (-!)", .

Sequences will be considered here only in connection with the

theorems on infinite series, t and for this purpose it is necessary

to have a definition of the limit of a sequence.

DEFINITION. The sequence x\ y x%, ,
xn ,

is said to

converge to the constant L as a limit if for any preassigned positive

number
,
however small, one can find a positive integer p such that

\xn I/I < e for all n > p.

* Other letters are often used. In particular, if more than one function

enters into the discussion, the functions may be denoted by /i(x), ft(x), etc.;

by/(aO, g(x), etc.; by F(x) t G(x), etc.

t For a somewhat more extensive treatment, see I. S, okolnikoff
?

Advanced Calculus, pp. 3-21 f
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which is convergent to the value 2. In order to establish this

fact, note that

is a geometric progression of ratio J^, so that

J_

on 7~ ^ TvHTZTi"*

Heftce, the absolute value of the difference between 2 and sn

is l/2
n~ 1

,
which can bo made arbitrarily small by choosing n

sufficiently large.

On the other hand, if x 1, the series (1-4) becomes

which does not converge; for s 2n = and S2n~i = 1 for any choice

of n and, therefore, lim sn does not exist. Moreover, if x =
2,

n oo

the series (1-4) becomes

1 + 2 + 4 + + 2- 1 + ,

so that sn increases indefinitely with n and lim sn does not exist.
n oo

If an infinite, series does not converge for a certain value of x,

it is said to diverge or be divergent for that value of x. It will

be shown later that the series (1-4) is convergent for I < x < 1

and divergent for all other values of x.

The definition of the limit, as given above, assumes that the

value of the limit $ is known. Frequently it is possible to infer

the existence of S without actually knowing its value. The

following example will serve to illustrate this point.

Example. Consider the series

and compare the sum of its first n terms

_!,!,!, , JL
Sn - l +

2!
+

3!
+ ' ' ' +

n!

with the sum of the geometrical progression
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S. = 1 + \ + + +~

The corresponding terms of Sn are never less than those of $; but, no

matter how large n be taken, Sn is less than 2. Consequently, s < 2;

and since the successive values of sn form an increasing sequence of

numbers, the sum of the first series must be greater than 1 and less than

or equal to 2. A geometrical interpretation of this statement may help

to fix the idea. If the successive values of s,

Si = 1,

2 = 1 +
21

=
1.5,

ss - 1 +
5j

4- ^ = 1.667,

*4=*l +
||
+ ^ +

jj
= 1.708,

s* = 1 + I +
|j
+

jj
+ ^ = 1.717,

are plotted as points on a straight line (Fig. 1), the points representing

the sequence Si, $2,
*

,
sn ,

-

always move to the right but never

,, 1 15 1667 2

*
-

FIG. 1.

progress as far as the point 2. It is intuitively clear that there must be

some point s, either lying to the left of 2 or else coinciding with it, which

the numbers sn approach as a limit. In this case the numerical value

of the limit has not been ascertained, but its existence was established

with the aid of what is known as the fundamental principle.

Stated in precise form the principle reads as follows: // an infinite

set of numbers si, 2,
* *

,
sn , forms an increasing sequence (that is,

SN > Sn, when N > n) and is such that every sn is less than some fixed

number M (that is, sn < M for all values of n\ then sn approaches a limit

s that is not greater than M (that is, lim sn = s < M). The formulation
n oo

of the principle for a decreasing sequence of numbers i, s2 ,

*

,

sn , ,
which are always greater than a certain fixed number w, will

be left to the reader.

2. Series of Constants. The definition of the convergence of

a series of functions evidently depends on a study of the behavior
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of series of constants. The reader has had some acquaintance
with such series in his earlier study of mathematics, but it seems

desirable to provide a summary of some essential theorems that

will be needed later in this chapter. The following important
theorem gives the necessary and sufficient condition for the

convergence of an infinite series of constants:
00

THEOREM. The infinite series of constants un converges if
n = l

and only if there exists a positive integer n such that for all positive

integral values of p

\Sn+p Sn
\

SS \Un+l + Un+2 + ' ' ' + Un+f>\
<

,

where e is any preassigned positive constant.

The necessity of the condition can be proved immediately by recalling

the definition of convergence. Thus, assume that the series converges,

and let its sum be S
y
so that

lim sn = S
n > oo

and also, for any fixed value of p,

lim sn i P
= S.

n > oo

Hence,

lim (sn+p sn) = lim (un+} + un +z + + un+p) = 0,
n * n * *

which is another way of saying that

for a sufficiently large value of n.

The proof of the sufficiency of the condition requires a fair degree
of mathematical maturity and will not be given here.*

This theorem is of great theoretical importance in a variety of

investigations, but it is seldom used in any practical problem

requiring the testing of a given series. A number of tests for

convergence, applicable to special types of series, will be given in

the following sections.

It may be remarked that a sufficient condition that a series

diverge is that the terms un do not approach zero as a limit when
n increases indefinitely. Thus the necessary condition for con-

vergence of a series is that lim un = 0, but this condition is not
n * o

* See SOKOLNIKOFF, I. S., Advanced Calculus, pp. 11-13.
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sufficient; that is, there are series for which lim un = but which
n>

are not convergent. A classical example illustrating this case

is the harmonic series

in which Sn increases without limit as n increases.

Despite the fact that a proof of the divergence of the harmonic

series is given in every good course in elementary calculus, it will

be recalled here because of its importance in subsequent con-

siderations. Since

_1_ + _J_ + . .

! ^ ! !

i "i I l r> l 1

n + n
" "

2n 2'

it is possible, beginning with any term of the series, to add a

definite number of terms and obtain a sum greater than V.

If n =
2,

3
+

4
>

2 ;

n ='
4,

n =
8,

1,
, J_ ,

, J_ 1.

9
"*"

10
+ ' ' ' +

16
>

2 ;

n =
16,

_1_J_ .^1
17
+

18
+ ' ' ' +

32
>

2

Thus it is possible to group the terms of the harmonic series

in such a way that the sum of the terms in each parenthesis

exceeds
,; and, since the series

1 +2
: +

!
+

2
:+ '

is obviously divergent, the harmonic series is divergent also.
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3. Series of Positive Terms. This section is concerned with

series of the type

an = a! + az + ' ' ' an
*

,

1

where the an are positive constants. It is evident from the

definition of convergence and from the fundamental principle

(see Sec. 1) that the convergence of a series of positive constants

will be established if it is possible to demonstrate that the partial

sums sn remain bounded. This means that there exists some

positive number M such that sn < M for all values of n.

The proof of the following important test is based on such a

demonstration.
oo

COMPARISON TEST. Let 2 an be a series of positive terms,
n = l

00

and let 2 bn be a series of positive terms that is known to converge.
n = l

00

Then the series 2 an is convergent if there exists an integer p such
n = l

00

that, for n >
p, an ^ bn . On the other hand, if 2 cn is a series of

n-l

positive terms that is known to be divergent and if an ^ cn for
oo

n >
p, then 2 #n is divergent also.

n = l

Since the convergence or , divergence of a series evidently is not

affected by the addition or subtraction of a finite number of terms, the

proof will be given on the assumption that p = 1. Let sn = i + a 2

00

+ - + a n ,
and let B denote the sum of the series 2 bn and Bn its

n = l

nth partial sum. Then, since a ^ bn for all values of n, it follows that

sn ^ Bn for all values of n. Hence, the sn remain bounded, and the
oo

series 2 dn is convergent. On the other hand, if an ^ cn for all values of
n=l

00 00

n and if the series 2 cn diverges, then the series 2 a n will diverge also.
n=l n=l

There are two series that are frequently used as series for

comparison.
a. The geometric series

(3-1) a + ar + ar2 + + ar + ,
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which the reader will recall* is convergent to . _ if \r\ < 1

and is divergent if \r\
> 1.

6. The p series

(3-2) l+g++ ++,
which converges if p > 1 and diverges if p < 1.

Consider first the case when p > 1, and write (3-2) in the form

(3-3)

4-T
(2

n _

where the nth term of (3-3) contains 2n
~ 1 terms of the series

(3-2). Each term, after the first, of (3-3) is less than the corre-

sponding term of the series

1 J_ O . Jl__L A . _____L . . . 4_ On 11 ^ ^ ^ ^ ^
2?
^

4p (2
n~ 1

)p
'

or

(3-4) 1 +
Tj^Zi

+
/2P-1)2

+ ' ' ' +
/2p-l)n-l

+ ' ' '
*

Since the geometric series (3-4) has a ratio l/2p~ l

(which is less

than unity for p > 1), it is convergent and, by the comparison

test, (3-2) will converge also.

If p =
1, (3-2) becomes the harmonic series which has been

shown to be divergent.

If p < 1, l/np > l/n for n > 1, so that each term of (3-2),

after the first, is greater than the corresponding term of the

harmonic series; hence, the series (3-2) is divergent also.

Example 1. Test the series

1 + I + I+ ... +!+-..A T
22
T

33
T -r

nn
-r

The geometric series

1,1,1, _ 1 .

1 +
22 + 2 3 + * ' ' +

2*
+ ' " '

* Since the sum of the geometric progression of n terms a -f or -f or2

i i -i , . a arn a X1 N
4- H- arn r is equal to

^_
=

__ (1 rn).
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is known to be convergent, and the terms of the geometric series are

never less than the corresponding terms of the given series. Hence, the

given series is convergent.

Example 2. Test the series

iog~2 loi~3 log!
'

k^
Compare the terms of this series with the terms of the p series for

given series is divergent, for its terms (after the first) are greater

than the corresponding terms of the p series, which diverges when

p = 1.

00

RATIO TEST. The series 2 n of positive terms is convergent if

,. U'n-f-l ^ +

lim = r < 1
n * an

and divergent if

lim ^^ > 1.

n QO dn

// lim -^ =
1, the series may converge or diverge.

Consider first the case when r < 1, and let q denote some constant

between r and 1. Then there will be some positive integer N such that

< q for all n N.

Hence.

aNq,

and

Since q < 1, the series in the right-hand member is convergent'; there-

fore, the series in the left-hand member converges, also. It follows that
00

the series S ctn is convergent*.
n-l-

If the limit of the ratio is greater than 1, then an+i > an for every
00

n ^ N so that lim an j& 0, and hence the series S an is divergent.
n o n = 1
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It is important to observe that this theorem makes no reference

to the magnitude of the ratio of an+\/an but deals solely with tLr

limit of the ratio. Thus, in the case of the harmonic series the

ratio is an+\/an = n/(n + 1), which remains less than 1 for all

finite values of n, but the limit of the ratio is precisely equal
to 1. Hence the test gives no information in this case.

Example 1. For the series

and, therefore, the series converges.

Example 2. The series

1+1L + 1L+ . . . +"j*L+ .

10 10 2 103 10"

is divergent, for t.

r an+i ,. (n + l)!10 rt
, n

lim -^i- = lim v

,

' '--
r- = lim--

,
--

r- ~r
an n-^oo 10n+1 n! n-K 10

Example 3. Test the series

Here

r fln+1"

Hence, the test fails; but if the given series be .compared with the

p series for p =
2, it is seen to be convergent* J*-

oo
*

CAUCHY'S INTEGRAL TEST. Let 2 an be a series of positive
n = l

terms such that an+i < an . If there exists a positive decreasing

function f(x), for x >
1, such that f(n) = an ,

then the given series

converges if the integral

exists; the series diverges if the integral does not exist.
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The proof of this test is deduced easily from the following

graphical considerations. Each term an of the series may be

thought of as representing the area of a rectangle of base unity

and height /(n) (see Fig. 2). The sum of the areas of the first

n inscribed rectangles is less than f"
+1

f(x) dx, so that

f(x) dx.

But f(x) is positive, and hence

l

f(x) dx f(x) dx.

If the integral on the right exists, it follows that the partial sums

are bounded and, therefore, the series converges (see Sec. 1).

TvC

The sum of the areas of the circumscribed rectangles, a\ + a 2

+ + an ,
is greater than f

"+1
f(x) dx] hence, the series will

diverge if the integral does not exist.

Example 1. Test the harmonic series

In this case, f(x)
- and
x

f 1 Cn dx
I - dx = lim I = lim log n
Jl X n- oo Jl X n-> oo

and the series is divergent.
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00

i

Example 2. Apply Cauchy's test to the p series ]5
- where p > 0.^^ p

Taking f(x)
= i observe that

-p
l xf l_p- ,.

"p* 1
-

= log a;|?,
if p = 1.

/
^XJ.

exists if p > 1 and does not exist if p < 1.
or*

PROBLEMS
1. Test for convergence

l __
2 2 2 2 3 2 3 4 24

-

/ ^ i i
2!

,
3!

,

(c) 1 +
2i
+

35
+

1 ,2,3,
^ + v +

2"3
+ ;

21^2 3l^g~3 4Togl
"

2. Use Cauchy's integral test to investigate the convergence of

' --
v 1'/' A ~

i _j_ 22
~

2 + 3 2

00

3. Show that the series 2 an of positive terms is divergent if nan

has a limit L which is different from 0. Hint: Let lim nan = L so that

nan > L c for n large enough. Hence, an >

n oo

-
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4. Test for convergence

1

(2n + I)
2 '

n

4. Alternating Series. A series whose terms are alternately

positive and negative is called an alternating series. There is a

simple test, due to Leibnitz, that establishes the convergence of

many of these series.

TEST FOR AN ALTERNATING SERIES. // the alternating series

a\ c&2 + a a* + * *

,
where the a t are positive, is such

that an+i < an and lim an = 0, then the series is convergent.
n > oo

Moreover, if S is the sum of the series, the numerical value of the

difference between S and the nth partial sum is less than an+i.
Since

S2n = (ai
- a2) + (as flu) + + (2n-i - a2n)

= ai (a2 a3) (a2n-2 a2n-i) 2n,

it is evident that $2n is positive and also that $2n < #1 for all

values of n. Also, $2 < $4 < *e < * *

,
so that these partial
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sums tend to a limit S (by the fundamental principle). Since

2n+i
= 2n + 2n+i and lim a2n+i

=
0, it follows that the partial

n oo

sums of odd order tend to this same limit. Therefore, the series

converges. The proof of the second statement of the test will

be left as an exercise for the reader.

Example 1. The series

is convergent since lim - = and - < - Moreover. 54
n-> * n n + 1 n

% + H y differs from the sum S by less than y*>.

Example 2. The series

--..-.-...
2

"*"
3 1 4

"*"
3 2 6

"*"
3 3

is divergent. Why?

6. Series of Positive and Negative Terms. The alternating

series and the series of positive constants are special types of the

general series of constants in which the terms can be either posi-

tive or negative.

DEFINITION. // u\ + u<t + + un + is an infinite

series of terms such that the series of the absolute values of its terms,

\Ui\ + \u%\ + ' + \un \
+ ,

is convergent, then the series

Ui -f- u<i + + un + is said to be absolutely convergent.

If the series of absolute values is not convergent, but the given series

is convergent, then the given series is said to be conditionally

convergent.

Thus,

l-i + i_! + i ____
2+3 4+5

is convergent, but the series of absolute values,

is not, so that the original series is conditionally convergent.

If a series is absolutely convergent, it can be shown that the

series formed by changing the signs of any of the terms is also a

convergent series. This is an immediate result of the following

theorem:
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THEOREM. // the series of absolute values 2 \un \
is convergent,

00

then the series 2 un is necessarily convergent.

Let

and

If pn denotes the sum of the positive terms occurring in sn and qn

denotes the sum of the negative terms, then

(5-1) S n
= Pn

-
qn

and

tn = Pn + qn >

00

The series 2 \un \
is assumed to be convergent, so that

n = l

(5-2) lim tn = lim (pn -f qn) ss L.
n oo n QO

But pn and gn are positive and increasing with n and, since (5-2) shows

that both remain less than L, it follows from the fundamental principle

that both the pn and qn sequences converge. If

lim pn P and lim qn
= Q,

n > * H > oo

then (5-1) gives

lim s rl
= lim (pn qn )

= P Q,

00

which establishes the convergence of 2 un .

Moreover, it can be shown that changing the order of the

terms in an absolutely convergent series gives a series which is

convergent to the same value as the original series.
*

However,

conditionally convergent series do not possess this property. In

fact, by suitably rearranging the order of the terms of a condi-

tionally convergent series, the resulting series can be made to

converge to any desired value. For example, it is knownf that

the sum of the series

111 f_n-iii-i-l j_1 0<0 A 1

-.--23 4 n

* See SOKOLNIKOFF, I. S., Advanced Calculus, pp. 240-241.

t See Example 1, Sec. 13.
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p

is log 2. The fact that the sum of this series is less than 1 and

greater than % can be made evident by writing the series as

which shows that the value of sn > % for n > 2; whereas, by

writing it as

- * O Of \ A f

it is clear that sn < I for n > 2. Some questions might < be

raised concerning the legitimacy of introducing parentheses in a

convergent infinite series. The fact that the associative law

holds unrestrictedly for convergent infinite series can be estab-

lished easily directly from the definition of the sum of the infinite

series. It will be shown* next that it is possible to rearrange
the series

so as to obtain a new series whose sum is equal to 1. The positive

terms of this series in their original order are

3' 5' 7' 9'

The negative terms are11
'

g

In order to form a series that converges to 1, first pick out, in

order, as many positive terms as are needed to make their sum

equal to or just greater than 1, then pick out just enough negative
terms so that the sum of all terms so far chosen will be just less

than 1, then more positive terms until the sum is just greater
than 1, etc. Thus, the partial sums will be

*2 - -
2
=

2'

- 1,1,1 31
S4==1 -2 +

3
+

5
=

30'

* General proof can be constructed along the lines of this example.



8 INFINITE SERIES 19

l * 1 1 47

. .

2 3 5-3 7 9- 1260

1,1,11, 1,1_1_ 1093
1

2
+

3
+

5 4
+

7
"*"

9 6
~

1260'

It is clear that the series formed by this method will have a sum

equal to 1.

As another example, consider the conditionally convergent
series

(5-3) l--4= + -^--4-+---.'

V2 -s/3 VI

Let the order of the terms in (5-3) be rearranged to give the

series

LL 4. -1 L\

The nth term of (5-4) is

1

which is greater than

j ==
*

_|_
*__ [i . \ *

,

oo

But the series S &n is divergent, and it follows that the series
n = l

(5-4) must diverge.
00

Inasmuch as the series S |wn| is a series of positive terms, the
nl

tests that were developed in Sec. 3 can be applied in establishing
00

the absolute convergence of the series 2 un . In particular, the
n = l

ratio test can be restated in the following form:
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00

RATIO TEST. The series S un is absolutely convergent if

and is divergent if

lim

lim
Un+l

Un

< 1

> 1.

// the limit is unity, the test gives no information.

Example 1. In the case of the series

. z2
. xs

. x*

lim
xn (n 1)!

ft! xn~ l

for all values of x. Hence, the series is convergent for all values of

x and, in particular, the series

22 2 3

1 - 2 +
21
-

3J
+ ' ' '

is absolutely convergent.

Example 2. Consider the series

1

Here

lim
n oo

1 - x
^

2(1 - xY
^

3(1
-

. n(l
-

ap*

(n + 1)(1
-

x)
n+l 1 (n + 1)(1

-
x)

I

Therefore, the series will converge if

n-i^r < 1 or 1< |1
1

x\,
\i x\

which is true for x < and for x > 2.

For x = and for x 2 the limit is unity, but if x = the series

becomes the divergent harmonic series

and if x = 2 there results the convergent alternating series
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.
21

i4.i^i4... -!-( nn-i-u...1 ^
2 3

^ ^ ' n^
It follows that the original series converges for x < and for x ^ 2

and diverges for < x < 2.

6. Algebra of Series. The following important theorems are

stated without proof:*

THEOREM 1. Any two convergent series

U = Ui + U2 + ' ' + Un + ' ' '

V = Vi + V% + ' ' + Vn + ' * '

can be added or subtracted term by term to give

U + V = (Ui + Vi) + (Ma + 2) + ' + (tin + )+'
or

U - V = (m - v,) + (M*
-

f>2) + + (u
-

t>0 + ' ' '

// /Ae original series are both absolutely convergent, then the resulting

series will be absolutely convergent also.

THEOREM 2. //

U = ui + uz + + un +

F =
fli + tf2 + ' ' + Vn + '

are two absolutely convergent series, then they can be multiplied like

finite sums and the product series will converge to UV. Moreover,
the product series will be absolutely convergent. Thus,

UV = U\V\ + UiV% + U%Vi + U\V$ + U^Vz + UzV\ + ' ' '
.

THEOREM 3. In an absolutely convergent series the positive

terms by themselves form a convergent series and also the negative

terms by themselves form a convergent series. If in a convergent

series the positive terms form a divergent series, then the series of

negative terms is also divergent and the original series is conditionally

convergent.

THEOREM 4. // u\ + u% + + un + is an abso-

lutely convergent series and if Mi, M^ 9 ,
Mn ,

is any

sequence of quantities whose numerical values are all less than some

positive number N, then the series

UiMl + UiMz + ' ' ' + UnMn + ' *

is absolutely convergent.
* See SOKOLNIKOFF, I. S., Advanced Calculus, pp. 212-213, 241-245.
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Exarppk. Consider the series

sin x
__

sin 2x sin 3x
__

1 2 3 +
3 3

" ' ' '

'

This series is absolutely convergent for all values of x> for the series

p
-

2~3
+

3~3
""

is absolutely convergent and (sin nx\ ^ 1.

PROBLEMS

1. Show that the following series are divergent:

,
. 5 7,9 11

,
2n + 3

,

()2
-

4 + 6""8 + "" + (
~

1} ~2^~ + ' ' '

J

(6) 2-22 + 3- 3*2
+ 4-4$+ ;

(c) 1
-

1 + 1
"

i
+ ' ' '

2. Test for convergence, and if the series is convergent determine

whether it is absolutely convergent.

- 1.1 1 .....

1-3-5-7
._ - . _

3 3-6 3-6-9 3-6-9-12'''
,,2 3,4 5
(c)

i
-

^ + 3
-

4
+ ' ' '

3. For what values of x are the following series convergent?

/v2 /y.3 /yn

W*-l+l ----
+<-D-'^+---;

/^2 /p4 /p6

(6) 1 -
2!
+

j|
-

g-,
+ ;

(c) 1 - + * 2 - + ;

w; +i + 3i+---+i + ----

4. Determine the intervals of convergence of the following series:

iT4 2 V^Tl 3
%

(6) * + 2b2 + 3lx3 + 4b4 + ;

, m(m -
1) m(m - 3)(m 2)

(c) 1 + ws H--
21

- * "!
--

31

- x +

where w is not a positive integer.
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7. Continuity of Functions. Uniform Convergence. Before

proceeding with a discussion of infinite series of functions, it is

necessary to have a clear understanding of the concept of con-

tinuity of functions. The reader will recall that a function

f(x) is said to be continuous at a point x = X Q if lim f(x) = f(xQ)
y xo

regardless of how x approaches XQ. From the discussion of

the limit in Sec. 1, it appears that this concept can be defined in

the following way :

DEFINITION. The function f(x) is continuous at the point

x = XQ if, corresponding to any ^reassigned positive number c,

it is possible to find a positive number 5 such that

(7-1) I/O) /Cr )| < whenever \x
-

rr
|

< 5.

The foregoing analytical definition of continuity is merely a

formulation in exact mathematical language of the intuitive

y=f(x )-e

-y-f(x)

FIG. 3

concept of continuity. If the function f(x) is represented by a

graph and if it is continuous at the point x =
#o, then it is

possible to find a strip bounded by the two parallel lines x = x

+ 5 and x = x 5, such that the graph of the function will lie

entirely within the strip bounded by the parallel lines y =
/(a?o)

+ e and y = f(x Q) e (Fig. 3). But if the function is discon-

tinuous at some point (such as x =
x\), then no interval about

such a point can be found such that the graph of the function will

lie entirely within the strip of width 2e, where e is arbitrarily

small.

DEFINITION. A function is said to be continuous in an interval

(a, b) if it is continuous at each point of the interval
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If a finite number of functions that are all continuous in an

interval (a, 6) are added together, the sum also will be a continuous

function in (a, fe). The question arises as to whether this

property will be retained in the case of an infinite series of con-

tinuous functions. Moreover, it is frequently desirable to

obtain the derivative (or integral) of a function f(x) by means of

term-by-term differentiation (or integration) of an infinite series

that defines /(x). Unfortunately, such operations are not always

valid, and many important investigations have led to erroneous

results solely because of the improper handling of infinite series.

A discussion of such questions requires an introduction of the

property of uniform convergence of a series.

It was stated in Sec. 1 that the series

(7-2) ui(x) + u*(x) + + un (x) +

is convergent to the value $, when x = XQ> provided that

(7-3) lim sn (xo)
= S.

I n> oo

The statement embodied in (7-3) means that for any preassigned

positive number ,
however small, one can find a positive number

N such that

|n(&o)
-

S\ < e for all n ^ N.

If the series (7-2) is convergent for every value of x in the interval

(a, 6), then the series (7-2) defines a function S(x). Let x be

some value of x in (a, b), so that

\sn (xo) S(xo)\ < e whenever n ;> N.

It is important to note that, in general, the magnitude of N
depends not only on the choice of e, but also on the value of XQ.

This last remark may be clarified by considering the series

(7-4) x + (x
-

l)x + (x
-

l)z
2 +

+ (x
-

I)*"-
1 + .

Since

s(x) = x + (x
-

l)x + (x
-

l)x
2 + + (x

- l)^-
1

= xn
,

it is evident that

lim sn(x) = lim xn = 0, if ^ x < 1.
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Thus, S(x) = for all values of x in the interval <> x < 1, and

therefore

MX) -
S(x)\

=
|*

-
0|
=

\x\.

Hence, the requirement that \sn (x) S(x)\ < c, for an arbitrary

e, will be satisfied only if xn < e. This inequality leads to the

condition

n log x < log e.

Since log x is negative for x between and 1, it follows that it is

necessary to have

logo:

which clearly shows the dependence ofN on both e and x. In fact,

if e = 0.01 and x =
0.1, n must be greater than log 0.01/log 0.1

= 2/ 1 = 2, so that N can be chosen as any number greater

than 2. If e = 0.01 and x =
0.5, N must be chosen larger than

log 0.01/log 0.5, which is greater than 6. Since the values of

log x approach zero as x approaches unity, it appears that the

ratio log e/log x will increase indefinitely and that it will be

impossible to find a single value of'TWwhich will serve for e = 0.01

and for all values of x in ^ x < 1.

It should be noted that the discussion applies to the interval

(0, 1) and that it might be possible to find an N, depending on e

only, if some other interval were chosen. If the series and the

interval are such that it is possible to find an N, for any pre-

assigned e, which will serve for all values of x in the interval, then

the series is said to converge uniformly in the interval.
00

DEFINITION OF UNIFORM CONVERGENCE. The series S un(x)nl
is uniformly convergent in the interval (a, b) if, for any > 0, there

exists a positive number N, independent of the value of x in (a, b),

such that

\S(x)
- sn (x)\ < e for all n> N.

The distinction between uniform convergence and the type of

convergence exemplified by the discussion of the series (7-4)

will become apparent in the discussion of the series

(7-5) 1 + x + x* + - + x* + ,

where J^ < x ^ J^.
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J %n
Since sn(x) = -z-

,
it follows that

i x

8(x) = lira (*)
= lim T--

n * oo n oo \1 k

Then,

\8(X)
-

(*)!
=

1 - x

which will be less than an arbitrary e > if

\x
n

\

< e(l
-

x).

Hence,
n log |x| < log e(l a;),

or

(7-6) n > .

log |z|

Again, it appears that the choice of AT will depend on both

x and
,
but in this case it is possible to choose an N that will

serve for all values of x in ( J^, H) Observing that the ratio

log e(l a;)/log |#| assumes its maximum value, for a fixed e,

when x = J^, it is evident that if N is chosen so that

Iog2
?

then the inequality (7-6) will be satisfied for all n *t N.

Upon recalling the conditions for uniform convergence, it is

seen that the series (7-5) converges uniformly for % < x < %.
However, it should be noted that (7-5) does not converge uni-

formly in the interval ( 1, 1). For, in this interval, the ratio

appearing in (7-6) will increase indefinitely as x approaches the

values 1. The discussion given above shows that the series

(7-5) is uniformly convergent in any interval ( a, a), where

a < 1.

It may be remarked that the series (7-5) does not even con-

verge for x = 1. For x =
1, it is obviously divergent, and

when x = 1 the series becomes

1 - 1 + 1 - 1 +

T-5) defin

the value ^ when x = 1.

If 1 < x < 1, (7-5) defines the function
^ ,

which takes
1 "*-* X
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As is often the case with definitions, the definition of uniform

convergence is usually difficult to apply when the behavior of a

particular series is to be investigated. There are available

several tests for the uniform convergence of series, the simplest of

which is associated with the name of the German mathematician

Weierstrass.

THEOREM. (WEIERSTRASS M TEST). Let

(7-7) ui(x) + u 2 (x) + + un (x) +
be a series of functions of x defined in the interval (a, 6). // there

exists a convergent series of positive constants,

Mi + M* + + Mn + ,

such that |^t (#)| ^ Ml for all values of x in (a, b), then the series

(7-7) is uniformly and absolutely convergent in (a, 6).

Since, by hypothesis, the series of M's is convergent, it follows

that for any prescribed c > there exists an N such that

Mn+ i + Mn+i+< for all n ^ N.

But \u,(x)\
< M% for all values of x in (a, 6), so that

for all n ^ N and for all values of x in (a, b). Therefore, the

series (7-7) is uniformly and absolutely convergent in (a, b).

The fact that the Weierstrass test establishes the absolute

convergence, as well as the uniform convergence, of a series means
that it is applicable only to series which converge absolutely.

There are other tests that are not so restricted, but these tests are

more complex. It should be emphasized that a series may con-

verge uniformly but not absolutely, and vice versa.

Example 1. Consider the series

sin x sin 2x sin nx

-p- + -22- +
' ' ' + -5- + ' ' '

Since |sin nx\ ^ 1 for all values of x, the convergent series

15
+

Ji
++ +

will serve as an M series. It follows that the given series is uniformly

and absolutely convergent in any interval, no matter how large.

Example 2. As noted earlier in this section, the series

1 + x + x 2 + - + z +
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converges uniformly in any interval (a, a), where a < 1. The
series of positive constants

1 + a + a 2 + - + a* +

could be used as an M series in this case, since this series converges for

a < 1 and |a;
l

|

^ a* for x in ( a, a).

PROBLEMS

1. Show that the series (7-4) is uniformly convergent in the interval

(0, H).
2. By using the definition of uniform convergence, show that

1 1 1

(x + l)(x 4-2) (x + n- l)(x + n)

is uniformly convergent in the interval < z < 1.

ies to sh

\S(X)
~

Hint: Rewrite the series to show that s n(x)
= r- and therefore

X ~\~ 71

" x + n

3. Test the following series for uniform convergence:

, x cos x
,

cos 3x
,

cos 5x
,

(0 -p- + -3^" + 52- + ;

.^^ sin ^cc sin QX sin u^c

(m :
~

H 5 Tf + "= ^~ ~T
' ' '

',

I
' O O O *

/

(c) 1 + ^ cos ^ + x 1 cos 219 + x s cos 30 + , \x\
^ x l < 1

;

. ,. cos 2x cos 3x
,

cos 4x
""2" "3" 4" '

(e) lOz + 10 2x 2 + 10 8
OJ

3 + .

8. Properties of Uniformly Convergent Series. As remarked

in the preceding section, the concept of uniform convergence was

introduced in order to allow the discussion of certain properties

of infinite series. This section contains the statements* of three

important theorems concerning uniformly convergent series.

THEOREM 1. Let

be a series such that each ul (x) is a continuous function of x in

the interval (a, 6). // the series is uniformly convergent in (a, 6),

then the sum of the series is also a continuous function of x in (a, 6).

* For proofs, see I. S. Sokolnikoff, Advanced Calculus, pp. 256-262.
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COROLLARY. A discontinuous function cannot be represented

by a uniformly convergent series of continuous functions in the

neighborhood of the point of discontinuity.

THEOREM 2. // a series of continuous functions,

converges uniformly to S(x) in (a, 6), then *

S(x) dx = f
ft

ui(x) dx + f*u t (x) dx + + f
ft

un (x) dx +
ot Jet Jot Jot

where a < a < b and a < < b.

THEOREM 3. Let

- + un (x) +
be a series of differentiate functions that converges to S(x) in

(a, 6) . // the series

u((x) + u'2 (x) + + <(s) +
converges uniformly in (a, 6), then it converges to S'(x).

These theorems provide sufficient conditions only. It may be

that the sum of the series is a continuous function when the series

is not uniformly convergent. It is impossible to discuss neces-

sary conditions in this brief introduction to uniform convergence.
It may happen also that the series is differentiate or integrable

term by term when it does not converge uniformly. In the

chapter on Fourier scries it will be shown that a discontinuous

function can be represented by an infinite series of continuous

functions. In that chapter, it is established that the series

sin 2x . sin 3x_-
_g

represents the function x for w < x < TT. But, if this series

be differentiated term by term, the resulting series is

2(cos x cos 2x + cos 3x -

),

which does not converge in ( TT, ?r); for the necessary condition

for convergence, namely, that lim \un \

=
0, does not hold for any

n * *

value of x.

The series used in the first example of Sec. 7,

, . sin x
,

sin 2x sin 3x sin nx
,

(8-1)
-jg

I

^2
I

32
r

' '

H ~z r '

,
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is uniformly convergent in any interval (a, 6) and as such defines

a continuous function S(x). Moreover, the series can be inte-

grated term by term to produce the integral of S(x). The

term-by-term derivative of (8-1) is

(8-2) cos x + Y2 cos 2x + % cos 3x +
which is convergent in (0, TT), but the M series for (8-2) cannot

be found since I +% + }+ is divergent. This merely

suggests that (8-2) may not converge to the derivative of S(x),

but it does not say that it will not.

PROBLEMS

1. Test for uniform convergence the series obtained by term-by-term
differentiation of the five series given in Prob. 3 of Sec. 7.

2. Test for uniform convergence the series obtained by term-by-
term integration of the five series given in Prob. 3, Sec. 7.

9. Power Series. One of the most important types of infinite

series of functions is the power series

00

(9-1) V anxn ss anxn

in which the at are independent of x. Some of the reasons for

the usefulness of power series will become apparent in the dis-

cussion that follows.

Whenever a series of functions is used, the first question which

arises is that of determining the values of the variable for which

the series is convergent. The ratio test was applied for this

purpose in the examples discussed in Sec. 5. In general, for a

power series,

lim
un+i

un

= lim

so that the series converges if

and diverges if

lim
n * oo

lim
n ao

an-i

\0>n-l

< 1

> 1.

Therefore, the series will converge for those values of x for which

\x < lim
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If lim
On-l

an
r, it follows that the series will converge when x

lies inside the interval ( r, r), which is called the interval of con-

vergence, the number r being called the radius of convergence.

This discussion establishes the following theorem :

00

THEOREM. // the series S anxn is such that
n =

lim

then the series converges in the interval r<x<r and diverges

outside this interval. The series may or may not converge at the

end points of the interval.

Example 1. Consider the series

/v.2 /*.3 />n-
n

Since lim = lim
n - 1

=
1, the series converges for

1 < x < 1 and diverges for \x\ > 1. At the end point x = 1 the

series becomes

.-.+S-H----
which is convergent. At the end point x = 1 the divergent series

is obtained. Hence, this power series is convergent for 1 ^ x < 1.

Example 2. The series

1 + x + 2lx 2 + + n \xn + - - -

will serve to demonstrate the fact that there are power series which

converge only for the value x = 0. For

lim lim (n
-

1)!

n!
lim - 0.

Obviously, the series converges for x 0, as does every power series,

but it diverges for every other value of x.

* Power series in x h are frequently more useful than the

special case in which the value of h is zero. A series of this type
has the form

ai(x
-

h) + a2 (x
- an(x -



32 MATHEMATICS FOR ENGINEERS AND PHYSICISTS

In this case the test ratio yields

lim = lim \x
-

h\.

If this limit is less than 1, the series is convergent; if greater than

1, the series is divergent; and if the limit is equal to 1, the test

fails and the values of x, which make the limit equal to 1, must be

investigated. Thus, if the series is

= lim l - - - -
|s
-

1|
=

|x
-

11-
n_ w \ n n 2

/
' ' '

Therefore the series converges if x 1| < 1, orO<x<2, and

diverges for \x 1| > 1, or x < 0, x > 2. For a; 1 = 1, or

x =
2, the series becomes

which is the p series for p = 2 and is therefore convergent. For
==

)
the series becomes

which is an alternating series of decreasing terms with lim un =
n * oo

and is therefore convergent. Thus the series is convergent for

^ x <. 2.

PROBLEM

Find the interval of convergence for each of the following series, and
determine its behavior at the end points of the interval:

(a) 1 + x + x 2 + x3 + -

;
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(d) I - 2x + 3x* - 4z 3 + '

;

1 _

2 2* 2

(*
-

2)
- 1 (*

-

10. Properties of Power Series. The importance of power
series in applied mathematics is due to the properties given in

the theorems of this section, as will be evident from the applica-

tions discussed in succeeding sections.

THEOREM 1 . // r > is the radius of convergence of a power
00

series 2 anx
n

,
then the series converges absolutely and uniformlyfor

n =

every value of x in any interval a ^ x < b that is interior to

Since the interval (a, 6) lies entirely within the interval ( r, r), it

is possible to choose a positive number c that is less than r but greater

than a and b. The interval (a, 6) will then lie entirely within the

interval ( c, c); and it follows that, for a ^ x ^ 6,

\anx
n

\
< \anc

n
\.

00

The series of positive constants S \anc
n

\

is convergent, for c < r, and,
n =

accordingly, can be used as a Weierstrass M series establishing the
00

absolute and uniform convergence of S anxn in (a, b).
n=0

oo

THEOREM 2. A power series 2 anxn defines a continuous func-

/ton /or aK values of x in any closed interval (a, 6) 2Aa2 is interior to

the interval of convergence of the series.

This statement is a direct consequence of the preceding theorem

and of Theorem 1, Sec. 8.

THEOREM 3. // the radius of convergence of the power series

00 _ 00

2 anxn is r, then the radii of convergence of the series 2 nanxn
~ 1

n=0 n-O
00

and ^^ ~-^ xn+1
,
obtained by term-by-term differentiation and

n =

integration of the given series, are also r.
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If the radius of convergence can be determined from the ratio

test, then the proof follows immediately from the fact that if

lim = r. then lim

Since the series obtained by term-by-term differentiation and

integration are also power series, these processes can be repeated

as many times as desired and the resulting series will be power
series that converge in the interval ( r, r). It follows from

Theorem 1 that all these series are uniformly and absolutely

convergent in any interval which is interior to ( r, r). How-

ever, the behavior of these series at the end points x = r and

x = r must be investigated in each case.

For example, the series

/2 <i3 /l>i

l+x +!+!+ +*-+

has unity for its radius of convergence. The series converges
for x = 1 but is divergent for a: = 1. The series obtained by

term-by-term differentiation is

1 + x + x* + + x* + - -

,

which has the same radius of convergence but diverges at both

x = 1 and x = 1. On the other hand, the series obtained by

term-by-term integration is

/>2 /y.3 /y.4 /yrt-fl

+
Ji>

,
*/ . U/ - . *l/ ._ 1 _ L _ _1_ . . . I_ I ...-^-^-^ +

which converges for both x = 1 and x = 1.

This discussion leads to the conclusion stated in the following

theorem :

oo

THEOREM 4. A power series 2 o>nxn may be differentiated andn0
integrated term by term as many times as desired in any closed

interval (a, b) that lies entirely within the interval of convergence of

the given series.

00

THEOREM 5. // a power series S Q>nxn vanishes for all values

n-p
of x lying in a certain interval about the point x =

0, then the
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coefficient of each power of x vanishes, that is,

do = 0, ai = 0, a2
=

0, , a* = 0, .

The reader may attempt to construct the proof of this theorem

with the aid of Theorem 2 of this section.

11. Expansion of Functions in Power Series. It was stated in

Theorem 2, Sec. 10, that a power series defines a continuous

function of x in any interval which lies within the interval of

convergence. This theorem suggests at once the possibility of

using such a power series for the purpose of computation. For

example, the values of sin x might be obtained by means of a

power series. Accordingly, it becomes necessary to develop
some method of obtaining such a power series, and this section

is devoted to a derivation of Taylor's formula and a discussion of

Taylor's series.

One of the simplest proofs of Taylor's formula will be given
here. * It assumes that the given function f(x) has a continuous

nih derivative throughout the interval (a, 6). Taylor's formula

is obtained by integrating this nth derivative n times in suc-

cession between the limits a andjfe where x is any point in (a, 6).

Thus,

I fM (x)dx =/<- (a-)

I I /<n)
(z) (dx)

2 =
I /<"-(*) dx - f /< (o) dx

Ja Ja Ja Ja

(x) (dx)
3 =/(- (*) _/( ( )

-
(Z
-

a)/<"-
2)
(a)

=
/(*)

-
/(a) -(x- a)/' (a)

2! (n
-

1)!
'

* For other proofs, see I. 8. Sokolnikoff, Advanced Calculus, pp. 291-295.
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Solving for f(x) gives

(11-1) /(*)
- /(a) + (x

-
a)/' (a) + (x

~
a)
>(a)

where

(11-2) Rn = f f/(n)
(*) (dx)*

i/a Ja

The formula given by (11-1) is known as Taylor's formula and

the particular form of Rn given in (11-2) is called the integral

form of the remainder after n terms. The foregoing can be

stated in the form of a theorem.

TAYLOR'S THEOREM. Any function f(x) that possesses a con-

tinuous derivative /(n)
(x) in the interval (a, b) can be expanded in

the form (11-1) for all values of x in (a, b).

The term Rn ,
which represents the difference between f(x)

and the polynomial of degree n 1 in x a, is frequently more

useful when expressed in a different form. Since*

P/(n)
(z) dx -

(x*
'-

a)/
(n)

(), where a < f < x,
Ja

repeated integration gives

(11-3) Rn = - - -

J[*
/<>(*) (dxY = (X

^
q)n

/(n)
(e.

The right-hand member of (11-3) is the Lagrangian form of the

remainder after n terms.

The special form of Taylor's formula that is obtained by

setting a = is known as the Maclaurin formula. In this case

(11-4) f(x) =/(0)

where

* The student will recall from elementary calculus that

I <f>(x) dx ==
(6 a)<f>(), where a < < b.
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Taylor's formula with the Lagrangian form of the remainder

is often encountered in a somewhat different form, which results

from setting x a = A. Since a < < x, can be written

in the form a + Oh, where < 6 < 1. Hence, (11-1) becomes

(11-5) /(a + h) = /(a)
~

' where

In this derivation of Taylor's formula, it was assumed that

f(x) possesses a continuous nth derivative, and as a result it

appeared that then f(x) could be expressed as a polynomial of

degree n in x a. It should be noted, however, that only the

first n coefficients of this polynomial are constants, for the

coefficient of (x a)
n

is a function of and the value of is

dependent upon the choice of x. It may happen that f(x)

possesses derivatives of all orders and that the remainder Rn

approaches zero as a limit when n - <*> regardless of the choice

of x in (a, b). If such is the case, the infinite series

(11-6) /(a) +f'(a)(x
-

a) +/"(a)
(x "^ +

---

is convergent and, in general,* it converges to/(x).

The series given in (11-6) is called the Taylor's series expansion,

or representation, of the function f(x) about the point x = a.

The special form of (11-6) that is obtained when a = 0, namely,

(11-7)

is called Maclaurin's series.

Example. Find the Taylor's series expansion of cos x in powers of

7T*-
Since

/'(*)= -sins, /'(!)=
- 1

'*

* For a further discussion of this point, see I. S. Sokolnikoff, Advanced

Calculus, pp. 296-298.
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/"(*) = -cos*,

/'"(*)
= sin *, /

f"(x) = cos x, f
iv =

0;

it follows that the result is

Since it is often possible to obtain a power series expansion

of a function f(x) by some other method, the question arises as

to the relation of such an expansion to the Taylor's series expan-
sion for f(x). For example, a power series expansion for the

function
^
- is obtained easily by division, giving

J.
"""* X

The reader can check the fact that the Maclaurin expansion for

this function is identical with the power series obtained by
division. That this is not an exceptional case is established in

the following theorem:

UNIQUENESS THEOREM. There is only one possible expansion

of a function in a power series in x a; and, therefore, if such an

expansion be found in any manner whatsoever, it must coincide with

Taylor's expansion about the point a.

Suppose that f(x) could be represented by two power series in

x a, so that

f(x) = a + ai(x
-

a) + a2(x
-

a)
2 +

+ an(x
-

a)
n +

and

f(x) = 6 + bi(x
-

a) + 6 2(z
-

a)
2 +

+ bn (x a)
n + .

Since both these expansions represent f(x) in the vicinity of a,

there must be some interval about the point x = a in which

both the expansions are valid. Then, in this interval,
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00 00

V an(x
-

a)
n =

]
bn(x a)

n
,

n-O n=0
or

jj (an
- &)(* -

a)- = 0.

n=0

It follows from Theorem 5, Sec. 10, that

an ~ bn - 0, (n = 0, 1, 2, ),

or

an = b n> (n =
0, 1, 2, ).

Hence, the two power series expansions are identical.

Taylor's formula is frequently more useful in a slightly modified

form. Let
x a s= h,

so that
x = a + h.

Then

/(*)
=

/(a) +/'(a)(z
-

a) +^~
)
(x
-

a)
2 + -

/<->(a)
-+ (^nyi^ a; +

becomes

(11-8) /(a + A)
= /(a) + /'(a)A + K + '

(n-l)! n!
'

in which < 8 < 1, so that a<a + 9h<a + h.

PROBLEMS

1. Find the expansion of each of the following functions in power
series in x:

(a) ex
, (b) sin x, (c) cos x, (d) tan" 1

x,

(e) sin" 1
x, (/) sec #, (g) tan x, (h) e inx

.

2. Expand

(a) log a; in powers of x 1
;

(6) tan x in powers of a; T;

(c) e* in powers of x 2;

/j\ e v
(a) sm a; m powers of x

g;

(e) 2 + x2 3x* + 7x* in powers of x 1.
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3. Show that sin x can be developed about any point a in a series

(11-8) which converges for all values of h.

4. Differentiate term by term the power series in x for sin x and thus

obtain the power series in x for cos x. What is the interval of con-

vergence of the resulting series?

x3 x 5

6. Divide the series sin x = x
^y
+ ^ by the series

x* x4

cos ==1
21

"t" ZT
"~ "**> anc^ ^us obtain the series for tan x.

6. Differentiate the series for sin" 1 x to obtain the expansion in powers
of # for (1 x2

)~M. Find the interval of convergence. Is convergence
absolute? Investigate the behavior of the series at the end points of the

interval of convergence.

7. Establish with the aid of Maclaurin's series that

(a + &)* SE k(l + *) = k
[l
+ mx + m(m

2

~
1}

x* + -

],

where m is not a positive integer.

This series is convergent for \x\ < 1 and divergent when
|a;| > 1 A

complete discussion of this series will be found in Sokolnikoff's Advanced

Calculus. Some facts are.

If x I, convergence is absolute if m > 0;

If =
1, convergence is conditional if > m > 1;

If x =
1, convergence is absolute if m > 0;

If x ==
1, series diverges when m < 0;

If # =
1, series diverges when m ^ 1.

oo oo

8. Let /(?/)
= S bny

n smdy~ S anxn be convergent power series. If
n=0 n=0

f(y) is a polynomial, then the powers of y in terms of x can be determined

by repeated multiplications and thus the expansion for/(?/) in powers of x

can be obtained. But if f(y) is an infinite series, this procedure may not

be valid. Inasmuch as the power series in x is always convergent for x =
and since the value of y for x is a

,
it is clear that the interval of con-

oo

vergence of S bny
n must include a if the series for f(y\ in powers of x,

n =

is to converge. But if a =
0, then f(y) surely can be expanded in

power series in x by this method, for the point is contained in the
00

interval of convergence of S bny
n

.

n=*0

Apply this method to deriving the series in powers of x for e*^ x by

setting
x s

,

x 6

y = sm x = x - + -
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and

Explain why this method fails to produce the series in powers of x for

log (1 + e*)i where e* = y.

12. Application of Taylor's Formula. In this section two

illustrations of the application of Taylor's formula will be given,

and in each case the remainder will be investigated to determine

the error made in using the sum of the first n terms of the expan-
sion instead of the function itself.

1. Calculate the Value of sin 10. Since 10 is closer to

than to any other value of x for which the values of sin x and its

derivatives are known, the Maclaurin expansion for sin x will

be determined and evaluated for x = 10 = IT/IS radian. Then

f(x)
=

/(O) + /'(O)*

n\

_
'

where < < 75-io

Since

f(x) = sin x, /(O) = 0;

f'(x)
= oosx, /'(0)

=
1;

/"(*) = - sin *, /"(O) =
0;

f"(x) = - cos x, /'"(0) = -1;
...................................

y

/<>(*) = sin
(x + ~^,

/<>(0) = sin ^;
therefore,

Here,

Rn (x) s ~ /<>($) == ~ f(n}
(0x), < 6

=
. sin

n!

If only the terms through x 7
(or x 8

) are used in computing
sin 7T/18, the error will be
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"
1 {** ^9 \ /T\9

1 fcr

W 91
8m V Is

+
2V =

Iw 9i
cos

ii

9!'

so that

sm
18

~
18 U87 3!

+
V18/ 5! Vl8/ 7f

with an error less than (

j^ j ^-

2. Compute the Value of e 1 - 1
. It can be established readily, by

expanding ex in Maclaurin's series and evaluating for =
1, that

e = 2.71828 . In order to compute the value of e 1 - 1

,
the

expansion of e* about x = 1 will be used. The expansion is

Since

/(*) = ex
, /(I) = ^

?(*) =
-, /'(I)

=
e;

/<>(*) =
e-, /<>(!) =

e;

and
/f'(0 = e, 1 < { < x;

therefore

(x
-

1)* + +
n J 1; (x

-
I)

Here

so that the error made in using only four terms is

4
=

||
(X
-

1).

If X - 1.1,

e 1 - 1 =

= 1.105166e
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Thus, e 1 - 1 = 1.105166e with an error of (0.0001/24)e*. Since

lies between 1 and 1.1 and since e* is an increasing function, e* is

certainly less than e 2
. An approximate value of e 2

is 7, and the

error is certainly less than 0.0007/24 = 0.00003. Therefore,

e 1 - 1 = 1.1052e,

correct to four decimal places.

13. Evaluation of Definite Integrals by Means of Power
Series. One of the most important applications of infinite series

is their use in computing numerical values of definite integrals,

such as f
J
e~x

*

dx, in which the indefinite integral cannot be

found in closed form. Moreover, the values of many tran-

scendental functions are computed most easily by this method.

Several examples of this use of infinite series are given in this

section.

Example 1. Consider

^o+^
Since

(1 + 2)-l = 1 - Z -f 2 2 _

for
1

3
1
< 1, it follows that

Example 2. Since

dz

if
|
z

|
< 1, therefore

It is evident that this method of obtaining the expansion of sin"1 x is

much less complicated than the direct application of Taylor's formula.

Example 3. In order to evaluate the integral

fJo
2adx
- x)(2ax -
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express it as

dx A _ jL^"
5

*,

\ 2j
\

and then replace ( 1
^- j by its expansion in powers of ~ giving

,

1-3-5/s'
^2-4-6 \2a

If this integral is expressed as

CM / x \ dx
== + fh I / x

Jo 2\2a -
;
2

2-4

and each integral evaluated, there results

+
]

This expression gives the period of the simple pendulum. By making
the change of variable x = h sin2

<p, the integral reduces to

/- 2^J.U -*'**'*>-**

where &2 = V2a.
This is the form used in the discussion of the simple pendulum given

in Sec. 71. In this illustration, h denotes the height of the pendulum
bob and a the length of the pendulum.

/*! ex _ e-x

Example 4. The integral J dx cannot be evaluated by the

usual method for evaluating a definite integral, for the indefinite integral

cannot be obtained. Moreover, the expansion for > if obtained
x

directly with the aid of Maclaurin's formula, would lead to an extremely

complicated expression for each derivative. The expansion is most

easily obtained by using the separate expansions for e* and e~*. Thus,

e..i+s + 5! + |? + ...
L\ o!
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and
/ z 3 x b

e* - e- = 2 ^ + ^j

+ ^ +

Hence,

fl Px e-x / 1 1

Jo i
* - 2 + F3l + 5-1!

+- 2 '1145 '

Example 5. In order to evaluate the integral J Q
e* *

dx, recall that

so that

. . sin2
a;

,

sin 3 x
sm JP H--

21
---

'

--
3"!

Then

Cw ' f" (
'

.
,

sin2
a;

,
sin 3

a;
,

J e***dx =
Jo (,1

+ sm + ~2p + -3^ +
TT

, f5 / . sin 2 x sin3
a;

, . \ ,= 2
Jo I

1 + Sln * + ~2T + ~3T + ) **,

which can be evaluated with the aid of the Wallis formula

. J f^ j (^
-

1)(" - 3) 2 or 1
sinn x dx L cosn x dx --

/
-^-^

-
:
-

,Jo n(n 2) 2 or 1
'

where a =
1, if n is odd, and a =

^>
if n is even.

In order to justify the term-by-term integration, it is sufficient to

show that the series in the integrand is uniformly convergent. That

such is the case is obvious if one considers

l + l +
i\
+

wi
+

as the Weierstrass M series.

PROBLEMS

1. Calculate cos 10, and estimate the maximum error committed

by neglecting terms after x 6
.

2. Find the interval of convergence of the expansion of e* in power
series in x. Determine the number of terms necessary to compute e 1 - 1

accurate to four decimal places from this expansion, and compare the

result with illustration 2, Sec. 12.

3. Compute sin 33, correct to four decimal places.
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Cx dx
4. Expand the integrand of J 1

. gg
in power series in x, and

integrate term by term. Compare the result with that of Prob. l(d),

Sec. 11. __
5. Compute v/35 = 2(1 + ?^2)^ correct to five decimal places.

6. Develop the power series in x for sin" 1 x and hence establish that

_ , . - -

6
~

2 ~*~2 3 \2/
""
2-4 5 \2

7. Show, by squaring and adding the power series for sin # and

cos x, that.

sin 2 x + cos 2 #=1.

8. Evaluate by using series expansions of the integrands

/ v f 1
/ ON , ,,x TH sin a; efo

(a) JQ
gin (x') dx; (6) J ==;

(e)

*

cos (*) dx; (/) ^ (2
- cos x)~ dx

T 1

=
Jo

/*l log x f
- 1

log(l
-

z) /**

(?) Jo 9 r-r^ <* =
Jo

-

z
*; Jo

/*x

(i) I &***dx.*

9. Show, by multiplication of series, that

(1 + x + x 2 + )
2 = 1 + 2x + 3z2 +
=

(1
- x)-

2
.

10. Expand to terms in x 6

(a) \/cos a;;

sin g

(c)

cos

11. Determine the magnitude of a, if the error in the approximation
sin a === a is not to exceed 1 per cent.

a ~ sin a , . a8 a 5

Hint: = 0.01 and sma = a -^ + -=7 .

a oi ol

* See form 787, B. O, Peirce, A Short Table of Integrals.
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14. Rectification of Ellipse. Elliptic Integrals. In spite of its

importance and apparent simplicity, the problem of finding the

length of an elliptical arc is not usually considered in elementary
calculus. This is because the integral that arises is incapable
of evaluation in terms of elementary functions. However, the

evaluation can be effected by means of series expansion of the

integrand function, as will be shown in this section.

Let the equation of the ellipse be

r2 7v 2

J>
+

f,
=

l, a>b.

The length of arc from (0, 6) to (x\, y\) is given by the integral

Computing dy/dx and substituting its value in (14-1) gives

r /, _!_
b * ** A - r~

Jo \ +
rf tf^Ts<to

~
Jo

Recalling the fact that the numerical eccentricity of the ellipse

is k = -S/&
2

W/a, the integral given above can be written as

where k2 < 1.

Let x = a sin 0; then dx = a cos 6 dd, and (14-2) becomes

(14-3) 8 = a Vl - k 2 sin 2 6 dd.
JQ

The series expansion of the integrand function is most easily

obtained by writing it as (1 fc
2 sin 2 0p and expanding by

use of the binomial theorem. Then (14-3) is replaced by

s = a
J

(l -
^k*

sin 2 -
g

fc
4 sin4 6 -

)
d8,

and term-by-term integration* gives

*
Term-by-term integration is valid here, for the series

serves as a Weierstrass M series.
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(14-4) s = a L> - ^ k* I sin 2 dO - ^ ft
4

I %in4 0d0 -
L ^ J o Jo

_ l-3.5.-.(2n-3)
fc2M
P

sin2n 9dg _ . . .
1

2 4 6 2w Jo J

If (14-4) is used, it is possible to evaluate s for particular

values of k and <p. However, the integral in (14-3) is so impor-
tant that there are extensive tables* giving its value for*many
choices of k and <p. This integral for the value of a 1 is

called the elliptic integral of the second kind and is denoted by
the symbol E(k, <p). If <p

=
7r/2, the integral is called the com-

plete elliptic integral of the second kind, which is denoted by the

symbol E.

The elliptic integral of the second kind having been defined, it

seems desirable to mention the elliptic integral of the first kind,

although the latter arises in considering the motion of a simple

pendulum and will be discussed in more detail in Sec. 71. The

elliptic integral of the first kind, F(k, ^>), has the form

(14-5) F(k, v) = F ,

d

Jo Vl - k2 sin 2 S

The complete elliptic integral of the first kind, which arises

when <p
=

7T/2, is denoted by the symbol K. Values of F(k y <p)

and of K are also tabulated, but the evaluation can be obtained

from (14-5) by means of series expansion of the integrand.

Thus, one has the expansion

(14-6) F(fc, ?) =
<p + i

fc
2

I
sin 2 6 d6 + | fc

4

|
sin 4 6 d6"JO o JO

16. Discussion of Elliptic Integrals. The elliptic integral of

the first kind is a function defined by the integral

(15-1) F(k, *) m F d
.

=, fc
2 < L

Jo v 1 - k2 sin 2 S

* See the brief table in B. O. Peirce, A Short Table of Integrals, pp.

121-123.
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If sin 6 is replaced by z, (15-1) becomes

(15-2) f(k, x)
= (* r

dz
k* < 1.'

Jo V(l - * 2
)(1

- *V)

This is an alternative form of the elliptic integral of the first kind.

Similarly, the same change of variable transforms the integral

of the second kind

(15-3) E(k, *>)
= I* ^/^^~k^n ê dO, fc

2 < 1,
Jo

into

(15-4) i(k, x) = ^^f dz, k* < 1.

It will be recalled that any integral of the type

\ R(x, -\/ax
2 + bx + c) dXj

where R is a rational function of the variables x and

\/ax'
2 + bx + c,

is integrablb in terms of the elementary functions, i.e., power,

trigonometric, and logarithmic functions. It can be shown that

the integration of integrals of the type

(15-5) J R(x, V< 3 + bx'^~cx~+~d) dx

and

(15-6) J R(x, \/ax* + bx 3 + ex 2 +~dx + e) dx

requires, in general, the introduction of new functions obtained

from the elliptic integrals.

The evaluation of (15-5) and (15-6) can be reduced to the

evaluation of integrals of the elementary types and the following

new types:

a. Elliptic integral of the first kind :

fvi N Cx dz
F(k ' x) m va -

>(!
- *y>-

r

de
/VI -

fc
2 sin 2 6

b. Elliptic integral of the second kind:

r
Jo

2
E(k, x) = _ dz, or

= I

*

Jo
- & sin2 6 dO.
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c. Elliptic integral of the third kind:

dz

or

fi(n,*,*) = r
Jo

H(n, t, *) s p
Jo

de
/

(1 + n sin 2
(?) \/l ~ & 2 sin 2

The problem of reducing the integrals of expressions involving

square roots of cubics and quartics to normal forms is not difficult,

but it is tedious and will be omitted here.* Integrals involving

y

2.0

1.0

FIG. 4.

square roots of polynomials of degree higher than the fourth lead,

in general, to more complicated functions, the so-called hyper-

elliptic functions.

The graphs of the integrands of the integrals of the first and second

kinds are of some interest (see Fig. 4). For k =
0,

A0 == - k2 sin 2 6 and -: ss -

-
A;

2 sin2 6

both become equal to 1, and the corresponding integrals are both equal
to <p. For < k < 1, the curve y = 1/A0 lies entirely above the line

t/
= 1 and the curve y = A0 lies entirely below it. As ^> increases,

* For a detailed account see Goursat-Hedrick, Mathematical Analysis,

vol. 1, p. 226. A monograph, Elliptic Functions by H. Hancock, may also

be consulted.
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F(kj <p) and E(k, <p) increase continuously, F being always the larger.

As k increases, <p being fixed, the value of F(k, <p)*increases and that of

E(k, <p) decreases. Also F(k, TT)
= 2K and E(k, TT)

= 2E, for the curves

are symmetrical about =
Tr/2. If ir/2 < <p < IT, it is obvious from

the figure that

(15-7)

Moreover,

(15-8) F(k, mir + <p)
- 2mK + F(k, <p),

E(k, mir + <p>)
= 2mE + E(k 9 <p),

where in is an integer.

Since the values of K and E, and of F(k, <p) and E(k, <p) for (p <> ir/2,

are tabulated, the relations (15-7) and (15-8) permit the evaluation of

F(k, <p) and E(k, <p) for all values of <p.

The discussion* above was restricted to values of k2 < 1. If &2 =
1,

y = A0 becomes y =
|cos 0| and ?/

= 1/A0 becomes y =
|sec 0|.

Consider

u = r _==*===. =
Jo ^/(i - z 2

)(\.
-

k'W) Jo- z 2
)(\.

-
k'W) Jo -y/i

- p sin2

where x = sin ^>.

For a fixed value of A, (15-9) defines u = F(z) or u =
Ffo>). The

function resulting from the solution of (15-9) for <p in terms of u is

called the amplitude of u and is denoted by am (u, mod &), or more

simply by <p
= am u. It will be assumed that the equation u =

F(<p)

can be solved for <p. Since <p am w,

x = sin ^>
= sin am u = sn u.

Moreover,

cos <p
= \/l ~ ^ 2 s \/l sn 2

1* = en u.

Finally,

The functions sn u, en u, and dn w are called the elliptic functions.

From the definitions, it is obvious that

am (0)
=

0, sn (0)
=

0, en (0)
=

1, dn (0)
=

1;

am ( u) = am u, sn (u) sn u, en ( u) = en u, dn ( u)
= dn u.

The elliptic functions are periodic functions and in some respects

resemble the trigonometric functions. There^ exists a complete set of

* See Prob. 1, at the end of this section.
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formulas connecting the elliptic functions analogous to the set for the

trigonometric functions.*

An interesting application of elliptic integrals to electrical

problems is found in the calculation of the magnetic flux density

in the plane of a circular loop of radius a carrying a steady

current /.

Upon applying the law of Biot and Savartf to a circular loop of

radius a, the flux density B at any point P in the plane of the

wire is given by

(15-10) B = L
f

"Mr,*)*
v '

4?r Jc r*

where C is the circumference of the loop, r is the radius vector

from P to an element of arc

ds, and (r, s) is the angle

between r and this element

(Fig. 5).

If the point P is at the

center of the loop, then (r, s)

= 90, r = a, and the integral

is easily evaluated to give

= _
4* a 2

~
2a

a familiar result.

If, however, the pointP is

not at the center, the evalua-
FlG * 5 * tion of the integral is not so

easy. Consider the triangle RQS, where the side RQ r dd

makes an angle a with ds. It is clear that ds cos a = r dQ] and,
since a = 90 (r, s), it follows that

cos a = sin (r, s).

Hence,
, rdO
ds = ~. -

f ^
sin (r, s)

* See APPBL, P., and E. LACOUB, Fonctions elliptiques; PEIRCE, B. O., A
Short Table of Integrals; GBEENHILL, A. G., The Application of Elliptic

Functions.

t This formula is known to engineers as 'Ampere's formula. See, for

example, E. Bennett, Introductory Electrodynamics for Engineers. The

system of units used here is the "rational" system of units used in M. Mason
and W. Weaver, Electromagnetic Field.
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The substitution of this value in (15-10) yields

for the magnetic flux density at P.

Now, from triangle OQA, it is evident that

\/a 2 -
(r sin 0)

2 = r cos + A,

which, after squaring both sides and simplifying, becomes

r2 + 2rh cos 6 + (/i
2 - a2

)
= 0.

Solving for r gives

r = -/i cos S \A 2 cos 2 + a 2 -
/i

2
;

and, since r is always positive, the radical must be taken with the

positive sign. Substituting this value of r in (15-11) gives

B = L r2*

4*- Jo -h cos e + \/h2 cos 2 B + a2 - h 2

or, upon rationalization of the denominator,

D I C 2ir-h cos 0'- Vh 2 cos 2 + a2 - h 2
,.B = 5 Jo P"^ ^

i / r 2- r2*
, \

=
A / o r^ ( I

^ cos d6 + I A/a 2 h2 sin 2
c?0 )-

4w(a
2 -

/i
2
) \ Jo Jo /

The first of these integrals is zero, and the second is an elliptic

integral of the second kind, so that

In
B =

A (
47r(a

2

n r2v
I /?2

MN \ I
1 - ~2 sin2 e de

ft
2
) Jo \ a2

I

T /2
=

f 2
,
2,

7r(a
2 - h2

) Jo
-

fc
2 sin2

dff,

where k = h/a. This integral can be evaluated for any k with

the aid of the tables of elliptic integrals.

PROBLEMS
1. Prove that

da , ^ ./V

Jo -
I
2 sin2

<p
^ o A/I - ^-2 Sin2 a

Hint: Change the variable by setting I
2 sin 2 ^ = sin2 a.
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2. Plot, with the aid of Peirce's tables, F(k, ^>), where k = sin a,

using a as abscissa and F(k, <p) as ordinate. Draw 10 curves on the

same sheet of rectangular coordinate paper for <p 0, <p
=

10, <p
==

20,

> = 30, <f>
=

40, y>
=

50, , <p
= 90.

3. Plot four curves representing F(k, p) on the same sheet of rectan-

gular coordinate paper. Use <p as abscissa and the values of k as 0,

K, \/3/2, and 1.

/tp dp
4. Plot the integrand of I .- - for the values of k =

0,
Jo -v/1

- k 2 sin2
<p

%, and 1.
'

Use (p as abscissa. The areas under the curves give the

values of the elliptic integrals.

6. Compute the value of F(0, ir/2).

6. The major and minor axes of an elliptical arch are 200 ft. and

50 ft., respectively. Find the length of the arch. Compute the length

of the arch between the points where x and x = 25. Use Peirce's

tables.

7. Plot with the aid of Peirce's tables E(k, <p), where k = sin a.

Use a's as abscissas and E(k, <p) as ordinates. Draw 10 curves on the

same sheet of rectangular coordinate paper for (p
=

0, 10, 20, ,

90.

8. Plot on a sheet of rectangular coordinate paper the four curves

representing E(k, <p). Use <p as abscissa. The four curves are for k =
0,

H, \/3/2, and 1.

9. Plot the integrand of I \/l~-" k 2 sin 2 p dp for the values of
/o

k 0, H> and 1. Use v? as abscissa. Compare the result with that of

Prob. 4. What can be said about the relative magnitudes of F(k, (p)

and E(k,<p}
(

?

I*<P d(D
10. Show that I . is an elliptic integral of the first

Jo -y/i 4- k 2 sin 2
<p

kind.

Hint: Change the variable by setting sin <p
= T tan x.

11. Show that

dx

o \/lcos x o \l H sm

Hint: Set -\/cos x = cos ^>.

Note that the integral is improper but that it is easy to show its

convergence.

12. Show that

ain*gd9
__"

2 (K -
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Hint: sin2 =
j2
- ~

2 (1
- k* sin2

6).

13. Show that

# ^ fl
^

Jo -
A;

2 sin 2

14. Find the length of one arch of the sine curve.

16. Find the length of the portion of y = sin x lying between #

and x = 2.

16. Given:

- K sin 2

Find K and sn %K.

17. Show that I . where a > 1, is an elliptic integral.
J va cos

18. Show that the length of arc of an ellipse of semiaxes a and 6 is

given by

s = 4a f2 Vl ~ e
2 sin2 d

Jo

= 2ira (l Z
"~

54
g4 ""'*')> where e is the eccentricity.

16. Approximate Formulas in Applied Mathematics. It is

frequently necessary to introduce approximations in order to

make readily usable the results of mathematical investigations.

For example, an engineer seldom finds it necessary to use the

exact formula for the curvature of a curve whose equation is

y =
f(x), namely,

dfy
fir 2

(16-1) K = ax

since in most applications the slope dy/dx is small enough to

permit the use of the approximate formula

2(16-2) K -
|f2

Many such approximations are obtained by using the first few

terms of the Taylor's series expansion in place of the function
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itself. Thus, the formula (16-2) is obtained from (16-1) by

neglecting all except the first term in the expansion of [1 +
(dy/dx)*\~~^ in powers of dy/dx.

I. Small Errors. The values of physical quantities determined

by experiment are subject to errors due to inaccuracies arising in

the measurements of the quantities involved. It is often neces-

sary to know the size of such errors.

Let a capillary tube contain a column of mercury. The radius

R of the tube can be determined by measuring the length L and

the weight W of the column of mercury. Let L be measured in

centimeters and W in grams. Since the density of mercury is

P = 13.6, ^
fl = J-^y = 0.153 J~

\TTpL \ L

The principal error arises in the measurement of L. Let L be the

true value, and let L' = L + be the observed value. Then,
if R is the true value of the radius, let R' = R + 77 be the com-

puted value. The error in measuring W is negligible because of

the high accuracy of the balance. It follows that

fw IW
R = 0.153 J

j-
and R' = 0.153 Jj-f

or

R + TJ
= 0.15

Therefore,

Since is small compared with L, it follows that 77 is approxi-

mately given by K R T* Clearly, c can be either positive or
Z Li

negative.

2. Crank and Connecting Rod. If one end of a straight line

PQ (see Fig. 6) is required to move on a circle, while the other
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end moves on a straight line which passes through the center of

the circle, the resulting motion is called connecting-rod motion.

This kind of motion arises in a steam engine in which one end of

the connecting rod is attached to the crank PB and therefore

moves in a circle whose radius is the length of the crank, while the

other end is attached to the crosshead and moves along a straight

line.

Let r be the length of the crank, I the length of the connecting

rod, and s the displacement of the crosshead from the position A,

D ~

FIG. 6

in which the connecting rod and crank lie in a straight line.

Then,
AB = I + r,

and

AB = AQ + QD + DB = s + I cos <p + r cos 0.

Moreover,
PI) = Z sin <p

= r sin 0,

so that

sin ^>
=

j
sin

and

r*
r *

*cos a? = ^ / 1 77 sm z
0.

\ I
2

Therefore,

Y 1 - ^ sin2

6>J

: 1 - ( 1 - ^ sin 2

0J
+ r(l

- cos 6).

--..)"

s + Z ( 1 - -
7? sin2

) + r cos = I + r

or

s

If
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be-replaced by its expansion, it follows that

fir2 1 AA 2
1

s^lj^sin^ + i^j
Sin40 + . . .

J
+r(1 _ cos 0)

= fc sin 2 6 + ^ sin 4 +) + r(l
- cos 0).

\&l Ol /

If r is small compared with Z, the displacement of the crosshead

is given approximately by r(l cos 0) .

3. Surveying. In railroad surveying, it is fre-

quently useful to know the amount of difference

between the length of a circular arc and the

length of its corresponding chord.

Let r be the radius of curvature of the arc

AB (Fig. 7), and let a be the angle intercepted

by the arc. Then, if s is the length of the arc

AB and c is the length of chord AB, s = ra and c = 2r sin ~-

Since

sin x = x
^-?

+
^-j

cos
,

where < < x, the error in using only the first two terms of the

FIG. 7.

expansion is certainly less than

with an error less than

5!
Then,

Therefore,

1920

o-o- ,-,-,-_ _

with an error that is less than ra 6
/1920.

4. Vertical Motion under Earth's Attraction. Let it be required
to determine the velocity of a body of mass m that is falling from

a height s above the center of the earth and is subject to the

earth's attraction alone.

Let F be the attraction on the earth's surface and Ff be the

attraction at a distance h from the surface (Fig. 8). Then
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(f

where m' is the mass of the earth, k is the gravitational constant,

and r is the radius of the earth. Hence,

F (r + h)
2

F' r2

Also, let g be the acceleration at the surface of the

earth and g' be the acceleration at a distance h above

the surface, so that F = mg and F' =
mg'. It

follows that

F'
~"

"'
g

and, therefore,

But

a> = .9
s2

Fia. 8.

so that

dt 2

This equation can be solved for v = ds/dt by the following

device: Multiplying both members by 2 ds/dt and integrating

give

where C is the constant of integration. If the initial velocity

(ds/dt) 8^8Q is zero, then C = 2gr
2
/s and hence

But s = r + A and ds/eS = v, so that the equation becomes

( J-r
\r +

This formula can be used to calculate the terminal velocity

(i.e., the velocity at the earth's surface) when the body is released
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from any height. Thus, setting h = gives

(16-3) ^ =
2^(1-1).

Upon denoting by ho the initial height above the earth's surface,

so that SQ = r + ho, (16-3) can be written as

or

(16-4) v2 = 2gr

Now
,

,
= ( 1 H -

J ;
and if < 1, then series expansion

is permissible, so that

I
.f If/Q

^
r + ho

=
7

"

Hence, if ho/r < 1, (16-4) can be replaced by

Moreover, if & is very small compared with r, then the powers
of ho/r higher than the first Can be neglected* and

v 2 = 2ghQ ,

which is the familiar formula for the terminal velocity of a body

falling freely from a height ho that is not too great.

It follows from (16-3) that the square of the terminal velocity

will be less than 20r
2
(l/r) =

2gr. Moreover, for large values of

s<j the terminal velocity will be very close to \/2gr. Accordingly,
if a body falls from a very great distance it would attain a ter-

minal velocity (air resistance being neglected) of approximately

\/2gr = 6.95 miles per second.

The results stated in the last paragraph may receive a different

interpretation. Suppose a body were projected outward from

the earth's surface with a velocity of more than \/2gr = 6.95

miles per second. The previous discussion shows that, if air

* Since the series is alternating, the error will be less than 2gr(h Q/r)*.
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resistance is neglected, the body would travel an infinite dis-

tance. This velocity is called the critical velocity or the velocity

of escape.

It may be recalled that the earth's rotation exerts a centrifugal

force on a particle which is falling toward the earth and that this

force diminishes the effect of the force due to the earth's attrac-

tion. For a particle of mass m on the surface of the earth at the

equator, this centrifugal force is

mv2 mw 2r 2 mq ,_ = ___ = ww -r = ___
dynes,

where o> = 0.00007292 radian per second is the angular velocity

of the earth, r = 6,370,284 m., and g = 980 cm. per second per

second. At a distance s from the center of the earth, this force is

o masm s = m-'

But the earth's attraction at this distance is F = mg
f

. Since

9
f = 0r

2M
_ mgr** ~

s 2
'

If the particle is to be in equilibrium,

mgs _ mgr
2

289r
~

~s2~'

so that

s3 = 289r3 or s = 6.6r = 26,000 miles approx.

Thus, if all other forces are neglected, a particle would be in

equilibrium at approximately 22,000 miles above the earth's

surface. This gives a very rough approximation to the extent

of the earth's atmosphere. The actual thickness of the atmos-

pheric layer is supposed to be considerably smaller.

PROBLEMS

1. The mass of the moon is nearly one-eighty-first that of the earth,

and its radius is approximately three-elevenths that of the earth.

Determine the velocity of escape for a body projected from the moon.

Acceleration of gravity on the surface of the moon is one-sixth that on

the surface of the earth.
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2. Show that the time required for a body to reach the surface of the

earth in Illustration 4, Sec. 16, is

Hint:

ds

3. If the earth is considered as a homogeneous sphere at rest, then

the force of attraction on a particle within the sphere can be shown to

be proportional to the distance of the particle from the center. Let a

hole be bored through the center of the earth, the air exhausted, and

a stone released from rest at the surface of the earth. Show that the

velocity of the stone at the center of the earth is about 5 miles per

second.

Hint:

d*s mg
"&--->

where 8 is the distance of the stone from the center of the earth and r

is the radius of the earth.



CHAPTER III

SOLUTION OF EQUATIONS

Students of engineering, physics, chemistry, and other sciences

meet the problem of the solution of equations at every stage of

their work. This chapter gives a brief outline of some of the

algebraic, graphical, and numerical methods of obtaining the

real roots of equations with real coefficients, of types that occur

frequently in the applied sciences. It also contains a short

summary of those parts of the theory of determinants and the

theory of matrices that are immediately applicable to the solution

of systems of linear equations.

26. Graphical Solutions. The subject of the solution of equa-
tions will be introduced by considering a simple problem that

any engineer may be called upon to solve.

It is required to design a hollow cast-iron sphere, 1 in. in

thickness, that will just float in water. It is assumed that the

air in the cavity is completely exhausted. The specific gravity
of cast iron will be denoted by p, for convenience.

By the law of Archimedes, the weight of the sphere must

equal the weight of the displaced water. This gives the con-

dition on the radius of the sphere, namely,

-
(x
-

I)
3
].

Simplifying gives

(25-1) x 3 - Spx* + 3pz - p = 0.

It will be convenient to remove the second-degree term in (25-1).

To accomplish this, let x = y + k, giving

Zyk* + & - 3P (i/
2 + 2yk + fc) + 3P (y + k) -

/>
-

0,

or

y
8 -f (3fc

-
3p)i/

2 + (3fc
2 - Qpk + 3p)y + W -

3pfc
2 4- 3pfc

- p - 0.

Choosing k = p makes the equation reduce to

(25-2) 2/
8 + (3p

~ 3P
2
)2/
- 2P

3 + 3p2 - p = 0.

83
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For cast iron, p = 7.5, and (25-2) becomes

(25-3) y*
-

146.257/
- 682.5 = 0.

If (25-3) is solved, the solution of (25-1) is also determined, since

x = y + 7.5.

A graphical method of solution will be used. The solution

of (25-3) is equivalent to the simultaneous solution of the system

(25-4)
(* =

2/
3
>

v '

\z
= 146.25*/ + 682.5.

The accompanying figure (Fig. 16) represents the graphs of the

two functions of (25-4); since they inter-

sect at y =
14.0, this value gives an

approximate solution of (25-3). The cor-

responding solution of (25-1) is x = 21.5.

From the graph, it is clear that there is

only one real solution of (25-4) and hence
6825,

of (25-3).
M0 This graphical method can be applied to

Fia - 16>
any cubic equation. The general fourth-

degree equation (quartic) can also be reduced to a form that is

convenient for graphical methods of solution.

Consider the quartic

x 4 + ax 3 + bx* + ex + d = 0.

Let x = y + k, as in the cubic equation. This substitution

gives

+ ?/(4fc
3 + 3ak 2 + 2bk + c) + fc

4 + ak* + bk 2 + ck + d = 0.

In order to remove the term in y
3

,
choose k = -T- This reduces

the equation to the form

2/
4 + Ay* + By + C = 0.

If A > 0, the further transformation y \/A z is made, and the

equation is reduced to

or

u
4 + AW + B VA z + C =

0,

s4 + ** + P* + q = 0.
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The solutions of this equation are the same as the solutions of

the simultaneous system

u = z4 + z 2
,

u = pz q.

The graphs of these two functions are easily plotted, and the

solutions can be read from the graph. In case A < 0, the

transformation would be y = \/ A z, which leads to the equation

z 4 - z 2 + pz + q =

and the graphical solution of the system

u =
w = pz q.

This method of solution for the real roots of an equation is

also applicable to many transcendental equations. In order to

solve

Ax B sin x =
0,

write it as

ax sin x 0,

and plot the curves of the simultaneous system

i y = sin x,

y = ox.

Similarly, the equation
a* ~ X 2 = o

can be solved graphically by plotting the curves of the equivalent
simultaneous system

y =
o*,

y = x 2
.

PROBLEMS
1. Solve graphically

(a) 2* - x* =
0,

(5) a?
4 - x - 1 =

0,

(c) x 6 - Z - 0.5 =
0,

(d) e* + x = 0.

2. Find, graphically, the root of

tan x x =
nearest %TT.



86 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 26

26. Algebraic Solution of Cubic. The graphical method of solution

is perfectly general, but its accuracy depends upon the accurate con-

struction of the graphs of the equations in the simultaneous' systems.

This is often extremely laborious and, at most, yields only an approxi-

mate value of the roots.

In the case of the linear equation ax + b 0, where a 5^- 0, the solu-

tion is x = b/a. For the quadratic equation ax2 + bx + c = 0,

b \/6
2 4ac

where a 7* 0, there are two solutions given byx

The question naturally arises as to the possibility of obtaining expres-

sions for the roots of ajgebraic equations of degree higher than 2.

This section will be devoted to a derivation of the -solutions of the

general cubic equation .

dox* + aix
2 + aw + a 3

=
0,

*

a 5^ 0.

Dividing through by ao gives

(26-1) z 3 + bx 2 +^cx + d =
0,

and the x2 term can be removed by making the change of variable

6
f tii .. .* ~ J 3

The resulting equation is

(26-2) y + py + q = 0,

where

b2

p = c - T
and

. be
,

263

- d
--3 +

27-

In order to solve (26-2), assume that

(26-3) y = A + B,

so that

?/
= A 3 + B* + 3AB(A + B).

Substitute in this last equation for A + B, from (26-3), and there is

obtained the equation

(26-4) ?/
- 3ABy - (A

3 + 3
)
= 0.

A comparison of (26-4) with (26-2) shows that

SAB = -p and A 3 + B 3 = -3,
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or

(26-5) A 8 3 = -
%= and A 3 + B9 = -$.

If B3
is eliminated by substituting from the second of Eqs. (26-5) into

the first, there appears the quadratic equation in A 8
,

whose roots are

-q

The solution for B z
yields precisely the same values. However, in

order to satisfy Eq. (26-5), choose*

(26-6)

B* =

If the values of y are to be determined from (26-3), it is necessary to

find the cube roots of A 3 and j5 3
. Recall that if x z = a3

,
then the solu-

tions for x are given by a, coa, and o>
2
a, where co =

^ H o~ i

o
2 = o --o~ ^ are complex roots of unity. Hence, if one cube

root of A 3 be denoted by a and one cube root of B 3 by , the cube roots

of A z are

a, coa, and w2
a,

whereas those of J53 are

|9, cop, and co
2
0.

It would appear that there are nine choices for /, but it should be

remembered that the values must be paired so that SAB =
p. The

only pairs that satisfy this condition are a and /3, coa and co'
2
j0, and o>

2a

and wjS, Hence, the values of y are

(26-7) yi = a + ft 2/2
= coa + a>

2
ft 2/3

= co
2a + coft

where

and

* The opposite choice for the values of A 8 and J5 3
simply interchanges

their role in what follows.
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The solutions of (26-1) can be obtained from the values given in

(26-7) by recalling that x = y - 6/3.

The expressions for a and are quite complicated, and when the

quantity under the square-root sign has a negative value the values of

a and ft cannot, in general, be determined. This is the so-called

irreducible case of the cubic, which can, however, be solved by using a

trigonometric method. This method will be

described later in the section, but first it is im-

portant to find a criterion that will determine

in advance which method should be used.

In order to determine the character of the

.y
roots of (26-2), whose coefficients are assumed

to be real, consider the functionO

f(y)
==

y3 + py + q

FIG. 17. and its maximum and minimum values.

f(y) =
3i/

2 + p,

Since

it appears that, if p > 0, then f'(y) is always positive and f(y) is an

increasing function. In this case the graph of f(y) has the form shown

in Fig. 17, and there is evidently only one real value for which f(y)
= 0.

If p < 0, however, f(y) is zero when y = \/-p/3. Since

f"(y) =
6i/, it follows that y = + V- P/3 gives a minimum value to

f(y), whereas y = V' p/S furnishes a maximum value. The cor-

responding values of f(y) are

ffyr

and

The graph of f(y) will have the

appearance of one of the curves in

Fig. 18.

It is evident that f(y)
= will

have only one real root if the graph
of f(y) has the appearance shown by (1) or (5), that is, if the maximum
and minimum values of f(y) are of the same sign. Hence,

or

FIG. 18.

0,
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is the condition that (26-2) have only one real root. It may be observed

that this condition is automatically satisfied if p ^ 0. It should be

noted that, if p =
0, Eq. (26-2) reduces to y* + q = 0, which obviously

has only one real root.

If (26-2) has three real and distinct roots, then the graph of f(y) must

have the appearance shown in (3), and it follows that the maximum
and minimum values must be of opposite sign. Hence,

q
2 + 7 P

3 <

is the condition for three real and unequal roots.

If <f + $iiP* =
0, either the maximum or the minimum value of

f(y) must be zero [see (2) and (4)], and (26-2) will have three real roots,

of which two will be equal (a so-called double root).

The expression

(26-8) A s -27g2 - 4p
3

is called the discriminant of the cubic equation (26-2), for its value

determines the character of the roots of the equation. The discriminant

for (26-1), obtained by replacing p and q in (26-8) by their values in

terms of 6, c, and d, is

(26-9) A s ISbcd - 463d + &2c2 '- 4c3 - 27d\

It may be worth noting that the discriminant of any algebraic equa-

tion, with leading coefficient unity, is the product of the squares of

the differences of the roots taken two at a time. Inasmuch as

(xi
- X 2)*(x 2

- X 3y(x3
- XiY =

(yi
-

2/ 2)
2
(?/ 2

-
2/ 3)

2
(2/3

-
2/i)

2
,

the discriminant has the same value for (26-1) and (26-2).

In view of the definition of A, it follows that

if A < 0, one root is real and two are complex;
if A =

0, all the roots are real and two are equal;

if A > 0, the three roots are real and unequal.

Example. Consider the cubic equation

x* + 3x* + 9z - 1 = 0.

From (26-9), it follows that A = 2592, and hence there will be one real

root and two complex roots. Setting x = y 1 yields the reduced cubic

2/* + 6y - 8 =
0,

and substituting p = 6 and q = 8 in (26-6) gives A 3 =4 +2 ^/Q and

B 3 = 4 2 V6. Therefore, the solutions for y are

^4 + 2 \/6 4- ^4 - 2 \/6, ^4 + 2 \/6 + w2 ^4 - 2 v/6,

and w2 ^4 +2\/6 + w ^4-2 \/6.
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The solutions of the original equation can now be obtained by recalling that

gW y
- 1.

The discussion of the solution of the cubic* equation "will be con-

cluded by giving the derivation of the expressions for the roots in the

case where the roots are real and unequal (that is, when A = 27q
2

- 4p
3 > 0).

Let

~ = r cos
Jj

and

- + -"*
Then*

(A Q\
cos - + i sin -

)o o/

and

(n
nv

cos - i sin - V

If it is noted that

and

o2

2?r . . . 2ir= cos ~ + i sm ~
o o

27T . . 27To
co

2 = cos -r- i sm
3 3

it is easily checked that the expressions for

2/i
== a + 0, 7/2

= wo: + O)
2
j8, 2/3

become

(26-10) ?/i
- 2rH cos 1 y a

= 2rH cos ^
o

COS

Since

'-v-fr
and

cos 8 =

the values of 2/1, 2/2, and 2/3 can be obtained directly from the coeffi-

cients of (26-2) or (26-1).

* By De Moivre's theorem (cos -f- i sin 0)" = cos nO + i sin n0.
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Example. Determine the real roots of

x* - 3ic2 + 3 0.

Here

A fc= -4(-27)(3) -27(9) > 0,

and the roots are all real and unequal. Since p 3 and q *=
1, it follows

that r - 1 and cos = >. Hence,

and
*27r Sir n STT

i/i=2 cos > 1/2=2 cos > 2/3
= 2 cos -r-

y y 7

The solutions of the general quartic equation

z 4 + kr 3 + ex* + cfc + e =

can be found, but the methods of obtaining the expressions for the

roots depend upon the solution of an auxiliary cubic equation. More-

over, these expressions are, in general, so involved that they are prac-

tically useless for computation.* It has been shown that the ordinary

operations of algebra are, in general, insufficient for the purpose of

obtaining ex'act solutions of algebraic equations of degree higher than 4.

However, it is possible to obtain the expressions for the solutions of the

general equation of the fifth degree with the aid of elliptic integrals.

The reader should not confuse the problem of obtaining expressions

for the exact solutions of the general algebraic equation with that of

calculating numerical approximations to the roots of specific equations

which have numerical coefficients. The latter problem will be dis-

cussed in Sees. 28 and 29, and it will be shown that the real roots of

such equations can be computed to any desired degree of accuracy.

Moreover, if the roots are rational they can always be determined

exactly.

PROBLEMS

Determine the roots of the following equations:

(a) ?/
3 - 2y - 1 =

0;

(6) 7/
-

146.25y
- 682.5 = 0;

(c) x s - x2 - 5x - 3 =
0;

(d) x* - 2x* - x + 2 = 0;

(e) x* - 6z2 + 6z - 2 =
0;

(/) x 3 + 6z2 + 3x + 18 = 0;

(0) 2x* + 3z2 + 3s + 1 = 0.

* See DICKSON, L. E., First Course in Theory of Equations, pp. 50-54;

BURNSIDE, W. S., and A. W. PANTON, Theory of Equations, vol. 1, pp. 121-142.
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27. Some Algebraic Theorems. The student of any applied

science is usually interested in obtaining numerical values,

correct to a certain number of decimal places, for the roots of

equations. Unless the roots are rational, the expressions for the

exact roots, provided that they can be found at all, are usually

complicated and the process of determining numerical values

from them is tedious. Accordingly, it is distinctly useful to

consider other methods of finding these numerical values.

Plorner's method, Newton's method, and the method of inter-

polation are the ones most frequently used; they will be dis-

cussed in Sees. 28 and 29. However, all thcksc methods arc

based on the assumption that a root has first been isolated, that

is, that there have been determined two values of the variable

such that between them lies one and only one root. In many
practical problems the physical setup is a guide in this isolation

process. This section contains a review of some theorems* from

the theory of equations that provide preliminary information as

to the character and location of the roots.

THEOREM 1 (Fundamental Theorem of Algebra.) Every

algebraic equation

f(x) == axn + air"-
1 + + a n-iz + a n

=

has a root.

It should be noted that this theorem does not hold for non-

algebraic equations. For example, the equation e
x has

no root.

THEOREM 2. (Remainder Theorem.) // the polynomial

f(x) E= a Qx
n + aix

n~ l++ an-ix + a n

is divided by x I) until the remainder is independent of x, then

this remainder has the value f(b).

THEOREM 3. (Factor Theorem.) // f(b) =
0, then x b is

a factor of the polynomial /(x) and b is a root off(x) = 0.

This theorem follows directly from Theorem 2. In many
cases the easiest way to compute the value of f(b) is to perform
the division of f(x) by x b. This is a particularly useful

* Those students who are not already familiar with these theorems and
their proofs will benefit by referring to H. B. Fine, College Algebra, pp.

425-453, and L. E. Dickson, First Course in the Theory of Equations, Chap.
II.
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method when the factor theorem is being used for the purpose of

determining the roots of f(x)
= 0. For if x b is a factor of

/Or), it follows that f(x)
= (# &) g(x), where g(x) is a poly-

nomial of degree one less than that of /(#). Obviously the roots

of g(x) = will be the remaining roots of f(jr) 0, so that only

g(x)
= need be considered in attempting to find these roots.

Moreover, when /(>) is divided by x b the quotient is g(x).

If synthetic division is used, the computation is usually quite

simple.

Example. If }(x)
= z3 + 2x2 + 2x + 1 is divided by x + 1, the

quotient is x2 + x + 1 and the remainder is zero. Hence, x 1 is

a root of f(x) and the remaining roots are determined by solving

X 2 + x + i = o.

THEOREM 4. Every algebraic equation of degree n has exactly

n roots if a root of multiplicity m is counted as m roots.

A root b of f(x)
= is said to be a root of multiplicity m if

(x b)
m

is a factor of /(x) but (x b)
m+1 is not a factor of f(x).

It follows from Theorems 2 and 4 that the polynomial of

degree n can be factored into n linear factors, so that

f(x) = a<>x
n + aix

n~ l + ' + dn-ix + an
= a (x xi)(x x 2) (x xn).

THEOREM 5. '//

f(x)
= a xn + aix

n~ l + + an^x + an

has integral coefficients and if f(x)
= has the rational root b/c,

where b and c are integers without a common divisor, then b is an

exact divisor of an and c is an exact divisor of a .

Example. Consider the equation

f(x) = 2x* + x2 + x - 1 = 0.

The only possible rational roots are 1 and J. Since /(I)
=

3,

/(-I) = -3, f(- lA] = -%, and/(K) =
0, it follows that K is the

only rational root. As a matter of fact, if f(x) is divided by x % the

quotient is 2x 2 + 2x + 2 whose factors are 2, x co, and x o>
2

,

where w and co
2 are the complex roots of unity.*

THEOREM 6. Given f(x) = a;
n + ^i^"" 1 + + an~ix + an

= 0. Iff(a) andf(b) are of opposite sign, then there exists at least

* See Sec. 26 and the example following Theorem 9 of this section.
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one root off(x) = between a and b. Moreover, the number of such

roots is odd.

Graphically this means that y = f(x) must cross the :c-axis

an odd number of times between a and b.

Example. If f(x) s 8x* - I2x2 - 2x + 3 =
0,

/(-I) = -15, /(O) =
3; /(I)

- -3, /(2)
= 15.

Since /( I) is negative and /(O) is positive, there is at least one root

between 1 and 0. Similarly, there is a root between and 1, and

another between 1 and 2.

THEOREM 7. (Descartes' Rule of Signs.) The number of

positive real roots of an algebraic equation f(x) with real coeffi-

cients is either equal to the number of variations in sign off(x) or less

than that number by a positive even integer. The number of negative

real roots of f(x)
= is either equal to the number of variations in

sign of f( x) or less than that number by a positive even integer.

Example. f(x) = 8# 3 I2x2 2x + 3 has two changes in sign, and

therefore there are either two or no positive roots of f(x)
= 0. Also,

f( x) s &c3 I2x 2 + 2x + 3 has only one change in sign, and/(#)
must have one negative root.

THEOREM 8. Every algebraic equation of odd degree, with real

coefficients, and leading coefficient positive has at least one real root

whose sign is opposite to that of the constant term.

Example. Since f(x) s= 8x* 12z 2 2x + 3 = is of odd degree

and the constant term is positive, it follows that there must be at least

one negative root.

THEOREM 9. // an algebraic equation f(x) = with real coeffi-

cients has a root a + bi, where b 9^ 0, and a and b are real, it also has

the root a bi.

Example. Thus, x* 1 = has the root M + K \/3 1, and there-

fore it has the root % J \/3 i. This theorem states that imaginary
roots always occur in pairs.

PROBLEMS

1. Find all the roots of the following equations:

(a) xs + 2x* - 4z - 8 =
0;

(6) 2x* -x2 - 5x - 2 = 0;

(c) 4z4 + 4z3 + 3z2 - x - 1 = 0;

(d) 2z4 - 3z3 - 3x - 2 0.
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2. Isolate the roots of the following equations between consecutive

integers :

(a) x 3 - 2x 2 - x + 1 = 0;

(6) 2s 3 + 4z 2 - 2x - 3 =
0;

(c) x 3
-f 5z 2 + to + 1 = 0;

(d) x4 - 5z2 + 3 = 0.

28. Hornet's Method. Many readers are already familiar with

Horncr's method of determining the value, to any desired number of

decimal places, of the real roots of algebraic equations. However, the

development given here is somewhat different from that used in the

texts on algebra, in that it depends on Taylor's scries expansion.

Suppose that the equation is

(28-1) f(x) =s a xn + ttix"-
1 + + (in^x + an

=

and that it is known that the equation has a root between c and c + 1
,

where c is an integer. If f(x) is expanded in Taylor's series in powers of

x c, there will result* a polynomial in x r, namely,

i"(c\

/ +f'(e)(x
-

c) + J-
(x
-

c) +

Now, let x c = Xi and p~
== A ft_r . Then (28-1) is replaced by

(28-2) / t (xi) - A n + An-iX! + - + AiX!- 1 + Aox, - 0.

Since (28-1) had a root between c and c + 1 and since Xi = x c,

it is evident that (28-2) has a root between and 1. By the use of

Theorem 6, Sec 27, this root can be isolated between d and d + 0.1,

where d has the form a/ 10 and < a < 9. Moreover, /i(xj =
f(x\ -f c) ;

and it follows, that, if f\ has a root between d and d -f- 0.1, then / has a

root between c + d and c + d + 0.1. It should be noted that c may
be negative but that d will always be positive or zero.

The function /i(^i) can be expanded in Taylor's series in powers 'of

x\ d] and, if # 2
= #1 d, there will be obtained an equation

/2 (a? 2)
= Bn + Bn^xt + ' + JW- 1 + Boxf = 0.

But /i (0*1)
= had a loot between d and d + 0.1

;
and since xz = x\ d,

U follows that/2(x 2)
= will have a root between and 0.1.

This process can be continued as long as desired, each step deter-

mining another decimal place of the root of the original equation (28-1).

* Since /(#) is a polynomial of the nth degree, the derivatives of ordor

higher than n are all zero.
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The solution of a specific equation may help to clarify the procedure.

Let it be required to find the values of the real roots of the equation

F(x) ss x 4 + x* - 3z 2 - 6x - 3 = 0.

Since there is only one variation in sign, F(x) has at most one positive

root. F(x) has three variations, and so there will be at most three

negative roots. The only possibilities for rational roots are 1 and

3. Since F( 1)
=

0, it follows that x = 1 is a root. Moreover,
if F(x) is divided by x + 1, the quotient is f(x) = x 3 3x 3. Hence,

the remaining roots of F(x) = are the three roots of

/(x) = xs - 3x - 3 = 0.

It is easily checked that /(x)
= has no rational roots. Also,

A = 108 243, so that'there is only one real root which, since jf(2)
= 1

and /(3)
=

15, must lie between 2 and 3. Therefore, f(x) will be

expanded in powers of x 2. Since

/(x)
= x*- 3* -3, /(2) = -1,

f(x) = 3x 2 -
3, /' (2)

-
9,

/"(x) =
Gx, /"(2) =

12,

/'"(x) =
6, /'"(2) =

6,

the expansion becomes

/(x)
= -1 + 9(x

-
2) + ly (a;

-
2)

2 +
|j

(x
-

Replacing a? 2 by x\ gives

/1 (a? l )
s -1 + 9si + 6xi

2 + xi
3 = 0.

Since the real root of this equation lies between and 1, the #i
2 and Xi

3

terms do not contribute very much to the value of f\(xi). Hence, a

first approximation to the root can be obtained by setting 9#i 1 = 0.

This gives x\ % =0.111
,
and suggests that the root probably

lies between 0.1 and 0.2. It is easy to show that /i (0.1)
= 0.039 and

/i (0.2)
=

1.048; there is thus a root between 0.1 and 0.2, and it is

evidently closer to 0.1. Therefore, f(x) = has a root between 2.1

and 2.2.

Expanding /i Co; i) in powers of Xi 0.1 gives

jfi(si)
= -0.039 + 10.23(*i

-
0.1) +

!

|y (xi
-

O.I)
2 + (x,

-
0.1)',

and replacing x\ 0.1 by x 2 yields

/2(*2)
= -0.039 + 10.23^2 + 6.3X2

2 + $2* - 0.

Now 10.23x2 0.039 = gives the approximation x = 0.0038, and

testing 0.003 and 0.004 reveals that /2(0.003) = -0.008253273 and
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/2(0.004)
= +0.002020864. Thus, the root lies between 0.003 and 0.004

and is closer to 0.004. If it is desired to determine the root of f(x)
=

to three decimal places only, this value will be 2.104. If more decimal

places are desired, the process can be continued. It should be noted

that in each succeeding step the terms of the second and third degree

contribute less, so that the linear approximation becomes better.

PROBLEMS

1. Apply Horner's method to find the cube root of 25, correct to three

decimal places

2. Determine the real roots of 3 2x 1 = by Horner's method.

3. Determine the root of x 4 + x 3 7x 2 3 + 5 =
0, which lies

between 2 and 3.

4. Determine the real root of 2x 3
'3x

2 + # 1 0.

5. Determine the roots of x 3 3# 2 + 3 = 0.

6. Find, correct to three decimal places, the value of the root oi

x 5 + 3# 3 2x 2 + x + 1 =0, which lies between 1 and 0.

7. A sphere 2 ft. in diameter is formed of wood whose specific gravity

is M. Find to three significant figures the depth h to which the sphere

will sink in water. The volume of a spherical segment isTT/i
2 ( r ~ Y

The volume of the submerged segment is equal to the volume of the

displaced water, which must weigh as much as the sphere. Since water

weighs 62 5 Ib. per cubic foot,

and, since r 1,

/i
3 - 3A 2 + % = 0.

29. Newton's Method. Horncr's method of obtaining a

numerical solution of an equation is probably the most useful

scheme for solving algebraic equations, but

it is not applicable to trigonometric, ex-

ponential, or logarithmic equations. A
method applicable to these types as well as

to algebraic equations was developed by Sir

Isaac Newton sometime before 1676.

Newton applied his method to an alge-

braic equation, but it will be introduced

here in the solution of a problem involving FlG 19 -

a trigonometric function.,

Let it be required to find the angle subtended at the center of

a circle by an arc whose length is double the length of its chord
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(Fig. 19). Let the arc BCA be an arc of length 2BA. Let 2x

be the angle (measured in radians) subtended at the center of the

circle. Then, arc BCA = 2xr and BA = 2 DA = 2r sin x. If

arc BCA = 2BA, then 2xr = 4r sin x, or rr 2 sin # = 0.

The graphical solution of equations

of this type was discussed in Sec. 25.

A first approximation can be obtained

by graphical means. If y = x and

?/
= 2 sin x are plotted, it appears

from the graph (Fig. 20) that they
intersect for x lying between 108 and

109, or, expressing this in radians,

x -?$//? x

FIG. 20. 1.8850 < x < 1.9024.

If xi = 1.8850 be chosen as the first approximation, the question
of improving this value will be discussed first from the following

graphical considerations.

If the part of the curve y = x 2 sin x in the vicinity of the

root be drawn on a large scale, it will have the appearance shown

in Fig. 21. It is clear from the graph that adding to x\ the

FIG. 21.

distance AE, cut off by the tangent line to the curve at x\ =

'1.8850, will give a value x% which is a better approximation to the

actual root XQ. But AE is the subtangent at Xi and is equal to

where /(x) = x 2 sin x. Thus,*

Xz Xl _ /fr)..

*

See, in this connection, Prob. 8, at the end of this section.
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Similarly, upon using 2 as the second approximation and

observing that
ff\ . is the subtangent EF, the third approxi-

/(**)

mation is found to bo

and in general the nth approximation xn is given by

(29-1) x n = Xn-.!
-

(r^r~y
(n = 2, 3, )

Since x\ = 1.885, the formula gives

_ _ f(x *) . _ -ri
~~ ^ s*n Xl

f'(%i)
l 12 cos 0:1

= 1.8850 -^-^2 = 1.8956.

In a similar way,

L895(i " 2 sin h895G - 1 89551.8955.

f(x)

It follows that the angle subtended by the arc is 3.7910 radians.

The use of Newton's method requires some preliminary

examination of the equation. It may happen that the equation
is of such a character that the second approximation to XQ will be

worse than the first. A careful examination of the following

sketches of four types of functions,

sketched in the vicinity of their

roots, reveals the fact that some

care must be exercised in applying

Newton's method. For all four

figures, it is assumed that x has

been isolated between Xi and x[.

The graphical interpretation of the

f(xi)
correction as the subtan- Fio. 22.

gent must be kept in mind throughout this discussion. If x\ is

used as the first approximation, then x2 will be obtained as the

second approximation by using Newton's method; if x( is used,

then 2 will be obtained.

In Fig. 22, both x% and x'% are closer to x than x\ or x{. In this

case the method would work regardless of which value is chosen
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as the first approximation. In Fig. 23, x2 is better than the

first approximation xi, but x'2 is worse than x{. It appears from

FIG. 23.

the figure that this occurs because the curve is concave down
between xi and x[, and hence f"(x) < 0, whereas f(x i) < and

f(x{) > 0. A similar situa-

tion would obtain if the curve

is concave up, so that/"(#)
> (Fig. 24). The reader

will readily convince himself

from an inspection of Fig 23
>x that caution must be ex-

ercised in the choice of the

first approximation if the

curve has a maximum (or a

minimum) in the vicinity of XQ.

If the curve has the appearance indicated in Fig. 25, then it is

evident that the choice of either x\ or x\ as the first approximation
will yield a second approxima-
tion which is worse than the

firt one. This is due to the

fact that the curve has a point

FIG. 24.

of inflection between x\ and
r'
Xi.

From the foregoing discus-

sion, it is apparent that New-
ton's method should not be

applied before making an investigation of the behavior of the first

and second derivatives of f(x) in the vicinity of the root. The

FIG. 25.
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FIG. 26.
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conclusions drawn from this discussion can be summarized in the

following practical rule for determining the choice of the first

approximation: Iff'(x) andf"(x) do not vanish in the given interval

(xi, x{) and if the signs off(xi) and f(x{} are opposite, then the first

approximation should be chosen as that one of the two end pointsfor
which f(x) andf"(x) have the same sign.

It can be proved* that if the single-valued continuous function

f(x) is of such a nature that/(
= has only one real root in foo

(xi, x{) and both/'(s) and /"(a;)

are continuous and do not

vanish in (xi, x'^) y
then repeated

applications of Newton's

method will determine the value

of the root of f(x) = to any
desired number of decimal

places.

The cases to which Newton's

method does not apply can be

treated by a method of interpolation (regula falsi) that is appli-

cable to any equation.

Let x be the value of x for which the chord AB intersects the

x-axis. From similar triangles (Fig. 26),

x Xi x( x

Solving for x gives

. _

The value x is clearly a better approximation than either xi

or x(.

PROBLEMS

1. Solve Prob. 7, Sec. 28, by Newton's method. Also, apply the

method of interpolation.

2. Determine the angle subtended at the center of a circle by a chord

which cuts off a segment whose area is one-quarter of that of the circle.

3. Find the roots of e* 4x 0, correct to four decimal places.

4. Solve x cos x 0.

* See WEBER, H., Algebra, 2d ed. vol. 1, pp. 380-382; COATE, G. T., On the

Convergence of Newton's Method of Approximation, Amer. Math. Monthly,

vol. 44, pp. 464-466, 1937.
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6. Solve x = tan x in the vicinity of x = %TT.

6. Solve x + e* = 0.

7. Solve x* - x - 1 = 0.

8. Show with the aid of Taylor's series that, if x = x t is an approxi-

mate root of f(x) 0, then the nth approximation is, in general,

determined from the formula (29-1).

f(n)(r ,\

Hint:f(x) = /(*0 + /'(*i)(* -*!)++ J

~r
L

(x
-

*i) + ;

and if f(xz)
==

0, then

30. Determinants of the Second and Third Order. The solu-

tion of systems of linear equations involves the determination of

the particular values of two or more variables that will satisfy

simultaneously a set of equations in those variables. Since the

discussion is simplified by using certain properties of deter-'

minants and matrices, the remainder of this chapter is devoted

to some elementary theory of determinants and matrices and its

application to the solution of systems of linear equations.

Consider first a system composed of two linear equations in

two unknowns, namely,

(30-1) (
aiX +

?
I2/
=

J"
\a 2x + b 2y = k>2 .

If y is eliminated between these two equations, there is obtained

the equation

(30-2) (aibz a2bi)x
= kib 2 fobij

and if x is eliminated, there results

(30-3) (aj6 2 a2bi)y = ai&2 Q^i.

If the expression aj) 2 a 2bi is not zero, the two equations

(30-2) and (30-3) can be solved to give values for x and y. That

the values so obtained are actually the solutions of the system

(30-1) can be verified by substitution in Kqs. (30-1).

The expression ai6 2 a zbi occurs as the coefficient for both

x and y. Denote it by the symbol

(30-4) 2

#2 02

This symbol is called a determinant of the second order. It is

also called the determinant of the coefficients of the system
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(30-1), for the elements of its first column are the coefficients of

x and the elements of its second column are the coefficients of y.

Using this notation, (30-2) and (30-3) become

(30-5) a 2 6;

bi

& 2 o 2

V =

The definition (30-4) provides the method of evaluating the

symbol. If

D -

the unique solution of (30-1) can be written as

:fci

x D y =

If Z) = 0, ai6 2
= fl2&i or ai/a2

=
61/62. But if the correspond-

ing coefficients of the two equations are proportional, the two lines,

whose equations are givon by (30-1), arc parallel vif a\/ai ^
fci//c 2) or coincident (if 0,1/0,%

= 61/62 = fci//c 2). In the first

case, the determinants appearing as the right-hand members of

the equations in (30-5) will be different from zero and there will

be no solution for x and y. In the second case, these deter-

minants, as well as D, are zero and any pair of values
, y that

satisfies one equation of the system will satisfy the other equa-

tion, also.

Example 1. For the system

2x - By = -4
3x - y =

1,

-4 -3
1 -1

D = 2 -3 = -2

2 -4
3 1

7
=* 2.

Example 2. For the system

but

2 _
6
"

2 -3
6 -9

=
0,

The two lines whose equations are given are parallel.
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Example 3. For the system

,, 2-32x - 3y = 4

QX - 9t,
=

12,
j

2 -3 4

6
~
-9

~~
12

-9
=

0,

The two lines are coincident.

Consider next the system of three linear equations in three

unknowns,
+ b\y + CiZ =

(30-6) <J
d2x + b 2y + c2z = k 2 ,

If these equations are multiplied, respectively, by

and the resulting equations are added, the sum is

(30-7)
= kib-2.Cz ^i6

The coefficient of x in (30-7) can be denoted by the symbol

(30-8) D ^ 0,2 62 +

This symbol is called a determinant of the third order. It is

also the determinant of the coefficients of the system (30-6).

Using the notation of (30-8), Eq. (30-7) can be written as

Dx s
61

b 2

63

x = k 2 b 2 c 2

Similarly it can be shown that

bi GI

!
b 2 c 2 y =

and

di b\ (

d 2 62 <

^3 &3 <

^2 ^2 ^2 ,

!>!*!

<)2k2 .

hkt
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If D 5^ 0, the unique solutions for x
f y, and z can be obtained as

bi ki

(30-9) x =

0,2 ^2 C2

fc 3 c 3

D z =

a* 62

,b,

In order to show that the values of x, y, and z, given in (30-9),

actually satisfy Eqs. (30-6), these values can be substituted in

the given equations.

If D =
0, the three equations (30-6) are either inconsistent or

dependent. A detailed analytic discussion of these cases will be

given in Sec. 35. Since the three equations of (30-6) are the

equations of three planes, a geometrical interpretation will now
be given.

If the three equations are inconsistent, the three planes are

all parallel, or two are parallel and are cut by the third plane in

two parallel lines. In either case, there is obviously no solution

for x, yj and z. If the equations are dependent, all three planes

intersect in the same line or all three planes coincide. In either

case there will be an infinite number of solutions for x, y, and z.

Example. For the system

Therefore,

3x- y
- z = 2,

x - 2y
- 3z =

0,

4x + y + 2z = 4.

D =
3 -1 -1100
JL

~~~
i

"""" O

y =

2 -i
-3

4 2

= 2.

2,

PROBLEMS
1. Evaluate

1 2

2 -1
3 -1 -2

2 -3j
1 4

2|

-1 1 -2!

,
and

4 -2 1

5 0-1
2 3-3

2. Find the solutions of the following systems of equations by using

determinants:
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(a) 5s - 4y =
3,

2x + 3y =
7;

(&) 2z + 3y - 2* = 4,

x + y - z = 2,

3z - 57/ + 3s = 0;

(c) 3x - 2y =
7,

3?/ + 2z =
6,

2z + 3z =
1;

(d) 3x + 2y + 2z = 3,

z - 4y + 2z =
4,

2x + y + z = 2.

31. Determinants of the nth Order. Determinants of the

second and third orders were defined in the preceding section.

These are merely special cases of the definition of the determinants

of any order n. Instead of a symbol with 2 2 or 3 2
elements, the

determinant of the nth order is defined as the symbol, with n

rows and n columns,

#21

D =
#2n

#n,l #n2
* ' * #nn

which stands for the sum* of then! terms ( l^a^ia^
* * '

#/c
nn,

where &i, & 2 , ,
kn are the numbers 1, 2, ,

n in some
order. The integer k is defined as the number of inversions of

order of the subscripts fci, & 2 ,

*

,
kn from the normal order

1, 2, , n, where a particular arrangement is said to have k

inversions of order if it is necessary to make k successive inter-

changes of adjacent elements f in order to make the arrangement
assume the normal order. There are nl terms since there are n!

permutations of the n first subscripts. Moreover, it is evident

that each term contains as a factor one and only one clement from

each row and one and only one element from each column.

* This sum is sometimes called the expansion of the determinant.

t It should be noted that it is not necessary to specify that the inter-

changes should be of adjacent elements, for it can be proved that, if any
particular arrangement can be obtained by k interchanges of adjacent
elements and also by'fc' interchanges of some other type, then k and k f

are

always either both even or both odd. Hence, the sign of the term is inde-

pendent of the particular succession of interchanges.
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Example. Consider the third-order determinant

107

D =
l #12 #13

#21 #22 #23

#31 #32 #33

The six terms of the expansion are, apart from sign,

#11#22#33>

#21#32#13,

#11#32#23,

#31#12#23,

#2i#12#33,

#3l#22#13-

The first term, in which the first subscripts have the normal order, is

called the diagonal term, and its sign is positive. In the second term

the arrangement 132 requires the interchange of 2 and 3 to make it

assume the normal order; therefore, k 1, and the term has a negative

sign. Similarly, the third term has a negative sign. The fourth term

will have a positive sign, for the arrangement 231 requires the inter-

change of 3 and 1 followed by the interchange of 2 and 1 in order to

assume the normal order. Similarly, it appears that the fifth term will

have a positive sign. In the sixth term, it is necessary to make three

interchanges (3 and 2, 3 and 1, and 2 and 1) in order to arrive at the

normal order; hence, this term will have a negative sign. As a result of

this investigation, it follows that

D = ttutt22#33 23 #21#12#33 + #2i#,*2#13 + #31#12#23 ~ #31#22#13

It is evident that if k is equal to zero or an even number the

term will have a positive sign, whereas if k is odd the term will

be negative.
PROBLEM

Find the signs of the six terms involving #u in the expansion of the

determinant

#11 #12 #13 #14

#21 #22 #23 #24

#31 #32 #33 #34

#41 #12 #43 #44

32. Properties of Determinants. 1. The value of a determi-

nant is not changed if in the symbol the elements of corresponding

rows and columns are interchanged.

If

D s 21 a2n

an i <
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then the determinant formed by interchanging the corresponding

rows and columns is

an

T\l ...

Any term ( l)*afc la* 2 ak n of D, where &i, fc 2 , ,
kn are

the numbers 1, 2, ,
n in some order, will correspond to a

term ( 1)^1^2
* * '

#/c
n
n of D', for each determinant must

contain every possible term that is a product of one and only
one element from each row and each column. But the number
of inversions is the same for the term of D as it is for the term of

ZX, owing to the fact that the corresponding first subscripts are

the same. It follows that each term of D occurs also in )', and

conversely each term of D f

occurs also in D.

Example. If

then

D'

2 5

1 -1
-3 -2

2 1 -3
5 -1 -2
3 4 1

-66,

= -66.

2. An interchange of any two rows or of any two columns of a

determinant will merely change the sign of the determinant.

If D is the original determinant and D" is the determinant

having the ith and jth rows of D interchanged, then the expansion
of D" will have the first subscripts of each term the same as those

of the corresponding term of D, except that i and j will be inter-

changed. Since it requires one interchange to restore i and j to

their original order in each term, the sign of every term will be

changed. Thus, D" = -D.

Example. If

then

2 5

1 -1
-3 -2 1

2 5

-3 -2
i 1

= 66.
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3. // any two rows or any two columns of a determinant are

identical, the value of the determinant is zero.

For, by property 2, if these two rows (or columns) were inter-

changed, the sign of D should be changed. But since these two

rows (or columns) are identical, D remains unchanged. There-

fore, D = D, and hence D = 0.

Example. If

then

2 -1
3 4

-2 5 -2

D = 0.

4. // each element of any row or any column be multiplied by

m, the value of the determinant is multiplied by m.

This follows from the definition of the determinant. Since one

and only one element of any row or column occurs in each term,

each term will be multiplied by m and therefore the value of the

determinant is multiplied by m.

Example 1. If

5

and

2

1

-3

D =

-2
-66

2 5
i i
j. j.

-6 -4

which has each element of the last row twice the corresponding element

of the last row of D, then

D = -132 and D = 2D.

Example 2. If

6

9

-6

4

2

3

then

= 2

3

9

-6

4

1

i

= 2-3
1

3

-2 3 -1

5. From properties 3 and 4, it follows that the value of a deter-

minant is zero if any two rows or any two columns have corre-

sponding^ elements proportional.
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6. The product of two determinants D and D', both of order n,

is the nth-order determinant D" which has as the element in its

ith row and jth column the sum

ainbn

which is formed by multiplying each element alk of the ith row of D
by the corresponding element bk} of the jth column of D' .

Thus, if

D = an
and >' = 611 6

621 622

then

D D' s D" = a\\b\i + 012621 #11612 + #12622

+ 022621 #21612 H~ ^22622

Example. The product of the following determinants is easily found

by expanding the product determinant:

sec x esc x

tan x cot x
- 1 - 1 - 1

tan x sin x 1

sec x esc x 2

cos x cot #

sec x esc 2

- 2 cos 2
x(2 sec a? esc x).

33. Minors. The method of evaluating a determinant by the

use of the definition of Sec. 31 is exceedingly tedious, especially

if n ^ 4. There are other schemes for this evaluation, and these

require the definition of the minors of a determinant. The

simplest of these schemes will be described and used here.

'If, in the determinant Z>, the ith row and the jth column be

suppressed, the resulting determinant A lJ (which is of order one

less than the order of D) is called the minor of the element al3 ,

which is in the ith row and jth column.

Example. If

ai2 ais

#21 #22 a 23 024

i 032 flss

1 tt42 tt43 #44
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then

flll #12

A23 ~ &31 &32

fl41 42

From the definition of a determinant, it is evident that o,,A tJ is

composed of all the terms of D which contain the element a
tj as a

factor, except for the possibility that all the signs may be reversed.

Then the expression ( l)
&1anAn is composed of all the terms of

D containing an as a factor; ( l)
t2a2iA 2 i is composed of all the

terms containing a2 i as a factor; ( l)*
3
o.3iA 3 i is composed of all

the terms containing a 3 i as a factor; etc. ButD is composed of all

the terms containing an, a2i ,
a 3 i, ,

an i as a factor, and so,

D =
( l)*iaiiAn + ( l)*

2a2iA 2 i + + ( l)*
naiAi.

It can be proved* that fci
= 1 4- 1. fc 2

= 2 + 1, & 3
= 3 + 1,

,
kn = n + 1, so that

D = aiiAn - a 2iA 2 i + + ( l)
n+1aniA n i.

In the above development for D the elements an, a 2 i, ,
an i

are the elements of the first column of D. Similarly, the value

of D can be formed by taking the elements of any other column

or of any row.

Using the ith column gives

D =
( IJ^ai.Au + (-l) fc2a 2lA 2t + + (-l)

fc*amA n;,

where ki = i + 1, fc2
= i + 2, ,

kn = i + n. Similarly,

using the ith row gives

D = (-!'

where ki = i + 1, fc2
= i + 2, ,

kn = i + n. It may be

observed that each kr is equal to the sum of the subscripts of its

a
t? and is thus equal to the sum of the number of the row and the

number of the column in which this element occurs. This

development is known as the expansion by minors, or the simple

Laplace development.

Since the term cofactor is frequently used in applications of

this type of development, it will be defined here. The cofactor

Ca of an element a l3 is defined as the signed minor, that is,

*
DICKSON, L. E., First Course in Theory of Equations, pp. 101-127;

FINE, H. B., College Algebra, pp. 492-519.
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Thus, the expression for D can be written as

n n

0=(-l)'-H.^ =

or as
n n

D = 2 ^A/ = 2 aijCij -

-0
406
340
2 7 1

+
406
5 2 1

2 7 1

5 1

2 1

-9(2 -
7) + 12(5

-
2)
-

4(0

13.

- 1

2 1

406
5 2 1

340

-0 5 1

3

5 2

3 4

4)
- 6(20 - 6)

Here, the first expansion is made by using the elements of the first

column, for it contains two zeros (the third row is an equally good

choice). The expansion of the first third-order determinant is made by

using the elements of the second row, but the third column could be

used to equal advantage. In the expansion of the last third-order

determinant the first row was chosen, but the third row and the second

and third columns provide equally good choices.

The following theorem is given here because of its frequent use

in many fields of pure and applied mathematics :

n

THEOREM. The sum 2 a>% 3Ck 3
is zero, if k ^ i.

j-i

Each term of this sum is formed by taking the product of the

cofactor of an element of the fcth row by the corresponding
element of the ith row. This is the expansion of a determinant

whose t'th and fcth rows are identical and whose value is accord-

ingly zero. Similarly, it follows that S =
0, if k ^ j.

Exampk. Let

Then,

D
3-1 2

1 2 -1
4 -3 -2

7, Ciz - -2, C13 -11
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and the sum
3

2) aSjCi, = -28 + 6 + 22 = 0.

Similarly,
3

2) 02,Ci, = -7 - 4 + 11 = 0.

By using the theory of determinants, the solution of a system
of n non-homogeneous linear equations in n unknowns can be

obtained. The rule for effecting the solution will be stated but

not proved.* The proof for the cases when n = 2 and n = 3 has

already been given in Sec. 30.

Cramer's Rule. Let

(33-1) ==
fo2

1 t^nn^n

be a system of n equations in the unknowns x\ 9

such that the determinant

D =

/)

y An

of the coefficients is not zero. The system (33-1) has a unique
solution given by

D,
x -
Xn ""

where Z3 t is the determinant formed by replacing the elements

ii, a 2l ,
a st> , a* of the tth column of D by fci, fc 2 ,

fc 3 ,

*

,

fcn , respectively.

Example. Solve, by Cramer's rule, the system

3z + y + 2z =
3,

2z - 3y
- z= -3,

a? + 2t/ + 2 = 4.

*
DICKSON, L. E., First Course in Theory of Equations, pp. 114-115.
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Here

and

PROBLEMS

,
and

16

132-10432
-3 1 I

1

120-4

- 3z =
2,

- 2z =
1,

x - y + z = 1.

+ y + 3z + w = -2,
2 W 1,

34. Matrices and Linear Dependence. In order to discuss

the systems arising in the succeeding sections, it is convenient to

give a short introduction to the theory of matrices.*

An m X n matrix is defined as a system of mn quantities a l}

arranged in a rectangular array of m rows and n columns. If

m = n, the array is called a square matrix of order n. The

quantities a lj are called the elements of the matrix. Thus,

(34-1) A

an
a2n

or

an
a2n

#wl Clm2
* * ' a

* For detailed treatment see M. Bocher, Introduction to Higher Algebra,

pp. 20-53; L. E, Dickson, Modern Algebraic Theories, pp. 3&~63.
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where double bars or parentheses are used to enclose the array of

elements. If the order of the elements in (34-1) is changed or if

any element is changed, a different matrix results, Any two

matrices A and B are said to be equal if and only if every element,.

of A is equal to the corresponding element of J5, that is, if

a l3
= b tj for every i and j.

If the matrix is square, it is possible to form from the elements

of the matrix a determinant whose elements have the same

arrangement as those of the matrix. The determinant is called

the determinant of the matrix. From any matrix, other matrices

can be obtained by striking out any number of rows and columns.

Certain of these matrices will be square matrices, and the

determinants of these matrices arc called the determinants of the

matrix. For an m X n matrix, there are square matrices of

orders 1, 2, , p, where p is equal to the smaller of the

numbers m and n.

Example. The 2X3 matrix

^_ / aH

\a-2l

contains the first-order square matrices (an), (a t2), (a 2s), etc., obtained

by striking out any two columns and any one row. It also contains

the second-order square matrices

obtained by striking out any column of A.

In many applications, it is useful to employ the notion of the

rank of a matrix A. This is defined in terms of the determinants

of A. A matrix A is said to be of rank r if there exists at least

one r-rowed determinant of A that is not zero, whereas all deter-

minants of A of order higher than r are zero.*

Example. If

/ 1 1 3\

EE(
2 1 0-21

\-l -1 1 5/

* In case an m X n matrix contains no determinants of order higher than r,

obviously r is the smaller of the numbers m and n, and the matrix is said

to be of rank r.
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the third-order determinants are

34

0.

Since

1
5*0,

there is at least one second-order determinant different from zero,

whereas all third-order determinants of A are zero. Therefore, the

rank of A is 2.

It should be observed that a matrix is said to have rank zero

if all of its elements are zero.

The notion of linear dependence is of importance in connection

with the study of systems of linear equations, and it will be con-

sidered next.

A set of m, m >
2, quantities /i, /2 , /a,

*

, fm (which may be

constants or functions of any number of variables) is said to be

linearly dependent if there exist m constants ci, c2 , ,
cm , which

are not all zero
}
such that

(34-2) ci/i + c2/2 + + cmfm s 0.

If no such constants exist, the quantities /t are said to be linearly

independent.

Example. If the /, are the polynomials

fi(x, y, z) = 2z 2 - 3xy + 4z,

f2(x, y, z) 55 a?* + 2xy - 3z,

MX, y, z)
ss 4z 2 + xy- 2z,

and if the constants are chosen as c t
=

1, 02 = 2, c3 = 1, then

Cifi + c 2/a + c3/3 ss 0.

Therefore, these three polynomials are linearly dependent.

It is evident that, whenever the set of quantities is linearly

dependent, at least one of the /t can be expressed as a linear

combination of the others. Thus, from (34-2), if ci ^ 0, then
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where

a 2
= -, a 3

= -> etc.

The definition of linear dependence requires the existence of at

least one constant c l ^ 0, and therefore the solution for / is

assured.

Obviously, in most cases it would be extremely difficult to

apply the definition in order to establish the linear dependence

(or independence) of a given set of quantities. In case the

quantities ft are linear functions of n variables, there is a simple
test which will be stated without proof.*

THEOREM. The m linear functions

f^ z= a l \x\ + a lzXz + ' ' ' + QinXn, (i
=

1, 2, , m),

are linearly dependent if and only if the matrix of the coefficients

is of rank r < m. Moreover, there are exactly r of the fl that form
a linearly independent set.

If m > n, obviously r < m, and it follows that any set of m
linear functions in less than m unknowns must be linearly

dependent.

The fact that the polynomials

/i
= 2x 3y + 42,

/2
= x + 2y - 82,

/3
= 4s + y

-
22,

are linearly dependent can be determined by observing that the matrix

of the coefficients,

/2 -3-3 4\

2 -3I
1 -2/

is of rank 2.

35. Consistent and Inconsistent Systems of Equations. A set

of equations that have at least one common solution is said to

be a consistent set of equations. A set for which there exists no

common solution is called an inconsistent set.

The question of consistency is frequently of practical impor-
tance. For example, in setting up problems in electrical net-

works, there are often more conditions than there are variables.

*
DICKSON, L. E., Modern Algebraic Theories, pp. 55-60; BOCHER, M ,

Introduction to Higher Algebra, pp. 34-38.
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This leads to a system in which there are more equations than

there are unknowns. It is important to have a method for

testing whether all the conditions can be satisfied simultaneously.

THEOREM 1. Consider a system of m linear equations in n

unknowns,

/0-. 1 \ a%lXl ~T~ #22#2 ~T~ -{- a%nXn == ^2
(35-1)

;

_
_j_ (J,mnXn ==

K"mj

where at least one k t j^ 0. If the matrix of the coefficients is of

rank r, Eqs. (35-1) are consistent provided that the rank of

is also r.

The matrix K is called the augmented matrix. The proof of

this theorem will be found in any standard work on higher

algebra.

Example 1. Consider the system

2x + 3y =
1,

x - 2y =
4,

4x y = 9.

Since

/2 3\

(l -2)
\4 -I/

is of rank 2, the equations are consistent if

K
/2 3 1\

=
(1

-2
4)\4 -1 9/

is also of rank 2. This condition is satisfied; for the determinant of K
is zero, and there exists a second-order determinant of K that is dif-

ferent from zero.

Example 2. The system
2x + 3y =

1,

x - 2y =
4,

4s - y = 6
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is inconsistent, because

/2 3 1\

K =
(

1 -2 4 I

\4 -1 67

is of rank 3, whereas the matrix A is of rank 2.

In the case in which there are n equations in n unknowns, the

theorem on consistent equations shows that if the determinant of

A is zero, so thjt the rank of A is r < n, then the rank of K must
be r also, if the set of equations is to be consistent. If the rank of

K is greater than r, the set of equations is inconsistent. This

provides the analytic discussion that should accompany the

geometric discussion given forn = 3 in Sec. 30.

If the set of equations is consistent and the rank of A is r,

then it can be shown that n r of the unknowns can be given

arbitrary values, and the values of the remaining r unknowns are

determined uniquely in terms of those n r arbitrary values.

These n r unknowns cannot be chosen at random, for the

m X T matrix of the coefficients of the remaining r unknowns must
have rank r if these unknowns are to be uniquely determined.

Example 3. Solve the system

x - y + 2z =
3,

x + y - 2z =
1,

x + 3y
- 6z = -1.

Since A and K are botli of rank 2, the equations are consistent. If

either y or z is chosen arbitrarily the matrix of the coefficients of the

remaining variables will have rank 2. If z = k, the equations to

be solved are

x - y = 3 - 2k,

x + y = 1 + 2/b,

x + 3y 1 + 6k.

Solving the first two for x and y gives x = 2 and y = 2k 1. These

values are seen to satisfy the third equation. Therefore, the solutions

x =
2, y 2k 1, z k satisfy the original system for all values of k.

The preceding discussion has dealt with non-homogeneous
linear equations. In case the fc t are all zero, the system becomes

the set of homogeneous equations

^11X1 + ai2#2 + * * ' + &lnn ^ 0,

(35-2)
a*lXl a X*

.

a*nXn ""'
'

. . . .
,

+ _!_ 1 n ~ C\
(Zt2^*2 "i

* * *

"T~ ^*in*'f> """" U
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Obviously, Zi = 2 = = xn = is a solution of (35-2).

It may happen that there are other solutions. If a\, a%,
- - -

,
an

is a solution of (35-2), it is evident that fcai, fca 2 , ,
kan ,

where

k is an arbitrary constant, will be a solution, also. The condition

for solutions different from the x\ = x% = - = xn = solu-

tion will be stated without proof.

THEOREM 2. The system (35-2) will have a solution different

from the solution x\ = x% = = xn = 0, if the rank of the

matrix of the coefficients is less than n.

It follows that if the number of equations is less than the

number of unknowns, that is, if m < n, there are always solutions

other than the obvious zero solution. If m =
n, there exist

other solutions if the determinant of the square matrix of the

coefficients is zero. As in the case of the non-homogeneous

system, if the m X n matrix of the coefficients is of rank r, then

n r of the unknowns can be specified arbitrarily and the

remaining r unknowns will be uniquely determined, provided that

the rank of the matrix of the remaining unknowns is r.

Example 4. Consider the system

2x - y + 3z =
0,

x + 2y z = 0,

3x + 4y + z 0.

Here

2-1 3

\A\ = 1 2 -1 = 10.

|3 4 1

Therefore, x -
0, y =

0, z = is the only solution.

Example 5. Consider

3x - 2y =
0,

x + 4y =
0,

2x - y =
0,

for which the matrix of the coefficients is of rank 2. Since the number
of unknowns is 2, x =

0, y = is the only solution.

Example 6. Consider

2x - y + 3z =
0,

x + 3y
- 2z 0,

5x 41 V + 4* - 0.
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Here,

A s

which is of rank 2. Since the number of unknowns is 3, the system
has solutions other than x =

0, y =
0, z = 0. Let z = k, and solve

any two of the equations for x and y. If the first two are chosen,

x = k and y = k. By substitution, it is easily verified that x =
k,

y =
k, z = k satisfies all four equations for any choice of k.

Example 7. Consider

2x - 4y + 2 = 0,

3x + y
- 2z = 0.

For this system,

A / 2
~ 4 ^A =

( 3 1 -2J'

which is of rank 2 Since the number of unknowns is greater than the

number of equations, there exist other solutions. Let z = k, and solve

the two equations for x and y. There results x %k and y = %k.

Thus, x = %k, y =
J^&, 2 = k is a solution for any choice of k.

Example 8. Consider

x - y + 2 = 0,

2x + 3y + 2 = 0,

3s + 2?/ + 2z = 0.

Here,

\A\
= 2 3 1322

Since the determinant of A is zero, there are solutions different from

x =
0, y =

0, z = 0. Let z =
fc, and solve any two of the equations.

If the first two are chosen, x =
&, ?/

== K&> z k. It is verifiable

by substitution that these values satisfy all three equations, whatever

be the choice of k.

PROBLEMS
1. Investigate the following systems and find solutions whenever the

systems are consistent:

(a) x - 2y =
3, (6) 2x + y

- z = 1,

2x + y =
1, x - 2y + z = 3,

3x y = 4. 4x 3y + z = 5.

(c) 3x + 2y =
4, (d) 2x - y + 3z = 4,

a? 3y =
1, s + If 3 = -1,

2z + 6y = -1. 5s - y + 3z = 7.
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2. Investigate for consistency, and obtain non-zero solutions when

they exist.

(a) x + 3y - 2z = 0, (b) x - 2y =
0,

2x - y + z = 0. 3x + y =
0,

2z - y = 0.

(c) 3x -2y + 2 = 0, (d) 2o; - 4y + 82; = 0,

a; + 2y - 2,3 = 0, x + 2?y
- 2z =

0,

2x y + 2z = Q. 3x - 2?/ + 2 = 0.

(e) 4a; - 2y + 2 = 0, (/) x + 2?y + 2z = 0,

2x - y + 3z = 0, 3x - y + z = 0,

2x - y
- 2z = Q, 2x + 3y + 2z =

0,

Qx 3y + 42 = 0. x + 4i/
- 2z = 0.



CHAPTER IV

PARTIAL DIFFERENTIATION

36. Functions of Several Variables. Most of the functions

considered in the preceding chapters depended on a single

independent variable. This chapter is devoted to a study of

functions depending on more than one independent variable.

A simple example of a function of two independent variables

x and y is

z = xy,

which can be thought to represent the area of a rectangle whose
sides are x and y. Again, the volume v of a rectangular parallel-

epiped whose edges are x, y, and z, namely,

v = xyz,

is an example of a function of three independent variables x,

y, and z. A function u of n independent variables x\, x^ ,

xn can be denoted by

U = f(Xi, X 2 ,

' '

,
Xn).

A real function of a single

independent variable x, say

V /(#)> can be represented

graphically by a curve in the

xy-pl&ne. Analogously, a real

function z = f(x, y), of two

independent variables x and Fio. 27.

y, can be thought to represent a surface in the three-dimen-

sional space referred to a set of coordinats axes x, y, z (Fig.

27). However, one must not become too much dependent
on geometric interpretations, for such interpretations may
prove to be of more hindrance than help. For instance,

the function v = xyz, representing the volume of a rectangular

parallelepiped, depends on three independent variables x, y,

123
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and z and hence cannot be conveniently represented geometrically
in a space of three dimensions.

Corresponding to the definition of continuity of a function

of a single independent variable x (see Sec. 7), it will be said that

a function z = f(x, y) is continuous at the point (XQ, yo) provided
that a small change in the values of x and y produces a small

change in the value of z. More precisely, if the value of the

function z = /(#, y) at the point (XQ, yd) is z
,
then the continuity

of the function at the point (x , yo) means that*

(36-1) lim f(x, y)
= f(x Q) yo)

= z .

In writing the left-hand member of (36-1), it is assumed that the

limit is independent of the mode of approach of (x, y) to (XQ, y ).

The statement embodied in (36-1) is another way of saying
that

f(x > y}
~

f(x v> yo) + ,

where lim e = 0; that is, if the function /(x, y) is continuous at
x>xo

(XQ, yo), then its value in the neighborhood of the point (XQ, yo) can

be made to differ from the value at the point (XQ, yo) by as little as

desired.

If a function is continuous at all points of some region R
in the :n/-plane, then it is said to be continuous in the region R.

The definition of continuity of a function of more than two

independent variables is similar. Thus, the continuity of the

function u = f(x, y, z) at the point (x , yo, z ) means that

lim f(x, y, z)
=

/(zo, y ,
z ),

z >ro

y *i/o

Z+ZO

independently of the way in which (x, y, z) approaches (x , y ,
z ).

PROBLEM

Describe the surfaces represented by the following equations:

(a) x + 2y =
3, (6) x - y + z = 1, (c) x -

2, (d) z = y,

(e) 2x-3y + 7z = 1, (/) x2 -
?/ =

0, (g) y* + z* = 25,

(A) i/
2 =

2x, (i) z 2 + ?/
- 10s =

0, (/) z 2 + 2/
2 + z 2 =

1,

(AO 3* + z2 =
y, (0 z 2 + 27/

2 + z = 0, (m) z 2 + 7/
2 = z 2

,

* For details, see I. S. Sokolnikoff, Advanced Calculus, Chap. III.
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y
2

T

(r)

37. Partial Derivatives. The analytical definition of the

derivative of a fuhctiori y =
f(x), of a single variable x, is

. Ihn = Km

This derivative can be interpreted geometrically as the slope of

the curve represented by the equation y =
f(x) (Fig. 28).

z^

It is natural to extend the definition of the derivative to

functions of several variables in the following way: Consider

the function z = f(x, y) of two independent variables x and y.

If y is held fast, z becomes a function of the single variable x

and its derivative with respect to x can be computed in the

usual way. Let AZ* denote the increment in the function

z = /(x, y) when y is kept fixed and x is changed by an amount

Ax; that is,

Az* = f(x + Ax, y)
-

/(x, y).

Then,

lim
* _ lim

-

Ax-0 AX Az-0 AX

is called the partial derivative of z with respect to x and is denoted

by the symbol dz/dx, or zx ,
or fx .
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Similarly, the partial derivative of z with respect to y is defined

by

In general, if w =
/(xi, 0:2, ,

xn) is a function of n inde-

pendent variables x\ y
x 2 ,

*

,
x n ,

then du/dx t denotes the

derivative of u with respect to x t when the remaining variables

are treated as constants. Thus, if

z = x 3 + x2
y + 2/

3
,

then

g = 3x2 + 2xy and g
= x 2 + 3</

2
.

Also, if u = sin (ax + by + cz), then

= a cos (ax + by + cz) (both t/ and 2 held constant) ;

CfX

= 6 cos (ax + by + cz) (both x and 2 held constant) ;

= c cos (ax + by + cz) (both x and ?/ held constant).
dz

In the case of z = /(x, ?/), it is easy to provide a simple geo-

metric interpretation of partial derivatives (Fig. 27). The equa-
tion z = /(x, T/) is the equation of a surface; and if x is given the

fixed value x
,

2 = /(x , y) is the equation of the curve AB on

the surface, formed by the intersection of the surface and the

plane x = XQ. Then dz/dy gives the value of the slope at any

point of AB. Similarly, if y is given the constant value y ,

then z /(x, T/O ) is the equation of the curve CD on the surface,

and dz/dx gives the slope at any point of CD.

PROBLEMS

1. Find dz/dx and dz/dy for each of the following functions:

(a) z = y/x\ (b) z = x 3
?/ + tan- 1

(y/x)\ (c) z = sin xy + x;

(d) z = e* log y; (e) z == x 2
y + sin" 1

x.

2. Find du/dx, du/dy, and du/dz for each of the following functions:

(a) u = x2
y + yz

- zz2
; (6) u = xyz + log xy;

(c) it = z sin- 1

(x/y); (d) u = (x
2 + y

2 + z2)^;

(e) it = (x* + 2/
2 + s 2

)-^.
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38. Total Differential. In the case of a function of one

variable, y =
/(a:), the derivative of y with respect to x is defined

as

so that Ay/Ax =
/'(a;) + ,

where lim e = 0. Therefore,
Ax

/(x + Ax)
-

/(x) ss Ay =
/'(x) Ax + e Ax,

where e is an infinitesimal which vanishes with Ax. Then,

is defined as the differential dy.

For the independent variable x, the terms " increment" and

"differential" are synonymous (that is, Ax = dx). However,
it should be noted that the differential dy (of the dependent
variable y) and the increment Ay differ by an amount c Ax (see

Fig. 28).

The differential of a function of several independent variables

is defined similarly. Let z = /(x, y), and let x and y acquire the

respective increments Ax and Ay. Then,

Az = /(x + Ax, y + Ay)
-

/(x, y).

If 2 = /(x, y) is a continuous function, then, as Ax and Ay
approach zero in any manner, Az also approaches zero as a limit.

It will be assumed here that /(x, y) is continuous and that

df/dx and df/dy are also continuous.

The expression for Az can be put in a more useful form by

adding and subtracting the term/(x, y + Ay). Then,

Az = /(x + Ax, y + Ay)
-

/(x, y + Ay) + /(x, y + Ay) - /(x, y).

But

lim /<>*+ Ax, y + Ay)
-

/(x, y + Ay) = df(x, y + Ay)

AZ-+O Ax dx

so that

/(x + Ax, v + Ay)
-

f(x, y +

where lim ei = 0. Moreover,

Ay-,0
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since the derivative is continuous. Therefore,

df(x, y + Ay) = a/Qc, y} ^
dx dx

2 '

where lim 2 = 0.

Af/~-0

In like manner,

f(x, y + Ay) -
/(re, y) =

where lim e' = 0. It follows that

e A*

in which = ei + c 2 .

The expression

is defined as the total differential of z and denoted by cfc. In

general, if w = /Or i,
# 2 , ,

#n), the total differential is given by

(38-1) du = -^~dx l + -j-dx2 + ' ' ' +^ dxn .

oXi 0X2 oXn

The expression for the total differential is called the principal part

of the increment Aw, and is a close approximation to Au for

sufficiently small values of dx\, dx%, ,
and dxn . As in the

case of a function of a single independent variable, the differential

of each independent variable is identical with the increment of

that variable, but the differential of the dependent variable

differs from the increment.

If all of the variables except one, say x t ,
arc considered as

constants, the resulting differential is called the partial differ-

ential and is denoted by
, df .

-

The partial differential expresses, approximately, the change
in u due to a change A# t

= dx l in the independent variable x l .

On the other hand, the total differential du expresses, approxi-

mately, the change in u due to changes dx\, dx^ ,
dxn in all
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the independent variables Xi, x%, ,
xn . It may be noted

that the total differential is equal to the sum of the partial

differentials. Physically, this corresponds to the principle of

superposition of effects. When a number of changes are taking

place simultaneously in any system, each one proceeds as if it

were independent of the others and the total change is the sum
of the effects due to the independent changes.

Example 1. A metal box without a top has inside dimensions

6 X 4 X 2 ft. If the metal is 0.1 ft. thick, find the actual volume of

the metal used and compare it with the approximate volume found

by using the differential.

The actual volume is AF, where

AF = 6.2 X 4.2 X 2.1 - 6 X 4 X 2 = 54.684 - 48 - 6.684 cu. ft.

Since F =
xyz, where x =

6, y =
4, z = 2,

dV = yz dx + xz dy + xy dz

= 8(0.2) + 12(0.2) + 24(0.1) - 6.4 cu. ft.

Example 2. Two sides of a triangular piece of

land (Fig. 29) are measured as 100 ft. and 125 ft., FIG. 29.

and the included angle is measured as 60. If the

possible errors are 0.2 ft. in measuring the sides and 1 in measuring
the angle, what is the approximate error in the area?

Since A = %xy sin a,

dA = %(y sin a dx + x sin a dy + xy cos a da),

and the approximate error is therefore

dA ~
\ t

125 r (0 -2) + 10 r

+ 100(125)
~

Q
= 74.0 sq. ft.

PROBLEMS

1. A closed cylindrical tank is 4 ft. high and 2 ft. in diameter (inside

dimensions). What is the approximate amount of metal in the wall

and the ends of the tank if they are 0.2 in. thick?

2. The angle of elevation of the top of a tower is found to be 30, with

a possible error of 0.5. The distance to the base of the tower is found

to be 1000 ft., with a possible error of 0.1 ft. What is the possible error

in the height of the tower as computed from these measurements?
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3. What is the possible error in the length of the hypotenuse of a

right triangle if the legs are found to be 11.5 ft. and 7.8 ft., with a

possible error of 0.1 ft. in each measurement?

4. The constant C in Boyle 's law pv C is calculated from the

measurements of p and v. If p is found to be 5000 Ib. per square foot

with a possible error of 1 per cent and v is found to be 15 cu. ft. with a

possible error of 2 per cent, find the approximate possible error in C

computed from these measurements.

5. The volume v, pressure p, and absolute temperature T of a perfect

gas are connected by the formula pv = RT, where R is a constant. If

T = 500, p = 4000 Ib. per square foot, and v = 15.2 cu. ft., find the

approximate change in p when T changes to 503 and v to 15.25 cu. ft.

6. In estimating the cost of a pile of bricks measured as 6 X 50 X 4

ft., the tape is stretched 1 per cent beyond the estimated length. If

the count is 12 bricks to 1 cu. ft. and bricks cost $8 per thousand, find

the error in cost.

A
7. In determining specific gravity by the formula s = , _ ^

where A is the weight in air and W is the weight in water, A can be read

within 0.01 Ib. and W within 0.02 Ib. Find approximately the maxi-

mum error in s if the readings are A = 1.1 Ib. and W 0.6 Ib. Find

the maximum relative error As/s.

8. The equation of a perfect gas is pv RT. At a certain instant

d given amount of gas has a volume of 16 cu. ft. and is under a pressure

of 36 Ib. per square inch. Assuming R = 10.71, find the temperature
T. If the volume is increasing at the rate of H cu. ft. per second and

the pressure is decreasing at the rate % Ib. per square inch per second,

find the rate at which the temperature is changing.

9. The period of a simple pendulum with small oscillations is

r = 2T
V^

If T is computed using I = 8 ft. and g 32 ft. per second per second,

find the approximate error in T if the true values are I 8.05 ft. and

g = 32.01 ft. per second per second. Find also the percentage error.

10. The diameter and altitude of a can in the shape of a right circular

cylinder are measured as 4 in. and 6 in., respectively. The possible

error in each measurement is 0.1 in. Find approximately the maxi-

mum possible error in the values computed for the volume and the

lateral surface.

39. Total Derivatives. Thus far, it has been assumed that x

and y were independent variables. It may be that x and y
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are both functions of one independent variable t, so that z

becomes a function of this single independent variable. In

such a case, z may have a derivative with respect to t.

Let z = f(x, y), where x =
<p(t) and y =

$(()] these functions

are assumed to be differentiable. If t is given an increment A,
then x, y, and z will have corresponding increments Az, Ay,

and Az, which approach zero with At. As in the case when x and

y were independent variables,

Az =
|

Ax +
j Ay + 61 Ax + c2 Ay.

Then,

= _
Arc Ay

A dx ~A*
"*"

dy A*
Cl

AJ
"*" 2

A*

and

cfe

Moreover, from (39-1) it appears that

dz = fdx+fdydx dy

gives the expression for the differential in this case as well as

when x and y are independent variables.

The general case, in which

Z = f(Xi, X 2 ,

*

,
Xn)

with

can be treated similarly to show that

and

In case ^ = a: (39-1) becomes

cfe _ ^f < = t

dx
~

fa Itydx
~

Ite Itydx

This formula can be used to calculate the derivative of a func-
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tion of x defined implicitly by the equation f(x, y) = 0. Let

z /(x, y), so that

* = # + #&
dx dx dy dx

Since z = f(x, y) =
0, it follows that dz/dx = and

dy _

provided that d/,% ^ 0.

As an example, let

x*y + y*x
- 1 =

define y as an implicit function of x. Then,

& a:
2 + 2xy

for all values of x and y for which the denominator does not

vanish.

It was noted that the total differential of a function

z = f(xi, x2 , , Xn), where x t
=

<p t (),

is given by

It will be proved next that the same formula can be applied to

calculate the differential even when the variables x % are functions

of several independent variables ti, t^
*

, tm. Thus, consider

z = f(xi, X*,
-

,
xn), where x %

=
<p t (ti, t2, ,

tm).

In order to find the partial derivative of f(xi, x^ ,
xn) with

respect to one of the variables, say fc, the remaining variables are

held fixed so that f(xi, x%, ,
xn) becomes a function of the

single variable tk . Then,

(39-2)
>

oj oXi . oj dx%
, , oj uXn

df dxi
, df dx% . . df dxn

^L ^1 _i_ ^L dx*
4. . . . J_ ^/ ^n

dxi dtm dx% dtm dxn dtm
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If the first equation of (39-2) is multiplied by dti, the second

by dt%, etc., and the resulting equations are added, there results

or

(39-3) rf/
=^^ + ^^+---+

This establishes the validity of the formula (38-1) in all cases

where the first partial derivatives, are continuous functions,

irrespective of whether the independent variables are Xi t x%,
-

,
xn or ti, h, ,

tm .

An important special case of the formula (39-8) arises in

aerodynamics and other branches of applied^ mathematics.

Consider a function u =
f(x, y, z, t) of four variables x, y, z, and t.

The total differential of u is

(39-4) ^-J^ + I^ + IA+I*
du , ,

du , . du , . du j.

^*c dx +
d-y
dy+

te
dz+

-dl
dt -

Let it be supposed that x, y, and z are not independent variables,

but functions of the variable t. In such a case, u will depend on

t explicitly, and also implicitly through x, y, and z. Dividing
both members of (39-4) by dt gives

fQo K\
du _ ^d^ .dudy .dudz du

( ' Tt
""

toT*
+

^"5?
+

a^di
"*"

df

On the other hand, if the variables x, y, and z are functions of t

and of some other set of independent variables r, s, ,
one

must replace dx/dt, dy/dt, and dz/d in the right-hand member
of (39-5) by dx/dt, dy/dt, and dz/dt, respectively, and du/dt in
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the left-hand member by du/dt. The partial derivative with

respect to t which appears in the left-hand member differs from

that appearing in the right-hand member, since the latter is com-

puted from u= f(x, y, z, t) by fixing the variables x, y, and z

and differentiating the resulting function with respect to t. In

order to indicate the distinction between the meanings of the

two partial derivatives with respect to t
y
one can write

Du _ du dx du dy dudz du

~~dt~~'dxdt dy'dt 'dzdt ~dt'

The fact that the total differential of a composite function

has the same form irrespective of whether the variables involved

are independent or not permits one to use the same formulas for

calculating differentials as those established for the functions

of a single variable. Thus,

d(u + v)
= du + dv,

= v du + u dv,
to

etc.

Example 1. If u = xy + yz + zx, and x =
t, y =

e~', and z cos
t,

du , ,

. dx
, , ,

. dy , t , N
dz

Tt
=

(y + ^Tt + (x + z
^dt + (x + y)

~dt

=
(e-< + cos 0(1) + (t + cos )(-s~0 + (< + "0(- sin

= e~* + cos t te*' e~( cos t t sin t e~* sin t.

This example illustrates the fact that this method of computing du/dt

is often shorter than the old method in which the values of x, y, and z

in terms of t are substituted in the expression for u before the derivative

is computed.

Example 2. If f(x y y)
= x2 + i/

2
,
where x r cos <p and y r sin <p,

then

df df dx df dv

dr
=
dxfr + dyfr

= 2x cos ^ + 2y sin ^ = 2r a* 1 * + 2r sinV =
2r,

^ = i^ + %l^
=

2a;(
^ r sin ^ + 22/(r cos ^

= 2r2 cos v? sin <p + 2r2 cos ^? sin <p
= 0.

Also,

df = 2r dr or df =* 2xdx + 2y dy.
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Example 3. Let z = e*v, where x = log (u + v) and y = tan" 1
(u/v).

Then,

az az dx 1 , ay t;

-jp-r, = *e- - and -

Hence,

du
~

dx du dy du
~~

u + v v 2 + u2

Similarly,

az _ yexv xexvu

~fo

=
u + V

~~
V 2 + U2

'

The same results can be obtained by noting that

dz yexv dx + xexv
dy.

But

, dx
, dx , 1 .

,

1 ,

dx 3- du + 3- dv =
: du -\ : dv

du dv u + v u + v

and

dy -5- du + ^ dv = -^-n
"

9 ^ r r dv.y du dv v2 + u 2 v2 + u2

Hence,
. du + dv

,

v du u dv
dz = yexv : h xexv ;y u + v v

=
( i h -r~l 2 J

^ "

\u -}- v v 2 + 'W
2
/

But

,1
dz j i

dz jdz =
-5- du + -~- dv:
du dv '

and since dz* and dv are independent differentials, equating the coeffi-

cients of du and dv in the two expressions for dz gives

a^ __ 7/e*" ze^z;

a^ u + t;
* f 2 + u2

and

__

ay
~

tT+li
""

v2 + u"2
'

PROBLEMS
1. If u =

z?/z and a; = a cos 0, |/
= a sin ^, 2 ==

kO, find du/dQ.
2. If ^ = a;

2
7/

2 and ?/
= r sin 6 and # = r cos 0, find aV^r and

3. If u = xy ?/2J and a; = r + s, y = r s, 2;
=

^, find du/dr,

du/ds, and du/dt.
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*?/

4. If z = e**, z = log v-w
2 + y 2

,
and z/

= tan" 1
i find dz/du and

6. If z = /(a; + M, y + *0 show that d2/dz = dz/du and

dz/dz>.

6. If u = x2
y + y*z + z 2

x, verify that

du
t
du

t

du
,

.

, xo

7. (a) Find du/dt, if u = e* sin yz and 2 = Z
2

, y = i 1, z = I//.

(6) Find dw/dr and dw/d0, if ^ = x 2 -
4?/ and x = r sec 0, y = r tan 0.

8. (a) Find dt//dz and du/dx, if ^ = x 2 + y
2 and t/

= tan x.

(b) Given V =
/(a; ; T/, 2;), where x = r cos 0, t/

= r sin 0, 2 = i. Com-

pute dF/dr, aF/a0 ; 57/5^ in terms of dV/dx, dV/dy, and dV/dz.-
?y

9. If /is a function of u and v, where u = v# 2
~h 2/

2 ^nd v = tan-1 ->

find olf/ax, a//^2/, and VW/dx) 2 +

40. Euler's Formula. A function /(#i, a: 2 , ,
xn) of n

variables xi, x^,
-

,
xn is said to be homogeneous of degree m

if the function is multiplied by Xm when the arguments xi,

xz ,

- -

,
xn are replaced by \Xi, Xx2 , ,

Xxn , respectively.

For example, f(x, y) = xz
/-\/x

2 + y
2

is homogeneous of degree

1, because the substitution of \x for x and \y for y yields

Xz 2
/V^M7?- Again, /(, y) = i + log * """

log y
is homo-

y %

geneous of degree 1, whereas /(#, 2/, z)
= z*/\/x* + y

2
is

homogeneous of degree %.
There is an important theorem, due to Euler, concerning

homogeneous functions.

EULER'S THEOREM. If u =
/(xi, x 2 ,

*

,
xn) is homogeneous

of degree m and has continuous
9

first partial derivatives, then

The proof of the theorem follows at once upon substituting

x'i
= Xxi, #2 = ^2,

' * *

,
x

f

n
==: Xxw .

Then, since /(rci, o:2 ,

* *

,
xn) is homogeneous of degree m,

f(x(, x'2 , , <) =
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Differentiating with respect to X gives

Ij*
1 +

&,**
+ ' ' ' +

&.
Xn = m*n

~
lf(Xi > **

' ' '

' Xn) -

If X is set equal to 1, then x\ = x(, x* = x'2 ,

- *

,
xn = x'n and

the theorem follows.

PROBLEM

Verify Euler's theorem for each of the following functions:

(a) f(x, y, z)
= x 2

y + xy
2 + 2xyz\

(6) f(x, y) = vV - x* sin- 1

N 1
, log a;

-
log y.

, y)
=

t H-- - ;

()

41. Differentiation of Implicit Functions. It was noted in

Sec. 39 that the derivative of a function of x which is defined

implicitly by the equation f(x, y) = could be calculated by
applying the expression for the total derivative. This section

contains a more detailed discussion of this method.

The equation f(x, y)
= may define either x or y as an implicit

function of the other. If the equation can be solved for y to

give y =
<p(x), then the substitution of y =

<p(x) in f(x, y}
=

gives an identity. Hence, f(x, y) = may be regarded as

a composite function of x, where x enters implicitly in y. If

so that

It will be observed that this discussion tacitly assumes that

f(Xj y)
= has a real solution for y for every value of x. If

(41-1) is applied formally to z2 + y* = 0, it is readily checked
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that - = --- This result is absurd for real values of x and y,dx y
*"

inasmuch as the only real values of x and y that satisfy x
1 + y

2 =
are x = and y = 0.

Example 1. Find dy/dx, if 3x s
y* + x cos /

= 0. Here,

cos y,
-g~

= 6z 3
?/ 2 sn

so that

rf^ __
9o;

2
?/

2 + cos y__

dx
~~ ~~

tix*y x sin y

The relation /(x, ?/, z)
= may define any one of the variables as

an implicit function of the other two. Let x and y be independent
variables. Then /(x, y, z)

= defines 3 as an implicit function

of x and i/, and

, dz , , dz ,

dz = ~ dx + dy.dx dy
*

But

Therefore, by substitution,

This can be written as

Since dx and dt/ are independent differentials and the above rela-

tion holds for all values of dx and dy, it follows that

dx dz dx
and

dy dz dy

If df/dz 9* 0, these equations can be solved to give

Example 2. If a 2 + 2y
2 - Szz =

0, then, by (41-2),

SL m _ 2a; - 3g - 4^
da?

""
3a;

J

dy
~~

-3x
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(41-3)

Frequently, it is necessary to calculate the derivatives of a

function that is defined implicitly by a pair of simultaneous

equations

>, y, z)
=

o,

(*, y,
= o.

If each of these equations is solved for one of the variables, say

Zj to yield

z = F(x, y) and z = <(#, y),

then one is led to consider the equation resulting from the

elimination of 2, namely,

F(x, y}
-

$(z, y} = 0.

This equation may be thought to define y as an implicit function

of Xj and one can apply the method discussed earlier in this

section to calculate dy/dx.

However, the elimination of one of the variables from the

simultaneous equations (41-3) may prove to be difficult, and it

is simpler to use the following procedure: The differentiation

of (41-3) gives

and

These equations can be solved for the ratios to give

dx \dy\dz
dy dz

dy dz

dz dx

d<f> d<p

dz dx

dx dy

d<p d<p

dx 'dy

from which the derivatives can be written down at once.

Example 3. Let

f(x, y, z)
s x 2 + 7/

2 + z* - a 2 =
and

Then,

dx:dy: dz 2y 2z

-2y 4z

2z 2x
-4z 2x

2x
2y\

2x -2y\

4yz:12xz:
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Hence,

dy _ dz -*
etc.

dx tyz dx

Another important case arises from a consideration of a pair

of simultaneous equations

(41-4)
lf(x, y, u, v)

=
0,

\ <p(x, y, u, v)
=

0,

which may be thought to define u and v as implicit functions

of the variables x and y.

Differentiating (41-4) gives

'
~

dx dy
~ " -

(41-5)

.

du dv

But, since u and v are regarded as functions of x and y,

, du , . du ,

du = dx + dyox oy
and

, dv 7 . dv 7

ay = aa; + ai/.
da: dy

y

Substituting for du and dv in (41-5) gives

fdu , d/d^ , /3/ , a/aw
du dx XT, ^ )

d* + ^ v w . d/ di^+
a^a^ av^

/^ ^
\dx

+ Tu dx du dv

Since the variables a; and y are independent, the coefficients

of dx and dt/ must vanish, and this leads to a set of four equations

for the determination of du/dXj du/dy, dv/dx, and dv/dy. Thus,
one obtains

dJL i

dx dv

d<p d<p

dx dvdu

~dx df_df_
du dv

dtp d<p

du dv



41 PARTIAL DIFFERENTIATION 141

and similar expressions for du/dy, dv/dx, and dv/dy. It is

assumed in the foregoing discussion that all the derivatives

involved are continuous and that

df_ tf

du dv

Example 4. If

then

du dv

+ y
z + u* + v 3 =

0,
1 + y - u* + v* = 0,

du

~dx

PROBLEMS
1. Obtain dy/dz, dw/dy, and dv/dy in Example 4, Sec. 41.

2. Compute dy/efo, if x z + ?/
3

3xy = 1.

3. Find dy/dx if

a;
2
?/ y

2z +
4. Obtain du/dx and dv/dy, if

a 3 = 0.

ttev zt/ + t; = 0,

vey xv + u 0.

5. If x =
to x gives

and ?/
= then differentiation with respect

dx du dx dv

du dx dv dx

dy du dy dv
~~

dudx dv dx

from which du/dx and dv/dx can be computed. Consider the pair of

equations
x = u2 - v2

,

y = uv,

and obtain du/dx, du/dy, dv/dx, and dv/dy.

6. Apply the method outlined in Prob. 5 to find du/dx, dv/dx,

du/dy, and dv/dy, if

j

X = U + V,

\y = 3u + 2v;
(a}

\,

( 2x = v2 w2
,

/ y uv.



142 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 41

7. If x = r cos 6 and y = r sin 0, find dr/dz and d0/d#.

8. If w - uv and

f N
i w2

4- r + x =
0,

(a)
) * - u -

y =
0,

one can obtain dw/dx as follows: Differentiation of w with respect to

x gives -3-
= u T- + "r The values of du/dx and dt>/dz can be

calculated from (a) by the method of Prob. 5. Find the expressions

for dw/dx and dw/dy.
9. If z uv and

u* -f- v 2 - x - y =
0,

W* - 02 + 3S + # =
0,

find dz/dx.

10. If 2 = w2 + w 2 and

2 = ^2 _ V 2
9

y = w,
find dz/dx.

11. If 2 = n 2 + f 2 and

u = r cos 0,

y = r sin 0,

find dz/dr and dz/dO.

12. If r = (x
2 + /y

2
)'

2
'

and = tan" 1 -, find dr/dx and dO/'dx.x

13. (a) Find du/dx, if x sec y + z 3
?y

2 - 0.

(b) Find cte/da; and dz/dy, if z 3
?/ sin 2 + 2 3 = 0.

14. Let u = x + y + z = and ; == s 2 + 7/
2 + 2 2 - a 2 = 0. lir <l

dx \dy\dz.

15. Find du/dx, dv/dx, du/dy, and dv/dy, if

16. Find dw/dx and dw/dy, ii w = u/v and

17. Show that ||f
= 1 and

||f| = -1, if f(x,y,z) = 0.

Note that, in general, dz/dx and dz/dz are not reciprocals.

18. Find du/dx, if

u2 - v 2 - x 3 + 3y =
0,

-w + t;
-

y
2 - 2x = 0.

19. Prove that
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if F(x, y, u, v)
= and G(x, y, u, v)

= 0.

20. Show that (g)
1

+ 1/r* (|)'
-
(|)' + ()', if .

and y = r sin 0.

r cos

42. Directional Derivatives. The relation expressed in (39-1)

has an important special case when x and y are functions of the

distance s along some curve C, which goes through the point

(x, y). The curve C may be thought to be represented by a pair

of parametric equations

x =
x'(s),

2/
=

2/0),

where x and y are assumed to possess continuous derivatives with

respect to the arc parameter s.

Let P (Fig. 30) be any point of

the curve C at which /(x, y) is

defined and has partial deriva-

tives df/dx and df/dy. Let

Q(x + Ax, y + Ay)

be ^a point close to P on this

curve. If As is the length of the

arc PQ and A/ is the change in / due to the increments Ax and

Ay, then

df r Af~- = hm -~
as A S-O As

gives the rate of change of/ along C at the point (x, y).

FIG

But

^ = y ^ a/^
ds ^x rfs ^y ^5

'

and

dx
-r-
as

,. Ax
hm ~~ = cos a.
A5->o As

dy ,. Ay
-r = hm - = sin a.
ds A*-O As

Therefore,

(42-1)
df df . df .

-r- = - COS a + T~ Sin a,
as dx dy

and it is evident that df/ds depends on the direction of the curve.

For this reason, df/ds is called the directional derivative. It

represents the rate of change of/ in the direction of the tangent to
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the particular curve chosen for the point (x, y). If a = 0,

#= #,
ds dx

which is the rate of change of / in the direction of the x-axis. If

a = r/2,

df^V,
ds dy

which is the rate of change of / in the direction of the y-axis.

Let z = f(Xj y), which can be inter-

preted as the equation of a surface, be

represented by drawing the contour

lines on the zy-plane for various values

of z. Let C (Fig. 31) be the curve in

the #?/-plane corresponding to the value

2 = 7, and let C + AC be the neighbor-

ing contour line for z = 7 + &y.

+x Then, A//As s= AY/As is the average
rate of change of / with respect to the

distance As between C and C + AC.

Apart from infinitesimals of higher order,

An = COS \f/.As Y '

where An denotes the distance from C to C + AC along the nor-

mal to C at (x, y), and \l/ is the angle between An and As; hence,

dn/ds = cos ^. Therefore,

(42-2)

'

4f.*!^co8*' as an ds an

This relation shows that the derivative of / in any direction may
be found by multiplying the derivative along the normal by the

cosine of the angle ^ between the particular direction and the

normal. This derivative in the direction of the normal is called

the normal derivative of /. Its numerical value obviously is the

maximum value that df/ds can take for any direction. In applied

mathematics the vector in the direction of the normal, of magni-
tude df/dn, is called the gradient.

Example. Using (42-1), find the value of a that makes df/ds a

maximum, considering x and y to be fixed. Find the expression for

this maximum value of df/ds.
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Since df/ds = /* cos a + / sin a,

d /df\

145

The condition for a maximum requires that

tanai =^, or a, = tan' 1 ^-

Using this value of i,

j:
r

f,

The relation (42-2) can be derived

directly by use of this expression for

df/dn. If a (Fig. 32) gives any di-

rection different from the direction

given by QJI, then

~ =
/, cos a + fy sin a.

But a = ai \l/ 1
so that

C+JC

FIG. 32.

.2. =
/j.(cos i cos ^ -f sin ai sin cos \/>

cos i sn

Since

cos ai =

^ COS ^ + /a

^fr!
cos * /v/5+ ^

i9 I J2

= cos ^ = Vfi +fi cos \

= -T
21 COS

dn
PROBLEMS

1. Find the directional derivative of f(x, y) = x*y + sin xy at

(l,7r/2), in the direction of the line making an angle of 45 with the
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2. Find

dn dx

if x r cos 8, y = r sin 0, and / is a function of the variables r and 0.

3. Find the directional derivative of f(x, y) = a;
3
?/ + ev * in the

direction of the curve which, at the point (1, 1), makes an angle of

30 with the #-axis.

4. Find the normal derivative of

f(x, y)
= x* + y*.

43. Tangent Plane and Normal
Line to a Surface. It will be re-

called that

Ax + By + Cz = D
. 33.

. .

is the equation of a plane, where

the coefficients A, B, and C are called the direction components
of the normal to the plane. If a, (3, and y (Fig. 33) are the direc-

tion angles made by the normal to the plane from the origin, then

cos a =

Therefore,

+ B 2 + C 2

cos a : cos ft : cos 7 = A:B:C.

If the plane passes through the point (XQ, yo, ZQ), its equation can

be written as

A(x - x ) + B(y - T/O) + C(z
- Z Q)

= 0.

There is also a normal form for the equation of a plane, entirely

analogous to the normal form for the equation of the straight

line in the plane. This form is

or

a; cos a + 2/ cos /3 + 2 cos 7 =
p,

B
+ B* + + # 2 + c 2 + B* + C 2

D
+ B 2 + C 2

'
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in which p = D/^/A 2 + J52 + C 2
is the distance from the origin

to the plane.

Consider a surface denned by z = f(x, y), in which x and y

are considered as the independent variables. Then,

(43-1)

If #o and t/o arc chosen, z is determined by z = /(x, y
Ax = x x and Ay = y y ,

and denote cfe by z z .

(43-1) becomes

. Let

Then

(43-2) z - z =
(.ro,

(X
- X ) +

Jo, ?/o)

-
2/0),

which is the equation of a plane. If this plane is cut by the

plane x = x
,
the equation of the line of intersection is

o, yo)

and this is the tangent line to the curve z = /(xo, y) at the point

(x , 2/0, z ). Similarly, the line of intersection of the plane defined

by (43-2) and the plane y =
2/0 is the tangent line to the curve

z = /(x, T/O) at (x , 2/0, z ). The plane defined by (43-2) is called

the tangent plane^to the surface z = /(x, y) at (x , 2/0, z ).

The direction cosines of the normal to this plane are propor-

tional to

dx dy
-1.

The equation of the normal line to the plane (43-2) at (x , 2/0, z )

is therefore

(43-3)
x x y ~ Z Zp

dJL
dx

df_

, 2/0) (so, 2/0)

This line is defined as the norrrial to the surface at (#o, 2/o, z ).

Figure 34 shows the difference between dz = RP' and Az = RQ.

P(%o, 2/o, z ) is the point of tangency and R(XO + Ax, t/ + Ay, z )

is in the plane z = z . PP7
is the tangent plane.
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In case the equation of the surface is given in the form

F(x, y, z)
=

0,

the tangent plane and the normal line at (x0) y ,
z ) have the

respective equations

t \ -L.
dF

( \
(X

-

Xo; -f- ^-7 (y yo)
(xo, in, zo) (xo, yo, z )

dz (n,
(z
-

and

(43-5)
x XQ y y$

dF\

=
dF\

^^|(xo, i/o, zo) y\ (%o, yo, 20)

z

(xo,yo,o)

These equations follow directly from (41-2).

FIG. 34

Example 1. At (6, 2, 3) on the surface z 2 + ?/
2 + ^ =

49, the

tangent plane has the equation

(x
-

6) +
(6, 2, 3)

The normal line is

(6, 2, 3)
(y
-

(6, 2, 3)

(z
-

3) =

6x + 2y + 3z = 49.

s - 6
__ y

- 2
__

z - 3~~ ~~ ~~

Example 2. For (2, 1, 4) on the surface z x2 + y
2

1, the tangent

plane is

z - 4 = 2x
(2, 1)

(x
-

2) +

or

2y - z = 6.



44 PARTIAL DIFFERENTIATION 149

The normal line is

x - 2 _ y - 1 z - 4

~T~ -
2

- -r
PROBLEMS

1. Find the distance from the origin to the plane x + y + z = 1.

2. Find the equations of the tangent plane and the normal line to

(a) 2x* + 3?/ + 4z 2 = 6 at (1, 1, K);

(*) T + ?-S ~ lat (4 >
3

>
8)'

(<0 ^2
+

|i
+ ^

= 1 at (*o, 2/o, *o);

(d) z2 + 2*/
2 -- z2 = at (1, 2, 3).

3. Referring to (43-4), show that

dF OF dF
cosa:cos0-cos7 '^Wl?

where cos a, cos j8, cos 7 are direction cosines of the normal line.

4. Show that the sum of the intercepts on the coordinate axes of any

tangent plane to x^ + yW + z^ = a
1/2 is constant.

44. Space Curves. It will be recalled that a plane curve C
whose equation is

(44-1) y = f(x)

can be represented in infinitely many ways by a pair of parametric

equations

(44-2) x = x(t),

y =
y(t)

so chosen that when the independent variable t runs continuously

through some set of values ti
< t < t% the corresponding values

of x and y, determined by (44-2), satisfy (44-1).

For example, the equation of the upper half of a unit circle

with the center at the origin of the cartesian system,

y =

can be represented parametrically as

x = cos tj

y sint, (0 ^ t ^ TT),



150 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 44

or

or

x =
2t,

y = A/i .- 4* 2
, (0 <; i : M).

Similarly, a space curve C can be represented by means of a

set of equations
x = x(t\

(44-3) < T/
-

so selected that when t runs through some set of values the

coordinates of the point P(x, y, z), defined by (44-3), trace out

the desired curve C.

FIG. 35.

i

It will be assumed that the functions in (44-2) and (44-3)

possess continuous derivatives with respect to t, which implies

that the curve C has a continuously turning tangent as the point

P moves along the curve.

Let P(xQ , yo, ZQ) (Fig. 35) be a point of the curve C defined by

(44-3) that corresponds to some value U of the parameter t
y

and let Q be the point (XQ +' A#, yo + Ay, z + Az) that cor-

responds to t = to + A. The direction ratios of the line PQ
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joining P and Q are

Ax A?/ Az __ Ax^A^Az
Ac Ac* Ac A* A* A2

If A is allowed to approach zero, Ax, At/, and Az all tend to zero,

so that the direction ratiohs of the tangent line at P(XQ, yQ ,
z )

are proportional to (dx/df)^t '(dy/dt)t^to-(dz/d()t^to- Hence, the

equation of the tangent line to C at P is

x XQ _ y --
j/o _ z zp

where primes denote derivatives with respect to .

Example. The equation of the tangent line to the circular helix

x a cos t,

y = a sin
,

z = a,

at t - 7T/6, is

a~
2 ~2

a

The element of arc c?s is given by

(da)
2 = (dz)

2 +W + (^)
2
,

so that the length of a space curve C can be calculated from

rv 2

. ,

The length of the part of the helix between the points (a, 0, 0) and

(0, a, 7ra/2) is

45. Directional Derivatives in Space. There is no essential

difficulty in extending th>e results of Sec. 42 to any number of

variables. Thus*, if u f(x, y, z) is a suitably restricted func-

tion of the independent variables x, y, and z, then the directional

derivative along a space curve whose tangent line at some point

P(x, y, z) (Fig. 35) has the direction cosines cos (x, s), cos (y, s),
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and cos (z, s) is

du du f N . du f N ,
du f ,

^ = - cos (x, s)+- cos (i,, .) + - cos (z, ,)

The magnitude of the normal derivative to the surface u = const.

is given by'

The vector that is normal to the surface u const, and whose

magnitude is du/dn is called the gradient of u.

PROBLEM

1. Find the equation of the tangent line to the helix

x a cos t, y a sin t, z = a,

at the point where t = Tr/4. Find the length of the helix between the

points t = and t 7T/4.

2. Find the directional derivative of / = xyz at (1, 2, 3) in the

direction of the line that makes equal angles with the coordinate axes.

3. Find the normal derivative of / = x 2 + y
2 + z 2 at (1, 2, 3).

4. Show that the square root of the sum of the squares of the

directional derivatives in three perpendicular directions is equal to

the normal derivative.

6. Express the normal derivative (45-1) in spherical and cylindrical

coordinates, for which the equations of transformation are

(a) x = r sin cos <p, y r sin 6 sin <p, z = r cos 6;

(b) x = r sin 0, y = r cos 0, z = z.

6. What is the direction of the curve x =
t, y t

2
,
z 3 at the

point (1, 1, 1)?

7. Show that the condition that the surfaces f(x, y, z) =0 and

g(x, y,z) =0 intersect orthogonally is that

,
.

, =
dx dx dy dy dz dz

8. Show that the surfaces

xyz = 1

intersect at right angles.

x2 y2 z2

xyz = 1 and
-^
+

-%

-
f
=
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9. Find the angle between the normals to the tangent planes to

the surfaces x* + y
2 + zz = 6 and 2z2 + 3?/

2 + z* = 9 at the point

(1, 1, 2).

10. Show that the direction of the tangent line to the curve of inter-

section of the surfaces f(x, y, z)
= and g(x t y, z)

= is given by

acos a:cos j3:cos 7 = / A />

Hint: Let (XQ, T/O, ^o) be a point on the curve of intersection, and find

the line of intersection of the tangent planes to the surfaces at the

point (XQ, 7/0, Zo).

46. Higher Partial Derivatives. The partial derivatives f*i9

/v
* * *

y f* ^ f(Xl >
x z,

' ' '

j #n) are functions of x\, x%,
-

,

xn and may have partial derivatives with respect to some or all

of these variables. These derivatives are called second partial

derivatives of f(x iy x z ,

' ' '

,
xn). If there are only two inde-

pendent variables x and t/, then f(x, y) may have the second

partial derivatives

df\ _ d 2
/ _

Jx)
^

dx*
^

***'

^
JXV)

dy \dx/ dy dx

dx \dy/ dx dy

d_(V\ s ^ sf
dy \dy/ dy

2 v '

It should be noticed that fxy means that df/dx is jBrst found and

then ( ) is determined, so that the subscripts indicate the
dy \dx/

order in which the derivatives are taken. In

a 2
/ _ a

(ef\
dy dx dy \dx/

the order is in keeping with the meaning of the symbol, so that

the order appears as the reverse of the order in which the deriva-

tives are taken.

It can be proved* that, if f^ and/^ are continuous functions

of x and yf
then /^ = fyx,

so that the order of differentiation is

* See SOKOLNIKOFF, I. S., Advanced Calculus, Sec. 31.
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immaterial. Similarly, when third partial derivatives are

found, fxyx = fxxy = fyxx and f^y
= fvxy = fvyx ,

if these deriva-

tives are continuous.

Example. If f(x, y)
=

e**, then

/*
=

ye*", fv
=

6**, /, yV*,

/* =
/**

= ^xv(^ + 1), /yy
= tfe*"-

PROBLEMS

1. Verify that ^- = ^- forJ
60; d?/ cty d#

(a) / = cos xy
2

, (6) / = sin2 x cos y, (c) f = ey/x.

2. Prove that if

v d*f d 2f

(a) /(*, y)
= log ( + t/

2
) + tan- 1

J then -^ +^ =
0;

(W /<*, y, )
- W + 2/

2 + ^)~^, theng +g +g = 0.

3. If u = x* + y* and
\

X = * + 3

j'
find~ and ~-J

(y = 2s t, ds* dt 2

(x = r cos 0, d 2u 3 2u
4. If u =

/(x, y) arid
j gin ^

find ^-2 and ^-
5. Use the results obtained in Prob. 6(6), Sec. 41, in order to show

that~ - u(W - u2
)/(u* + v 2

)*. Find ^- and |~-2 ^ // V / l

6. If -a? = ^(x, ?/), where x x(u, v), y =
t/(w, ?;), dx/du dy/dv,

and dx/dv = dy/dUj show that

_
dw2

"

^ 2
~

\dx
2

7. Show that the expressions

dz* . /dz\* , a 2^ d 2z

upon change of variable by means of x = r cos 6 and i/
= r sin ^ become

T/ /^Y ,

1 /^A 2

A T/
d20

,
1 ^ 22 1 ^

Fl =
\dr) + ^ (do)

and F2 -
5? + F2^2

8. If F =
/(a; + ct) + g(x ct} }

where / and ^ are any functions

possessing continuous second derivatives, show that

_ ," c
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9. Show that if x er cos and y = er sin 8, then

?!Z . ^!Z _ -2 /d2]/
, d!T\

dx*
+

a?/
2
~' e A^ 2 a*V

10. If 7i(x, 2/, 2) and y 2 (z, T/, 2) satisfy the equation

show that

satisfies the equation
d 2 d 2 d 2

47. Taylor's Series for Functions of Two Variables. This sec-

tion contains a formal development of a function of two variables,

/(x, t/), in a series analogous to the Taylor's series development
of a function of a single variable. It is assumed that the series

obtained here converges to the value of the function f(x t ?/),

but the analysis of the conditions under which this convergence
will occur is too involved to be discussed in this book.

Consider /(x, y), which is a function of the two variables x and

T/, and let it have continuous partial derivatives of all orders.

Let

(47-1) x = a + at and y = b + pt,

where a, 6, a, and p are constants and t is a variable. Then

(47-2) /(x, y)
= /(a + at,'b + pt) = F(t).

If F(t) is expanded in Maclaurin's series, there results

F"(Q) F"'(Q)
.

L W *2 _L L W *3 _1_ . . .

(47-3)

From (47-2) and (47-1), it follows that

= /.(,) +fy(x,y)P-

Then,
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and
dx

+ fyyx (x, y}p] -

3fxyy (x, y)a

Higher order derivatives of F(t) can be obtained by continuing

this process, but the form is evident from those already obtained.

Symbolically expressed,

toa?
+ ^d'

Then,

n_ A
dn
f _ n o^/

where
n

-r ~
r!(n

_
r)!

Since = gives x = a and ?/
=

6, it follows that

F(0) =
/(a, 6), F'(0) = afx (a, 6) + )8/y (a, 6),

-
.

Substituting these expressions in (47-3) gives

*XO = /(, y)
= /(, fc) + W(a, &) + fify(a, &)]

Since at = a; a and # = y 6, the expansion becomes

(47-4) /(x, 2/)
=

/(a, 6) +/(a, 6)(*
-

a) +/,(a, 6)(y
-

6)

+ A [/*(<*, b)(
-

)
2 + 2/^(a, 6)(x

-
a)(y

-
6)
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This is Taylor's expansion for a function f(x, y) about the point

(a, b).

Another form that is frequently used is obtained by replacing

(x a) by h and (y b) by k, so that x = a + h and y = b + fc.

Then,

(47-5) f(a + h,b + k)
=

/(a, 6) + /,(a, V)h + /v (a, 6)fc

+
j

r/~(a, &)^
2 + 2/*,(a, b)hk + /w (a, 6)fc

2
] + .

This formula is frequently written symbolically as

/(a + h, b + fc)
=

/(a, 6) + (h ^ + *

Example. Obtain the expansion of tan" 1 - about (1,1) up to the

y
third-degree terms. Here, f(x, y)

= tan" 1 -> so that
x

f(x, y)
= tan- 1 -> /(I, 1)

= tan" 1 1=7;

/(i y)
=

xxfe y)
=

/vv(> y)
=

(^2 _|_ yaj

Then,

PROBLEMS

1. Obtain the expansion for x^/
2 + cos xy about (1, Tr/2) up to the

third-degree terms.
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2. Expand f(x, y)
= exv at (1, 1), obtaining three terms.

3. Expand e x cos y at (0, 0) up to the fourth-degree terms.

4. Show that, for small values of x and y,

and

e* sin y = y + xy (approx.),

y2
'

log (1 + y) = y + xy - ^ (approx.).

5. Expand f(x, y) = x*y + x 2
y + 1 about (0, 1).

6. Expand (1 x2
y

2
)^ about (0, 0) up to the third-degree

terms.

7. Show that the development obtained in Prob. 6 is identical with

the binomial expansion of [1 (x
2
-f y

2
)]

}/^.

48. Maxima and Minima of Functions of One Variable. A
function f(x) is said to have a maximum at x =

a, if

and

A+ s /(a + h)
-

/(a) < 0,

A- = /(a
-

A)
-

/(a) < 0,

for all sufficiently small positive values of h. If A+ and A"~ are

both positive for all small positive values of h, then f(x) is said

to have a minimum at # = a.

It is shown in the elementary calculus that, if the function

f(x) has a derivative at x =
a, then the necessary condition for a

maximum or a minimum is the

vanishing of f'(x) at the point

x = a. Of course, the function

f(x) may attain a maximum
or a minimum at x = a with-

out having /'(a) =
0, but this

^x can occur only if /'(#) ceases to

exist at the critical point (see

Fig. 36).

Let it be supposed that f(x) has a continuous derivative of

order n in some interval about the point x = a. Then it follows

from Taylor's formula that

a
FIG. 36.
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where < 61 < 1, and

A- B /(a
-

h)
-

/(a)

where < 02 < 1- I^et it be assumed further that the first

n 1 derivatives of f(x) vanish at x = a but that /(n)
(a) is not

zero. Then

n\

and

Since f(n)
(x) is assumed to be continuous in some interval

about the point x =
a, f(n)

(a + Bik) and f(n}
(a
-

eji) will

have the same sign for sufficiently small values of h. Conse-

quently, the signs of A+ and A~ will be opposite unless n is an

even number. But if f(x) is to have a maximum or a minimum
at x a, then A+ and A~ must be of the same sign. Accordingly,

the necessary condition for a maximum or a minimum of f(x)

at x = a is that the first non-vanishing derivative of f(x), at

x a, be of even order. Moreover, since both A4"

and A~

are negative if f(x) is a maximum, it follows that/(n)
(a) must be

negative. A similar argument shows that, if /(#) has a minimum
at x =

a, then the first non-vanishing derivative of f(x) at x = a

must be of even order and positive.

If the first non-vanishing derivative of f(x) at x = a is of odd

order and/" (a)
=

0, then the point x= a is called a point of inflection.

Example. Investigate f(x) x 5 5# 4 for maxima and minima.

Now,
f(x) - 5z 4 - 20z3

,

which is zero when x and x = 4. Then,

f"(x) = 20x 3 - 60s2
, /"(O) =

0, /"(4) * 320;

/'"(a?)
= 60s2 -

120s, /'"(O) =
0;

f(x) = 120s - 120, /
IV

(0)
= -120.

Since /"(4) > 0, /(4) = -256 is a minimum; and since /
IV

(0) < 0,

/(O) = is a maximum.
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PROBLEMS

1. Examine the following for maxima and minima:

(a) y = x* - 4x* + 1
;

(6) y = x*(x
-

5)
2

;

(c) y x + cos x.

2. Find the minimum of the function y xx
,
where x > 0.

Hint: Consider the minimum of log y.

3. Show that x = gives the minimum value of the function

y ex + 6~z + 2 COS .

4. Find maxima, minima, and points of inflection, and sketch the

curves, for the following:

(a) y 3x -f 4 sin x + sin 2x;

(b) y 3x 4 sin x + sin 2z;

(c) i/
= 6z + 8 sin x + sin 2x.

6. Find the maximum and minimum values of the function

y x sin x + 2 cos x.

6. Find maxima, minima, and points of inflection, and sketch the

curves, for the following:

(a) y = zlogz;
(b) x 5 -

(y
- x 2

)*
= 0.

49. Maxima and Minima of Functions of Several Variables.

A function of two variables f(x, y) is said to have a maximum at

(a, >), if /(a + h, b + k)
-

/(a, 6) < for sufficiently small

positive and negative values of h and ft, and a minimum, if

/(a + h, b + k)
-

/(a, 6) > 0.

Geometrically, this means that when the point (a, 6, c) on the

surface z f(x, y) is higher than all neighboring points, then

(a, 6, c) is a maximum; and when (a, b, c) is lower than all

neighboring points, it is a minimum point. At a maximum or a

minimum point (a, 6, c) the curves in which the planes x = a and

y = b cut the surface have maxima or minima. Therefore,

f*(a, 6)
= and /y (a, 6)

= 0. The conditions fx = and /y =
can be solved simultaneously to give the critical values.

The testing of the critical values for maxima and minima is

more difficult than in the case of functions of one variable.

However in many applied problems the physical interpretation
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will determine whether or not the critical values yield maxima
or minima or neither. An analytical criterion can be established

for the case of two variables in a manner analogous to the method

used for one variable. By the use of Taylor's expansion, it can

be shown that if /x (a, b)
= and fv (a, 6)

=
0, then /(a, 6) is a

maximum if

D ^ &(a, b)
-

/,(a, b}fyy(a y b) <
with

/**(, 6) < and fyy(a, 6) < 0,

and a minimum if

D**fi,,(a,b) -/,(a,6)/w(a,6) <0
with

fxx(a, b) > and fyy (a, b) > 0.

In case

fly(a, b)
- fxx(a, 6)/w (a, 6) > 0,

/(a, fc) is neither a maximum nor a minimum. If

&(M) ~ /~(, &)/**(, &) =0,

the test gives no information, just as/"(z) = gives no criterion

in the case of one variable.

These considerations can be extended to functions of more than

two variables. Thus, in the case of a function f(x, y, z) of three

variables,

f ,
o,

=
0, % =

dx '

dy
' dz

is the necessary condition for a maximum or a minimum.

Example 1. A long piece of tin 12 in. r

wide is made into a trough by bending up \

the sides to form equal angles with the

base (Fig. 37). Find the amount to be ^t-\.
bent up and the angle of inclination of the /2-2x

sides that will make the carrying capacity ,_
Jb IG. o7.

a maximum.
The volume will be a maximum if the area of the trapezoidal cross

section is a maximum. The area is

A = I2x sin 6 - 2x2 sin + x 2 sin 9 cos 0;

for 12 2x is the lower base, 12 2x + 2x cos 6 is the upper base,
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and x sin 6 is the altitude. Then,

33- = I2x cos 6 - 2z 2 cos 6 + x 2 cos2 6 - x2 sin2

O0
= z(12 cos 6 - 2z cos + z cos 2 - z sin2

0)

and

|~
= 2 sin 0(6

- 2z -f x cos 0).

dA/dx = and 3A/dB 0, if sin = and z =
0, which, from physical

considerations, cannot give a maximum.
There remain to be satisfied

6 - 2x + x cos =
and

12 cos - 2x cos 6 -f x cos 2 6 - x sin2 = 0.

Solving the first equation for x and substituting in the second yield,

upon simplification,

cos =
J-6 or = 60, and x = 4.

Since physical considerations show that a maximum exists, x = 4 and
= 60 must give the maximum.

Example 2. Find the maxima and minima of the surface

Now,
d% x dz

which vanish when x = y = 0. But

dx2 a 2c dy
2 b 2c dx dy

Hence, D = l/a
262c2 and, consequently, there is no maximum or minimum

at x = y = 0. The surface under consideration is a saddle-shaped
surface called a hyperbolic paraboloid. The points for which the first

partial derivatives vanish and D > are called minimax. The reason

for this odd name appears from a consideration of the shape of the

hyperbolic paraboloid near the origin of the coordinate system. The
reader will benefit from sketching it in the vicinity of (0, 0, 0).

PROBLEMS

1. Divide a into three parts such that their product is a maximum.
Test by using the second derivative criterion.
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2. Find the volume of the largest rectangular parallelepiped that can

be inscribed in the ellipsoid

4. -4- - -
i

a2
"
1
"

6 2 "^c 2

3. Find the dimensions of the largest rectangular parallelepiped that

has three faces in the coordinate planes and one vertex in the plane

4. A pentagonal frame is composed of a rectangle surmounted by an

isosceles triangle. What are the dimensions for maximum area of the

pentagon if the perimeter is given as P?
5. A floating anchorage is designed with a body in the form of a right-

circular cylinder with equal ends that are right-circular cones. If the

volume is given, find the dimensions giving the minimum surface area.

6. Given n points P % whose coordinates are (#, 7/ t
,
zt ), (i 1,2,

, n). Show that the coordinates of the point P(x, y, z), such that

the sum of the squares of the distances from P to the P% is a minimum,
are given by

(1

n
1

n̂
i

n \

nS^S^S*)'
50. Constrained Maxima and Minima. In a large number of

practical and theoretical investigations, it is required that a

maximum or minimum value of a function be found when the

variables are connected by some relation. Thus, it may be

required to find a maximum of u =
f(x, y t z), where x, y, and z

are connected by the relation <p(x, y, z)
= 0. The resulting

maximum is called a constrained maximum.
The method of obtaining maxima and minima described in

the preceding section can be used to solve a problem of con-

strained maxima and minima, as follows: If the constraining

relation <p(x, y, z}
= can be solved for one of the variables,

say z, in terms of the remaining two variables, and if the resulting

expression is substituted for z in u =
f(x, y, 2), there will be

obtained a function u = F(x t y). The values of x and y that

yield maxima and minima of u can be found by the methods of

Sec. 49. However, the solution of <p(x, y, z)
= for any one

of the variables may be extremely difficult, and it is desirable to

consider an ingenious device used by Lagrange.
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To avoid circumlocution the maximum and minimum values

of a function of any number of variables will be called its extremal

values. It follows from Sec. 49 that the necessary condition

for the existence of an extremum of a differentiable function

f(xi, #2, , n) is the vanishing of the first partial derivatives

of the function with respect to the independent variables Xi,

Xz,
' ' *

, %n- Inasmuch as the differential of a function is

defined as

it is clear that df vanishes for those values of x\, Xz,
' '

,
xn

for which the function has extremal values. Conversely, since

the variables x t are assumed to be independent, the vanishing

of the differential is the necessary condition for an extremum.

It is not difficult to see that, even when some of the variables

are not independent, the vanishing of the total differential is

the necessary condition for an extremum. Thus, consider a

function

(50-1) u = f(x, y, z),

where one of the variables, say z, is connected with x and y by
some constraining relation

(50-2) <p(x, y, z)
= 0.

Regarding x and y as the independent variables, the necessary

conditions for an extremum give du/dx = and du/dy =
0, or

du ^ df =
dx dx

"*"
dz dx '

dy dy
~~

dz dy

Then the total differential

du ,
,
du j df , . df . . dfdz ,

,
dz- ~ -

and since the expression in the parenthesis is precisely dz, it

follows that

(5
-3) ^ + ^ + ^ -
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The total differential of the constraining relation (50-2) is

5* *-

Let this equation be multiplied by some undetermined mul-

tiplier X and then added to (50-3) . The result is

Now, if X is so chosen that

(50-5)

f\ i^ **
\

dx dx

, y,
=

o,

then the necessary condition for an extremum of (50-1) will

surely be satisfied.

Thus, in order to determine the extremal values of (50-1),

all that is necessary is to obtain the solution of the system of

Eqs. (50-5) for the four unknowns x, y, z, and X. The multiplier

X is called a Laqrangian multiplier.

Example 1. Find the maximum and the minimum distances from

the origin to the curve

5z2 + fay + 5?/ -8 = 0.

The problem here is to determine the extremal values of

f(x, y) = xz + y
2

subject to the condition

<p(x, y) SE 5z 2 + fay + 5i/
2 - 8 = 0.

Equations (50-5) in this case become

2x + \(Wx + 6y) =
0,

2y + X(6z + 102/)
=

0,

5z2 + fay + 5y
2 - 8 = 0.

Multiplying the first of these equations by y and the second by x and
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then subtracting give

6X(?/
-

a:
2
)
=

0,

so that y = x. Substituting these values of y in the third equation

gives two equations for the determination of x, namely,

2z2 = 1 and x2 = 2.

The first of these gives / = x 1 + y
2 =

1, and the second gives/ = x 2

+ 2/
2 = 4. Obviously, the first value is a minimum, whereas the

second is a maximum. The curve is an ellipse of semiaxes 2 and 1

whose major axis makes an angle of 45 with the z-axis.

Example 2. Find the dimensions of the rectangular box, without a

top, of maximum capacity whose surface is 108 sq. in.

The function to be maximized is

f(x t y, z)
35 xyz,

subject to the condition

(50-6) xy + 2xz + 2yz = 108.

The first three of Eqs. (50-5) become

( yz + \(y + 2z) =
0,

(50-7) 4 xz + \(x + 2z) =
0,

(xy + \(2x + 2y) =0.

In order to solve these equations, multiply the first by x, the second

by ?/, and the last by z, and add. There results

\(2xy + 4xz + 4?yz) + 3xyz =
0,

or

2xz + 2yz) + %xyz = 0.

Substituting from (50-6) gives

108X + %xy* =
0,

or

\ _ _ *y*A ~
72'

Substituting this value of X in (50-7) and dividing out common factors

give

1 - ^ (y + 2z) =
0,

i - ^ (* + ao -
o,

1 - (2* + 2y) - 0.



61 PARTIAL DIFFERENTIATION 167

From the first two of these equations, it is evident that x = y. The
substitution of a: = y in the third equation gives z = 18/y. Substitut-

ing for y and z in the first equation yields x = 6. Thus, x =
6, y =

6,

and 3 = 3 give the desired dimensions.

PROBLEMS

1. Work Probs. 1, 2, and 3, Sec 49, by using Lagrangian multipliers.

2. Prove that the point of intersection of the medians of a triangle

possesses the property that the sum of the squares of its distances from

the vertices is a minimum.

3. Find the maximum and the minimum of the sum of the angles

made by a line from the origin with (a) the coordinate axes of a cartesian

system; (b) the coordinate planes.

4. Find the maximum distance from the origin to the folium of

Descartes x 3 + y
3

3<m/ = 0.

5. Find the shortest distance from the origin to the plane

ax + by + cz = d.

51. Differentiation under the Integral Sign. Integrals whose

integrands contain a parameter have already occurred in the

first chapter. Thus, the length of arc of an ellipse is expressi-

ble as a definite integral containing the eccentricity of the ellipse

as a parameter.
*

Consider a definite integral

(51-1) *() = '/(*, ) **,

in which the integrand contains a parameter a and where UQ and

ui are constants. As a specific illustration, let

7T

/*2

<p(a)
= I sin ax dx.

Jo

In this case the indefinite integral

f . cos ax ~
F(x, ot) I sin ax dx = h C

is a function of both x and a
; but, upon substitution of the limits,

there appears a function of a. alone, namely

IT T

, . P
2

. , cos ax\
2

I/- TrcA
via) = I sm ax ax = = -

I 1 cos -^ I-

Jo . a
|o

a \ 2 /

* See Sec. 14.
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Frequently, it becomes necessary to calculate the derivative

of the function <p(a) when the indefinite integral is complicated

or even cannot be written down explicitly. Inasmuch as the

parameter a is independent of x, it appears plausible that in

some cases it may be permissible to perform the differentiation

under the integral sign, so that one can use the formula

dtp _ J

Ul

df(Xj a) ,

da Juo da

This formula turns out to be correct if /(x, a) and d/(z, a)/da
are continuous functions in both x and a. Thus, forming the

difference quotient with the aid of (51-1),

Juo

-
f(x, )

v ' Aa Jwo Aa

Now the limit, as Aa > 0, of the left-hand member of (51-2)

is precisely dy/da, whereas the limit of the expression under the

integral sign is df/da. Hence, if it is permissible to interchange
the order of integration and calculation of the limit, one has

-

da

The restrictions imposed on the function f(x, a) can be shown
to be sufficient to justify the inversion of the order of these

operations.

Suppose next that the limits of integration u\ and UQ are func-

tions of the parameter a, so that

In this case, one can proceed as follows : Let

ff(x,a)dx
= F(x,a)

so that

(51-4)
~ =

f(x, a).

Then,

(51-5) <f>(a)
= f"

1

f(x, a) dx = F(x, a)
Juo(a)

i, a)
-

F(tt , a).
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Assuming the continuity of all the derivatives involved, one

can write*

, g)_ _ __ __

da du\ da da du$ da da

which, upon making use of (51-4) and (51-5), becomes

~
, a)]

- A"., ) p + f
U>M

f(x, a) dx.
a da da J wo()

The partial derivative appearing in this expression means that

the differentiation is to be performed with respect to a, treating

UQ and u\ as constants. Hence, making use of (51-3),

/r , ^ d<p ., . du\ , . duo .
C ui(a}

df(x y a) ,

(51-6) =
f(Ul , a)-- f(u , a) + J--l dx.

This formula is known as the formula of Leibnitz, and it

specializes to (51-3) when HI and U Q arc independent of a. The

validity of this formula can be established under somewhat less

restrictive hypotheses,! but the limitations imposed on the func-

tion f(x, a) in the foregoing discussion are usually met in prob-

lems arising in applied mathematics.

d- r2a -
Example 1. Find -T-, if #(a) =

J_ a2
e " 2

dx.

Then

/2a
9 r

l> _ r
!

- ^3*
e ""' (JX

Example 2. Formula (51-3) is frequently used for evaluating definite

integrals. Thus, if

(a)
=
J log (1 + a cos x) dx,

* See Sec. 39.

t See SOKOLNIKOFF, I. S., Advanced Calculus, Sec. 39, p. 121.
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then

=lxfo( l - 1+acosJ
cos

1 + a cos #

1 r
,

1 /.,-! . ,<* + 1\1= -
TT H--7

:

--
( sin" 1-- sm" 1-

)

al Vl - 2 \ 1 -a 1 + a/J

="
a

Therefore,

(D\CX.)
== 7T I I 7 :==:-

J \a a\/l - a z

i + vr^s
g a + log

\

or

<p(a)
= TT log (I + Vl ~ 2

) + c.

But, when a =
0,

Hence,
= TT log 2 + c and c = TT log 2,

and ____
, .

,
/i + Vi - 2

\
^(a) - TT log ^T-^-J.

PROBLEMS

J/2 sin ao; d^ by using the Leibnitz formula,

and check your result by direct calculation.

2. Find dp/da, if <p(a)
=

J Q (1 a cos a:)
2 dx.

r a
a;

3. Find d<p/da, if ^(a) =
J tan- 1

^ ete.

4. Find dp/dot, if <p(
=
JQ tan (x "" a) ^a; -

5. Find d(p/dx y
if ^(o?)

=
J Q V^ ^-

/*7T fa
6. Differentiate under the sign and thus evaluate JQ

-7
-

^
. C* dx 7T .. . .

by using L- =
5
-

r> if a2 > 1.J b Jo a cos # a2 1

7. Show that

f
T

log (1
- 2a cos 3 + a 2

) dx =
0, if a2 ^ 1

= ir log a2
,

if aa ^ 1,
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8. Verify that

is a solution of the differential equation

jg3
+ k*y =

/(&)-

where A; is a constant.



CHAPTER V

MULTIPLE INTEGRALS

It is assumed that the reader is somewhat familiar with the

problem of calculating the volumes of solids with the aid of double

and triple integrals and has some facility in setting up such

integrals. The first three sections of this chapter contain a

brief summary of some basic facts concerning double and triple

integrals, preparatory to the development of the expressions for

the volume elements in spherical and cylindrical coordinates.

These expressions are used frequently in applied mathematics

and are seldom included in the first course in calculus. A brief

discussion of surface integrals is also given here.

First, it may be well to recall the definition of the simple

integral J* f(x) dx. Let the function f(x) be continuous and

single valued for a < x < b. The interval (a, b) of the #-axis

is divided into n parts by the points a z= XQ , xi, x2 , ,

xn = b. Let A# = Xi #t_i, and let t be a value of x such that
n

rct-i < t ^ x^ Form the sum 23 /() A# t ,
and take the limit

t==i

of this sum as n <*> and all the Ax l > 0. Under the given

assumptions on f(x), this limit will exist, and it is defined as the

definite integral of f(x) over the interval (a, b) of the #-axis.

Thus,

lim X/({.) A*. ^ P /(*)**-

Geometrically, this integral can be interpreted as the area between
the curve y = f(x) and the x-axis included between the lines

x = a and x = b. The evaluation of the integral can often be

accomplished by the use of the following theorem.

FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS. // f(x)
is continuous in the interval a < x ^ b and G(x) is a function such

that dG/dx = f(x) for all values of x in this interval, then

f
b

f(x) dx = O(b)
-

G(a).Ja
172
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52. Definition and Evaluation of the Double Integral. The

double integral is defined and geometrically interpreted in a

manner entirely analogous to that sketched above for the simple

integral. Let f(x, y) be a continuous and single-valued function

within a region R (Fig. 38), bounded by a closed curve C, and

upon the boundary C. Let

the region R be subdivided

in any manner into n sub-

regions AjRi, A# 2 ,

' ' '

,
A.Rn

of areas AA i,
A.A 2,

* * ,AA n .

Let ( t , 7? t) be any point in

the subregion AjR t ,
and form

the sum

FIG. 38.

The limit of this sum, as n > o and all AA t
> 0, is defined as

the double integral of f(x, y) over the region R. Thus,

(52-1) Km f(x, y) dA.

The region R is called the region of integration, corresponding

to the interval of integration (a, b) in the case of the simple

integral. The integral (52-1) is sometimes written as

In order to evaluate the double integral, it will be simpler to

consider first the case in which the region R (Fig. 39) is a rec-

tangle bounded by the lines x a, x =
6, y =

c, y = d. The
extension to other types of regions will be indicated later.

Subdivide R into mn rectangles by drawing the lines x =
Xi,

x = z 2 , ,
x =

Zn-i, y =
yi, y =

2/2, , # = y-i.
Define Ax t

= z t x t__i, where XQ
= a and xn = 6, and define

Ay, = t/ ? 2/j-i, where 2/0
= c and 7/w = d. Let A.R t/ be the rec-

tangle bounded by the lines x = z t_i, # = x t, ?/
=

y/-i, 2/ 2/?-

Then, if the area of ARij is denoted by AAy,

= Ax t Ay/.
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t = n, j * m
Let ( t; , 7j t,) be any point of AB#. The sum S /(*,-, ??,) AA t ,-

can be written as

t = n, /"Wt

(52-2) j) /(**" ^^ AXt A2/J''

This summation sign signifies that the terms can be summed for

i and j in any manner whatsoever. Suppose that the terms of

(52-2) are arranged so that all the rectangles A.R t i are used first,

y-

y=d

Jm-l

Vi

->JC

FIG. 39.

then all the rectangles A/^ t2 ,
then all the rectangles A72 t3 ,

etc.

This is equivalent to taking the sum of the terms for each row of

rectangles and then adding these sums. Then (52-2) can be

written

(52-3)

But

lim

(*.' th,)
Ax.].

>5

*1) Ax =
Ja

f(x > i dx
>

so that

where lim
,
= 0. Moreover, | /(x, tij) dx is a function of 77,,

n * /<*
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say ^>0?,). Thus (52-3) becomes

;1
= fc

d

v(y} dy + e(d
-

c) + e'

fd fb~
I I f($> y} dx dy + c(d c) + e

,

Jc Ja

in which lim e = and lim e
f

0. Taking the limit as n > oo

n * m > oo

and m > oo gives

(52-4) Jfl
f(x, y) dA =

J" JT*
/(x, y) do; dp.

The double integral is, therefore, evaluated by considering

f(Xj y) as a function of x alone, but containing y as a parameter,
and integrating it between x a and x = 6 and then integrating

the resulting function of y between y c and y = d. The right

member of (52-4) is known as an iterated integral, and (52-4)

establishes the relation between the double integral over the

rectangle R and an iterated integral over the same rectangle.

Similarly, by taking the sum of the terms in each column and

then adding these sums,

(52-5) f f(x, y) dA = f f* f(x, y) dy dx.
J K 4/O t/ C

In case (52-5) is used, f(x, y) is first considered as a function of y
alone and integrated between y = c

and y =
d, and then the resulting

function of x is integrated between

x = a and x = b. Either (52-4) or

(52-5) can be used, but one of them
is frequently simpler in the case of a

particular function /(x, y).

Suppose R is, not a rectangle,

but a region bounded by a closed

curve C (Fig. 40) that is cut by any
'

FIQ 4Q
line parallel to one of the axes in, at

most, two points. Let Bi and JS 2 be the points of C having
the minimum and maximum ordinates, and let AI and A 2 be

the points of C having the minimum and maximum abscissas.

Let x =
<?i(y) be the equation of B\A\B^ and x =

<p*(y) be the
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equation of BiA 2B 2 . Then, in taking the sum of the terms by
rows and adding these sums, the limits for the first integration

will be <pi(y) and <p2(y), instead of the constants a and b. The
limits for the second integration will be 0i and /3 2 ,

in which /3i is

the ^/-coordinate of BI and /3 2 is the y-coordinatc of B 2 . Then

(52-4) is replaced by

(52-6) dA = **

Similarly, if y =
fi(x) is the equation of A\BiA^ y = fz(x) is

the equation of A\B^A^ a\ is the abscissa of Ai, and a2 is the

abscissa of A 2 , (52-5) is replaced by

(52-7) /(*, y) dA = /(,, y) dy dx.

y*b

Tn case R is a region bounded by a closed curve C that is cut

in more than two points by some

parallel to one of the axes, the

previous results can be applied to

subregions of R whose boundaries

satisfy the previous conditions.

By adding algebraically the inte-

grals over these subregions, the

double integral over R is obtained.

Example 1. Compute the value of

Fio 41

/i =
fR y dA where R is the region in the first quadrant bounded by

the ellipse

?! 4_ yl - i

a2 "^
62

Upon using (52-6) and summing first by rows,

n. . _ _

(Fig. 41).

dy

3

Using (52-7), one has

6 ,
/*ii /*~" v a j -

i, = r f
aV

Jo Jo
62

* 3
/ /V2 " v a 2 -x 2

\
yd2/da; =

Jo(2o )
da:
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It may be remarked that the value of /i is equal to yA, in which y is

the ^-coordinate of the center of gravity of this quadrant of the ellipse

and A is its area. Since A = irab/4,

/i ab^/3 46
$ =

1
=
mb/l

**
&T

Similarly, by evaluating 7 2
= f

R
x dA = a 2

6/3,

3-7T
x = =

A 7ra&/4

which is the ^-coordinate of the center of gravity.

Example 2. Moment of Inertia. It will be recalled that the moment
of inertia of a particle about an axis is the product of its mass by the

square of its distance from the axis. If it is desired to find the moment
of inertia of a plane region about an axis perpendicular to the plane
of the region, the method of Sec. 52 can

be applied, where f(x, y) is the square of

the distance from the point (x y y) of the
^

region to the axis. Then

M =

dA\

^^
(l>>

For example, let it be required to find

the moment of inertia of the area in the _
first quadrant (Fig. 42), bounded by the

parabola y
2 1 x and the coordinate

axes, about an axis perpendicular to the

xy-p\&ne at (1,0). The distance from any point P(x t y) to (1,0)

is r = \/(x - I)
2 + y

2
- Therefore,

FIG. 42.

Evaluating this integral by means of (52-6) gives

M -- dy

53. Geometric Interpretation of the Double Integral. If

f(Xj y) is a continuous and single-valued function defined over the

region R (Fig. 43) of the xy-pl&ne, then z = f(x, y) is the equation

of a surface. Let C be the closed curve that is the boundary of R.

Using R as a base, construct a cylinder having its elements parallel
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to the z-axis. This cylinder intersects z = f(x, y) in a curve T,

whose projection on the ;n/-plane is C. Denote by S the portion

of z = f(x, y) that is enclosed by T. Let R be subdivided as in

Sec. 52 by the lines x = x l , (i
=

1, 2, ,
n 1), and y = y ]y

(j
=

1, 2,
- - -

,
m -

1).

Through each line x = x %

pass a plane parallel to the

2/z-plane; and through each

line y = y/ pass a plane

parallel to the zz-plane.

The rectangle A72 l?-, whose

area is AA tJ
= Ax t Ay J} will

be the base of a rectangular
^y prism of height /(t?, r; t3 ),

whose volume is approxi-

mately equal to the volume

enclosed between the surface

and the #?/-plane by the

planes x = x t~i, x = ic t ,

2/
=

2/j-i, and i/
=

j//. Then
the sum

FIG. 43.

(53-1) "T"
<-T7-i

c* At/,-

gives an approximate value for the volume V of the portion of the

cylinder enclosed between z = f(x f y) and the xy-pl&ne. As
oo and m > o

;
the sum (53-1) approaches F, so thatn

(53-2) y

The integral in (53-2) can be evaluated by (52-6) in which the

prisms are added first in the z-direction or by (52-7) in which

the prisms are added first in the ^-direction.

It should be noted that formulas (52-6) and (52-7) give the

value of the area of the region R if the function f(x, y) = 1
;

for the left member becomes

which is A. A can be evaluated by

dx dy or
j
dy
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Example. Find the volume of the tetrahedron bounded by the

jC II 2

plane h T + ~ = 1 and the coordinate planes (Fig. 44). Here,a o c

('--: -9-
If the prisms are summed first in the ^-direction, they will be summed
from x = to the line a&, whose equation is

Therefore,

fb / X" 32/\|(lc I ( x H~ --r )
V

Jo V 2a b /|o

,

dy*

This result was obtained by using (52-6) for the evaluation of V, but

(52-7) could be used equally well.

64. Triple Integrals. The triple

integral is defined in a manner

entirely analogous to the definition

of the double integral. The
function

}(> y> z)

is to be continuous and single

valued over the region of space R x '

enclosed by the surface S. Let R
be subdivided into subregions AR lJ k. If &Vl]k is the volume of

AR l]k,
the triple integral of f(x, y, z) over R is defined by

FIG. 44.

(54-1) fR f(x, V,z)dVm lim
'** n,m,p i

i = nj = m,k = p

by exactly the same argument as that used in Sec. 52.

In order to evaluate the triple integral, R is considered to be

subdivided by planes parallel to the three coordinate planes, the
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case of the rectangular parallelepiped being treated first. In this

case,

AIV = &x % by, A^.

By suitably arranging the terms of the sum

n,j

&;*, I**, ft,*.)

dy dz.

it can be shown, as in Sec. 52, that

(54-2) f f(x, y,z)dV = F f" F f(x, y, a

a/ ft / *0 %/ tf %/ XO

By other arrangements of the terms of the sum, the triple integral

can be expressed by means of iterated integrals in which the order

of integration is any permutation of that given in (54-2).

If R is not a rectangular parallelepiped, the triple integral

over R will be evaluated by iterated integrals in which the limits

for the first two integrations will be functions instead of con-

stants. By extending the method of Sec. 53, it can be shown that

(54-3) fR f(x, y,z)dV = '

f fj^ f(x, y, z) dx dy dz.

Similarly, the triple integral can be evaluated by interchanging

the order of integration in the iterated integral and suitably

choosing the limits.

The expression (54-3), or the similar

expressions obtained by a different choice

of the order of integration, gives the

formula for the volume of R in case

vc f(x > y> *0
= 1- Therefore,

V = dx dy dz.

Fm. 45.
AlsQ? the formula (54.3) may b

sidered as giving the total mass of the volume V that has vari-

able density /(x, y, z).

Example. Let it be required to find the moment of inertia Ix of the

solid bounded by the cylinder #2 + t/
2 = a2 and the planes 2 = and

z = 6 about the s-axis (Fig. 45). Assume uniform density 0. The
function f(x, y, z) is the square of the distance of any point P(x, y, z)

from the z-axis. Therefore,
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p (a
Jo

2 + 62 - a2 sin 2
0) cos 2

_
4 i 6 12

PROBLEMS
1. Evaluate

/ >, fir Ta(l cos 0) , ,/>W Jo Jo pdp^,

and describe the regions of integration in (a) and (6).

2. Verify that fR (x
2 + y*) dy dx = fR (x* + y'

2
) dx dy, where the

region R is a triangle formed by the lines y =
0, y ==

#, and # = 1.

3. Evaluate and describe the regions of integration for

/ \ Ca fVa 2

() JoJ-

4. Find the areas enclosed by the following pairs of curves:

(a) y =
x, y = z2

;

(6) y = 2~x, 2/
2 = 2(2-*);

(c) y = 4 - x*, y = 4 - 2x-
f

(d) y
2 = 5 - x, y = x + 1;

(e) i/
= a
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6. Find by double integration the volume of one of the wedges cut

off from the cylinder x 2 + y
2 = a 2 by the planes z = and z = x.

6. Find the volume of the solid bounded by the paraboloid

y't -f- %* = 4$ and the plane x = 5.

7. Find the volume of the solid bounded by the plane =
0, the

surface z = x2 + y
2 + 2, and the cylinder x 1 + y

2 = 4.

8. Find the smaller of the areas bounded by y = 2 x and

x 2 + 2/
2 = 4.

9. Find the volume bounded by the cylinders y = #2
, ?/

2 = z and

the planes 2 = and 2 = 1.

10. Find the volume of the solid bounded by the cylinders

x 2 + y
2 = a 2 ahd y

2 + z 2 = a 2
.

11. Find the coordinates of the center of gravity of the area enclosed

by y = 4 z2 and y 4 2x.

12. Find the moments of inertia about the x- and y- axes of the

smaller of the areas enclosed by y a x and x2 + y
2 a 2

.

13. Evaluate the following:

f< fW-2/ 2 f \/a 2 -* 2
j 7 7

Jojo Jo ctectedy;

14. Find by triple integration

(a) The volume in the first octant bounded by the coordinate

planes and the plane x + 2y + 82 4.

(6) The volume of one of the wedges cut off from the cylinder

x2 + y
2 a 2 by the planes 2 = and z = x.

(c) The volume enclosed by the cylinder x2 + y
2

1 and the

planes 2 = and 2 = 2 #.

(d) The volume enclosed by the cylinders y
2 = z and x2 + y

2 = a 2

and by the plane 2 = 0.

(e) The volume enclosed by the cylinders y
2 + z2 = a2 and

r 2
4- ^2 ^ ^

(/) The volume enclosed by y
2 + 2z2 = 4z - 8, y

2 + z2 =
4, and

x = 0.

(0) The volume in the first octant bounded by the coordinate

planes and x + 3y + 2z = 6.

(h) The volume enclosed by the cylinder x2 + y
2 = 9 and the

planes 2 = 5 x and 2 = 0.

(1) The volume of the cap cut off from y
2 + z2 = 4# by the plane

2 = x.

15. Find the moments of inertia about the coordinate axes of the

solids in Prob. 14.
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16. Find the coordinates of the center of gravity of each of the

volumes in Prob. 14.

17. Find by triple integration the moment of inertia of the volume

of a hemisphere about a diameter.

18. Find the coordinates of the center of gravity of the volume of the

solid in Prob. 17.

19. Find by triple integration the moment of inertia of the volume of

the c*. ne y
1 + z2 = aV about its axis.

20. imd the moment of inertia of the cone in Prob. 19 about a

diameter of its base.

21. Find the volume in the first octant bounded by = # + !, z =
0,

y =
0, x =

2z, and z 2 + i/
2 = 4.

22. Find the coordinates of the center of gravity of the volume

bounded by z = 2(2 x y\ z = 0, and z = 4 z2
y
2

.

55. Jacobians. Change of Variable. If it is desired to make
a change of variable in a double or triple integral, the method is

not so simple as in the case of the simple integral. It is probably

already familiar to the reader that the element of area dA, which

is equal to dx dyin>' otangular coordinates, is not equal to dp dd in

polar coordinates. In order to obtain a general method for trans-

forming the element of area or the element of volume from one

set of coordinates to another, it is necessary to introduce the

definition of the Jacobian, or functional determinant.

Let u = u(xj y) and v = v(x, y) be two continuous functions

of the independent variables x and y, such that du/dx, du/dy,

j
and dv/dy are also continuous in x and y. Then

(55-1)
du dv

__
du dv

'dxdy

~~

~dy^x

du dv

Jx dx

'dy dy

is called the Jacobian, or functional determinant, of u
}
v with

respect to x, y. It is usually denoted by

J I I Or -r~, r

In the case of three variables, let u = u(x, y, z), v = v(x, y, z),

and w = w(x, y, z) be continuous together with their first partial

derivatives. The Jacobian, or functional determinant, of w, v, w
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with respect to x, y, z is defined by

(55-2)

du dv dw
H)X 'dx ~dx

du to dw

dy lfy~dy

du dv dw
dz "dz ~dzi

The usual symbols for it are

or
d(u, v

f w)

d(x, y, z)

'

The Jacobian of any number of functions Ui, u^, ,
un ,

with respect to the variables xi, x%,
- - -

,
xn ,

is defined by an

obvious extension of (55-1) and (55-2). It is denoted by

(Ui, U 2 ,

' ' '

,
Un\

\Xi, X Z ,

' ' '

,
Xn /

or
,Un)

The Jacobian is of great importance in mathematics.* It is

used here in connection with the change of variable in multiple

integrals. If it is desired to change the variable in fR f(x, y) dA

by making x = x(u, v) and y = y(u,v), the expressionf for dA in

terms of u and v is given by

(55-3) dA = (*LM\
\U,V/

du dv.

Thus, in transforming to polar coordinates by means of x =

p cos 0, y = p sin 8,

cos 6 sin 6

p sin 6 p cos
= p cos 2 + p sin 2 6 = p.

Therefore,

dA = p dp d6,

a result that is already familiar from elementary calculus.

* Note that the Jacobian appeared in Sec. 41m connection with the differen-

tiation of implicit functions.

t See SOKOLNIKOFF, I. S., Advanced Calculus, Sec. 46.
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It follows from (55-3) that

(55-4) f /(x, y) dA = f f f[x(u, v), y(u, v)]
JR J JR

The right-hand member of (55-4) can be written as

J fR F(u,v)dudv,

185

du dv.

where

F(u, v) = f[x(u, v), y(u y v}]

If it is desired to evaluate this double integral by means of an

iterated integral, the limits for u and v must be determined from

a consideration of the region R.

Similarly, if x = x(u, v, w), y = y(u, v, w) y
and z = z(u, v, w),

then

u v w

du dv dw.

(55-5) dV = J (
-^-'-

) du dv dw

and

(55-6) f f(x, y, z) dV
JR

s J J L f[x(u ' Vj w} '

56. Spherical and Cylindrical Coordinates. Corresponding to

the system of polar coordinates in the plane, there are two

systems of space coordinates that are frequently used in prac-

tical problems. The first of these is the system of spherical, or

polar, coordinates. Let P(x, y, z) (Fig. 46) be any point whose

projection on the o^-plane is Q(x, y). Then the spherical

coordinates of P are p, <p, 0, in which p is the distance OP <p, is the

angle between OQ and the positive x-axis, and 6 is the angle

between OP and the positive 2-axis. Then, from Fig. 46, it is

seen that

x = OQ cos
tf>
= OP cos (90 0) cos <p

= p sin cos <?,

y = OQ sin <p
= p sin 6 sin <p,

z = p cos 0.

The element of volume in spherical coordinates can be obtained,

by means of (55-5). Since
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(x, V, g\ =
\P, V* OJ

sin cos <p sin sin <p cos

p sin sin ^> p sin cos ^

p cos cos
<f> p cos sin ^ p sin

s= p
2 sin 0,

it follows that

(56-1) dV = p
2 sin

This element of volume is the volume of the solid bounded by the

Q(*,y)

FIG. 46.

two concentric spheres of radii p and p + dp, the two planes

through the z-axis that make

angles of <p and <p + d<p with

the 2-plane, and the two cones

of revolution whose common
axis is the z-axis and whose

vertical angles are 28 and

2(8 + dB).

The second space system cor-

responding to polar coordinates

in the plane is the system of

cylindrical coordinates. Any
point P(x t if, z), whose projection

on the 2/-plane is Q (Fig. 47), has

the cylindrical coordinates p, 8, z,

where is the angle between OQ and the positive z-axis, p is the

distance OQ, and z is the distance QP. From Fig. 47, it is evident

FIG. 47.
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that x = p cos 6, y = p sin 0, and 2 = 2. Since

187

(x y z\
[

x
> y> z

}

\P> 0, zj

cos sin

p sin p cos 6

1

it follows that

(56-2) dV = pdp dO dz.

This element of volume is the volume of the solid bounded by the

two cylinders whose radii are p and p + dp y
the two planes

through the z-axis that make angles 6 and 6 + d8 with the

zz-plane, and the two planes parallel to the :n/-plane at distances

z and z + dz.

Example 1. Find the re-coordinate of the center of gravity of the

solid of uniform density <r lying in the first octant and bounded by the

three coordinate planes and the sphere x 1 + y
2 + z* = a2

.

Since

it is necessary to compute J R x dV. This integral can be calculated by

evaluating the iterated integral

fa /*Va 2 -z 2 fVo 2 -?/ 2

Jo Jo Jo

but it is easier to transform to spherical coordinates. Then,

7T 7T

C xdV =
f

2

f
2

/
IT IT

f~2 /*2 O4

=
Jo Jo

sn cos sn

Therefore,

oV /*|=
TeJ

oV

_ _ 3a

7ra3
/6

"
8'

Example 2. In the example of Sec. 54, find 7, by transforming the

integral into cylindrical coordinates. Then,
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2V dv *)p dz M dp

/V0T p
3 sin 20

,

62
p0\+ -sv

(8.. + 46-).

57, Surface Integrals. Another important application of

multiple integrals occurs in the problem of defining the area of a

surface. Let z = f(x, y) be the equation of a surface 8 (Fig. 48).

Let 8' be a portion of this

surface bounded by a closed

curve F, and such that any
line parallel to the 2-axis cuts

Sr
in only one point. If C is

the projection of T on the xy-

plane, let the region R, of

which C is the boundary, be

subdivided by lines parallel to

the axes into subregions AB t .

Through these subdividing

lines pass planes parallel to

the z-axis. These planes cut

from S' small regions Afi of area Aov Let AA t be the area of

AJ? t . Then, except for infinitesimals of higher order,

AA = cos 7 t Acr t ,

where cos a, cos /3 l;
and cos 7 represent the direction cosines of

the normal to 8 at any point (x ly y^ t) of AS(. Since (see

Sec. 43)

dz
cos <: cos &: cos 7* = -r-

ox

FIG. 48.

it follows that

cos 7 = -1
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Upon using the positive value for cos 7*,

189

Then,

is defined as the area of the surface S'. Since this limit is

dz

the value of <7 is given by

(.7.1) -i 7

Similarly, by projecting S
on the other coordinate

planes, it can be shown that

= I sec a dA
jRi

= I sec /3 dA.
JR*.

The integral of a function

v(x, y, z) over the surface

z = f(x, y) can now be de-

fined by the equation FIG. 49.

(57-2)
Js

, y, z) dcr

-Si
It is assumed that <p(x, y, z) is continuous and single valued for

all points of some region T that contains S.

Example. Find the area of that portion of the surface of the cylinder

x* + y
2 = #2 which lies in the first octant between the planes z = and

z = mx (Fig. 49).
'

This surface can be projected on the zz-plane or on the t/z-plane but

not on the xy-pl&ne (since any perpendicular to the xy-pl&ne that meets

the surface at all will lie on the surface). The projection on the #z-plane

is the triangle GAB. Hence,
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*~foAB "****.
But

rr = a(a
2 -

Va %

Therefore,
*

"" ^"^ dz dx

C
I amx(a2 # 2

)-^ dx = a 2w.

PROBLEMS
1. Find the coordinates of the center of gravity of the area bounded

by x^ + yM = a^, z =
0, and ?/

= 0.

2. Find the moment of inertia of the area of one loop of p
2 = a2 sin 26

about an axis perpendicular to its plane at the pole.

3. (a) Find the expression for dA in terms of u and v, if x u(l v)

and y = uv.

(6) Find the expression for dV in terms of u, v, and w, if x = u(l v),

y uv(\ w), and z = mw>.

4. Find the center of gravity of one of the wedges of uniform density

cut from the cylinder x 2 + y
2 = a2 by the planes 2 = mx and 2 = mx.

6. Find the volume enclosed by the circular cylinder p
~ 2a cos 0,

the cone z = p, and the plane 2 = (use cylindrical coordinates).

6. Find the center of gravity of the solid of uniform density bounded

by the four planes
-

4- T + - =
1, # =

0, 2/
=

0, and 2 = 0.
01 C

7. Find the moment of inertia of the solid of uniform density

bounded by the cylinder x2 + y
2 = a 2 and the planes 2 = and 2 = 6

about the 2-axis.

8. Find, by the method of Sec. 57, the area of the surface of the

sphere x2 + y
2 + 22 = a2 that lies in the first octant.

9. Prove that

Hint: Write out the Jacobians, and multiply.

10. Prove that

w y/

where u = u(x, y), v = v(x, y), x = z(, 17), and i/
=

y(?, 17).

11. Find the surface of the sphere x2 + y
2 + z* = a2 cut off by the

cylinder a;
2 ax + y* = 0.
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12. Find the volume bounded by the cylinder and the sphere of

Prob. 11.

13. Find the surface of the cylinder x 2 + y
2 = a2 cut off by the

cylinder y* + z2 = a2
.

14. Find the coordinates of the center of gravity of the portion of

the surface of the sphere cut off by the right-circular cone whose vertex

is at the center of the sphere.

15. Use cylindrical coordinates to find the moment of inertia of the

volume of a right-circular cylinder about its axis.

16. Find the moments of inertia of the volume of the ellipsoid

about its axes.

17. Kinetic energy T is defined as T %Mv 2
,
where M is the mass

and v is the velocity of a particle. If the body is rotating with a

constant angular velocity o>, show that

T =

where p is the density and / is the moment of inertia of the body about

the axis of rotation.

58. Green's Theorem in

Space. An important the-

orem that establishes the

connection between the in-

tegral over the volume and

the integral over the surface

enclosing the volume is given

next. This theorem has

wide applicability in numer-

ous physical problems* and

is frequently termed the di-

vergence theorem.

THEOREM. // P(x,y,z), FIG. 50.

Q(x, y, z), R(x, y, z) and

dP/dx, dQ/dy, dR/dz are continuous and single-valued functions in

a region T bounded by a closed surface S, then

It will be assumed that S (Fig. 50) is cut by any line parallel to

*
See, in this connection, Sees. 125, 130, 131.
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one of the coordinate axes in at most two points. If S is not

such a surface, then T is subdivided into regions each of which

satisfies this condition, and the extension to more general types
of regions is immediate.

A parallel to the z-axis may cut S in two points (x t , y r ,
z t) and

(z t , ?/t, z t), in which z l < z t . Let z = fi(x, y) be the equation

satisfied by (z t , t/ t ,
z t) and z = /2 (x, y) be the equation satisfied

by (z t , 2/ t , Zt). Thus, S is divided into two parts, Si, whose equa-
tion is z = fi(x, y), and S2 ,

whose equation is z = /2 (#, y). Then,

R(x, y, z) cos 7 d<r,

taken over the exterior of S, is equal to

XR(XJ y, z) cos 7 do- + I /?(#, ?/, z) cos 7 rfo-,
'^ /<Si

taken over the exteriors of the surfaces Si and S 2 . But, from

(57-2), these surface integrals are equal to double integrals taken

over the projection T' of T on the i/-plane. Therefore,*

I R(x, y, z) cos 7 da = {#[>, 2/,/2 (z, y)]
-

R[x, y,fi(x, y)]} dA
JS JT'

R(XJ y, z) dy dx

- dz

or

I R(x, y, z) cos 7 da =
| -^

dV.

Similarly, it can be shown that

f f dP
I P(#, t/, z) cos a dcr = I rfF

J-s Jr ^

fQCr,t/,z)cos/3d<r= ( $dV.Js JT oy
* The negative sign appears in the right-hand member of the equation

because

COS 72 dffz ** ~" COS

where the subscripts refer to S* and Si.

and
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Therefore,

(58-1) (P cos a + Q cos + R cos 7) dr = + + d7.

Since cos ad<r = dy dz, cos /3 dv = dz dx
y
and cos y da = dx dy,

(58-1) can be written in the form

dR

(58-2) I I (P dy dz + Q dz dx + R dx dy)

m(dP ^dQ
\3x

+ ^
The formula (58-2) bears the name of Green.*

Example. By transforming to a triple integral, evaluate

/ =
J J (x

s
dy dz + x2

y dz dx + #2z da; dy\

where >S is the surface bounded by z = 0, z = 6, and a;
2
-f 2/

2 = a2
.

Calculating the right-hand member with the aid of (58-2) and mak-

ing use of the symmetry, one finds

/*a / v/aT^lr* /*&

7 = 4
Jo Jo Jo

(*** + ** + **) *>dv**

= 4-56
jT

a

a;
2 V~a 2 - x> dx

= %ira*b.

A direct calculation of the integral 7 may prove to be instructive. The
evaluation of the integral can be carried out by calculating the sum of

the integrals evaluated over the projections of the surface S on the

coordinate planes. Thus,

a
'

/*\/a* y 2

.J_V^M-
which upon evaluation is seen to check with the result obtained above.

It should be noted that the angles a, j8, 7 are made by the exterior

normal with the positive direction of the coordinate axes.

* The names of Gauss and Ostrogradsky are also associated with this

theorem.
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59. Symmetrical Form of Green's Theorem. One of the most

widely used formulas in the applications of analysis to a great

variety of problems is a form of Green's theorem obtained by

setting

dv ~ dv D dv
P = u> Q = u> R = u~

dx dy dz

in (58-1). The result of the substitution is

f fdv ,
&> a ,

dv \ j
I u I -r- cos a + cos j8 + cos 7 I ao*

js \dx dy dz /

C
==

J r

T /^u

Jr \dx

5v 6u dv du ,

'dx
^

ltydy
+

~dz

But the direction cosines of the exterior normal n to the surface

are

dx n dy dz
cos a =

-j-i cos jS
=

-r-) cos 7 = 3-7dn an an

so that the foregoing integral reads

(59-1) f u^ dff =
I

11 V 2
i; dF'

Js dn JT

where

f
(dudv_ , du

dv_
du --i.y

Jr V^a; aa;
^

dy dy
^

dz dzj
'

= <

dx 2 +
dy*

+
dz 2

'

Interchanging the roles of u and v in (59-1) and subtracting the

result from (59-1) give the desired formula

A reference to the conditions imposed upon P, Q, and R in

the theorem of Sec. 58 shows that, in order to ensure the validity

of this formula, it is sufficient to require the continuity of the

functions u and v and their first and second space derivatives

throughout a closed region T.
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PROBLEMS

1. Evaluate, by using Green's theorem,

J Js

where S is the surface z 2 + y
2 + z2 = a 2

.

2. Show from geometrical considerations that the angle dd subtended

at the origin by an element ds of a plane curve C is

ds
dd = cos (ft, r) >

where r is the radius vector of the curve, and (n, r) is the angle between

the radius vector and the normal to the curve. Hence, show that

r cos (n, r) ds r I dr
e =

Jc r
f 1 dr=
)c~rd^

ds
>

where the integral is a line integral along the curve C.

3. A solid angle is defined as the angle subtended at the vertex of a

cone. The area cut out from a unit sphere by the cone, with its vertex

at the center, is called the measure of the solid angle. The measure of

the solid angle is clearly equal to the area cut out by the cone from any

sphere concentric with the unit sphere divided by the square of the

radius of this sphere. In a manner analogous to that employed in

Prob. 2, show that the element of solid angle is

cos(n, r) da
&* = ~

2
1

where the angle between the radius vector and the exterior normal to

the surface S is (n, r). Also, show that

cos (n, r) do" f 1 dr
x . _ \ > /

CO =

where the integral is extended over the surface S.

4. By transforming to a triple integral, evaluate

//, dy dz + y
3 dz dx + 23 dx dy\

where S is the spherical surface x2 + y
z + z* = a2

. Also, attempt to

calculate this integral directly.

5. Set v 1 in Green's symmetrical formula, and assume that u

satisfies the equation^fc Laplace, V 2u = 0. What is the value of

f
-JT

do- if S is an arDiwary closed surface?
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6. The density of a square plate varies directly as the square of the

distance from one vertex. Find the center of gravity and the moment
of inertia of the plate about an axis perpendicular to the plate and

passing through the center of gravity.

7. Find the volume of a rectangular hole cut through a sphere if a

diameter of the sphere coincides with the axis of the hole.

8. Show that the attraction of a homogeneous sphere at a point
exterior to the sphere is the same as though all the mass of the sphere
were concentrated at the center of the sphere. Assume the inverse

square law of force.

9. The Newtonian potential V due to a body T at a point P is defined

by the equation V(P) =
j T dm/r, where dm is the element of mass of

the body and r is the distance from the point P to the element of mass
dm. Show that the potential of a homogeneous spherical shell of

inner radius b and outer radius a is

V =
27r<7(a

2 - 62
), if r < 6,

and
4 a 3 - & 3

=
^TTO-

---
> if r > a,

where cr is the density.

10. Find the Newtonian potential on the axis of a homogeneous
circular cylinder of radius a.

11. Show that the force of attraction of a right-circular cone upon a

point at its vertex is 2ir<rh(l cos a), where h is the altitude of the

cone and 2a is the angle at the vertex.

12. Show that the force of attraction of a homogeneous right-circular

cylinder upon a point on its axis is

here h is altitude, a is radius, and R is the distance from the point to

one base of the cylinder.

13. Set up the integral representing the part of the surface of the

sphere #2 + y
z + & 100 intercepted by the planes x = 1 and x = 4.

14. Find the mass of a sphere whose density varies as the square of

the distance from the center.

15. Find the moment of inertia of the sphere in Prob. 14 about a

diameter.



CHAPTER VI

LINE INTEGRAL

The line integral, to be considered in this chapter, is as useful

in many theoretical and practical problems as the ordinary defi-

nite integral defined in Chap. V. The discussion of the line

integral will be followed by several

illustrations of its use in applied

mathematics.

60. Definition of Line Integral.

Let C be any continuous curve (Fig.

51), joining A(a,b) and B(c,d).

Let M(x, y) and N(x, y) be two

functions that are single-valued and

continuous functions of x and y for

all points of C. Choose n 1 points

PI(XI, y^) on the curve C, which is

thus divided into n parts. Let

where XQ
=

a, y Q
=

6, xn = c, yn = d.

Jxn

Fio. 51.

Let { and rj t be defined by
< 7/ t and form

t , 170 Ax,

The limit of this sum as n > QQ and all Ax% and

simultaneously is defined as a line integral along C.

Thus,

(60-1) lim V [M(^ i/O Ax, + tf(&, nO AyJ
n-^oo

[M(X , y) dx + N(x, y) dy].

Obviously, the value of this integral depends, in general, on the

particular choice of the curve C. If the equation of C is known
in one of the forms y = /(x), x =

<p(y) or x = /i(0, t/
= /2(0, the

197
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line integral may be reduced to a definite integral in one variable

by substitution, as is indicated in the following examples. How-

ever, it is frequently inconvenient to make this reduction, and

thus it is desirable to consider the properties and uses of (60-1).

Example 1. Let the points (0, 0) and (1, 1) be connected by the line

y = x. Let M(x, y)
= x y

2 and N(x t y)
= 2xy. Then the line

integral along y =
x,

becomes, on substitution of y =
#,

[(x
- x2

) dx + 2x2
>dx] = (x + x 2

) dx

If (0, 0) and (1, 1) are connected by the parabola y = x 2
,
I along

y = x 2 is

[(x
- x 4

) dx + 2x*(2x dx)] =
o

(x + 3z 4
) dx = %

Example 2. Consider

M(x, y)
= 2x 2 + 4xy

and

N(x t y)
= 2x 2 -

?/,

with the curve y = x2
connecting the points (1,1) and (2, 4). Then

/*(2,4) /2 /*!

J(u) (Mdx + Ndy)=Ji
(2x

2 + 4x-x 2

)dx+J }
(2y

-
?/

2
) dy = 13%.

Inasmuch as dy = 2o; do:, this integral can be written as

f
2

(2x
2 + 4x 3

) da: + f
2

(2a;
2 -

o;
4
)2x dx = 13?^.

If the equation of the parabola in this example is written in a para-
metric form as

x =
t,

y = t
2

, (l<t< 2),

then the integrand of the line integral can be expressed in terms of the

parameter t. Substituting for x, y, dx, and dy in terms of t gives

/*(2,4) /*2

J(u) (Mdx + N dy)} = Jt
[(' + 4") + (24"

-
<)2] <tt

<
2 + 8* 3 - 2 6

) dt =
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The reader will readily verify that the value of this integral over a

rectilinear path C joining the points (1,1) and (2, 4) is also 13%J. In

fact, the value of this integral depends only on the end points and not

upon the curve joining them. The reason for this remarkable behavior

will appear in Sec. 63.

PROBLEMS

1. Find the value of I

'

[\/y dx + (x y) dy] along the follow-
/(0,0)

ing curves:

(a) Straight line x
t, y = t.

(b) Parabola x = t
2

, y = t.

(c) Parabola x =
t, y t

2
.

(d) Cubical parabola x =
t, y = t*.

2. Find the value ofJ^ [x
2
y dx + (x

2 -
y
2
) dy] along (a) y = 3s 2

,

(b) y = 3x.

3. Find the value of
J ( [o)

(x
* dx + y

2
dy) along the curves of

Prob. 1 above.

4. Find the value of
J (0

'

0) [(x
2 + y'

2
) dx 2xy dy] along (a) y = x\

(V) x = y
2

; (c) y = x\

6. Find the value of
J (Jo) (y s'n x ^x ~~ x cos y ^2/) a^ong y ~ x.

6. Find the value of J(- o> (x dy + y dx) along the upper half of

the circle x2 + y
2 = a2

.

7. Evaluate the integral of Prob. 6 over the path formed by the

lines x =
a, ty a, x = a. What is the value of this integral if the

path is a straight line joining the points (a, 0) and (a, 0)?

8. Find the value of
/|J'J) (#

2 dx + y
2
dy) along the path given by

x = sin t, y = cos t.

9. Evaluate the integral of Prob. 8 if the path is a straight line join-

ing (0, 1) and (1, 0).

10. What is the value of the integral of Prob. 8 if the path is the

curve y = 1 x2 ?

61. Area of a Closed Curve. Let C be a continuous closed

curve which nowhere crosses itself. The equation of such a

curve, in parametric form, can be given as

where the parameter t varies continuously from some value
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t = to to t = t\ and the functions f\(t) and f2 (t) are continuous

and single-valued in the interval to < t <> t\. Inasmuch as the

curve is assumed to be closed, the initial and the final points of

the curve coincide, so that

and

The statement that the curve C does not cut itself implies

that there is no other pair of values of the parameter t for which

and

A closed curve satisfying the condition stated above will be

called simple.

As t varies continuously from to to ti, the points (x, y) deter-

mined by (61-1) will trace out the curve C in a certain sense. If

C is described so that a man walking along the curve in the direc-

tion of the description has the

enclosed area always to his left,

the curve C is said to be described

in the positive direction^ and the

enclosed area will be considered

positive; but if C is described so

that the enclosed area is to the

right, then C is described in the

negative direction, and the area is

regarded as negative.

Consider at first a simple closed

curve C such that no line parallel

to one of the coordinate axes, say
the y-axis, intersects C in more
than two points. Let C be

,
x = a2 , y =

61, y = b 2 ,
which are

and J3 2 , respectively. Clearly, C

FIG. 52.

bounded by the lines x

tangent to C at Ai, A*,

cannot be the graph of a single-valued function. Therefore, let
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the equation of A\B\A^ be given by y\ = fi(x), and the equation

of AiBzAz by y* =
/2(&), where /i (x) and/2 (z) are single-valued

functions. Then the area enclosed by C (Fig. 52) is given by

(61-2)

or

(61-3)

=
I 2/2 dz - f

a2

2/1
Jai Jai

= -
] 2/2 da: -

\Jai Jai

A = -
fc ydx,

dx,

in which the last integral is to be taken around C in a counter-

clockwise direction.

Similarly, if x\ = <p\(y) is the equation of BiAiB^ and o:2 =
is the equation of

x-tdy I
*

Jb\

=
I

2

x 2 dy + C
l

Jb\ Jbi

or

(61-4)

Again, the last integral is to be taken around C in a counter-

clockwise direction. It may be

noted that (61-3) and (61-4) both

require that the area be to the left

as C is described if the value of

A is to be positive.

By adding (61-3) and (61-4), a

new formula for A is obtained,

namely,

(61-5)

A ^
FIG. 53.

This formula gives a line-integral expression for A.

To illustrate the application of (61-5), the area between

(1) x 2 = ty and (2) y
2 = 4z (Fig. 53) will be determined.
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Then,

A -
o (~ydx + xdy} = H (-ydx + xdy)
* JC * J(l)

+ o (-
* J(2)

+ zc

24| 24

16

3*

For convenience the first integral was expressed in terms of x,

whereas the second integral is simpler in terms of y.

The restriction that the curve C be such that no line parallel

to one of the coordinate axes cuts it in more than two points

can be removed if it is possible to draw a finite number of lines

connecting pairs of points on C, so that the area enclosed by
the curve is subdivided into regions each of which is of the type
considered in the foregoing. This extension is indicated in detail

in the following sect on.

PROBLEMS

1. Find, by using (61-5), the area of the ellipse x = a cos <pt

y = 6 sin <p.

2. Find, by using (61-5), the area between y
2 = 9# and y = 3x.

3. Find, by using (61-5), the area of the hypocycloid of four cusps
x = a cos 3

6, y = a sin 3
6.

4. Find, by using (61-5), the area of the triangle formed by the line

x + y = a and the coordinate axes.

5. Find, by using (61-5), the area enclosed by the loop of the strophoid

62. Green's Theorem for the Plane. This remarkable theorem

establishes the connection between a line integral and a double

integral.

THEOREM. // M(x, y) and N(x, y), dM/dy and dN/dx are

continuous single-valued functions over a closed region R, bounded

by the curve C, then
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The double integral is taken over the given region, and the curve C is

described in the positive direction.

The theorem will be proved first for a simple closed curve

of the typo considered in Sec. 61 (see Fig. 52).

Again, let y\ = fi(x) be the equation of AiBiA% and y% = /2(x)

be the equation of A\E^A^ Then,

. , , ,

-5 dx ay = I ax
\ ~^-~ dy

; dy

[M(x, Vt)
- M(x, y,}} dx

/*ai S*az

= - M(XJ 2/2) da? ~ I M(x,
Jai Jai

or

(62-1)

Similarly, if xi =
<pi(y) is the equation of BiAiBi and

is the equation of B\A^.B^

na?t
f

'

tfdi,
J^z

or

(62-2) J J^g dx dy =
J^

JV^, y) <fo.

Therefore, if (62-2) is subtracted from (62-1),

(Sf
^ S) dx dy ~ ~

fc [M(x > & dx

It will be observed that setting M = y and N ~ x gives the

formula (61-5).

Now, let the region have any continuous boundary curve C, so

long as it is possible to draw a finite number of lines that divide

the region into subregions each of the type considered in the

first part of this section; that is, the subregions must have

boundary curves that are cut by any parallel to one of the

coordinate axes in at most two points. Such a region R is shown
in Fig. 54.
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By drawing the lines AiA 2 and A 3A 4 ,
the region R is divided

into three subregions R\, Rz, and R s . The boundary curve of

each region is of the simple type. The positive direction of

each boundary curve is indicated by the arrows. The theorem

can be applied to each subregion separately. When the three

equations are added, the left-hand members add to give the

double integral over the entire region R. The right-hand mem-
bers give

- f (Mdx+Ndy)- f (Mdx + Ndy)- f (Mdx + Ndy),
JCi JCi JCs

where

Since each of the lines AiA 2 and A 3A 4 is traversed once in each

direction, the line integrals that arise from them will cancel.

The remain ng line integrals,

taken over the arcs of C, add

to give the line integral over

C. Therefore,

nfdM _
\dy

--X
dx,

(Mdx + N dy)

holds for regions of the type
R.

Another type of region in

which an auxiliary line is in-

troduced is the region whose

boundary is formed by two or more distinct curves. Thus, if R
(Fig. 55) is the region between C\ and C 2 ,

the line A\A% is drawn
in order to make the total boundary

FIQ. 54.

a single curve.

integrals over A
integrals over C

The theorem can be applied, and the line

^A\ and A\A% will cancel, leaving only the line

and C 2 .
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If the region R is such that any closed curve drawn in it can,

by a continuous deformation, be shrunk to a point without

crossing the boundary of the region, then the latter is called

simply connected. Thus, regions bounded by a circle, a rectangle,

or an ellipse are simply connected. The region R exterior to

C 2 and interior to Ci (Fig. 55) is not simply connected because a

circle drawn within R and enclosing 2 cannot be shrunk to a

point without crossing C 2 . In ordinary parlance, regions that

have holes are not simply connected regions; they are called

FIG. 55. FIG. 56.

multiply connected regions. The importance of this classification

will appear in the next two sections.

Example. Evaluate by using Green's theorem

where C is the closed path formed by y x and i/
3 = x* from (0, 0)

to (1, 1) (Fig. 56). Since M = x*y and N = y\

Then,

dN

.**+.*> --//,(-)**
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PROBLEMS

1. Find, by Green's theorem, the value of

jc (x
2
y dx + y dy)

along the closed curve C formed by y* x and y x between (0, 0)

and (1, 1).

2. Find, by Green's theorem, the value of

along the closed curve C formed by y*
= #2 and y = x between (0, 0)

and (1, 1).

3. Use Green's theorem to find the value of

Jc [(*y
- 2

) dx + x*y dy]

along the closed curve C formed by y =
0, x =

1, and y = x.

4. Use Green's theorem to evaluate

along the closed path formed by y =
1, x =

4, and y + -\/x.

5. Check the answers of the four preceding problems by evaluating
the line integrals directly.

63. Properties of Line Integrals. THEOREM 1. Let M and N
be two functions of x and y, such that M, N, dM/dy, and dN/dx are

continuous and single-valued at every point of a simply connected

region R. The necessary and sufficient condition that fc (M dx

+ N dy) = around every closed curve C drawn in R is that

dM = dN
dy dx'

for every point of R.

Since

-]>. +**>-//(-)**
where A is the region enclosed by C, it follows that

dM = dN
dy dx



LINE INTEGRAL 207

makes the double integral, and consequently the line integral,

have the value zero. Conversely, let
J*c (Af dx + N dy) =

around every closed curve C drawn in R. Suppose that

dM _ # ,

dy dx
*

at some point P of R. Since dM/dy and dN/dx are continuous

functions of x and y,

dM d#

is also a continuous function of x and y. Therefore, there must

exist some region S, about P, in which has the same

sign as at P. Then,

ff(-)<*'*J Js \ dy ox/

and hence f (M dx + N dy) T

around the boundary of this re-

gion. This contradicts the hy-

pothesis that

fc (M dx + N dy) =

around every closed curve C drawn in R.

+x

FIG. 57.

It follows that

at all points of R.

Example 1. Let

M =

Then,

dM
dy

dN
dx

dM
dy

and N =

dN
dx

M, N, dM/dy, and dN/dx are continuous and single-valued for all

points of the xy-plane except (0, 0). Hence, fc (M dx + N dy) =
around any closed curve C (Fig. 57) that does not enclose (0, 0). In

polar coordinates, obtained by the change of variables
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x = p cos B
y y = p sin 6,

f ( r? g <fo + -TT *A = f de -

Jc \x 2
-ft/

2
a:

2
-f ?/ V Jc

If C does not enclose the origin, varies along C from its original value

back to 0o. Therefore, j c dO = 0. If Ci encloses the origin, varies

along Ci from to + 2?r, so that J Cl
dO = 2?r.

Example 2. Find, by Green's theorem, the value of

I = fc [(x* + xy) dx + (y* + x*) dy],

where C is the square formed by the lines y = 1 and x = 1. Since

dM dN

Note that the line integral has the value zero, but dM/dy ^ dN/dx.

This does not contradict Theorem 1.

THEOREM 2. Le^ M and ]V satisfy

the conditions of Theorem 1. 7"/ie

necessary and sufficient condition that

f(a'&) (^^ + ^ rfy) 6e independent

o/ i/ie citr^e connecting (a, b) and
A(a'b)

(x, y) is that dM/dy = dN/dx at all

~x points of the region R. In this case

FIG. 58. the line integral is a function of the

end points only.

Suppose dM/dy = dN/dx. Let Ci and C2 (Fig. 58) be any two
curves from A to P, and let

7i = I (M dx + N dy) |
1

and

J2 = C(Mdx + N dy)
/C2

be the values of the line integral from A to P along Ci and C
2?

respectively. Then /i 72 is the value of the integral around

the closed path formed by Ci and C 2 . By Theorem 1,

Jl - /2 = 0.
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Therefore, Ii = /2, so that the line integral taken over any two

paths from A to P has the same value.

Conversely, suppose that J (M dx + N dy) is independent of

the path from A to P. Then, for any two curves Ci and C 2 ,

/! = 72 . It follows that / (M dx + N dy)
= for the closed

path formed by C\ and C2 . Hence, by Theorem 1, dM/dy
= dN/dx.

Example. Consider

(22) /I + 7/
2 1+z* \

m \x^ dx nr~v dyr1,1) \ " " /

Since dM/dy 2y/x
3 and dN/dx 2y/x

s and both functions are

continuous except at (0, 0), the line integral is independent of the

path so long as it does not enclose the origin. Choose y 1 from

(1, 1) to (2, 1) and x = 2 from (2, 1) to (2, 2) as the path of integration.

Then,
25 ,__JL 2

__5 2

2 __9
[ x 2

\i 81 8

THEOREM 3. Let M ami N satisfy the conditions of Theorem 1.

The necessary and sufficient con-

dition that there exist a function

F(x, y} such that dF/dx = M
and dF/dy = N is that dM/dy

dN/dx at all points of the re-

gion R.

If dM/dy = dN/dx, Theorem
2 proves that

P(octy)

j

(Mdx + N dy) FlG> 59<

is independent of the path. Therefore,

(63*1) f
(

"f (Mdx + N dy) = F(x, y},
a/ \u,o)

and this function F(x, y) depends only on the coordinates of the

end points of the path. Hence,

F(x + Ax, y) = f
*

6

+A*'y)

(M dx + N dy).

Let the path of integration be chosen as a curve C (Fig. 59)
from A to P and the straight line PP' from P(x, y) to P'(x + Ax,
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y). Then,

F(x + Ax, y)=f^ (Mdx + N dy)+ f^**'* (M dx + N dy)

or

(63-2) F(x + Ax, y) = F(x, y) +
****

M(x, y} dx.

The second integral reduces to the simpler form given in (63-2)

since y is constant along PP', and therefore dy = 0. From (63-2),

,y)1

J
r

j p+A* -i

= lim -r- I Jlf (a, y) rfx .

Ax_o LAx Jx
v * ^

J

Application of the first mean-value theorem* gives

f
xH~Ax

M(x, y) dx = Ax M(f, ), (x ^ < x + Ax).
/#

Therefore,

= lim - Ax M(, 2/)
= lim Jlf ({, y).OX Az-*0 LAX J Ax->0

Hence,

It can be proved similarly that

* It may be recalled that

>

f(x) dx =
(6 )/(), (a

is the first mean-value theorem for definite integrals. If ff(x)dx = F(x),
than /(a;)

=
/^'(x). From these relations, the mean-value theorem for

definite integrals can be transformed into

F(b) - F(a) =
(6
-

a)*"(0,
where a ^ ^ ^i 6, or

which is the mean-Value theorem of the differential calculus.
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The function F is really a function of both end points. Multi-

plying dF/dx = M(x, y) by dx and dF/dy = N(x, y) by dy gives

dF dF
dF =

^dx + ^dy
= M(x, y) dx + N(x, y) dy.

Thus, if

dM = dN
dy dx

9

the integrand in Jc (M dx + N dy) is the exact differential

of the function F(x, y), which is determined by the formula

(63-1).

The most general expression for a function $(x, #), whose
total differential is d$ = M dx + N dy, is

*(*, y) = F(x, y) + C,

where C is an arbitrary constant. Indeed, since dF and d&
are equal,

d(F - $) =
0,

so that

F 3> = const.

To prove the necessity of the condition of the theorem, note

that if there exists a function F(x, y) such that

then

OF dF= M(x, y) and = N(x, y),

= aM , d*F = dN
dy dx

~
dy dx dy

~~

dx'

Since dM/dy and dN'/dx are both continuous,
-

^-
and

are also continuous; hence,*

dx dy dy dx

Therefore,

dM = aAT

dy d"
* See Sec. 46.
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As a corollary to Theorem 3, one can state the following:

The necessary and sufficient condition that M(x, y) dx + N(x, y) dy
be an exact differential is that dM/dy = dN /dx.

PROBLEMS

1. Show that

.u
[(x

* + y^ dx + 2xy dy]

is independent of the path, and determine its value.

2. Test the following for independence of path:

(a) J (y cos x dx + sin x dy) ;

(b) f [(x*
-

y*) dx + 2xy dy];

(c) / [(x
-

?/) dx + 2xy dy];

(d) f[(x?-y*)dx-2(x-l)ydy].

3. Show that I

'

j\ L
'

\s dx + n . r % is independent of
J(0,o) L \i ~t~ >> l-L T" 3J</ J

the path, and find its value.

4. Show that the line integral

-ydx xdy

evaluated along a square 2 units on the side and with center at the origin

has the value 2ir. Give the reason for failure of this integral to vanish

along this closed path.

5. Find the values of the following line integrals:

(y cos x dx + sin x dy) ;

,

(c) [(x + l)dx + (y + 1) dy].

64. Multiply Connected Regions. It was shown that the

necessary and sufficient condition for the vanishing of the line

integral Jc [M(x, y) dx + N(x, y) dy] around the closed path C

is the equality of dM/dy and dN'/dx at every point of the region

enclosed by C. It was assumed that C was drawn in a simply
connected region R and that the functions M(x, y) and N(xr y\
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together with their first partial derivatives, were continuous on

and in the interior of C. The latter condition was imposed in

order to ensure the integrability of the functions involved. The
reason for imposing the restriction on the connectivity of the

region essentially lies in the type of regions permitted by Green's

theorem.

Thus, consider a region R containing one hole (Fig. 60). The

region R will be assumed to consist of the exterior of C 2 and the

interior of C\. Let a closed contour C be drawn, which lies

entirely in R and encloses C%.

Now, even though the functions

M(x, y) and N(x, y) together with

their derivatives may be continu-

ous in R, the integral

Jc [M(x, y) dx + N(x, y) dy]

may not vanish. For let K be
, , .

*i. 60.

any other closed curve lying in R
and enclosing C^ and suppose that the points A and B of K
and C are joined by a straight line AB. Consider the integrals

JAPA JAB JBQB JBA'

where the subscripts on the integrals indicate the direction of

integration along the curves K, C, and along the straight line AB,
as is indicated in Fig. 60. Since the path AB is traversed twice,

in opposite directions, the second and the last of the integrals

above will annul each other, so that there will remain only the

integral along K, traversed in the counterclockwise direction,

and the integral along C, in the clockwise direction. Now, if M
and N satisfy the conditions of Theorem 1, Sec. 63, then

f (Mdx+Ndy) + f (M dx + N dy) =
0,JGK JQC

where the arrows on the circles indicate the direction of integra-
tion. Thus,

(64-1) f (M dx + N dy) = f (M dx + N dy),J&K JQC

both integrals being taken in the counterclockwise direction.
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The important statement embodied in (64-1) is that the

magnitude of the line integral evaluated over a closed path in R,

surrounding the hole, has the same constant value whatever be

the path enclosing C%. This value need not be zero, as is seen

from a simple example already
mentioned in Sec. 63. Thus,
let the region R consist of the

exterior of the circle of radius

unity and with center at the ori-

gin and of the interior of a con-

centric circle of radius 3 (Fig. 61).

-yThe functions M = and

N =

x 2 + y
2

and their deriva-

FIG.
x* + y*

tivcs, obviously satisfy the con-

ditions of continuity in R and on Ci and C 2 . Also, dM/dy
= dN/dx. But

X
y dx

\dyj,

where C is the circle

gives

fJo

x = a cos 0,

y = a sin 6,

a 2 sin 2 + a 2 cos 2

(1 < a < 3),

dO = 2ir.

The function F(x, y), of which M(x, y) dx + N(x, y) dy is

an exact differential, is F(x, y) = tan" 1
-> which is a multiple-

valued function.

The function

F(x, y) = [M(x, y) dx + N(x, y) dy],

where M and N satisfy the conditions of Theorem 1, Sec. 63, will

be single-valued if the region R is simply connected (as is required
in Theorem 1) but not necessarily so if the region is multiply
connected.
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65. Line Integrals in Space.
1 The line integral over a space

curve C is defined in a way entirely analogous to that described in

Sec. 63.

Let C be a continuous space curve joining the points A and J5,

and let P(x, y, z),,Q(x, y, z), and R(x, y, z) be three continuous,

single-valued functions of the variables x, y, z. Divide the

curve C into n arcs Ast , (i
=

1, 2,
*

, n), whose projections

on the coordinate axes are &X{, Ayt ,
Azr ,

and form the sum

n

PCfc, i?., fO Az, + Q(&, *, fO At/, + B(ft , 77t , fO AsJ,

where (&, r;t , ft) is a point chosen at random on the arc Ast .

The limit of this sum as n increases indefinitely in such a way
that all As* > is called the line integral of P dx + Q dy + R dz,

taken along C between the points A and B., It is denoted by
the symbol

(65-1) fc [P(x, y, z) dx + Qfo y, z) dy + R(x, y, z) dz].

The conditions imposed upon the functions P, Q, and R are

sufficient to ensure the existence of the limit, provided that the

curve C is suitably restricted.

If the equation of the space curve C is given in parametric
form as

(65-2) ^ y

where /i (0, /2(0, and /8 (0 possess continuous derivatives in the

interval to
< t < fa, the line integral (65-1) can be expressed

as a definite integral

where P, Q, and R are expressed in terms of t with the aid of (65-2).

It is possible to derive three theorems analogous to those given
in Sec. 63 for line integrals in the plane. They are as follows:

THEOREM 1. Let the region of space considered be one in which

P(x, y, z), Q(x, y, z\ and fl(x, ?/, z) and their partial derivatives are

continuous and single-valued functions of x, y, and z. Then the

necessary and sufficient condition that
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/ (P dx + Q dy + R dz) =

around every closed curve in the region is that

dP = dQ dQ^dR dR = dP

dy dx
J

dz dy' dx dz'

for every point of the region.

THEOREM 2. Let the functions considered satisfy the conditions

of Theorem 1. Then the necessary and sufficient condition that

f
(

7f (Pdx + Qdy + R dz)J (a,b,c)

be independent of the path from (a, fr, c) to (x, y, z) is that

dP dQ dQ dR dR dP

dy dx dz dy dx dz

for every point of the region.

THEOREM 3. Let the functions P', Q> and R satisfy the conditions

of Theorem 1. Then, the necessary and sufficient condition that

there exist a function F(x, y, z) such that

is that

\T/1 f\pj f\Tj\

dx
~~

'

dy
~" ^ ^ ""

aP^dQ dQ = dR dR = dP

di/

"
5o:

;

dz
"

dy' dx
~~

^2;'

for every point of the region. The function F(x, y, z) is given by the

formula

F(x, y, z)
= (Pdx + Qdy + R dz).

COROLLARY. The necessary and sufficient condition that

Pdx + Qdy + Rdz

be an exact differential of some function $(x, y, z) is that

dP^dQ dQ^dR dR = <>P_

dy dx' dz dy' dx dz'

for every point of the region. The function 3>(x, y, z) is determined

from the formula

*(x, y, z)
= f

(

7f (Pdx + Qdy + R dz) + const.
J(a,o,c)
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t+1

FIG. 62.

These results are of particular importance in hydrodynamics and

the theory of electromagnetism. The vector derivation and

interpretation of these results are given in Chap. IX on Vector

Analysis.

66. Illustrations of the Application of the Line Integrals.

1. Work. It will be assumed that a force F(x, y) acts at every

point of the xi/-plane (Fig. 62). This force varies from point to

point in magnitude and direction.

An example of such conditions is the

case of an electric field of force. The

problem is to determine the work

done on a particle moving from the

point A (a, b) to the point B(c, d)

along some curve C. Divide the arc

AB of C into n segments by the -^

points Pi, P^ -

, Pn-i, and let

As t
= PtPt+ i. Then the force acting

at P t is F(x % , 7/r). Let it be directed along the line P tS, and let

P t jf be the tangent to C at P t , making an angle t with P t>S.

The component of F(x^ y l) along PiT is F cos t and the ele-

ment of work done on the particle in moving through the distance

As t is approximately F(x ly y l) cos t As t . The smaller As t ,
the

better this approximation will be. Therefore, the work done in

moving the particle from A to B along C is

W = lim J? F(x lf 7/ t) cos r As t
= f F(x, y} cos ds.

If a is the inclination of P tS and ft is the inclination of P tT,

then = a /3 and cos = cos a cos + sin a sin 0, so that

(66-1) W = f F(x, T/) (cos a cos ft + sin a sin ft} ds.

From the definition of a, it is evident that

F cos a = ^-component of F = X,
F sin a = ^-component of F = F.

Moreover, since cte/ds
= cos /3 and dy/ds = sin

,

cos ft ds ^ dx and sin ft ds ~ dy.
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Therefore, (66-1) becomes

which is a line integral of the form (60-1).

If C is a space curve, then an argument in every respect similar

to the foregoing shows that the work done in producing a dis-

placement along a curve C in a field of force where the components

along the coordinate axes are Z, 7, and Z is

W = fc (X dx + Y dy + Z dz).

To illustrate the use of this formula, the work done in displac-

ing a particle of mass m along some curve C, joining the points

FIG. 63.

A and B, will be calculated. It will be assumed that the particle

is moving under the Newtonian law of attraction

where k is the gravitational constant and r is the distance from

the center of attraction (containing a unit mass) to a position

of the particle (Fig. 63).

The component of force in the direction of the positive #-axis

is

r-. / \ l\i!H> JL>F cos (x, r)
= -

-^
-

Similarly,

and Z = - km z
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The work done in displacing the particle from 'A to B is

C= -
i)A

B

W
A '

But
, x dx + y dy + zdz

r = vz + y
2 + z 2 and rfr =- y * '--

Therefore,

= fcm I -5-
= few -

>

J^ r 2

L r _M

which depends only on the coordinates of the points A and B
and not on the path C. Denoting the distances from to A
and B by r\ and r2, respectively, gives

l l \
)

r 2 ri/
W = km

The quantity & = Arn/r is known as the gravitational potential

of the mass m. It is easily checked that

-. -r ; : ; /
~

;

dx dy . dz

so that the partial derivatives of the potential function $ give

the components of force along the* coordinate axes. Moreover,
the directional derivative of 4> in any direction s is

cM> __ d$ dx d$ dy ,

^^> dz

ds dx ds dy ds dz ds

= X cos (x, s) + Y cos (y, s) + Z cos (z, s)

where F8 is the component of force in the direction s.

A conservative field of force is defined as a field of force in

which the work done in producing a displacement between two

fixed points is independent of the path. It is clear that in a

conservative field the integral

fa 'dz)

along every closed path is zero, so that the integrand is an exact

differential.
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2. Flow of a Liquid. Let C be a curve on a plane surface across

which a liquid is flowing. The xi/-plane will be chosen to coincide

with the surface. The lines of flow are indicated in Fig. 64 by the

curved arrows. It will be assumed that the flow of the liquid

takes place in planes parallel to the xy-plane and that the depth
of the liquid is unity. The problem is to determine the amount
of liquid that flows across C in a unit of time.

If v t is the velocity of the liquid and OL % is the inclination of the

tangent to the line of flow at P z ,
then vx

\
l
= v l cos <x t is the ^-com-

ponent of v t and vv \

t
= v t sin a t is

the ?y-componcnt of v % . Let As t

denote the segment P tPt+ i of C.

A particle at P l will move in time

At to P', while a particle at Pl+ i will

move to P;+i. Therefore, the

amount of liquid crossing PJPt+ i in

time At is equal to the volume of

the cylinder whose altitude is unity

and whose base is Pfl+\P(+ iP(.

Aside from infinitesimals of higher

order, this volume is

AF t
- PJP( P*Pt+1 sin t ,FIG. 64.

in which t denotes the angle between PJ*( and PJP t+i. But

i
= As t and, except for infinitesimals of higher order,

^ = v l At. Therefore, AV l
= v l At - As r sin 0>. The volume

of liquid crossing C in a unit of time is

n

V = lim V v t sin t As t .

n-* ^
If T< denotes the inclination of the tangent to C at P t ,

then

r =
t + a. Therefore,

Vt sin 0i As %
= y t(sin r t cos t cos r t sin a t) As t

== y t cos a l sin r t As t v r sin a t cos r t As t

Hence,

(66-2) V = fc ( -vy dx + vx dy)

is the line integral which gives the amount of liquid that crosses

C in a unit of time.
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If the contour C is a closed one and the liquid is incompressible,

then the net amount of liquid crossing C is zero, since as much

liquid enters the region as leaves it. This is on the assumption,
of course, that the interior of C contains no sources or sinks.

Thus, a steady flow of incompressible liquid is characterized by
the equation

/*

vy dx + vx dy) =
0,

over any closed contour not containing sources or sinks. This

implies that (see Sec. 63)

(66-3)
-
%*

=
J-",dy dx

which is an important equation of hydrodynamics known as the

equation of continuity. Moreover, from Theorem 3, Sec. 63, it is

known that there exists a function ^ such that

This function ^ is called the stream function, and it has a simple

physical meaning, for

(-vy dx +vx dy)

represents the amount of liquid crossing, per unit time, any curve

joining (a, 6) with (x, y).

The function defined by the integral

(66-5) *(x, y)
=

(vx dx + vy dy)

is called the velocity potential. It is readily shown that

(66-6) -. and fy = V

Upon comparing (66-4) with (66-6), it is seen that

d$ _ <W , ^5__^
dx

"
dy dy

~~

dx'

These are the celebrated Cauchy-Riemann differential equations.

If the integral (66-2) around a closed curve C does not vanish,

then the region bounded by C may contain sources (if V is
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positive) or sinks (if V is negative). The presence of sources

or sinks is characterized by the singularities of the function ^,

that is, those points for which ^ is not continuous or where its

derivatives may cease to be continuous.*

The foregoing discussion is readily generalized to a steady
flow of liquids in space. Instead of the integral (66-5), one will

have

$(s, y, z)
= f(

*'"'*

(vx dx + vy dy + vz dz),

and if the integral is independent of the path C, the equations

corresponding to (66-3) are

c^x__c^, = n ^_^V = A dVx dVz =
dy dx '

dy dz '

dz dx

In such a case the integrand is an exact differential, and the

velocity potential $(#, y y z) gives

3. Thermodynamics. A thermodynamical state of any sub-

stance is found to be characterized by the following physical

quantities: (1) pressure p, (2) volume v, and (3) absolute tempera-
ture T. The pressure, volume, and temperature are connected

by the equation

(66-7) F(p, v, T) =
0,

so that any two of the three quantities p, v, and T will suffice to

determine completely the state of the substance.

In the case of an ideal gas enclosed in a receptacle, Eq. (66-7)

has the form

pv
- RT =

0,

where R is a constant. Let p and v be chosen to determine the

state of the gas, and consider p and v as the coordinates of a point

P in the py-plane. As the state of the gas changes, the point P,

which characterizes the state, will describe some curve C in the

py-plane. If the process is cyclic, so that the substance returns

to its original state, then the curve C will be a closed one.

It is important to know the amount Q of heat lost or absorbed

by the gas while the gas in the receptacle (for example, steam in

* See in this connection Sec. 64.
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an engine cylinder) changes its state. Let Ap, Ay, and A!F be

small changes in the pressure, volume, and temperature, respec-

tively. Now if any two of these quantities, say p and v
y
do not

change, then the amount of heat supplied is nearly proportional

to the change in the remaining quantity. If all three quantities

change, then the total change AQ in the amount of heat supplied
is approximately equal to the sum of the quantities AQi, A$2,
and AQ 3 ,

due to changes Ap, Ay, and AT, respectively.*

Thus,

AQ = AQ 1 + AQ2 + AQ3

= d Ap + c 2 Ay + c 3 AT
7

,

where ci, c%, and c 3 are constants of proportionality. Then, the

total amount of heat supplied in the process is given by the

equation

(66-8) Q =
(ci dp + c 2 dv + c 3 dT).

Solving (66-7) for T in terms of p and v gives T = /(p, y), so that

dT = ^-dp + ^dv.
dp

^
dv

If this expression is substituted in (66-8), one obtains

(66-9) Q =
j'c [(

Cl + c

|) dp +
(c,

+ ca
g) dv],

where the integration is performed over the curve C in the

py-plane, which is called the pv diagram.

Consider the state of the gas in the cylinder of a steam engine,

and let the piston be displaced through a distance As. Then,
if the area of the piston is A, the work AW performed by the

piston is given by
ATF = pA As = p Aw,

and the total work W performed during one cycle is

W =
fc pdv.

It follows from (61-4) that this is precisely equal to the area of

the pv diagram.

18 This principle is called the principle of superposition of effects.
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In deriving (66-9), it was assumed that p and v were the

independent variables, and it followed, upon making use of (66-7),

that the increment of heat is given by*

dQ = (ci + C3~-} dp + f 2 + cz~\dv

ss P(p, v) dp + V(p, v) dv,

where P and V are known functions of p and v. The expression

for dQ is not, in general, an exact differential (that is, dP/dv
? dV/dp), for the line integral (66-9) need not vanish for a

cyclic process. However, it is possible to show that the difference

between dQ and the work p dv is an-oxact differential, namely,

(66-10) dU ss dQ -
pdv,

where the function U is called the internal energy of the gas.

It is also possible to showf that the ratio of dQ to the absolute

temperature, namely,

(66-11) dS^^Q

is likewise an exact differential. The function S is called the

entropy, and it plays a fundamental role in all investigations in

thermodynamics.
The formulas (66-10) and (66-11) can be used to show that

for an isothermal process (that is, when dT = 0)

dQ = p dv,

so that all the heat absorbed by the gas goes into the performance
of the work p dv. If the process is adiabatic (that is, such that

there is no gain or loss of heat), then dQ = and, therefore,

dS = 0. It follows that the entropy S is constant during such a

process.

* By making use of T and v, or T and p, as the independent variables, it is

possible to write down two other important expressions for dQ.

f These assertions follow from the first and second laws of thermo-

dynamics.



CHAPTER VII

ORDINARY DIFFERENTIAL EQUATIONS

67. Preliminary Remarks. The great usefulness of mathe-
matics in the natural sciences derives from the fact that it is

possible to formulate many laws governing natural phenomena
with the aid of the unambiguous language of mathematics.

Some of the natural laws, for example those dealing with the

rates of change, are best expressed by means of equations involv-

ing derivatives or differentials.

Any function containing variables and their derivatives (or

differentials) is called a differential expression, and every equation

involving differential expressions is called a differential equation.

Differential equations are divided into two classes, ordinary and

partial. The former contain only one independent variable and

derivatives with respect to it. The latter contain more than one

independent variable.

The order of the highest derivative contained in a differential

equation is called the order of the differential equation. Thus,

dx*

is an ordinary differential equation of order 2, and

is a partial differential equation of order 3.

When a differential equation can be expressed as a polynomial
in all the derivatives involved, the exponent of the highest
derivative is called the degree of the equation. In the foregoing

examples the degree of the ordinary equation is and that of the

partial differential equation is 2. It should be observed that the

degree of

dx*
+
\G

is 2, when this equation is rationalized.

225
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If an ordinary differential equation is of the first degree in

the dependent variable and all its derivatives, it is called a

linear differential equation. The general form for a linear

differential equation of the nth order is

where the PI(X) and f(x) are functions of x only.

An explicit function y =
f(x), or an equation <p(x, y)

=
which defines y as an implicit function of .r, is said to be a solution

of the differential equation

(67-1) F[x, y, y
f

, y",
- -

, y^] =
0,

provided that, whenever the values of y, y', y",
- -

, y
(n)

are substituted in the left-hand member of (67-1), the latter

vanishes identically.

For example,

(67-2) ^ + y cos x =

has a solution

y = e~*
mx

,
or log y + sin x =

0,

because the substitution of y and y' calculated from either one

of these expressions reduces (67-2) to an identity = 0. Thus,

differentiation of the second equation gives
- -~ + cos x = 0,
y ax

so that y
f = y cos #, and substitution in (67-2) gives = 0.

The graph of a solution of an ordinary differential equation is

called an integral curve of the equation.

PROBLEM

Classify the following differential equations, and determine their

orders and degrees:

ox* dx oy oy

(c) -^ + sin y + x = 0;
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(e) y" - vT=T y' + by = 0;

*'
dt2

~~

dx2 '

(g) y" + x*y' + xy = sin x;

68. Remarks on Solutions.

the first order,

(68-1) ^ -

Consider a differential equation of

where f(x, y} is a single-valued and continuous function of the

variables x and y. If a point (J Q , ?/ Q ) is chosen in the xy-

and its coordinates are substituted in (68-1), then

= /u 2/0)

determines a direction associated with the point (# , 2/o), since

dy/dx can be interpreted geometrically as the slope of an integral

curve. If a second point (?i, yi) is chosen and its coordinates

are substituted in (68-1), a direction is

associated with (xi, yi). Continuing in

this way, it is possible to find a direction

associated with every point of the plane

for which f(x, y) is defined. Now, sup-

pose that a point (# , 2/o) is chosen in the

plane (Fig. 65) and the direction associated

with this point is determined. Let (#1, 7/1) be a point very near

to (XQ, yo) and in the direction specified by

FIG. G5.

Then,

dy
dx

dy
dx

determines a new direction. Upon proceeding a short distance

in this new direction, a third direction given by
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is determined by the selection of a point (x 2 , 1/2) which is close to

(xi, yi). If this process is continued, there will be built up a

curve made up of short straight-line segments. If the points

(x , 2/o), (xi, t/i), (z 2, 2/2),
' ' '

, (xn , 2/n) are chosen very close

together, it becomes intuitively clear that this series of straight-

line segments approximates a smooth curve associated with the

initial point (XQ) t/ ). Evidently, the equation of this curve will

be a solution of the differential equation (68-1), for the slope of

the curve is

In general, a different choice of (X Q , 2/o) will lead to a different

integral curve and thus to a different solution of (68-1).

The foregoing discussion forms the basis of one method of

graphical solution of differential equations of the first order.

Another important method of approximate solution of differential

equations is the method of infinite series, which is outlined next.

Let it be supposed that the function /(#, y) in (68-1) can be

expanded in Taylor's series about the point (x , 2/0) ;
then the

solution of (68-1) can be obtained in the form of a power scries in

x XQ. Indeed, denote the solution of (68-1) by

(68-2) y = F(x).

Then, if the integral curve defined by (68-2) is to pass through

(XQ, 2/0), it is necessary that

y = F(x Q)
=

2/0.

Substituting the coordinates of (XQ, 2/0) in (68-1) gives

J~
=

/O&O, 2/o)
= F'(XQ).

Differentiating (68-1) yields

d*y = df(x, y) , df(x, y)
dy^

dx 2 dx dy dx

so that the value of the second derivative of (68-2) at XQ is

dy
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The formula (68-3) can be used to calculate d 3
y/dx

3
,
and its

value at the point (# , 2/0) can be obtained, for the values of the

first and second derivatives of F(x) at x = XQ are already known.

In this manner, one can attempt to find the solution of (68-1)

in the form of the series

y = F(* ) + F'(x )(x
- x a) + -

(x
- z )

2 + .

In essence, this method of solution is the same as the method of

undetermined coefficients that is discussed in Sec. 98. Another

important method, due to the French mathematician E. Picard,

is discussed in Sec. 103.

Next consider a family of curves

(68-4) y = x2 + c,

where c is an arbitrary constant. Differentiation of (68-4) gives

-
-7 AX.
dx '

which is the differential equation of the family of curves (68-4),

and which is free from arbitrary constants. If the given func-

tional relation contains two arbitrary constants, as, for example,

y = ci sin" 1 x + c2 ,

then it is possible to eliminate these constants c\ and Cz by
two differentiations. The first differentiation gives

Solving for c\ yields

and differentiation of this equation gives

dy = Q
dx 2 1 x 2 dx

This is a differential equation of the second order, and clearly it

has y = ci sin" 1 x + 03 as a solution. It should be observed that

two differentiations were necessary in order to eliminate two

arbitrary constants.



230 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 68

In general, if f(x 9 y, ci, c2 , ,
cn)

= is a functional

relation involving n arbitrary constants and defining y as a

function of x, then n successive differentiations will produce n

equations involving derivatives up to and including those of the

nth order. These n equations together with the given equation

/Or, t/, Ci, c2 , ,
cn)

= can be used to eliminate the n con-

stants ci, C2, ,
cn ,

and the result will be a differential equation
of the nth order whose solution is f(x, y, Ci, c2 , ,

cn)
= 0.

It can be shown that, in general, a differential equation of the

nth order has a solution which contains n arbitrary constants.

Moreover, no solution of a differential equation of the nth order

can contain more than n arbitrary constants. A solution that

contains n arbitrary constants is called the general solution of the

differential equation.

The foregoing discussion does not prove these facts. It

merely suggests that a functional relation containing n arbitrary

constants leads to a differential equation of order n. For the

proof of this theorem and its converse, any advanced treatise on

differential equations* can be consulted.

Any solution that is obtained from the general solution by

specifying the values of the arbitrary constants is called a par-

ticular solution. Particular solutions arc usually the ones that

are of interest in applications of differential equations. It

should be remarked, however, that some differential equations

possess solutions which cannot be obtained from the general

solution by specifying the values of the arbitrary constants.

Some examples illustrating the existence of such solutions are

given in Sec. 83.

PROBLEMS

Find the differential equations of the following families of curves :

1. x* + cx + y = c2
.

2. ci sin x + c 2 cos x =
y.

3. Cix + c&x + C&-* =
y.

4. ce* - xy + e~x = 0.

6. (x
-

Cl )
2 + (y

- c 2)
2 = 1.

6. y = c\e
x sin x + c 2e* cos x.

7. c2x + cy + 1 = 0.

8. cfy + ciy + c2
= 0.

9. y = Cix* + c&2 + c&.

* See INCE, E. L. Ordinary Differential Equations.
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10. y
z - 4cx = 0.

11. y = Ci6
2aj + c 2e

3 * + #.

69. Newtonian Laws. In order to illustrate the prominence
of the subject of differential equations in a study of various

phenomena, the next four sections are primarily concerned with

the task of setting up the differential equations from the basic

physical principles. A systematic treatment of the problem of

solving various typos of differential equations frequently occur-

ring in practice will be given in the subsequent sections.

The formulation of the basic principles from which many
differential equations arise rests on the following fundamental

laws of dynamics, which were enunciated by Sir Isaac Newton.

1. Every particle persists in its state of rest or moves in a straight

line with constant speed unless it is compelled by some force to

change that state.

2. The rate of change of momentum of a particle is proportional

to the force acting on it and is in the direction of the force.

3. Action and reaction are equal and opposite.

The first law merely states that any change of velocity of a

particle (that is, acceleration) is the result of some external force.

The second law postulates that the resultant force / acting on a

particle is proportional to the product of the mass m by its accel-

eration a; for momentum is defined as the product of mass m and

velocity v, and the rate of change of momentum is

d , ^ dv_
(mv) = m -rr = ma.

at at

Thus,
ma =

kf,

where k is the proportionality constant, which can be made equal
to unity by a proper choice of units.

Obviously, the second law includes the first; for if the force

acting on a particle is zero, then its acceleration is zero and the

particle must either remain at rest or move with constant

velocity.

The third law asserts that, if two particles exert forces on each

other, then the force exerted by the first on the second is equal to

the force exerted by the second on the first. This law can be

used to define the mass of a body.
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Frequent use of these laws will be made in the following pages.

There is one more law, formulated by Newton, that will be found

of cardinal importance in this study. It is the law of gravita-

tion. Newton was led to it by his attempts to explain the

motions of the planets. This law states that two bodies attract

each other with a force proportional to the product of their

masses and inversely proportional to the square of the distance

between them, the distance being large compared with the

dimensions of the bodies. If the force of attraction is denoted

by F, the masses of the two bodies by mi and m%, and the distance

between them by r, then

(69-1) F = ^p,
where K is the proportionality constant, called the gravitational

constant. In the c.g.s. system the value of K is 6.664 X 10~8
.

The three fundamental principles formulated by Newton in

reality form the postulates of dynamics and furnish a definition

of force, and the law of gravitation permits one to compare
masses with the aid of the beam balance.

The law of attraction (69-1) assumes a simpler form in the case

of a small body of mass m falling to the earth from heights that

are not too great. It can be established that a sphere attracts a

particle at an external point as if the whole mass of the sphere
were collected at its center. *

If the height of the particle above

the earth's surface is small compared with the radius of the earth,

the law of attraction becomes, since r in (69-1) is sensibly con-

stant and equal to the radius of the earth, t

(69-2) F = mg,

where g is a new constant called the acceleration due to gravity.

Its value in the c.g.s. system is approximately 980 cm. per second

per second and in the f.p.s. system 32.2 ft. per second per second.

Thus, the differential equation of the falling body can be

written as

(69-3) g =
g,

where s is the distance traveled by the body and t is the time in

seconds. Integration of (69-3) gives
* In this connection, see Sees. 16 and 66.
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(69-4)
~ = gt + t>o;

and, since the velocity v is equal to ds/dt, (69-4) may be written

v = gt + v
,

where VQ is the constant of integration so chosen as to equal the

initial velocity, that is, the value of v at the time t = 0.

Integrating (69-4) gives

(69-5) s = y2gP + vQ t + s
,

where SQ is the distance of the body from the point of reference

at the time t = 0. Equation (69-5) furnishes all the desired

information about the freely falling body.
70. Simple Harmonic Motion. Simple harmonic motion is the

most important form of periodic motion. It represents a

linear vibration of such a sort that the vibrating particle is

accelerated toward the center of its path in such a way
that the acceleration is proportional to the displacement of the

particle from the center. If the displacement of the particle

from its central position is denoted by #, the definition of simple
harmonic motion demands that

r/ 2r
(70-1)

*Z = -,*,

where a?
2 is a constant of proportionality and the negative sign

signifies that the acceleration is directed oppositely to the dis-

placement x.

In order to find the equation of motion, that is, the displace-

ment of the particle in terms of the time
t, multiply both sides

fir
of (70-1) by 2 ~ and obtain

The left-hand side of (70-2) is the derivative of (dx/dt)
2

,
and

integration yields

()'--.
where the constant of integration is written for convenience in
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the form c 2
,
for it must be positive; otherwise, the velocity

dx/dt will be imaginary.

Extracting the square root and solving for dt give

dt =
dx

which upon integration becomes

1 * i- sin" 1 = t +
or

(70-3) x = A sin +
where A = c/u and B = Cio>. The period of the motion,
T7 =

27T/CO, is independent of tho amplitude A.

It will be seen in the next section that (70-3) approximately

represents the behavior of a simple pendulum.
71. Simple Pendulum. Let P be a position of the bob of a

simple pendulum of mass m and of length I (Fig. 66), and let

be the angle, measured in radians, made by OP
with the position of equilibrium OQ. Denote the

tangential acceleration by d*s/dt
2

,
where s repre-

sents the displacement, considered positive to the

right of OQ.
The acceleration d 2

s/dt* along the path of the

bob is produced by the tangential component of

the force of gravity mg, so that its magnitude is

mg sin 0. Since the velocity of the bob is decreas-

ing when the bob is moving to the right of its

position of equilibrium OQ, the acceleration will

be negative. Hence, since force is equal to the product of mass

and acceleration, one can write

FIG. 66.

(71-1)
dt*

The normal component of the force of gravity acts along OP
and is balanced by the reaction of the string (Newton's third

law of motion).

Remembering that s = 10, (71-1) can be written as

(71-2)
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and if the angle is so small that* sin can be replaced by 6,

This equation is precisely of the form (70-1), and its general

solution is

(71-4) = Ci sin (ut + c2),

where Ci and c2 are arbitrary constants and co
2 =

g/l.

However, from physical considerations it is clear that there

is nothing arbitrary in the behavior of the pendulum. Moreover,
it is known that, if the pendulum bob is held initially at an angle

a and then released without receiving any impulse, the pendulum
will vibrate in a perfectly definite manner, so that it must be

possible to calculate the position of the bob at any later time t.

These remarks concerning the initial position of the pendulum
bob and the fact that the bob was released with zero velocity

can be stated mathematically as follows: If the time at which

the pendulum was released is denoted by t = 0, then

SO

= a when t = 0,

^ = when t = 0.
at

Therefore, the general solution (71-4) of (71-3) must satisfy the

initial conditions (71-5). Substituting the first of these initial

conditions in (71-4) gives

(71-6) a = Ci sin c2 .

Differentiation of (71-4) with respect to t shows that

dO . . . N

^ = Cio> cos (co + c 2),

and therefore the second initial condition yields

= Cico cos c2 ,

which is satisfied if c2
=

ir/2. Substituting this value of c2 in

(71-6) gives Ci = a. Thus, the particular solution of (71-3) that

satisfies the initial conditions is

6 = a sin ( co + ^ J
= a cos ut.

* See Prob. 11, Sec. 13.
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Naturally, a different choice of the initial conditions would lead

to different values for c\ and 0%.

The solution of the problem of a simple pendulum that was

just obtained was based on the assumption that 6 was sufficiently

small to permit the replacement of sin 6 by 6. If this is not the

case, the problem is somewhat more difficult. In order to

solve (71-2), multiply both sides by 2
-^> obtaining

ddd*6 __ __?0 ^.
*Ttw

~~

i

*m
dt

Integration gives

(dO\ __ 2g

\dtj
~

I

cos e + c.
i

Since dB/dt = when =
a,

= -~ cos a + C

dt) I

and

The angular velocity is given by dQ/dt] and since the linear

velocity is / -T:I the velocity in the path at the lowest point is
u/t

-
(cos e cos a) I 0=0 = \/2gl(l cos a).

It may be observed that this is the same velocity that would

have been acquired if the bob had fallen freely under the force

of gravity through the same difference in level, for v =
and h =

1(1 cos a).

Integrating (71-7) yields

(71-8)
' /T r de

\/cos cos a

which gives the formula for determining the time required for the

bob to move from the initial position to any other.
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If the lowest position of the bob is chosen as the initial position,

then 6 = when t = 0, and (71-8) becomes

(Tl-9) < - Jl
"" M
o ^/cos cos a.

where ^ 0i ^ a.

In order to evaluate (71-9), first reduce the integral to a more
A

convenient form by means of the relation cos 0=12 sin 2 =

Then,

Let

then

. . a .

sin p:
= sin -jr sin

jn '

cos
2 Q ^ = sin s cos

and

2 sin ^ cos (p d<p 2 sin ~ cos <p d<p

cos H x /l sin 2

^ sin 2
^

^s \ A

Substitution of these expressions in (71-10) gives

rr
(*<p,

2 sin
jj

cos

t
-

\

*

\2fli Jo
{ sin 2

^
sin 2

^
sin 2 ^

j ^/l
sin 2

^
sin2

<p

or

I-J^
V

1 - sin2
1

sir

If the time involved is the time required for the completion of

one-quarter of the vibration, then 0i = a and hence y\ = ir/2.
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The entire period is then

"
*2

T =

-%/!"" sin 2 ~ sin 2
<p

9 Jo VI - W sin 2
<?

where fc
2 = sin 2

-^

If (1 k 2 sin 2
<p)~W is expanded by the binomial theorem, so

that

T = J- Pdv(l+h\g Jo \ *

term-by-term integration* gives

It may be noted that the period is a function of the amplitude,

which was not true in the case of simple harmonic motion.

N

FIG 67.

A reference to Sec. 14 shows that the period of a simple

pendulum is expressible as an elliptic integral of the first kind.

e Note Wallis's formula

(n
-

l)(n
-

3) 2 or 1P sinn e dO = f
2
cosn e dO = ^

.

^
rtx ^ :: a,

Jo Jo n(n 2) 2 or 1
'

where a. 1 when n is odd, a = Tr/2 when n is even.
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72. Further Examples of Derivation of Differential Equations.

1. The Slipping of a Belt on a Pulley. Let T and TI be the

tensions of the belt (Fig. 67) at the points A and B. Consider

an element of the belt of length As, which has end points P and Q
and subtends an angle A0 at 0. Let the tension at P be T and at

Q be T + AT, and let the normal pressure per unit of length of the

arc be p, so that the total normal force on the element of arc

As is p As. If the angle A0 is assumed to be small, the normal

pressure may be thought of as acting in the direction of the

line ON, which bisects the angle A0. From the definition of the

coefficient of friction /z, it follows that the frictional force is equal
to the product of M by the normal pressure, so that the frictional

force on PQ is up As, and, since A0 is small, this frictional force

may be assumed to act at right angles to ON. If it is assumed

that the belt is at the point of slipping, the components of force

along ON must balance. Hence,

T sin ^ + (T + AT) sin ^ = p As

or

(72-1) (2T + AT) sin ~? -
p-As.

Similarly, by equating the forces acting at right angles to ON,

(T + AT) cos ^ - T cos y = Mp As

or

(72-2) AT cos = MP As.
Z

Eliminating p As between (72-1) and (72-2) leads to

,70 o\ 2T + AT . A0 1

(72-3) ~= tan =

Solving (72-3) for AT gives

*m ,.
A0 2T/iAT = tan -^r >

Z
1

A0
1 M tan

-^

and dividing both members of this equation by A0 leads to
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A0

AT
A0 A0 A A0

"2
1 ~ M tan

"2

The limit of this expression as A0 > is

(72-4) f = ,r,

snce
,. tan a .

lim- = 1.

Separating the variables in (72-4) yields

?-,*.
which, upon integration, becomes

log T =
fjid + c

or

(72-5) T = c^B
.

The arbitrary constant Ci that enters into the solution of the

differential equation can be determined from the initial condition

T = jT when 6 = 0. Substituting these values in (72-5) gives

T =

so that the tension TI corresponding to the angle of lap a is

PROBLEM

Find the tensions T\ in the foregoing illustration when To =
100,

M = K> and the angles of lap are Tr/2, %TT, and TT radians.

2. Elastic Curve. Consider a horizontal beam under the

action of vertical loads. It is assumed that all the forces acting

on the beam lie in the plane containing the central axis of the

beam. Choose the #-axis along the central axis of the beam in

undeformed state and the positive y-axis down (Fig. 68). Under
the action of external forces F t the beam will be bent and its

central axis deformed. The deformed central axis, shown in
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the figure by the dotted line, is known as the elastic curve, and it

is an important problem in the theory of elasticity to determine

its shape.

It can be shown* that a beam made of elastic material that

obeys Hooke's law is deformed in such a

way that the curvature K of the elastic

curve is proportional to the bending
moment M. In fact,

(72-6) K = Mw
FIG. 68.

where E is Young's modulus, / is the moment of inertia of the

cross section of the beam about a horizontal line passing through
the centroid of the section and lying in the plane of the cross

section, and y is the ordinate of the elastic curve. The important
relation (72-6) bears the name of the Bernoulh-Euler law.

The bending moment M in any cross section of the beam is

equal to the algebraic sum of the moments of all the forces F,

acting on one side of the section. The moments of the forces F,

are taken about a horizontal line lying in the cross section in

question.

If the deflection of the beam is small, the slope of the elastic

curve is also small, so that one may neglect the square of dy/dx
in the formula for curvature. Thus, for

small deflections the formula (72-6) can

be written as

(72
"
7)

~dtf

= M_
El

FIG. 69.
As an illustration of the application of

this formula, consider a cantilever beam
of length I, which is built in at the left end and which carries a

load W on its free end (Fig. 69). The weight of the beam is

assumed negligible in comparison with the magnitude of the load

TF, so that the moment M in any cross section at a distance x

from the built-in end is

M = W(l -
x).

* See TIMOSHENKO, S., Theory of Elasticity, p. 41; LOVE, A. E. H., A
Treatise on the Mathematical Theory of Elasticity, 4th ed., pp. 129-130.
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When this expression is substituted in (72-7), there results

dtf
= m (l

"
**'

and integrating gives

W fix* x*

The constants of integration, ci and c2 ,
are easily evaluated

from the boundary conditions

y =
0, when x =

0,

~~ =
0, when re = 0,

the first of which expresses the fact that the displacement at

the built-in end is zero and the second that the slope of the

elastic curve is zero when x = 0. It is easily checked that these

boundary conditions require that

W
y "

2EI

so that the displacement d at the free end is

Wl 3

3EI

PROBLEM

A beam of length / is freely supported at its ends and is loaded in the

middle by a concentrated vertical load W,
which is large in comparison with the weight

jv^ | ^ of the beam. Show that the maximum
deflection is one-sixteenth of that of the

cantilever beam discussed above. Hint:

From symmetry, it is clear that the behavior

70 t

"~

of this beam is the same as that of the

cantilever beam of length 1/2 which is

loaded by a concentrated load of magnitude W/2 at its free end (Fig.

70).

3. Cable Supporting a Horizontal Roadway. Let a cable that

supports a horizontal roadway be suspended from two points

A and B (Fig. 71). It will be assumed that the load on the

roadway is so large compared with the weight of the cable that
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T+AT

the weight of the cable can be neglected. The problem is to

determine the shape assumed by the cable.

Denote the tension at the point P of the cable by T and that

at the point Q by T + AT, and let w be the load per foot run.

Since the cable is in equilibrium, the horizontal and vertical

components of the forces acting on any portion As of the cable

must balance. Thus, equat-

ing the horizontal and ver- y
tical components gives a

system of two equations

(72-8) T cos

= (T + AT) cos (0 + A0)

and

(72-9) T sin0 = wAx
+ (T + AT) sin (0 + A0).

Dividing (72-9) by (72-8)
~~

gives

(72-10) tan = tan (0 + A0)

FIG. 71.

W Ax

But (72-8) does not depend on the magnitude of As and, since

As is arbitrary in size, it appears that the horizontal component
of the tension at any point of the cable is a constant, say TO.

Substituting this value in the right-hand member of (72-10)

and rearranging give
1J) AT*

tan (6 + A0)
- tan = =^= f

cr

(72-11)
tan (0 + A0) tan = w_

Az
A0

~~

To A0'

Tho left-hand member of (72-11) is the difference quotient, and

its limit as A0 is made to approach zero is the derivative of

tan 0. Hence, passing to the limit gives
,*

w_
dx

''YQ Te
(72-12)

2SGC

Recalling that tan =
> so that = tan" 1

; it follows that
ax ax

dx 1 + (dy/dxY
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Moreover,

sec 2 0=1+1^
\dx

Substituting from these two expressions in (72-12) leads to the

differential equation of the curve assumed by the cable, namely,

V - w
.

d&
~

ri

If (72-13) is integrated twice with respect to #, one obtains the

desired equation of the curve,

ID

(72-14) y =_ 32 + ClX + C2;

which is the equation of a parabola. The arbitrary constants Ci

and C2 can be determined by substituting in (72-14) the coordi-

nates of the points A and B.

If the lowest point of the cable is chosen as the origin of the

coordinate system, the equation of the parabola becomes

<ii)

(72-15) y =
Wo

X *-

The length of any portion of the cable can easily be calculated

with the aid of (72-15).

PROBLEMS

1. Find the length of the parabolic cable when the latter supports a

roadway which is I ft. long. Express the length of the cable in an

infinite series in powers of L Hint: Expand the integrand in the

expression for the length of the cable.

2. Find an approximate expression for the sag d in terms of the

length I by using the first two terms of the infinite series expansion that

was obtained in Prob. 1.

4. Uniform Flexible Cable Hanging under Its Own Weight. Let

a flexible cable (Fig. 72) be suspended from two points A and B.

Denote the weight per \Hiit length of the cable by w, and con-

sider the forces acting on the element of cable As. As in the

preceding example, the horizontal and vertical components of

force must balance, for the cable is in equilibrium. If the tension

at P is denoted by T and that at Q by T + AT7

,
it follows that

T cos 6 = (T + AT) cos (0 + A0)
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T sin B = (T + AT) sin (6 + A0)
- w As.

Dividing the second of these equations by the first gives

w As
tan 6 = tan (0 + A0)

-
(T + AT) cos (0 + A0)

This equation has the structure of Eq. (72-10), and an analysis

in every respect similar to that outlined in the preceding illus-

T+AT

FIG. 72.

tration leads to the equation

(72-16)
w ds

sec B = f 35'

where To is the tension at the lowest point of the cable. Since

ds ds/dx
dO dd/dx

where

dx
^ and

1 +
and since sec 2 0=1 + (dy/dx)

2
,

it follows upon substitution

in (72-16) that the differential equation of the curve assumed by
the cable is

(72-17)
dx*
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If dy/dx is replaced by w, (72-17) becomes

du __ w
/T~^T 2

Tx
~
n V1 + u

>

or

rfu ^ 7

Integrating this equation gives

log (u H

This differential equation can be solved by the following

device: Taking the reciprocal of (72-18), one obtains

and rationalizing the denominator gives

When (72-19) is subtracted from (72-18), there results

rfy if +, -(f*+
^ .

-^r.
_ e Vr.

and integration gives

The constants c\ and eg can be determined from the condition

that the curve passes through the points A and B, whose coordi-

nates are assumed to be known.

If the constants c\ and cz are chosen to be equal to zero, then

the lowest point of the curve is at (0, TQ/W), and the equation
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of the curve assumed by the cable has the form

(72-20) y =

A curve whose equation has the form (72-20) is called a catenary.

PROBLEM

Find the length of the catenary between the limits and v.

73. Hyperbolic Functions. Combinations of exponential func-

tions analogous to the one that appears in (72-20) are of such

frequent occurrence in applied mathematics that it has been

found convenient to give them a special

name. The function %(ex + e~x
) is

called the hyperbolic cosine of x and is

denoted by

(73-1) cosh x - y^e* + <r*).

The derivative of cosh x is equal to

%(ex e~x
) and is called the hyper-

bolic sine of x. Thus,

(73-2) sinh x - %(cx - e~x
)

These functions are called hyperbolic because they boar rela-

tions to the rectangular hyperbola x 2
y

2 = a 2 that are very
similar to those borne by the circular functions to the circle

x 2
-f i/

2 = a 2
. Thus, consider

the equation of a circle (Fig. 73)

whose parametric equations are

x = a cos t

and

y = a sin t.

The equation of a rectangular

FIG. 74. hyperbola (Fig. 74) is

(73-3) x2 -
t/

2 = a2
,

and the reader can readily show with the aid of the definitions
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(73-1) and (73-2) that (73-3) can be written in a parametric form

as

x = a cosh tj

= a sinh t.
(73-4)

It will be shown next that the parameter t can be interpreted
for the circle and the hyperbola in a similar way.
The area u of the circular sector OAP (Fig. 73) is

u

2u

so that

On the other hand, the area of the hyperbolic sector OAP (Fig.

74) is given by

(73-5) u = ~~
/

*N/#
2 ~ #2

dxj

where the first term in (73-5) represents the area of the triangle

OBP.

Integrating (73-5) gives

x + -\/x
2 a2 Q?

1
x + y=

9"
log2 * ~^T )

.

log
x + y 2u

- =

so that

and

(73-6)

Also, since a;
2

y
2 = a 2

,
it follows that

r 11 -

(73-7)
--? = e a

'.

Adding and subtracting (73-6) and (73-7) lead to

(73-8)

x = a
.2u= a cosh -r;
a2

2?* 2u

= a = a sinh
2u

which are precisely Eqs. (73-4) with t = 2u/o
2

.
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From (73-8), it is clear that
'

x . 2u . y . . 2u- = cosh -r- and - = sinh r
a a 2 a a2

and a reference to Fig. 73 shows that

x 2u , y . 2u- = cos r and - = sin -=-
a a2 a a2

Therefore, the circular functions may be defined by means of

certain ratios involving the coordinates of the point P(x, y) on

the circle x 2 + y
2 = a2

,
whereas the hyperbolic functions are

expressed as ratios involving the coordinates of the point P(x, y)

on the hyperbola x 2
y

2 a 2
.

The definitions of the hyperbolic tangent, hyperbolic cotangent,

hyperbolic secant, and hyperbolic cosecant are as follows :

, sinh x
tanh x =

; >

cosh x

COth X ; ;

tanh x

sech x =
; )

cosh x

csch x =
sinh x

The inverse hyperbolic functions are defined in a way similar

to that used in defining the inverse circular functions. Thus, if

y = tanh x,

then

x = tanh" 1

y,

which is read
"
the inverse hyperbolic tangent of y." The definition

of the remaining inverse hyperbolic functions is similar. There

are some interesting relations that connect these inverse hyper-
bolic functions with the logarithmic functions.*

It will be recalled that the expansion in Maclaurin's series for eu

is

(73-9) ..! + +
;
+ ;+...,

* See Probs. 5 and 7 at the end of this section.
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so that

(73-10) * = 1 + x + ~ + ~ +
and

(73-11) e- = 1 - x + - + .

Subtracting (73-11) from (73-10) gives

so that

pX p X /y3 /y5

(73-12) sinh x m $
= * +

|-,
+

|-,
+ .

On the other hand, addition of (73-10) and (73-11) shows that

/?- I p X /v2 /y4

(73-13) cosh x = e = 1 +
|l
+

|l
+ ' ' '

Moreover, if it is assumed that (73-9) holds for complex num-
bers as well as for real numbers, then

(Yr") 2

(73-14) e = 1 + ix +
^jf-

and

(73-15) ^ = l- ix +

where i s= \/ 1. Adding (73-14) and (73-15) and simplifying

show that

T 2 T 4 T 6 \

),

which is recognized to be the series for cos x multiplied by 2.

Thus,
pix JL. p ix

(73-16) cos x =

It is readily verified that subtraction of (73-15) from (73-14)

leads to the formula

fix _. p-ix

(73-17) sin x = - --
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By combining (73-16) with (73-17) there result two interesting

relations,

cos x + i sin x = e
lx and cos x i sin x = e= ~ lx

which are frequently used in various investigations in applied

mathematics. These relations are known as the Euler formulas.

The following table exhibits the formal analogy hat exists

between the circular and hyperbolic functions. The relations

that are given for hyperbolic functions can be established readily

from the definitions for the hyperbolic sine and the hyperbolic

cosine.

Circular Functions Hyperbolic Functions

sin x =
2~

(e
tx e~ tar

) sinh x =
^

(e
x e~ x

)

cos z =
2 (e

' x + "**) cosh x =
^ (e

x + e~x
)

e lx e~*x , , ex ~*
tan x =

t
-

:

--v tanh a; = --

^(e
lx + e~ %x

) ex + e~*

cot # = r-- coth x =-- V/vsuii A* 7 i

tan x tanh a;

/v.2 /v4 /r2 /v4

cos x = 1 -
2j
+

j|
- cosh x = 1 +

2j
+

jj
+

sin 2 x + cos 2 x = 1 cosh 2 x smh 2 x = 1

1 4- tan 2 x sec 2 x I tanh 2 x = sech 2 x

sin 2z = 2 sin z cos x smh 2x = 2 smh # cosh x

cos 2x = cos 2 x sin 2 # cosh 2x = cosh 2 x -f sinh 2
a;

sin (x y) sin x cos i/ sinh (x ?/)
= sinh x cosh t/ cosh x smh ?/

cos x sin i/

</ sin x d sinh x ,

cos x T
- = cosh x, \J\JO As i

dx dx

d cos x _ _ . d cosh x

dx
~

dx
= smh a;

d tan x d tanh x , ,

3
- = sec 2 x -

-5

- = sech 2 x
dx dx

Example 1. A telephone wire (Fig. 75) weighing 8 Ib. per 100 ft. is

stretched between two poles 200 ft. apart. If the sag is 1 ft., find tlu

tension in the wire.

Note that

)-

where a = T /w.
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The vertical component of the tension is clearly equal to ws, where

is the length of the wire. But the length of the catenary between the

points whose abscissas are and x is

s

where y = a cosh Substituting for

Y"01*4*
dy/dx gives

-f:FIG. 75.

so that the vertical component of tension is

1 + sinh 2 - dx

u j -
i.

co ~ ~ a 81 "'

Ty ws = wa sinh ->

and the total tension at any point is

T = V2V + = wa J l + sinh 2

wa cosh -
a

wy.

At the point of support, y = a + d, so that T = w(a + d). Since d is

usually small, the tension in the wire is nearly constant and approxi-

mately equal to TV
If the wire is very taut and the distance between the poles is not large,

r-2*

- a -
25'

When x =
Z/2, where Z is the distance between the poles, and d is the

sag> y a = d and

so that

* The symbol a = 6 is used to signify that a is approximately equal to 6.
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or

T =
8d'

Substituting the numerical values for w, I, and d gives for the value

of the tension at the lowest point

- (O.Q8)(200)
2

_To==
(8)'(1)

- 4001b '

Example 2. A parachute, supporting a mass m, is falling from a

distance h above the ground. Determine the velocity with which it

strikes the ground if the air resistance is proportional to the square of

the velocity.

If the air resistance be denoted by R, then

R = kv2
,

where fc is a proportionality constant depending upon the design of

the parachute. The force acting downward is

d2
s dv

which is equal to mg kv 2
Hence,

dvm -r. = mg kv*

or

g-r

=
g(\

- oV),

where a2 = k/gm. Integrating

f dv r
J i -. aV

=
9J *

gives

1
i

1 + w

If v = when t = 0, it follows that c\ = 0. The integrated expres-

sion then simplifies to

l + av

av
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or

It is easily shown that

lim tanh t 1,

and it follows that the terminal velocity is vt
= \/gm/k.

But ds/dt =
v, so that

1 f
s = -

I tanh agt dt
a J

= -
log cosh agl + c 2 ;

and since s = when t = 0, c 2
= 0. Hence,

m
i i W *

s = 7T log cosh A/ .

PROBLEMS

1. A wire is stretched between two supports 100 ft. apart. If

the weight of the wire is 10 Ib. per 100 ft. and the tension in the wire is

300 Ib., find the amount of sag at the middle.

2. Newton's law of cooling states that the rate of decrease of the

difference in temperature of a body surrounded by a medium of con-

stant temperature is proportional to the difference between the tempera-
ture of the body and that of the medium, that is,

dO _
dt

Find the temperature of the body at any time t, if the initial tempera-
ture is 0i.

3. If a wire weighing w Ib. per unit of length is stretched between two

supports I units apart, show that the length of the wire is approximately

where T is the tension.

4. Show that any complex number a + U can be put in the form

a + bi = re6
*, where r = \/a2 + &2 and = tan" 1 -
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5. If y = sinh x, then x is called the inverse hyperbolic sine and is de-

noted by x = sinh- 1
y. Prove that x = sinh- 1

y = log (y + vV + 1).

6. Establish the formulas for hyperbolic functions given in the table

of Sec. 73.

7. Establish the following formulas:

(a) d sinh u = cosh u du;

(b) d cosh u = sinh u du]

(c) d tanh u = sech2 u du;

(d) d coth u csch2 u du;

(e) d sech u = sech u tanh u du\

(/) d csch i = csch u coth

(<;) d sinh" 1 u =

(fi) d cosh" 1 u

(i) d tanh- 1 u =

(j) d coth- 1 u =

du

du

du

1 - u2 '

du

u \/\ - u2
'

du

(k) d sech- 1 u =

(I) d csch" 1 u =
u VI +

(w) cosh" 1
y log (y + V?/2

1)
= sinh" 1

(n) sinh- 1
y =

log (y + Vl/
2
H~ 1)

= cosh" 1

(o) tanh- 1
y =

g log
1 _ if 2/

2 < 1;

(p) coth- 1
y =

5 log

(#) seen" 1
y

(r) csch- 1
y log

+ 1;

<
1;

8. Plot the graphs of the hyperbolic functions.

9. A man and a parachute, weighing w lb., fall from rest under the

force of gravity. If the resistance of the air is assumed to be propor-
tional to the speed v and if the limiting speed is v

,
find the expression for

the speed as a function of the time t.

Hint:

w dv
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10. A man and a parachute are falling with the speed of 100 ft. per

second at the instant the parachute is opened. What is the speed of

the man at the end of t sec. if the air resistance is proportional to the

square of the speed?
11. It can be established that the steady flow of heat across a

large wall is proportional to the space rate of decrease of temperature
across the wall and to the area A of the wall, that is,

where x is the distance from one of the faces of the wall and Q is the

constant quantity of heat passing through the wall. The constant k

(thermal conductivity) depends on the properties of the material.

Integrate this equation and calculate the amount of heat per square

centimeter passing through a refrigerator wall, if the thickness of the

wall is 6 cm. and the temperature inside the refrigerator is 0C., while

outside it is 2(JC. Assume k = 0.0002.

12. A tank contains initially v gaL of brine holding XQ lb. of salt in

solution. A salt solution containing w lb. of salt per gallon enters the

tank at the rate of r gal. per minute; and the mixture, which is kept
uniform by stirring, leaves the tank at the same rate. What is the

concentration of the brine at the end of t min. ?

Hint: Let x denote the amount of salt present at the end of t min.;

then, at a later instant t + A, the change in the quantity of salt is

A# = wr At (x/v)r At. Hence, dx/dt wr xr/v = (r/v)(wv x).

74. First-order Differential Equations. Generally speaking,

the problem of solving differential equations is a very difficult

one. There are very few types of equations whose solutions can

be written down at once; in practice, special methods of solu-

tion, suitable to the particular problem under consideration,

have to be depended upon. Seeking special methods of solution

is a difficult task, and the mathematician, at present at least, is

almost entirely restricted to a consideration of linear differential

equations. Very little is known concerning the solution of non-

linear differential equations. Even such a simple-appearing
first-order equation as

cannot be solved in general; that is, there are no formulas avail-

able for solving a non-linear differential equation of the first order.

However," it is possible to classify some of the first-order non-
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linear differential equations according to several types and to

indicate the special methods of solution suitable for each of these

types. The next ten sections will be concerned with the solutions

of the special types of non-linear differential equations that are of

common occurrence in practice. The remainder of the chapter
will be devoted to the general methods of solution of the impor-
tant types of linear differential equations.

75. Equations with Separable Variables. If the given differ-

ential equation

can be put in the form

/i Or) dx + /2 (y) dy =
0,

where /i(o;) is a function of x only and fa(y) is a function of y

only, the equation is said to be an equation with separable

variables. Such an equation is easily integrable, and its general

solution is

ffi(x)
dx + f My) dy = c,

where c is an arbitrary constant. In order to obtain an explicit

solution, all that is necessary is to perform the indicated

integrations.

Example. Solve

dy ,
.

~T~ ~r &xy = &xy

This can be written as

~dx
"*" e*^y "" y '

^

or

Integration gives

log . __ ^
+ e* =

c,

which is the general solution required.
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PROBLEMS

Solve the following differential equations:

1. VI - & dy + V 1 - y
z dx = 0.

dy _ sin2 x

dx
~~

sin y
4. sin x cos2

y dx + cos2 x dy = 0.

6. Vl + x dy
-

(1 + y
2
) dx =

0.6. e* VI ~
y
2 dx + -

dy

7.
dy I + y
dx 1 + x

8. e ^ + y - y
2 = 0.

9. sinh x dy + cosh y dx 0.

dx

dx

12.

13.

og 2/ :/ + tan z sec 2 x.

4?/
2
) dx + 3yx* dy = 0.

sin
+ (1

-
e*) dy = 0.

xy

-
*

dx
~

x(y
-

1)'

16. (1 + x2
) dy - (1 + y

2
) dx = 0.

17 ^ - y
8 + 2y + i

"'
dx

""

x 2 - 2x + T
18. x2

(l + y)dy + y*(x
-

1) dx = 0.

19. y(l -y)dx- (x+ 1) rfy
= 0.

dy _ x(l + y
2
)^-

dx
"

y(l + x 2
)'

21. (y
2 -

xy) dx + x2
dy = 0.

22. Let A be the amount of a substance at the beginning of a chemical

reaction, and let x be the amount of the substance entered in the reaction

after t sec. Then, the simple law of chemical reaction states that the

rate of change of the substance is proportional to the amount of the sub-

stance remaining; that is, dx/dt = c(A x), where c is a constant

depending on the reaction. Show that x = A(l e~cO.
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23. Let a solution contain two substances whose amounts expressed

in gram molecules, at the beginning of a reaction, are A and B. If an

equal amount x of both substances has changed at the time t, then the

amounts of the substances remaining are A x and B x. The basic

law of chemical reactions states that the rate of change is proportional

to the amounts of the substances remaining; that is,

ft
= k(A - x)(B -

x).

Solve this equation under the hypothesis that x = when t = 0.

Discuss the case when A B.

76. Homogeneous Differential Equations. It will be recalled*

that a function f(x, y), of the two variables x and y, is said to be

homogeneous of degree n provided that

f(\x, \y) ^ \f(x, y).

Thus,

f(x, y) = z* + x*y + y
3

is a homogeneous function of degree 3, and

f(x, y) = x 2 sin
^ + xy
y

is a homogeneous function of degree 2.

If the differential equation is of the form

(76-1) /!(, y) dx + fr(x, y) dy =
0,

where /i (x, y) and/2 (x, y) are homogeneous functions of the same

degree, then (76-1) can be written in the form

where <p(x, y) is a homogeneous function of degree zero, that is,

<p(\x, \y) 35 \ <p(x y y) = <p(x, y).

If X is set equal to l/x, then

<p(x, y) =

which shows that a homogeneous function of degree zero can

always be expressed as a function of y/x. This suggests making-
* See Sec. 40.
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the substitution y/x = v. Then, since y =
vx,

dy dv
,

-/-
= 3- a; + v.

dx ax

Substituting this value of dy/dx in (76-2) gives

x

This equation is of the type considered in Sec. 75. Separating
the variables leads to

dv dx

<p(l,v)
- v x

which can be integrated at once to give

F(v, x, c)
= 0.

Since v = y/x, the general solution of (76-1) is

F
(x'

X

An equation of the form

dy _ a\x + a zy +
dx bix + b^y + 63

can be reduced to the solution of a homogeneous equation by a

change of variable. This is indicated in detail in Prob. 11 at

the end of this section.

Example. Solve

o , 9 dy dy
v
. + a

.,_ =
xys

. .

This equation can be put in the form

y*dx + (x*
-

xy) dy = 0,

which is of the type (76-1). By setting y = vx and dy = v dx + x dv,

the equation becomes

(vxY dx + (x*
-

vx*)(v dx + x dv) = 0.

This reduces to

v dx + x(l v) dv =
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and, upon separation of the variables, to

dx . 1 v . Adv = o.
x v

Integration yields

log x + log v v = c

or

which simplifies to

log y
-

jj-

= c.

PROBLEMS

Solve the following differential equations:

1. (x
2 + y

2
) dy + 2xy dx = 0.

2 ' x dx~ y " V^17?.

4. (x + T/)
= x - y.

5. x2
y dx - (x

3 -
?/) dy = 0.

x

8. x(\fxy + y) dx - x 2
dy = 0.

dy __ y*
- x Vx* - y*_

j

11. Discuss the problem of transforming the differential equation

dy _ a\x + a 2y + a?

into a homogeneous equation by the change of variable x = x' + h and

y =
?/ + fc. Determine the values of h and fc for which the original
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equation is transformed into

<ty _ a\x
f + a 2y

r

dx' b&' + b*y
f

and solve this equation. If aj)z ajb\ =
0, set a\x + a^y = z.

12. (x*
-

xy) dy + y* dx = 0.

13. (y
2 - z2

) ch/ + 2zi/ dx = 0.

dy 1 + 2s + y
140

dx 1 - 2x - y

16. (a?
- y + 1) efo + (x + y - 1) dy = 0.

16. i/
2 dx + (xy + x*) dy = 0.

17. (2x
3
y
-

?/) dx + (Zxif
- z 4

) dy = 0.

18. (z
2 + 2/

2
) rfx + Bxy dy = 0.

19. (x
2 + y

2
) dx - xy dy = 0.

20. (x + y) dy
-

(x
-

y) dx = 0.

77. Exact Differential Equations. It was shown in Sec. 63

that the necessary and sufficient condition that the expression

P(x, y} dx '+ Q(x, y) dy

be an exact differential of some function F(x, y) is that

m \\
dP dQ

(77-1} ^ =
^'

where these partial derivatives are continuous functions.

Consider now the differential equation

(77-2) P(x, y) dx + Q(x, y) dy =
0,

and suppose that the functions P(x, y) and Q(x, y) satisfy the

condition (77-1), so that there exists a function F(x, y) such that

,v dF ,
,
dF ,

dF =
te

dx +
dj

dy

= P(x, y} dx + Q(x, y) dy.

Such a differential equation is called an exact differential equation.

It is clear that the function

where c is an arbitrary constant, will be a solution of (77-2).

An explicit form of the function F(x, y) will be obtained next.
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By hypothesis the condition (77-1) is satisfied so that one can

write

(77-3) = P(x, y) and = Q(x, y).
ox oy

Now, the first of these equations will surely be satisfied by the

expression

(77-4) F(x, y)
=
/ P(x, y) dx + /(</),

where the y appearing under the integral sign is treated as a

parameter and f(y) is an arbitrary function of y alone. The
function f(y) will be determined next, in such a way that (77-4)

satisfies the second of Eqs. (77-3).

Differentiating (77-4) with respect to y and equating -the

result to Q(x, y) give

<W

dy
so that

(77-5)
j|

= Q(x, y)
-

J P(x, y) dx.

Hence,

(77-6) f(y) = J [<2(x,
tf)
-
^ J P(, J/) dx

]
dy.

Substitution of (77-6) in (77-4) gives the explicit formula

(77-7) F(x, y) =
J P(x, y) dx + J [<3(z,

y)

y) dx
\
dy.

-
J P(x,

To illustrate the use of this formula, consider

(2xy + 1) dx + (x* + 4y) dy = 0.

Here,

- ^ - 2x
dy

~
dx

~ ZX
>

so that the formula (77-7) is applicable. The reader will verify

that the substitution of the expressions for P and Q in (77-7)

gives

F(x, y) = x 2
y + x + 2y* + c.
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Hence, the solution is

x z
y + x + 2y

2 = c.

Instead of using the formula (77-7), one frequently proceeds
as follows: Since dP/dy = dQ/dx, the existence of a function

F(x, y) such that

= 2xy + 1 and = x2 + ty

is assured. Now, if

is integrated with respect to x
} y being treated as a constant, there

results

F(x, y) = x*y + x + ci(y),

where c\(y) is not a function of x but may be a function of y,

since y was treated as a constant. Similarly, the second

condition

dF

f -*' + *'

upon integration with respect to y, gives

F(x, y) = z 2
s/ + 2y

2 + ca(x).

Comparison of the two expressions for F(#, #) shows that if

F(x, y) = x2
2/ + re + 2y*,

then

= 2xy + 1 and = x 2 +

Thus, the general solution of the given equation is

x*y + x + 2y* = c.

PROBLEMS

Integrate the following equations if they are exact:

1. (y cos xy + 2x) dx + x cos xy dy = 0.

2. (y
2 + 2z?/ + 1) dx + (2xy + x2

) dy = 0.

3. (e* + 1) dx + dy = 0.

4. (3x*y
-

y*) dx + (x
9 -

3y*x) dy = 0.



78 ORDINARY DIFFERENTIAL EQUATIONS 265

6. (3x*y
- y

3
) dx -

(z
3 + 3y

2
z) dy * 0.

& 9 cos - dx cos -
dy = 0.

a;
2

a: # x y

x 1

7. 2z log y dx + dy = 0.

1 <jy2 "V/l #2

,
do; + y . dy = 0.- x2 VI- 2/

2

9. (2z + e* log y) da; H dy = 0.

10. 2x sin y dx x'
2 cos y dy = Q.

+ ( 1
, \ ,

1

12. ( 2a; + -
<?
x/y

) ^j ; <

V y / y
2

13. sin 2y dx + 2x cos 2?y dy = 0.

14. x 2
(y + 1) dx - y*(x

-
1) dy = 0.

15. y(l + a:
2
)"

1
do; tan" 1 x dy === 0.

78. Integrating Factors. It is not difficult to see that every
differential equation of the type

(78-1) M(x, y) dx + N(x, y) dy =
0,

which has a solution F(x, y)
=

c, can be made exact by multi-

plying both members by a suitable function of x and y. For

since F(x, y) = c is a solution of (78-1),

and it follows from a comparison of (78-1) and (78-2) that

Therefore,

-^T
=

M(S, y)M and =

x + Ndy) =0

is an exact equation. The function M(X, y) is termed an

grating factor. Moreover, it is clear that there is an unlimited

number of such functions for each equation. Despite this fact,

it must not be concluded that an integrating factor can always
be found easily. In simpler cases, however, the integrating

factor can be found by inspection.

Thus, in order to solve

x dy y dx =
0,
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which is not exact as it stands, multiply both sides by l/xy.

Then the equation becomes

dJL _ *5 =
o,

y x

which is exact. Another integrating factor for this same equation
is I/a;

2
. Similarly, multiplication by l/y

2 makes the equation

exact.

In Prob. 1 at the end of this section will be found a few of

the integrable combinations that frequently occur in practice.

Example. The differential equation

(y
2 - x 2

) dy + 2xy dx =

is not an exact equation, but on rearrangement it becomes

y
2 dy + 2xy dx x2

dy =
0,

which can be made exact with the aid of the integrating factor l/y
2

.

The resulting equation is

2xy dx x 2
dy _

V
y2

~

which integrates to

+ - -y+ y~ c '

, PROBLEMS

1. Verify the following:

x dy - y dx
(6)

<*(log|)
=

(e) Hd(x* + y
2
)
= x dx + y dy;

(/) d(xy) = x dy + y dx.

2. Solve the following equations by finding a suitable integrating

factor:

(a) x dy y dx + x 2 dx =
0;

(6) On/
2 + y) dx + (x

- x2
y) dy =

0;
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(c) xdy + 3ydx = xy dy,

(d) (s
2 + 2/

2 + 2s) <ty -2ydx = 0;

(e) xdy y dx = xy dy,

(/) (*
2 -

2/
2
) <fy

- 2xy dx = 0;

(0) x dy (y + log x) dx = 0.

79. Equations of the First Order in Which One of the Vari-

ables Does Not Occur Explicitly. Suppose that the dependent
variable y does not occur explicitly in the equation. The form
of the equation is then

'(*)-*
If this equation is solved for dy/dx to obtain

^ = f(x)
dx J(x) >

then y is obtained by a simple quadrature as

y =
ff(*)dx + c.

Example. Consider

Solving for dy/dx gives

and

Hence, the solutions are

2 + A/3
y --g

- * "" c =

and

2 - \/3 o

2/
---

2^ x2 - c = 0.

These solutions can be combined into one equation by multiplying one

by the other to give

(y
-

c)
2 -

2x*(y
-

c) + Y^ = 0.

If the independent variable is missing, the equation is of the

form

F(=*>
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Solving for dy/dx gives

or

dx 1

dy /(</)'

Integration of this equation yields

,= CtLji

Occasionally, the differential equation can be solved easily by

factoring. For example, consider

"" ' "' dx
'

This equation can be written in the form

so that one is led to the solution of the differential equations

^-2/2 = and 2^-* = 0.
dx y dx

It follows that the general solution of the given equation can be

written as

PROBLEMS

Solve the following differential equations:

*(!)'+*-'
'

dx 1 + y* dx
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'-+-

80. Differential Equations of the Second Order. Occasionally,
it is possible to solve a differential equation of the second order by
reducing the problem to that of solving first-order equations.

Thus, if the given equation is of the form

dy\
'

Tx)
=

'

the substitution of p = dy/dx reduces it to

which is an equation of the first order of the type treated in

Sec. 79. If this equation is solved for p to give

P =M c),

the solution for y can be obtained at once, since p = dy/dx.

No general rules can be given for solving non-linear differential

equations, and the task must be left to the skill and ingenuity of

the student. An example of the solution of a non-linear differen-

tial equation by means of an artifice was given in Sec. 72 in

dealing with the equation of a flexible cable. Another example

may prove interesting and useful.

Example. Consider the equation

If dy/dx is replaced by p, the resulting equation is
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Since

dp dp
*j~ P jf~>ax r

ay

the equation can be written as

^2-2 2 + 2 =

or

dp 2p
2

y
1

dy
~~

py

which is a homogeneous equation. Setting p = vy gives

dv 2yW - y2 2v 2 - 1

which reduces to

Therefore,

and

But v = p/y, so that

and

dy _ v dv

y
* - 1

log y = log (v
2 - 1)H + log

Since p = dy/dx, the last equation becomes

or

Therefore,

Combining these two solutions by multiplication gives the solution

(* + C2)'-(log
C - + ^+^V =

0,
^ y /
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which can be written, also, as

/ y \
2

(x + c 2)
2 -

(
csch- 1 -

)
= 0.

It is seen from this example that if the given differential equar
tion is of the form

(80-1) F(y, </',
-

, y<>) =
0,

then one can introduce the new variable

P = V'

and calculate the successive derivatives as follows:

dp dp= L_ _*_

d

= L_ _*_ /r)

dx dy
p>

The substitution of these derivatives in (80-1) leads to a

differential equation of order n 1. It may be possible to solve

this differential equation and obtain the general solution in

the form

p = F(y, ci, ,
cn_i),

so that

(80-2) g = F(y, c lf , c,.!).

Equation (80-2) is one with separable variables.

PROBLEMS

Solve the following differential equations:

d*y
1. -7-^ + y = 0. Solve by substituting dy/dx p, and also by

using the integrating factor 2 dy/dx.
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5. x'g +(*-!) =0.

-(!)'-'-

81. Gamma Functions. Consider a particle of mass m that

is moving in a straight line under the influence of an attractive

force whose intensity varies inversely as the distance of the

particle from the center of attraction. The equation of such a

motion is obtainable immediately from the definition of force

(Newton's second law). Denoting the distance from the center

of attraction by y, it follows that

d*y km 777?
--

dt 2
y

or

where a = k/m.
This is a non-linear equation of the type

g -
>.

which can always be solved by multiplying both sides of the

equation by 2 dy/dt and integrating. Thus,

_
dt dt* dt y

and integrating with respect to t gives

ft)
= -2alog</ + c.

If the velocity of the particle is zero when y = y^ then c

2a log 2/0 and

= ^ I2(i loff
w ^/ y

The negative sign was chosen for the square root because y is a
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decreasing function of t. Solving for dt and integrating yield

*" dy

The integral can be put in a simpler form by making the

obvious transformation log (y$/y) =
x, or y yoe~

x
. If T is the

time required to reach the center of attraction, y =
0, the integral

becomes

This integral cannot be evaluated in terms of a finite number of

the elementary functions. In fact, an integral of this type led

Euler to the discovery of the so-called Gamma functions.

The remainder of this section will be concerned with the

study of the improper integral

(81-2) r(a) = f x?- ler*dx
9

where a > 0,

which is the generalization of (81-1). It will 'be shown that

(81-2) defines an interesting function, called the Gamma function,

which provides a generalization of the factorial and which will

prove useful in the study of Bessel functions.

It is not difficult to prove* that (81-2) converges for all positive

values of a and diverges whenever a < 0. However, it is

possible to define the function T(a) for negative values of a with

the aid of the recursion formula which will be developed next.

If a > 0, then it follows from (81-2) that

(81-3) r( + 1)
= f

"
xe~*dx.

/o

Integrating the right-hand member of (81-3) by parts gives

I xe-x dx = xae~x + a f xa
~ l

e~-
x dx

Jo o Jo
/ 00= a I xa

~ le~x dx
Jo

= r(a).

Thus,

(81-4) r(a + 1)
= or(a).

*See SOKOLNIKOFF, I. S., Advanced Calculus, p. 373.
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But

so that when a = 1 the formula (81-4) becomes

T(2) = 1 T(l) = 1.

Setting a =
2, 3, ,

n gives

T(3) = 2F(2) = 1-2,

T(4) = 3F(3) = 1-2-3,

T(n) = (n- l)r(n- 1)
= (n

-
1)!,

T(n + 1)
= nT(n) = n\.

Hence, the formula (81-4) enables one to compute the values of

F(of) for all positive integral values of the argument a.

If by some means (for example, by using infinite series) the

values of F(a) are obtained for all values of a between 1 and 2,

then, with the aid of the recursion formula (81-4), the values of

T(a) are readily obtained when a lies between 2 and 3. These

values being known, it is easy to obtain T(a) where 3 < a < 4,

etc. The values of T(a) for a lying between 1 and 2 have been

computed* to a high degree of accuracy, so that it is possible to

find the value of F(a) for all a > 0.

It remains to define T(a) for negative values of a. The
recursion formula (81-4) can be written as

(61-5) r() = <SL1>.

The formula (81-5) becomes meaningless when a is set equal to

zero, for

lim F(a) = +00 and Km T(a) <*>.

a-0-f a-0-

It follows from (81-5) that the function F( a) is discontinuous

when a is a positive integer.

If any number 1 < a < is substituted in the left-hand

side of (81-5), the right-hand side gives the value of r( a);

for the values of a + 1 lie between and 1, and T(a) is known
* A small table is found in B. O. Peirce, A Short Table of Integrals, p. 140.
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for these values of a. Thus,

rf-i'U

275

r( -o.o) = !%>, etc.

In this manner the values of T (a) for 1 < a < can be com-

puted. If these values are known and the recursion formula

(81-5) is used, the values of r() for 2 < a < 1 can be

obtained, etc. The adjoining figure represents the graph of

r() (Fig. 76).

It was observed that

r(a + !)
= !

when a is a positive integer. This

formula may serve as the definition

of factorials of fractional numbers.

Thus,

r(i) = 0! = i.

This section will be concluded

with an ingenious method of evaluating

c~xx
1^ dx.

If the variable in this integral be changed by the transformation

x =
?/

2
,
the integral becomes

,(81-6) y2 \
=

Since the definite integral is independent of the variable of

integration and is a function of the limits,

(81-7) y2 \ = 2

Multiplying (81-6) by (81-7) gives

(MO 2 = 4 fo
"
e-*z*

which can be written as a double integral

(81-8) O^!)
2 = 4 f

"

f e-tx'+Vy
/0 J

-
Ydy,

dy dz.
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In order to evaluate (81-8), transform it into polar coordinates

by setting z = r cos and y = r sin 6. The element of area

dy dz becomes r dr dQ, and (81-8) becomes

= 4 I dr I r 5e^2

sin2 cos 2 dO.

But
ir

f* sin2 cos2 e dB = ~
Jo lo

and
/* 00

Jo
e TT r =

The latter integral is evaluated by integration by parts. There-

fore

)_
. _ /~\T* f . .-
4

r
2"
~

2

It can be shown with the aid of the recursion formula that

It follows that (81-1) has the value t/o vW(2a) sec.

PROBLEMS

1. Compute the values of r(a) for every integer and half integer from

to 5 by using the relations T(l) = 1 and r(H) == V*. Plot the

curve y = T(a) with the aid of these values.

2. The Beta function B(m, n) is defined by the integral

B(m, n) = a^^-Hl - x)"~
l dx.

*/o

If x is replaced by y
2 in T(n) I x*1

" 1^"* dx, there results
*/o

F(n) = 2 f* e-iy^dy.
/o

Using this integral, form

T(m)r(n) = 4 f x*- le~**dx f
"

y*"-
le-*> dy.

jo /o

Express this product as a double integral, transform to polar coordi-

nates, and show that

<,> ,<,,
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3. Show, by a suitable change of variable, that (81-2) reduces to

4. Show that

.cKr*
'(a) /

*
n

~~

Jo

82. Orthogonal Trajectories. In a variety of practical investi-

gations, it is desirable to determine the equation of a family of

curves that intersect the curves

of a given family at right

angles. For example, it is

known that the lines of equal

potential, due to a distribution

of steady current flowing in a

homogeneous conducting me-

dium, intersect the lines of

current flow at right angles.

Again, the stream lines of a

steady flow of liquid intersect

the lines of equal velocity

potential (see Sec. 66) at right

angles.

Let the equation of the given family of curves be

FIG 77.

(82-1) /O, y, c)
=

o,

where c is an arbitrary parameter. By specifying the values of

the parameter c, one obtains a family of curves (see solid curves

in Fig. 77). Let it be required to determine the equation of a

family of curves orthogonal to the family defined by (82-1).

The differential equation of the family of curves (82-1) can

be obtained by eliminating the parameter c from (82-1) and its

derivative,

(82.2)

f +M =
.

dx dy ax

Let the resulting differential equation be

Now, by definition, the orthogonal family of curves cuts the

curves of the given family (82-1) at right angles. Hence, the
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slope at any point of a curve of the orthogonal family is the nega-
tive reciprocal of the slope of the curves of the given family.

Thus, the differential equation of the desired family of curves is

This is a differential equation of the first order, and its general
solution has the form

(82-3) *(x, y, c)
= 0.

The family of curves defined

by (82-3) is the desired family of

curves orthogonal to the curves of

the given family (82-1). It is

called the family of orthogonal

trajectories.

Example. Let it be required to find

the family of curves orthogonal to

the family of circles (Fig. 78)

(82-4) x> + 7/
2 - ex = 0.

The differential equation of the family (82-4) can be obtained by dif-

ferentiating (82-4) with respect to x and eliminating the parameter c

between (82-4) and the equation that results from the differentiation.

The reader will check that the differential equation of the family
(82-4) is

FIG. 78.

Hence, the differential equation of the family of curves orthogonal to

(82-4) is

This is a homogeneous differential equation whose solution is easily
found to be

X 2 + y2
_

cy
_

0.

Thus, the desired family of curves is the family of circles with centers
on the y-axis (see Fig. 78).

PROBLEMS
1. Find the orthogonal trajectories of the family of concentric circles

& + y
z = a2

.

2. Find the orthogonal trajectories of the family of hyperbolas xy = c.
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3. Find the orthogonal trajectories of the family of curves y = cxn .

Sketch the curves of the given and the desired families for n =
1, 1,2.

4. If the equation of a family of curves is given in polar coordinates

as /(r, 6, c) 0, show that the tangent of the angle made by the radius

vector and the tangent line at any point (r, 6} of a curve of the family is

equal to r -r- Hence, show that the differential equation of the

orthogonal trajectories of the given family of curves is obtained by

replacing r -y- by
~
-^

in the differential equation of the given family

of curves.

5. Using the results of Prob. 4, show that the orthogonal trajectories

of the family of cardioids r c(\ cos 6) is another family of cardioids.

6. Find the orthogonal trajectories of the family of spirals r ecB .

7. Find the orthogonal trajectories of the family of similar ellipses

8. Find the orthogonal trajectories of the family of parabolas

y
2 = 4px.

9. Find the equation of the curve such that the area bounded by the

curve, the z-axis, and an ordinate is proportional to the ordinate.

83. Singular Solutions, It was remarked in Sec. 68 that a

differential equation may possess

solutions which cannot be obtained

from the general solution by specify-

ing the values of the arbitrary con-

stants. Such solutions are called

singular solutions.

Consider a family of integral curves

defined by

(x>y).

(83-1) <p(x, y, c)
=

0,
FIG. 79.

where (83-1) is the general solution of the differential equation

(83-2)

Assume that the family of curves denned by (83-1) is such that it

has an envelope* (Fig. 79). Since the slope of the envelope at

any point (x, y) is the same as that of the integral curve which is

* It will be recalled that an envelope of a family of curves is a fixed curve C
such that every curve of the family is tangent to C.
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tangent to the envelope at (x, y), it follows that the equation of

the envelope must satisfy (83-2). In general, the envelope is

not a curve belonging to the family of curves defined by (83-1),

and hence its equation cannot be obtained from (83-1) by

specifying the value of the arbitrary constant c. It will be

recalled that the equation of the envelope is obtained by elimi-

nating the parameter c between the equations

<t>(x, y, c)
= and = 0.

dc

Example. It is readily verified that the family of integral curves

associated with the equation

(83-3) i

is the family of circles

(83-4) (x
-

c)
2 + y-

y--o

FIG. 80
The equation of the envelope of the

family (83-4) is obtained by eliminating c between (83-4) and

There results

(83-5)

-2(x -
c)
= 0.

y =

which represents the equation of a pair of lines tangent to the family of

circles (83-4) (Fig. 80). Obviously, (83-5) is a singular solution of

(83-3), for it cannot be obtained from (83-4) by any choice of the

constant c.

Inasmuch as the problem of determining the singular solutions

of a given differential equation is relatively rare in applied work,
the subject will not be pursued here any further.

REVIEW PROBLEMS
1. A particle slides down an inclined plane making an angle with

the horizontal. If the initial velocity is zero and gravity is the only

force acting, what are the velocity of the particle and the distance

traveled during the time ? Compare the time of descent and the termi-

nal velocity with those of a particle falling freely from the same height

as that of the inclined plane.
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2. A particle falls in a liquid under the action of the force of gravity.

If the resistance to the motion is proportional to the velocity of the par-

ticle, what is the distance traveled in t seconds when the particle starts

from rest?

3. A bullet is projected upward with an initial velocity of VQ ft. per

second. If the force of gravity and a resistance that is proportional to

the velocity are the only forces acting, find the velocity at the end of

t sec. and the distance traveled by the bullet in t sec.

4. The rate of decomposition of a certain chemical substance is

proportional to the amount of the substance still unchanged. If the

amount of the substance at the end of t hr. is x and XQ is the initial

amount, show that x =
Zoe-*', where k is the constant of propor-

tionality. What is the constant of proportionality if x changes from

1000 g. to 500 g. in 2 hr.?

6. A torpedo moving in still water is retarded with a force propor-

tional to the velocity. Find the speed at the end of t sec. and the dis-

tance traveled in t sec., if the initial speed is 30 miles per hour.

6. A disk is rotating about a vertical axis in an oil bath. If the

retardation due to friction of the oil is proportional to the angular

velocity o>, find w after t sec. The initial velocity is w .

7. Water is flowing out through a circular hole in the side of a

cylindrical tank 2 ft. in diameter. The velocity of the water in the

jet is \/*2gh, where h is the height in feet of the surface of the water

above the center of the orifice. How long will it take the water to fall

from a height of 25 ft. to a height of 9 ft. above the orifice, if the orifice

is 1 in. in diameter?

8. Water is flowing out from a 2-in. horizontal pipe running full.

Find the discharge in cubic feet pejr second if the jet of water strikes the

ground 4 ft. beyond the end of the pipe when the pipe is 2 ft. above

the ground.
9. A projectile is fired, with an initial velocity ?>o, at an angle a with

the horizontal. Find the equation of the path under the assumption
that the force of gravity is the only force acting on the projectile.

10. A cylindrical tumbler containing liquid is rotated with a con-

stant angular velocity about the axis of the tumbler. Show that the

surface of the liquid assumes the shape of a paraboloid of revolution.

Hint: The resultant force acting on a particle of the liquid is directed

normally to the surface. This resultant is compounded of the force of

gravity and the centrifugal force.

11. Two chemical substances combine in such a way as to produce
a compound. If the rate of combination is proportional to the product
of the unconverted amounts of the parent substances, find the amount
of the compound produced at the end of time L The initial amounts of

the parent substances are a and 6.
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Hint: dx/dt = k(a
-

x)(b
-

x).

12. Assume that the pressure p of the air at any height h is equal to

the weight of the vertical column of air above it. If the density of the

air is proportional to the pressure, what is the law connecting the

pressure p with the height hi

13. A particle of mass m is sliding down a rough inclined plane (the

coefficient of friction /x
=

0.2), whose height is 300 ft. and whose angle

of inclination is 30. If the particle starts from rest, how long will it

take to reach the foot of the plane? With what velocity will it be

traveling then?

Hint: The differential equation of

motion is

d*
s

, ^

jp
= 0(sm a -

AI cos a),

where a is the angle of inclination of

e plane.

14. A runaway carrier in an aerial

1000 the plane.

_,
r 1G. ol .

tramway is moving along the arc of a

second-degree parabola joining the points whose coordinates are (0,

0) and (1000, 300) (Fig. 81). How long will it take the carrier to

reach the lowest point if the factional resistance is neglected and if the

carrier starts from the top with initial velocity zero? See in this con-

nection the Engineers
1

Bulletin of the Colorado Society of Engineers,

June, 1935.

16. A brick is set moving in a straight line over the ice with an

initial velocity of 20 ft. per second. If the coefficient of friction between

the brick and the ice is 0.2, how long will it be before the brick stops?
16. A certain radioactive salt decomposes at a rate proportional to

the amount present at any instant t. How much of the salt will be

left 300 years hence, if 100 mg. that was set aside 50 years ago has been

reduced to 90 mg.?
17. A skier weighing 150 Ib. is coasting down a 10 incline. If the

force of friction opposing the motion is 5 Ib. and the air resistance is

two times the speed in feet per second, what is the skier's speed after

t sec.?

18. A tank contains 1000 gal. of brine holding 1 Ib. of salt per gallon.

If salt water containing 2 Ib. of salt per gallon is allowed to enter the

tank at the rate of 1 gal. per minute and the mixture, which is kept
uniform by stirring, is permitted to flow out at the same rate, what is

the amount of salt in the tank at any time ?

Hint: Let the amount of salt present at any time t be x\ then, the rate

at which x changes is equal to the rate of gain, in pounds per minute,
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diminished by the rate of loss. Thus,

dx x

dt 1000

19. A 100-gal. tank contains pure water. If 50 per cent alcohol is

allowed to enter the tank at the rate of 2 gal. per minute and the

mixture of alcohol and water, which is kept uniform by stirring, leaves

the tank at the same rate, what is the amount of alcohol in the tank

at the end of 10 min.?

20. The rate at which two chemical substances are combining is

proportional to the amount of the first substance remaining unchanged.
If initially there are 20 Ib. of this substance and 2 hr. later there are only
10 Ib., how much of the substance will be left at the end of 4 hr.?

21. A series circuit consists of a condenser whose capacity is c farads

and the resistance is 72 ohms. Before the circuit was closed the con-

denser contained a charge of # coulombs. What is the charge on the

condenser t sec. later? (The differential equation is R
-,7 + - =

0.)
dt c

22. The rate at which a body is cooling is proportional to the differ-

ence in the temperatures of the body and the surrounding medium.

It is known that the temperature of a body fell from 120 to 70C. in

1 hr., when it was placed in air at 20C. How long will it take the

body to cool to 40C.? 30C.? 20C.?
23. A bullet is fired vertically down from a balloon that is 2 miles

above the surface of the earth. On the assumption that the resistance

is proportional to the square of the velocity, find the velocity with

which the bullet strikes the earth if the initial velocity is 1800 ft. per
second.

84. Linear Differential Equations. The remainder of this

chapter will be restricted to the treatment of linear differential

equations, that is, equations of the type

(84-1) Po(*)^ + ?!(*)|3+ +P-i(*)fc + P*Wv=fM,

where the Pi(x) and/(z) are either functions of x or constants. It

is extremely fortunate that a large number of physical phe-
nomena are successfully described with the aid of linear differ-

ential equations. It will be shown in the succeeding sections

that it is possible to give a more detailed account of the treat-

ment and solution of linear differential equations than has been

furnished for non-linear equations.
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85. Linear Equations of the First Order. A linear differential

equation of the first order has the form

In order to solve this equation, set y =
uv, where u and v are

functions of x that are to be determined later. With this

substitution, (85-1) becomes

dv . du . * , N - , NU
dx
+ V

~dx
+fl(x^UV ~ f*^

or

(85-2)

If u is suitably chosen, the bracket in (85-2) can be made equal
to zero, thus reducing (85-2) to a simple form. In order to

choose u so that the expression in the bracket is equal to zero, set

du

or

~
It

Integrating gives

log u + J/i(x)
dx =

c,

and choosing the simplest expression for u, by setting c = 0,

produces

With this choice of u, (85-2) becomes

-r/jC*) dx dv _
dx

~~

or

_ f/i() dx
f

dx
"~ e J

which integrates into
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By hypothesis, y =
uv, so that

(85-3) y = e-W> dx

/ e/''
(a d

%(x) dx + ce~I'>
(x) dx

.

This is the general solution of (85-1).

Example 1. Solve

-7- + y cos x = sin 2x.

Upon using formula (85-3),

y = e-ICOB x r** f e/cos * dx sin 2# eta + ce~f a * dx

= e~n *
J

esia x sin 2x dx + ce~ x
,

which is easily evaluated by replacing sin 2x by 2 sin x cos x.

Example 2. Solve

Here,
r2<JE

^ = 6
~

J x+i /

^ J ^
(x + D 2

wliich is easily evaluated.

PROBLEMS

Solve the following equations*

1. (1 + x') dy +
(xy

-
)

<fa - 0.

2. (a;
2 + 1) fx + 2xy = x*.

3. = ^' -
2xy.

6.
^ h y cos a: = cos 3 x.

6. x ^ + y
- x2 sin x = 0.

dy _ y
- 1

''
dc x* + 1

8. L -r + El =
j&, given that 7 = when J = 0; L, ^, and E are

constants.
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dy
9. T- = y + cos x sin x.

10. -r y sec x esc x = e*(l sec x esc a?).

11. -i \- yx =
y.

12. dx + 2xdy y dy = 0.

13. ^ + ?/ sec 2 # = tan z sec 2 x.

14. (x + 1) ~/x
-

y = e* (x + I)
2
.

15. ~T~ 2?/ 6 3* = 0.

86. A Non-linear Equation Reducible to Linear Form (Ber-
noulli's Equation). An equation of the type

(86-1)
-~ + fi(x)y = fz(x)y

n
,

in which n may be regarded different from zero and unity, can

be reduced to linear form by the substitution z = y
l~n

. Then,

dz ,1 . dy
-r- = (1

-
ri)y~

n

dx '* dx

and (86-1) becomes

g- (n
-

!)/!(*)* = -(n-

which is a linear equation in z.

Example. Solve

Setting z = I/y
z
,
the equation becomes

whose general solution is

z

so that
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PROBLEMS

Solve the following equations:

2. -

3 + _ =a;2
7/
6 dx xy

5

~ ~ l '

5. x
-^
+ y =

2/
2
log

6. + xy = xV.

_ -
cte 1 - a;

2
~

1 - a;
2

'

87. Linear Dififerential Equations of the nth Order. No
formulas are available for the solution of the linear differential

equation, with variable coefficients, of order greater than 1.

This section contains some interpretations of the symbolic
notation that will be found useful in the solution of the linear

differential equation

in which the a l are constants.

It will be convenient to introduce the new notation

%-Dv and m Dy.dx y dxn y

In this notation, (87-1) becomes

Dn
y + ai Dn~ l

y + a* Dn
~*y + - + an-i Dy + any = f(x)

or

(87-2) (D + oiZ)- 1 + a2D- 2 + + an-iD + a)y =
/(x).

The expression in the parentheses in (87-2) is known as a linear

differential operator of order n. Obviously, it is not an algebraic
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expression multiplying y but is a symbol signifying that certain

operations of differentiation are to be performed on the function y.

Thus, D 2 2Z) + 5 operating on log x gives

(D
2 - 2D + 5) log x s D 2

log x - 2D log x + 5 log x

_ d 2
log x ~ d log # ,r i

1 2 , ,

The gain in simplicity in using the operational notation results

from the fact that linear differential operators with constant

coefficients formally obey the laws which are valid for poly-

nomials. Thus

so that the operator D is distributive. If the symbol

(D + ai)(D + at),

where ai and o2 are constants, is interpreted to mean that the

operator D + ai is applied to (D + a^)y, then
'

(D + oi)(D + a,)y = (D

d

(ai + a2) Dy
= [D

2 + (ai + a2)Z) +
It is readily established that operating on t/ with

(D + a2)(D + ai)

produces precisely the same result. Hence, the commutative

law holds, or

(D + oi)(D + a2)2/
s (D + a,)(D
s [D

2 + (ax + a 2)D +
It is readily established that the law of exponents also holds,

namely,
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so that linear operators can be multiplied like ordinary algebraic

quantities, where the powers of D in the result are to be inter-

preted as successive differentiations.

The solution of (87-2) can be written in the symbolic form

1
,,

,

y D + a,D^ + + an-iD + an
J(X) '

The meaning of this symbol will be investigated next.

Consider a simple differential equation

(87-3) ;!
= /(*) or A/ =/(*)

The solution of (87-3), in symbolic form, is

so that the symbol l/D must be interpreted as integration* with

respect to x. Thus,

1 ,, x

The meaning of a more complicated symbol can be obtained

from a consideration of the first-order equation

(87-4) g + ay = f(x),

where a is a constant. Writing this equation in the operational

notation, it becomes

(D + a)y =
/(*).

The symbolic solution in this case is

(87-5) y - -f(x).

It was established in Sec. 85 that the general solution of

(87-4) is

(87-6) y = ce~ax + e~ax J e
ax
f(x) dx,

* In order to make the definition of the operator l/D unambiguous, one

could agree that the constant of integration should be selected so that

y = when x assumes some specific value. However, in order to avoid

complication, the constant that arises from the integration of f(x) will be

suppressed.
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and it is desirable to give the symbolic solution (87-5) an inter-

pretation that is consistent with the actual solution (87-6).

Now, the solution (87-6) consists of two parts, the first of which,
ce~ax

,
if taken alone, obviously does not satisfy (87-4). The

second part

e-ax J caxf(x) dx

is a solution of (87-4), for (87-6) represents the general solution

which reduces to

e-ax J ea*f(X} fa

when the arbitrary constant is taken as zero. The part of the

solution (87-6) containing f(x) is called a particular integral of

(87-4), and the part containing the arbitrary constant is called

the complementary function. It may be observed that the

complementary function cc~ax satisfies the homogeneous linear

differential equation*

It is convenient to associate with the symbol (87-5) the particular

integral of (87-4), namely,

f(x) ES e J(87-7) ^~ f(x) ES e e?*f(x) dx.

The arbitrary constant arising from the integration in (87-7) may
be taken as zero, for the addition of this constant of integration-

will give rise to a term that can be merged with the complemen-

tary function. The integral operator

as defined by (87-7), is of fundamental importance in the follow-

ing sections. The meaning of a more complicated symbolic solu-

tion will be given later.

Example 1. To interpret the symbol

1

D + a
x">

* The term homogeneous linear differential equation should not be confused

with the homogeneous equation discussed in Sec. 76. The homogeneous
linear differential equation is one of the type (84-1), where f(x) B 0.
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write out its meaning with the aid of (87-7). Then,

i*xm dx

m~ l m(m l)x
m~2

. f . _

,
if m 0,

except when a = 0. If a = and m ^ 1, then

Example 2.

/vm

D x

c . a sin mx m cos mx
sm mx = e~ a:c

I e aa: sin mo: do? =
J

^r. = =-^.-D + a J a2 + m

PROBLEMS
1. Show that

2. What is the meaning of jr. emx<!U ~f~ ft

3. What is the meaning of yr r cos mx?D ~\~ a

88. Some General Theorems. In Sec. 87, it was found that

the general solution of the non-homogeneous linear differential

equation of the first order contained as part of itself the solution

of the homogeneous equation

It will be shown next that a similar statement can be made
concerning the general solution of the nth-order linear equation.

Consider first a homogeneous linear differential equation of the

nth order with constant coefficients,

If y = emx is substituted in this equation, the result is

(mn + aimn~ l + + an_ira + an)e
mx = 0.

If m is chosen so that it satisfies the equation

(88-2) mn + cum*- 1 + + an-im + an = 0,
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which is called the auxiliary, or characteristic, equation, then

y = emx will be a solution of (88-1). But (88-2) has, in general,

n distinct roots, Wi, w2 , ,
mn ,

so that there will be n distinct

solutions

Because of the linear character of (88-1), it is clear that, if y = emf

is a solution, then

y = c te
w
/,

where c t is an arbitrary constant, is also a solution. Moreover,
it is readily verified that the sum of the solutions of a homogeneous
linear differential equation is also a solution of the equation.

Thus,

(88-3) y = cie
ms + c 2e

ms + - - + cne
m

n
x

will be a solution; and since it contains n arbitrary constants (all

roots ra t are assumed to be distinct), it is the general solution of

(88-1).

Let

(88-4> +*+ +"-+*-/<'>.

where f(x) ^ ;
and assume that, by inspection or otherwise, a

solution y = u(x) of (88-4) has been found. Then, if (88-3)

is the general solution of the homogeneous equation (88-1),

(88-5) y = Cie
m

i
x + c^e

m
^
x + + cne

m
*
x + u(x)

will be the general solution of (88-4). This fact can be verified by
direct substitution of (88-5). That (88-5) is the general solution

follows from the fact that it contains n arbitrary constants

The part of (88-5) that is denoted by u(x) is called a particular

integral of (88-4), and the part containing the arbitrary constants

is called the complementary function.

Example 1. Solve

dx* dx* dx
~~

The auxiliary equation is

m8 rn2 2m =
0,

and its roots are mi =
0, ra 2

=
1, m3

= 2. Then the complementary
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function is

Y = d + C&-* + c&**.

A particular integral u(x) is

u(x) = Hxe~x
.

Therefore, the general solution is given by

y=Y + u(x).

If (88-1) is written in symbolic form as

(88-6) (D- + aJJ*- 1 + + an^D + an)y =

and the differential operator (which is of precisely the same form

as the auxiliary equation defined above) is treated as an algebraic

expression, then (88-6) can be written as

(88-7) (D - mi)(D - m2) (D - mn)y = 0.

Consider the n first-order linear homogeneous equations

(D - mi)y =
0,

(D - m,)y =
0,

(D - mjy =
0,

whose solutions can be obtained at once by recalling that the

meaning of the symbol is given by

(D - m)y ss
-|

-
my.

These solutions are e
m

i
x

,
em z

x
, ,

e
m x

,
which are precisely

the same as the solutions obtained for (88-1) by a different

method.

The general solution of (88-7) was found to be (88-3) under

the assumption that all the roots ra t were distinct. If some of the

roots are equal, the number of arbitrary constants c t in (88-3)

is less than n and the solution given there is not the general

solution. Suppose that the equation

is such that its auxiliary equation has a double root, that is,

mi = W2 = m. Then this equation can be written as

(D - m)(D - m)y = 0. ,
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If (D m)y is set equal to v, the equation becomes

(D - m)v =

and v = Cie
mx

is its solution. Since (D w)t/ = v, it follows that

(D - m)y = cie
mx

,

which is a linear equation whose solution can be found, with the

aid of (87-6), to be

y = emx (c2

Thus, if the auxiliary equation has a double root, the solution

corresponding to that root is

y = emx (Ci + CiZ).

By an entirely similar argument, it can be established that, if the

auxiliary equation possesses a root m of multiplicity r, then the

solution corresponding to that root is

y = emx (Ci + C2Z + ' ' ' + CrX
1̂ 1

).

Example 2. Find the solution of

(D 3 - 3D 2 + 4)y = 0.

The auxiliary equation is

m3 - 3m2 + 4 = or (m + l)(m - 2)
2 = 0.

Therefore the general solution is

Example 3. Find the solution of

(D 2 + l)y - 0.

The auxiliary equation is

m2 + 1 = or (m - f)(m + i)
= 0.

Therefore, the general solution is

y = de* + c 2e-* = A cos 3 + B sin a?.

PROBLEMS

1. Find the general solutions of
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>-!+.-.

(d) (D3 2Z) 2 + D)y = 0.

(e) (D 4 + 3D 3 + 3D 2 + D)y = 0.

(/) (Z)
4

Jb
4
)y = 0.

to) (D3 3D 2 + 4)y = 0.

(h) (D 3 - 13D + 12)y = 0.

(f) (D3 + D 2 - D + l)y = 0.

(j) (D* + 2D 3 + D*)y = 0.

}. The Meaning of the Operator

1

D* + aiD^- 1 + + an~iD + an
f(x).

In Sec. 87 the meaning of the operator n /(x) was given.
AX

| G/

Now, consider a second-order linear differential equation with

constant coefficients,

3 +<!+ *-"*>
or

(89-1) (Z>
2 + oiD + a,)y =

/(x).

It was remarked in Sec. 87 that linear operators with constant

coefficients obey the ordinary laws of algebra and can be treated

as polynomials. Therefore, (89-1) can be factored to read

(D -m 1)(D - ro,)
= f(x)

or

(D - mOy =j^M
= em i

x
f e~mi

x
f(x') dx,

in accordance with (87-7). Hence,

(89-2) y = j^ ems
\ <r"i*J(x) dx

JJ niz J

B em** \ e^i-*** I e~mi*f(x) dx dx.
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For mi = w2, (89-2) reduces to

(89-3) y = e
m

i
x

J J e~m i
x
f(x) dx dx.

By direct substitution in (89-1), it is easy to establish the fact

that (89-2) is a particular solution of (89-1). The general

solution, according to Sec. 88, is made up of the sum of (89-2) and

the general solution of the homogeneous equation

3+*+*
which is known to be

y = cie
m

i* + C2e
m

2*, mi ^ m2 ,

or

y =
(ci + Czx)e

m
i*, mi = m2 .

The interpretation of the symbol

which represents the symbolic solution of the differential equa-
tion

dn
y . dn~ l

y . dy . ,, .

d
+ <d^+ +an^/x + any=:f(x),

or

(89-4) (D + axD"- 1 + + an_,Z) + o)y =
/(*),

can now be made easily. Write the operator in (89-4) in factored

form,

+ an_x + an
= (D - mi)(D - m,) (D - mn),

so that (89-4) becomes

V =
(D - mn}(D - mn_0 (D -

1 1_ _
D - TOn D - mn_i D - m/ >

Successive operations on /(z) with -~- give
jLx

~~
tn/i

(89-5) y = em i
x

J e(w 2
~w

i
)x

f e(mrmJ x

J e~mn
x
f(x) (dx)

n
>

and the result is a particular integral of (89-4).
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It can be shown that if the operator_1_
D" + axD*- 1 + - + an_iZ) + an

is decomposed into partial fractions (the denominator being
treated as a polynomial in D), then

__1_ ff
v

y ^ 1 + - + an^D + an
J(X)

Al
4-

Az An+
vD - mi D - m2

^ ^ D - mn

which gives, by (87-7),

(89-6) y = Aiem i
x

J e~mi
x
f(x) dx + A 2e

m
2* J e~mff(x) dx

which is also a particular integral of (89-4).

Thus, there are available two methods for the determination

of the particular integral. The first method* of finding the

particular integral, (89-5), is known as the method of iteration,

and the second, (89-6), as the method of partial fractions.

Generally speaking, formula (89-6) is easier to apply. However,
if the roots of the auxiliary equation are not all distinct, the

decomposition of the operator into partial fractions, of the type

considered, cannot be effected and formula (89-5) must be used.

Example 1. Solve

d*y dy-'-'- 5 i h G?/ 6
dx 2 dx J

or

(Z)
2 - 5D + 6)7;

= e**

or

The particular integral, as obtained by the method of iteration, is

11 1
/>xe ~ r

I /

J
- - ,

D -3 D -2 ~
D -

= eZx C (e~* C e** dx\ dx =
y-
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If the method of partial fractions is used, then

1 1_ ,4, _ /_J L_\ ,4,y ~D-3D-2 e \D-3 D-2) e

f f e *x

= e**
j

e **e**dx - e**
J

e **e** x = -y

The complementary function is

therefore, the general solution is

Example 2. Solve

or

The particular integral is

= x - 2,

and the general solution is given by

y = (ci + c2x)e-* + x 2.

PROBLEMS

1. Solve
jjjj
+ 3j/

= a;'.

2.

4. The flexure y for end thrust P is given by

where E is Young's modulus, w is the load, and I is the moment of

inertia. Solve this equation.

5. Solve (D 3 - 2D2 - D + 2)y = 1 - 2*.

6. Solve (Z)
2 + >> - H)0 = cos x - 3 sin x.

7. Solve (D
3 - 3D + 2)y = 2 sin * - 4 cos x.

8. Solve (D2 -
l)y = 5x - 2.

9. Solve (D3 - D2 - 8D + 12)y - 1.

10. Solve (D 4
l)y == e* cos x.

11. Solve (D* - 2D + l)y - e.
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12. Solve (Z)
2 + D -

2)y = sin 2z.

13. The differential equation of the deflection y of the truss of a

suspension bridge has the form

where H is the horizontal tension in the cable under dead load q, h is

the tension due to the live load p, E is Young's modulus, and I is the

moment of inertia of the cross section of the truss about Xhe horizontal

axis of the truss through the center of gravity of the section and per-

pendicular to the direction of the length of the tru&=. Solve this

equation under the assumption that p qh/H is a constant.

14. The differential equation of the deflection y of a rotating shaft

has the form

where El is the flexural rigidity of the shaft, p is the mass per unit

length of the shaft, and o> is the angular velocity of rotation. Solve

this equation.

15. The differential equation of the buckling of an elastically sup-

ported beam under an axial load P has the form

!V_,jP^_L*-n
dx*

+ El dx*
+ El y ~ U

>

where El is the flexural rigidity and k is the modulus of the foundation.

Solve this equation.

90. Oscillation of a Spring and Discharge of a Condenser.

The foregoing discussion gives all the essential facts for solving

an nth-order linear differential equation with constant coeffi-

cients. At this point, it is desirable to apply the methods of

solution, outlined above, to a group of important practical

problems.

Suppose that it is required to determine the position of the end

of a helical spring at any time t. It is assumed that the spring is

set vibrating in a vacuum so that considerations of damping do

not enter here. If a mass M (Fig. 82) is applied to the end of

the spring, it produces an elongation s which, according to

Hooke's law, is proportional to the applied force. Thus,

F -
ks,

where F = Mg from the second law of motion and k represents
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the stiffness of the spring. Then,

Mg = ks.

If at any later time t an additional force is applied to produce an

extension y, after which this additional force is removed, the

spring will start oscillating. The problem is to determine the

position of the end point of the spring at any subsequent time.

The forces acting on the mass M are the force of gravity Mg
downward, which will be taken as the positive direction for

the displacement y, and the tension T in the

spring, which acts in the direction opposite
to that of the force of gravity. Hence, from

Newton's second law of motion,

k(s+y) Since T is the tension in the spring when its

elongation is s + y, Hooke's law states that

T = k(s + y), so that

FIG. 82.

But Mg ks, and therefore the foregoing

equation becomes

Setting k/M a1 reduces this to

(90-1)
dt*

+ a*y = or (D
2 + a2

)*/
= 0.

Factoring gives (D ai)(D + ai)y = 0, from which it is clear

that the general solution is

Recalling that etx = cos x + i sin x (Sec. 73), the solution can

be written as

y = Ci(cos at i sin at) + C2(cos at + i sin a)
= A cos at + B sin at,

where A = ci + c2 and B =
(c2 Ci)i. The arbitrary con-
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stants A and B can be determined from the initial conditions.

The solution reveals the fact that the spring vibrates with a

simple harmonic motion whose period is

The period depends on the stiffness of the spring as would be

expected the stiffer the spring, the greater the frequency of

vibration.

It is instructive to compare the solution just obtained with

that of the corresponding electrical problem. It will be seen

that a striking analogy exists between the mechanical and

electrical systems. This analogy is responsible for many recent

improvements in the design of telephone equipment.
Let a condenser (Fig. 83) be discharged through an inductive

coil of negligible resistance. It is known that c
the charge Q on a condenser plate is proportional _.

to the potential difference of the plates, that is,

Q = CV, L

where C is the capacity of the condenser. FIG. 83.

Moreover, the current 7 flowing through the coil is

_ _dQ~
~dt'

and, if the inductance be denoted by L, the e.m.f. opposing V is

L dl/dt, since the IR drop is assumed to be negligible. Thus,

or

C~ J

Simplifying gives

d zQ I n __ n
-575 + 77f

v =
0,

ill ' \jJU

which is of precisely the same form as (90-1), where a2 = 1/CL,
and the general solution is then
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The period of oscillation is

T = 27r VOL.

Note that the inductance L corresponds to the mass M of the

mechanical example and that 1/C corresponds to the stiffness k

of the spring.

91. Viscous Damping. Let the spring of the mechanical

example of Sec. 90 be placed in a resisting medium in which the

damping force is proportional to the velocity. This kind of

damping is termed viscous damping.
Since the resisting medium opposes the displacement, the

damping force r -~ acts in the direction opposite to that of the
d/t

displacement of the mass M . The force equation, in this case,

becomes

or, since Mg =
fcs,

^j-.L^ + Atf-o
dt*

^ Mdt ^ M y ~ u *

In order to solve this equation, write it in the more convenient

form

(91-D -g +2(>!+.,.
In this case the auxiliary equation is

m2 + 26m + a 2 =
and its roots are

m = -6 \A 2 - a 2
,

so that the general solution is

(91-2) y = cie^-^^^
1̂ ^ + c2e (

-
fe
-
V**^)'.

It will be instructive to interpret the physical significance of

the solution (91-2) corresponding to the three distinct cases that

arise when fc
2 - a2 > 0, fc

2 - a 2 =
0, and b* - a 2 < 0. If

6 2 a 2
is positive, the roots of the auxiliary equation are real

and distinct. Denote them by mi and m^ so that (91-2) is

(91-3) y = cie
m

i' + c2e"V.
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The arbitrary constants Ci and c2 are determined from the initial

conditions. Thus, let the spring be stretched so that y = d and

then released without giving the mass M an initial velocity.

The conditions are then

y = d

when t = and

when t = 0.

Substituting these values into (91-3) and the derivative of

(91-3) gives the two equations

d = Ci + c2 and =

These determine

m^d ,

Ci = and

+ m2c2 .

mid

mi m2

Hence, the solution of (91-3) is

mi m2

The graph of the displacement represented as a function of t is of

the type shown in Fig. 84.

Theoretically, y never becomes

zero, although it comes arbi-

trarily close to it. This is the

so-called overdamped case.

The retarding force is so great

in this case that no vibration

can occur.

If b 2 a2 =
0, the two roots

of the auxiliary equation are equal and the general solution of

(91-1) becomes

y =

FIG. 84.

If the initial conditions are

when t = and
y = d

dy
dt
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When t = 0, the solution is

y = de~bt
(l + bf).

This type of motion of the spring is called dead-beat. If the

retarding force is decreased by an arbitrarily small amount, the

motion will become oscillatory.

The most interesting case occurs when b 2 < a 2
,
so that the

roots of the auxiliary equation are imaginary. Denote 6 2 a 2

by a2
,
so that

m = 6 ia

and

y = Cie
(-b+i<x)t

_|_ C2e
(-6-u)l

= e~bt
(A cos at + B sin at).

If the initial conditions are chosen as before,

y = d

when t = and

when =
0, the arbitrary constants A and B can be evaluated.

The result is

y = de~bt
f cos a H sin a

J,

which can be put in a more convenient form by the use of the

identity

A cos 6 + B sin 6 = V?2 + B* cos
(0

- tan- 1 ~Y

The solution then appears as

(91-4) y = - V^+T2
<r-

6< cos
a ( orf

- tan- 1 -\
\ a/

The nature of the motion as described by (91-4) is seen from

Fig. 85. It is an oscillatory motion with the amplitude decreasing

exponentially. The period of the motion is T =
2ir/a. In the

undamped case the period is T =
27r/a; and since
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it follows that

27T 2*

a. d

Thus the period of oscillation is increased by the damping.
An electrical problem corresponding to the example of the

viscous damping of a spring is the following: A condenser (Fig.

86) of capacity C is discharged through an inductive coil whose

resistance is not negligible. Referring to Sec. 90 and remember-

ing that the IR drop is not negligible, the voltage equation is

found to be

V -L%- 7/2 =
at

or

Simplifying gives

W r L ~dt
""" CL

~~ v
'

and this equation is of the same form as that in the mechanical

example. The mass corresponds to the inductance L, r corre-

sponds to the electrical resistance R
y
and the stiffness k corresponds

to 1/C. Its solution is the same as that of the corresponding
mechanical example and is obtained by setting 26 = R/L and
a 2 = l/CL.

PROBLEMS

1. The force of 1000 dynes will stretch a spring 1 cm. A mass of

100 g, is suspended at the end of the spring and set vibrating. Find the
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equation of motion and the frequency of vibration if the mass is pulled
down 2 cm. and then released. What will be the solution if the mass is

projected down from rest with a velocity of 10 cm. per second?

2. Two equal masses are suspended at the end of an elastic spring
of stiffness k. One mass falls off. Describe the motion of the remain-

ing mass.

3. The force of 98,000 dynes extends a spring 2 cm. A mass of

200 g. is suspended at the end, and the spring is pulled do\vn 10 cm. and
released. Find the position of the mass at any instant t, if the resistance

of the medium is neglected.

4. Solve Prob. 3 under the assumption that the spring is viscously

damped. It is given that the resistance is 2000 dynes for a velocity
of 1 cm. per second. What must the resistance be in order that the

motion be a dead beat?

6. A condenser of capacity 4 microfarads is charged so that the

potential difference of the plates is 100 volts. The condenser is then

discharged through a coil of resistance 500 ohms and inductance 0.5

henry. Find the potential difference at any later time t. How large
must the resistance be in order that the discharge just fails to be

oscillatory? Determine the potential difference for this case. Note
that the equation in this case is

d*V dV V

6. Solve Prob. 5 if R = 100 ohms, C = 0.5 microfarad, and L =
0.001 henry.

7. A simple pendulum of length / is oscillating through a small

angle in a medium in which the resistance is proportional to the

velocity. Show that the differential equation of the motion is

Discuss the motion, and show that the period is 2w -y/co
2 k* where

co
2 = g/l

8. An iceboat weighing 500 Ib. is driven by a wind that exerts a

force of 25 Ib. Five pounds of this force are expended in overcoming
frictional resistance. What speed will this boat acquire at the end
of 30 sec. if it starts from rest?

Hint: The force producing the motion is F = (25 5)0 = 20gr.

Hence, 500 dv/dt =
200.

9. A body is set sliding down an inclined plane with an initial

velocity of v ft. per second. If the angle made by the plane with the

horizontal is 6 and the coefficient of friction is ju, show that the distance
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traveled in t sec. is

6 , cos

Hint: m d*s/dt* = mg sin 6 nmg cos 6.

10. One end of an elastic rubber band is fastened at a point P, and

the other end supports a mass of 10 Ib. When the mass is suspended

freely, its weight doubles the length of the band. If the original length

of the band is 1 ft. and the weight is dropped from the point P, how far

will the band extend? What is the equation of motion? w
11. It is shown in books on strength of materials and

elasticity that a long beam lying on an elastic base, the

reaction of which is proportional to the deflection y,

satisfies the differential equation

Set a4 = k/(EI), and show that the characteristic

equation corresponding to the resulting differential equa-
tion is m 4 + 4a 4 =

0, whose roots are m = a + ai.

Thus show that the general solution is

y = Cie
ax cos ax + sin ax + c$e~

ax cos ax
sn ax.

FIG. 87.

12. If a long column is subjected to an axial load P and the assump-
tion that the curvature is small is not made, then the Bernoulli-Euler

law gives (see Sec. 72)

dx* M_
El'

Since the moment M is equal to Py (Fig. 87), it follows upon setting

dy/dx p that the differential equation of the deformed central axis is

D
d̂y Py

(1 + pi)fc

== ~
Ji'

Solve this differential equation for p, and show that the length of the

central line is given by the formula

where k2 = d*P/4EI, d is the maximum deflection, and F(k, tr/2) is

the elliptic integral of the first kind. The equation of the elastic

curve, in this case, cannot be expressed in terms of the elementary func-

tions, for the formula for y leads to an elliptic integral.
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92. Forced Vibrations. In the discussion of Sec. 91, it was

supposed that the vibrations were free. Thus, in the case of the

mechanical example, it was assumed that the point of support

of the spring was stationary and, in the electrical example, that

there was no source of e.m.f. placed in series with the coil.

Now, suppose that the point of support of the spring is vibrating

in accordance with some law which gives the displacement of the

top of the spring as a function of the time t, say x /(), where x

is measured positively downward. Just as before, the spring

is supposed to be supporting a mass M, which produces an

elongation s of the spring. If the

displacement of the mass M from its

position of rest is y, it is clear that,

when the top of the spring is dis-

placed through a distance x, the

vwwwwwwmooooomooo J a tual extension of the spring is

R

tion is

R L
y x. If the resistance of the

medium is neglected, the force equa-

Jtf f
= Mg -

k(s + y
-

x) = -k(y -
x),

whereas, if the spring is viscously damped, it is

Upon simplifying this last equation, it becomes

(92-1) M^ + r^ + ky^kx,

where x is supposed to be a known function of t.

The corresponding electrical example is that of a condenser

(Fig. 88) placed in series with the source of e.m.f. and that dis-

charges through a coil containing inductance and resistance.

The voltage equation is

where f(f) is the impressed e.m.f. given as a function of t. Since

_r-dQ _ dV
1 ~

dt
~ C

-&'
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the equation becomes

d~V dV
(92-2) CL+CR + V

An interesting case arises when the impressed e.m.f. is sinusoidal,

for example,

f(f)
= EQ sin cot.

Then the equation takes the form

dW RdV 1 I,-

Both (92-1) and (92-2) are non-homogeneous linear equations

with constant coefficients of the type

(92-3) ^ + 26^ + ay = o/(0.

The solution of this equation is the sum of the complementary
function and the particular integral (see Sec. 88). The com-

plementary function has the form shown by (91-2), namely

c\e
mJ + c2e

m
2*,

where

mi = b + \/fr
2 a 2 and ra2

= b \/b
2 a 2

.

The particular integral, by (89-5), is

(92-4) Y = aW J e^~m^
[J er<*Sf(t) dt]

dt.

From the discussion of Sec. 91, it is clear that the part of the

solution which is due to free vibrations is a decreasing function

of t and will become negligibly small after sufficient time has

elapsed. Thus the "
steady-state solution" is given by the

particular integral (92-4).

Let it be assumed that the impressed force, x in (92-1) and

f(t) in (92-2), is simply harmonic of period 27r/co and of amplitude
a . Then,

f(f)
= a sin ut,

and (92-4) becomes

Y = aW J e(mrm^ (J e-"Va sin wt dt) dt.
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The result of integration* is

a 2a
Y = = sin (wt c),-

co
2
)
2 + 46V

where

= tan" 1

This is the steady-state solution.

The remainder of this section will be devoted to the physical

interpretation of the solution (92-5). It is observed that if the

impressed frequency is very high (large w), then the amplitude
of the sinusoid (92-5) is small, so that the effect of the impressed

force is small. When co = a, the amplitude is a a/26, which may
be dangerously large if b (and hence the resistance of the medium)
is small. For a fixed 6 (resistance of the medium) and a (natural

frequency of the system), the maximum amplitude occurs when

(a
2 w 2

)
2 + 4b 2

co
2
is a minimum, that is, when

-^ [(a
2 -

co
2
)
2 + 4b 2

co
2
]
= 0.

do)

This is readily found to be when

co
2 = a 2 - 26 2

.

Upon recalling the physical significance of a and 6, these results

can be interpreted immediately in terms of the physical quantities.

93. Resonance. It was remarked in Sec. 92 that if the

impressed frequency is equal to the natural frequency of vibra-

tion, then the amplitude of (92-5) may be abnormally large.

Stated in terms of the physical quantities of the electrical and

mechanical examples, this means that the maximum voltage

of the electrical system may be dangerously large or that the

maximum displacement of the spring may be so great as to pro-

duce rupture.

The phenomenon of forced vibration is of profound importance
in many engineering problems. Not so many years ago the

collapse of a building in one of the larger American cities was

*
Integration in this case is a little tedious. For actual integration, it is

convenient to replace sin ut by the equivalent exponential expression
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attributed to the rhythmic swaying of the dancing couples, who

happened to strike the natural frequency of the beam supporting
the structure. Again, the failure of the Tacoma bridge was

explained by some on the basis of forced vibration. It is also

well known that soldiers are commanded to break step in crossing

a bridge, for fear that they may strike the note of the cables.

The walls of Jericho are reported to have fallen after seven priests

with seven trumpets blew a long blast.

The phenomenon of resonance occurs when the impressed

frequency is equal to the natural frequency. Consider Eq.

(92-3) in which 6 (resistance) is zero and f(t)
= a sin at

}
so that

(93-1)
~ + a*y = a 2a sin at.

The particular integral in this case is

(93-2) F = a a 2e-a" J (e
2a <

J e~^ sin at
dt) dt,

since mi = ai and ra2
= ai. If sin at is replaced by ^ >

Zi

(93-2) integrates into

V 2 (t COS a ^
I

1
I

* 4\
JL

~~"~ a$a \ ^ ~i~ o Q sin ai ~\ ^ cos ai j.

If F is added to the complementary function c\ cos at + c2 sin at,

the general solution is given by

(93-3) y = A cos at + B sin at ~-
t cos at,

where the last two terms of F have been combined with the

complementary function. Let the initial conditions be y =
when t = 0, and dy/dt = when t = 0. Then A = and
B = a /2, and (93-3) will be

(93-4) y = -~
(sin at at cos a).

This equation represents a vibration whose amplitude increases

with time; for the amplitude of the first term is the constant

a /2, and the amplitude of the second term is proportional to the

time t. In fact, if sufficient time is allowed, the amplitude may
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become greater than any preassigned number. This remark

ought not to stimulate the student to design an apparatus to

produce an infinite amplification or an infinite force. In any

physical case, there is some resistance b present, and a brief

reference to (92-5) will show that b prevents the oscillations from

becoming arbitrarily large.

PROBLEMS
Show that a particular integral of

1
d*y

. 2 ,
1

4! 37s + a y sin at 1S y = ~~ o~ t cos at*
at 4a

2. -jif + az
y cos at is y = -~-t sin at.

at *j(i

94. Simultaneous Differential Equations. In many investi-

gations, it is necessary to consider systems of differential equa-
tions involving several dependent variables and one independent
variable. For example, the motion of a particle in the plane can

be described with the aid of the variables x and y, representing

the coordinates of the particle, each of which may depend on

time. It will be indicated in this section how a system of n

ordinary differential equations involving n dependent variables

may be reduced to a study of a single differential equation of

higher order.

Let two dependent variables x and y be functions of an inde-

pendent variable t, and let it be required to determine x and y
from the simultaneous equations

dx

(94-1)
dt

= /2 (0,

where a, b, c, and d are constants. If these equations are written

in operational form, they are

(D + a)x + by =
/i(Z),

ex + (D + d}y = /2 (0-

Operating on the second of these equations with - (D + a) gives
c

(D + a)x + - (D + a)(D + d)y = - (D
C C



94 ORDINARY DIFFERENTIAL EQUATIONS 313

and, if the first equation is subtracted from this result,

i (D + a) CD + d)y
-

by =
\ (D + a)/8 (0

-
fi(t).

c c

This is a second-order linear differential equation which can be

solved for y. In order to determine x, solve the second equation

of (94-1) for x,

-t-*}
and substitute the value of y in terms of t.

The reader may show in the same way that the solution of a

system of two second-order linear differential equations can be

reduced to the solution of a linear differential equation of the

fourth order (see Example 2 below). /////////

Example 1. Consider ^

J 4- 2x - 2y =
t,

dy _
dt

~" X y ~~ e

or

(D + 2)x
- 2y =

t,

-3* + (D + l)y = 6'.

Operate on the second of these equations with

+ 2) to obtain

-(Z) + 2)x + H(D + 2)(D + l)y = y3 (D + 2)e',

and add this result to the first equation. The result is

y3 (D + 2)(D + l)y
-

2y = H(D + 2)e< + t,

which simplifies to

This equation can be solved for y as a function of t, and the result can

be substituted in the second of the given equations to obtain x.

Example 2. Let the two masses MI and M 2 be suspended from two

springs, as indicated in Fig. 89, and assume that the coefficients of

stiffness of the springs are k\ and k% respectively. Denote the dis-

placements of the masses from their positions of equilibrium by x

and y. Then it can be established that the following equations must
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hold:

These equations can be simplified to read

d*y ,
kt k% ^w+w^-ws- '

dzx kz . ki + kz

W -Ml y + MT x = "-

By setting

ki kz Mz
M\

= a
' Wz

= b
> Mi

= m
'

the equations reduce to

(D 2 + 6 2
)?/
- b*x = 0,

-62
/ni/ + (D 2 + a2 + 6 2m)x = 0.

Operating on the second of these reduced equations with 7-7- (D 2 + 6 2
)

and adding the result to the first of the equations give

(D 2 + 6 2
)(Z)

2 + a2 + b*m)x - b*mx =
or

[D
4 + (a

2 + &2 + 6 2
m)Z)

2 + aV]x = 0.

This is a fourth-order differential equation which can be solved for

# as a function of t. It is readily checked that

x = A sin (<ut e)

is a solution, provided that w is suitably chosen. There will be two

positive values of co which will satisfy the conditions. The motion of the

spring is a combination of two simple harmonic motions of different

frequencies.

PROBLEMS

1. Solve Examples 1 and 2, Sec. 94.

2. The equations of motion of a particle of mass m are

where a?, y, z are the coordinates of the particle and X, Y, Z are the

components of force in the directions of the #-, T/-, and 2-axes, respec-

tively. If the particle moves in the zy-plane under a central attractive
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force, proportional to the distance of the particle from the origin, find

the differential equations of motion of the particle.

3. Find the equation of the path of a particle whose coordinates x

and y satisfy the differential equations

d^x dy

(Py __
dx

where H, E, e, and m are constants. Assume that x = y = dx/dt
= dy/dt when t = 0. This system of differential equations occurs

in the determination of the ratio of the charge to the mass of an electron.

4. The currents /i and 7 2 in the two

coupled circuits shown in Fig. 90 satisfy the
- - - - ->-*

following differential equations:

d 2
/! d*I 2 d/ 2

,

/2

M~2 + L 4-r + -

Reduce the solution of this system to that of a single fourth-order dif-

ferential equation. Solve the resulting equation under the assumption
that the resistances Ri and R% are negligible.

95. Linear Equations with Variable Coefficients. With the

exception of linear equations with constant coefficients and such

equations with variable coefficients as are reducible to those

with constant coefficients by a change of variable, there are no

general methods for solving linear differential equations of order

higher than the first. In general, solutions of differential

equations with variable coefficients cannot be expressed in terms

of a finite number of elementary functions, and it was seen in a

number of specific examples that the solutions of such equations
lead to new functions which are defined either by definite integrals

or by infinite series. Some of these functions are of such frequent

occurrence in applied mathematics that it has been expedient to

calculate their values and tabulate them, precisely as the values

of logarithms and trigonometric functions are tabulated. It

must be borne in mind that the term elementary function as

applied to logarithmic and circular functions is, in a sense, a

misnomer and that such functions as Gamma functions, Bessel

functions, and Legendre polynomials become just as "elemen-

tary" after their values have been tabulated. The elementari-
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ness of any given function is measured by the ease with which its

value can be ascertained.

The remainder of this chapter contains a brief treatment of

those linear differential equations which are of common occur-

rence in practice. An attempt will be made to express the

solutions in convergent power series in x. This involves the

tacit assumption that the solutions are capable of being expanded
in Maclaurin's series, which, of course, is not true in general, and
it is therefore not surprising that occasionally this method fails

to give a solution. The method consists in assuming that a

solution of the differential equation

is expressible in a convergent infinite series in powers of #, of the

type

(95-2) y = a + a& + a2x2 + + anx
n + -

,

where the coefficients at are to be determined so that the series

will satisfy the differential equation. If the coefficients of the

derivatives in (95-1) arc polynomials in x, then the obvious mode
of procedure is to substitute the infinite scries (95-2) into the

equation (95-1), expand f(x) in Maclaurin's series, combine the

like powers of
a*,

and equate to zero the coefficient of each power
of x. This leads to an infinite set of algebraic equations in the

a t ,
which can sometimes be determined by algebraic means.

It is stated without proof that a homogeneous linear differ-

ential equation of order n,

(95-3) g + Pl (*) g^ + + ?_!<*) | + Pn(x)y =
0,

where the p t are continuous one-valued functions of x, possesses

n linearly independent solutions, and only n. If these solutions

are yi(x), yi(x), , yn (x), then the general solution of the

equation is given by

(95-4) y =
ciyi + c22/ 2 + + cnyn .

This fact can be immediately verified by substituting (95-4) in

(95-3). It is also clear that, if u(x) is any particular solution of
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(95-1), then its general solution is y c\y\ + c2?_/2 + * * *

+ cnyn + u(x), where Cit/i + c 2t/2 + + cnyn is the solution

of the related homogeneous equation (95-3).

Frequently, it is of practical importance to knqw whether a

given set of functions is linearly independent. Inasmuch as

the definition for linear independence that is given in Sec. 34 is

difficult to apply, a test for the linear independence of the solu-

tions will be stated.*

THEOREM. The necessary and sufficient condition that a given

set of solutions y\, y%, , y n of the nth order differential equation

(95-3) be linearly independent is that the determinant

2/1

W 3

2/2

2/2'
- - -

yn
r

This determinant is called the Wronskian.

Example. By substitution, it can be verified that y\ = sin x,

7/2
= cos x, and 7/3

= e lx are solutions of the differential equation

But the Wronskian is

c
j dx*

^
dx u

sin x cos e ix

cos x sin ie 13

sin x cos e tx

=
o,

and therefore this set of solutions is not linearly independent. In other

words, at least one of them can be expressed as a linear combination of

the other two. It is known that

e l * cos x + i sin x.

It is readily verified that a linearly independent set of solutions is

T/i
= sin x, 7/2

= cos x, and 7/3
= ex

,
so that the general solution is

y = ci sin x + c 2 cos x + c 3e
x

.

PROBLEMS
Determine whether or not the following sets of functions are linearly

independent:

* See INCB, E. L., Ordinary Differential Equations.
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1. 2/1
= sin x + x, 2/2

== ex
t 2/3

~ 3e* 2x 2 sin x.

2. 2/1
= x 2 - 2x + 5, 2/2

= 3z - 7, 2/3
= sin x.

3. 2/1
= 6** + x, 2/2

= cos a: + x, yz
= sin x.

4. 2/1
= (z + I)

2
, 2/2

=
(x
-

I)
2

, 1/3
= 3*.

5. 2/1
= log x, 2/2

= sinh x, 2/3
=

e*, 2/4
= e~~*

96. Variation of Parameters. Two methods of determining a

particular integral of a linear differential equation with constant

coefficients were discussed and illustrated in Sec. 89. Another

important method that is applicable to linear equations with

either constant or variable coefficients will be described here.

This method, due to the great French mathematician Lagrange

(1736-1813), permits one to determine a particular integral of

(96-1) g + Pl(x) g3 + + Pn-^x) I + p.(x)y = /(*),

when the general solution of the related homogeneous equation

' ' '

(96
"
2) n-

Tx

is known.

Let the general solution of (96-2) be

(96-3) y =
Ciyi + c2yt + + cnyn ,

in which the cl are arbitrary constants, and assume that a set of

n functions #1(0;), vi(x), ,
vn (x) can be so chosen that

(96-4) y =
viyi + v^y^ + + vnyn

will satisfy (96-1). Since y\(x), y<t(x), , yn (x) are known
functions of x, (96-1) imposes only one condition upon the v l

in (96-4). Inasmuch as there are n functions v t ,
it is clear that

n 1 further independent conditions can be imposed upon the

vt , provided that these conditions are consistent.

Differentiating (96-4) gives

' ' + vny'n) + (v{yi + v
f

M* + + v'nyn).

As one condition to be imposed on the v^ }
let

v(y\ + v'2y2 + + v'nyn = 0,

so that
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Then,

319

and if the second condition to be satisfied by the v% is

+ <y' =
o,

it follows that

V" =
viy[' + v&y + vny"n .

By continuing this process a set of n 1 conditions is imposed
on the Vt, namely,

- + v'nyn = 0,

h + <//: =
o, .

(96-5)

as a consequence of which

y
f = + vnyn ,

i(n-l)

Calculating y (n}
yields

Substituting t/, y
f

, , y (n) in (96-1) and remembering that,

by hypothesis, y\, t/ 2 , , yn satisfy (96-2) give the nth con-

dition to be imposed upon the v t , namely,

The n 1 relations (96-5) together with (96-6) give n linear

algebraic equations which can be solved for vj, v2 >

' * '

,
v'n , pro-

vided that the determinant of the coefficients of the v(, namely,

(i 2/2
' ' '

yn

9l 2/2
' ' '

2/n

is not identically zero. But this determinant is the Wronskian

and, since yi, 2/2 , , yn were assumed to be linearly inde-



320 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 96

pendent, it is different from zero. Hence, the system of equations
can always be solved for the v'

t ,
and the expressions for the ut are

obtained by integration.

Example. As an illustration* of the application of this method of

determining a particular integral, consider the equation

2 = 2(sinx-2coB*).

The general solution of the homogeneous equation is found to be

Assume that a particular integral of the non-homogeneous equation is

of the form

y v\e
x

where Vi, v^, and v z are functions of x to be determined presently.

Computing y
r

gives

y
1 = vtf

x + v 2 (x + \}e* 2v3e~'
2x + Vi'e* + v2 xe x + v3

f

e~2x
.

The first condition to be imposed upon the v, is

Vi'e' + v 2'xe* + v 3'e~
2* =

0, (1)

so that

y
" * Vl

* + V2 (x + 2)e* + 4v se~Zx + vi'e* + v 2'(x + \)e*
- 2v^e~2x

Imposing the second condition produces

vi'e
9 + v 2'(x + l)e

x - 2v3'e~** =
0, (2)

and computing y
1"

yields

y
'" = vie

x + vt(x + 3)6* - Svse-** -f vi'e* + v>2'(x -f 2)e
x

-f 4v z'e~*
x

.

Hence, the third condition to be satisfied by the vt is

vi'e* + vj(x + 2)e* + 4z>3V2* = 2(sin x - 2 cos a). (3)

Solving (1), (2), and (3) for Vi, v 2
f

,
and vs

'

gives

Vi' = ?^6"*(sin a: 2 cos 3) %e~x(sm ^ 2 cos x),

iV - ^^"'(sin x 2 cos x),

Vs = %e 2a!
(sin a; 2 cos x).

The integration! of these expressions yields

* For another illustration, see Example, Sec. 97.

t The integration in this case is quite tedious, and generally speaking it

is easier to solve linear equations with constant coefficients by the methods
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Vi = Hxe~x
(3 sin x cos x) + e~* sin x + %e~* cos x,

t>2
= }ie~

x
( 3 sin a; + cos a;),

t>3
= %e2x cos x,

in which the constants of integration are omitted because a particular

integral is desired.

By hypothesis, a particular integral is given by

y = Vie* + v 2xex + v^e~
Zx sin x,

so that the general solution of the non-homogeneous equation is

y =
(c\ + c>2x)e* + c ze~2x + sin x.

PROBLEMS

1. Solve Probs. 1, 2, and 3, Sec. 89, by the method of variation of

parameters.
2. Find the solution of

by the method of variation of parameters, and compare your result with

that of Sec. 85. The solution of the related homogeneous equation is

obtained easily by separation of the variables.

3. By the method of variation of parameters, find a particular integral

of

d*y 3dy 5

where the general solution of the related homogeneous equation is

i
, K

y = ~ + czx
6

.

4. Find the general solution of

&y
,

x dy __\_ .

dx*
"*"

1 - x dx 1 - x y ~
-1 *'

where the general solution of the related homogeneous equation is

c\e
x + cix.

5. Find the general solution of_x*y" - 2xy' + 2y = x log x,_
discussed in Sec. 89. However, the method of the present section is of

great value when the given equation has variable coefficients,
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if the general solution of the related homogeneous equation is

y = cix
2 + C&.

97. The Euler Equation.* Before proceeding to illustrate the

method of solution in terms of infinite series, it will be well to

discuss one type of differential equation with variable coefficients

that can be reduced by a change of variable to a differential

equation with constant coefficients.

Consider the linear equation

(97-1) * g + a^->g3 + + _,*| + any = /(*),

where the at are constants. This equation can be transformed

into one with constant coefficients by setting x = ez . For if

x = ez
,
then

dx , dz
j- ez and -j-

= e~*.
dz dx

Moreover, if D s= --, then
9 dz

dx dz dx

and

Similarly,

g = e-3* (>3
_ 3

Then, since x = ez

,
it follows that

x ^ - TDjyX dx~ Dy'

x* = (D*
- D)y = D(D

x" n
= D(D - 1)(D

-
2) (D - n

* Also called Cauchy's equation,
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so that (97-1) is replaced by an equation with constant coefficients,

[D(D -
1) (D - n + 1) + (nD(D -

1) (D - n + 2)

+ - + an_!Z) + an]y = /(*).

Example. Consider

d*y dy
x W + x dx- y = xlo* x '

Upon making the substitution x = ee
,
this equation becomes

or

(D 3 - 3D2 + 3D -
l)y = ze*.

The roots of the auxiliary equation are MI = w 2
= m^ =

1, so that the

complementary function is

The particular integral is

so that, in terms of z, the general solution is

and, in terms of x,

y [ci + c 2 log x + c 3(log x)
2
]x

-

A particular integral for this example will be obtained by the method
of variation of parameters in order to demonstrate the applicability

of this method to equations with variable coefficients. Care must be

taken first to transform the equation so that it has unity for its leading

coefficient, for the discussion of Sec. 96 was carried through for this

type of equation.

Expressing the given equation in the form (96-1) gives

d*y
,

1 dy 1 1 .

Since the general solution of the homogeneous equation was found

to be

CiX + C& log X + C&(\0g X)*,
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the equations of condition (96-5) and (96-6) are

Vi'x + v2'x log x + Va'x(log x)
2 =

0,

vi' + fi'U + log x) + vz'[(log xY + 2 log x]
=

0,

v
*'\

+ v *

(x
log x +

x)
=

Solving for vi, t>2 ', and i;3
'

yields

Vl
' **

2x (log *)*' v*
=

~~x (log ^ 2> v* =
2x log ^

J

which integrate into

v l
= H(log xY, v 2

= -K(log x)
3
,

Hence, a particular integral is

1 /I NO
y = v& + v& log a; + y 3x(log a;)

2 =

PROBLEMS

1. Find the general solution of Prob. 3, Sec. 96, by the method of

Sec. 97.

2. Find the general solution of

Compute the particular integral by the method of variation of

parameters.

3. Solve

by assuming a solution of the form y xr and determining appropriate
values of r.

4. Solve

by assuming a solution to be of the form y = xr
.

5. Find the general solution of

x*y'"
- 4zV + 5xy'

- 2y - 1.

6. Find the general solution of

y oc X*.
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7. Find the general solution of

x*y"
-

2xy' + 2y = x log x.

98. Solution in Series. Many differential equations occurring

in applied mathematics cannot be solved with the aid of the

methods described in the preceding sections, and it is natural to

attempt to seek a solution in the form of an infinite power series.

The method of solution of differential equations with the aid of

infinite series is of great importance in both pure and applied

mathematics, and there is a vast literature on the subject. This

section and the four following sections contain only a brief

introduction to the formal procedure used in obtaining such

solutions.

As an illustration of the method, consider the differential

equation

(98-1) y'
- xy

- x =
1,

and assume that it is possible to obtain the solution of (98-1) in

the form of a convergent power series

(98-2) y = a + a+x + a 2z
2 + - - - + anxn + .

Inasmuch as the series of derivatives of a convergent power series

is convergent, one can write

(98-3) y'
= ai + 2a 2z + - - + nanxn

~ l + .

Substituting (98-2) and (98-3) in (98-1) and collecting the coeffi-

cients of like powers of x give

(98-4) a! + (2a 2
- a -

l)x + (3o 8
- ajx* +

+ (nan
- an-z)x

n- 1 +=!.
By hypothesis, (98-2) is a solution of (98-1), and therefore*

equating the coefficients of like powers of x in (98-4) leads to the

following system of equations :

a i I (coefficient of x),
2a 2 a 1 =

(coefficient of x),

3a 3 a\ = (coefficient of a:
2
),

(98-5)

nan an-2
=

(coefficient of a;"* 1

),

* See Theorem 5, Sec. 10.
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The system of equations (98-5) is a system of linear equations

in infinitely many unknowns a
, ai, ,

an ,
. Solving

the second equation of (98-5) for a 2 in terms of a gives

The third equation taken with the first demands that

aa = = .

Setting n = 4 in the coefficient of xn
~ l

gives

i -| [ -|

&2 do ~t~ J- &0 i
J-

4 2*4 2^ 2^'

whereas n = 5 gives

_3_ 1
^

5 3-5

In general,

(98-6)

2n
2*-n!

1

(2n + 1)

The substitution in (98-2) of the values of ak given by (98-6)

leads to a solution in the form

.
,
OQ + 1 o

,
1 n i

tt O + 1 A ,
1 c

,= -- 1 4 t ' ' '

When the terms containing a are collected, there results

+ 1 o ,
tto + 1 A ,

(98-7) y = ao +

+
2n -nT

X n +

I* TU+-]-1-3-5

If ao + 1 is set equal to c, one can write (98-7) in the more
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compact form

(98-8) j,- e
[i+*!

+ 5 n + ... +-=_,.+
g2n

2^2! ^ ^ 2^T!

f x 3 x2n+ l '

1
+

[~~
l+X + T^ + ' ' ' +

1 - 3 (2n + 1)
+ ' '

'}
The two series appearing in (98-8) are easily shown to be

convergent for all values of x, and hence they define functions

of x. In fact, the first of the series is recognized as the Maclaurin

expansion of e 2
,
so that (98-8) can be written as

^ T rr3

(98-9) y = ce 2 + 1-1 + x + ~-^ +

T 2n-fl

+ 1-3 . . .

(2n +l) + }

This is the general solution of (98-1), for it contains one arbitrary

constant.

Since (98-1) is a linear differential equation of the first order,

its solution could have been obtained by using the formula

(85-3), and it is readily verified that (85-3) gives

X 2

(98-10) y = ce 2 - 1 + e 2

J e 2 dx.

The integral in (98-10) cannot be evaluated in closed form; but

if the integrand is expanded in a power series in x, it is easy to

show that (98-10) leads to (98-9).

Consider next the homogeneous linear differential equation of

the second order

(98-11) y"
-

xy' + y =
0,

and assume that the solution of (98-11) has the form

(98-12) y = anxn = a + a& + - + anxn + -

n=X)

Then the series for y' and y" are

00 00

i'' = V nanX 71" 1 and y" = V n(n l)anzn~2
.

n>-2
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If these expressions are substituted in (98-11), the result is

n(n -
l)ana:

n*" 2 - nanxn + anxn = 0.

n2 n-\ n =

Combining the terms in like powers of x and setting the coeffi-

cient of each power of x equal to zero give the system of equations

2 12 + flo
= (coefficient of x),

3 2a 3 ai + ai = (coefficient of x),

4 3a 4 2a 2 + a 2
=

(coefficient of z 2
),

...............................................
>

(n + 2)(n + l)an+2 nan + an = (coefficient of xn),

Hence,

(98-13) an+2 =

This recursion formula can be used to determine the coefficients

in (98-12) in terms of a and a\. Thus, substituting n =
0,

1, 2, in (98-13) gives

1=- - o
,

1 1

T^[
a2 = ~

4]

2

4-75

3 3

6!

a2n+i = 0,

1 3 5 (2n
-

3)
a2n = ---__-

Therefore,

(98-14) y =

where a and a\ are arbitrary. It is readily checked that the
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series is convergent, and, since it is a power series, it defines a

continuous function of x.

The two linearly independent solutions of (98-11) are then

y =
and

1
2

1
4

3 , 15
8-

>
These solutions are obviously linearly independent, for one of

them defines an odd function of x and the other defines an even

function of x.

PROBLEMS
Integrate in series:

3. (x* -3 + 2) + (x-2i-l)+(*- 3)y = 0.

4- ft - y - 1.
cfc

2 ^

99. Existence of Power Series Solutions. It must be kept

clearly in mind that the calculations performed in Sec. 98 are

formal and depend on the assumption that the differential equa-
tions discussed there possess power series solutions. If, for

example, an attempt had been made to apply the method of

solution outlined in Sec. 98 to the equation

xy'
- 1 = 0,

it would have been futile. The general solution of this equation
is

y = log x + c,

which cannot be expanded in a power series in x.

The task of determining beforehand whether a given differen-

tial equation possesses solutions in the form of power series

represents one of the major problems of analysis. It will suffice

in this introductory treatment to state, without proof, the

conditions under which a homogeneous linear differential equa-
tion of the second order has a power series solution.
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THEOREM. Let

(99-1) V" + fi(x)y' + f*(x)y =

have coefficients f\(x) and f%(x) that can be expanded in power series

in x which converge for all values of x in the interval R < x < R
;

then there will exist two linearly independent solutions of the form

00

y =
2} anXn >

n0

which will converge for all values of x in the interval R < x < R.

It is clear from the statement of the theorem that the differen-

tial equation will possess power series solutions, which converge
for all values of x, whenever f\(x) and/2(x) are polynomials in x.

It should be noted that the coefficient of the second derivative

term in (99-1) is unity. Frequently, the differential equation
has the form

and if this differential equation is put in the form (99-1), then

/. / x Pi(x) j
fi(x) - and

If po(x) should vanish for some value of x in the interval within

which the solution is desired, one must expect trouble. If

po(x), pi(x), and pz(x) are polynomials in x and if 7>o(0) ^ 0, then

one can surely expand fi(x) and fa(x) in power series in some

interval, and the theorem enunciated above is applicable.

As an illustration, consider the differential equation

(99-2) (2
-

x)y" + (x
-

l)y'
-

y = 0.
"

Inasmuch as

and

/2 (x)
=

(x
-

2)-
1

obviously possess power series expansions that are valid in the

interval 2 < x < 2, it is reasonable to proceed to obtain the

power series solution.



99 ORDINARY DIFFERENTIAL EQUATIONS 331

Substituting

y =

in (99-2) gives

(2
-

x) n(n - l)anx-* + (x
-

1) wa^"- 1 - J anz" = 0.

n=0 n=0 n-0

Rearranging and combining terms give

n-O
(n
- " = 0.

Equating the coefficients of the powers of x to zero gives

(99-3)

2 2 Ia 2 oi a =
0,

2 3 2a 3
- 2 2a 2

=
0,

2 4 3a 4
- 3 2a 3 + a 2

=
0,

2(w + 2)(n + l)an+2
-

(w + l)
2an+1 + (n

-
l)an = 0,

The coefficient of xn provides the recursion formula

2(n + l)(n + 2)

and setting n =
0, 1, 2, 3, gives

#o ~f" di c

2 2
~

2 - 2!

c

, where c = a +

a4
=

3 2-3!

3 2a 3 a 2 c

4! 2-4!

4 2a4
- 2a 3 c

"
2-4-5 2-5!

It is easily shown that in general

a" ""

2^T!
?
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so that

y = a + a\x + a 2x
2 + + anx

w +

= ao + ^i^ +
/a:

2 x*

\2i
+ n2

+ *!/, , ,

* 2

^0 + &\X +
^& \ ^1

flo H~ ^i
(1

2 2

= Cie* + c2 (l
-

x),

where Ci = (a + ai)/2 and c2
= (a ai)/2.

It happens in this illustration that the series appearing in the

solution of the differential equation represent elementary func-

tions, so that the general solution can be written in* closed form

Ordinarily, the infinite series arising from the solution of linear

differential equations with variable coefficients represent func-

tions that carniQt be expressed in terms of a finite number of

elementary functions. This is the case discussed in the next

section, where the series that provides the solution of the differen-

tial equation represents a class of functions of primary importance
in a great many problems in applied mathematics.

It is quite obvious that the theorem of this section can be

rephrased to include the case where the functions fi(x) and/2'(^)

possess series expansions in powers of x a. In this case,

there will exist two linearly independent solutions of the form

y =

PROBLEM
Solve

y" -
(x
-

2)7/
=

00

by assuming the solution in the form y S an(x 2)
n

. Also,
n =

00

obtain the solution in the form y = 2 anxn .

n=0

^ 100. Bessel's Equation. An important differential equation
was encountered by a distinguished German astronomer and
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mathematician, F. W. Bessel (1784-1846), in a study of planetary

motion. The range of applications of the functions arising from

the solution of this equation is partly indicated by the fact that

these functions are indispensable in the study of vibration of

chains, propagation of electric currents in cylindrical conductors,

problems dealing with the flow of heat in cylinders, vibration of

circular membranes, and in many other problems arising in every
branch of applied mathematics. Some of the uses of this equation
are indicated in the chapter on Partial Differential Equations.

BesseFs equation has the form

(100-1) x*y" + xy
f + (x

2 - n 2
)y = 0,

where n is a constant. It will be observed that this equation
does not satisfy the conditions of the theorem of Sec. 99 because

of the appearance of x 2 in the coefficient of y". In the notation

of Sec. 99,

1 n 2

fi(x)
= - and /2 (x)

= 1 - ,

JU JU

and it is clear that /i(x) and f*(x) cannot be expanded in power
series in x.

In order to solve (100-1), assume that the solution can be

obtained in the form of a generalized power series, namely,

(100-2) y = xm 2 arXr,

where m is a constant to be determined later and where ao can be

assumed to be distinct from zero because of the indeterminate

nature of m.

Calculating the first and second derivatives with the aid

of (100-2) and forming the terms entering into (100-1) give

d 2y
x 2~ = m(m I)a

m + m(m + l)dix
m+1 +

CLX

+ ak(m + k)(m + k l)x
m+k + ,

dt/~-
Q + (m + l)ai$

m+ l + ' + ak(m

x 2
y = a Qx

n'2y = ~-
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Adding the left-hand members of these expressions and equating
the result to zero give (100-1). By hypothesis, (100-2) is a

solution, and therefore the coefficient of each power of x in the

sum must vanish. Hence,

(w
2 n 2

)a
= (coefficient of xm),

[(m + I)
2 - n2

]ai
= (coefficient of xm+l),

,

[(m + fc)
2 - n 2

]a,c + a,t
_ 2

= (coefficient of xm+k
).

The coefficient of the general term gives the recursion formula

(100-3) a, = - r-^l-l 5-^ /

(m + k)
2 n 2

The equation resulting from equating to zero the coefficient of the

term of lowest degree in x (here, xm) is known as the indicial

equation. In order to satisfy the indicial equation, choose

m = n. It m is chosen as -\-n or n, a Q is arbitrary and the

second condition requires that i
= 0.

For m = n the recursion formula becomes

*

(n + fc)
2 - n 2

fc(2n + fc)

Setting fc = 2, 3, 4,

*
in turn gives

a2
= -

^^rt -j- ^;

Ch
since ai =

2(2n + 2)'

PI
3

3(2n + 3)

=

a>
a4
= -

4(2n + 4) 2 4(2n + 2)(2n + 4)

^3 =
6

5(2n + 5)
'

In this manner as many coefficients as desired can be computed;
and if their values in terms of a are substituted in (100-2), there

is obtained the following series, which converges for all values of x
}

(100-4) y = atf
2)

'

2-4(2n + 2)(2n + 4)

x 6

2 4 6(2n + 2)(2n + 4)(2n + 6)
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If m = n is chosen, ao is again arbitrary and a\ = 0, and

the resulting series is

*-
[

(100-5) = *- l + + 274(2X2^4)
X 6

2 4 6(2n - 2)(2n
-

4)(2n
-

6)

The series (100-4) and (100-5) become identical for n = 0. For*

positive integral values of n, (100-5) is meaningless, since some of

the denominators of the coefficients become zero, and (100-4) is

the only solution obtainable by this method. If n is a negative

integer, (100-4) is meaningless and (100-5) is the only solution in

power series in x. For n 7^ or an integer, both (100-4) and

(100-5) are convergent and represent two distinct solutions.

Then (100-4) multiplied by an arbitrary constant and added to

(100-5) multiplied by an arbitrary constant gives the general solu-

tion of the Bessel equation.

The reason for the failure of this method to produce two dis-

tinct solutions when n is zero or an integer is not hard to find.,

The success of this method depends upon the assumption that the

solutions are representable in power series. The analysis leading

to the determination of the second particular solution of (100-1)

when n is an integer is not given here. * It is sufficient to mention

the fact that the second solution can be obtained by assuming
that it has the form, when n is a positive integer,

oo

(100-6) i/2
= Cyi(x) log x + V akx-n+k ,

*=o

where y\(x) is the solution (100-4) and C is a constant. Obvi-

ously, this solution becomes infinite when x = 0.

It will be of interest to consider the particular solution obtained

from (100-4) by setting

a =

*See WATSON, G. N., Theory of Bessel Functions; GRAY, A., G. B.

MATHEWS, and J. M. MACROBEBT, A Treatise on Bessel Functions and
Their Applications to Physics; WHITTAKER, E. J., and G. N. WATSON,
Modern Analysis; MCL.ACHLAN, N. W., Bessel Functions for Engineers.
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The series (100-4) then becomes

/yn /fW+2 /yn-f-4

(100-7) Jn (x) m^ 2n+2(

*

n + 1}!
+

(̂n + 2)!

_ . . . + (_l)fc
^n+2fc

-4- -..~
v A / 2n+ 2*A!l^ti. 4- fc")!

;(-!)--2
The function defined by this series is called the Bessel function

of the first kind of order n. This series holds for non-negative
values of n. For n = 0,* (100-7) gives

x 2 * zk

J Q (x)
= 1 -

^2

and for n =
1,

2 3 2! 2 52!3!

i)!

which are called Bessel functions of the zero-th and first orders,

respectively.

The formula (100-7) can be generalized for non-integral

positive values of n with the aid of the Gamma function by

writing (n + k)\ = T(n + k + 1), so that

(100-8) ^(')

For n =
Y<i, (100-8) becomes

/2fc + 8\'

For n 0, n! is defined to be unity. This is consistent with the formula

when n =
1, as well as with the general definition of n! in Sec. 81.
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It is not difficult to show that this reduces to*

sin x.

337

TTX

This formula suggests that the behavior of Bessel functions may
be somewhat similar to that of the trigonometric functions. This

proves to be the case, and it will be shown in the next section that

Bessel functions can be used to represent suitably restricted

arbitrary functions in a way similar to that in which trigonometric

functions are used in Fourier series.
*

It is clear that JQ(X) is an even function and that Ji(x) is an

odd function of x. Their graphs are shown in Fig. 91. For large

FIG. 91.

values of x the roots of JQ(X) = and J\(x) = are spaced

approximately TT units apart. It can be shown that for large

values of x the Values of Jn (x) are given approximately by the

formula

It is not difficult to show with the aid of (100-6), by setting

yi(x) =
Jo(x), that the second solution of BessePs equation of

order zero has the form

= J,(x) log x + - l + +

22.42 (2fc)
2

This function is called the Bessel function of the zero-th order

* See Prob. 2 at the end of this section.
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and the second kind. Thus, the general solution of the equation

is

y = CiJoGO + CzKQ (x),

where C\ and Cz are arbitrary constants.

Bessel functions of the first kind and of negative integral order

are defined* by the relation

/_(*) = (-1)V(*).

The values of Bessel functions are tabulated in many books, f

Electrical engineers frequently use the real and imaginary parts

of Jn(\/ix) J
which are denoted by the symbols bernx and

beinx, respectively, that is,

~~i x) = bernx + i beinx.

There are also modified Bessel functions of the first kind, which

are denoted in the literature by In (x). The commonly used

notations for modified Bessel functions of the second kind are

7n (x), Nn(x), Hn (x).

PROBLEMS
1. Show that

^;/o(z)
= -Ji(x).

2. Show that

Note that T(n + 1)
= nT(n) and

3. Show that y = JQ(kx) is a solution of the differential equation

xy" + y' + k*xy = 0.

4. Show that

x*y" + xy' + (kW -
n*)y = 0, k ^ 0,

can be reduced to the form

* See BYERLY, W. E., Fourier Series and Spherical Harmonics, Sec. 120,

p. 219.

t JAHNKE-EMDE, Funktionentafcln
; BYERLY, W. E., Fourier Series and

Spherical Harmonics; WATSON, G. N., Theory of Bessol Functions.
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Hint: Set z = kx, and hence y'
= -r- -r- = A; -7-

^-
/2~

6. Show that /_!,$ (2)
=

^J cos x, so that the general solution of
\/ 7T3J

Bessel's equation with n % is

6. Show that y = \/a; Jn(\x) is a solution of the equation

4&V + (4XV - 4n2 + I)?/
= 0.

7. Show that T/
= xnJn(x) is a solution of the equation

xy" + (I
-

2n)y' + xy = 0.

8. Show that y = x~nJn (x) is a solution of the equation

xy" + (1 + 2n)i/
7 + xy = 0.

101. Expansion in Series of Bessel Functions. It was pointed out

in connection with the development of arbitrary functions in trigo-

nometric series (Sec. 24) that the Fourier series development is only a

special case of the expansion of a suitably restricted class of functions

in series of orthogonal functions. It will be shown in this section that

it is possible to build up sets of orthogonal functions with the aid of

Bessel functions, so that one can represent an arbitrary function in a

series of Bessel functions.

It is shown in the treatises* on Bessel functions that the equation

Jn(x) = has infinitely many positive roots Xi, \2, , X, ,

whose values can be calculated to any desired degree of accuracy. It

will be established next that the functions

\/xJn(\\x), -v/J/nCXaz), , \/xJn(\kx) t

-

are orthogonal in the interval from x to x =
1, so that

(101-1) j^

1

Vx J(Xtz) V* J*(\,x) dx =
0, if i 7* j,

= M<A/(Xt)]
2

,
if i = j.

The proof of this fact depends on the following identity, the validity

of which, for the moment, will be taken for granted:

(101-2) (X
2 - M

2
) xJn(\x)Jn(x) dx

=
x(iJ.

* See the references given in the footnote, p. 335.
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Let X = X, and p,
= X t ,

where X 7^ X,; then

J \/x Jn(\x) \/z Jn(\jx) dx

Setting # = 1 and remembering that ./n(X t )
= Jn(X ; )

= give the

first part of the formula (101-1).

In order to establish the second part, differentiate (101-2) partially

with respect to X, and thus obtain

(101-3) 2X xJn(\x)Jn(x) dx + (X
2 - M

2
) x\Jn(nx)Jn'(\x] dx

Set x =
1, X =

/x, and recall that if X is a root of J n (x)
= then

/n(X)
= 0. Upon simplification of (101-3), one obtains the second pait

of the formula (101-1).

In order to establish the identity (101-2), note that y = \/xJ n(\x)

is a solution of the equation*

4x*y" + (4\V - 4n2 + l)y = 0.

Setting u \/x /n(Xx) and v = -\/x Jn(^x) gives the identities

+ (4X
2^ 2 - 4n 2 + l)u =

and

4x*v" + (4/z
2^ 2 - 4n 2 + 1> = 0.

Multiplying the first of these by v and the second by u and subtracting

furnish the identity

-(X 2 -
fj.

2
)uv = u"v - v"u.

The integration of both sides of this identity, between the limits and

x, yields

-
(X

2 -
/x

2
) f*

uv dx =
*

(u"v
- v"u) dx

-
[
u\ -

fo
u '

vt dx
\
-
[Ho

-K uV

=
[u'v

-
v'u]*Q

.

Recalling the definitions of u and v gives the desired identity (101-2).

Since the formula (101-1) is established, it is easy to see that if f(x)

* See Prob. 6, Sec. 100.
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has an expansion of the form

/(*)
=

which can be integrated term by term, then*

2 f
1

xf(x)Jn(\tX) dx

The most common use of this formula is in connection with the expan-

sion of functions in a series of Bessel functions of order zero.

PROBLEMS

1. Show that
-j-

[xJ\(x)\ xJQ(x).

2. Show that f(x) =
1, < x < 1, when expanded in a series of

Bessel functions of order zero, gives

Hint: Make use of the results of Prob. 1 above and Prob. 1, Sec. 100.

3. Show that

dx [X
n

< n(X)\
~ Xn

, n-lW

and

d

dx
' n*

4. Show that

[2 /sin x \=
V^ v"^

~ cos v
and

6. Show, with the aid of the formulas of Prob. 3, that

and

* See Sec. 24.
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*(h--}
6. Expand e2 v */ in a power series in h to obtain

x(h l\
n^?

e^
h

I) =
2) A>s

n so 00

and show that A n = /(#), so that

/A_l\
4. Wl (j.) + to/ l(a.) + . . . + frs/^) + . . .

]

+ [h-V-i(x) + /r 2J_ 2 (z) + + h-J-n (x) +].
102. Legendre's Equation.* The equation

(102-1) (1
- * 2

)g - 2* g + n(n + l)y =
0,

where n is a constant, occurs frequently in practical investigations

when spherical coordinates are used. One of the many uses of

this equation in practical problems is indicated in the next

chapter in connection with a study of the distribution of temper-
ature in a conducting sphere.

Assume, as in Sec. 100, that

(102-2) y = a xm + aixm+l + + akxm+l +

is a solution of (102-1). Then,

d 2v
-~5

= m(m I)a xm
~ 2 + (m

+ (m + 2)(m
+ (m + k)(m + k -

d 2y
-r~ = m(m I)a xm

>
- (m + k - 2)(m + k - 3)a A;_2xw+fc

~2 -

~- -
Q

- 2(m + A?
-

ax

n(n + l)i/
= n(n + l)a Qxm + + n(n

Adding these expressions and equating to zero the coefficients

of a;"2
,
xm

~ l
,

- -

,
xm+A;

- 2
give the system of equations

* A. M. Legendre (1752-1833), an outstanding French analyst who made
many brilliant contributions to the theory of elliptic functions.

, /
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m(m I)a =
0,

m(m + l)ai = 0,

(m + fc)(m + fc

+ (n m k + 2)(n + m + k l)ajb_2
= 0.

In order to satisfy the first of these equations, m can be chosen as

either or 1. If m =
1, the second equation requires that

ai 55 0. For m = the coefficient of zm+*~ 2
gives the recursion

formula

(n
- k + 2)(n + fc

-
1)

<**
=--

k(k=-l)
- a*-2 >

from which, in a manner analogous to that employed in Sec. 100,

the coefficients a2 ,
a 3 ,

a 4 ,
can be determined. If w =

0,

the second of the equations of the system allows ai to be arbitrary.

If the values of the coefficients in terms of a and ai are sub-

stituted in (102-2), the following solution is obtained:

(102-3) - a. l - * +
~

1)(n + 3)

3!

J- <n " l^U - 3^U + 2)^ + 4 ) .5 _~
l

"

5!

It is readily shown by means of the ratio test that for non-

integral values of n the interval of convergence of the series in

(102-3) is ( 1, 1). Moreover, since the first series in (102-3)

represents an even function and the second series represents an

odd function, the two solutions are linearly independent. The
sum of the two series, each multiplied by an arbitrary constant,

gives the general solution of (102-1), which is certainly valid if

|x( < 1. It can be verified directly that the choice of m = 1 does

not lead to a new solution but merely reproduces the solution

(102-3) with a = 0.

An important and interesting case arises when n is a positive

integer. It is clear that, when n is an even integer, the first series

in (102-3) terminates and reduces to a polynomial, whereas, when
n is an odd integer, the second series becomes a polynomial. If

the arbitrary constants a and a\ are so adjusted as to give these

polynomials the value unity when x =
1, then the following set
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of polynomials is obtained:

Po(x) = 1,

Pi(x) = x,

/>,(*)- f
*-,

P 8 (s) s - x s -
^ x,

r> / \ 7 5 A 5 3 9I 3*1
2 * +'

4

9'7 7-5 5-3

\

where the subscripts on P indicate the value of n. Clearly, each

of these polynomials is a particular solution of the Legendre

equation in which n has the value of the subscript on P. These

polynomials are known as Legendre polynomials. They are

frequently used in applied mathematics. Very often, they are

denoted by Pn(cos 0), where cos 6 = x, so that, for example.

P3(cos 0)
s

jj
cos 3 B - ^ cos 0.

Zi Zi

The values of the Legendre polynomials (sometimes called surface

zonal harmonics) are tabulated* for various values of x.

A solution that is valid for all values of x outside the interval ( ,1, 1)

can be obtained by assuming it to have the form of a series of descending

powers of x. A procedure analogous to that outlined above leads to

the general solution of the form

n(n - 1) , n(n - l)(n
-

2)(n
-

3)r __-- rn-2 4- ----- r~4x
2(2n-l)

x +
2 4(2n - l)(2n

-
3)

x

n(n - l)(n
- 2)(n - 3)(n

-
4)(n

-
5) n_

n

2 4 6(2n - l)(2n
- 3)(2n

-
5)

x ^ ' ' '

J

(n + l)(n + 2)-
! -!

' --

2-4(2n-h3)(2n + 5)

(n + l)(n + 2)(n + 3)(n + 4)(n + 5)(n + 6)

2 4 6(2n + 3)(2n + 5)(2n + 7)

-

which is valid for |x| > 1, and where n is a positive integer.
* See JAHNKE, E., und F. EMDE, Funktionentafeln

; BYERLY, W. E.,

Fourier Series and Spherical Harmonics.
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It will be shown next that the Legendre polynomials are orthogonal
in the interval from 1 to 1, so that they can be used to represent a

suitably restricted arbitrary function defined in the interval ( 1, 1).

Note that (102-1) can be written in an equivalent form as

3j[(k-*Vl + ( + i)tf-o,

and let Pm(x) and Pn (x) be two Legendre polynomials. Then,

[(1
-

x*}Pm'(x)} + m(m + l)Pm(x) s

and

[(1
-

x*)Pn'(x)\ + n(n + l)Pn(x) EE 0.

Multiplying the first of these identities by Pn (x) and the second by
Pm (x) and subtracting give

Pm (x) ^ [(1
-

x*)P'(x)]
- Pn (x)

~
[(1

- x*)Pm'(x)\

+ (n-m)(n + m + l)Pm(x)Pn(x) = 0.

Integrating both members of this expression with respect to x between

the limits 1 and +1 gives the formula

Pm(x} ix [(1
~ *2

)p '<*>] dx ~
S-i

Pn(x} Tx l(l
~ X^P"'W **

+ (n
- m)(n + m + 1) P Pm(x)Pn(x) dx = 0.

J ~ i

The application of the formula for integration by parts to the first two

integrals reduces this formula to

Pm(x)Pn(x) dx = 0.

Therefore,

J^ Pm(x)Pn (x) dx =
0, if m ^ n,

so that the Legendre polynomials are orthogonal.

It can be shown that

2m + 1

The derivation of this formula is somewhat tedious and will not be

given here.*

*See WHITTAKER, E. J., and G. N. WATSON, Modern Analysis, p. 305;

MAcRoBERT, J. M., Spherical Harmonics; Byerly, W. E., Fourier Series

and Spherical Harmonics, p. 170.
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Consider next a function f(x) that is defined in the interval ( 1,1),

and assume that it can be represented by a series of Legendre

polynomials

(102-4) /(*) =
J arfn (x)

n =

that can be integrated term by term. It follows immediately from

Sec. 24 that the coefficients in the series (102-4) are given by the

formula

an = J
1

f(x)pn (x) dx, (n =
0, 1, 2,

- -

).

PROBLEMS

1. Show that the coefficients of hn in the binomial expansion of

(1
- 2xh + A2

)-
1
'* are the Pn (x).

2. Verify that

P M - (* -
1)-

by computing Pn (x) for n 0, 1, 2, 3.

3. Expand f(x) 1 + x x 1 in a series of Legendre polynomials.

4. Show that

P 2 Gr) =P 2 (-aO
and

Pjn+ lCx) = -P 2n+l(-aO.

6. Show that

p rm-r iv
x ' 3 ' 5 ' ' '

(2n " 1}P 2n(0)
- (-1)- 2 4 6 2n

and

P 2n+l(0) = 0.

6. Show, with the aid of the formula

(1
- 2xh + h*)- = ^Pn(x) (see Prob. 1),

n =

that

Pn(l) = 1

and

P.(-l) = (-1)-.

103. Numerical Solution of DilGferential Equations. The
method of infinite series solution of ordinary differential equations
affords a powerful means of obtaining numerical approxima-
tions to the solutions of differential equations, but its useful-

ness is limited by the rapidity of convergence of the series.
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Many differential equations occurring in physical problems
cannot be solved with the aid of the methods discussed in this

chapter, and one is obliged to resort to numerical methods.

Only one of these methods, which was developed by the French

mathematician E. Picard, is outlined in this section.*

Consider the problem of finding that particular solution of the

equation of first order,

(103-1) fx =
/(*, ),

which assumes the value y Q when x = XQ. If both members of

(103-1) are multiplied by dx and the result is integrated between

the limits XQ and x, one obtains

or

(103-2) y =
2/0 + f

x

f(x, y) dx.
JXo

This is an integral equation, for it contains the unknown function

y under the integral sign.

Since the desired integral curve passes through (#o,,2/o)> assume

as a first approximation to the solution of (103-2) that y, appear-

ing in the right-hand member of (103-2), has the value 2/0- Then,
the first approximation to the solution of (103-2) is

yi(x) =
2/0 + \f(x, 2/0) dx.

Jxo

Performing the indicated integration gives y\ as an explicit

function of x, and substituting y\(x) in the right-hand member
of (103-2) gives the second approximation, namely

dx.

The process can be repeated to obtain

I/ate)
=

2/0 + Fflx, y z (x)] dx,
Jxo

and so on. It is clear that the nth approximation has the form

Vn(x) =
2/o + C*f[x, yn-\(x)} dx.

Jx^
* For other methods see Bennett, Milne, and Bateman, Numerical Inte-

gration of Differential Equations, Bulletin of National Research Council,

1933.
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The functions 2/1(2), yi(x), , yn(x) all take on the value

?/o when x is set equal to XQ, and it may happen that the successive

approximations y\(x)j 2/2(2), , yn (x) improve as n increases

indefinitely; that is,

lim yn(x) = y(x) y

n QO

where y(x) is the solution of Eq. (103-1). It may be remarked

that, in order to establish the convergence of the sequence of

approximating functions, it is sufficient to assume that f(x, y)

and df/dy are continuous in the neighborhood of the point (XQ, 2/0).

Despite the fact that these conditions are usually fulfilled in

physical problems, the convergence may be so slow as to make
the application of the method impracticable. The usefulness of

the method is likewise limited by the complexity of the approxi-

mating functions. In many instances, it may be necessary to

make use of numerical integration in order to evaluate the

resulting integrals.
*

The method just outlined can be extended to equations of

higher order.

As an illustration of the application of the method to a specific prob-

lem, let it be 'required to find the integral curve of the equation

y'
= 2x + y\

passing through (0, 1).

Then (103-2) becomes

(103-3) y =
i+f* (2x + I/*) dx,

and substituting y = 1 in the integrand of (103-3) gives

y\
= 1 + f* (2x + 1) dx = I + x + x\

Then,

2/2
= 1 + f* [2x + (1 + x + z2

)
2
] dx

= 1 + x + 2x* + x* + y^ +
and

f [2x + (l+x + 2x* + x s + %x* + Hx*Y] dx

+ 2x* + %x* + %x* + %x* + ylQx* + i% 5V
+ %o*8 + %o*9 + Ko*10 + HTS*"- %

Even though the integrations in this case are elementary, the process
of computing the next approximation is quite tedious. As a matter of

* See Sec. 167.
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fact, in this case one can obtain the desired solution more easily by the

method of infinite series.

Thus, assuming
00

<r\
anx*

and applying the method of Sec. 98 lead to the solution in the form

I 9 \ I 1 I 1 \ 9 I

*-/t*u I ****U _

y =
O,Q -f" #o x *T \^o i L)X* i ^ x -7-

o

5a 3

-h

Since the integral curve must pass through (0, 1), it follows that a =
1,

and the desired solution is

y = 1 + x + 2z2 + y^ + iy*x* + ijhsz
6 + '

.

This agrees with the solution obtained by Picard's method up to the

terms in x 4
.

PROBLEM

Find, by Picard's method, solutions of the following equations:

(a) y'
=

zi/ through (1,1);

(b) y'
- x~y* through (0, K);

(c) y'
= l+2/2

through g, l);

(d) y'
= x + y through (1, 1).



CHAPTER VIII

PARTIAL DIFFERENTIAL EQUATIONS

104. Preliminary Remarks. An equation containing partial

derivatives has been defined in Sec. 67 as a partial differential

equation. This chapter contains a brief introduction to the

solution of some of the simpler types of linear partial differential

equations which occur frequently in practice. It will be seen that

the problem of solving partial differential equations is inherently

more difficult than that of solving the ordinary equations and

that Fourier series, Bessel functions, and Legendre polynomials

play an important part in the solution of some of the practical

problems involving partial differential equations.

It was stated in Sec. 68 that the elimination of n arbitrary

constants from a primitive /(x, y, Ci, c2 , ,
cn) leads, in

general, to an ordinary differential equation of order n. Con-

versely, the general solution of an ordinary differential equation
has been defined to be that solution which contains n arbitrary

constants. In the next section, it is indicated, by some examples,
that one is led to partial differential equations by differentiating

primitives involving arbitrary functions, and it follows that

partial differential equations may have solutions which contain

arbitrary functions. However, it is not always possible to

eliminate n arbitrary functions from a given primitive by n
successive differentiations, and the temptation to define the

general solution of a partial differential equation as the one con-

taining n arbitrary functions may lead to serious difficulties.

In some important cases of linear partial differential equations
with constant coefficients, treated in Sec. 107, it is possible to

obtain solutions that contain the number of arbitrary functions

equal to the order of the differential equation, and the term

general solution is used in this chapter only in connection witfy

such equations. With the exception of the linear partial differen-

tial equations of the first order and of certain important types of

linear equations of the second order, no extensive theory of the

nature of solutions has been developed so far.

350
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Just as in the case of the ordinary differential equations, the

solution of a practical problem can be obtained by eliminating

the element of arbitrariness with the aid of the initial or boundary
conditions. In practical problems the boundary conditions

frequently serve as a guide in choosing a particular solution,

which satisfies the differential equation and the boundary con-

ditions as well.

105. Elimination of Arbitrary Functions. Consider a family of

surfaces defined by

*=/(* + y),

where / is an arbitrary function.

If the argument of / is denoted by s, then

*=f(x + y) -/()
and

dz _ df ds

dx
~~

ds dx

Since s = x + y, it follows that

(105-1) g = f(x + y},

where f'(x + y) denotes the derivative of f(x + y) with respect to

its argument x + y. Similarly,

(105-2) g ==/
>

(x + 2/) .

Subtracting (105-2) from (105-1) leads to the partial differential

equation of the first order

^_* = o
dx dy

'

whose solution, clearly, is z = f(x + y).

If

-'GO
then

dx ds dx dy ds dy

where s = y/x.
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Denoting df/ds by f(y/x) and substituting the values of

ds/dx and ds/dy give

-
f> - and --
'

*2/

~

from which /'(y/x) can be eliminated to give

dz
.

dz Az + 2/
= 0.

do; d?/

Again the result is a partial differential equation of the first order.

On the other hand, if

*=/i(*)+/2(y),

where f\(x) and fa(y) are arbitrary functions, differentiations

with respect to x and y give

!=/((*)
and

!=/;(,).

If the first of these relations is differentiated with respect to y,

a partial differential equation of the second order results, namely,

dx dy
=0.

Differentiation of the second relation with respect to x will lead

to the same equation, for the derivatives involved are assumed
to be continuous.

Another example, which is of considerable importance in the

theory of vibrations, will be given. Let

z =fi(x + at) +f2(x
-

at).

If x + at ss r and x at = s, then

and

,

OX uT uX uS uX
"==

J 1\*^ "i ^'/ "T~ J 2\*^
"~~

Qtt)

Similarly,

(105-3)
d~ = f!(z + at) + ft(x

-
at).
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Also,

dz a(/i +/2) dr a(

dZ 3r dt ds dt

= fi(x + a()a +ft(x - at)(-a)
and

(105-4) g = fi(x + a)a + K(x -
a*)a*.

Eliminating /'/(z + at) and/^'(a:
- aO from (105-3) and (105-4)

gives

&z _ 2
M

dt*
" a

dx*'
*

regardless of the character of /i and /2 . This partial differential

equation is of primary importance in the study of vibration and

will be considered in more detail in Sees. 106, 108, and 109.

106. Integration of Partial Differential Equations. This sec-

tion contains two examples illustrating integration of partial

differential equations.

Let the differential equation be

Integration with respect to y gives

(106-2) ^ = /(*),

where f(x) is arbitrary. If (106-2) is integrated with respect to

x, then

where ^ and <p are arbitrary functions.

Consider next

nnr *\ &z *&*
(106-3) a?~ a 5?

Change the variables in this equation by setting r = x + at

and s = x at so that z becomes a function of r and s. Then

dz = dzdr
, ^^.

dx
""

dr dx ds dx'
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and since dr/dx 1 and ds/dx = 1, it follows that

d _ dz dz

dx
~~

dr
"*"

ds

and

d 2z /d zzdr
,

d2z ds
,
d 2z ds

Similarly,

and since dr/dt = a and ds/d =
a, it follows that

dz _ dz
__

dz

Differentiating this with respect to t gives

/- -\ d 2z d 2z dr
,

d 2z ds d 2z ds d 2z dr
(106-5) 2

== a
2 1" a a

2
a

Substituting (106-4) and (106-5) in (106-3) gives the equation

dTds
=

'

which is of the type (106-1), whose solution was found to be

z = \[/(r) + <p(s), where ^ and <p are arbitrary. Recalling that

r = x + at and s = x at, it is seen that

(106-6) z = $(x + at) + <p(x
-

at),

which is the solution in terms of the original variables. If in

this solution \l/ and <p are so chosen that

\l/(x + at) s A sin k(x + at),

<p(x at) s A sin k(x at),

where the variable t is thought to represent the time and x is the

distance along the #-axis, then the first of these equations repre-

sents a sinusoidal wave of amplitude A and wave length X = 2ir/k

which is moving to the left with velocity a, whereas the second
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expression represents a similar wave moving with velocity a to

the right (see Fig. 92). This can best be seen by recalling that the

replacement of x by x at in z = f(x) shifts the curve at units

in the positive direction of x and that the substitution of x + at

for x translates the curve z = f(x) at units in the opposite direc-

z*A$inkx
FIG. 92.

tion. Since t is a continuous variable representing the time,

it is clear that the expression

A sin k(x at)

states that the sinusoid

z = A sin kx

is advancing in the positive direction of the x-axis with the

velocity a. The period of the wave

z = A sin k(x at)

is defined as the time required for the wave to progress a distance

equal to one wave length, so that

X = aT
or

T = - = -

a ka

Consider next the wave resulting from the superposition of the

two moving sinusoids A sin k(x at) and A sin k(x + of).

Then,
z = A sin k(x at) + A sin k(x + at)

= A (sin kx cos kat cos kx sin

+ 4 (sin kx cos fca + cos kx sin

or

(106-7) z = (2A cos kat) sin to.

The expression (106-7) is frequently referred to as a standing

wave, because it may be thought of as representing a sinusoid
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sin kx whose amplitude 2A cos kat varies with the time t in a

simply harmonic manner. Several curves

z = 2A cos kat sin kx

are drawn in Fig. 93 for various values of t. The points

x =
'

=
o, i, 2, ),

are stationary points of the curve and are called nodes.

Inasmuch as (106-7) is obtained from (106-6) by making a

particular choice of
\f/
and <?, it satisfies the differential equation

xZ2Acoskoit

Fia. 93.

(106-3), whatever be the values of A and k. This fact is of great

importance in the discussion of Sec. 108.

PROBLEMS
1. Form partial differential equations by eliminating arbitrary

functions.

(a) z=f(x- 2y)

(6) *=/(* + y

3x + 4y.

Note that ~ =
f'(x

2 + ?/ + z2
) (2x + 2z

ox \ ox

(c) z

(d) z = /1 (x)/2 ( ?/).

2. Prove that z - fi(x + iy) + f%(x iy) is a solution of

d^"2
+

dy*
=

'

3. Form partial differential equations by eliminating the arbitrary

functions, in which x and t are the independent variables.

(a) z =/!(* -20 +/>(* + 20;

(6) /(- + );

(c) *-/i(* + 20 +/,(* + W);



107 PARTIAL DIFFERENTIAL EQUATIONS 357

(d) z #1(3 +

(/) 2 = /i(s
- + */2(*

-
0-

4. Show that z = f(a\y ax) is a solution of the equation

dz dz
ai

dx + a
*frj

=
">

where a\ and a 2 are constants.

5. Verify that z = j\(y + 2x) and z = f(y 3ar) satisfy the equation

**+_*'*__ 6 *!i -o
ax 2 + dxdy a?/

2
~ u

'

and hence deduce that z = fi(y + 2) + /2(?/ 3x) is also a solution of

the equation.

6. Show that

is a solution of the equation

2, 2 _*?!.. -o
ax 4 "*"

ax2
a^/

2 "^
a?j

4 u>

provided that i
2 = 1.

107. Linear Partial Differential Equations with Constant

Coefficients. A linear partial differential equation with constant

coefficients that often occurs in applications has the form

(107-1) ^o + a l + a22
Frequently, such equations are called

"
homogeneous

"
because

they involve only derivatives of the nth order.

This equation can be solved by a method similar to that

employed in solving an ordinary linear equation with constant

coefficients. Introduce the operators

DJ - and D, - ,

with the aid of which (107-1) can be written as

(107-2)
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It is readily established* that the operators D\ and D 2 formally

obey the ordinary laws of algebra, so that one can deal with

differential operators of the form

D 2)
s

just as one would with polynomials in the two variables DI and
D2 . Accordingly, the left-hand member of (107-2) can be

decomposed into a product of n linear factors, so that (107-2)

reads

(107-3) (aiDi + 0iD*)(aJ)i + jW>,)
- - (aDi + /U> 2)z

=
0,

where the quantities a, and ft, in general, are complex numbers.

Now the system of equations

(alD l + ftZ>2)z
=

0, (z
=

1, 2, , n),

or

(107-4) ,|1
+ A

||
=

o, (i
=

1, 2,
-

, n),

can be readily solved. It is easy to verify that

z = Ft (a ty
-

ftz),

where /*\ is an arbitrary function, is a solution of (107-4). Con-

sequently,! the solution of (107-3) can be written in the form

(107-5) z =

If the linear factors appearing in (107-3) are all distinct, the

solution (107-5) contains n arbitrary functions and will be called

the general solution of (107-1).

If the at in (107-3) are all different from zero, one can write

(107-3) as

(107-6) (Di
-

miJD,)CDi
- m2D 2) (Di

- mj)2)z
=

0,

where ra =
ft/at, (i

=
1, 2, , n). In this case, (107-5)

assumes the form

(107-7) z = Ft(y + m lx) + F2(y + mzx) +
+ Fn (y + mnx).

If some of the factors in (107-6) are alike, then the number of

arbitrary functions in (107-7) will be less than n, but it is easy
* See the corresponding discussion in Sec. 87.

t See the corresponding case in Sec. 88.
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to see that the equation

(Di
- wZ>2)

rz =
has the solution

z = Fi(y + mx) + zF2 (i/ + mx) +-,-+ xr~ lFr(y + mx).

Consequently, one can obtain a solution of (107-6) that contains

the number of arbitrary functions equal to the order of the

differential equation even in the case when some of the factors

in the left-hand member of (107-6) are not distinct.

As an illustration, consider the equation, which frequently

occurs in the study of elastic plates,

* * d*z
* '

dx* dx* dy
2

dy*
or

(Z>i + 2D\D\ + |)z
= 0.

The decomposition into linear factors gives

(Di + iD 2)(D 1
-

iD*)(Di + iD*)(Di
-

*/>) =
0,

where z
2 = 1. It follows that the general solution of this

equation has the form

z = Ft(y
-

ix) + xF*(y- ix) + F3 (y + ix) + xF*(y + ix).

If the right-hand member of (107-1) is a function /(x, t/), then

the general solution of the equation is

z = $(z, y) + u(x, y),

where u(x, y) is a particular integral and $(#, y) is the general

solution of the related homogeneous equation. The determina-

tion of particular integrals of the equation

(107-8) L(D l9
D 2)z

=
f(x, y)

can be made to depend on the calculus of operators* as was done

in Sec. 89. In many cases the particular integral can be obtained

by inspection. If f(x, y) is a homogeneous polynomial of degree

k, then the particular integral has the form

(107-9) z = c xk+n + dxk+n
- l
y + - + ck+ny

k+n
,

in which the coefficients cl can be determined by substituting

(107-9) into (107-8) and comparing the coefficients of the corre-

*
See, for example, M. Morris and O. Brown, Differential Equations, p.

294; A. Cohen, Differential Equations, p. 275.
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spending terms of the resulting equation.

As an example of this, consider

which can be written as

or

(/>!
- 2Z) 2)(Z>i + 3D 2)z

Assume the particular integral in the form

(107-11) z = coz
5 + cix

4
y + w*y* + c*x'

2
y

3 + cay4 +

Substituting (107-11) in (107-10) gives

(20c + 4ci
- 12c 2)x

8 + (12ci + 6c 2
- 3(ic

_i_ ffj^o [ f\(* , 72c4^x?y'2 ( (2ci I 4c^i 120f>
R

>

)?/^
~

fJx'^/y

Hence, equating the coefficients of like terms on both sides of this

equation gives

5c -f- c t 3c 2
=

0,

12ci + 6c 2
- 36cs

=
6,

c 2 + c3 12c4
=

0,

c3 + 2c 4
- 60c 5

= 0.

This system of four equations in six unknowns can always be solved.

Writing it as

Ci 3c 2 -f- Oc 3 + Oc 4
= 5c

,

2ci + c 2 6c 3 + Oc4
=

1,

Oci + c 2 + c3 12c4
=

0,

Oci + Oc 2 + c3 + 2c 4
= 60c 5 ,

and solving for ci, ca, c3 ,
and c4 in terms of Co and c 5 give a two-parameter

family of solutions,

-65c + 6480c 6 + 21

C2

C3 =

C4 =

55

70c + 2160c 5 + 7

55
'

-10co + 2520c6
-

55

78Qc 5 + IQco + 1

110

Setting c = Cs = and substituting the values of the coefficients in

(107-11) give a particular integral of (107-10) in the form
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(*, y)
= *K*x*y + %5*V - x**V

Therefore the general solution of (107-10) is

* = F l (y + 2x) + F 2(y
-

3s) + u(x, y),

where FI and F 2 are arbitrary functions.

PROBLEMS
1. Find the general solutions of

2. Find the particular integrals for the following equations:

r \ o
<*

.

^ ^ _ iW ^
Sx 2 + dx dy

~
dy*

~
1;

(b)**z_Vz^ ' dx2 dxdy dy
2 " '

//zn^: Obtain the particular integral for /(a;, y)
= y

2 and for/Or, ?/)
= a:

and add the solutions.

to ^ + 3 A22
. , 2 -^4-77-(c) dx 2 ^*dxdy^

Z
dy

2
X ^ y '

(d] ^_ a^- x *W dx2
a

dy
2
~ x '

108. Transverse Vibration of Elastic String. Consider an

elastic string or wire of length / stretched between two points on

the x-axis that are I units apart, and let it be distorted into some
curve whose equation is y f(x) (Fig. 94). At a certain instant,

say t = 0, the string is released from rest and allowed to vibrate.

The problem is to determine the position of any point P of the

string at any later time t. It is assumed that the string is per-

fectly elastic and that it does not offer any resistance to bending.

The resulting vibration may be thought of as being composed of

the two vibrations:
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a. Transverse vibration, in which every particle of the string

moves in the direction of the t/-axis;

6. Longitudinal vibration, in which every particle oscillates

in the direction of the rr-axis.

It is tolerably clear that, if the stretching force T is large com-

pared with the force of gravity, then the horizontal component
of tension in the string will be sensibly constant. Therefore the

displacement of the point P in the direction of the tf-axis can be

neglected compared with the displacement of P in the y-direction.

In other words, the longitudinal oscillation of the string con-

tributes so little to the resultant vibration that the entire vibra-

tion may be thought to be given by considering the transverse

component-vibration.

T+AT

FIG. 94.

The relation connecting the coordinates of the point P with

the time t can best be stated in the form of a differential equation.

Thus, denote the length of the segment of the string between the

points P(XJ y) and Q(x + A, y + AT/) by As, and let the tension

at P be T and at Q be T + A7T

. In view of the assumption
stated above, the horizontal components of tension at P and Q
are nearly equal so that the difference AT of the tensions at the

ends of the segment As is taken as equal to the difference between

the vertical components of tension at Q and P. The vertical

component of tension at P is

(A \ / ^ \
T lim =) = (T^J ,

As_oAs/p \ ds/ x

and the vertical component of tension at Q is

(VTIT)OS/x+bx

If it is assumed that the transverse displacement of the string

is so small that one can neglect the square of the slope of the

string in comparison with the slope dy/dx, then the sine of the
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angle can be replaced by the tangent,* and the resultant of

the forces at P and Q is

By Newton's second law, this resultant must equal the mass of

the element of the string of length Ax multiplied by the accelera-

tion in the direction of the ?/-axis. Hence,

<"> "*(&),- [(

where p is the mass per unit length of the string and

denotes the acceleration of the element PQ of the string.

Dividing both sides of (108-1) by p &x reduces it to

"

and passing to the limit as Ax gives

where a 2 = T/p.

The solution of (108-2) was found in Sec. 106 to be

y = $(x + at) + v(x
-

at),

where ^ and <p are arbitrary functions. These functions must

be so chosen that, when t = 0,

Represents the equation of the curve into which the string was

initially distorted. Furthermore, the string was supposed to

have been released from rest, so that dy/dt = when t = 0. It is

beyond the scope of this book to prove that these boundary
conditions suffice for the unique determination of the functions

* Note that

dy

dy . tan 6 dx ^ dy~ sin
"~ '

VI + tan 2
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\// and <p. It will be shown in the next section how the solution

of this problem is obtained with the aid of Fourier series.

109. Fourier Series Solution. In the preceding section, it was

established that the transverse vibrations of an elastic string are

defined by the equation

and in Sec. 106 it was shown that a particular solution of this

equation is given by

(109-2) y = 2A cos kat sin kx

for arbitrary values of A and k. Moreover, it is clear that the

sum of any number of solutions of the type (109-2) will satisfy

(109-1).

Now, suppose that the string of length I is distorted into some

curve y =
/Or), and then released without receiving any initial

velocity. The subsequent behavior of the string is given by

Eq. (109-1), the solution of which must be chosen so that it

reduces to y =
f(x) when t = 0. In addition to this condition,

dy/dt when t = 0, for, by hypothesis, the string is released

without having any initial velocity imparted to it. Furthermore,
since the string is fixed at the ends, y = when x = and when
x = l.

Consider the infinite series

/lrkrk ON vat . irx . 2irat . 2irx
(109-3) y = di cos -y- sm -j- + #2 cos

j
sm =-II 11

3wat . 3wx
,+ a 3 cos -y sm

-j
--

1- ,

each term of which is of the type (109-2), where k has been chosen

so that each term reduces to zero when x = and when x = I.

When t = 0, the series becomes

/^ A\ . wx . . 2irx . . .

(109-4) ai sm y + a 2 sin ~~T I" a s sin
j

f-

If the coefficients an are chosen properly, (109-4) can be made to

represent the equation y = f(x) of the curve into which the

string was initially distorted; for a function /(#), subject to

certain restrictions,* can be expanded in a series of sines (109-4)
* See Sec. 20.
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and the coefficients are given by

(109-5) n = r f /(*) sin ^r dx -
v '

I Jo
J

I

It is readily verified that the derivative of (109-3) with respect

to t satisfies the remaining boundary condition, dy/dt =
when t = 0. Hence the infi-

nite series (109-3), where the

values of an are given by

(109-5), gives the formal solu-

tion of the problem.

Illustration. If the initial dis-

tortion of the string (Fig. 95) is

given by

26

k

FIG. 95.

then the solution of the problem is readily found to be

86/1 . TTX irat~
~~2 V ?2 sm "T cos ~T~
7T \ 1 I I

1 .

7 Sin
j

cos j +
i I

PROBLEMS
1. Carry out solution of the problem given in the illustration, Sec. 109.

2. A taut string of length /, fastened at both ends, is disturbed from

its position of equilibrium by imparting to each of its points an initial

velocity of magnitude f(x) . Show that the solution of the problem is

y = sm sm sm

Hint: The schedule of conditions here is:

(a) y =
0, when t = 0;

(6) -|
=

/(*), when =
0;

(c) T/
=

0, when x =
0;

(rf) ?/
=

0, when a; = /.

Observe that

, . .

A sm T- sm
nirat
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satisfies conditions (a), (c), and (d), and build up a solution by forming

mrx . mratS A . nirx .

A n sm T- sir

and utilizing condition (6).

3. Show that the solution of the equation of a vibrating string of

length /, satisfying the initial conditions

y f(x)> when t = 0, and r =
g(x), when t = 0,

niral
, ^\ . . mrx . nwal

cos
7 h X on sm j- sin T >

, v li ^^i ' '

n-1 n=l

is

y =
2) sin

-y-

where

= - r i
-

and
2

I /t^'y^ oif .^

/

4. The differential equation of a vibrating string that is viscously

damped is

Show that the solution of this equation, when the initial velocity is

zero, has the form

y =

where

ane~bt sin -7- (
cos anl + sin anl) ,

L * \ n /J

70 . 2 r l
^ - mrx .

~" ^ anc^ a ~
7 I f(x ) sm ~7~ ^a'-

6. Show that the differential equation of the transverse vibrations of

an elastic rod carrying a load of p(x) Ib. per unit length is

dy __ p(x) <Py

dx*
"

El
m

dl*
'

where E is the modulus of elasticity, / is the moment of inertia of the

cross-sectional area of the rod about a horizontal transverse axis through
the center of gravity, and m is the mass per unit length.

Hint: For small deflections the bending moment M about a horizontal

transverse axis at a distance x from the end of the rod is given by the

Euler formula M == El d2
y/dx*, and the shearing load p(x) is given

by d*M/dx* = p(x).
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6. Show that the small longitudinal vibrations of a long rod satisfy

,
the differential equation

_
dt*

~
p dx2

'

where u is the displacement of a point originally at a distance x from

the end of the rod, E is the modulus of elasticity, and p is the density.

Hint: From the definition of Young's modulus E, the force on a cross-

sectional area q at a distance x units from the end of the rod is

Eq(du/dx) x ,
for du/dx is the extension per unit length. On the other

hand, the force on an element of the rod of length Ax is pq Ax d 2
u/dt

2
.

1. If the rod of Prob. 6 is made of steel for which E = 22 108
g.

per square centimeter and whose specific gravity is 7.8, show that the

velocity of propagation of sound in steel is nearly 5.3 10 5 cm. per

second, which is about 16 times as great as the velocity of sound in air.

Note that the c.g.s. system E must be expressed in dynes per square
centimeter.

110. Heat Conduction. Consider the slab cut from a body
r by two parallel planes As units apart, and suppose that the

temperature of one of the planes is u and that of the second plane
is u + At. It is known from the results of experiments that heat

will flow from the plane at the higher temperature to that at the

lower and that the amount of heat flowing across the slab, per
unit area of the plane per second, is approximately given by

(110-1) kg,

where k is a constant called the thermal conductivity* of the

substance. If the distance As between the planes is decreased,

then the limit of (110-1),

,.
7 Aw 7

duhm k = A; >

AS->O As as

gives the quantity of heat flowing per second per unit area of the

surface whose normal is directed along s, and the quantity

du/ds gives the rate of change of temperature in the direction of

increasing s.

Now suppose that the initial temperature of such a body is

given by

and that it is required to find the temperature of the body at

* The dimensions of k in the c.g.s. system are cal./(cm.-sec. C.).
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some later instant i. It is known* that the function u, which

gives the temperature at any later time t, must satisfy the partial

differential equation

(110-2)
_*

v '
dt Cp

where c is the specific heat of the substance, p is the density

of the body, and k is the conductivity, f Equation (110-2) is

derived on the assumption that k, c, and p remain independent

of the temperature u, whereas in reality they are not constant

but vary slowly with the temperature. Moreover, this equation

is not true if there is any heat generated within the body.J

This equation must be solved subject to certain boundary
conditions.

Thus, if the body is coated with some vsubstance which makes

it impervious to heat so that there is no heat flow across the sur-

face of the body, then, if the direction of the exterior normal to the

body is denoted by n, this boundary condition can be expressed

mathematically as

1
du A du n

k = or = 0.
dn dn

On the other hand, if the surface of the body radiates heat

according to Newton's law of cooling, then

i
du ( \*- = *(-,),

where u is the temperature of the surrounding medium and e is

a constant called the emissivity of the surface. It can be shown
||

that, if the initial and surface conditions are specified, then the

problem of determining the temperature at any later time t has

only one solution.

It should be observed that if the flow of heat is steady, so that

the temperature u is independent of the time t, then du/dt -

* See derivation of this equation in Sec. 130.

f The dimensions of c and p are, respectively, in calories per gram per

degree centigrade and grams per cubic centimeter. The constant k/cp a2

sq. cm. per second is frequently called the diffusivity.

t See Sec. 130.

See Problem 2, Sec. 70.

||
For detailed treatment see Carslaw, "Introduction to the Mathematical

Theory of the Conduction of Heat in Solids."
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and (110-2) reduces to

(110-3) dx 2
^

dy*
^

dz*

This is known as Laplace's equation, and it occurs frequently

in a large variety of physical problems.

It may be remarked that the problems of diffusion and the

drying of porous solids are governed by an equation similar to

(110-2), so that many problems on diffusion and heat conduction

are mathematically indistinguishable.

111. Steady Heat Flow. Consider a large rectangular plate

of width d, one face of which is kept at tem-

perature u =
Ui, whereas the other face is kept

at temperature u = u^. If one face of the

plate is placed so as to coincide with the

2/2-plane (Fig. 96), the surface conditions can

be expressed mathematically as uu,

(111-1)
n HI when x =

0,

u =
u<t when x rf,

and the temperature u must satisfy Eq. -

(110-3). In this formulation of the problem,
it is assumed that the plate extends indefi-

nitely in the y- and ^-directions, a condition

that is approximated by the large rectangular

plate if the attention is restricted to the

middle of the plate. With these assumptions,
it is clear that the temperature u is inde-

pendent of the y- and ^-coordinates and that (110-3) reduces to

U-Ug

FIG. 96.

(111-2)
dx*

=
0,

which is to be solved subject to the conditions (111-1).

The solution of (111-2) is easily found to be

(111-3) u = cix + c2 ,

where Ci and c 2 arc arbitrary constants which must be determined

so that (111-3) satisfies (111-1). Substituting x = and x = d

in (111-3) gives u\ = c2 and it2 = c\d + c2 ,
so that

u = -x +
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gives the solution of the problem. Recalling that the amount

of heat flowing per second per unit area of the plate is

7 du i Uz Ui
k = k 1 i

dx d

it is seen that the amount of heat flowing in t sec. over the area

y A is given by
_ i.

- u^tA.-i

These results can be anticipated from physical

considerations.

A more difficult problem will be solved next.

Suppose that a "
semi-infinite

"
rectangular plate

(that is, the plate extends indefinitely in the
*
positive direction o the ?/-axis), of thickness d,

has its faces kept at the constant temperature
FIG. 97. u =

0, whereas its base y Q is kept at tem-

peratujre u = f(x) (Fig. 97). It is clear physically that the tem-

perature u at any point of the plate will be independent of 2, so

that in this case (110-3) becomes

uf(x)

(111-4) dx*
+

dy*

(111-5)

The solution of (111-4) must be so chosen that it satisfies the

boundary conditions:

u = when x = 0,

u when x =
d,

u = f(x) when y =
0,

u = when y = oo.

The last condition results from the observation that the tem-

perature decreases as the point is chosen farther and farther from

the a>axis.

In order to solve (111-4), recourse is had to a scheme that

often succeeds in physical problems. Assume that it is possible

to express the solution of (111-4) as the product of two functions,

one of which is a function of x alone and the other a function of y
alone. Then,

(111-6) u = X(x)Y(y).

Substitution of (111-6) in (111-4) and simplification give
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=_.
j X dx 2 Y dy

2

It will be observed that the left member of (111-7) is a function

of x alone, whereas the right member is a function of y alone.

Since x and y are independent variables, Eq. (111-7) can be true

only if each member is equal to some constant, say a2
. Hence,

(111-7) can be -written as

1 d2X
2 ,1 d2Y

2v~rr = a and 17 -FT = aX dx2 Y dy
2

or

~ + a 2X = and a2Y = 0.
dx 2

dy
2

The linearly independent solutions* of these equations are

X sin ax,

X cos ax,

Y = eav,

Y = e-a
",

and, since u = XY, the possible choices for u are

u =

eoj/ cos ax,

eay sin ao:,

The first two of these particular solutions for u obviously do not

satisfy the last one of the boundary conditions (111-5). The
third particular solution e~ay cos ax does not satisfy the first

of the conditions (111-5). But if u is chosen as e~ay sin ax, then

u = when x = and u = when y = oo
; and if a is chosen

as nir/d, where n is an integer, then

/i 1 1 o\ ~^ry

(111-8) u = e d sin
/

satisfies all the conditions (111-5), except u = /(#) when y = 0.

It will satisfy this condition also if f(x) = sin ~

Inasmuch as Eq. (111-4) is linear, any constant times, ^ solu-

tion (111-8) will be a solution, and the sum of any number ,pf such
* See Sec. 95.
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solutions will be a solution. Hence,
00

niry

(111-9) = ^ e~^" sin^
n=>l

is a formal solution. When y =
0, (111-9) becomes

00

2. nwx
an sin T- >

n = l

which must reduce to/(x). But, in Sec. 20, it was shown that

the constants an can be chosen so that the function is represented

by a series of sines. Therefore, if

then (111-9) will satisfy all the boundary conditions of the prob-

lem and hence it is the required solution.

Illustration. In the preceding problem suppose that f(x) 1 and

d = TT. Then
2 r* -

a = -
I sin nx ax,

TT JO
'

and the solution (111-9) is easily found to be

4 / 1 1 \ *

u = - ( e~ tf sin x + ^
e~ ?J/ sin 3z + ^ e~ 5tf sin 5x +

J.

PROBLEMS
1. Using the result of the illustration just above, compute the tem-

peratures at the following points: (ir/2, 1), (?r/3, 2), (?r/4, 10).

2. Obtain the solution of the problem treated in Sec. 109 by assuming
that y can be expressed as the product of a function of x alone by a

function of t alone and following the arguments of Sec. 111.

3. Compute the loss of heat per day per square meter of a large con-

crete wall whose thickness is 25 cm., if one face is kept at 0C. and the

other at 30C. Use k = 0.002.

4. A refrigerator door is 10 cm. thick and has the outside dimensions

60 cm. X 100 cm. If the temperature inside the refrigerator is 10C.
and outside is 20C. and if k = 0.0002, find the gain of heat per day
across the door by assuming the flow of heat to be of the same nature

as that across an infinite plate.

5. A semi-infinite plate 10 cm. in thickness has its faces kept at 0C.
and its base kept at 100C. What is the steady-state temperature at

any point of the plate?
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112. Variable Heat Flow. Consider a rod of small uniform

cross section and of length /. It will be assumed that the surface

of the rod is impervious to heat and that the ends of the rod are

kept at the constant temperature u = 0C. At a certain time

t = 0, the distribution of tempera-
ture along the rod is given by

y = /(#) The problem is to find the

temperature at any point x of the

rod at any later time t.

In this case the temperature u is

a function of the distance along the FlG> 98>

rod and the time
,
so that, if the rod (Fig. 98) is placed so as to

coincide with the z-axis, (110-2) becomes

N du n d 2u

where a 2 = k/cp is the diffusivity. In addition to satisfying

(112-1) the solution u must satisfy the boundary conditions

!'

u = when x = Q) f , r .

A ,
i

\ for all values of t,u = when x = I
j

u = f(x) when t = 0.

As in Sec. Ill, assume that a solution of (112-1) is given by the

product of two functions, one a function of x alone and the other

a function of t alone. Then,

u = X(x)T(f), .

and the substitution of this expression in (112-1) gives, after

simplification,
1

d_
T = 1 d*X

a*T dt
~
X ~dx*

'

This equation can hold only if each member of it is equal to some

constant, say /3
2

. There result

+ a^T = and + pX = 0.
at ax*

The linearly independent solutions of these ordinary differential

equations are readily found to be

X = cos fix,

X = sin ftx.
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Then, since by hypothesis u = TX, the possible choices for u are

u = e
~a^ 2t cos ftx,

u = e-*w sjn pXm

The first particular solution does not satisfy the first one of the

conditions (112-2). If ft is chosen as mr/l, where n is an integer,

then

(112-3) u-e-'W'xin^x
satisfies the first two conditions of (112-2) but not the last one.

The sum of solutions of the type (112-3), each multiplied by a

constant, will be a solution of (112-1), since the equation is linear,

so that

(112-4) M = 2ane
V ' / sin

^-x

is a solution. For t = 0, (112-4) reduces to

oo

2. nit
an sin

-y x,

which can be made equal to/(x), provided that

= ? f
l

/(j.) 8in !^5 da,
/ Jo

Then,

(H2-5) u = 2 [r jo'
/(x) sin^ r/x

j

6 ^
'

sinT
satisfies all the conditions of the problem and is therefore the

required formal solution.

Next, consider an infinite slab of thickness I,
whose faces are

kept at temperature zero and whose temperature in the interior

at the time t = is given by u =
f(x). It is clear that the

solution of this problem is independent of y and z, so that u satisfies

the differential equation

2
^u

~di
~~ ""

daT2
"

The boundary and initial conditions are

u = when x = I
' '

u = f(x) when / = 0.
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The mathematical formulation of this problem is identical with

that of the preceding one, and therefore the solution of the

problem is given by (112-5).

The solutions of other important problems on heat flow are

outlined in detail in Probs. 5 and 6 at the end of this section.

PROBLEMS

1. Suppose that in the first problem of Sec. 112 the ends of the rod

are iniDervious to heat, instead of being kept at zero temperature.

The formulation of the problem in such a case is

du _ 2
3%

dt
~ a

dx2
'

du - n~r~ U
dx

when x

- -0
dx

~ U

for all values of t,

when x I

u =
f(x) when t = 0.

Show that the solution in this case is
'

00u --

where

2 fl

=
j- J

cos

cos

,

dx.

o 100

01

Fia 99.
2. A large rectangular iron plate (Fig. 99) is

heated throughout to 100C. and is placed in con-

tact with and between two like plates each at 0C. The outer faces of

these outside plates are maintained at 0C. Find the temperature of

the inner faces of the two plates and the temperature at the midpoint
of the inner slab 10 sec. after the plates have been put together. Given :

a 0.2 c.g s. unit.

Hint: The boundary conditions are

u =
u =
u = f(x)

where /(x) is when < x < 1,

f(x) is 100 when 1 < x < 2,

f(x) is when 2 < x < 3.

Hence,

when x

when t = 0,

C3
j>/\L f(x) s

j f2
^

n<jrx jsm ~r- dx =
Ij

1 00 sin -rr- dx.
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3. An insulated metal rod 1 m. long has its ends kept at 0C., and its

initial temperature is 50C. What is the temperature in the middle of

the rod at any subsequent time? Use k =
1.02, c = 0.06, and p = 9.6.

4. The faces of an infinite slab 10 cm. thick are kept at temp. 0C.
If the initial temperature of the slab is 100C., what is the state of

temperature at any subsequent time?

6. Let the rod of Prob. 3 have one of its ends kept at 0C. and the

other at 10C. If the initial temperature of the rod is 50C., find the

temperature of the rod at any later time.

Hint: Let the ends of the rod be at x and x = 100; then the

conditions to be satisfied by the temperature function u(x, t) are as

follows: w(0, t)
=

0, w(100, t)
=

10, u(x, 0)
= 50. Denote the solu-

tion of Prob. 3 by v(x, t) ;
then if the function w(x, t) satisfies the

conditions
*

Tt
= a *

d5' w(0 '

=
' (100 '

= 10
' w(x > 0)

=
'

u(x, t) v(x, t) + w(x, t) will be the solution of the problem. Assume
the solution w(x, t) in the form w(x, t)

= x/10 + <p(x, t), and deter-

mine the function <p(x, t).

6. Let a rod of length / have one of its ends x maintained at a

temperature u =
0, while the heat is dissipated from the other end

x I according to the law

Let the initial temperature be u(x, 0)
=

f(x), where f(x) is a prescribed

function, Choose a particular solution of (112-1) in the form

e'--'0'< sin fix,

and show that the boundary conditions demand that

cos 01 = -hsm/31.

Write this transcendental equation in the form

tan 01= -Q,

and show that it has infinitely many positive real roots ]8i, 02,
' ' '

, 0n*

Hence, if

u(x,Q) = f(x)

then the solution has the form

n = l
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The functions sin/3na;, (n =
1, 2, ), are easily shown to be orthog-

onal in the interval (0, I), so that the coefficients A n in the solution are

given by the formula

i f(x) sin finx dx
A _ J
/In

pi
I sin 2

pnx dx

113. Vibration of a Membrane. Consider an elastic mem-

brane, of surface density p, which is under uniform tension T. By
definition the tension is said to be uniform if the force exerted

across a line of unit length in the plane of the membrane is

independent of the orientation of the line. It will be assumed

y

FIG. 100

that the plane of the membrane coincides with the 2/-plane of the

rectangular coordinate system and that the displacement of any

point of the membrane in the direction normal to the xy-plane is

denoted by z. Then a consideration of the forces acting upon
the element dA of the membrane (Fig. 100) leads to the equation

m*n
(113-1)

__

where c2 = T/p. The analysis leading to (113-1) is quite similar

to that used in deriving Eq. (108-2) for the vibrating string;

and, just as in Sec. 108, the underlying assumption here is that

the displacement z is not too great.

The solution of the problem of a vibrating membrane consists

of determining the function z = f(x, y, t), which satisfies the

differential equation (113-1) as well as the boundary and initial

conditions characteristic of the particular physical problem under
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consideration. These remarks will be illustrated by a brief

treatment of the case in which the membrane is circular. In this

case the shape of the membrane suggests the use of the cylindrical

coordinate system in preference to the rectangular system. As
will be seen presently, the choice of cylindrical coordinates is

made because the boundary conditions assume particularly simple
forms in these coordinates.

The transformation of (113-1) can be accomplished readily

with the aid of the relations* connecting cylindrical coordinates

with rectangular, namely,

x = r cos B
y y = r sin 0, z = z

or

r = \fifi~+~y*,
= tan" 1 -> z = z.

X

It will be necessary to express d 2

z/dx
2 and d 2

z/dy
2 in terms of the

derivatives of z with respect to r and 6. Nowf

dz = dz dr dz <90

dx
~

dr dx 68 dx
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so that
z + ^z = ~ 4- i 4- 1 *?5

to2 +
<ty

2
~

dr 2 + r dr
+

r 2 d02

and (113-1) can be written as

(H3-2) S =
dr

It was remarked in Sec. 104 that the solution of such an equa-
tion contains two arbitrary functions, and in order to make
the problem definite it is necessary to know the initial and

boundary conditions. Thus, suppose that the membrane is of

radius a and is fastened at the edges. Then it is evident that the

solution of (113-2),

z = F(r, 6, 0,

must satisfy the condition z = when r = a, for all values of t.

If, moreover, the membrane is distorted initially into some

surface whose equation is a function of the radius only (that is, the

initial distortion is independent of 0), say z = /(r) when t = 0,

then it is clear that the subsequent motion will preserve the

circular symmetry and that the solution will be a function 6f

r and t only. These conditions alone are not sufficient for the

unique determination of the function

z = F(r, 0,

and it is necessary to specify the initial velocity of the membrane
in order to make the problem perfectly definite. If the mem-
brane is distorted and thereafter released from rest, then

~ = when t = 0.
ot

Since the solution is assumed to be independent of 0, (113-2)

becomes

(113-3) ^ =
<

and its solution satisfying the boundary and initial conditions

z when r = a,

(113-4) /
=/(r) when* =

0,

-r- = when t =
at

will be obtained by a method similar to that used in Sec. 111.



380 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 113

Assume that it is possible to express the solution of (113-3) as

the product of two functions, one of which is a function of r alone

whereas the other is a function of t alone. Then,

Substitution of this relation in (113-3) leads to

R ldR\
+

r dr)dt*

or

(1135)(il6~d)

Since the left-hand member of (113-5) is, by hypothesis, a func-

tion of t alone, whereas the right-hand member is a function of

r alone, each member must be equal to some constant, say w 2
.

Hence, (113-5) can be written as

(113-6) + *r =

and

,
dr 2 r dr

where k = u/c.

Equation (113-6) is the familiar equation of simple harmonic

motion, and Eq (113-7) is easily reducible to the Bessel equation

by the substitution x = kr. Thus, if x kr,

dR = dR dr = IdR
dx dr dx k dr'

d*R d (ldR\ I d*R dr 1 d*R

dx 2 dx \kdrj k dr* dx k* dr*'

so that (113-7) assumes the form

d*R IdR
dx^

+ xd^ +R== >

which possesses the solution (see Sec. 100)

R = J (x)
=

Jo(fcr).

Therefore,

z = RT =
Jo(fer) sin co

or

z = Jo(kr) cos ait.
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Since the last of the boundary conditions (113-4) requires

== when t = 0,

it is necessary to reject the solution involving sin co. Further-

more, the first of these conditions demands that

2 = when r = a,

so that

z = Jo(ka) cos co? =

for all values of t. This condition will be satisfied if the arbitrary

constant k is so chosen that Jo(fca)
= 0. In other words, ka

UoOO

FIG. 101

must be a root of the Bessel function of order zero (Fig. 101); and
if the r*th root of Jo(kr) is denoted by

then

Since k =
w/c, it follows that

co = knc.

Hence, a solution of (113-3) that satisfies two of the boundary
conditions (113-4) is given by

Jo(knr) cos knct.

The sum of any number of such solutions, each multiplied by an

arbitrary constant, will be a solution, so that

(113-8) z = 2^ A nJo(knr) cos knct

will be a formal solution of (113-3).
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But when t = 0, the second of the boundary conditions

demands that z f(r). Since (113-8) becomes, for t = 0,

00

(113-9) z = J AJ(knr),
n l

it follows that, if it is possible to choose the coefficients in the

series (113-9) so as to make
00

(113-10) A nJ<,(knr) = f(r),

then (113-7) will be the required formal solution of (113-3) which

satisfies all the conditions (113-4).

The problem of development of an arbitrary function in a

series of Bessel functions has been discussed in Sec. 101, where it

was indicated that a suitably restricted function /(r) can be

expanded in a series (113-10), where

114. Laplace's Equation. Let it be required to determine

the permanent temperatures within a solid sphere of radius unity

when one half of the surface of the sphere is kept at the constant

temperature 0C. and the other half is kept at the constant

temperature 1C.
From the discussion of Sec. 110, it is evident that the tempera-

ture u within the sphere must satisfy Laplace's equation

d 2u d*u d*u __

dx*
+

dy*
+

fc*

The symmetry of the region within which the temperature is

sought suggests the use of spherical coordinates. If Laplace's

equation is transformed with the aid of the relations* (Fig. 102)

x = r sin 6 cos <p,

y = r sin 6 sin <p,

z = r cos
}

in a manner similar to that employed in Sec. 113, the equation
becomes

* See Sec. 56.
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It is necessary to seek a solution of this equation that will satisfy

the initial conditions.

If the plane separating the unequally heated hemispheres is

chosen so that it coincides with

the xy-pl&ne of the coordinate

system and if the center of the

sphere is taken as the origin,

then it appears from symmetry
that it is necessary to find the

temperatures only for that por-

tion of the sphere which lies to

the right of the #2-plane (see

Fig. 102). Moreover, it is clear

that the temperatures will be

independent of <p, so that (114-1) FIG 102
becomes

The solution of (114-2) must be chosen so as to satisfy the bound-

ary conditions

(114-3)

u = 1 for < < ~ when r 1,

u = for - < TT when r = 1.

In order to solve (114-2), assume that the solution

u = F(r, 6)

is expressible as the product of two functions, one of which is

independent of 6 and the other independent of r. Thus, let

u =
/2(r)6(0).

The substitution of this expression in (114-2) leads to the two

ordinary differential equations

d\rR)
dr2

- a*R =

and

1 d

sin0^) + a*e =
0,

where a2
is an arbitrary constant.
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The first of these equations can be expanded to read

2
d 2R

,

dR 2P Ar2
-T-Y + 2r -^

-- a 2
.R = 0,

ar 2 ar

which is an equation of the type treated in Sec. 97 and the linearly

independent solutions of which are

R = rm and R = l/r
m
+\

where

so that

a 2 = m(m + 1).

If this value of a is substituted in (114-4), this equation becomes

The change of the independent variable 6 to x by means of

x = cos 6 leads to Legendre's equation

If m is an integer, particular solutions of this equation are the

Legendre polynomials
P(T\ _ p (P0u fi\

m\>") -* mv^-^-'O l/y,

and hence the particular solutions of (114-2) are

u = rmPm(cos 6),

_ Pm(cos 6)
lAi ~r~:

The second of these solutions evidently cannot be used, for it

becomes infinite when r > 0. Therefore, it will be necessary to

build up the expression for the temperature u within the sphere
from terms of the type rmPm(cos 0), where m is a positive integer.

Consider the infinite series

00

(114-5) u = 2 AmrPm(cos 0),

each term of which satisfies (114-2). When r = 1, (114-5)

becomes
00

ra-0
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and, if it is possible to choose the undetermined constants Am in

such a way that (114-5) satisfies the boundary conditions (114-3),

then (114-5) will be the desired solution of the problem.
'

Now,
it was indicated in Sec. 102 that a suitably restricted function

y = F(x)

can be expanded in the interval ( 1, 1) in a series of Legendre

polynomials in the form

F(x) =

where the coefficients am are given by

(114-6) am =^^ J^F(aOP
m (z) dx.

In the problem under consideration,

u =
f(o)

= 1 for < 6 < >

2i

u =
f(o)

= for
I
< 6 < TT,

so that the problem is equivalent to expanding F(x) as

F(x) = i AmPm (x),

where F(x) = for -1 < x < 0, and F(x) = 1 for < x < 1.

If formula (114-6) is used, it is readily found that the solution of

(114-2), which satisfies the initial conditions (114-3), is

+ 5-ri3^(coB)
----

-

PROBLEMS
1. Find the steady-state temperature in a circular plate of radius a

which has one half of its circumference at 0C. and the other half at

nrc.
Hint: Use Laplace's equation for the plane in polar coordinates,

<Pu ,ldu l^d^u
6r*

+
r dr

+
r 2 d6*

"
U>

and assume that u = R(r)B(6) as in Sec. 114. Hence, show that the
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physically possible solution is of the form

u = a + air cos 6 + a 2r
2 cos 26 + a3r

3 cos 30 +
+ bir sin 6 + 6 2r

2 sin 26 + b^ sin 30 + .

Determine the coefficients a, and 6t so as to satisfy the boundary
conditions.

2. Show that Laplace's equation in cylindrical coordinates is

d*u I du 1 d zu d*u _
dr*

+
r dr

+
r 2

d<p*
+

dz2
~

and in spherical coordinates is

d ( z
du\ . 1 d f . -du\ . 1 d*u

~*~ \ r i~ } + ~
Q

~
\ SHI -^ J 4- . o /) ^ 5

= 0.
dr\ dr / sin 6 00 \ SO / sin2 6 o<p*

3. Find the steady-state temperature at any point of a semicircular

plate of radius a, if the bounding diameter of the plate is kept at the

temperature 0C. and the circumference is kept at the temperature
100C.

Hint: Use Laplace's equation for the plane in polar coordinates, namely,

d*u 1 du 1 d zu _
dr 2 + r dr

+
r 2 d0 2

~~

4. Outline the solution of the problem of the distribution of tem-

perature in a long cylinder whose surface is kept at the constant tem-

perature zero and whose initial temperature in the interior is unity.

115. Flow of Electricity in a Cable. A simple problem of

determining the distribution of current and voltage in an elec-

trical circuit, whose linear dimen-
-----

oc+Ax---->\ . n xi_ x
._____x _.__>i sions are so small that one can- 1

JL

-T^ disregard the variation of the e m.f

I >B '<dwig the circuit, has been discussed

JE ^ in Sees. 90 and 91. This section
^

is concerned with the more compli-
cated problem of the flow of elec-

tricity in linear conductors (such as telephone wires or submarine

cables) in which the current may leak to earth.

Let a long imperfectly insulated cable (Fig. 103) carry an

electric current whose source is at A. The current is assumed
to flow to the receiving end at R through the load B and to

return through the ground. It is assumed that the leaks occur

along the entire length of the cable because of imperfections in

the insulating sheath. Let the distance, measured along the
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length of the cable, be denoted by x; then both voltage and

current will depend not only on the time t, but also on the dis-

tance x. Accordingly, the e.m.f. F (volts) and the current 7

(amperes) are functions of x and t. The resistance of the cable

will be denoted by R (ohms per mile) and the conductance from

sheath to ground by G (mhos per mile). It is known that the

cable acts as an electrostatic condenser, and the capacitance of the

cable to ground per unit length is assumed to be C (farads per

mile); the inductance per mile will be denoted by L (henrys

per mile).

Consider an element CD of the cable of length Ax. If the

e.m f. is F at C and F + AF at D, then the change in voltage
across the element Ax is produced by the resistance and the

inductance drops, so that one can write

AF = -

The negative sign signifies that the voltage is a decreasing func-

tion of x. Dividing through by A:r and passing to the limit as

Ax > gives the equation for the voltage,

(115-1) y-
= -IR - L

!

The decrease in current, on the other hand, is due to the

leakage and the action of the cable as a condenser. Hence, the

drop in current, A7, across the element Ax of the cable is

A7 = - VG Ax - ~ C Ax.
ot

so that

(115-2)
= VG C

Equations (115-1) and (115-2) are simultaneous partial

differential equations for the voltage and current. The voltage

F can be eliminated from these equations by differentiating

(115-2) with respect to x to obtain

d 27 dV d 2V
'dx 2

~~ "~

~dx
""

dx dt

Substituting for dV/dx from (115-1) gives
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527

from which d 2V/dx dt can be eliminated by using the expression

for d*V/dtdx obtained from the differentiation of (115-1).

Thus, one is led to

(115-3) -Lc

A similar calculation yields the equation for F, namely,

r)
2F <9

2F r)F
(115-4)

- LC - - (LG + RC)
d-- KGV =

0,

which is identical in structure with (115-3).

In general, it is impossible to neglect the capacitance C of the

cable in practical applications of these equations to problems in

telephony and telegraphy, but the leakage G and the inductance

L, normally, are quite small. Neglecting the leakage arid induc-

tance effects yields the following equations:

(115-5) |
= -IR,

dl dV

It is clear from (115-7) and (115-8) that the propagation of

voltage and current, in this case, is identical with the flow of

heat in rods.

In order to give an indication of the use of these equations,

consider a line / miles in length, and let the voltage at the source

A, under steady-state conditions, be 12 volt's and at the receiving

end R be 6 volts. At a certain instant t 0, the receiving end is

grounded, so that its potential is reduced to zero, but the poten-
tial at the source is maintained at its constant value of 12 volts.

The problem is to determine the current and voltage in the line

subsequent to the grounding of the receiving end.

It follows that one must solve Eq. (115-8) subject to the follow-

ing boundary conditions :
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V =
12, at x = for all t > 0,

7 =
0, at x = I for all t > 0.

In addition, it is necessary to specify the initial condition that

describes the distribution of voltage in the line at the time t = 0.

Now, prior to the grounding of the line, the voltage V is a func-

tion of x alone, so that (115-8) gives

the solution of which is

V = c\x + c%.

Since, prior to grounding, V = 12 at x = and V = 6 at x =
Z,

it follows that c\ = 6/7 and c2
=

12, so that

fir

V = -
y + 12 at t = 0.

Accordingly, it is necessary to find the solution of Eq. (115-8)

subject to the following initial and boundary conditions:

F(0, =
12, V(l, t)

=
0,

V(x, 0)
= - * + 12.

^

A reference to Sec. 112 shows that the mathematical formula-

tion of this problem is similar to that of the problem of heat flow

in a rod, except for the difference in the formulation of the end

conditions. *
Now, the voltage V(x, t) in the line, subsequent to

the grounding, can be thought of as being made up of a steady-
state distribution Vs(x) and the transient voltage VT(X, t), which

decreases rapidly with the time. Thus,

V(X, t)
EEE VS (X) + V T (X, t).

After the line has been grounded, the voltage at the ends of

the line must satisfy the following conditions:

F(0, = 12 and V(l, t}
= 0.

It was noted above that the steady-state distribution of voltage
is a linear function of x\ and since after the lapse of some time t

the transient effects will not be felt, it follows that

Va(x)
= -

y x + 12.

*
See, however, Prob. 5, Sec. 112.
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Thus,

(115-10) V(x, t)
= - y x + 12 + VT (x, t).

The boundary conditions to be satisfied by the transient

voltage VT(X, t) can now be determined from (115-9). Thus,

7(0, t)
= 12 = 12 + Fr (0, 0,

V(l, 0=0= Fr(Z, 0,
fir 197*

F(, 0) = - y + 12 = - i~ + 12 + Fr(*, 0).

Hence, the function VT(x, t) satisfies the following initial and

boundary conditions:

Fr(0, = VT (l, t)
=

0,

Since it is obvious from (115-10) that VT(X, t) satisfies (115-8),

it becomes clear that the determination of the transient voltage

VT(X, t) is identical with the problem of determining the dis-

tribution of the temperature in a rod when the initial distribution

is the linear function fix/I. Referring to the solution (112-5)

and setting a 2 = \/(RC) give

(,\
^^_ i / & I \j flTTX 7 \ T77H ~~i~ I

' TlTTX

^ = >, I 7 I 7 x sm ~~T dx
)
e ^ J sm -T

A x?/2 r n*x j\
X, t)

= ^ (

j
I

j
x sin

-y-
dx 1

Therefore, the problem of determining the distribution of voltage

is solved.

The magnitude of the current in the line is obtained from

(115-5). It is left as an exercise for the reader to calculate

the expression for the current /. It is easy to see that the term-

by-term differentiation of the series for VT(X, t) is valid for all

values of t > 0.

From the discussion of this problem, it is clear that the deter-

mination of the temperature of a rod whose ends are kept at

different fixed temperatures and whose initial temperature is a

function of the distance along the rod can be effected in a similar

way.

PROBLEMS
1. On the assumption that the length I of the line in Sec. 115 is 120

miles, R 0.1 ohm per mile, and (7 = 2- 10~8 farad per mile, find the
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called the plane of a complex variable, the x-axis is called the

real axis, and the 2/-axis is called the imaginary axis.

If v vanishes, then

z u + - i = u

is a number corresponding to some point on the real axis. Accord-

ingly, this mode of representation of complex numbers (due to

Gauss and Argand) includes as a special case the usual way of

representing real numbers on the number axis.

The equality of two complex numbers,

a + ib = c + id,

is interpreted to be equivalent to the two equations

a c and b = d.

In particular, a + ib = is true if, and only if
,
a = and 6 = 0.

If the polar coordinates of the point (u, v) (Fig. 123) are

(r, 6), then
u = r cos and v = r sin

so that

r = \/u 2 + *>
2 and = tan" 1 -

11

The number r is called the modulus, or absolute value, and 6

is called the argument, or amplitude, of the complex number
z = u + iv. It is clear that the argument of a complex number
is not unique ;

and if one writes it as 6 + 2&?r, where TT < 6 ^ TT

and fc = 0, 1, 2, ,
then 6 is called the principal argu-

ment of z. The modulus of the complex number z is frequently

denoted by using absolute value signs, so that

r =
\z\

=
\u + iv\

= v^2 + ^ 2
>

and the argument 6 is denoted by the symbol

6 = arg z.

The student is assumed to be familiar with the fundamental

algebraic operations on complex numbers, and these will not be,

entered upon in detail here. It should be recalled that

21 + 22 = (xi + iyi) + (x 2 + iy*) = (xi + z2) + i(y\ + 2/2),

21 2 2 = G&i + iy\)
-

(x2

21 i i _ i 2 i2
,

z
-

22 z 2 + **2/2 ^1 +2/1 ^i + 2/1

provided that j^l
=
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It follows from the polar mode of representation that

z\
*

82 = ri(cos 0i + i sin 0i) r 2(cos 2 + i sin 2)

= rir2[cos (0i + 2) + i sin (0i + 2)];

that is, the modulus of the product is equal to the product of the

moduli and the argument of the product is equal to the sum of the

arguments. Moreover,

zi ri (cos 0i + i sin 0i)- ~ ~ i
r ,= ~~
Lcos (0i

"" ^ sm />

27
-

2 i

~
n~\

~~

z2 r2 (cos 2 + 1 sin 2) r2

so that ^e modulus of the quotient is the quotient of the moduli and

the argument of the quotient is obtained by subtracting the argument

FIG. 124.

of the denominator from that of the numerator. If n is a positive

integer, one obtains the formulas of De Moivre, namely,

\/z =
{r[cos (0 + 2kw) + i sin (0 +

so that

+ 2/C7T
>s

R(cos <p + i sin <

-

+ 2kir\

n )

(* = 0, 1, 2, n-1).

This last formula can be illustrated by finding the expressions
for the cube roots of z = 1 i. Since u = 1 and 2; = 1, it

follows that r = -\/2 and = tan- 1

( -y- )
Hence
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-f + 2*r

sin

Assigning k the values 0, 1, and 2 gives the values of the three

roots as (Fig. 124)

- -

and

* 1
= ^[

6/0 I 7?T
22 =

V2^C08 ^

23 = A/2 ( COS

. . .

+ i sin

in
(" s))

in T I
i^/

inj)
The following important inequalities will be recalled, for they

are used frequently in this

chapter.

(133-1) \zi + z*\

N + N,
that is, the modulus of the sum
is less than or equal to the sum

of the moduli. This follows

at once upon observing (Fig.

125) that the sum of two FlG - 125 '

sides of the triangle is not less than the third side.

(133-2) \zi + z 2
|

^ M - M,

that is, the modulus of the sum is greater than or equal to the differ-

ence of the moduli. This follows

from the fact that the length of

one side of a triangle is not less

than the difference of the other two

sides.

(133-3) |2i| \z%\

FIG. 126. This follows from Fig. 126.

PROBLEMS
1. Find the modulus and argument of

(a) 1 + i V3, (6) 2 + 2i, (c) (1 + -
i).
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7T IT.

2. If z\ = 3e* and z z e
,
find 3i z 2 and 21/22. Illustrate the

results graphically.

3. Under what conditions does one have the following relations?

(a) \z\ -j- 22!
=

\z\\ -f- \Zz\t

(&) |#1 ~f" #2!
==

|^l| l^l-

4. Setting 2 = r(cos 6 -\- i sin ^), show, with the aid of the formula

of De Moivre zn = rn (cos nd + i sin n#), that

cos 2^ = cos 2 6 sin 2 and sin 20 = 2 sin cos 0.

6. Find all the fifth roots of unity, and represent them graphically.

6. Find all the values of \Xl + i and \/i, and represent them

graphically.

7. Find all the roots of the equation zn 1 = 0.

8. Write the following complex numbers in the form a + bi:

(a)

(b)

(c) (1
- V30 1

;

9. Express the following functions in the form u +

1 (c) 2;
2 - z + 1

;

(a)

(6)

10. The conjugate of a complex number a + ib is defined as a t6.

Prove that

(a) The conjugate of the product of two complex numbers is equal
to the product of the conjugates of the complex numbers.

(6) The conjugate of the quotient of two complex numbers is equal
to the quotient of the conjugates of the complex numbers.

134. Elementary Functions of a Complex Variable. A com-

plex quantity z = x + iy, where x and y are real variables, is

called a complex variable. If the assignment of values to z

determines corresponding values of some expression /(z), then

f(z) is said to be &function of the complex variable z. For example,
if
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the values of f(z) can be determined by recalling that, if z = x

+ iy y
then

So long as the functions under consideration involve only the

operations of addition, subtraction, multiplication, division, and

root extraction, the discussion of Sec. 133 provides methods of

determining the values of these functions when arbitrary values

are assigned to z Thus, if /(z) is any rational function of z,

that is, the quotient of two polynomials so that

ft \ - apz" + a\z
n~ l + * + an

J(Z)
~ ~"'- 1 7

there is no difficulty in ascertaining its values. The discussion

permits one to ascribe a meaning even to such an expression as

1
*

i V^-zr
For, if z x + iy, then

2ixy
=

[r(cos 9 + i sin

where

r = V(x* -
y

2 -
I)

2 + 4zV and = tan
2

-

x y 1

Applying De Moivre's formula gives

V?'"! = r^[cos H( + 2/C7r) + i sin %(0 + 2fcx)], (fc
=

0, 1),

and therefore,

19 + 2/C7T . .

* sin-_
, (t 0| 1).

Matters become somewhat more involved when it is necessary
to define transcendental functions of z such as

e
z

,
sin z, log 2, etc.

It is evident that it is desirable to define these functions so that

they will include as special cases the corresponding functions

of the real variable x. It was indicated in Sec. 73 that the series
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which converges for all real values of x, can be used to define

the function e z
y
where z = x + iy, so that

Kv2 v* \
i ^ I- ... 1

2!
^

4! /

/ y
3

V
5 M+ H # ~~

3J
+

51
"" ' ' '

)
= ez(cos y + i sin i/).

Also, from Sec. 73,

e v _L
COS I/

=

sin y

2

e vl

These formulas lead one to define the trigonometric functions

for a complex variable z as

e
zl + e~ zl

. e
zl e~zl

cos z ~ -J sm z =
2

' ^A ~
2i

sin z , cos z
tan z = > cot z = >

cos z sin 2

1 1
sec z = > esc z =

cos z sin z

It can be easily verified by the reader that these definitions

permit one to use the usual relations between these functions,

so that, for example,

g! Q
Z
I = e

z
i
+

*2,

sin 2 z + cos 2 2=1,
sin (zi + #2)

= sin z\ cos #2 + cos z\ sin 2 2 .

The logarithm of a complex number z is defined in the same

way as in the real variable analysis. Thus, if

w = log 2,

then
~~~~ "*

z = e".

Setting w = u + iv gives

2 6u+it> = e
u
(cos v + i sin v).

On the other hand, z can be written as

z = x + iy = r(cos 6 + i sin 0).
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Therefore,

r(cos 6 + i sin 0)
== ew(cos v + i sin v),

which gives

e =
r, t; = + 2&7r, (fc

=
0, 1, 2, ).

Then, since u and r are real, u = log r, so that

(134-1) w = u + iv = log z = log r + (0 + 2kir)i.

Hence, the logarithm of a complex number has infinitely many
values, corresponding to the different choices of the argument of

the complex number. Setting k =
0, one obtains the principal

argument of log z, if it is assumed that TT < 6 < TT.

It is obvious that (134-1) provides a suitable definition of

log z for all values of z with the exception of z = 0, for which

log z is undefined.

The definition (134-1) permits one to interpret the complex

power w of a complex variable z by means of the formula

gW __ gW log Z

and since log z is an infinitely many-valued function, it follows

that, in general, zw likewise has infinitely many values.

PROBLEMS
1. Verify the formulas

(a) e*i ez * = ez
i
+
**;

(b) sin 2 z + cos 2 z = 1
;

-. (c) cos (zi + #2)
= cos zi cos Zz sin z\ sin 3 2 ;

/0(d) cos iz cosh z\

A (e) sin iz = i sinh z:
"j }

'*

2. Represent graphically the complex numbers defined by the

following:

(a) logi; (d) i 1

',

(b) log(-l); _ (e) e*<.

(c) log (I
- V3i);

3. Show that

,
. t I e*< - I

(a) tan-T ?ir?1 ;

* -^1
(6) cot 2 = t
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4. Express tan z in the form u + w.

6. Express sin z in the form u + iv.

6. If a and 6 are real integers, show that

(re0t)a+&t
- rae-be[cos (ad + b log r) + i sin (ad + b log r)].

7. Write in the form r(cos 6 + i sin 0)

(a) (1 + 0*; (d) Is

(b) (1
- O 1

-; W 2 1+ .

(c) t'
1

-');

136. Properties of Functions of a Complex Variable. Let

w =
/(z) denote some functional relationship connecting w with

z. If z is replaced by x + iy, w can be written as

w = f(x + iy)
= w(x, y) + iv(x, y),

where u(x, y) and v(x, y) are real functions of the variables

x and y. As an example, one may consider the simple function

w = z
2 =

(x + iy)
2 = x 2

y
z + 2ixy.

If x and ?/ are allowed to approach the values X Q and y , respec-

tively, then it is said that the complex variable z = x + iy

approaches z = XQ + iyo. Thus the statement

z z
,

or a: + iy > o: + iyo,

is equivalent to the two statements

x x and y y -

Since /(^ ) is, in general, a complex number, one extends the

definition of continuity in the following way: The function f(z)

is said to be continuous at the point z = z provided that

(135-1) /(z) /(ZQ) when z > z .

Since /(z)
= u(x, y) + iv(x, y) and /(z )

= U(X Q , yQ) + iv(x , 2/0),

the statement (135-1) implies the continuity of the functions

u(x, y) and v(x, y). If the function /(z) is continuous at every

point of some region R in the z-plane, then /(z) is said to be

continuous in the region R.

The complex quantities z and w can be represented on separate

complex planes, which will be called the z-plane and the w-plane,

respectively. Thus the functional relationship w =
/(z) sets

up a correspondence between the points (x, y) of the z-plane and

the points (u, v) of the w-plane (Figs. 127 and 128).
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If the variable z = x + iy acquires an increment Az, then

(Fig. 127)

z + Az = (x + Aor) + i(y + Ay)
and

Az Ax + iky.

The change in w =
/(z), which corresponds to the change Az in

z, can be denoted by Aw (Fig. 128), and one defines the derivative

of w with respect to z to be the function /'(z) such that

/(z + Az)
-

/(z)
(135-2) /'(z)

= lim
Az->0 Az

where the limit must exist and be independent of the mode of

approach of Az to zero.

v i

z-plane
w-plane

w+Aw

FIG. 127. FIG. 128.

It should be noted that this requirement, that the limit of

the difference quotient have the same value no matter how Az

is allowed to approach zero, narrows down greatly the class of

functions of a complex variable that possess derivatives. Thus,

consider the point P in the z-plane that corresponds to z = x + iy,

and let Q be determined by z + Az = (x + Az) + i(y + A/).

In allowing the point Q to approach P, one can choose any one

of infinitely many paths joining Q with P, and the definition

(135-2) demands that the limit /'(z) be the same regardless of

which one of the paths is chosen.

,
-Let it be assumed for the moment that w =

/(z) has a unique*

derivative at the point P; then

* It is assumed throughout that we are concerned with single-valued

functions; hence, the discussion of the derivatives of such functions as

Vl 2, for example, is restricted to a study of one of the branches of the

function.
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(135-3) /'(z)
= lim

^"

2z
'

where

f(z)
= u(x, y) + iv(x, y).

If Q is to approach P along a straight line parallel to the z-axis,

then Ay =
0, kz = Az, and

dz ~dx dx dx

On the other hand, if Q approaches P along a line parallel to the

y-axis, then Ax =
0, Az = i Ay, and

dz

Since the derivative is assumed to exist, (135-4) and (135-5)

require that the functions u(x, y) and v(x, y) satisfy the conditions

n . ^ du dv dv du
(IdO-O) =

)7 dx ^y

These are known as the Cauchy-Riemann differential equations,

and the foregoing discussion proves the necessity ol the condi-

tion (135-6) if f(z)
= u(x, y) + iv(x, y) is to possess a unique

derivative.

In order to show that the conditions (135-6) are sufficient for

the existence of the unique derivative/' (2), one must suppose that

the functions u(x, y) and v(x, y) possess continuous partial

derivatives.
*

It is not difficult to show that the usual formulas for the differ-

entiation of the elementary functions of a real variable remain

valid, so that, for example,

dzn n . de* d sin z= nzn
~~ l

, -j-
=

c*, -5
= cos z, etc.

dz
'

dz
'

dz
'

As an illustration of the application of the formulas (135-4) anvi

(135-5), consider the calculation of the derivative of

y) = 0* as ex+tv

or

w = w + iv = 6x(cos y + f sin y).

*
Only the existence of these derivatives was required in the proof of the

necessity. See references at the end of Sec. 141.
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Here, u e* cos t/, v = e* sin y, and it follows that

du du
fa

= e* cos i/, g
= -e* sin y,

av . aw

gj
- e- sin 2/, g

= cos y.

Since Eqs. (135-6) are satisfied and the partial derivatives are con-

tinuous, dw/dz can be calculated with the aid of either (135-4) or (135-5).

Then,
dw ...
-T- = e* cos y + ie* sin y = e*.

The functions of a complex variable z that possess derivatives

are called analytic or holomorphic.
* A point at which an analytic

function ceases to have a derivative is called a singular point.

It is possible to provef that, if f(z) is analytic in some region R
of the z-plane, then not only the first partial derivatives of u and

v exist throughout the region R, but also those of all higher orders.

This last statement leads to an important consequence of Eqs.

(135-6). Differentiating (135-6) gives

i

<W
^

and adding gives

Similarly, one obtains

Hence, the real and imaginary parts of an analytic function satisfy

Laplace's equation.

On the other hand, if a function u(x, y) satisfying Laplace's

equation is given, one can construct an analytic function f(z)

whose real part is u. Multiplying the first of Eqs. (135-6) by
dy and the second by dx and adding give

, dv , . dv , du , . du j
dv = dx + T- dy = dx + dy.dx dy dy dx

Then, since du/dy and du/dx are known,

(135-7) v(x, y) = f
^

(
- ^ dx + g

J(xo,yo) \ ^2/ OX
* The term regular is also used.

f See Sec. 140.



452 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 135

where the line integral (135-7) will not be ambiguous if it is

independent of the path joining some fixed point (X Q , t/ ) to

the point (x, y). Applying the conditions for the independence
of the path,

*
namely,

A ( - **\ = A (<*y
fy \ ty)

"
faW

gives

to"2
"*"

dy*
~ U

'

which is precisely the condition assumed to be satisfied by u(x, y}.

Since the line integral (135-7) depends on the choice of the point

(x , 2/0), it is clear that the function v(x, y) is determined to

within an arbitrary real C9nstant, and hence the function

f(z)
= u + iv is determined save for a pure imaginary additive

constant.

It may be further remarked that the function v(x, y) may
turn out to be multiple-valued (if the region of integration is not

simply connected) even though u(x, y) is single-valued. The
connection of analytic functions with Laplace's equation is one

of the principal reasons for the great importance of the theory of

functions of a complex variable in applied mathematics, f

PROBLEMS

1. Determine which of the following functions are analytic functions

of the variable z = x + iy:

(a) x iy;

(b) x* ~y* + 2ixy,

(c) Y2 log (z
2 + y

2
) + i tan- 1

(y/x);

2. Verify the following formulas:

,
. d(cos z)

(a)
- = - sin 2;

, x z) _

(c) dz
= sec2 z:

K See Sec. 63.

t See, in this connection, Sees. 66, 111, and 130.
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3. Find a function w such that w = u + iv is analytic if

(a) u = x* - y*]

(c) t* = x\

(d) u = log

(e) -u = cosh

4. Prove that

cos x.

);

(a) sinh z = K(e* ~ e~*) is analytic;

(6) cos (z + 2/C7T)
= cos z, (/c

=
0, 1, 2,

(c) sinh (2 + 2ikir)
= sinh 2, (A;

=
0, 1, 2, );

(d) log 21 z 2
= log 0i + log z 2 ;

(e) log za = a log 2, where a is a complex number.

5. Show how to construct an analytic function /(z)
=

u(x, y)

+ iv (x, y) if v(a:, 2/) is given, and construct /(z) if v = 3a?
2
2/ ?/

3
.

6. An incompressible fluid flowing over the x7/-plane has the velocity

potential
< = x 1

y-. Find a stream function ^.

7. Referring to Prob. 6, what is the velocity potential if the stream

function is ?
3
?3x'2y y

136. Integration of Complex Functions.

defined by the parametric equations y

Let C

x

x =

where <p and ^ are real differentiate

functions of the real variable t. Con-

sider a continuous (but not necessarily _
analytic) function /(), of the complex
variable z = x + iy, defined at all points FIG. 129.

of C. Divide the curve C into n parts by inserting the points

Po, PI,
' '

, Pn-i, Pn, where P coincides with the initial

point 2o of the curve and Pn with the end point zn (Fig. 129).

Let ft be any point on the arc of the curve joining JK*-i with Pt ,

and form the sum
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The limit* of this sum as n > > in such a way that each element

of arc Pt_iPt approaches zero is called the line integral of f(z)

along the contour C, that 'is,

(136-1) (j(z) dz = lim
*' c n

The fact that this integral exists follows at once from the

existence of the real line integrals into which (136-1) can be

transformed. Indeed, separating f(z) into real and imaginary

parts as

/() = u(x, y) + iv(x, y)

and noting that dz = dx + i dy give

(136-2) fc f(z) dz = fc (udx-v dy) + i fc (v dx + u dy).

Thus, the evaluation of the line integral of a complex function

can be reduced to the evaluation of two line integrals of real

functions. It follows directly from the properties of real line

integrals that the integral of the sum of two continuous complex
functions is equal to the sum of the integrals, that a constant

can be taken outside the integral sign, and that the reversal of

the 'direction of integration merely changes the sign of the

integral.

It follows from (136-1), upon noting that the modulus of the

sum is not greater than the sum of the moduli, that

\fc f(z)dz
< fc |/(s) | \dz\.

If, along C, the modulus of f(z) does not exceed in value some

positive number M, then

(136-3) c /(*) dz ^ M c \dz\
= M c \dx + i dy\

= M c ds = ML,

where L is the length of C.

* The precise meaning of the symbol lim in (136-1) is the following: Con-
sider any particular mode of subdivision of the arc into n\ parts and denote

the maximum value of |z, 2,_i( in this subdivision by Si, and let S
Hl
stand

ni

for S /(f) fe ~ 2t-i). A new sum, corresponding to the subdivision of the
-l

arc into n2 parts, is denoted by *S>n
2 ;
and the maximum value of z z,_i|

in this new subdivision is 5 2 ,
etc. In this way, one forms a sequence of

numbers
Ul , n2 , , Snm ,

in which the numbers nm are assumed to

increase indefinitely in such a way that the 5 * 0.
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137. Cauchy's Integral Theorem. The discussion of the

preceding section involved no assumption of the analyticity of

the function /(z) and is applicable to any continuous complex

function, such as for example f(z)
= z = x iy, in which event

dz

If the integral (136-1) is to be independent of the path, then

it immediately follows from (136-2) that

du
_____ dv_

eto _ du

~dy

~~ ""

Hix fy
~

dx

Thus, the conditions that the integral of a complex function f(z)

be independent of the path are precisely the Cauchy-Riemann con-

ditions; in other words, the function f(z) must be analytic.

Now, let R be any region of the 2-plane in which f(z) is analytic,

and let C be a simple closed curve lying entirely within B; then

it follows from the properties of line integrals that* the following

important theorem holds:

CAUCHY'S INTEGRAL THEOREM. // f(z) is analytic within

and on a simple closed contour C, then fc f(z) dz = 0.

It should be noted carefully that the theorem has been estab-

lished essentially with the aid of Green's theorem, which requires

not only the continuity of the functions u and v but also the

continuity of the derivatives. Thus, the proof given above

implies not merely the existence of f'(z) but its continuity as

well.f It is possible to establish the validity of Cauchy's
theorem under the sole hypothesis that/' (z) exists and then prove
that the existence of the first derivative implies the existence

of derivatives of all orders. Accordingly, the proof given above

imposes no practical limitation on the applicability of the

theorem.

138. Extension of Cauchy's Theorem. In establishing

Cauchy's theorem in Sec. 137, it was assumed that the curve C
is a simple closed curve, so that the region bounded by C is

simply connected. It is easy to extend the theorem of Cauchy
to multiply connected regions in a manner indicated in Sec. 64.

Thus, consider a doubly connected region (Fig. 130) bounded
* See Sec. 63.

t See (135-4) and (135-5).
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by the closed contours C\ and C2 ,
where C2 lies entirely within Ci.

It will be assumed that the function f(z) is analytic in the region

exterior to C2 and interior to C\ and analytic on C2 and Ci. The

requirement of analyticity on Ci and C 2 implies that the function

f(z) is analytic in an extended region (indicated by the dotted

curves KI and Jf 2) that contains the curves Ci and C2 .

If some point A of the curve Ci is joined with a point B of C2

by a crosscut AB, then the region becomes simply connected and
the theorem of Cauchy is applicable. Integrating in the positive

direction gives

(138-1) C f(z)dz+ f f(z)dz + f f(z)dz+ f f(z) dz =
0,JAPAO JAB JBQB& J

JBA

where the subscripts on the integrals indicate the directions of

integration along Ci, the crosscut AB, and C2 . Since the second

x . .^ and the fourth integrals in (138-1)

are calculated over the same path
in opposite directions, their sum is

zero and one has

where the integral along C\ is trav-

ersed in the counterclockwise direc-
FlQ ' 13

tion and that along C2 in the

clockwise direction. Changing the order of integration in the

second integral in (138-2) gives*

This important result can be extended in an obvious way to

multiply connected regions bounded by several contours, to yield

the following valuable theorem.

THEOREM. // the function f(z) is analytic in a multiply con-

nected region bounded by the exterior contour C and the interior

contours Ci, C2 , ,
Cn ,

then the integral over the exterior contour

C is equal to the sum of the integrals over the interior contours

Ci, Ctj ,
Cn - It is assumed, of course, that the integration over

* See Sec. 64.
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all the contours is performed in the same direction and that f(z) is

analytic on all the contours.

139. The Fundamental Theorem of Integral Calculus. Let/()
be analytic in some simply connected region R, and let the curve

C join two points PO and P of R
(Fig. 131). The coordinates of P
and P will be determined by the

complex numbers 2 and z. Now
consider the function F(z) defined

by the formula F(z) =
/*,/()

dz.

The function F(z) will not depend

upon the path j oining ZQ with z so long

as these points lie entirely within R.

Forming the difference quotient

gives
FIG. 131.

F(z -F(z) _

/CO <fo
- r ^

f(z)dz\Jzo J

In order to avoid the confusion that may occur if the variable z

appears in the limits and also as the variable of integration,

denote the latter by f ,
so that

F(z + &z)
-

F(z) = J

Az
~

A(139-1) /) rfr

snce

Now if

(139-2)

''

df = Az.

1
/z

lim T- I
Az-0 A2 Jz
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then it follows from (139-1) that

dF(z)

dz
'/GO-

In order to prove that (139-2) holds, one merely has to make use

of (136-3) and note that max |/(f)
-

f(z)\ -> as Az - 0.

Any function F\(z) such that

dz
J ^ J

is called a primitive or an indefinite integral of /(), and it is easy

to show that if F\(z) and ^2(2) are any two indefinite integrals of

f(z) then they can differ only by a constant.* Hence, if F\(z)

is an indefinite integral of f(z), it follows that

=
f*f(z)

dz = F l (z) + C.
*fZO

In order to evaluate the constant C, set z = 2
; then, since

(z) dz = Q,C = Ffa). Thus

(139-3) F(z) =
f*f(z) dz =
JZQ

The statement embodied in (139-3) establishes the connection

between line and indefinite integrals and is called the fundamental
theorem of integral calculus because of its importance in the

evaluation of line integrals. It states that the value of the line

integral of an analytic function is equal to the difference in the

values of the primitive at the end points of the path of integration.

As an example consider

\ iri

6z fJy pt oie\ __ 1 9
(*<& t/ o JL

~
i

This integral can also be evaluated by recalling that

* Proof: Since Fi'(z) = Fj(z) = /(), it is evident that

Fi'(z)
- F2'(z)

= d(Fi
- F2)/dz 9 dG/dz = 0.

But if dG/dz =
0, this means that G'(z) = ^ + i~ = ^ - t -

0, so
dx dx dy dy

,, . du dv dU dv rt j jj . j j jthat r = -r- =s:
"^~

=: T~ :=I
0> an(l u an(l v do not depend on x and y.dx dx dy dy
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r/*(0,ir)e* dz = I (e* cos y + ie* sin y)(dx + i dy)

/*(0,7r)= I (e* cos ydx - e* sin y dy)

/(o,)
+ t

J(0
(e

x sin ydx + e* cos y dy).

As a more interesting example, consider

where n is an integer and the integral is evaluated over some curve

joining z and z. If n 9^ 1, an indefinite integral is

+ 1

a)
n is analytic throughout theFor n > 0, the integrand /(z)

=

finite z-plane and hence

(139-4) F (z
-

a)" dz = r-r [(z
-

a)"
+1 -

(z
-

a)"+
1
].

Jzo n -f- i

If the variable point z is allowed to start from z and move along some

closed contour C back to z
, then

(*- = 0.

Of course, the latter result could have been obtained directly from

Cauchy's integral theorem.

Suppose next that n < 1 and that the path of integration does not

pass through the point a. If the point a is outside the closed contour

(7, then the integrand is analytic and it

follows at once from Cauchy's integral

theorem that

(z
-

a)" dz = 0.

Suppose now that the point a is within the

contour C. Delete the point a by enclos-

ing it in a small circle of radius p, and con-

sider the simply connected region R shown

in Fig. 132. Then, so long as n ^ 1
?

the single-valued function /(z)
=

(z a)
n is analytic in R and (139-4)

is applicable to any curve C joining z and z in R. Now if z is allowed

to approach ZQ, then it follows from the right-hand member of (139-4)

that

(z
-

a)* dz = for n ^ -
1.

FIG. 132.

\
c
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There remains to be investigated the case when n 1. For any

path C not containing z = a, one obtains

(139-5)

Now if the point z starts from z and describes a closed path C in such

a way that a is within the contour, then the argument of z a changes

by 2?r, and therefore
./ /It

= 2iri.
a

If a is outside the contour, then (z a)~
l

is analytic within and on C
and hence the line integral is zero by

Cauchy's theorem.

A different mode of evaluating the

integral

where n is an integer greater than unity
>A: and C is a closed contour, will be given

next. If the point a is outside CV then
IG * 133 '

the value of the integral is zero by

Cauchy's theorem. Accordingly, consider the case when a is inside C.

Draw a circle 7 of radius p about the point a (Fig. 133) and, since the

integrand is analytic in the region exterior to 7 and interior to C, it

follows from the theorem of Sec. 138 that

Jc (z
-

a)~
n dz =

J (z
-

a)~
n dz.

But z a pe
l and dz =

ipe
di dd on 7, so that

dz /*27r ipe
t& dO/* dz fir ipe
l dO i r2jr

I i -r =
I

~
5- =

r I

Jc (z a)
n

Jo p
ne*n9 p

n~ l

Jo
i

^~i
=

o,

dd

\lU7*\.

This is the same result as that obtained above by a different method.
The reader should apply the latter method to show that, if a is inside C,

then J (z a)-
1 dz 2iri.
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PROBLEMS

1. Show that J*o
zdz = %(z2 2 2

) for all paths joining 2 with z.

2. Evaluate the integral J c (z a)"
1
dz, where C is a simple closed

curve and a is interior to C, by expressing it as a sum of two real line

integrals over C.

Hint: Set z a pe
9
*; then dz = e* l

(dp + i pdd).

3. Evaluate J c z~2 dz where the path C is the upper half of the unit

circle whose center is at the origin. What is the value of this integral

if the path is the lower half of the circle?

4. Evaluate
J c z- 1

dz, where C is the path of Prob. 3.

6. Evaluate fc (z
2 - 2z + 1) dz, where C is the circle x 1 + y*

= 2.

6. Discuss the integral J G (z + l)/z
2
dz, where C is a path enclosing

the origin.

7. What is the value of the integral J c (1 + 2 2
)"

1

dz, where C is the

circle x2 + y
2 = 9?

8. Discuss Prob. 7 by noting that . ,

^
=

2"' (
"

-.
'' 4^i anc^

evaluating the integrals over the unit circles whose centers are at

z i and z i. Note the theorem of Sec. 138.

140. Cauchy's Integral Formula. The remarkable formula

that is derived in this section permits one to calculate the value

of an analytic function f(z), at any interior point of the region

bounded by a simple closed curve C, from the prescribed bound-

ary values of f(z) on C.

Let f(z) be analytic throughout the region R enclosed by a

simple closed curve C and also on the curve C. If a is some

point interior to the region R (see Fig. 133), then the function

(140-1)
z a

is analytic throughout the region R, with the possible exception

of the point z = a, where the denominator of (140-1) vanishes.

If the point a is excluded from the region R by a circle 7 of radius

p and with center at a, then (140-1) is analytic throughout the

region exterior to 7 and interior to C, and it follows from Cauchy's

integral theorem that

f
M.

Jco * - <*>
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or

(l40-2)

The integral in the right-hand member of (140-2) can be

written as

(140-3) f I- d* - f
M^ dz + /(a) f

J*L.
JT* - a JY 2 - a J7 * - a

It was demonstrated in Sec. 139 that

f dz
I
-- =

J7 z - a

. and it will be shown next that the first integral in the right-hand

member of (140-3) has the value zero. Set z a = pe
Bl

;

then, so long as z is on 7, dz = ipe
ld

dO,

and hence

f
f(z)

~
/(^ <fe = i f

Jy Z a Jy
(140-4)

~
<fe = i [/(*)

-
/(a)] cW.

Jy Z a Jy

If the maximum of \f(z) /(a) |

is denoted by M, then it follows

from Sec. 136 that

(140-5)
z a

2*

o

Now if the circle 7 is made sufficiently small, it follows from

the continuity of f(z) that \f(z) f(a) \

can be made as small as

desired. On the other hand, it follows from (138-3) that the

value of the integral (140-4) is independent of the radius p of

the circle 7, so long as 7 is interior to R. Thus the left-hand

member of (140-5) is independent of p; and since M *0 when

p > 0, it follows that the value of the integral is zero.

Accordingly, (140-2) becomes

(140-6) -p^ = 2nf(a),
c/C ^ a

where a, which plays the role of a parameter, is any point interior

to C. Denote the variable of integration in (140-6) by f, and

let z be any point interior to C; then (140-6) can be written as

* -
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The relationship stated by (140-7) is known as Cauchy's integral

formula.

It is not difficult to show that an integral of the form (140-7)

can be differentiated with respect to the parameter z as many
times as desired,

* so that

jw-. - /(r)

(140-8)

"""' ~

In fact, if/() is any continuous (not necessarily analytic) function

of the complex variable z, then the integral

if?
defines an analytic function F(2). To show this, all that is

necessary is to form the difference quotient [F(z + Az)

F(z)]/&z and to evaluate its limit as Az > 0. It follows from

such a calculation that

The assertion made in Sec. 137, concerning the fact that the

continuity of the derivative of an analytic function follows from

the assumption that the derivative exists, is now made clear.

PROBLEMS
1. If

**

where C is the circle of radius 2 about the origin, find the values of

2. Apply Cauchy's integral formula to Prob. 7, Sec. 139. Use the

integrand in the form given in Prob. 8.

* Form the difference quotient [f(z + &z) /(2)]/Az, and investigate the

behavior of the quotient as Az 0.
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3. Evaluate with the aid of Cauchy's integral formula

where C is the circle |f |

= 2.

4. What is the value of the integral of Prob. 3 when evaluated over

the circle |f 1|
= 1?

5. Evaluate

f- 2z - 1 J
*,

Sc

where C is the circle \z\
= 1.

141. Taylor's Expansion. Let/(z)

be analytic in some region R, and

let C be a circle lying wholly in R
and having its center at a. If z is

any point interior to C (Fig. 134), then it follows from Cauchy's

integral formula that

FIQ. 134.

(141-1) /(*) = _! f
2*i JC f

- .

But and substi-
1 - "'"'*' '

"
'

1 - '

tuting this expression, with i = (z a)/(f a), in (141-1)

leads to

where

tori

Making use of (140-8) gives

(141-2) /(Z)=/(a)+/'(a)(2-a)

(f-a)-(r -)">

f"(a) , .,
-77T (2

-
)
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By taking n sufficiently large, the modulus of Rn may be made
as small as desired. In order to show this fact, let the maximum
value attained by the modulus of /() on C be M, the radius of

the circle C be r, and the modulus of z a be p. Then |f z\

> r p, and

r
Jee r

~

p^
M27rr = Mr /pV

27r r(r -
p)

"
r - p \r/

Since p/r < 1, it follows that lim \R n
\

= for every z interior
n > oo

to C.

Thus, one can write the infinite series

/(z)
= /(a) +/'(a)(*

-
a) + (2

-
o) +

which converges to f(z) at every point z interior to any circle

C that lies entirely within the region R in which f(z) is analytic.

This series is known as the Taylor's series.*

PROBLEMS
1. Obtain the Taylor's series expansions, about 2 = 0, for the follow-

ing functions :

(a) es
, (b) sin z, (c) cos z, (d) log (1 + i).

2. Verify the following expansions:

(a) tan z = z + - + -r=+ ;

(b) sinh 3 = * +
fj
+ f]+''';

(c) cosh z = l+oi + T-f+*-';

142. Conformal Mapping. It was mentioned in Sec. 135 that

the functional relationship w =
f(z) sets up a correspondence

* For a more extensive treatment, see D. R. Curtiss, Analytic Functions

of a Complex Variable; E. J. Townsend, Functions of a Complex Variable,

H. Burkhardt and S. E. Rasor, Theory of Functions of a Complex Variable;
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between the points z = x + iy, of the complex z-plane, and

w = u + iv, of the complex w-plane. If w = /(z) is analytic in

some region R of the 2-plane, then the totality of values w belongs

to some region R
f
of the w-plane, and it is said that the region R

maps into the region R 1
. If C is some curve drawn in the region

R and the point z is allowed to move along C, then the corre-

sponding point w will trace a curve C' in the w-plane (Fig. 135),

and C" is called the map of the curve C.

The relationship of the curves C and C' is interesting. Con-

sider a pair of points z and z + &z on C, and let the arc length

between them be As. = PQ. The corresponding points in the

w+Aw

w

FIG. 135.

region R' are denoted by w and w + Aw, and the arc length

between them by As7 = P'Q' . Since the ratio of the arc lengths

has the same limit as the ratio of the lengths of the corresponding

chords,

Aw= lim = limlim A _ A1AXA
| A |

AXA-l*. .

The function w =
f(z) is assumed to be analytic, so that dw/dz

has a unique value regardless of the manner in which Az > 0.

Hence, the transformation causes elements of arc, passing through
P in any direction, to experience a change in length whose

magnitude is given by the value of the modulus of dw/dz at P.

For example, if w = z3
,
then the linear dimensions at the point

3=1 are stretched threefold, but at the point z = 1 + i they
are multiplied by 6.

It will be shown next that the argument of dw/dz determines

the orientation of the element of arc As' relative to As. The

argument of the complex number Az is measured by the angle 9

made by the chord PQ with the #-axis, while arg Aw measures
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the corresponding angle 0' between the w-axis and the chord

P'Q'. -Hence, the difference between the angles 0' and is

equal to

A * Aw
arg Aw arg Az = arg >

for the difference of the arguments of two complex numbers is

equal to the argument of their quotient. As A 0, the vectors

Az and Aw tend to coincidence with the tangents to C at P and
C" at P', respectively, and hence* arg dw/dz is the angle of

rotation of the element of arc As' relative to As. It follows

immediately from this statement that if Ci and C^ are two curves

which intersect at P at an angle r (Fig. 136), then the corre-

Fio. 136.

spending curves C[ and C in the w-planc also intersect at an

angle r, for the tangents to these curves are rotated through the

same angle.

A transformation that preserves angles is called con/ormaZ, and

thus one can state the following theorem:

THEOREM. The mapping performed by an analytic function

f(z) is conformal at all points of the z-plane where f'(z) 7* 0.

143. Method of Conjugate Functions. The angle-preserving

property of the transformations by analytic functions has many
immediate and important physical applications.

For example, if an incompressible fluid flows over a plane

with a velocity potential 3>(x, y) (so that v x = d$/dx,vy d$/dy},

then it is known that the stream lines will be directed at right

angles to the equipotential curves <(x, y}
= const. Moreover,

it was shown f that the functions $ and ^f satisfy the Cauchy-
* Note that this statement assumes that dw/dz 9* at the point P.

t See Sec. 66.
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Riemann equations, and hence one can assert that the functions
< and ^ are the real and imaginary parts, respectively, of some

analytic function /(z), that is,

/(*)
-

<*>(*, y) + i*(x, y).

Now, let w =
f(z)

= $ + i^, and consider the two families

of curves in the w-plane defined by

(143-1) $(#, y} const. and (x, y) = const.

The orthogonality of the curves <i> = const, and ^ = const, in

the z-plane follows at once from the conformal properties of the

transformation by the analytic function /(z). For <f> = const.

and ^ = const, represent a net of orthogonal lines (Fig. 137)

$= const

- const

-X

FIG. 137.

parallel to the coordinate axes in the w-plane, and they are

transformed by the analytic function w = $ + i^ into a net of

orthogonal curves in the z-plane.

It is obvious then that every analytic function /(z)
= u(x, y) +

iv(x, y) furnishes a pair of real functions of the variables

x and y, namely, u(x, y) and v(x, y), each of which is a solution

of Laplace's equation. The functions u(x, y) and v(x, y) are

called conjugate functions, and the method of obtaining solutions

of Laplace's equation with the aid of analytic functions of a

complex variable is called the method of conjugate functions.

Example. The process of obtaining pairs of conjugate functions from

analytic functions is indicated in the following example. Let

then,

w - u + iv = sin z = sin (x + iy) ;

u + iv = sin x cos iy + cos x sin iy,

= sin x cosh y + i cos x sinh ?/,



143 COMPLEX VARIABLE 469

so that

u(x, y) = sin x cosh y,

v(x > y)
= cos x sinh y.

It is not difficult to show that the inverse of an analytic func-

tion is, in general, analytic. Thus, the solution of the equations

u = &(x, y) and v = W(x, y)

for x and y in terms of u and v furnishes one with a pair of

functions

x =
<p(u, v) and y =

\l/(u, v)

that satisfy Laplace's equation in which u and v are the inde-

pendent variables.

The following three sections are devoted to an exposition of

the method of conjugate functions as it is employed in solving

important engineering problems
*

PROBLEMS
1. Discuss the mapping properties of the transformations defined

by the following functions. Draw the families of curves u = const,

and v const.

(a) w = u-\-iv = z-\-a, where a is a constant;

(b) w =
bz, where b is a constant;

(c) w = bz + a, where a and b are constants;

(d) w = z 2
;

(e) w =
l/z.

2. Obtain pairs of conjugate functions from

(a) w = cos z-,

(b) w =
e*;

(c) w = z 3
;

(d) w = log z;

(e) w =
l/z.

* The material contained in Sees. 144 to 146 is extracted from a lecture on
conformal representation, which was delivered by invitation at the S. P. E. E.

Summer Session for Teachers of Mathematics to Engineering Students at

Minneapolis, in September, 1931, by Dr. Warren Weaver, director of the

Division of Natural Scien es of the Rockefeller Foundation, and formerly

professor of mathematics at the University of Wisconsin.

The authors did not feel that they could improve upon the lucidity and

clarity of Dr. Weaver's exposition of the subject and are grateful for his kind

permission to make use of the lecture, which was printed in the October,

1932, issue of the American Mathematical Monthly.
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144. Problems Solvable by Conjugate Functions. Specific

examples of the method of conjugate functions will be given later,

but it may be well to indicate here two general sorts of problems.

Suppose that an analytic function w = u + iv = f(z)
= f(x + ly)

maps a curve C of the 2-plane (see Fig. 138), whose equation

w-plom* z-plome

FIG. 138.

is y =
<p(x), onto the entire real axis v = of the w-plane.

will obviously occur if, and only if,

This

v[x, s 0.

Then the function

(z, y) s= v (x, y)

clearly is a solution of Laplace's equation that reduces to zero

on the curve C. In an important class of problems of applied

mathematics, one requires a solution of Laplace's equation that

reduces to zero, or some other constant, on some given curve.

Thus, one may, so to speak, go at such problems backward;

and, by plotting in the z-plane the curves u(x, y)
= const, and

v(x, y) = const., he finds for what curves C a given analytic

function solves the above problem. Similarly, one may inter-

change the roles of u, v and x, y and may plot in the w-plane the

curves x(u, v)
= const, and y(u, v)

= const. Thus a properly
drawn picture of the plane transformation indicates to the

eye what problems, of this sort, are solved by a given analytic

function. It must be emphasized that the picture must be
"
properly drawn"; that is, one requires, in one plane, the
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two families of curves obtained by setting equal to various con-

stants the coordinate variables of the other plane.

In a second and more general sort of problem, it is necessary

to obtain a solution <(#, y) of Laplace's equation which, on a

given curve C whose equation is y <p(x), reduces to some given

function <>*(#, y}. The previous problem is clearly a very special

case of this second problem. Suppose, now, that an analytic

function w =
f(z) map the curve C of the 2-plane onto the axis

of reals v = 0, of the w-plane. Since the curve C maps onto

v = in the w-plane, v[x, <p(x)] = 0, and the values of <* at

points on C are equal to the values of

**l*(u, 0), y(u, 0)] sfc.dO

at the corresponding points on the transformed curve v 0.

Suppose now that the function ^(w, v) be a solution of Laplace's

equation (u and v being viewed as independent variables), such

that

y(u, 0) ss $>*(u).

It is easily checked that

&(x, y}
= V[u(x, y), v(x, y}}

is a solution of Laplace's equation, x and y being viewed as

independent variables. Moreover,' on the curve C one has

*[*, v(x)] = *(w, 0)
= **(u) = **(*, y),

so that $ is the solution sought.

The chief service, in this case, of the method of conjugate

functions, is that the form of the boundary condition is much

simplified. Rather than seeking a function that takes on

prescribed values on some curve C, one has rather to find a func-

tion that takes on prescribed values on a straight line, namely,
the axis of abscissas. This latter problem is so much simpler
than the former that it can, indeed, be solved in general form for

a very general function <!>,. This solution will be referred to

later, in Sec. 146c.

145. Examples of Conformal Maps. As a preparation for the

consideration of applications, this section will present six specific

instances of the conformal mapping of one plane on another.

The examples chosen are not precisely those which one would
select if, building up from the simplest cases, one were to study
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the mathematical theory in detail. The examples are chosen

for their characteristic features and because of their important
and direct applications. The first case is:

a. The Transformation w = zm
j
m a Positive Integer. If one

write both z and w in polar form, so that

then

and

z = re 1

*,

w = Re 1

*,

w == Re 1* = zm = rmeim<p
,

R = r,
<$> = m<p.

Thus the curve r = const, in the 2-plane (that is, a circle about

the origin) transforms into a curve R = const, in the w-plane

FIG. 139.

(also a circle about the origin), the radius of the circle in the

w-plane being equal to the rath power of the radius of the circle

in the 2-plane. Also, a radial line <p
= const, in the z-plane

transforms into a new radial line 3> = const., the amplitude angle
for the transformed radial line being ra times the amplitude

angle of the original radial line. Thus, a sector of the 2-plane
of central angle 27r/ra is "fanned out" to cover the entire w-plane,
this sector also being stretched radially (see Fig. 139, drawn for

ra = 3). One notes the characteristic feature that a set of

orthogonal curves in one plane transform into a set of orthogonal
curves in the other plane.
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This example suggests several interesting questions which
cannot be discussed here. The "

angle-true
"

property clearly

does not hold at the origin, which indicates that this point
deserves special study. Further, it is clear that only a portion
of the 2-plane maps onto the entire w-plane. In the case for

which the figure is drawn, it would require three w-planes, so to

speak, if the entire 2-plane were to be unambiguously mapped.
This consideration leads to the use of many-sheeted surfaces,

called Riemann surfaces. Such questions and apparent diffi-

culties correctly indicate that a thorough knowledge of the mathe-

matical theory of analytical functions is essential to a proper
and complete understanding of even simple instances of conformal

representation.
1

To get a clear idea of the way in which the 2-plane maps onto

the w-plane, one may choose various convenient families of curves

in one plane and determine the corresponding curves in the other

plane. The resulting picture, as was mentioned earlier, does not

give any indication of the immediate physical applications of the

transformation in question unless one of the sets of curves, in

one plane or the other, consists of the straight lines parallel to the

coordinate axes. It should thus be clear that Fig. 139 does not

give a direct indication of the type of problem immediately
solvable by the transformation w = z 3

. The curves in the

w-plane obtained by setting x const, and y = const, are, in

fact, cubic curves; and no simple physical problem is directly

solved by this transformation. This transformation may, how-

ever, be used to solve various physical problems for a wedge-

shaped region, since the bounding curve C of such a wedge

(say the line <p
= and the line <p

=
7r/3) is transformed into

a curve C' of the w-plane that consists of the entire real axis.

Thus the transformation can be used, in the way indicated in

Sec. 144, to solve problems in which one desires a solution of

Laplace's equation that reduces to a given function (or a con-

stant) on the boundary of a wedge.

H)
6. The Transformation w = - ~ ~* This again is a trans-

1 BIEBERBACH, L., Einfuhrung in die konforme Abbildung, Berlin, 1927;

LEWENT, L., Conformal Representation, London, 1925; OSGOOD, W. F.,

Lehrbuch der Funktionentheorie, vol. 1, Chap. XIV.
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formation that does not have immediate applicability. It has,

however, interesting features, and subsequent discussion will

indicate how it may be made to serve a practical purpose.

FIG. 140.

If, as before, one write z in the polar form re 1

*, then

w = u + iv = z)

"27

so that

1 ( JL
l\ _L ' ! ( l\ '=

2 V V
C S * + Z

2 V
~
V

Sm ^

I/ i AW =
2 V r/

C S 9|

Thus, ^ and r being eliminated in turn,

cos 2
<p sin 2

2
~

4'

= 1.

From these equations, it follows by inspection that the circles

r = const, of the 2-plane transform into a family of ellipses of

the w-plane (see Fig. 140), the ellipses being confocal, since
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V
+

r)
~
V

~~

r)
" 4 =

It is also clear that two circles of reciprocal radii transform into

the same ellipse. Similarly, the radial lines <p
= const, of the

z-plane transform into a family of hyperbolas which, again, arc

confocal, since

cos 2
<f> + sin 2

<?
= 1 = const.

Thus the exterior of the unit circle of the z-plane transforms

into the entire w-plane. The unit circle itself "flattens out"

to form the segment from 1 to + 1 of the real axis of the w-plane.

All larger circles are less strenuously "flattened out" and form

ellipses, while the radial lines of the z-plane form the associated

confocal hyperbolas of the w-plane. A similar statement can be

made for the inside of the unit circle.

c. The Transformation w = e
z

. If one set w ss Re 1* and

z = x + iy, then

Re 1* = e*+ * v = e
x - elv

,

so that
7? = ex

,

$ =
y.

It is thus clear that vertical lines of the z-plane map into circles

of the w-plane, the radius being greater or less than 1, accord-

ing as # is positive or negative. Horizontal lines of the z-plane,

on the other hand, map into the radial lines of the w-plane, and

it is clear that any horizontal strip of the z-plane of height 2ir

will cover the entire w-plane once (see Fig. 141).

The curves in the w-plane of Fig. 141 are drawn by setting

equal to a constant one or the other of the coordinates of the

z-plane. Thus these curves give direct indication of physical

problems to which this analytic function may be applied. For

example, one could obtain the electrostatic field due to a charged

right circular cylinder, the lines of flow from a single line source

of current or liquid, the circulation of a liquid around a cylindrical

obstacle, etc.

By considering this example in conjunction with the preceding

example, one gives new significance to Fig. 140. In fact, if one

starts with the z-plane of Fig. 141 and then uses the w-plane of

Fig. 141 as the z-plane of Fig. 140, it is clear that the curves

drawn in the w-plane of Fig. 140 then are obtainable by setting
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equal to various constants the coordinates of the 2-plane of

Fig. 141. That is to say, the w-plane curves of Fig. 140 give
direct evidence of physical problems that can be solved by the

pair of transformations

d. The Transformation w = cosh z. If, in the two preceding

equations, one eliminates the intermediate variable z\ (so he may

' _J_L_ I L-

w-plane

Z-plane

Fia. 141

pass directly from the 2-plane of Fig. 141 to the w-plane of Fig.

140), the result is

J_ e
~z

w = = cosh z.

Thus

u -J- iv = cosh (x + iy)
= cosh x cosh iy + sinh x sinh iy f

= cosh x cos y + i sinh x sin y,

so that
u = cosh x cos y
v = sinh x sin y,

or
^.2 ..2

=
1,cosh 2 # sinh 2 x

u2 v*

cos 2 sin 2
y
= 1.
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This transformation is shown in Fig. 142, and it may be used to

obtain the electrostatic field due to an elliptic cylinder, the

electrostatic field due to a charged plane from which a strip has

been removed, the circulation of liquid around an elliptical

cylinder, the flow of liquid through a slit in a plane, etc.

The transformation from the z-plane to the w-plane may be
described geometrically as follows: Consider the horizontal strip
of the 2-plane between the lines y = and y =

TT; and think

of these lines as being broken and pivoted at the points where
x = 0. Rotate the strip 90 counterclockwise, and at the same

2 -plane

FIG. 142.

time fold each of the broken lines y = and y = ir back on itself,

the strip thus being doubly "fanned out" so as to cover the

entire w-plane.

e. The Transformation w = z + ez
. One has

so that

u + iv = x + iy + ex+lv
,

= x + iy + e
x
(cos y + i sin y),

u = x + ex cos y,

v = y + e
x sin y.

This transformation is shown in Fig. 143. If one considers the

portion of the z-plane between the lines y =
TT, then the portion

of the strip to the right of x = 1 is to be "fanned out" by
rotating the portion of y = +1 (to the right of x =

1) counter-

clockwise and the portion of y = 1 (to the right of x =
1)

clockwise until each line is folded back on itself. This trans-
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formation gives the electrostatic field at the edge of a parallel

plate condenser, the flow of liquid out of a channel into an open

sea, etc.

/. The Schwartz Transformation. The transformations just

considered are simple examples and are necessarily very special

in character. . This list of illustrations will be concluded by a

FIG. 143.

*Z *3

x-p1one

*4 5

w-plome

Fio. 144

more general transformation. Suppose one has (see Fig. 144) a

rectilinear polygon, in the w-plane, whose sides change direction

by an angle aw when one passes the ith vertex, going around the

boundary of the polygon so that the interior lies to the left.

The interior of this polygon can be mapped onto the upper
half 3-plane by the transformation

w dz

<-
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where i, s*,
'

, Sn are the (real) points, on the #-axis of the

2-plane, onto which map the first, second, ,
nth vertex

of the polygon, and where A and B are constants which are to be

determined to fit the scale and location of the polygon. Three

of the points zl may be chosen at will, and the values of the

remaining ones may be calculated.

This theorem may be used to find, for example, the analytic

transformation that solves the problem of determining the

electrostatic field around a charged cylindrical conductor of any

polygonal cross section. It should be noted, however, that one

requires for this purpose the function y(u, v), whereas the

theorem gives one w as a function of z. It is often exceedingly
difficult and laborious to solve this relation for z as a function of

w, so that one may obtain the function y. It should further be

remarked that this theorem may be applied to polygons some
of whose vertices are not located in the finite plane and that

the theorem is of wide applicability and importance in connec-

tions less direct and simple than the one just mentioned.

146. Applications of Conformal Representation, a. Applica-
tions to Cartography. It is natural that a mathematical theory
which discusses the "mapping'' of one plane on another should

have application to the problems connected with the drawing of

geographic maps. Since the surface of a sphere cannot be made

plane without distortion of some sort, one has to decide, when

mapping a portion of the sphere on a plane, what type of distor-

tion to choose and what to avoid. For some purposes, it is

essential that areas be represented properly; for other purposes,

it is most important that the angles on the map faithfully repre-

sent the actual angles on the sphere.

The first problem, in conveniently mapping a sphere on a plane,

is to map the sphere on the plane in some fashion or other and

then, if this fashion be unsatisfactory, to remap this plane onto a

second plane. The first problem can be done in a wide variety
of ways 1 which include, as important examples, stereographic

projection and Mercator's projection. Both these examples
are conformal projections, in that they preserve the true values

of all angles. Having once mapped the sphere on the plane

(or on a portion of the plane), one may now remap onto a second

1 The Encyclopaedia Britannica article on maps lists and discusses nearly

thirty such projections actually used in map making.
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plane, and it is here that the theory of conformal representation

finds its application ;
for one can determine the analytic function

that will conformally remap the original map onto a new region

of any desired shape and size. Not only are all angles preserved
in this process of conformal remapping, but the distortion in the

neighborhood of a point is always a pure magnification. Thus

the shapes of all small objects or regions are preserved. Such

maps do not give a true representation of areas, and for this rea-

son many maps are based on compromises between conformal

transformations and area-preserving transformations.

b. Applications to Hydrodynamics. When the velocities of all

particles of a moving liquid lie in planes parallel to one plane
that we may conveniently choose as the xy-p\&ue and when
all particles having the same x and y have equal velocities, then

the motion is said to be two-dimensional. Such cases clearly

arise if a very thin sheet of liquid is flowing in some manner over

a plane or if a thick layer of liquid circulates over a plane, there

being no motion and no variation of motion normal to the plane.

Let the x- and ^-components of velocity at any point (x, y) be u

and y, respectively. The motion is said to be irrotational if the

curl of the velocity vector vanishes. Analytically, this demands
that

dy
~~

dx

whereas physically it states that the angular velocity of an

infinitesimal portion of the liquid is zero. The equation just

written assures that

(u dx + v dy)

is the perfect differential of some function, say 4>. This function

is known as the velocity potential, since by a comparison of the

two equations
d$ = u dx v dy,

dx + dy,dx dy
yy

it follows that

/m*i\
(146-1)

Now, if the liquid be incompressible, the amount of it that

flows into any volume in a ,given time must equal the amount



146 COMPLEX VARIABLE 481

that flows out. This demand imposes on the components of

velocity the restriction that

dx dy
'

this being known as the equation of continuity. From the last

two equations, it follows that

d 2
<l> d 2

<l>

f.

d?/

_ 4. = v 2$ =
r\ 9 I f. n - v ^* ^^ V/.

2 2

That is, the velocity potential satisfies Laplace's equation.

Just as the vanishing of the curl of the velocity demands that

u dx + v dy be an exact differential, so the equation of continuity

demands that v dx u dy be an exact differential of some func-

tion, say ty. That is,

d^f = v dx u dy,

d* , ,
3V jd* = -dx + -dy,

so that

(146-2) = *
u = - .

6x dy

From (146-1) and (146-2), it follows at once that

d$d* ,d$<M
dx dx

+
dy dy

7

which expresses the geometric fact that the curves $ = const.

and ^ = const, intersect everywhere orthogonally. It is clear

from (146-1) that there is no component of velocity in the

direction of the curves on which <l> is a constant, so that the veloc-

ity of the liquid is everywhere orthogonal to the equipotential

curves $ = const. That is, the curves ^ = const, depict

everywhere the direction of flow. For this reason, ^ is called

the stream function and the curves ^ = const, are called the

stream lines. From (146-2) and the vanishing of the curl of

the velocity, it follows that the stream function ^ is also a solu-

tion of Laplace's equation.

Thus, the velocity potential $ and the stream function ^
in the case of the irrotational flow of a perfect incompressible

liquid both satisfy Laplace's equation, and the curves & = const.
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and ^ = const, form two orthogonal families. Every analytic

function therefore furnishes the solution to four such problems,
the four solutions resulting from the fact that one may choose

the pair x, y or the pair u, v as independent variables, and that

one may interchange the roles of the potential function and the

stream function. Figure 142, for example, indicates two of

the four problems solved by the analytic transformation w =
cosh z. If one treats u and v as the independent variables and

identifies the (solid) curves y(u, v)
= const, in the w-plane

with the curves <f> = const., then the dotted curves x(u, v)
=

ty = const, give the stream lines, and one has solved the prob-

lem of the circulation of liquid around an elliptic cylinder. If,

however, one sets y(u, v)
= & and x(u, v)

= <, then the solid

curves of the w-plane are the stream lines, and one has solved

the problem of the flow of liquid through a slit. The other two

problems solved by this same function are to be obtained by
drawing, in the 2-plane, the curves u(x, y)

= const, and v(x, y) =
const, and identifying ^ and $ with u and

t;,
and vice versa.

The 2-plane curves u = const, and v = const, are very com-

plicated and do not correspond to any simple or important

physical problem, and hence they are not drawn on the figure.

In fact, it is usually the case that only two of the possible four

problems are sufficiently simple to be of any practical use.

It should be emphasized that it is never sufficient, in obtaining
the analytical solution of a definite physical problem, merely
to know that certain functions satisfy Laplace's equation.

One must also have certain boundary conditions. The graphs
shown above disclose to the eye what physical problem has been

solved precisely because they show what sort of boundary condi-

tions are satisfied. For example, if the dotted curves of Fig. 142

are stream lines, then the problem solved is the circulation around

an elliptical obstacle just because these dotted stream lines

satisfy the boundary condition for such a problem; namely,
because the flow at any point on the boundary of the obstacle is

parallel to the boundary of the obstacle.

It is interesting to note that this same transformation w =
cosh z (or, slightly more generally, w = a cosh z) can be used to

solve a hydrodynamic problem of a different sort. When liquid

seeps through a porous soil, it is found that the component in

any direction of the velocity of the liquid is proportional to the
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negative pressure gradient in that same direction. Thus, in a

problem of two-dimensional flow,

If these values be inserted in the equation of continuity, namely,
in the equation

the result is

0.

Suppose, then, one considers the problem of the seepage flow

under a gravity dam which rests on material that permits such

seepage. One seeks (see Fig. 145) a function p that satisfies

624/p
-=-_=

P'Po

FIG. 145.

Laplace's equation and that satisfies certain boundary conditions

on the surface of the ground. That is, the pressure must be

uniform on the surface of the ground upstream from the heel of

the dam and zero on the surface of the ground downstream

from the toe of the dam. If we choose a system of cartesian

coordinates u, v with origin at the midpoint of the base of the

dam (Fig. 145) and w-axis on the surface of the ground, then

it is easily checked that p(u, v)
= pvy(u, v)/*, where

w = u + iv = a cosh (x + iy),
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satisfies the demands of the problem. In fact, it was seen in

Sec. 145d, where the transformation w = cosh z was studied,

that the line y = TT of the 2-plane folds up to produce the portion

to the left of u = 1 of the ^-axis in the w-plane, and the line

y = of the z-plane folds up to produce the portion to the right

of u = +1 of the u-axis. The introduction of the factor a

in the transformation merely makes the width of the base of the

dam 2a rather than 2. These remarks show that p(u, v) reduces

to the constant TT on the surface of the ground upstream from the

heel of the dam. If the head above the dam is such as to produce
a hydrostatic pressure po, one merely has to set

P(U, v)
=

71

One may now easily find the distribution of uplift pressure across

the base of the dam. In fact, the base of the dam is the repre-

sentation, in the i^-plane, of the line x = 0, ^ y ^ TT, of the

:n/-plane. Hence, on the base of the dam the equations

u = a cosh x cos y,

v = a sinh x sin y

reduce to

u = a cos y,

v = 0,

so that

p(u, 0)
= cos" 1

TT a

This curve is drawn in the figure. The total uplift pressure

(per foot of dam)
/+a

PO I= I

TT J-a

17
cos" 1 - du =

which is what the uplift pressure would be if the entire base of

the dam were subjected to a head just one-half the head above the

dam or if the pressure decreased uniformly (linearly) from the

static head pQ at the heel to the value zero at the toe. The point

of application of the resultant uplift is easily calculated to be

at a' distance b = 3a/4 from the heel of the dam.

c. Applications to Elasticity. If opposing couples be applied
to the ends of a right cylinder or prism of homogeneous material,
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the cylinder twists and shearing stresses are developed. Choose

the axis of the prism for the z-axis of a rectangular system of

coordinates. The angle of twist per unit length, say r, and the

shearing stresses, due to an applied couple T, can both be cal-

culated if one can determine a function <(#, y) satisfying Laplace's

equation and reducing, on the boundary of a section of the prism,

to the function 3>* = (x* + y*)/2. In fact,
1

where

C = 2(7 JJ ($
-

$*) do: dy,

in which (? is the modulus of rigidity of the material, whereas the

shearing stresses are given by

X, = G

1

/ \

\ /

Exact analytical solutions of

this important technical problem
i. u i_x j r i FIG. 146.
nave been obtained ior several

simple sections, notably circular, elliptical, rectangular, and tri-

angular.
2

Only recently
3 the problem was solved for an infinite

T section (see Fig. 146). From the general discussion given in

Sec. 144, it is clear that, to solve this latter problem, one requires

first an analytic function that will map the boundary of this T
section onto the entire real axis of the new w-plane. This sec-

tion, moreover, is a rectilinear polygon, so that one can use the

Schwartz transformation theory to produce the desired analytic

relation. One finds that the desired mapping is carried out by
the function

1
LOVE, A. E. H., Theory of Elasticity, 3d ed., pp. 315-333, 1920.

2
TRAYER, W., and H. W. MARCH, The Torsion of Members Having Sec-

tions Common in Aircraft Construction, Bur. Aeronautics Navy Dept.,

Separate Rept. 334; also contained in Nat. Adv. Comm. Aeronautics, loth

Ann. Rept., 1929, pp. 675-719.
3 SOKOLNIKOFF, I. S., On a Solution of Laplace's Equation with an Appli-

cation to the Torsion Problem for a Polygon with Reentrant Angles, Trans.

Amer. Math. Soc., vol. 33, pp. 719-732.
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A C (W
2 -

1)*S i_ D
Z = A I 7 9 v- O^ -H #,

J (^
2 - a 2

)

d. x .= - log (u> +

where the first line is furnished directly by the Schwartz theorem

and where, in the second line, the constants a, A, B have been

evaluated so as to fit the dimensions and location of the T
section.

It is next necessary to break z up into its real and imaginary parts

so as to obtain x and y as functions of u and v. These values,

when substituted into

give, because v = on the boundary of the section, the function

**[*(u, 0), y(u, 0)] s *,(*).

The remaining essential step is to obtain a function ^(u, v)

satisfying Laplace's equation and reducing, on the axis of

reals v = 0, to the function $#(u). Such a function is
1

TT -oo P
2 - 2pcos0+ {*'

where

w = u + z'y = pe*
e

.

The solution to the original problem is then given, as was earlier

indicated in S"ec. 144, by < = ^. It is obviously a difficult and

laborious job to carry out these calculations, but formulas have

been obtained, in the paper referred to, from which practical

calculations can be made.

d. Applications to Electrostatics. The methods of complex
variable theory are peculiarly applicable to two-dimensional

electrical problems. In order that the problems be two-dimen-

sional, we shall understand that the conductors under considera-

tion are exceedingly long cylinders whose axes are normal to the

z = x + iy plane. Under these circumstances the various

1
SOKOLNIKOFF, I. S., On a Solution of Laplace's Equation with an Appli-

cation to the Torsion Problem for a Polygon with Reentrant Angles, Trans.

Amer. Math. Soc., vol. 33, pp. 71&-732. This formula is the general solution,

spoken of in Sec. 144, of Laplace's equation subject to specified boundary
values on the entire axis of abscissas.
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electrical quantities do not change appreciably in the direction

normal to the 2-plane, and one has to determine these quantities

as functions of x and y only. In certain problems, one or more
of the conductors present will have very small cross sections and
will be given a charge of, say e

f

per unit length. Such a con-

ductor will be called a line charge of strength e
f

.

The electrostatic problem for such conductors is solved when
one has obtained a function $(x, ?/), known as the electrostatic

potential, satisfying the following conditions: 1

(a) V 2* = ^-^ 4- -- =
d* 2 + dw2

(146-3)

at all points in free space.

(6) <1> reduces, on the surface of the kth conductor,
to a constant 3>fc.

(c) In the neighborhood of a line charge of strength
e

f

,
$ becomes infinite as

e' log r

2^
'

where r measures distance to the line.

(d) $ behaves at infinity as

log R2e'
27~~'

where Se' is the total charge per unit length of all

conductors present and where R measures distance

from some reference point in the finite plane. In

case Se' =
0, $ approaches zero as 1/R.

It is readily shown, by standard methods, that the solution of

such a problem is unique. This remark is of great practical

importance, since it assures one that a function < satisfying these

conditions is, however it may have been obtained, the correct

solution of the physical problem.

Physically one wishes to know the distribution of charge and

the electrostatic force at any point. These data may be obtained

1 See MASON, M., and W. WEAVER, The Electromagnetic Field, pp. 134, 146,

1929; and REIMANN-WEBER, Die Differentialgleichungen der Physik, vol. 2, p.

290, 1927. The units used in the above discussion are the rational units

used in Mason and Weaver, loc. cit.
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from the function $ in the following manner: The component Ea

in any direction s of the electrostatic force per unit charge is

given in terms of < by the relation

and the surface density of charge 77 on any conductor is given by

77 = )

dn

where n measures distance along the external normal to the

conductor in question.

Now if

w = u + iv = f(z)
= f(x + iy)

and if the function

$(.?, y)
= u(x, y)

satisfies condition (146-3), then

jP _ d< du _ dv

the last step following from the Cauchy-Riemann equations

(135-6). Similarly

v
dy dy dx

Thus,

the last step resulting from the fundamental fact that the value

of the derivative of an analytic function w is independent of the

mode in which z approaches zero. Now the complex number
a ib is called the

"
conjugate" of the complex number a + ib

and one often denotes a conjugate by a bar, thus:

a ib = a + bi.

With this standard notation, the "complex electric force"

E SE Ex + iEy is given by

(146-4) E m E, + iEy = - ?,
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and the magnitude \fEl + El of the electrostatic force at any

point is given by

*=~
If one chooses $ s v(x, y), then (146-4) and (146-5) are

replaced by

(146-6) E = Ex + iEy = -i ^>

(146-7) VW+ El = dw
Tz

Three types of electrostatic problems will now be briefly

considered. The first and simplest two-dimensional electrostatic

problem is that of a single long cylindrical conductor with a given

charge. One then seeks a function that satisfies Laplace's

equation and, in accordance with (146-3)6, reduces to a constant

on the curve that bounds a section of the conductor. This is

the analytical problem whose solution was indicated in Sec. 144.

One requires a function w = u + iv = f(z)
= f(x + iy) such

that either a vertical straight line u = const, or a horizontal

straight line v = const, of the w-plane maps into the bounding
curve C of the conductor's section in the 2-plane. Then <(z, y)

= u(x, y) or $(x, y) = v(x, y) solves the problem, and the

physically important quantities are given by (146-4), (146-5)

or by (146-6), (146-7), respectively.

Secondly, suppose that a single long cylindrical conductor is

in the presence of a parallel line charge of strength e
f

'. We
suppose the line charge to be outside the conductor. Let C
be the bounding curve in the 2-plane of a section of the conduc-

tor, and let the line charge be located at z = ZQ. We may
conveniently suppose the cylindrical conductor to be grounded,
so that we seek a solution of Laplace's equation that reduces

to zero on C and becomes infinite as indicated in (J46-3)c at

z = z . Let f = f(z) transform C onto the entire axis of reals

and the exterior of C conformally upon the upper half f-plane.

Then if

the function 3> ss u(x, y) is the solution sought. In fact, for

values of z sufficiently close to 20, f(z) f(zo) behaves, except for
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a constant factor, as (z ZQ). Thus, if one writes

then, for values of z very near to 2
,

e' 1 e' 1 e'0
10 = 14 -|- iv = log -r -f- A =

pr log i p: ~\~ A,
2?r re ZTT r &TT

where A remains finite as z = ZQ. Therefore,

where B remains finite as z = ZQ . Thus u(x y y) has the proper

type of infinity at z = 2 . Furthermore, for points z on C,

/() is on the axis of reals in the f-plane, so that the modulus of

/(z) fM equals the modulus of f(z) /(ZQ). Hence the

modulus of

/(>-/(*>)
is unity. However, since

log pe'*>
= log p + zV,

it is clear that the real part of the logarithm of a complex quantity
is the logarithm of the modulus of the complex quantity. Since

the logarithm of unity is zero, it is clear that u vanishes on C.

As regards the behavior of u(x, y) at infinity, one notes that u

is the logarithm of the ratio of the (real) distances of f = f(z) to

f o
=

/(ZQ) and to f =
/(ZQ). As z becomes infinite, this ratio

differs from unity by an amount whose leading term is equal to

or less than a constant times_the reciprocal distance from f(z)

to one of the points /(z ) or/(2 ). Thus the leading term in the

logarithm of this ratio is a constant times this reciprocal distance;

and $ = u behaves at o in the required manner.

'In the third type of problem there are two conductors present,

one raised to the potential <f>o while the other is at a potential

zero. Thus, suppose that the cross section of two long cylindrical

conductors consists of two curves Co and Ci, such as those shown
in Fig. 147, which do not intersect at a finite point but which,
if one takes account of the intersection of BI and B and of AQ
and A i at z = <, divide the extended plane into two simply
connected regions, one of which may be called the "interior"

and the other the "exterior" of the closed curve C + Ci. Now
suppose that f = f(z} maps Co onto the entire negative axis of
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reals in the f-plane, with the infinitely distant point along B Q

mapped onto f = 0, that f = f(z) also maps C\ onto the entire

positive axis of reals with the infinitely distant point along

BI mapped onto f = 0, and that f = /(z) maps the interior of

Co + Ci conformally on the upper half f-plane. Then, if

w = u + w = -
log/(z),

7T

the function $ =
v(x, y) satisfies V 2

<l> = at every point in the

interior of C + Ci, reduces to zero on Ci, and reduces to <f> on C .

AO

4"plan

FIG. 147.

In fact, the imaginary part of the logarithm of a complex number
is merely the amplitude of the complex number; and for points

on Co, f(z) has an amplitude of TT, while for points on Ci, f(z) has

an amplitude of zero. Then,
ds

dw
___ $o dz

Hz
~~

7/60'

and the electrostatic force is given by (146-5) and (146-7).

This third type of problem is of frequent and important

practical occurrence. Many electrical engineering problems
that have been solved by this method of conformal representa-

tion are referred to in an expository article, devoted largely to

the Schwarz transformation, by E. Weber. 1 In an earlier article

in the same journal,
2 for instance, the theory of conformal

representation is applied to the problem of studying the leakage

voltage and the breakdown potential between the high- and low-

potential portions of oil-immersed transformers. The cases

studied come under the third type of problem discussed above.
1 WEBER, E., Archiv fur Elektrotechnik, vol. 18, p. 174, 1926.
2
DREYFUS, L., Archiv fUr Elektrotechnik, vol. 13, p. 123, 1924.



CHAPTER XI

PROBABILITY

There is no branch of mathematics that is more intimately
connected with everyday experiences than the theory of proba-

bility. Recent developments in mathematical physics have

emphasized anew the great importance of this theory in every
branch of the physical sciences. This chapter sets forth the bare

outline of those fundamental facts of the theory of probability
which should form a part of the minimum equipment of every
student of science.

147. Fundamental Notions. Asking for the probability or

for a measure of the happening of any event implies the possi-

bility of the non-occurrence of this event. Unless there exists

some ignorance concerning the happening of an event, the

problem does not belong to the theory of probability. Thus, the

question "What is the probability that New Year's day in 1984

will fall on Monday?" is trivial, inasmuch as this question can

be settled by referring to a calendar. On the other hand, the

query "What is the probability of drawing the ace of hearts

from a deck of 52 cards?" constitutes a problem to which the

theory of probability gives a definite answer. In fact, one can

reason as follows: Granting that the deck is perfect, one card is

just as likely to appear as any other and, since there are 52 cards,

the chance that the ace of hearts will be drawn is 1 out of 52.

The words "just as likely," used in the preceding sentence, imply
the existence of the ignorance that is essential to remove any
problem 'of probability from triviality. The term "equally

likely," or "just as likely," applied to a future event that can

happen or fail to happen in a certain number of ways, indicates

that the possible ways are so related that there is no reason for

expecting the occurrence of any one of them rather than that of

any other.

If an event can happen in N ways, which are equally likely,

and if, among these N ways, m are favorable, then the probability
492
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of the occurrence of the event in a single trial is

m
P-y

Thus, the probability that the six will appear when a die is

thrown is ^, since the total number of ways in which a die can

fall is 6, and of these six ways only one is favorable. The proba-

bility of drawing a heart from a deck of 52 cards is J^, since there

are 13 hearts and the total number of equally likely ways in

which a card can be drawn is 52.

It is clear that, if an event is certain to happen, then the

probability of its occurrence is 1, for all the possible ways are

favorable. On the other hand, if an event is certain not to occur,

the probability of its occurrence is zero. It is clear also that, if

the probability of the happening of an event is p, then the proba-

bility of its failure to happen is

q = 1 - p.

The concept of
"
equally likely

"
plays a fundamental role in the

theory of probability. The need for caution and a careful

analysis of the problem will be illustrated by several examples.

Let two coins be tossed simultaneously. What will be the

probability that they both show heads? The following reasoning

is at fault. The total number of ways in which the coins can fall

is three, since the possible combinations are two heads, two tails,

and a head and a tail. Of these three ways, only one is favorable,

and therefore the probability is J^. The fault in this reasoning

lies in the failure to account for all the equally likely cases.

The number of ways in which one head and one tail can fall is

two, since the head can appear on the first coin and the tail on

the second, or the head can appear on the second coin and the

tail on the first. Thus, the total number of equally likely ways is

4, and the probability of both coins showing heads is J^. The

probability of one head and one tail showing is %, so that a head

and a tail are twice as likely to appear as either two heads or 'two

tails.

Another example may prove useful. Suppose that a pair of

dice is thrown. What is the probability that a total of eight

shows? The total number of ways in which two dice can fall

is 36. "(This follows from the fundamental principle of com-
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binatory analysis: if one thing can be done in m different ways and

another thing can be done in n different ways, then both things can

be done together, or in succession, in mn different ways.) The sum
of 8 can be obtained as follows: 2 and 6, 3 and 5, 4 and 4.

Now, there are two ways in which 2 and 6 can fall: 2 on the

first die and 6 on the second, and vice versa. Similarly, there are

two ways in which 3 and 5 can fall, but there is only one way in

which 4 and 4 can fall. Hence, the total number of equally likely

and favorable cases is 5, so that the desired probability is %e-
The two foregoing examples were solved simply by enumer-

ating all the possible and all the favorable cases. Frequently,

such enumeration is laborious and it is convenient to resprt to

formulas. Thus, let it be required to find the probability of

drawing 4 white balls from an urn containing 10 white, 4 black,

and 3 red balls. The number of ways in which 4 white balls

can be c'hosen from 10 white balls is equal to the number of com-

binations of 10 things taken 4 at a time, namely,

10!
lot-4 =

4!6!

The total number of ways in which 4 balls can be chosen from the

17 available is

_
17/4 ~

4T13!'

Hence, the probability of success is

_ 10^4 _ 10! 4! 13! _ _8_P ~~

17C 4

~
4! 6! 17!

~
34'

Another example will illustrate further the use of formulas.

Suppose that it is desired to find the probability of drawing 4

white, 3 black, and 2 red balls from the urn in the preceding
illustration. In this case the number of ways in which 4 white

balls can be drawn is ioC4; the 3 black balls can be chosen in

4Ca ways; and the 2 red ones in 3^2 ways. An application of the

fundamental principle of combinatory analysis gives the required

probability as

ioC4 4C 3 3C2 _ 252
P

17C 9

~
2431'
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PROBLEMS

1. What is the probability that the sum of 7 appears in a single

throw with two dice? What is the probability of the sum of 1 1 ? Show
that 7 is the more probable throw.

2. An urn contains 20 balls: 10 white, 7 black, and 3 red. What is

the probability that a ball drawn at random is red? White? Black?

If 2 balls are drawn, what is the probability that both are white? If

10 balls are drawn, what is the probability that 5 are white, 2 black, and

3 red?

148. Independent Events. A set of events is said to be

independent if the occurrence of any one of them is not influenced

by the occurrence of the others. On the other hand, if the

occurrence of any one of the events affects the occurrence of the

others, the events are said to be dependent.

THEOREM 1. // the probabilities of occurrence of a set of n

independent events are pi, p 2 , , pn ,
then the probability that

all of the set of events will occur is p = pipz
*

p n .

The proof of this theorem follows directly feom the fundamental

principle. Thus, let there be only two events, whose probabilities

of success are

mi , w2

PI = TT and pz = -rp

The total number of ways in which both the events may succeed

is mim 2 ,
and the total number of ways in which these events can

succeed and fail to succeed is NiN*. Hence, the probability of

the occurrence of both of the events is

mi m2

p =
NWl

=
Fi

' F2

Obviously, this proof can be extended to any number of events.

Illustration. A coin and a die are tossed. What is the

probability that the ace and the head will appear? The proba-

bility that the ace will appear is J^, and the probability that the

head will appear is J^. Therefore, the probability that both

head and ace will appear is

THEOREM 2. // the probability of occurrence of an event is p\

and if, after that event has occurred, the probability of occurrence
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of a second event is pz, then the probability of occurrence of both

events in succession is p\p%.

The proof of this theorem is similar to that of Theorem 1 and

will be left to the student. Obviously, the theorem can be

extended to more than two events.

Illustration 1. What is the probability that 2 aces be drawn
in succession from a deck of 52 cards? The probability that an

ace will be drawn on the first trial is ^2- After the first ace

has been drawn, the probability of drawing another ace from the

remaining 51 cards is %i, so that the probability of drawing 2

aces is

Hi =

Illustration 2. What is the probability that the ace appears
at least once in n throws of a die? The probability of the ace

appearing in a single throw of the die is Y, and the probability

that it will not appear is %. The probability that the ace will

not appear in n successive throws is

Hence, the probability that the ace will appear at least once is

Illustration 3. An urn contains 30 black balls and 20 white

balls. What is the probability that (a) A white ball and a

black ball are drawn in succession? (6) A black ball and a white

ball are drawn in succession? (c) Three black balls are drawn
in succession?

a. The probability of drawing a white ball is 2%$. After a

white ball is drawn, the probability of drawing a black ball is

3%g. Hence, the probability of drawing a white ball and a black

ball in the order stated is

P =

b. The probability of drawing a black ball is 3%o> and the

probability that the second drawing yields a white ball is

so that

P = 3%0 ' 2%9 = %
c. The probability of drawing 3 black balls in succession is

P =
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Illustration 4. The probability that Paul will solve a problem
is Y, and the probability that John will solve it is %. What is

the probability that the problem will be solved if Paul and John

work independently?
The problem will be solved unless both Paul and John fail.

The probability of John's failure to solve it is ^ and of PauPs

failure to solve it is %. Therefore, the probability that Paul

and John both fail is

M-H = H,

and the probability that the problem will be solved is

i - H = M-

PROBLEMS
1. What is the probability that 5 cards dealt from a pack of 52 cards

are all of the same suit?

2. Five coins are tossed simultaneously. What is the probability

that at least one of them shows a head? All show heads?

3. What is the probability that a monkey seated before a typewriter

having 42 keys with 26 letters will type the word sir?

4. If Paul hits a target 80 times out of 100 on the average and John

hits it 90 times out of 100, what is the probability that at least one of

them hits the target if they shoot simultaneously?

6. The probability that Paul will be alive 10 years hence is %, and

that John will be alive is %. What is the probability that both Paul

and John will be dead 10 years hence? Paul alive and John dead?

John alive and Paul dead?

149. Mutually Exclusive Events. Events are said to be

mutually exclusive if the occurrence of one of them prevents the

occurrence of the others. An important theorem concerning such

events is' the following:

THEOREM. The probability of the occurrence of either one or

the other of two mutually exclusive events is equal to the sum of the

probabilities of the single events.

The proof of this theorem follows from the definition of proba-

bility. Consider two mutually exclusive events A and B.

Inasmuch as the events are mutually exclusive, A and B cannot

occur simultaneously and the possible cases are the following: (a)

A occurs and B fails to occur, (6) B occurs and A fails to occur,

(c) both A and B fail. Let the number of equally likely cases in

which (a) A can occur and B fail be a, (6) B can occur and A fail

be 0, (c) both A and B fail be y.
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Then the total number of equally likely cases is a + ft + y.

The probability that either A or B occurs is

a + /3

a + ft + y

the probability of occurrence of A is

a

a + ft + y

and the probability of occurrence of B is

Therefore, the probability of occurrence of either A or B is equal

to the sum of the probabilities of occurrence of A alone and of

B alone. Obviously, this theorem can be extended to any
number of mutually exclusive events.

The task of determining when a given set of events is mutually
exclusive is frequently difficult, and care must be exercised that

this theorem is applied only to mutually exclusive events. Thus,
in Illustration 4, Sec. 148, the probability that either Paul or

John will solve the problem cannot be obtained by adding

J^ and %, for solution of the problem by Paul does not elimi-

nate the possibility of its solution by John. The events in this

case are not mutually exclusive and the theorem of this section

does not apply.

Illustration 1. A bag contains 10 white balls and 15 black

balls. Two balls are drawn in succession. What is the proba-

bility that one of them is black and the other is white?

The mutually exclusive events in this problem are : (a) drawing
a white ball on the first trial and a black on the second; (6)

drawing a black ball on the first trial and a white on the second.

The probability of (a) is l% 5
' ^4 and that of (b) is ^5 i%4 ,

so that the probability of either (a) or (6) is

Illustration 2. Paul and John are to ertgage in a game in

which each is to draw in turn one coin at a time from a purse

containing 3 silver and 2 gold coins. The coins are not replaced
after being drawn. If Paul is to draw first, find the probability
for each player that he is the first to draw a gold coin.
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The probability that Paul succeeds in drawing a gold coin

on the first trial is %. The probability that Paul fails and John

succeeds in his first trial is

The probability that Paul fails, John fails, and then Paul suc-

ceeds is

The probability that Paul fails, John fails, Paul fails again, and

John succeeds is

% M H % = Ho,

for after three successive failures to draw a gold coin there

remain only the two gold coins in the purse and John is certain

to draw one of them. Therefore, Paul's total probability is

% + H = H
and John's probability is

Ho + Ho = %.

PROBLEMS
1. One purse contains 3 silver and 7 gold coins; another purse con-

tains 4 silver and 8 gold coins. A purse is chosen at random, and a

coin is drawn from it. What is the probability that it is a gold coin?

2. Paul and John are throwing alternately a pair of dice. The first

man to throw a doublet is to win. If Paul throws first, what is his

chance of winning on his first throw? What is the probability that

Paul fails and John wins on his first throw?

SfOn the average a certain student is able to solve 60 per cent of

the problems assigned to him, If an examination contains 8 problems
and a minimum of 5 problems is required for passing, what is the

student's chance of passing?
4. Two dice are thrown; what is the probability that the sum is either

Tor 11?

5. How many times must a die be thrown in order that the prob-

ability that the ace appear at least once shall be greater than % ?

6. Twenty tickets are numbered from 1 to 20, and one of them is

drawn at random. What is the probability that the number is a

multiple of 5 or 7? A multiple of 3 or 5?

Note that in solving the second part of this problem, it is incorrect to

reason as follows: The number of tickets bearing numerals that are

multiples of 3 is 6, and the number of multiples of 5 is 4. Hence, the
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probability that the number drawn is either a multiple of 3 or of 5 is

+ ^o =
. Why?

publishing concern submits a copy of a proposed book to three

independent critics. The odds that a book will be reviewed favorably

by these critics are 5 to 4, 4 to 3, and 2 to 3. What is the probability

that a majority of the three reviews will be favorable?

8. If on the average in a shipment of 10 cases of certain goods 1 case

is damaged, what is the probability that out of 5 cases expected at least

4 will not be damaged?

150. Expectation. The expectation of winning any prize is

'defined as the value of the prize multiplied by the probability

of winning it. Let it be required to determine the price one

should pay for the privilege of participating in the following

game. A purse contains 5 silver dollars and 7 fifty-cent pieces,

and a player is to retain the two coins that he draws from the

purse. It can be argued fallaciously as follows: The mutually
exclusive cases are (a) 2 dollar coins, (6) 2 half-dollar coins, (c)

1 dollar coin and 1 half-dollar coin. Therefore, the values of

the prizes are $2, $1, and $1.50, and the fair price to pay for the

privilege of participating is $1.50. But, the probability of

obtaining (a) is

^ _ 5^2 _ 5
Pa ~ ^2

~
33'

that of obtaining (b) is

and that of obtaining (c) is

f^ 7

Pb
= ^ =

22'

= 5.7 = 35

12(^2 66

Hence, the expectation of obtaining (a) is

6a = 2 %3
=

0.30,

that of obtaining (b) is

e&
= 1 % 2

=
0.32,

and that of obtaining (c) is

cc
= 1.50 3% 6 = 0.80.

It follows that the total expectation is

$0.30 + $0.32 + $0.80 = $1.42,

instead of $1.50.
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PROBLEMS

1. A batch of 1000 electric lamps is 5 per cent bad. If 5 lamps are

tested, what is the probability that no defective lamps appear? What
is the chance that a test batch of 5 lamps is 80 per cent defective? What
is a fair price to pay for a batch of 500 such lamps if the perfect ones can

be bought for 10 cts. each?

2. What is a fair price to pay for a lottery ticket if there are 100

tickets and 5 prizes of $100 each, 10 prizes of $50 each, and 20 prizes of

$5 each?

3. What is the expected number of throws of a coin necessary to

produce 3 heads?

151. Repeated and Independent Trials. Frequently it is

required to compute the probability of the occurrence of an

event in n trials when the probability of the occurrence of that

event in a single trial is known. For example, it may be required

to find the probability of throwing exactly one ace in 6 throws

of a single die. The possible mutually exclusive cases are as

follows:

(1) An ace on the first throw, and none on the remaining 5

throws.

(2) No ace on the first throw, an ace on the second, and no

aces on the remaining 4 throws.

(3) No ace on the first 2 throws, an ace on the third, and no

aces on the last 3 throws.

(4) No aces on the first 3 throws, an ace on the fourth, and no

aces on the last 2 throws.

(5) No aces on the first 4 throws, an ace on the fifth, and no

ace on the last throw.

(6) No aces on the first 5 throws, and an ace on the last throw.

The probability of the occurrence of (1) is

since the probability of throwing an ace on the first trial is %
and the probability that the ace will not appear on the succeeding

5 throws is (%)
5

. The probability of (2) is

the probability of (3) is
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and it is clear that the probability of any one of the 6 specified

combinations is

Since the cases are mutually exclusive, the probability that some

one of the 6 combinations will occur is

P = 6 - H -W = (%)
5

It should be observed that the probability of obtaining any
combination of 1 ace and 5 not-aces is always the same, so that in

order to obtain the probability of occurrence of one of the set of

mutually exclusive cases all that is necessary is to multiply the

probability of the occurrence of any specified combination by the

number of distinct ways in which the events may occur. This

leads to the formulation of an important theorem which is

frequently termed the binomial law.

THEOREM 1 (Binomial Law). // the probability of occurrence

of an event in a single trial is p, then the probability that it will occur

exactly r times in n independent trials is

Pr
= nCrp

r
(l
~ pY"

'

where

c - -iLnCr ~
r\(n

-
r)!'

The method of proof of this theorem is obvious from the

discussion of the specific case that precedes the theorem. The

probability that an event will occur in a particular set of r

trials and fail in the remaining n r trials is p
r
(l p)

n~r
.

But since the number of trials is n, the number of ways in which

the event can succeed r times and fail n r times is equal to the

number of the combinations of n things taken r at a time, or

n\
nv-T

r\(n r)!

Hence the probability of exactly r successes and n r failures is

(151-1} P'
-

r\(n-r)\
^ ~ ">~

Illustration 1. What is the chance that the ace will appear

exactly 4 times in the course of 10 throws of a die?
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Formula (151-1) gives

_ 10! /1V M" _ 656,250_
4 ~

4l6! \fi

~
60,466,170

~

Illustration 2. Ten coins are tossed simultaneously. What is

the chance that exactly 2 of them show heads?

Here

If in the example at the beginning of this section it had been

required to determine the probability that the ace would appear
at least once in the course of the 6 trials, the problem would be

solved with the aid of the following argument: The ace will

appear at least once if it appears exactly once, or exactly twice,

or exactly three times, and so on. But the probability that it

appears exactly once is

PI = .C

exactly twice,

p 2
=

6

exactly three times,

etc. These compound events are mutually exclusive, so that the

probability of the ace appearing at least once is the sum of the

probabilities

Pi, P2, Pa,
' ' '

, Pe.

The general theorem, which includes this problem as a special

case, is the following.

THEOREM 2. // the probability of the occurrence of an event

on a single trial is p, then the probability that the event will occur

at least r times in the course of n independent trials is

P>r = P
n + nClp

n~ l

q + *C 2p- 2
g
2 + + nCn-rp

r
q
n-r

,

where q = 1 p.

It should be noted that nCr
= nCn-r is the coefficient of p

r in the

binomial expansion for (p + g)
n and that p^ r is equal to the sum

of the first n r + 1 terms in the expansion for (p + q)
n

.

Illustration 3. The probability that at least 2 of the coins

show heads when 5 coins are tossed simultaneously is

= PAY + 6
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The first term of this sum represents the probability of exactly 5

heads, the second represents that of exactly 4 heads, the third

that of exactly 3 heads, and the last represents that of exactly

2 heads.

PROBLEMS

1. If 5 dice are tossed simultaneously, what is the probability that

(a) exactly 3 of them turn the ace up? (6) At least 3 turn the ace up?
2. If the probability that a man aged 60 will live to be 70 is 0.65, what

is the probability that out of 10 men now 60, at least 7 will live to be 70?

3. A man is promised $1 for each ace in excess of 1 that appears in 6

consecutive throws of a die. What is the value of his expectation?
4. A bag contains 20 black balls and 15 white balls. What is the

chance that at least 4 in a sample of 5 balls are black?

5. Solve Prob. 3, Sec. 149.

162. Distribution Curve. Some interesting and useful con-

clusions can be deduced regarding the formula for repeated

independent events from the consideration of an example that

presents some features of the general case. Consider a purse
in which are placed 2 silver and 3 gold coins, and let it be required

to determine the probability of drawing exactly r silver coins

in n repeated trials, the coin being replaced after each drawing.
The probability of exactly r successes in n trials is given by the

binomial law [see (151-1)]

Pr = nCrp
r
(l
~

p)***,

where p, the probability of drawing a silver coin on a single trial
,

is %.
If the number of drawings is taken as n =

5, the probability

that none of the drawings yields a silver coin is

Po = 6Co(%) (9s)
6 = 0.07776,

the probability that 5 trials yield exactly 1 silver coin is

Pi
= 6<7i(%)(^)

4 = 0.2592,

and the probability that exactly 2 silver coins will appear is

P2 = 6C2(%)
2
(%)

3 = 0.3456.

In this manner, it is possible to construct a table of the values

that represent the probabilities of drawing exactly 0, 1, 2, 3, 4, 5

silver coins in 5 trials. Such a table, where the values of pr are

computed to four decimal places, is given next.
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PROBABILITY OF EXACTLY r SUCCESSES IN 5 TRIALS

It will be observed that r = 2 gives the greatest, or "most

probable," value for pr ,
which seems reasonable in view of the

fact that the probability of drawing a silver coin on a single trial

is % and one would "
expect" that 2 silver coins should result

from 5 repeated drawings.

If the number of trials is n =
10, the formula

Pr
=

lo

gives the following set of probabilities for 0, 1, 2, 3, ,
10

successes.

PROBABILITY OF EXACTLY r SUCCESSES IN 10 TRIALS

Again it appears that the most probable number of successes in n

trials is equal to the probability of success in a single trial

multiplied by the number of trials.

If a similar table is constructed for n = 30, the resulting proba-

bilities are as shown below.

PROBABILITY OF EXACTLY r SUCCESSES IN 30 TRIALS
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In this table the entry 0.0000 is made for < r < 2 and for

r > 23 because the values of pr were computed to four decimal

places, and in these cases pr was found to be less than 0.00005.

For example, the probability of drawing exactly 1 silver coin in

30 trials is

Pi = 30(%)(%)
29 = 0.00000442149,

and the probability of drawing exactly 23 silver coins in 30 trials

is

p23 = 3oC23(%)
23
(%)

7 = 0.000040128.

Therefore, for all values 23 < r <
30, the values of pr are less

than 0.00005 and must be recorded as 0.0000.

Just as in the foregoing tables, the most probable number is

equal to %n
> although the probability of drawing exactly 12

Pr

2 4 6 8 10 12 14 16 18 20 22 24

FIG. 148.

silver coins, 0.1474, is less than the probability of drawing the

most probable number of silver coins in the case of 10 trials.

These tabulated results can be more conveniently represented
in a graphical form, where the values of r are plotted as abscissas

and the values of pr as ordinates. Such graphs are known as

distribution charts (Fig. 148).

An alternative method of graphical representation is obtained

by erecting rectangles of unit width on the ordinates which

represent the probabilities pr of occurrence of r successes. Since

the width of each rectangle is unity, its area is equal, numerically,
to the probability of the value of r over which it is erected. In

such graphs the vertical lines are not essential to the interpreta-
tion of the graph and hence are omitted. The resulting broken
curve constitutes what is known as a distribution curve. The
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area under each step of the curve represents the value of pr ;

and the entire area under the distribution curve is unity, for it

represents the sum of the probabilities of 0, 1, 2, ,
n suc-

cesses. Such curves, corresponding to the distribution charts

(Fig. 148), are drawn in Fig. 149.

It appears that, as the number of drawings, n, is increased, the

probability of obtaining the most probable number of silver coins

decreases. Moreover, there is a greater spread of the chart as

the number of trials is increased, so that the probability of missing
the most probable number by more than a specified amount
increases with the increase in the number of drawings.

03

02

1

n-10

012345 01 23456789 10

n-30

10 12 14 16

FIG. 149.

18 20 2Z 24 26 r

The following observations will serve to clarify the last state-

ment. In the case of 5 trials the probability of missing the

most probable number of successes by 5 is zero, for the deviation

from the most probable number 2 cannot be greater than 3.

But in the case of 10 trials the probability of missing the most

probable number by this same amount has a definite non-zero

value. Thus, in order to miss the most probable number 4

by 5, r must be either 9 or 10. Hence, the probability of missing

4 is 0.0016 + 0.0001 = 0.0017. In the case of 30 trials the

most probable number of successes is 12; and, in order to miss

12 by 5, r must be less than 8 or greater than 16. Therefore the

probability of missing 12 by 5 is the sum

30

X Pr + X Pr = 0.0914.

If the number of drawings n is made 1,000,000, the most probable
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number of successes is 400,000, and the probability of missing it

by 5 is very nearly unity. On the other hand, the probability

of obtaining the most probable number 400,000 is a very small

quantity.

The important facts obtained from the foregoing considerations

are the following:

1. The most probable number of successes appears to be equal
to pn.

2. The probability of obtaining the most probable number of

successes decreases with the increase in the number of trials n.

3. The probability of missing the most probable number by a

specified amount increases with the increase in the number of

trials.

It can be established that the last two facts, inferred from the

special example, are true in general. The first fact, concerning
the size of the most probable number, clearly is meaningless if

pn is not an integer. Thus, if the number of drawings is n 24

and p = %, then pn 4%. It can be shown in general that the

most probable number is pn, provided pn is an integer; otherwise,

the most probable number is one of the two integers between

which pn lies. In fact, the following is the complete statement

of the theorem:* The most probable number of successes is the

greatest integer less than np -{-p. If np + p is an integer, there

are two most probable numbers, namely, np + P and np + p 1.

Since p < I, it is clear that the most probable number of successes

is approximately equal to np. This number np is called the

"expected" number of successes.

PROBLEM

A penny is tossed 100 times. What is the most probable number of

heads? What is the probability of this most probable number of

heads? If the penny is tossed 1000 times, what is the probability of the

most probable number of heads?

153. Stirling's Formula. The binomial law (151-1), on which

the major portion of the theory of probability is based, is exact,

but it possesses the distinct disadvantage of being too com-

plicated for purposes of computation. The labor of computing
the values of the factorials that enter in the term nCr becomes

* For proof and further discussion see T. C. Fry, Probability and Its Engi-

neering Uses, Chap. IV.
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prohibitive when n is a large number. Accordingly, it is desirable

to develop an approximation formula for n!, when n is large.

An asymptotic formula, which furnishes a good approximation
to n!, was developed by J. Stirl- y t

ing. By an asymptoticformula
is meant an expression such

that the percentage of error

made by using the formula as

an approximation to n \ is small

when n is sufficiently large, j k-1 k
whereas the error itself increases

with the increase in n. It will be
Fl0' 15 *

indicated that for values of n greater than 10 the error made in

using Stirling's formula*

(153-1) n\ ~ nne~n

is less than 1 per cent.

Consider the function y = log x, and observe that, for k

log x dx > HHog (k
-

1) + log fc],

2,

since the right-hand member represents the trapezoidal area

formed by the chord (Fig. 150) joining the points P and Q on the

curve y log x. Denote the area between the chord and the

curve by a*, so that

+ an).

(153-2) J;fc
_ i

log x dx = ^[log (fc
-

1) + log k] + ak .

Setting k =
2, 3, ,

n in (153-2) and adding give

|
log x dx = K(log 1 + log 2) + H(lg 2 + log 3) +

+ /^[log (n 1) + log n] + (a2 + a 3 +
Integrating the left-hand member and combining the terms of the

right-hand member give
n

n log n n + 1 = log n\ Yi log n + ^ o.

Hence,

(153-3) log n! = (n + ^) log n - n + 1 - ^ at .

* The symbol ~, which is read "
asymptotically equal to," is used instead

of = to call attention to the fact that the formula is asymptotic.



510 MATHEMATICS FOR ENGINEERS AND PHYSICISTS 153

Since each at is positive, it follows that

log nl < (n + Y^) log n - n + 1,

and hence

(153-4) nl < e \/n nne~n .

The expression on the right of the inequality (153-4) is, therefore,

an upper bound for nl

To get a lower bound, solve (153-2) for &, perform the integra-

tion, and obtain

(153-5) a*

Now, since the integrand is non-negative,

f* A iY
(153-6) (

-
f )

dx > 0,
Jk-i \x k)

and the evaluation of (153-6) leads to the formula

1 _*_ <
2k ~ l

Ki J. juK/\fc L)

By the use of this inequality, (153-5) gives

1 1 /_!ak
4k(k

~-
1) 4 \A;

- 1

Hence,

By means of this result and (153-3), one obtains

log nl > (n + Yd log n - n + 1 - y,
whence

(153-7) nl > e^ \/n nne~n
.

Combining (153-4) and (153-7) furnishes the inequality*

e^ \/n nne~ n < nl < e -\/n nne~n
,

for all values of n > 1. Since e =
2.718, e* =

2.117, and

\/25r = 2.507, it follows that

n I c^ nne~n \/27rn.

* The derivation of this result is given by P. M. Hummel, in Amer. Math.

Monthly, vol. 47, p. 97, 1940.
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It is possible to obtain a sharper lower bound for n\ by. using

the integral*

(153-8)' f* [-~
j^-i L

instead of (153-6).

To gain some insight into the accuracy of this formula, note

that (153-1) gives for n = 10 the value 3,598,696, whereas the

true value of 10! is 3,628,800. The percentage of error in this

case is 0.8 per cent. Forn = 100, (153-1) gives 9.524847 X 10 157
,

whereas the true value of 100! is 9.3326215 X 10 157
,
so that the

percentage of error is 0.08. It is worth noting that, even for

n =
1, the error is under 10 per cent and that for n = 5 it is in

the neighborhood of 2 per cent.

PROBLEM

Make use of (153-8) in order to show that

e'Ma -y/^ nne~n < n!, if n > 1,

and compare the value of e
1 ^ 2 with that of \/2ir.

154. Probability of the Most Probable Number. It was

mentioned in Sec. 152 that the most probable number of successes

is either equal, or very nearly equal, to the expected number
e = np. Very often it is desirable to compute the probability

of the expected or the most probable number of successes. Of

course, p can be computed from the exact law by substituting

in it r = np, but formula (151-1) is cumbersome to use when
factorials of large numbers appear in nCr . An approximate
formula can be obtained by replacing n\ and (np)! by their

approximate values with the aid of Stirling's formula. It is

readily verified that, when these replacements are made, the prob-

ability of the most probable number of successes is approximately

where q 1 p. It must be kept in mind that (154-1) is

subject to the same restrictions as (153-1) and gives good results

for np ^ 10.

* See problem at the end of this section.
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Thus, if a die is tossed 100 times, the most probable number of

aces is 16. The exact formula gives

whereas the approximation (154-1) gives

p" = =
-309 -

The percentage of error is quite small.

PROBLEMS
1. Two hundred and fifty votes were cast for two equally likely can-

didates for an office. What is the probability of a tie?

2. What is the most probable number of aces in 1200 throws of a die?

What is the probability of the most probable number?

3. Solve, with the aid of the approximate formula, the problem at the

end of Sec. 152.

155. Approximations to Binomial Law. With the aid of

formula (153-1), it is possible to devise various formulas approxi-

mating the binomial law (151-1). One of these approximations

is known as the Poisson formula or the law of small numbers.

The wide range of applicability of this law can be inferred from

the fact that it has been used successfully in dealing with such

problems as those of beta-ray emission, telephone traffic, trans-

mission-line surges, and the expected sales of commodities. The

law of small numbers gives a good approximation to (151-1) in

those problems in which r is small compared with the large number

n, and p represents the probability of occurrence of a rare event in a

single trial.

Replacing n\ and (n r)! in (151-1) with the aid of Stirling's

formula (153-1) leads to

uss-n ~ o^i - >(1551) p,____p(l p)

=
, V-r+H/' ^

4 ~
;)

By hypothesis, r is small compared with n, so that
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is very nearly equal to

which,
* for large values of n, differs little from e~r

. Similarly,

(1
_ p)-r

-
(1
_ p)^

which in turn is nearly equal to e~Mp
,
since

(1
-

p) = 1 - np + ^~^-}

p -

and
o
2/rj2

e
- P = 1 - np + -~

2y
-

.

The substitution of e~r for

and e~np for

in (155-1) leads to the desired law of small numbers,

(\ tt 9"\ T>
^nV) p np

(LOO-*) Pr
r j

e ".

Formula (155-2) is frequently written in a slightly different

form. It will be recalled that the expected number of successes

is e = np, so that (155-2) can be written

= 6^ _ e

r\

An application of this law to some specific cases may prove

interesting. Suppose that it is known that, on the average, in a

large city two persons die daily of tuberculosis. What is the

probability that r persons will die on any day? In this case the

expected number of deaths is c = 2, so that

r
= - e~ 2

r\

* Note that lim (1 + l/n)
rt = e. For a rigorous discussion, see I. S.

n * oo

Sokolnikoff, Advanced Calculus, pp. 28-31.
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Therefore,

A glimpse into the accuracy of this law can be gained by con-

sidering the following example.

Example. What is the probability that the ace of spades will be

drawn from a deck of cards at least once in 104 consecutive trials? This

problem can be solved with the aid of the exact law (151-1) as follows:

The probability that the ace will not be drawn in the 104 trials is

Po = =
0.133,

and the probability that the ace will be drawn at least once is 1 0.133
= 0.867. On the other hand, Poisson's law (155-2) gives for the prob-

ability of failure to draw the ace

e ' f/ ./'O

Hence, the probability of drawing at least one ace of spades is 1 e~*

= 0.865.

Another important approximation to the binomial law (151-1),

namely,
n\

(155-3) Pr
=

r\(n
-

r)!
p

r
q
n

where q = 1 p, is obtained by assuming that r, n, and n r

are all large enough to permit the use of the Stirling formula.

Replacing n!, r!, and (n r)! by Stirling's approximations

gives, upon simplification,

r(n
-

r)

Let 5 denote the deviation of r from the expected value np;
that is,

8 = r up.

Then,
n r = nq 6,
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and (155-4) becomes

\ f

or

v (np+8)

(,
\

i + JL)np/
where

A =

Then,

log prA = -(np + 6) log ( 1 +
J
-

(nq
-

5) log ( 1 - -V

Assuming that \d\ < npq, so that

< 1 and
np nq

permits one to write the two convergent series

log (i + A) = A - * + *'

\ nP/ nP 2n 2
p

2 3r

and

Hence,

logy
2npq

Now, if \d\ is so small in comparison with npq that one can

neglect all terms in this expansion beyond the first and can

replace A by \/2irnpq, then there results the approximate
formula

(155-5) Pr =
*

e~^*,
\f2irnpq

which bears the name of Laplace's, or the normal, approximation.
Since the maximum value of the exponential e~x

,
for x ^ 0, is

unity, it follows that the normal approximation gives for the

probability that r will assume its most probable value the same
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value as was obtained in Sec. 154. It is obvious that the normal

approximation gives best results when p and q are nearly equal.

If the mean error a is defined

by the formula

0- = \/npq,

then (155-5) assumes the form

151.
pr
= I - e

and the graph of p r as a function of d is a bell-shaped curve

(Fig. 151), known as the normal distribution curve.*

PROBLEMS
1. What is the probability of throwing an ace with a die exactly 10

times in 1200 trials?

2. A wholesale electrical dealer noticed that a shipment of 10,000

electric lamps contained, on the average, 20 defective lamps. What is

the probability that a shipment of 10,000 lamps is 1 per cent defective?

3. In a certain large city, on the average, two persons die daily of

cancer. What is the probability of no persons dying on any day? One

person dying? Two? Three? Four? Five?

4. Two dice are tossed 1000 times. What is, approximately, the

probability of getting a sum of 4 the most probable number of times?

5. What is the approximate probability that a sum of 4 will appear
500 times in a set of 1000 tosses?

156. The Error Function. Let wi, ra2 , ,
mn be a set of n

measurements, of some physical quantity, that are made inde-

pendently and that are equally trustworthy. If the best estimate

of the value of the measurements is m, then the "
errors" in

individual measurements are

m, xn = mn m,Xi = mi m, #2 =

and the sum of the errors is

(156-1) xi + Xz + + xn = (mi + m2 + + mn)
- mn.

If it is assumed that on the average the positive and negative
errors are equally balanced, then their sum is zero, and (156-1)

becomes

mn = mi + w2 + + mn

* For a detailed discussion see T. C. Fry, Probability and Its Engineering
Uses.
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or

(156-2) m =
IV

It is important to note that the best value m is the arithmetic

average of the individual measurements when it is assumed that

the positive and negative errors are equally likely. In per-

forming a set of measurements, not all the errors xl are equally

likely to occur. In general, large errors are less likely to occur

than small ones. For instance, the probability of making an

error of 1 ft. in measuring the length of a table is less than that

of making an error of 1 in.

Let the probability of making an error xl be denoted by
<p(xi). The assumption that positive and negative errors are

equally likely to occur de-

mands that
* x

which states that <p(x) is an

even function. Further-

more, the hypothesis that

small errors are more likely

to occur than large ones re-

quires <p(x) to be a decreasing function for x >
0; and since

infinitely large errors cannot occur,

*(>) = 0.

These observations lead to the conclusion that the function

<p(x), which gives the probability of occurrence of the error #,

must have the appearance shown in Fig. 152, where the errors xl

are arranged in order of increasing magnitude. Upon recalling

the fact that the ordinates represent the probability of occurrence

of an error of any size x, it is clear that the area under this curve

from oo to + oo must be unity, for all the errors are certain

to lie in the interval ( <, oo). Hence,

/as <p(x) dx = 1.
-

Moreover, the probability that the error lies between the limits

Xt and t + A# is equal to the area bounded by curve y =
<p(x),
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the ordinates y = x l and y = x l + A#, and the x-axis, which is

equal to the value of the integral

r dx.

By hypothesis the measurements ra t were made independently,

so that the probability of simultaneous occurrence of the errors

Xi, xt, ,
xn is equal to the product of the probabilities of

occurrence of the individual errors, or

(156-3) P =
<P(XI}<P(X*} <p(xn)

= <p(m\ m)(p(mz m) <p(mn m).

The expression (156-3) is a function of the best value m, in which

the functional form of <p is not known. Now, if it be assumed

that the best value m is also the most probable value, that is, the

value which makes P a maximum, then it is possible to determine

the functional form of <p by a method due to Gauss. In other

words, it is taken as a fundamental axiom that the probability

(156-3) is a maximum when m is the arithmetic average of the

measurements mi, m^ ,
mn > But if (156-3) is a maximum,

its logarithm is also a maximum. Differentiating the logarithm
of (156-3) with respect to m and setting the derivative equal to

zero give

M r,A A\ <i - m) <p'(mz
- m) <p'(m n

~ m)
( 1 00-4 )

,
---r H---

f
--

r- + ' ' '

H--y
--r = 0.

<f>(m>i
~

in) <p(mz m) <p(mn m)

n

This equation is subject to the condition 2 a:t
= 0.

t = i

If

<p'(m t m)
<p(m t m)

is set equal to F(x t ), (i
=

1, 2, , n), Eq. (156-4) can be

written as

(156-5) F(XI) + F(x*) + - - + F(xn)
=

n

with S #t = 0. If there are only two measurements, (156-5)

reduces to

=
0,
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with Xi + xz = 0, or #2 = #i. Therefore,

F(xi)+F(-xi) =
0,

or

(156-6) F(x) = -F(-x).

Similarly, if there are only three measurements, then

Ffa) + F(xt) + F(x 9)
=

0,

with xi + 2 + #3 = 0. Therefore,

But, from (156-6),

and since x$ x\ + #2,

F(*0 + f (s,)
= F(Xl + x,).

Differentiating this expression partially with respect to x\ and
leads to

F'(xJ = F^rci + x>) and

or

(156-7) F'(xi) = F'(x*).

Since x\ and x% are independent, (156-7) can be true only if

*"(a*) =
c,

so that

F(XI) = cxi and F(x*) = co;2 .

Recall that, by definition,

so that the differential equation for <p is

which, upon integration, gives

(156-8) q>(x)

where K and c are arbitrary constants.
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One of these constants can be determined at once, for it is

known that

*(x) dx = 1.

The substitution of <p(x) in this integral gives

K f e~h^dx =
1,J oo

where h 2 ^ c/2.

This integral can be evaluated by means of a procedure similar

to that used in Sec. 81. Set

and then

f >j r *s
I* = e~* dx e-y dy

Jo Jo

= f f e-^^dxdy
Jo Jo

rl r
I I

Jo Jo

w
e~ r

~r dr d<p = 7;
4

where the last step results from the transformation of the double

integral into polar coordinates and has been described in Sec.

81. Hence,
f* /

I = e~*
z

dx = !
Jo *

But

K f* e-^dx = 2K f e~h^ dx =
1,J- oo JO

so that
1 J, Z,

X =,-
e~h2** dx 2 e~h2* 2

d(hx)

Thus, (156-8) can be written as

(156-9) v(x]
-**

which is called the Gaussian law of error. The undetermined

constant A, as will be seen in the next section, measures the

accuracy of the observer and is known as the precision constant.
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It is easy to verify the fact that the choice of <p, specified by
(156-9), gives a maximum for the product (156-3) when the sum
of the squares of the errors is a minimum. In fact, since # =
m l m

y (156-3) becomes

._ f
* Y

-h* 2-

and the maximum value of P is clearly that which makes the

sum of the squares of the errors a minimum.

In order to verify the assumption that the choice of the

arithmetic average for the best value leads to the least value for

the sum of the squares of the

errors, all that is necessary is

to minimize

x,
2 -

2) (ro.

The theory of errors based

upon the Gaussian law (156-9)

is often called the theory of

least squares,

157. Precision Constant.

Probable Error. In the pre-

ceding section, it was established that the probability of commit-

ting an error of magnitude x is given by the ordinate of the curve

FIG. 153.

- e~y =

This curve is called the probability curve. Clearly, the proba-

bility of an error lying in the interval between x and

x +e is equal, numerically, to the area bounded by the proba-

bility curve (Fig. 153), the ordinates x = and x = +, and

the x-axis. If only the absolute value of the error is of interest,

then the probability that the absolute value of the error does not

exceed is

2h /

V^ Jo
e~h

*x *

dx.

If hx is set equal to t, this integral assumes the form
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2 /*=
^Jo

'

which shows that P is a function of Ae, and, for a fixed value of

,
P increases with A. For large values of A, the probability

curve decreases very rapidly from its maximum value, h/\/w
at x =

0, to very small values, so that the probability of making

large errors is very small. On the other hand, if h is small, the

probability curve falls off very slowly so that the observer is

almost as likely to make fairly large errors as he is to make
small ones. For this reason the constant A is known as the pre-

cision constant.

That particular error which is just as likely to be exceeded as

riot is called the probable error. More precisely, the probable

error is that error e which makes P =
}^, or

e~tz dt.

An approximate solution of this equation can be obtained by

expanding e~ tz in Maclaurin's series, integrating the result term

by term, and retaining only the first few terms of the resulting

series.* The solution, correct to four decimal places, found by
this method is

he = 0.4769,

so that the probable error is 0.4769/A. It is commonly denoted

by the letter r.

In addition to the probable error, the mean absolute error and

the mean square error are of importance in statistics. The mean
absolute error is defined as

XOO
xe-hW fa _ 0.5643

I <vr> /*-*- fiw

v,
and the mean square error is defined as

_.
__ 2h

x & --
V*

C
2 fc ,x , 7 _ 1

x e ax
^Tg-

Jo 2h

It will be observed that the mean absolute error is the z-coordi-

nate of the center of gravity of the area bounded by the proba-

*See Prob. 3, at the end of this section.
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bility curve and the positive coordinate axes, and that the

square root of the mean square error is the radius of gyration of

that area about the y-axis.

The values of these mean errors can actually be computed for

any set of observations. Thus,

w t m
11 n n

so that

(157-1) h = -

P

Also,

n

V (m,
- m

n "n 2h 2
'

so that h computed from this equation is

(157-2) h = J r

Vz 2
\/2

These two expressions for the precision constant give a means of

computing h for any set of observation data. The two values of

h cannot be expected to be identical; but unless there is a fair

agreement between them, experience indicates that the data are

not reliable. The value of -y/x 2 = "

*s commonly called the

standard deviation, and it follows from the foregoing that the

probable error is equal to 0.6745<r.

PROBLEMS

1. Evaluate the integral J Q
e~^ dt by expanding the integrand in

series, and show that

f*X r 3 r 5 r7 T9

jC^-'-^n + s^-T^ + Ai-*
where R < a?

u
/1320.

2. The expression for the probability integral given in the preceding

problem is not suitable for computation purposes when x is large. But
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C
x

e-t* dt = f
*

er<
2
dt - f er<

2
<&

JO JO Jx

Show, by integrating by parts, that

f* 2J fl SJ e-*Yi ]

Jx '-"*-J, F'-'^-W^-S-'

and thus obtain an asymptotic expansion for the probability integral

that can be used to compute its value when x is large. Also, show that

the asymptotic series

r* , i V* e-*
2
r 1,1-3 1-3-5, n

Jo ^^^-^L 1 "^w~ wr + ' *

J

gives a value for the integral which coffers from its true value by less

than the last term which is used in the series.

3. Show, with the aid of Homer's method, that the value of the

probable error is

0.4769

4. Compute the probable errors for the following set of observation

data:

mi =
1.305, ra 2

=
1.301, w 3

=
1.295, m* =

1.286,

m 5
=

1.318, w6
=

1.321, ra 7
=

1.283, w 8
=

1.289,

m 9
=

1.300, WIQ =
1.286,

by using (157-1) and (157-2).

5. With reference to Prob. 4, what is the probability of committing an

error whose absolute value is less than 0.03?

6. Two observers bring the following two sets of data, which repre-

sent measurements of the same quantity:

Which set of data is the more reliable?

7. Discuss the problem of a rational way of proportioning the salaries

of two observers whose precision constants are hi and hz.



CHAPTER XII

EMPIRICAL FORMULAS AND CURVE FITTING

An empirical formula is a formula that is inferred by some
scheme in an attempt to express the relation existing between

quantities whose corresponding values are obtained by experi-

ment. For example, it may be desired to obtain the relation

connecting the load applied to a bar and the resulting elongation
of Hie bar. Various loads are applied, and the consequent

elongations are measured. Then, by one of the methods to be

given in this chapter, a formula is obtained that represents the

relationship existing between these two quantities for the

observed values. With certain restrictions, this formula can

then be used to predict the elongation that will result when an

arbitrary load is applied.

It is possible to obtain several equations of different types
that will express the given data approximately or exactly.

The question arises as to which of these equations will give the

best "fit" and be most successful for use in predicting the results

of the experiment for additional values of the quantities involved.

If there are n sets of observed values then, theoretically at least,

it is possible to fit the given data with an equation that involves

n arbitrary constants. What would be the procedure if it were
desired to obtain an equation representing these data but

involving less than n arbitrary constants? Questions of this

type will be considered in the succeeding sections.

158. Graphical Method. The graphical method of obtaining
an empirical formula and curve to represent given data is prob-

ably already somewhat familiar to the student from elementary
courses. It is particularly applicable when the given data can
be represented by equations of the three types

(1) y = mx + 6
; (2) y = a + bxn

; (3) y = kamx .

If the corresponding values (x*, y v) of the given data are

plotted on rectangular coordinate paper and the points thus
525
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plotted lie approximately on1

a straight line, it is assumed that

the equation

y = mx + b

will represent the relationship. In order to determine the values

of the constants m and 6, the slope and ^-intercept may be read

from the curve, or they can be determined by solving the two

simultaneous equations

y\
= mxi + b, 2/2

= mx* + b

obtained by assuming that any two suitably chosen points

(xi, ?/i) and (#2, 2/2) lie on the line. Obviously the values of m
and b will depend upon the judgment of the investigator regard-

less of which method is used for their determination.

Consider the equation

y = a + bxn
.

If the substitution x n = t is made, then the graph of y = a + bt

is a straight line and the determination of a and b is precisely

the same as in the preceding case. In the special case y = bxn
,

taking logarithms on both sides gives

log y = log b + n log x,

which is linear in log y and log x and gives a straight line on

logarithmic paper. The slope of this line and the intercept on the

log i/-axis can be read from the graph. Hence, if the correspond-

ing values (#t , ?/,), when plotted on logarithmic paper, give points

that lie approximately on a straight line, the data can be repre-

sented by the equation

y = bxn
,

whose constants can be read from the graph.

Similarly, if the data can be represented by a relation

y = kamx
j

the corresponding values, when plotted on semilogarithmic*

paper, will give points that lie approximately on a straight line.

For taking logarithms on both sides of this equation gives

log y = log k + (m log a)x,

* For a discussion of logarithmic and semilogarithmic paper, see C. S.

Slichter, Elementary Mathematical Analysis.
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which is linear in log y and x and therefore plots as a straight line

on semilogarithmic paper.

The three types of equations cited here are, of course, not the

only ones to which the graphic method is applicable. However,

they are the simplest because of the fact that their graphs, on

appropriate paper, give straight lines. When the points repre-

senting the observed values do not approximate a straight line,

some other method is usually preferable.

PROBLEMS
1. Find the equation that represents the relation connecting x and

y if the given data are

2. Find the equation of the type y bxn that represents the relation

between x and y.

3. From the following data, find the relation of the type y = klQ mx

between x and y:

169. Differences. Before proceeding to investigate rules

for the choice of the particular type of equation that will repre-

sent the observed values, it is advisable to define and discuss

differences.

Let the observed values be (# y), (i
=

0, 1, 2, , n).

The first differences are defined by

(159-1) At/ t
ss y i+1 2/t .

The second differences are given by

A 2
2/t

ss A2/l+ i Ay,.

In general, for k > 1, the differences of order k, or the kth
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differences, are defined as

(159-2) A*2A s A^-^+i - Ak~ l

y l .

It should be noted that, if the jth differences are constant, then

all of the differences of order higher than j will be zero.

From (159-1) and (159-2) it follows that

2/i
=

2/o + AT/O,

2/2
=

2/i + AS/I
=

(2/0 + Ai/o) + (A
2
2/ + AT/ O)

=
2/o + 2A2/o + A 2

2/ ,

2/3
=

2/2 + ^2/2
=

(2/0 + 2A?/o + A 2
i/o) + (A

2
?/i + A/I)

=
(2/0 + 2A2/o + A 2

2/ )

+ (A
3
2/ + A 2

?/o + A 2
2/ + A2/ )

=
2/o + 3A2/o + 3A 2

?/o + A 3
2/o.

These results can be written symbolically as

y l
=

(1 + A)y , 2/2
=

(1 + A)
2
2/ , 2/3

=
(1 + A)

3
i/o,

in which (1 + A)' acts as an operator on 2/0, with the exponent on

the A indicating the order of the difference. This operator is

analogous to the differential operators discussed in Chap. VII.

By mathematical induction, it is established easily that

(159-3) yk = (1 + A)*y .

160. Equations That Represent Special Types of Data. There

are certain types of data which suggest the equation that will

represent the relation connecting the observed values of x and y.

Some of the more common types will be discussed in this section.

a. Suppose that a number of pairs of observed values (xt} yl)

have been obtained by experiment. If the x l form an arith-

metical progression and the rth differences of the yl are constant,

then the relation connecting the variables is

y = a + dix + a 2
2 + + a rxr

.

For if the rth differences are constant, all differences of order

higher than r are zero, and hence, from (159-3),

(160-1) y* = 2/0

where

(160-2)
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is simply the coefficient of ar in the binomial expansion for

(1 + a)
k

. Moreover, it was assumed that the x t are in arith-

metical progression so that, if x\ XQ = A#, then XH x = k Ax
and

, _ Xk Xp-
A
- *

Ax

Now, the expression (160-2) is a polynomial of degree r in k
y
and

therefore of degree r in x fc . It follows that, upon substitution of

7 __K
Ax

and the collection of like powers of xk in (160-1), this equation
assumes the form

The relation is true for all integral values of &, and therefore

(160-3) y = a + aix + a2x 2 + + a rxr

gives the relation existing between the variables for the given
set of observed values.

In general, a given set of observed values will not possess con-

stant differences of any order, but it may be that the rth differ-

ences are sensibly constant. Then an equation of the type

(160-3) will be a good approximation for the relation between

the variables.

Various modifications of (160-3) can be made. If the values of

x? form an arithmetical progression, whereas the values of the

rth differences of the y? are constant, then the relation connect-

ing the variables is

(160-4) y
m = a + aix

n + a 2 (z
n
)
2 + + a r (x

n
)
r

.

Here m and n can take either positive or negative values. The
derivation of the formula is exactly like that given above if x

t

n
is

replaced by Xl and y? by Ft .

If, in (160-4), m = n = 1 and r = 1, the equation assumes

the form

IT'-o. + a^ or i =
o + or y - -
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Curves having this equation are frequently of use in fitting data

to observations measuring flux density against field intensity.

The curve is the hyperbola having the lines

ai , 1
x ancl y =

for asymptotes. If the values of l/y are plotted against those

for 1/x, the result is a straight line. A few of these curves are

plotted in Fig. 154.

012 4 6 8

Fio. 154.

Example 1. Consider the following set of observed data:



160 EMPIRICAL FORMULAS AND CURVE FITTING 531

In this case the third differences are sensibly constant and the rela-

tion between x and y is approximately of the form

The question of determining the values of the constants will be con-

sidered in a later section.

b. If the set of pairs of observed values (# t , y l) is such that

the values of #t form an arithme-

tical progression and the corre-

sponding values of ?/t form a

geometrical progression, then the

equation representing the relation

between the variables is

(160-5) y = ka*.

For, taking logarithms of both

sides, the equation becomes

log y = log k + x log a,

which is linear in x and log y.

Hence, if the values xz form an

arithmetical progression, the val-

ues log T/t will do likewise. But
then log y^ log y^\ = c (for each value of z), so that

- '- = e
c = C and

Therefore, the numbers y, form a geometrical progression.

It can be proved that, if the values of the rth differences of

the y% form a geometrical progression when the values of the xr

form an arithmetical progression, then the relation between x

and y is

(160-6) y = a + aix + - + ar-ix
r~ l + kax

.

If r = 1 in (160-6), the equation becomes

y = + kax
.

If a > 1, the values of y increase indefinitely as x is increased.

If a < 1, the curve falls off from its value at x = and approaches
the line y = a as an asymptote. Three of these curves are

plotted in Fig. 155.
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Example 2. Consider the data given in the following table.

Since the first differences have values very nearly equal to the num-
bers that form the geometrical progression whose first term is 1.362

1 2345
Fio 156.

X

and whose ratio is K, the relation between x and y is very neaily of the

form
y = a 4- kax

.

c. The equation

(160-7) y = axn

represents the relation existing between the variables if, when
the x% form a geometrical progression, the yl also form a geo-

metrical progression. For if

x%
=

then (160-7) states that

yl
= ax?

Hence, the g/ form a geometrical progression whose ratio is

R SB rn .
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If the first differences of the 2/< form a geometrical progression

when the Xi form a geometrical progression, then the equation

giving the relation between x and y is

(160-8)
*

y = k + axn
.

For if xt nrt_i, then (160-8) requires that

A^i = 2A
-

y^-l
= k + ax? (k + asIU)

and, similarly,

Then

= a#Jli(r
n

1)
= arnxJL 2 (r

n
1)

rn - 1).

and therefore the Ai/ t form a geometrical progression whose ratio

is R = *"*.

The curves (160-8) are parabolic if n > and hyperbolic if

n < 0. Three of each type are plotted in Fig. 156.

Example 3. Let the pairs of observed values be

The values of x l form a geometrical progression with ratio r = 2.5,

and the values of y% are approximately equal to the terms of the geo-

metrical progression whose first term is 2 and whose ratio is R = 1.1.

Hence, the relation between x and y is very nearly of the type y = axn
\

and since R = rn
,

it follows that 1.1 =
(2.5)

n or log 1.1 = n log 2.5

and

log 1.1
n =

log 2.5

PROBLEMS
1. A flat surface is exposed to a wind velocity of v miles per hour, and

it is desired to find the relation between v and p, which is the pressure

per square foot on the surface. By experiment the following set of

observed values is obtained. Find the type of formula to fit them.
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2. The temperature 6 of a heated body, surrounded by a medium kept

at the constant temperature 0C., decreases with the time. Find the

kind of formula which expresses the relation between S and t that is

indicated by the following pairs of observed values:

3. If C represents the number of pounds of coal burned per hour per

square foot of grate and H represents the height of the chimney in

feet, find the type of formula connecting H and (7, using the following

data:

161. Constants Determined by Method of Averages. Several

different methods are employed in determining the constants

which appear in the equation that expresses the relation existing

between the variables whose observed values are given. The
method to be described in this section is known as the method
of averages. It is based on certain assumptions concerning the

so-called "residuals" of the observations. Let the pairs of

observed values be (x% , y t ), and let y = f(x) be the equation that

represents the relation between x and y for these values. Then,
the expressions

> = /() -
y^

are defined as the residuals of the observations. The method of

averages is based on the assumption that the gum 2^ is zero.

This assumption gives only one condition on the constants

that appear in y =
f(x). If there are r of these constants and

if f(x) is linear in them, the further^assumption is made that, if the

residuals are divided into r groups, then 2X = for each group.
This second assumption leads to r equations in the r unknown
constants. It is obvious that different methods of choosing the

groups will lead to different values for the constants. Ordinarily,

the groups are chosen so as to contain approximately the same
number of residuals; and if there are to be k residuals in each

group, the first group contains the first k residuals, the second

group contains the succeeding k residuals, and so on.
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A modification of this method is spmetimes used when f(x)

is not linear in its constants, but it will not be discussed here. *

Example. Determine the constants iii the equation that represents

the data given in Example 1, Sec. 160.

It was shown in this example that the equation is of the type

+ OL& 4- &2#2
4- 3#

3
.

Therefore.

f(x) =

= a +

Vl

a

a

ao

6ai

#2 + a s 2.105,

4a 2 + 8a 3
-

2.808,

9a 2 + 27a 3
-

3.614,

16a 2 + 64a 3
-

4.604,

25a2 + 125a 3
-

5.857,

36a 2 + 216a 3
-

7.451,

49a2 + 343a 3
-

9.467,

64a2 + 512a 3
- 11.985.

Let the assumptions be that

vi + v 2
=

0, vz + v 4
=*

0, t; 5

Then the conditions on the constants are

0.

2a + 3ai + 5a 2 + 9a 3
= 4.913,

2a + 7ai + 25a 2 + 91a 3
= 8.218,

2a + Hoi + 61a + 341a 3
== 13.308,

2a + 15ai + 113a2 + 855a3
= 21.452.

The solution of these equations is

a = 1.433, ai = 0.685, a 2
= -0.025, a 3

= 0.013.

Hence, the equation, as determined by the method of averages, is

y = 1.433 + 0.685z - 0.025z2 + 0.013z8
.

PROBLEMS

1. Use the method of averages to find the constants in the equation

y = a + aix + a2x2
,

which is to represent the given data

2. Find, by the method of averages, an equation to fit the data

given in Prob. 3 at the end of Sec. 160.

* See SCARBOROUGH, Numerical Analysis.
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3. Find the constants in the equation of the type

y = a + dix + a&2 + a&*,

which fits the data given in the table

4. Find, by the method of averages, the constants in the equation

y a + be* if it is to fit the following data:

6, Use the method of averages to determine the constants in

y = aex +.b sin x + ex2 so that the equation will represent the data

in the table.

162. Method of Least Squares. This section introduces

another method of determining the constants that appear in the

equation chosen to represent the given data. It is probably
the most useful method and the one most frequently applied.

The two methods already described give different values of the

constants depending upon the judgment of 1^he investigator,

either in reading from a graph or in combining the residuals into

groups. This method has the advantage of giving a unique set

of values to these constants. Moreover, the constants deter-

mined by this method give the "most probable
"
equation in the

sense that the values of y computed from it are the most probable
values of the observations, it being assumed that the residuals

follow the Gaussian law of error. In short, the principle of least

squares asserts that the best representative curve is that for which

the sum of the squares- of the residuals is a minimum.

Suppose that the given set of observed values (# y), (i
=

1, 2, , n), can be represented by the equation

V = /(*)
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containing the r undetermined constants ai, a^ ,
ar . Then,

the n observation equations

y^
=

/(**)

are to be solved for these r unknowns. If n =
r, there are just

enough conditions to determine the constants; if n < r, there

are not enough conditions and the problem is indeterminate; but,

in general, n > r, and there are more conditions than there are

unknowns. In the general case, the values of the ak which

satisfy any r of these equations will not satisfy the remaining
n r equations, and the problem is to determine a set of values

of the ak that will give the most probable values of y. Let

v*
= & -

y*

be th residuals, or deviations of the computed values from the

observed values, where y% is the value of y obtained by sub-

stituting x = xl in y =
/(#). On the basis of the Gaussian law of

error, the probability of obtaining the observed values yl is

Obviously, P is a maximum when 2 ^? is a minimum.
1 = 1

n

Since S = v\ is a function of the r unknowns ai, a2 , ,

1 = 1

a r ,
it follows that necessary conditions for a minimum are

Moreover, each t; is a function of a^; therefore,

- 2* ! + a* 1

Equations (162-1) are called the normal equations.

If it happens that the r equations (162-1) are linear in the r

unknowns a 1; a2;
*

,
ar,

then these equations can be solved

immediately. This will certainly be the case if f(x) is a poly-

nomial. For let
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r r

f(x) = 2 a
i
x'~ l so that vl

= 2 ^X" 1 ~
!/

Then, dvx/dak = zj'-
1

,
and the normal equations assume the

form, with the aid of (162-2),

(162-3) 2(2 aX- 1 -
2/0

tf-
1 =

0, (&
=

1, 2, , r).

It should be noted that the equation which is obtained by setting
n

k = 1 is S t\ = 0. Reordering the terms in (162-3), so as to

collect the coefficients of the a,, gives
r / n n

Hfi2-4^ Vl V^ r '-4-fc-2\ _ ^ r/c_i
?

.

//,
_ i o r\^lU^-'-ty ^V 1 ^\ X

t
I Uj / X

t t/t, \l\j 1, ^>, j '/

J=ll=l t=l c

The r linear equations (162-4) can then be solved for the values

of the r unknowns a\, 0,%,
- - -

,
a r .

This procedure may be clarified somewhat by writing out some

of these expressions for a simple specific case. Consider the

data given in the following table. Since the second differences

of the yt are constant, the equation will have the form
// \ i i n

Then, vl
= ai + ^xl + s^t

2
2A, and

dvt _ dvt _ dVi __ 2

The normal equations

are
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If the coefficients of the a, are collected and the normal equa-
tions put in the form (162-4), one obtains the three equations

4 4

4

a2 + x a 3
=

\-i 7 \ = i
'

Now,
4

V xt
= 1 + 2 + 3 + 4 = 10, ^ x? - 1 + 4 + 9 + 16 =

30,
*=i

t
= 1.7 + 3.6 + 6.9 + 12.8 = 25, etc.

The equations become

4at + 10a 2 + 30a 3
=

9,

lOai + 30a2 + lOOa* =
25,

30ai + 100a 2 + 354a 3
= 80.8;

and the solutions are a x
=

2, a2
=

0.5, a 3
= 0.2.

Even when Eqs. (162-1) are not linear in the unknowns, it may
be possible to solve them easily. However, in most cases it is

convenient to replace the exact residuals by approximate residuals

which are linear in the unknowns. This is accomplished by

expanding y =
/(#), treated as a function of ai, a2 , ,

ar ,
in

Taylor's series in terms of ar at
= Aat ,

where the at are

approximate values of the at . The values of dt may be obtained

by graphical means or by solving any r of the equations ?/,
=

f(xl). The expansion gives

(162-5) y =
J(x, ai, ,

ar)
s /(^, di + Aai, ,

ar + Aar)

/c =* 1

where
Af /)f /)2f ^2f

,
etc.

fc =dfc da
j

jfc d*
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Assuming that the dt are chosen so that the Aat are small, the

terms of degree higher than the first can be neglected and (162-5)

becomes

y = f(x, oi, , fir)

The n observation equations are then replaced by the n

approximate equations

(162-6)

If (162-6) is used, the residuals v^ will be linear in the Aa/f ,
and

hence the resulting conditions, which become c

(162-7)

also will be linear in the Aa*,. Equations (162-7) are called the

normal equations in this case.

In order to illustrate the application of the method of least

squares, two examples will be given. In the first the polynomial
form of f(x) permits the use of (162-4), whereas the second

requires the expansion in Taylor's series.

Example 1. Compute the values of the constants appearing in the

equation of Example 1, Sec. 160.

The equation isy = a + a\x + a& 2 + a zx 3
,
and from the given data

it appears that the normal equations are

8a +
x>)

01

V

/

( 2} *') o +
( 2} ^

\1 7 xtl
8

/
8

\ /
8

\ /
8

\
8

(2) *')
o + (2) ***)

i + (2) ^ 5

)
a2 + (X * 6

)
3
=

2) *^..

From the form of the coefficients of the a*, it is seen that it is con-

venient to make a table of the powers of the x t and to form the sums
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Sav and 2z t *2/t before attempting to write down the equations in

explicit form.

When the values given in the tables are inserted, the normal equa-
tions become

36a

204a

l,296ao +

The solutions are

a =
1.426,

36ai

204a!

l,296ai

204a 2 + I,296a3
=

47.891,

I,296a 2 + 8,772a 3
=

273.119,

8,772a 2 + 61,776a 3
= 1,765.111,

61,776a 2 + 446,964a 3
= 12,141.845.

=
0.693, a 2

= -0.028, a 3
= 0.013.

Therefore, the equation, as determined by the method of least squares,

is

y = 1.426 + 0.693z - 0.028z2 + 0.013z 3
.

It will be observed that these values of the constants are very nearly
the same as those obtained by the method of averages.
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Example 2. Compute the constants that appear in the equation

that represents the following data:

Since the observed values are such that the I* form an arithmetic

progression and the t approximately form a geometric progression, the

equation expressing the relation is of the form

6 = ka*.

If the points are plotted on semilogarithmic paper, it is found that

k = 60 and a = 10- 65 =
0.86, approx. This suggests using k = 60

and o
= 0.9 as the first approximations. The first two terms of the

expansion in Taylor's series in terms of Afc = k 60 and Aa = a 0.9

are

e = 60(0.9)' + ^Jjb-w AA; + l^ j*-w Aa

= 60(0.9)'
-

If the values (, t ) are substituted in this equation, four equations

result, namely,

0, 60(0.9)' + (0.0)'* AA; + GO^O.g)''-
1
Aa, (i

=
1, 2, 3, 4).

The problem of obtaining from these four equations the values of Afc

and Aa, which furnish the most probable values of t ,
is precisely the

same as in the case in which the original equation is linear in its con-

stants. The residual equations are

v. = (0.9)' AA; + 60J,(0.9)'*-
1 Aa + 60(0.9)'*

-
t , (i

=
1, 2, 3, 4).

Therefore,

4 4

S = tv> = V [(0.9)* Afc + 60M0.9)'*-
1 Aa + 60(0.9)'*

- 0J
2
,

and the normal equations

dS = and
dS

become

=--

60(0.9)<
-

(9,]0.

1-1
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and

4.

[0.9AA? + 60e,(0.9)'-
l Aa + 60(0.9)'*

-
0J60M0.9)''-

1 = 0.

When these equations are written in the form

p Afc + q Aa =
r,

with all common factors divided out, they are44
(0.9)

2<>A/c + 60 2
4 4

'-'Aa = T t (0.9)<>
- 60 V (0.9)

and

- 60 2^ ,(0.9)- 1
.

As in Example 1, the coefficients are computed most conveniently by
the use of a table.

Substituting the values of the sums from the table gives

2.42800821 AA? + 362.559456 Aa = 132.024654 - 145.6804926

and

6.0426576 A/c + 11 18.87736 Aa = 320.76144 - 362.559456.

Reducing all the numbers to four decimal places gives the following

equations to solve for Afc and Aa:
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2.4280 A/c+ 362.5595 Aa = -13.6558,
6.0427M + 1118.8774 Aa = -41.7980.

The solutions are

A/c = -0.238 and Aa = -0.036.

Hence, the required equation is

= 59.762(0.864)'.

PROBLEMS

1. Find the constants in the equation for the data given in Prob. 1,

Sec. 161. Use the method of least squares.

2. Use the method of least squares to determine the values of the

constants in the equation that represents the following data.

3. Apply the method of least squares to the data given in Prob. 1,

Sec. 158.

4. Apply the method of least squares to determine the values of

a and b in Prob. 4, Sec. 161.

163. Method of Moments. Since the method of moments is

one of the most popular methods in use by the statisticians and

economists, a brief discussion of it will be presented. For certain

types of equations, especially those which are linear in their

constants, it provides a simple method of determining the

constants. If the equation has the form

r-l

akxK

this method gives results identical with those obtained by the

method of least squares. In this case the method has a theo-

retical background that justifies its use. When the method is

applied to other types of equations, there is, in general, no such

justification. However, in modified forms it is convenient for

computation and often gives very good results.

Let the set of observed values be (z, t/t), (i
=

1, 2, , ri),

and the equation that represents these data be y = /(#). When
the values x = xt are substituted in f(x), there result the corre-

sponding computed values of y, which will be designated by
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?/t . The moments of the observed values y% and of the computed
values yt are defined, respectively, by

n n

= 2 x\y^ and M* = 2
1=1 1=1

If f(x) contains r undetermined constants, the method of moments
is based on the assumption that

(163-1) TA =
MA, (A

=
0, 1, 2, ,

r - 1).

Since y, is a function of the r undetermined constants, Eqs.

(163-1) give r simultaneous equations in these constants.

The method of moments in this form is most useful when

f(x) is linear in its r constants, so that the r equations (163-1)

can be solved immediately. Various modifications and devices

are used to simplify the computation in case f(x) is not linear in

its constants. These will not be discussed here.*

In the special case in which f(x) is a polynomial, that is,

r-l

f(x) = 2 a^>
j=0

the values of y% are given by
r-l

& = 2 a,x't

and therefore

n r-l

\
= 2 2 x?"a (*

=
0, 1, 2, ,

r - 1).

1 = 1 j
= j=0 i = l

Then Eqs. (163-1) assume the form

2 2 x
*
+ka

<
= 2 ^' (fc

=
0, 1, 2, ,

r - 1),

;=0 t = l i = l

which are identical with the normal equations (162-4) obtained

by the method of least squares. Hence, the two methods lead

to identical results for this form of /(#).

164. Harmonic Analysis. The problem of obtaining the

expansion of a periodic function in an infinite trigonometric
* For a discussion, see Frechet and Romann, Representation des lois

empiriques; Rietz, Handbook of Mathematical Statistics.
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series was considered in Chap. II. In this section will be given
a short discussion of the problem of fitting a finite trigonometric
sum to a set of observed values (xt , yl) in which the values of y
are periodic.

Let the set of observed values

(X , ?/o), (Zi, 2/l),
' ' '

, (.T2-l, 2/2n-l), (Z2 n, 2/2),
' ' '

be such that the values of y start repeating with y^ n (that is,

2/2n
=

?/o, 2/2+i
=

2/i, etc.). It will be assumed that the xl are

equally spaced, that x =
0, and that x*2

= 2ir. [If ^ and

the period is c, instead of 2?r, the variable can be changed by
setting

t
=

(x, x- ).
c

The discussion would then be carried through for t and y% in

place of the xv and ?/, used below.] Under these assumptions

. 2ir ITT

Xi =

The equation

i 1 ^T
2n n

n

(164-1) y AO + V A k cos kx + V Bk sin kx

n l

V
i ffi

contains the 2n unknown constants

which can be determined so that (164-1) will pass through the

2n given points (xl9 yt) by solving the 2n simultaneous equations

n n 1

y,
= AO +

"

A fc cos fcxt + V ^A, sin fcx,,

ft-i /fe
= i

(i
=

0, 1, 2, ,
2n -

1).

Since xl
= zV/n, these equations become

n n-1
/1/>yl rtN . . ^1 . zA:7T . ^%T1 n . zfcir

(164-2) i/ 1
= AO + >. A fc cos --h >, #* sin ,

(t
=

0, 1, 2, ,
2n -

1).

The solution of Eqs. (164-2) is much simplified by means of a

scheme somewhat similar to that used in determining the Fourier
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coefficients. Multiplying both sides of each equation by its

coefficient of A Q (that is, by unity) and adding the results give

2n-l n 277-1 x n-1 ,271-1

t = (

It can be established that

2n-l

^ cos^ =
0, (k

=
1, 2, , n),

and

277-1

^j sin =
0, (k = 1, 2, ,

n 1).

Therefore,

2n-l

(164-3) 2nA =
] yt .

Multiplying both sides of each equation by its coefficient of

A ]y (j
=

1, 2, ,
n 1), and adding the results give

^ y l cos - = ^, ( >, cos cos -'
1 Ak

^J
y n ^J \^J n n /

, ^7* /%^ ikir tjir\+ >, >, sm cos
)

^-J \^J n n /

for j = 1, 2, ,
n - 1. But

cos - cos =
0, if k 5* j,n n ' J)

=
n, if k =

j;
*

and
2n - 1

. ikir ijw Asm cos =

>k

n n

for all values of k. Therefore,

(164-4) nA, = "S- y. cos
?A (j

-
1, 2

;

-

,
n - 1).

/&
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In order to determine the coefficient of A n the procedure is

precisely the same, but

2n-l
^

IKTT ~ . f 7 .

cos cos ITT 0, if k 5^ n,

= 2n, if A; = n.

Hence,

2n-J

(164-5) 2nA n = y, cos zV.

i =

Similarly, by multiplying both sides of each equation of

(164-2) by its coefficient of Rk and adding, it can be established

that

2n-l

(164-6) nB, = ^ sinV 0'
=

1, 2,
-

,
n - 1).

t =

Equations (164-3), (164-4), (164-5), and (164-6) give the

solutions for the constants in (164-1). A compact schematic

arrangement is often used to simplify the labor of evaluating

these constants. It will be illustrated in the so-called "6-ordi-

nate" case, that is, when 2n = 6. The method is based on the

equations that determine the constants, together with relations

such as

. TT . (n
-

l)ir . (n + })TT . (2n
-

I)TT
sin - = sin- = sin ------ - ~ = sin -----

j

n n n n

TT (n
-

!)TT (n + l)ir (2/1
-

I)TT ,

cos - = ~ cos -- = cos-- = cos --~; etc.
n n n n

Six-ordinate Scheme. Here, 2n =
6, the given points are

fo, yt), where xl
= nr/3, (i

= O t 1, 2, 3, 4, 5), and Eq. (164-1)

becomes

y = AQ + A\ cos x + A 2 cos 2x + A 3 cos 3# + ^i sin x + B z sin 2x.

Make the following table of definitions:

2/o y\ 2/2 t>o #1 WQ W\

y\ _ _ _
Sum \VQ v\ Vz Po pi r r\

Difference!w Wi w 2 q\ Si
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It can be checked easily that Eqs. (164-3), (164-4), (164-5),

and (164-6), with n =
3, become

6A 3
= r si, 3*! =

In particular, suppose that the given points are

Upon using these values of y in the table of definitions above,

Therefore, the equations determining the values of the con-

stants are

3A 2
=

2.7 + 6.0 =
0.7 - 0.4 =
2.7 - 3.0 =
0.7 + 0.8 =

8.7

-1.1

-0.3

0.1

(0.6)
= 0.3

(-0.2) = -0.1 V3

and

and

and

and

and

and

lo
=

1.45,

Li
= -0.37,

1 2
= -0.10,

L 3
=

0.02,

?i - 0.17,

h = -0.06.

Hence, the curve of type (164-1) that fits the given data is

y = 1.45 - 37 cos x - 10 cos 2x -f 02 cos 3x + 0.17 sin x - 0.06 sin 2x.

A convenient check upon the computations is furnished by the

relations

and + B2
=

(y,
-

2/5).
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Substituting the values found above in the left-hand members

gives

1.45 - 0.37 - 0.10 + 0.02 = 1.0 and 0.17 - 0.06 -= 0.11,

which check with the values of the right-hand members.

Similar tables can be constructed for 8-ordinates, 12-ordinates,

etc.*

PROBLEMS
1. Use the 6-ordinate scheme to fit a curve of the type (164-1) to the

data in the following table :

2. Make a suitable change of variable, and apply the 6-ordinate

scheme to the data given in the table

165. Interpolation Formulas. When an equation has been

obtained to represent the relation existing between x and y, as

indicated by a given set of observed values (xly yl), this equation
can be used to determine approximately the value of y corre-

sponding to an arbitrary value of x. It would be expected that

the equation would furnish a good approximation to the value

of y corresponding to an x which lies within the range of the

observed values xt . The equation may provide a good approxi-
mation for y even if x is chosen outside this range, but this must
not be assumed.

Frequently, it is desired to obtain an approximation to the y

corresponding to a certain value of x without determining the

relation that connects the variables. Interpolation formulas

have been developed for this purpose and for use in numerical

integration (mechanical quadrature).! The formulas to be
* See CAUSE and SHEARER, A Course in Fourier Analysis and Periodogram

Analysis.

t See Sees. 167 and 168.
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discussed here all assume that the desired value for y can be

obtained from the equation

y == a + dix + a 2x 2 + + amxm ,

in which the at have been determined so that this equation is

satisfied by m + 1 pairs of the observed values (#,, z/,). These

m + 1 pairs may include the entire set of observed values, or

they may be a subset chosen so that \x x l is as small as possible.

The first interpolation formula of this discussion assumes that

the set of m + 1 observed values #0, #1, #2,
* *

,
xm is an

arithmetic progression, that is, that

(165-1) xk
= xi^i + d = xo + kd, (k = 1, 2, , m).

Since there are m + 1 pairs of observed values, there is only one

mth difference Aw
t/, and all differences of order higher than m

are zero. Hence, by (159-3),

k A?/o H---
2!

*(*
-

1) (fc
-

But, from (165-1), it follows that

xk
- x

k ~
~~d~~'

so that the expression for yjc becomes

/Tr.c 0\ . %k XO * , (%k
(165-2) yk

==
7/0 H--

^
AT/O H

So
-

d)
' ' '

..._
o .

Relation (165-2) is satisfied by every one of the m + 1 pairs

of observed values. Now, assume that the value of the y which

corresponds to an arbitrary x also can be obtained from (165-2).

Then,

,+ n - \ i
o A ,

Q XQ
(165-3) 2/

= yo + J-
j

^
A2/o + ^-

'-^jj

,
(x x<>)(x x d) (x XD md + d)

' '--
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Equation (165-3) represents the mth-degree parabola which

passes through the m + 1 points whose coordinates are (x t , yl).

It assumes a more compact form and is more convenient for

computation purposes when -.
- is replaced by X. Then,

(165-4) y = i/o + X Ay +
"

A 2
7/ +

Example. Using the data given in Example 1, Sec. 160, determine

an approximate value for the y corresponding to x = 2.2.

First, let y be determined by using only the two neighboring observed

values (hence, m =
1). Then, x =

2, T/O
= 2.808, AT/O

=
0.806, and

x = M_H? = 0/2 . Hence,

y - 2.808 + 0.2(0.806) = 2.969,

which has been reduced to three decimal places because the observed

data are not given more accurately. Obviously, this is simply a

straight-line interpolation by proportional parts.

If the three nearest values are chosen, m =
2, x =

1, y =
2.105,

A#o = 0.703, A 2
?/o
=

0.103, and X = 2.2 - 1 = 1.2. Then,

y = 2.105 + 1.2(0.703) +
'

(0.103) = 2.961,

correct to three decimal places.

If the four nearest values are chosen, m =
3, XQ

=
1, y 2.105,

Ay =
0.703, A 2

?/o
=

0.103, A 3
7/

== 0.081, and X = 1.2. Therefore,

y = 2.105 + 1.2(0.703) + (1>2)

2

( ' 2)
(0.103)

+ (L2)( -2

6

)( --8)
(0.081) =

2.958,

correct to three decimal places.

The value obtained by substituting x 2.2 in the equation

y = 1.426 + 0.693z - 0.028z2 + 0.013z 3
,

obtained by the method of least squares (see Example 1, Sec. 162)

is 2.954. It might be expected that a better approximation to this

value could be obtained by choosing m 4, but investigation shows

that the additional term is too small to affect the third decimal place.

166. Lagrange's Interpolation Formula. The interpolation

formula developed in Sec. 165 applies only when the chosen set
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of Xi is an arithmetic progression. If this is not the case, some
other type of formula must be applied.

As in Sec. 165, select the m + 1 pairs of observed values for

which \x x%
\

is as small as possible, and denote them by (xly 7/t),

(i
=

0, 1, 2, , m). Let the mth-degree polynomials Pk(x),

(k = 0, 1, 2, , m), be defined by

(166-1) Pk(x)
= (*- *o) (*-**)' ' ' (*-*) s JJ (a

. _^
C .XL .

-*

Then, the coefficients ^4& of the equation

m

y=5^(*>
can bedetermined so that this equation is satisfied by each of the

m + 1 pairs of observed values (x lf yl ). For if x =
XL, then

A = ~^i-
*

P*(x*)'

since Pk(xi) =
0, if i 5* k. Therefore,

(166-2) y =

is the equation of the mth-degree parabola which passes through
the m + 1 points whose coordinates are (x ly y t) . If x is chosen as

any value in the range of the x,, (166-2) determines an approxi-

mate value for the corresponding y.

Equation (166-2) is known as Lagrange's interpolation formula.

Obviously, it can be applied when the x, are in arithmetic progres-

sion, but (165-4) is preferable in that it requires less tedious cal-

culation. Since only one mth-degree parabola can be passed

through m + 1 distinct points, it follows that (165-3), or its

equivalent (165-4), and (166-2) are merely different forms of

the same equation and will furnish the same value for y.

Example. Using the data given in Prob. 1, Sec. 160, apply Lagrange's
formula to find the value of p corresponding to v 21.

If the two neighboring pairs of observed values are chosen, so that

m 1,

01 22 ^ 21 1 ^

P =
' 675

15^2275 + L519
22-5-=T5

= L350
'

correct to three decimal places.
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If the three nearest values are chosen, so that m 2,

- n .(21 -
lfi)(21 -22.5) (21

-
10) (21

-
22.5)

P - "<*
(io

_ I5)(io - 22.5)
"*" u>0 '

(15
- 10)(15 - 22.5)

, ,
, 1Q (21

-
10)(21

-
15)+ L519

(22.5
-

10)(22.5
-

15)
= L323'

correct to three decimal places.

The value of p obtained from the equation p = 0.003z> 2
,
which repre-

sents the given data, is also 1.323.

PROBLEMS
1. Using the data given in Prob. 2, Sec. 160, find an approximate

value for 6 when t = 2.3. Use m =
1, 2, and 3.

2. Find an approximate value for the y corresponding to x 2,

using the data given in Example 3, Sec. 160. Use m = I and m = 2.

3. If the observed values are given by the data of Prob. 3, Se
r
c. 160,

find an approximate value of H when C = 21.6. Use m 1, 2, and 3.

4. Using the data of Prob. 1, Sec. 160, find an approximate value for

p when v = 30. Use m 1 and m = 2.

167. Numerical Integration.* The definite integral P f(x) dx

is interpreted geometrically as the area under the curve y =
f(x)

between the ordinates x = a and x = b. If the function f(x) is

such that its indefinite integral F(x) can be obtained, then from

the fundamental theorem of the integral calculus it follows that

However, if the function f(x) does not possess an indefinite inte-

gral expressible in terms of known functions or if the value of

f(x) is known only for certain isolated values of x, some kind of

approximation formula must be used in order to secure a value

(OT f
b

j(x) dx.

A formula of numerical integration, or mechanical quadrature,

is one that gives an approximate expression for the value of

fa/(#) dx. The discussion given here is restricted to the case

in which m + 1 pairs of values (xt , yl), or [xl9 f(x%)], are given

[either by observation or by computation from y f(x) if the

form of f(x) is known] and where this set of given values is

represented by (165-3) or (166-2).

The formulas of numerical integration that are most frequently

used are based on the assumption that the xl form an arith-

* For discussion of the accuracy of the formulas given here, see Steffensen,

Interpolation; and Kowalewski, Interpolation und genaherte Quadratur.



167 EMPIRICAL FORMULAS AND CURVE FITTING 555

metic progression, that is, that xk = XQ + kd. In that Case, all

the m + 1 points (#, yt), (i
=

0, 1, 2, , w), lie on the

parabola whose equation is given by (165-3). The area bounded

by the x-axis and this parabola between x = XQ and x = xm

is an approximation to the value of f
x

x"f(x) dx.

Upon using (165-4) and recalling that

v xA =
;

it follows that

(167-1) ^ y dX =
JJ" [2/0

+ X Ay, +

If m =
1, (167-1) becomes

But

,
, , v X XQ

rf /> I 'yw/Y Q TJ /i X .

tH/m
~~~

"H) \^ ifiAJU atH.\ji ^\. , 7

a

so that

and the formula becomes

(167-2)

If n + 1 pairs of values are given, (167-2) can be applied

successively to the first two pairs, the second and third pairs,

the third and fourth pairs, etc. There results

(167-3) t
Xn

ydx= I

*

y dx + I

**

y dx + + I y dx
Jxo Jx* Jxi Jxn -i

_ d d

2 2

d

d ,^ -j- 2yi -f* 2t/2 "f~
* * *

H" 2?/n_i -)- ?/n)'
2
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X X, X
2

X3 X4 X5 X6

FIG. 157.

If m =
2, (167-1) becomes

Formula (167-3) is known as

the trapezoidal rule, for it gives

the value of the sum of the areas

of the n trapezoids whose bases

are the ordinates T/O , yi, y%,
' ' '

,

*, yn . Figure 157 shows the six

trapezoids in the case of n = 6.

Jo Jo L
X

-
J/o) + 3

(2/2
-

1

or

(167-4) rty -^o

Suppose that there are n + 1 pairs of given values, where n is

even. If these n + 1 pairs are divided into the groups of three

pairs with abscissas x^ x2i+i, 2^+2, ( i = 0, 1, ,
= \

then (167-4) can be applied to each group. Hence,

(167-5) f
xn

ydx= f"ydx+ f*'ydx+
- - -

JXO JXQ JXl

=
(t/o + 47/i + 2/2) + (2/2 +

y dx

+ 2/4)

d

3

3
[2/0 + yn + + 2/3 + ' + 2/n-l)

+ 2(7/2 + 7/4 + + 7/n_2)].

Formula (167-5) is known as Simpson's rule with m = 2.

Interpreted geometrically, it gives the value of the sum of the

areas under the second-degree parabolas that have been passed

through the points (x* t 7/2t), (#2l+i, 2/2t+i), and (z2l+2 , 7/2l+2), [i
=

0,

1, 2,
- - -

, (n
-

l)/2].
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If m =
3, (167-1) states that

y dX = y + X Aj/o

+
g

^~
A'yo

27 9 .

)

9 9
(2/i

~
2/0) + (2/2

-

o

+
g (2/3

-
82/2 + 82/1

-
2/0)

3
(2/0 + 32/i + 82/2 + 2/3),

or

(167-6)
I

3

y dx = ^ (2/0 + 3y, + 82/2 + y,).
J^o o

If n + 1 pairs of values are given and if n is a multiple of 3,

then (167-6) can be applied successively to groups of four pairs

of values to give

CXn ^d
(167-7) ydx = ~[y Q + yn + 3(yi + 2/2 + 2/4 + 2/5 +

J^o O

+ l/n-2 + 2/n-l) + 2(2/3 + 2/6 + ' ' ' + J/n-s)]-

Formula (167-7) is called Simpson's rule with m = 3. It is

not encountered so frequently as (167-3) or (167-5). Other

formulas for numerical integration can be derived by setting

m =
4, 5, in (167-1), but the three given here are sufficient

for ordinary purposes. In most cases, better results are obtained

by securing a large number of observed or computed values, so

that d will be small, and using (167-3) or (167-5).

Example. Using the data given in Example 1, Sec. 160, find an

approximate value for J t y dx.

Using the trapezoidal rule (167-3) gives

y dx = H (2.105 + 5.616 + 7.228 + 9.208 + 11.714

+ 14.902 + 9.467) = 30.120.
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Using (167-5) gives

C
7

y dx = ^[2.105 + 9.467 + 4(2.808 + 4.604 -f 7.451)

+ 2(3.614 + 5.857)] = 29.989.

Using (167-7) gives

dx = %[2.105 + 9.467 + 3(2.808 + 3.614

+ 5.857 + 7.451) + 2(4.604)] = 29.989.

168. A More General Formula. If numerical integration is

to be used in a problem in which the form of f(x) is known, the

set of values (x^ y) can usually be chosen so that the x l form an

arithmetic progression and one of the formulas of Sec. 167 can

be applied. Even if it is expedient to choose values closer

together for some parts of the range than for other parts, the

formulas of Sec. 167 can be applied successively, with appro-

priate values of d, to those sets of values for which the x^ form an

arithmetic progression. However, if the set of given values was

obtained by observation, it is frequently convenient to use a

formula that does not require that the o?t form an arithmetic

progression.

Suppose that a set of pairs of observed values (x% , yl), (i = 0,

1, 2, , m), is given. The points (xr , 7/t) all lie on the

parabola whose equation is given by (166-2). The area under

this parabola between x = XQ and x = xm is an approximation to

XXm y dx. The area under the parabola (166-2) is

CXa ^ in CXm

(168-1) ydx^y^ =** Pk(x) dx,

in which the expressions for the Pk(x) are given by (166-1).

If m =
1, (168-1) and (166-1) give

(168-2) ydx= - (x
- xO dx

CXI

(x
-

x,) dx

XQ

Formula (168-2) is identical with (167-2), as would be expected,
but the formula corresponding to (167-3) is
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(168-3) f*" y dx = %[(xi - *o)(tfo + J/i) + (x

If m =
2, (168-1) becomes

(168-4) f" y dx = p^ P (*
~ *iX* - **) dx

Jxt Jro(XQ) Jxo

+ ETT-N G
-

so)(z
-

"l(^0 J^o

J/L_H!
i(zi) L

3 2

+
, (_ _,_

^(,,.2
_

3.8)

(x

-*)]

Formula (168-4) reduces to (167-4) when Xi XQ = x2 Xi =

d. The formula that corresponds to (167-5) is too long and

complicated to be of practical importance, and hence it is omitted

here. It is simpler to apply (168-4) successively to groups of

three values and then add the results.

Example. Using the data given in Example 3, Sec. 160, find an

approximate value of
|

'

y dx.

Using (168-3) determines

y dx = K[0.24(4.21Q) + 0.6(4.631) + 1.5(5.082)
0.16

+ 3.75(5.590)] = 16.187.
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Applying (168-4) successively to the first three values and to the

last three values gives

p-
2

JoiG

, ^ (0.84)
2

[2(1.2
- 0.32 - 1) , 2.210(-0.84)

yax
6 L (-0.24X-0.84) (0.24)(-0.6)

2.421(2 + 0.16 - 1.2)1

J(0.84) (0.6)

(5.25)
2 r 2.421(7.5

- 2 - 6.25) , 2.66(-5.25)
"*"

6 L (-1.5X-5.25)
"*"

(1.5)(-3.75)(-1.5X-5.25)
"

(1.5)(-3.75)

2.929(12.5 + 1 -7.5)1 _ ? Q4+-
(5.25)(3.75)

-
J
" 17 '194 '

PROBLEMS

/7 y dx, using the data given

in Example 2, Sec. 160, and applying (167-3). Find the approximate
value if (167-5) is used.

/*50 625
2. Apply (168-3) to determine an approximate value for I p dv,

/io

using the data given in Prob. 1, Sec. 160.

3. Work the preceding problem by applying (168-4).

4. Apply (167-3) and (167-5) to the data given in Prob. 3, Sec. 160,

in order to determine / H dC.
Jio

5. Find the approximate values of f \/4 + x 3 dx obtained by using

x =
0, 1, 2, 3, 4, 5, 6 and applying (167-3) and (167-5).



ANSWERS
CHAPTER I

Pages 14-15

1. (a) convergent; (6) divergent; (c) divergent; (d) convergent;
(e) convergent; (/) divergent; (g) convergent; (h) divergent.

2. (a) convergent; (6) divergent.
4. (a) divergent; (5) convergent; (c) divergent; (d) divergent;

(e) convergent; (/) convergent; (g) divergent; (h) convergent;

(s) convergent; 0) divergent.

Page 22

3. (a) 1 < x <
1; (6) all finite values; (c) 1 < x < 1;

(d) x > 1 and x < -1.
4. (a) -^ < x < 4; (6) 0; (c) -I < x < I.

Pages 39-40

1. (a) 1 + x + ~ + ~ + ;

,, N X 3
. X 6 X7

,

(&) * -
51
+

5!
"

71
+ ' ' '

J

-

, N ,
x 2

,
a;

4 xW X -
2
+

41
"

6
+ " ' "

'"

# 3 x^ x"*w x ~
3"
+ T

~
T + '

;

(fc)l+x+2 i

-
1j- lir

--
gr +---.

2. (a) (x
-

1)
- lA(x -

I)
2 + K(z ~

I)
3 -

(re
- 2)2 . (x

-
2)

3

(e) 7 -f- 29(a;
-

1) + 76(a;
-

I)
2 + H0(* -

I)
3 -h 90(z - I)

4

+ 39(o?
-

I)
5
-f 7(x

4. All finite values of x. 6. x2 < 1.

561
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Pages 45-46

1. 0.984808; 2 - 10-". 3. 0.5446.

2. 9. 6. 2.03617.

8. (a) 0.3103; (6) 0.0201; (c) 0.9461;

w ._|V !̂ -^n +^n
-...

;

X " + T
" ~ + >(/> -937 ; W -0-1026;

j. E! _j_ ! 4. :L
4

4. 2_
5

4_
37x6

I

v*/ * ~*~
2! 3!

"*"
4! 5! 6!

' ' *
'

11. a <> 0.24 radian or 14.

Pages 53-56

6. 7T/2. 15. 1.05.

6. 214.5 ft.; 25.1 ft. 16. 1 69; 0.881.

14. 2 \/2 E(V2/2, 7T/2)
= 3.825.

CHAPTER II

Pages 75-76

16

lirins-gg
*

1 s cos x 2 ^V 2 _ i
cos nx -

n = 2
n

Pages 77-78

. (2n l)wx -

2

2 A (-l)nH 1 4 <A 1 /0

T i' n
sm n;rx

' 2
""

5? ^ (2ra
-

I)
2
C S ^

~"
^*x '

n=l n 1

18f/7T
2 4\ . 7T^ 7T

2
. 27TO; /7T 2

_ ^\ ^
SlTX

S I I ~1~ 111 ^^ ~O~ "o"
Sin o I I O O T I

^^^ O~
7r

tt L\l IV d J d \d 6 A
J 6

in ~
]

,^36 v (-1)'
cos

-3-

CHAPTER III

Page 85

1. (a) 2, -0.75; (6) 1.22,- -0.73; (c) 1.08, -0.55, -0.77; (d) -0.57.

2. 4.49.



ANSWERS 563

Page 91

(a) 1.618, -1, -0.618. (6) 13.968, -6.984 0.29U*.

(c) 3, -1, -1. (d) -1,1,2.

(e) 2 4 v/3 4 V5, 2 + V^a) 4 V^w2
,
2 4 AX4a>

2
4-

(/) -6, i V5, -f' VS.

Pages 94-96

1. (a) 2, -2, -2; (6) 2, -1, -; W M , '; W) 2, -J*, t.

2. (a) (-1, 0), (0, 1), (2, 3); (6) (-3, -2), (-1, 0), (0, 1);

Tc) (-4, -3), (-2, -1), (-1, 0); (d) (-3, -2), (-1, 0), (0, 1),

(2,3)

Page 97

1. 2 924. 6. -0.879, 1 347, 2 532.

2. 1618, -1, -0.618. 6. -0.418.

3. 2061. 7. 1.226.

4. 1.398.

Pages 101-102

1. 1 226; %. 6. 4.494.

2. 2 310 radians. 6. -0.567.

3. 0.3574, 2.1533. 7. -0.725, 1.221.

4. 0.739.

Pages 106-106

1. 41; -35; 1.

2. (a) (
3Ka, 2% 3 ); (&) (1, 0, -1); (c) (5, 4, -3); (d) (1, -^, J$).

Page 114

1. 20; -126; -212.

2. (a) (2, -1, 1); (6) (1, %, -K); (c) (3, -1,2); (d) (1, -1, -2,3).

Pages 121-122

1. (a) (1, 1); (6) inconsistent; (c) inconsistent; (d) (1, 3k 2, &).

2. (a) (-*/7 f 5Aj/7,*);(6) (0,0) ; (c) (0,0,0);

(d) (fc/4, 7*/8, *); (e) (fc, 2fc, 0); (/) (0, 0, 0).

CHAPTER IV

Page 126

- * 2 - *

(c) y cos xy 4 1, a cos zy; (d) e* log t/, ex/y;

(e) 2xy 4 A
*

a;
2
.

V 1 x*

2. (a) 2xy - z\ x* + z,y - 2xz; (b) yz + 4 xz + i
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, N
z zx

,
x

(c) ,
t sm~ x

-;

(d) , .

x y *

V* 2

(x
2 + y

2 + 2 2
)^' (x

2 + y
2 + 22

)*> (x
2 + 2/

2
-f z 2)^

Pages 129-130

1. 7T/6 cu. ft. 6. $3.46.

2. 11.7ft. 7. 0.112; 0.054.

3. 0.139ft. 8. 53.78; 093.

4. 2250. 9. 0.0037T; 0.3 per cent.

6. 10.85. 10. I.GTTJTT.

Pages 136-136

1. ka*(8 cos 26 + K sin 20). 2. 2r cos 20; -2r 2 sin 20.

3. 2r - t;t 2s; s - r.

7. (a) e^
2

(2<
sin^ + I cos^) ;

(b) 2r(l
- 3 tan2

0), -6r2 tan sec 2
0.

8. (a) 2z, 2(x + tan x sec 2
x);

,. N ^67 . A dV / dV dV\ dV
(b) cos -r

--h sin -
> r I cos - sin -

]6x 5?/ \ dy Ox ) dz

Pages 141-143

+ 9x2 4w 1 4t>!/
2

e 4uy* 1 y

12v*(u + v)' 4w 2
(w + t;)

J

4v*(u + w)

' ^
^TZ

4.
2/g

y

'

xy uvev v
t

vev+v x

6. (a) -2, 3, i, -i; (6) ^rqr^ ^r^i' srjr^ snp

-f 4u' 1 +
13 C^ - sec y ,

.

v ; 3 sec ?/ tan y + 2zV v y
cos -

3-s
2 cos - 32

14. 2(* -y):2(* -*):2(y -
*).

Pages 146-146

3. J^[3 \/3 + 1 -f (\/3 + 1)1 or 6.811. 4. 2 \/s 2 + 2/
2

.
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Page 149

1. V3/3.

2. (a) 2x + 3y + 2z =
6,
^LzJ =

?^J
= * ~ **

;

(6) 6z -f 2?/
-

32; = 6, ^-TT-
= ^

^ = g

^" ;

c ^
^Q^

i yy. \

zj& i 2! / _ ^_^!/ _ \,
a 2 6 2 c 2 '

Zo 2/o

Pages 152-163

6. dx/ds = l/\/14, rfi//c?s
== 2/V14, d2/d = 3/VTi. 9. 27.

Pages 154-155

3. 10^20.
4. /,* cos 2 +/* sm 20 -\-fyy sin 2

0;

fxxr* sin 2 ^ /xi/r
2 sm 20 + /^j/r

2 cos 2
/xr cos fyr sin 0.

Pages 157-158

2. e 1 + (x
-

1) + (y
-

1) + [(x
-

I)
2 + 4 (3

-
l)(y

-
1)

3. 1 + x + ^ (a:
2 -

7/
2
) + ~ (*

- S^ 2
) + ~

Page 160

1. (a) (3, 26) minimum;
(6) (3, 108) maximum, "(5, 0) minimum;
(c) No maxima 91 minima.

2. x = l/e.

4. (a) cos x H and sin re = 0, inflection;

(6) cos x = -^ and sin x =
0, inflection;

(c) sin x =
0, inflection.

6. (a) # = l/e; (6) x 1%s, maximum, x = 6^25) inflection,
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Pages 162-163

1. a/3, a/3, a/3 2. 8a6c/3 \/3. 3. a/3, 6/3, r/3

4. A/3P/(2 -v/3 + 3), (-\/3 + l)P/2(2 A/3 + 3), P/(2 V$ + 3).

^
5. = /i = = v/

u07r 2
V', a* = \/5l.

OTT

Pages 170-171

7TC* TTOi
.,

TT sin -- cos -~- 1

1. 5 1 4. tan a.
.<& a:

2. 7r. 6. 2#2
.

3 ' a
(l

~~
10g 2

)'
6 * 2a7r (a2 ~ 1 )~

2
'

CHAPTER V
Pages 190-191

1. (a/5, a/5). 8. 7ra2/2.

2. 7raV16. 11. 4a 2 ^ - lY
\2 /

4 /7T 2\
3. (a) ?/ du dv; (b) u 2v du dv dw. 12. Q a*1

(
- -

)O \4 O/
4. (37ra/16, 0, 0). 13. 8a 2

6. 32a 3
/9 14. x = a cos 2 -

6. (a/4, 6/4, c/4). 15. 7ra 4
fc/2

7. <T7ra 4
6/2. 16. /a = ^{^abc(a 2

-f 6 2
)

Page 195

1. 0. 4. 127ra 5/5

CHAPTER VI

Page 199

2. (a) -'%,* (b)
- 2 ?/'

1 '

3. (a) ?^; (6) %; (c) ?; (rf) ^
4. (a) 0; (6) M; (c) -^5-

Page 202

1. 7ra6. 2. J^. 3. 37ra2
/8.

Page 206

I- -Ms- 2. 0. 3. -H2 4. %.

Page 212

1. !%. 3. M.
5. (a) 7T/2; (6)

- x/8/4; (c) 1%.



ANSWERS 567

CHAPTER VH
Pages 230-231

1. (y')
2
4- 5xy'

-
y + 5x2 = 6. y" -

2y' + 2y =

2. y" 4- y = o. 7. #(y')
2

yy' 4- 1

3. zy'" y" xy' 4- y = 9. 3
y'" 3z2

y" -f

4. zy' 4- (1 x)y 4- 20"* = 0. - 10. 2xy'
-

y = 0.

6. (y")
2 = [14- (2/')

2
l
3

0.

0.

- 6y - 0.

Pages 264-266

1. 0.417 ft.

2. 0o +
9. w = vo (1 e~

11. 000667 cal.

Page 268

1. sin" 1

y 4- sin" 1 x c.

2. (v
-

!)/( + 1)
= ce

3. 2 cos y sin x cos # 4- x

4. sec # 4- tan y = c.

5. tan" 1
y 2 \/l + x c.

6. ^6* ex \/l y
2 = c

13. rr sin" 1 x -f-

14.

16. y # log XT/

16. tan" 1

y tan" 1

1 . 1

17. -
2/ a;

- 1

c.

= c.

7. 1 + y = c(l + x).

8. log [(?/
-

l)/y] -f
-* = c.

9. 2 tan" 1 e^ + log tanh x/2 * c.

10 -
- - - - 1(>g 2/

= c.

11. y(2
-

log y) = M tan 2 x + c.

12. s(l + 4?/
2)% = c.

8- - ~ +
I
+

19.

20.

c(l +x)(l -
ty).

7/
2 - c(l + ^2

).

23. (5 - X)/(A
-

x) =

2. sin ]

(y/x) log x c

3. sin (y/x) + log Z = c

4. a;
2

2zi/ y
2 = c.

5. log y + z 3
/(3?y

3
)
= c.

11.

Pages 261-262

ft __

7. y =

8. a; =
9. log a

10. x -

13. a:
2 + y

2
-f 0.12. y 4- cev/x = 0.

14. + y + 2 log (2x 4- y -
3) - c.

16. rcy
2 = c(x 4- 2y). 19. x + ce*

2/<2*<o . o.

17. x 3
4- y

3 =
co;?/. 20. y

2
4- 2a;y x 2 = c.

18.
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Pages 264-265

1. sin xy + x2
c. 7. x2

log t/
=* c.

2. aty + xt/
2
4- * - c. 8. (1

- x 2
)(l

-
y

2
)
- c.

3. e* -}- x + y c. 9. ex log y + a;
2 = c.

4. x 3
y 2/

3x = c. 10. Not exact.

5. Not exact. 11. Not exact.

6. sin (y/x) c. 13. x sin 2?/
= c.

Pages 268-269

1. sin" 1

y x = c.

2. y = ^A(x VI - x 2
4- sin" 1

x) 4- c.

3. x 4- 2/ tan" 1

y = c. 4. y ee 3* =
0, y ce~x 0.

Pages 278-279

1. y ex. 3. x2
4- wi/

2 = c.

2. x2 - y
z = c. 9. y = ce*/*.

Pages 280-283

12. p = p e-kh .

Pages 285-286

cos 2 x -F 2(sin x -
1)

6. y 2 sin x x cos x H cos x -\
---XX

7. y = 1 + ce1*"- 1
*. 12. x = ce- 2" + |

-
|.

8. 7 = (E/R)(\ - e-^ f

/i-). 13. y = tan x - 1 + ce~**n *.

9. y = sin x 4- cex 14. y = (x 4- l)(e* + c).

10. y = c tan x -f e*. 16. y = e 3* + ce 2
*.

11. x = 1 + c<r" 2
/2.

Page 287

1. ?/ = (48x~
2 - 96x~ 4 -

4) cos x + (IGx"
1 - 96x~ 3

) sin x + cx~ 4
.

2. 2/~
2 = x + ^ + ce2x . 6. ?T

2 = 1 + x 2
4- cex *.

3. 2/~
6 = %x 3

-f ex5
. 7. x~ 2

y +
4. x = y log ex. 8. t/~

J = 1 4- c

5. y 1 = 1 4- log x 4- ex.

Page 291

2. e~aaf f eCa+m) ^^ 3. e
-ax f
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Pages 294-295

1. (a) y ae-'* 4- c2e
8
*; (6) y - cie

3* + c 2e
2
*;

(c) y (ci + C2x)e~
x

; (d) y (r i + c 2z)e
a! + c8 ;

(e) y =
(ci 4- 02 4- c 3z2

)e~* 4- c 4 ; (/) y ci cos fcx + c2 sin fcz

+ c 3 cosh kx 4- C4 sinh

Pages 298-299

1 v - c e-ax
, (^

3 - * 2
) ,

2x ^ 2
1. y - cic 4-

g
+ y 27-

2. y - cie- 3* + c 2e~ 2j; + ~- 3. y =
(c t + c&)e* + x + 2.

4. y = cie-*
1 + c 2e** + (n)/2P)(x

2 - to + 2fc~ 2
), where fc -

5. y = c\e
x + c2e~x + Cse

2x x. 6, ?/
= cie"* + c2e*/

2
4- 2 sin x.

1. y (ci + c 2x)e
:c

4- c$e~
2x

4- sin x.

Pages 305-307

1. y = 2 cos Vl%_ViO/(27r); y 2 cos \Ao* -f VlO sin VIO*.
3. t/

= 10 cos V245.

4. y = 10e-
(cos A/220^ 4- ^r sin \722oA; /2 = 400 \/245 dynes.
V \/220 /

5. F - 100 \/2e-600< cos
^500*

-
|);

F = 100e""
500^(l -f 500 \/20.

6. 7 = 20 \/5e-50000f
(5 sinh 10000 VH>t + \/5 cosh 10000 \/50.

0. 10
-jrj- 4- lOgrz/

= 0; maximum y =
-\/3, total drop 2 4- \/3.

Pages 314-315

1. x - %cie' - c 2e~ -f %te - % 5 e' - ^ - Ke,
y = cie' -f c26~ 4<

4- K& ~ %t ~
Vis-

3. Cycloid of radius mE/(eH2
).

Pages 317-318

1. No. 2. Yes. 3. No.

Pages 321-322

3. y = -(x2
log a:)/9. 4. y c^ 4- care 4- z2 4- 1.

Pages 324-325

2. y CiX-2
4- Ca^-1

4- M log x %.
3. ?/

= Cix
2
4- C2X 3

. 4. ?/
= CIX

OT
4- cjaj""*"

1
.

6. y - cix
2
4- c2x(5+V2i)/2 4-

6. y - dsU + VSo/a 4- c2x(i-\/30/2 4- *.
3

7. y do?2
4- c2x x[(log )

f
/2 4- log x].
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Page 329

3. y-cil-a;+-~-h + r,(l -f x + z 2
-f

CHAPTER VIII

Pages 356-367

^2! d2 _^- a; ^
= 0;

23 _ 1 dz dz

Page 361

1. (a) ^ = Fi(y -f ox) -h ^a(y - ax);

(b) z ~Fi(y -2x) +F*(y + x);

(e) z = Fi(y -
x) -f xF*(y -* x).

2. (a) xy; (c) x*y/2 -
a;V3.

Page 372

1. 0.44883; 0.14922; 000004

(2n - 1)..

Pages 390-391

V
n=l

00

7. / = 0.6 -f- 1.1
2) (~ 1 )ncos
n-l

CHAPTER IX

Pages 398-399

1. 0.5640. 2. (10 V3/3)(i -h j + k).
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Pages 403-404

6. 3i + 12j + 4k. 6. 19 V3/3; (\/3/3)(8i + j
-

9k).

Page 409

j
du _ dudx dudy dudz

'

ds
~

~dxds ~dyds dz ds'

2. (a) jyz + jxz + kxy; (b) i2x -f j2y + k2z;

(c) (x
2 + 2/

2 + z 2
)-H(iz + jy + kz);

(d) 2(x
2 + 2/

2
-f z 2

)-
]

(iz -f jy + kz).

5. 26 A/2/5 6. 9.

Pages 414-416

1. (a) 3; (b) 2/r; (c)

3 i 1 /Mf a. ^Aji . M.A j. i J^ /'Mf 4_ M _i_ M_A
da; V dx dy

~*"
dz )

^ J

dy \ dx
^~

dy
"^

dz )

Pages 420-421

1. (a) 0; (b) 0; (c)

Pages 432-433

4. ^ =
cij 5. * = x 2

Page 439

^$ 4. 5.1 ^? _4_ ^?. ?? i ^i^? i J^!_
91 ap

+
P ~dd

+ Zl
a7 ; 9l

a^
+ 7 56>

fcUp ^i i r

L~^ ""ap J
"*"

'pL
(sin gA y ) _ dA\ T 1

~d<t> \
l

\_ps

_ _
psmei 08 ~d<t>

l

_psmO~d<f> p dp

j_ M 1
+ * 1

p
10. 3p cos 0/r

4
;

CHAPTER X

Pages 443-444

1. (a) 2, 60; (6) 2 >/2, 45; (c) 1, 90.

a (n\
x

4- *
-y + !

.. .y ' W x2
-f (y

-
I)

2 + % 2
-f(2/ -I) 2 '

*2 + (2/4- I)
2 ^ & -f (y -f I)

2
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Pages 447-448

4
sin 2x . sinh 2y

cos 2x -h cosh 2y cos 2x -f cosh 2y
6. sin x cosh y -\- ^ cos x sinh y.

7. (a) e-/[cos (log \/2) + t sin (log \/2)]j

(b) \/2e~r/* I cos f j
~ lg \/2 ) -h * sin

(
~" T ~ lg "N/2 ) I

Pages 462-463

3. (a) z*; (b) 1/z; (c) z; (d) log z; (e) cos 2. 7. x 3 - 3^ 2
.

Page 461

3. 2 4. Trt. 6. 0. 6. 2wi. 7. 0.

Page 469

2. (a) u =* cos # cosh y, v sin # sinh t/;

(b) u = e* cos ?/, v ex sin y;

(c) u x &xy ,
f :

(d) w = log (x
2

4- i/
2
)J

(e) u =
a:/ (a;

2 + y
2
), i

CHAPTER XI

Page 496

l. K; Ks- 2. % ; H; Ko; % 8 ; 1323/46189.

Page 497

1. 33/16660. 4. *%Q.
2. 8H 2;H 2 . 5. % 2;2;% a .

3. M4088-

Pages 499-600

1. 4Mo. 6. n > log 2/(log 6 -
log 5).
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Page 601
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Page 604
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Page 512

1. l/\/125T. 2. 200; \/3/(10007r). 3.

Page 616

1. (200)
10e-200

/10! 2. (20)
100e-20/100l

3. 0.136; 0.272; 0.272; 0.181; 0.091; 0.036.

Pages 523-524

4. 0.00896; 0.00850. 5. 0.976; 0.983. 6. First set.

CHAPTER XII

Page 527

1. y =* x/2 + %. 2. y = 2.5s 05 8. y - 0.3(10- 2a!
).

Pages 633-634

1. p avn . 2. = fca e
.
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Pages 536 6^6
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. 2. H - KC'2 ~ HC' 4- Ji-
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-f 0.100s 3

.

4. y = 1.3 + 0.2e*. 6. y = 0.3<? -1.1 sin z + 1.5s2
.

Page 544

1. y = 4.99 - 3.13s + 1 26s 2
. 2. y - 10 5

*.

Page 560

1. ?/
= 0.75 -f- 0.10 cos s 05 cos 3s 29 sin x.

2. ?/
= 0.85 0.25 cos 2s 0.05 cos 4s -f 0.05 cos 6s + 0.26 sin 2s

- 0.03 sin 4s.

Page 654

1. 42 61; 42 50; 42.51. 3. 106.15; 106.09; 106.09.

2. 2.581; 2.627. 4. 2.784; 2.700.

Page 560

1. 25.252; 25.068. 4. 666.25; 666.00.

2. 132.137. 6. 39.30; 38.98.

3. 128.6.
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Absolute convergence of series, 16,

17, 20, 21

Absolute value of complex number,
441

Addition, of series, 21

of vectors, 393

parallelogram law of, 394

Adiabatic process, 224

Aerodynamics, 133, 431

Algebra, fundamental theorem of, 92

Algebraic theorems, 92-94

Alternating series, 15

am u, 51

Ampere's formula, 52n.

Amplitude of complex number, 441

Amplitude function, 51

Analysis, harmonic, 545

Analytic functions, 451-491

Angle, as a line integral, 195

direction, 146, 398

of lap, 240

of twist, 485

solid, 195

Angular velocity, 61, 191, 236, 404,
424

Applications, of conformal repre-

sentation, 479-491
of line integrals, 217-224
of scalar and vector products,

404-406

Approximate formula, for n!, 509

for probability of most probable

number, 511

in applied mathematics, 55

Approximation, Laplace's or normal,
515

Approximations to binomial law, 512

Arc length, 143

of ellipse, 47

Arc length, of sinusoid, 55

Area, 172

as a double integral, 178

as a line integral, 199-202
element of, 183, 184, 190, 437

positive and negative, 200

surface, 188-196

Argument of complex number, 441

Associative law, for series, 18

for vectors, 394

Asymptotic formula for n\ 509

Asymptotic series, 524

Atmosphere, thickness of, 61

Attraction, law of, 218, 232

motion under, 58, 218
of cone, 196

of cylinder, 196

of sphere, 196, 232

Augmented matrix, 118

Auxiliary equation, 292

Averages, method of, 534

Axes, right- or left-handed, 397

B

Base vectors, 396

Beam, 240-242, 307

Belt on pulley, slipping of, 239

Bending moment, 241

Bernoulh-Euler law, 241, 307

Bernoulli's equation, 286

Bessel functions, 273, 336, 381

expansion in, 339
Bessel's equation, 332, 380
Beta function, 276

Binomial law, 502

approximations to, 512

Binomial series, 40
Biot and Savart, law of, 52

Boundary conditions, 242, 351, 363,

370

Buckling, 299

575
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Cable, flexible, 244

flow of electricity in, 386

supporting horizontal roadway,
242

Cartography, 479

Catenary, 247, 252.

Cauchy-Riemann equations, 221,

450, 455

Cauchy's equation, 322n.

Cauchy's integral formula, 461

Cauchy's integral test, 12

Cauchy's integral theorem, 455

Center of gravity, 177, 182, 183, 187,

190, 191, 196, 522

Change of variables, in derivatives,

154

in integrals, 183-188

Characteristic equation, 292

Charge, distribution of, 487

Charts, distribution, 506

Chemical reaction, 258

Circular functions, 247

Circulation, of a liquid, 475, 477

of a vector, 418, 419

Closed curve, area of, 199-201

direction around, 200

integral around, 201, 203, 206,

216, 421

simple, 200

en u, 51

Coefficients, Fourier, 65

metric, 437

Cofactor, 111, 112

Combinatory analysis, fundamental

principle of, 493

Commutative law, 394, 399, 400

Comparison test for series, 9

Complementary function, 290, 292

Complete elliptic integrals, 48

Complex number, 440

absolute value of, 441

argument of, 441

conjugate of, 444, 488

vector representation of, 440

Complex roots of unity, 87

Complex variable, 440-491

functions of, 444-491

analytic, 451-491

derivative of, 449

integration of, 453

line integral of, 454

Taylor's expansion for, 464

Components of force, 217

Composite function, 134, 137

Condenser, 283, 299, 305, 308, 387

Conditionally convergent series, 16,

17,21

Conditions, Cauchy-Riemann, 221,

450, 455

Dinchlet, 65

for exact differential, 212, 216

Conductivity, 367, 426

Conductor, 486, 489

Conformal mapping, 465, 471

Conformal representation, applica-

tions of, 479-491

Conformal transformation, 467

Conjugate of a complex number,

444, 488

Conjugate functions, 468, 470

Conservation of matter, law of, 429

Conservative field of force, 219, 411

Consistent systems of equations,
117-122

Continuity, equations of, 221, 429,
481

of functions, 23, 28, 124, 448

Contour line, 144

Convergence, absolute, 16, 17, 20,

21, 33

conditional, 16, 17, 21

interval of, 31, 33

of series, 4, 7

tests for, 9, 11, 12, 15, 20, 27, 31,

33

radius of, 31, 33

uniform, 23-30, 33

Cooling, law of, 254

Coordinate lines, 434

Coordinate surfaces, 434

Coordinates, curvilinear, 433-439

cylindrical, 152, 185, 190, 191, 378,

386, 434, 438
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Coordinates, ellipsoidal, 433

parabolic, 439

polar, 183, 184, 276, 279, 386, 438

spherical, 152, 185, 382, 386, 434,

439

cos x, 46, 250

cosh, 247

Cosine, hyperbolic, 247

power series for, 38, 40

Cosine series, 73

Cosines, direction, 146, 147, 151,

188, 194, 398

coth, 249

Cramer's rule, 113

Cross product, 400

Cubic equation, algebraic solution

of,*86

graphical solution of, 83

Curl, 418, 422, 423, 438

Current, 386, 427

Curve, distribution, 504, 516

elastic, 240, 307

map of, 466

Curve fitting, 525-560

Curves, integral, 226, 228, 279

orthogonal, 277, 468

Curvilinear coordinates, 433-439

Cylinder functions (see Bessel func-

tions)

Cylindrical coordinates, 152, 185,

190, 191, 378, 386, 434, 438

D

Dam, gravity, 483

Damping, viscous, 302

Dead-beat motion, 304

Decomposition of vectors, 396

Definite integrals, 172

change of variable in, 183-188

evaluation of, 172

mean-value theorem for, 210n.

Deflection, 299

Degree of differential equation, 225

Del, V (see Nabla)
Delta amplitude, dn, 51

De Moivre's theorem, 90, 442

Dependence, functional, 2

linear, 116

Dependent events, 495

Derivation of differential equations,

231-247

Derivative, 125

directional, 143, 151, 219

normal, 144, 146, 152

of functions of a complex variable,

449, 452, 463

of hyperbolic functions, 255

of series, 29, 33

partial, 125-143, 153

total, 130-143

Descartes's rule of signs, 94

Determinants, 102-114

cofactors of, 111

expansion of, 106n., Ill

functional or Jacobian, 183

Laplace development of, 111

minors of, 110

of matrix, 115

product of, 110

properties of, 107-112

solution of equations by, 102-114

Wronskian, 317

Deviation, standard, 523

Diagonal term of determinant, 107

Diagram, pv, 223

Differences, 527

Differential, exact, 211, 212, 216,

222, 224, 262, 411, 418, 420

of area, 184, 190

of volume, 185, 187, 190

partial, 128-143

total, 127-143

Differential equations, 225-391

Bernoulli's, 286

BessePs, 332, 380

Cauchy-Riemann, 221, 450, 455

Cauchy's, 322n.

definition of, 225

degree of, 225

derivation of, 231-247

Euler's, 322, 430

exact, 262

first order, 256, 267

Fourier, 425
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Differential equations, general solu-

tion of, 230, 290, 292, 350, 358

homogeneous, 259, 261

homogeneous linear, 290

integral curve of, 226, 228

integrating factor of, 265

Laplace's, 369, 382, 385, 386, 439,

451, 470, 481

Legendre's, 342, 384

linear, 226, 283-349, 357

numerical solution of, 346

of electric circuits, 301, 305, 386

of heat conduction, 367

of membrane, 377

of vibrating spring, 308

of vibrating string, 361

order of, 225

ordinary, 225-349

partial, 225, 350-391

particular integral of, 290, 292,

297, 318, 359

particular solution of, 230

second order, 269, 295

separation of variables in, 257

simultaneous, 312-315

singular solution of, 279

solution in series, 228, 325, 349,

364

solution of, 226

with constant coefficients, 287-

315, 357

with variable coefficients, 284,

315-349

Differential expression, 225

Differential operators, 287-299, 357,

406

Differentiation, of implicit functions,

132-142

of series, 29, 33, 34, 80

partial, 123-171

term by term, 33, 34, 80

under integral sign, 167

Diffusion, 369, 427

DifTusivity, 368w.

Direction angles, 146, 398

Direction components, 146

Direction cosines, 146, 147, 151, 188,

194, 398

Direction ratios, 150, 151

Directional derivative, 143, 151, 219

(See also Gradient)

Dirichlet conditions, 65

Discharge of condenser, 299

Discontinuity, finite, 64

Discriminant of cubic, 89

Distance, element of, 435

Distribution of charge, 487

Distribution charts, 506

Distribution curve, 504, 516

Distributive law, 399, 400

Divergence, of series, 5, 8, 20

/ of a vector, 411, 423, 438

Divergence theorem, 191, 415, 425,

428

dn w, 51

Dot product, 399

Double integrals, 173, 192, 202, 275

Drying of porous solids, 369

Dynamics, laws of, 231

E

e, 42

e, 250

Effects, superposition of, 129, 223

E(k, <?), 48-51, 54

Elastic curve, 240, 307

Elasticity, 241, 422, 484-486

Electrodynamics, 422, 423n.

Electron, 315

Electrostatic field, 475, 477, 479

Electrostatic force, 487

Electrostatic potential, 487

Electrostatics, 486-491

Element, of arc, 467

of area, 184, 190, 437

of distance, 435

of volume, 185, 187, 190, 437

Elementary functions, 315

expansion of, 35-46, 65-82, 465

Ellipse, area of, 177, 202

center of gravity of, 177

length of arc of, 47

Ellipsoidal coordinates, 433

Elliptic functions, 51
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Elliptic integrals, 47-55

complete, 48

first kind, F(k, v?), 48-55, 238

second kind, E(k, ^), 48-54

third kind, II (n, k, <?), 50

Empirical formulas, 525-560

Entropy, 224

Envelope, 279

Equation, auxiliary, 292

Bernoulli's, 286

Bessel's, 332, 380

characteristic, 292

cubic, 86

Euler, 322

Fourier, 425

mdicial, 334

integral, 347

Laplace's, 195, 369, 382, 385, 386,

439, 451, 470, 481

Legendre's, 342, 384

of continuity, 221, 429, 481

of plane, 147

wave, 432

Equations, Cauchy-Uiemann, 221,

450, 455

consistent, 117-122

dependent, 105

differential, 225-391

Euler's, 430

inconsistent, 105, 117-122

normal, 537, 540

parametric, 143, 149, 150, 199, 215

representing special types of data,

528

simultaneous, 102-122, 139-141

solution of, 83-122

systems of, 102-122

homogeneous linear, 119-122

non-homogeneous linear, 113-

119

Error, Gaussian law of, 520, 536

mean, 516

mean absolute, 522

mean square, 522

of observation, 516

probable, 521

small, 56

Error function, 516

Euler equation, 322

Euler formulas, 78, 251

Euler's equations, 430

Euler's theorem, 136

Evaluation of integrals, by differ-

entiation, 169

in series, 43-46

Even function, 68

Events, dependent, 495

independent, 495

mutually exclusive, 497

Exact differential, 211, 212, 216, 222,

224, 262, 411, 418, 420

Exact differential equation, 262

Expansion, in Bessel functions, 339

in Fourier series, 65-82

in Legcndre polynomials, 346

in Maclaunn's series, 37

in power series, 37-46

in Taylor's series, 37

in trigonometric series, 65

uniqueness of, 38

Expectation, 500

Expected number of successes, 508

Exponential form for trigonometric

functions, 78, 251, 446, 447

Exponential function, expansion for,

42, 446

Extremal values, 164

Extremum, 164

F(k, *>), 48-55

Factor, integrating, 265

Factor theorem, 92

Factorial, n
!, approximation for, 509

(See also Gamma functions)

Falling body, 58, 232

Field, 406

conservative, 411

electrostatic, 475, 477, 479

irrotational, 418

Finite discontinuity, 64

Fitting, curve, 525-560

Flexure, 298

Flow, of a liquid, 220, 424, 428, 477,

, 478, 480-484
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Flow, of electricity in a cable, 386

of heat, 256, 368-377, 423, 425

seepage, 483

Fluid motion, 220, 424, 428, 475-

478, 480-484

Flux, 416

Flux density, magnetic, 52

Force, 217, 239, 392, 406, 409

components of, 217

conservative field of, 219

electrostatic, 487

Force function, 411

Forced vibrations, 308, 310

Formula, asymptotic, 509

Cauchy's integral, 461

empirical, 525-560

interpolation, 550

Lagrange's, 552

Poisson, 512

Stirling's, 508

Wallis's, 45

Fourier coefficients, 65

Fourier equation, 425

Fourier series, 63-82

complex form of, 78

differentiation of, 80

expansion in, 65-82

integration of, 80

solution of equations with, 364

Functional dependence, 2

Functional determinant, 183

Functions, 1

analytic, 451

Bessel, 336

Beta, 276

complementary, 290

conjugate, 468, 470

continuous, 23, 448

elementary, 315

expansion of, 35, 65, 155

Gamma, 272-277

holomorphic, 451

homogeneous, 136, 259

hyperbolic, 247-256
of a complex variable, 444-491

of several variables, 123, 160

orthogonal, 81, 339, 345

periodic, 64

Functions, potential, 219, 411

power, 30

real, 2, 123

regular, 451

scalar point, 406

singularities of, 222

stream, 221, 432, 453, *oi

vector point, 406

Fundamental principle, of combina-

tory analysis, 493

of sequences, 6

Fundamental theorem, of algebra, 92

of integral calculus, 172, 457

G

Gamma functions, 272-277
Gauss-Argand diagram, 440

Gaussian law of error, 520, 536

Gauss's theorem, 193

General solution of differential equa-

tion, 230, 290, 292, 350, 358

Geometric series, 9

Gradient, V, 144, 152, 407, 410, 438

Graphical method, of curve fitting,

525

of solution of equations, 83

Gravitational constant, 232

Gravitational law (see Attraction)

Gravitational potential, 219, 408

Gravity, center of, 177, 182, 183,

187, 190, 191, 196, 522

Gravity dam, 483

Green's theorem, for the plane, 202

in space, 191, 418

symmetric form of, 194, 418

H

Harmonic analysis, 545

Harmonic series, 8

Heat conduction, 367
Heat flow, 368-377

equation of, 368, 425

steady, 256, 368, 427

variable, 368, 373, 425

Helix, 151, 152

Holomorphic functions, 451
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Homogeneous equations, differential,

259, 261

linear algebraic, 119-122

linear differential, 290

Homogeneous function, 136, 259

definition of, 136

Euler's theorem on, 136

Hooke's law, 241, 299

Horner's method, 95

Hydrodynamics, 221, 422, 428-433,
480-484

Hyperbola, 247

Hyperbolic functions, 247-256

Hyperbolic paraboloid, 162

I

Imaginary roots, 94

Implicit functions, 132, 137-142

Inclined plane, 280, 282, 306

Incompressible fluid, 424, 430

Inconsistent equations, 105, 117-122

Independence, linear, 116, 317

of path, 208, 216, 452, 455

Independent events, 495

Independent trials, 501

Indicial equation, 334

Infinite series, 1-62

absolute convergence of, 16, 17, 20

conditional convergence of, 16, 17

definition of, 4

expansion in, 35-46, 155-158

of constants, 6-22

of functions, 23-62

of power functions, 30

of trigonometric functions, 63-82

operations on, 21, 29, 33-35

sum of, 4n.

tests for convergence of, 9, 11, 12,

15, 20, 27, 31, 33

theorems on, 17, 21, 27, 28, 29, 31,

33, 34, 36, 38

uniform convergence of, 23-30, 33

Inflection, point of, 159

Initial conditions, 235, 351

Integral calculus, fundamental theo-

rem of, 172, 457

Integral curve, 226, 228, 279

Integral equation, 347

Integral formula, Cauchy's, 461

Integral test for series, 12

Integral theorem, Cauchy's, 455

Integrals, around closed curve, 201,

203, 206, 216, 421

change of variable in, 183-188

definite, 172

double, 173, 192, 202, 275

elliptic, 47-55, 238

evaluation of, by means of series,

43-46

iterated, 175, 180

line, 197-224, 410, 421, 454, 458

mean-value theorem for, 210n.

multiple, 172-196

particular, 290, 292, 297, 318

surface, 188-196, 415, 421

transformation of (see Green's

theorem; Stokes's theorem)

triple, 177, 193

volume, 180, 415

with a parameter, 47, 167

Integrating factor, 265

Integration, by parts, 276

numerical, 554-560

of complex functions, 453

of series, 29, 33, 34, 80

term by term, 33, 34, 80

Interpolation, method of, 101

Interpolation formulas, 550-554

Interval, 4

of convergence, 31, 33

of expansion, 38, 76

Inverse hyperbolic functions, 249,

255

Inversions, 106

Irrotational field, 418, 423, 430

Isolation of roots, 92

Isothermal process, 224

Iterated integrals, 175, 180

Iteration, method of, 297

J(x\ 336

Jacobian, 141, 183, 190
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K

K 9(x), 337

Lagrange's interpolation formula,

552

Lagrange's method of multipliers,

163-167

Lamellar field, 423

Laplace's approximation, 515

Laplace's equation, 195, 369, 382,

385, 386, 439, 451, 470, 481

Law, Bernoulli-Euler, 241

binomial, 502, 512

of attraction, 218

of conservation of matter, 429

of cooling, 254

of dynamics, 231

of error, 520, 536

of gravitation, 232

of small numbers, 512

Least squares, method of, 536

theory of, 521

Legendre polynomials, 344, 384

expansion in, 346

^egendre's equation, 342, 384

Leibnitz's rule (see Differentiation,

under integral sign)

Leibnitz's test (see Test, for alternat-

ing series)

Length, of arc, 143

of ellipse, 47

of sine curve, 55

Level surface, 406

Limit, 2, 124, 454

Line, contour, 144

coordinate, 434

direction cosines of, 146, 147, 151

normal, 144, 146-149

of equal potential, 277

of flow, 475

stream, 277, 432, 467

tangent, 143, 147, 151

vector equation of, 395

Line integrals, 197-224, 410, 421,

454

Line integrals, applications of, 217-

224

around a closed curve, 202, 206,

216, 421

definition of, 197, 454

evaluation of, 202-206, 458

for angle, 195

for area, 201

for work, 217

in space, 215, 410, 421

properties of, 206-217

transformation of, 202, 421

Linear dependence or independence,

116, 317

Linear differential equations, 288-

349, 357

with constant coefficients, 287 357

with variable coefficients, 284,

315-349

Linear differential operator, 287-299

Log z, 446

Logarithmic paper, 526

M

M test, 27

Maclaurin formula, 36

Maclaurin's scries, 37, 249

Magnitude of a vector, 393

Map, geographic, 479

of a curve, 466

Mapping functions, 467

Matrix, 114-122

augmented, 118

determinants of, 115

rank of, 115

Maxima and minima, constrained,

163

for functions of one variable, 158

for functions of several variables,

160

Mean error, 516, 522

Mean-value theorems, 210n.

Measure numbers, 397

Mechanical quadrature, 554

Membrane, vibration of, 377

Mercator's projection, 479

Metric coefficients, 437
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Minima (see Maxima and minima)

Minimax, 162

Modulus, of complex number, 441,

442

of elliptic function, k, 51

Moment, bending, 241

Moment of inertia, 177, 180, 182,

183, 187, 190, 191, 196, 241

Moments, method of, 544

Most probable value, 505

approximation for probability of,

511

Motion, dead-beat, 304

fluid, 220

JAWS of, 231, 234

of a membrane, 377

oscijktory, 304

pendulum, 48, 234

simple harmonic, 233, 301, 314,

380

under gravity, 232

Multiple integrals, 172-196

definition and evaluation of, 173,

179

geometric interpretation of, 177

Multiplication, of complex numbers,
442

of determinants, 110

of series, 21

of vectors, 399

Multiplicity of root, 93, 294

Multiplier, Lagrangian, 165

Multiply connected region, 205, 212,

455

Mutually exclusive events, 497

N

N*bla, or del, V, 194, 195, 407, 414,

422

Newtonian potential, 196

Newton's law, of attraction, 218

of cooling, 254

of dynamics, first law, 231

second law, 231, 272, 363

third law, 231, 234

of gravitation, 232

Newton's method of solution, 97

Normal, to a curve, 144

to a plane, 146, 147

to a surface, 147, 188, 407

Normal approximation, 515

Normal derivative, 144, 146, 152

(See also Gradient)
Normal distribution curve, 516

Normal equations, 537, 540

Normal form, 146

Normal law (see Gaussian law of

error)

Normal line, 144, 146-149

Normal orthogonal functions, 81

Numbers, complex, 440

measure, 397

Numerical integration, 554-560

Numerical solution of differential

equations, 346

O

Odd function, 68

Operator, 528

differential, 287-299, 357, 406

vector (see Curl; Divergence;

Gradient; Nabla)
Order of differential equation, 225

Ordinary differential equations, 225-
'

349

(See also Differential equations)

Ordinary discontinuity, 64

Origin of a vector, 393

Orthogonal curves, 277, 468

Orthogonal functions, 81, 339, 345

Orthogonal systems, 434

Orthogonal trajectories, 277-279

Orthogonal vectors, 398

Oscillation of a spring, 299

Oscillatory motion, 304

Overdamped, 303

p series, 10

Parabola, 244

Parabolic coordinates, 439

Paraboloid, hyperbolic, 162

Parachute, 253, 255
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Parallelogram law of addition, 394

Parameters, 277, 280

integrals containing, 167

variation of, 318

Parametric equations, 143, 149, 150,

199, 215, 247

Partial derivatives, 125-143, 153

Partial differential equation, 350-

391

derivation of, 351

Fourier, 425

integration of, 353

Laplace's, 369, 382, 385, 386, 439

linear, 357

of elastic membrane, 377

of electric circuits, 386

of heat conduction, 367, 425

of vibrating string, 361

Partial differentials, 128-143

Partial differentiation, 123-171

Partial fractions, method of, 297

Partial sum, 4

Particular integral, 290, 292, 297,

318, 359

Particular solution, 230

Path, integrals independent of, 208,

216, 452, 455

Pendulum, simple, 44, 234-238, 306

Periodic function, 64

Picard's method, 347

Plane, equation of, 147

inclined, 280, 282, 306

normal form for, 146

tangent, 146-149

Point, of inflection, 159

singular, 451

Poisson formula, 512

Polar coordinates, 183, 184, 276, 279,

386, 438

Polygon, rectilinear, 478, 485

Polynomials, Legendre, 344, 384

Porous solids, drying of, 369

Potential, electrostatic, 487

gravitational, 219, 408

lines of equal, 277

Newtonian, 196

velocity, 221, 222, 277, 430, 432,

453, 467, 480

Potential function, 219, 411

Power series, 30-62

differentiation of, 33, 34

evaluation of integrals by, 43-46

expansion in, 35-46

functions defined by, 33

integration of, 33, 34

interval of convergence of, 31, 33

operations on, 33-35

theorems on, 31-35

uniform convergence of, 33

uniqueness of expansion in, 38

whose terms are infinite series, 40

Power series solutions of differential

equations, 325-346

Precision constant, 520, 521

Pressure on dam, 484

Primitive, 458

Principal part of increment, 128

Probability, 492-524

Probability curve, 521

Probable error, 521

Probable value, most, 505

probability of, 511

Product, of determinants, 110

scalar, 399

vector, 400

Projection, Mercator's, 479

stereographies, 479

Pulloy, slipping of belt on, 239

pv diagram, 223

Q

Quadrature, mechanical, 554

Quotient, of complex numbers, 444
of power series, 40

R

Radius of convergence, 31, 33

Radius vector, 195

Rank of matrix, 115

Ratio test, 11, 20, 31

Reaction, chemical, 258

Rearrangement of series, 17

Rectilinear polygon, 478, 485

Recursion formula, 273, 328, 331,
334
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Region, multiply connected, 205,

212, 455

of integration, 173

simply connected, 205

Regulafalsi, 101

Regular functions, 451

Remainder in Taylor's series, 36-37

Remainder theorem, 92

Repeated trials, 501

Representation, applications of con-

formal, 479-491

Residuals, 534, 537

Resonance, 310

Riemann surface, 473

Right-handed system of axes, 397

Rod, flow of heat in, 373

vibrations of, 366, 367

Roots, of equations, 83-102

isolation of, 92

theorems on, 92-94

of unity, co, co
2
,
87

Rot (see Curl)

Rotational field, 418

Rule, Cramer's, 113

Simpson's, 556

trapezoidal, W556

S

Scalar field, 406, 408

Scalar point function, 406, 418

Scalar product, 399

application of, 404

Scalars, 392

Schwartz transformation, 478, 485,

491

Seepage flow, 483

Separation of variables, 257

Sequences, 2

fundamental principle of, 6

limit of, 3

Series, asymptotic, 524

binomial, 40

evaluation of integrals by, 43-46

Fourier, 63-82

infinite, 1-62

integration and differentiation of,

29, 33, 34

Series, of constants, 6-22

of functions, 23-62

power, 30-62

solution of differential equations

by, 228, 325-346

Taylor's and Maclaurin's, 37, 155,

228, 249, 464, 539

tests for convergence of, 9, 11, 12,

15, 20, 27, 31, 33

theorems on, 17, 21, 27, 28, 29, 31,

33, 34, 36, 38

uniform convergence of, 23-30

Shearing stresses, 485

Simple closed curve, 200

Simple harmonic motion, 233, 301,

314, 380

equation of, 234

period of, 234

Simple pendulum, 44, 234-238, 306

Simply connected region, 205

Simpson's rule, 556

Simultaneous differential equations,
312-315

Simultaneous equations, 102-122,
139-141

sin x, 41, 250

sin- 1
x, 46

Sine, hyperbolic, 247

length of curve, 55

power series for, 40, 41

Sine series, 73

Singular point, 451

Singular solution, 279

Singularities of function, 222
smh x

}
247

Sink (see Source and sink)

Six-ordinate scheme, 548

Slipping of belt on pulley, 239

Small numbers, law of, 512

sn u, 51

Solenoidal field, 423

Solid angle, 195

Solids, drying of porous, 369

Solution, of cubic, 86-91

of differential equations, 226, 228,

325

general, 230, 290, 292, 350, 358

particular, 230
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Solution, of differential equations,

singular, 279

of equations, 8&-122

algebraic, 86, 95

graphical method of, 83

transcendental, 85, 97

of systems of linear algebraic equa-

tions, 102-122

steady-state, 309, 310

Source and sink, 221, 411, 416, 424,

427, 429

Space curves, 149-152

Spherical coordinates, 152, 185, 382,

386, 434, 439

Spring, 299, 308, 313

oscillation of, 299

Standard deviation, 523

Steady heat flow, 256, 368, 369, 427

Steady-state solution, 309, 310

Stereographic projection, 479

Stirling's formula, 508

Stokes's theorem, 421

Stream function, 221, 432, 453, 481

Stream lines, 277, 432, 467

Stresses, shearing, 485

String, vibration of, 361

Sum, of a series, 4n.

of vectors, 393

Superposition of effects, 129, 223

Surface, equation of, 144

level, 406

normal to, 147, 407

Surface integral, 188-196, 415, 421

Surfaces, coordinate, 434

Riemann, 473

Systems of equations, consistent or

inconsistent, 117-122

linear algebraic, 107-122

Taylor's theorem, 36

Tension, 239, 243, 244, 251, 362, 377

Test, Cauchy's integral, 12

comparison, 9

for alternating series, 15

for series, 9, 11, 12, 15, 20, 27, 31,

33

ratio, 11, 20, 31

Weierstrass M, 27

Theory of least squares, 521

Thermodynamics, 222

Torque, 405

Total derivatives, 130-143

Total differential, 127-143

Trajectories, orthogonal, 277-279

Transformation, by analytic func-

tions, 467

conformal, 467

Green's, 191, 202, 418

of element of arc, 467

of integrals, 202

Schwartz, 478, 485, 491

Stokes's, 421

Trapezoidal rule, 556

Trials, repeated and independent,
501

Trigonometric functions, 78, 251,

446, 447

Trigonometric series, 63-82

Triple integrals, 177, 193

U

Undetermined coefficients, 229

Uniform convergence, 23-30

test for, 27

Unit vectors, 394, 397

Unity, roots of, 87

Tangent line, 143, 147, 151

Tangent plane, 14&-149

tanh, 249

Taylor's formula, 35-46, 158

applications of, 41-46

Taylor's series, 37, 464, 539

for functions of two variables,

155-158, 228

Variable, change of, 154, 183-188

complex, 440-491

dependent, 2

independent, 1

Variable heat flow, 368, 373, 425

Variation, of constants (see Varia-

tion, of parameters)
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Variation, of parameters, 318, 323

Vector analysis, 392-439

Vector equation of line, 395

Vector field, 406, 408, 409, 412, 418,

423

Vector point function, 406

Vector product, 400

applications of, 404

Vector relationships, 402

Vectors, 144, 152, 392

addition of, 393

base, 396

curl of, 418

decomposition of, 396

divergence of, 411

magnitude of, 393

multiplication of, 399

origin of, 393

orthogonal, 398

radius, 195

unit, 394, 397

zero, 393

Velocity, 404, 424

angular, 61, 191, 236, 404, 424

critical, 61

of earth's rotation, 61

of escape, 61

terminal, 59, 254

Velocity potential, 221, 222, 277,

430, 432, 453, 467, 480

Vibration, forced, 308, 310

of elastic rod, 366, 367

of membrane, 377

of spring, 308

of string, 361

(See also Simple harmonic mo-

tion)

Viscous damping, 302, 366

Volume, as a triple integral, 180

element of, 185, 187, 190, 437

Volume integral, 180, 415

W

Walhs's formula, 45

Wave equation, 432

Wedge, 473

Weierstrass test, 27

Work, 217, 404

Wronskian, 317

Z

Zero vector, 393

Zonal harmonics (see Legendre poly-

nomials)


















