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PREFACE

In the greatly awakened interest in the common-school sub-
jects during recent years, geography has received a large share.
The establishment of chairs of geography in some of our great-
est universities, the giving of college courses in physiography,
meteorology, and commerce, and the general extension of geog-
raphy courses in normal schools, academies, and high schools,
may be cited as evidence of this growing appreciation of the
importance of the subject.

While physiographic processes and resulting land forms oc-
cupy a large place in geographical control, the earth in its simple
mathematical aspects should be better understood than it gen-
erally is, and mathematical geography deserves a larger place in
the literature of the subject than the few pages generally given
to it in our physical geographies and elementary astronomies.
It is generally conceded that the mathematical portion of ge-
ography is the most difficult, the most poorly taught and least
understood, and that students require the most help in under-
standing it. The subject-matter of mathematical geography is
scattered about in many works, and no one book treats the sub-
ject with any degree of thoroughness, or even makes a pretense
at doing so. It is with the view of meeting the need for such a
volume that this work has been undertaken.

Although designed for use in secondary schools and for teach-
ers’ preparation, much material herein organized may be used
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PREFACE 5

in the upper grades of the elementary school. The subject has
not been presented from the point of view of a little child, but
an attempt has been made to keep its scope within the attain-
ments of a student in a normal school, academy, or high school.
If a very short course in mathematical geography is given, or
if students are relatively advanced, much of the subject-matter
may be omitted or given as special reports.

To the student or teacher who finds some portions too dif-
ficult, it is suggested that the discussions which seem obscure
at first reading are often made clear by additional explanation
given farther on in the book. Usually the second study of a
topic which seems too difficult should be deferred until the en-
tire chapter has been read over carefully.

The experimental work which is suggested is given for the
purpose of making the principles studied concrete and vivid.
The measure of the educational value of a laboratory exercise
in a school of secondary grade is not found in the academic
results obtained, but in the attainment of a conception of a
process. The student’s determination of latitude, for example,
may not be of much value if its worth is estimated in terms of
facts obtained, but the forming of the conception of the process
is a result of inestimable educational value. Much time may be
wasted, however, if the student is required to rediscover the facts
and laws of nature which are often so simple that to see is to
accept and understand.

Acknowledgments are due to many eminent scholars for sug-
gestions, verification of data, and other valuable assistance in
the preparation of this book.

To President George W. Nash of the Northern Normal and
Industrial School, who carefully read the entire manuscript and
proof, and to whose thorough training, clear insight, and kindly
interest the author is under deep obligations, especial credit



PREFACE 6

is gratefully accorded. While the author has not availed him-
self of the direct assistance of his sometime teacher, Professor
Frank E. Mitchell, now head of the department of Geography
and Geology of the State Normal School at Oshkosh, Wiscon-
sin, he wishes formally to acknowledge his obligation to him
for an abiding interest in the subject. For the critical exam-
ination of portions of the manuscript bearing upon fields in
which they are acknowledged authorities, grateful acknowledg-
ment is extended to Professor Francis P. Leavenworth, head of
the department of Astronomy of the University of Minnesota; to
Lieutenant-Commander E. E. Hayden, head of the department
of Chronometers and Time Service of the United States Naval
Observatory, Washington; to President F. W. McNair of the
Michigan College of Mines; to Professor Cleveland Abbe of the
United States Weather Bureau; to President Robert S. Wood-
ward of the Carnegie Institution of Washington; to Professor
T. C. Chamberlin, head of the department of Geology of the
University of Chicago; and to Professor Charles R. Dryer, head
of the department of Geography of the State Normal School at
Terre Haute, Indiana. For any errors or defects in the book, the
author alone is responsible.
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CHAPTER I

INTRODUCTORY

Observations and Experiments

Observations of the Stars. On the first clear evening,
observe the “Big Dipper”∗ and the polestar. In September and
in December, early in the evening, they will be nearly in the
positions represented in Figure 1. Where is the Big Dipper later
in the evening? Find out by observations.

Fig. 1

Learn readily to pick
out Cassiopeia’s Chair
and the Little Dipper.
Observe their apparent
motions also. Notice the
positions of stars in dif-
ferent portions of the sky
and observe where they
are later in the evening.
Do the stars around the
polestar remain in the
same position in relation
to each other,—the Big Dipper always like a dipper, Cassiopeia’s
Chair always like a chair, and both always on opposite sides of

∗In Ursa Major, commonly called the “Plow,” “The Great Wagon,” or
“Charles’s Wagon” in England, Norway, Germany, and other countries.

9



INTRODUCTORY 10

the polestar? In what sense may they be called “fixed” stars
(see pp. 109, 265)?

Make a sketch of the Big Dipper and the polestar, record-
ing the date and time of observation. Preserve your sketch for
future reference, marking it Exhibit 1. A month or so later,
sketch again at the same time of night, using the same sheet of
paper with a common polestar for both sketches. In making your
sketches be careful to get the angle formed by a line through the
“pointers” and the polestar with a perpendicular to the horizon.
This angle can be formed by observing the side of a building and
the pointer line. It can be measured more accurately in the fall
months with a pair of dividers having straight edges, by placing
one outer edge next to the perpendicular side of a north window
and opening the dividers until the other outside edge is parallel
to the pointer line (see Fig. 2). Now lay the dividers on a sheet
of paper and mark the angle thus formed, representing the posi-
tions of stars with asterisks. Two penny rulers pinned through
the ends will serve for a pair of dividers.

Fig. 2

Phases of the Moon. Note the position of
the moon in the sky on successive nights at the
same hour. Where does the moon rise? Does it
rise at the same time from day to day? When
the full moon may be observed at sunset, where
is it? At sunrise? When there is a full moon at
midnight, where is it? Assume it is sunset and
the moon is high in the sky, how much of the
lighted part can be seen?

Answers to the foregoing questions should be
based upon first-hand observations. If the ques-

tions cannot easily be answered, begin observations at the first
opportunity. Perhaps the best time to begin is when both sun
and moon may be seen above the horizon. At each observation
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notice the position of the sun and of the moon, the portion of
the lighted part which is turned toward the earth, and bear in
mind the simple fact that the moon always shows a lighted half
to the sun. If the moon is rising when the sun is setting, or the
sun is rising when the moon is setting, the observer must be
standing directly between them, or approximately so. With the
sun at your back in the east and facing the moon in the west,
you see the moon as though you were at the sun. How much
of the lighted part of the moon is then seen? By far the best
apparatus for illustrating the phases of the moon is the sun and
moon themselves, especially when both are observed above the
horizon.

The Noon Shadow. Some time early in the term from
a convenient south window, measure upon the floor the length
of the shadow when it is shortest during the day. Record the
measurement and the date and time of day. Repeat the mea-
surement each week. Mark this Exhibit 2.

Fig. 3

On a south-facing window
sill, strike a north-south line
(methods for doing this are dis-
cussed on pp. 59, 130). Erect
at the south end of this line
a perpendicular board, say six
inches wide and two feet long,
with the edge next the north-
south line. True it with a plumb
line; one made with a bullet and
a thread will do. This should
be so placed that the shadow
from the edge of the board
may be recorded on the window
sill from 11 o’clock, a.m., until
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1 o’clock, p.m. (see Fig. 3).
Carefully cut from cardboard a semicircle and mark the de-

grees, beginning with the middle radius as zero. Fasten this
upon the window sill with the zero meridian coinciding with
the north-south line. Note accurately the clock time when the
shadow from the perpendicular board crosses the line, also where
the shadow is at twelve o’clock. Record these facts with the date
and preserve as Exhibit 3. Continue the observations every few
days.

Fig. 4

The Sun’s Meridian Al-
titude. When the shadow is
due north, carefully measure
the angle formed by the shadow
and a level line. The sim-
plest way is to draw the win-
dow shade down to the top of
a sheet of cardboard placed very
nearly north and south with the
bottom level and then draw the
shadow line, the lower acute an-
gle being the one sought (see
Fig. 4). Another way is to drive
a pin in the side of the win-
dow casing, or in the edge of the
vertical board (Fig. 3); fasten a

thread to it and connect the other end of the thread to a point
on the sill where the shadow falls. A still better method is shown
on p. 172.

Since the shadow is north, the sun is as high in the sky as it
will get during the day, and the angle thus measured gives the
highest altitude of the sun for the day. Record the measurement
of the angle with the date as Exhibit 4. Continue these records
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from week to week, especially noting the angle on one of the
following dates: March 21, June 22, September 23, December 22.
This angle on March 21 or September 23, if subtracted from 90◦,
will equal the latitude∗ of the observer.

A Few Terms Explained

Fig. 5

Centrifugal Force.
The literal meaning of
the word suggests its cur-
rent meaning. It comes
from the Latin centrum,
center; and fugere, to flee.
A centrifugal force is one
directed away from a cen-
ter. When a stone is
whirled at the end of a
string, the pull which the
stone gives the string is
called centrifugal force.
Because of the inertia of
the stone, the whirling motion given to it by the arm tends to
make it fly off in a straight line (Fig. 5),—and this it will do if
the string breaks. The measure of the centrifugal force is the
tension on the string. If the string be fastened at the end of
a spring scale and the stone whirled, the scale will show the
amount of the centrifugal force which is given the stone by the
arm that whirls it. The amount of this force† (C) varies with
the mass of the body (m), its velocity (v), and the radius of the

∗This is explained on p. 170.
†On the use of symbols, such as C for centrifugal force, φ for latitude,

etc., see Appendix, p. 306.
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circle (r) in which it moves, in the following ratio:

C =
mv2

r
.

The instant that the speed becomes such that the available

strength of the string is less than the value of
mv2

r
, however

slightly, the stone will cease to follow the curve and will imme-
diately take a motion at a uniform speed in the straight line
with which its motion happened to coincide at that instant (a
tangent to the circle at the point reached at that moment).

Centrifugal Force on the Surface of the Earth. The rotating
earth imparts to every portion of it, save along the axis, a cen-
trifugal force which varies according to the foregoing formula,
r being the distance to the axis, or the radius of the parallel. It
is obvious that on the surface of the earth the centrifugal force
due to its rotation is greatest at the equator and zero at the
poles.

At the equator centrifugal force (C) amounts to about 1
289

that of the earth’s attraction (g), and thus an object there which
weighs 288 pounds is lightened just one pound by centrifugal
force, that is, it would weigh 289 pounds were the earth at rest.

At latitude 30◦, C =
g

385
(that is, centrifugal force is 1

385
the

force of the earth’s attraction); at 45◦, C =
g

578
; at 60◦, C =

g

1156
.

For any latitude the “lightening effect” of centrifugal force

due to the earth’s rotation equals
g

289
times the square of the

cosine of the latitude (C =
g

289
× cos2 φ). By referring to the

table of cosines in the Appendix, the student can easily calculate
the “lightening” influence of centrifugal force at his own latitude.
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For example, say the latitude of the observer is 40◦.

Cosine 40◦ = .7660.
g

289
× .76602 =

g

492
.

Thus the earth’s attraction for an object on its surface at
latitude 40◦ is 492 times as great as centrifugal force there, and
an object weighing 491 pounds at that latitude would weigh one
pound more were the earth at rest.∗

Centripetal Force. A centripetal (centrum, center; petere,
to seek) force is one directed toward a center, that is, at right an-
gles to the direction of motion of a body. To distinguish between
centrifugal force and centripetal force, the student should real-
ize that forces never occur singly but only in pairs and that in
any force action there are always two bodies concerned. Name
them A and B. Suppose A pushes or pulls B with a certain
strength. This cannot occur except B pushes or pulls A by the
same amount and in the opposite direction. This is only a simple
way of stating Newton’s third law that to every action (A on B)
there corresponds an equal and opposite reaction (B on A).

Centrifugal force is the reaction of the body against the cen-
tripetal force which holds it in a curved path, and it must always
exactly equal the centripetal force. In the case of a stone whirled
at the end of a string, the necessary force which the string exerts
on the stone to keep it in a curved path is centripetal force, and
the reaction of the stone upon the string is centrifugal force.

The formulas for centripetal force are exactly the same as
those for centrifugal force. Owing to the rotation of the earth, a
body at the equator describes a circle with uniform speed. The
attraction of the earth supplies the centripetal force required to
hold it in the circle. The earth’s attraction is greatly in excess

∗These calculations are based upon a spherical earth and make no al-
lowances for the oblateness.
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of that which is required, being, in fact, 289 times the amount
needed. The centripetal force in this case is that portion of the
attraction which is used to hold the object in the circular course.
The excess is what we call the weight of the body or the force
of gravity.

If, therefore, a spring balance suspending a body at the equa-
tor shows 288 pounds, we infer that the earth really pulls it with
a force of 289 pounds, but one pound of this pull is expended
in changing the direction of the motion of the body, that is,
the value of centripetal force is one pound. The body pulls the
earth to the same extent, that is, the centrifugal force is also one
pound. At the poles neither centripetal nor centrifugal force is
exerted upon bodies and hence the weight of a body there is the
full measure of the attraction of the earth.

Fig. 6

Gravitation.
Gravitation is the
all-pervasive force by
virtue of which every
particle of matter
in the universe is
constantly drawing
toward itself every
other particle of mat-
ter, however distant.
The amount of this
attractive force ex-
isting between two
bodies depends upon
(1) the amount of matter in them, and (2) the distance they
are apart.

There are thus two laws of gravitation. The first law, the
greater the mass, or amount of matter, the greater the attrac-
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tion, is due to the fact that each particle of matter has its own
independent attractive force, and the more there are of the par-
ticles, the greater is the combined attraction.

The Second Law Explained. In general terms the law is that
the nearer an object is, the greater is its attractive force. Just as
the heat and light of a flame are greater the nearer one gets to
it (Fig. 6), because more rays are intercepted, so the nearer an
object is, the greater is its attraction. The ratio of the increase
of the power of gravitation as distance decreases, may be seen
from Figures 7 and 8.

Fig. 7

Fig. 8

Two lines, AD and AH (Fig. 7), are twice as far apart at C as
at B because twice as far away; three times as far apart at D as
at B because three times as far away, etc. Now light radiates out
in every direction, so that light coming from point A′ (Fig. 8),
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when it reaches B′ will be spread over the square of B′F ′; at C ′,
on the square C ′G′; atD′ on the squareD′H ′, etc. C ′ being twice
as far away from A′ as B′, the side C ′G′ is twice that of B′F ′,
as we observed in Fig. 7, and its square is four times as great.
Line D′H ′ is three times as far away, is three times as long, and
its square is nine times as great. The light being spread over
more space in the more distant objects, it will light up a given
area less. The square at B′ receives all the light within the four
radii, the same square at C ′ receives one fourth of it, at D′ one
ninth, etc. The amount of light decreases as the square of the
distance increases. The force of gravitation is exerted in every
direction and varies in exactly the same way. Thus the second
law of gravitation is that the force varies inversely as the square
of the distance.

Gravity. The earth’s attractive influence is called gravity.
The weight of an object is simply the measure of the force of
gravity. An object on or above the surface of the earth weighs
less as it is moved away from the center of gravity.∗ It is diffi-
cult to realize that what we call the weight of an object is simply
the excess of attraction which the earth possesses for it as com-
pared with other forces acting upon it, and that it is a purely
relative affair, the same object having a different weight in dif-
ferent places in the solar system. Thus the same pound-weight
taken from the earth to the sun’s surface would weigh 27 pounds
there, only one sixth of a pound at the surface of the moon, over
21

2
pounds on Jupiter, etc. If the earth were more dense, objects

would weigh more on the surface. Thus if the earth retained its
present size but contained as much matter as the sun has, the
strongest man in the world could not lift a silver half dollar, for
it would then weigh over five tons. A pendulum clock would

∗For a more accurate and detailed discussion of gravity, see p. 278.
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then tick 575 times as fast. On the other hand, if the earth were
no denser than the sun, a half dollar would weigh only a trifle
more than a dime now weighs, and a pendulum clock would tick
only half as fast.

From the table on p. 266 giving the masses and distances of
the sun, moon, and principal planets, many interesting problems
involving the laws of gravitation may be suggested. To illustrate,
let us take the problem “What would you weigh if you were on
the moon?”

Weight on the Moon. The mass of the moon, that is,
the amount of matter in it, is 1

81
that of the earth. Were it the

same size as the earth and had this mass, one pound on the
earth would weigh a little less than one eightieth of a pound
there. According to the first law of gravitation we have this
proportion:

1. Earth’s attraction : Moon’s attraction : : 1 : 1
81

.
But the radius of the moon is 1081 miles, only a little more

than one fourth that of the earth. Since a person on the moon
would be so much nearer the center of gravity than he is on the
earth, he would weigh much more there than here if the moon
had the same mass as the earth. According to the second law
of gravitation we have this proportion:

2. Earth’s attraction : Moon’s attraction : :
1

40002
:

1

10812
.

We have then the two proportions:

1. Att. Earth : Att. Moon : : 1 : 1
81
.

2. Att. Earth : Att. Moon : :
1

40002
:

1

10812
.

Combining these by multiplying, we get

Att. Earth : Att. Moon : : 6 : 1.
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Therefore six pounds on the earth would weigh only one
pound on the moon. Your weight, then, divided by six, rep-
resents what it would be on the moon. There you could jump
six times as high—if you could live to jump at all on that cold
and almost airless satellite (see p. 263).

The Sphere, Circle, and Ellipse. A sphere is a solid
bounded by a curved surface all points of which are equally
distant from a point within called the center.

A circle is a plane figure bounded by a curved line all points
of which are equally distant from a point within called the center.
In geography what we commonly call circles such as the equator,
parallels, and meridians, are really only the circumferences of
circles. Wherever used in this book, unless otherwise stated,
the term circle refers to the circumference.

Fig. 9

Every circle is con-
ceived to be divided into
360 equal parts called de-
grees. The greater the size
of the circle, the greater is
the length of each degree.
A radius of a circle or of
a sphere is a straight line
from the boundary to the
center. Two radii forming
a straight line constitute a
diameter.

Circles on a sphere di-
viding it into two hemi-
spheres are called great cir-
cles. Circles on a sphere di-
viding it into unequal parts

are called small circles.
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All great circles on the same sphere bisect each other, re-
gardless of the angle at which they cross one another. That
this may be clearly seen, with a globe before you test these two
propositions:

a. A point 180◦ in any direction from one point in a great
circle must lie in the same circle.

b. Two great circles on the same sphere must cross some-
where, and the point 180◦ from the one where they cross, lies in
both of the circles, thus each great circle divides the other into
two equal parts.

An angle is the difference in direction of two lines which,
if extended, would meet. Angles are measured by using the
meeting point as the center of a circle and finding the fraction
of the circle, or number of degrees of the circle, included between
the lines. It is well to practice estimating different angles and
then to test the accuracy of the estimates by reference to a
graduated quadrant or circle having the degrees marked.

Fig. 10

An ellipse is a
closed plane curve
such that the sum of
the distances from
one point in it to two
fixed points within,
called foci, is equal
to the sum of the
distances from any
other point in it to
the foci. The ellipse
is a conic section
formed by cutting a
right cone by a plane
passing obliquely through its opposite sides (see Ellipse in
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Glossary).
To construct an ellipse, drive two pins at points for foci,

say three inches apart. With a loop of non-elastic cord, say ten
inches long, mark the boundary line as represented in Figure 10.

Orbit of the Earth. The orbit of the earth is an ellipse.
To lay off an ellipse which shall quite correctly represent the
shape of the earth’s orbit, place pins one tenth of an inch apart
and make a loop of string 12.2 inches long. This loop can easily
be made by driving two pins 6.1 inches apart and tying a string
looped around them.

Shape of the Earth. The earth is a spheroid, or a solid
approaching a sphere (see Spheroid in Glossary). The diameter
upon which it rotates is called the axis. The ends of the axis are
its poles. Imaginary lines on the surface of the earth extending
from pole to pole are called meridians.∗ While any number of
meridians may be conceived of, we usually think of them as
one degree apart. We say, for example, the ninetieth meridian,
meaning the meridian ninety degrees from the prime or initial
meridian. What kind of a circle is a meridian circle? Is it a true
circle? Why?

The equator is a great circle midway between the poles.
Parallels are small circles parallel to the equator.
It is well for the student to bear in mind the fact that it is the

earth’s rotation on its axis that determines most of the foregoing
facts. A sphere at rest would not have equator, meridians, etc.

∗The term meridian is frequently used to designate a great circle passing
through the poles. In this book such a circle is designated a meridian circle,
since each meridian is numbered regardless of its opposite meridian.



CHAPTER II

THE FORM OF THE EARTH

The Earth a Sphere

Circumnavigation. The statements commonly given as
proofs of the spherical form of the earth would often apply as well
to a cylinder or an egg-shaped or a disk-shaped body. “People
have sailed around it,” “The shadow of the earth as seen in the
eclipse of the moon is always circular,” etc., do not in themselves
prove that the earth is a sphere. They might be true if the earth
were a cylinder or had the shape of an egg. “But men have sailed
around it in different directions.” So might they a lemon-shaped
body. To make a complete proof, we must show that men have
sailed around it in practically every direction and have found no
appreciable difference in the distances in the different directions.

Earth’s Shadow always Circular. The shadow of the
earth as seen in the lunar eclipse is always circular. But a dollar,
a lemon, an egg, or a cylinder may be so placed as always to
cast a circular shadow. When in addition to this statement it
is shown that the earth presents many different sides toward
the sun during different eclipses of the moon and the shadow
is always circular, we have a proof positive, for nothing but a
sphere casts a circular shadow when in many different positions.
The fact that eclipses of the moon are seen in different seasons
and at different times of day is abundant proof that practically
all sides of the earth are turned toward the sun during different

23
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eclipses.

Fig. 11. Ship’s rigging
distinct. Water hazy.

Almost Uniform Surface
Gravity. An object has al-
most exactly the same weight
in different parts of the earth
(that is, on the surface), show-
ing a practically common dis-
tance from different points on
the earth’s surface to the cen-
ter of gravity. This is ascer-
tained, not by carrying an ob-
ject all over the earth and weigh-
ing it with a pair of spring scales
(why not balances?); but by not-
ing the time of the swing of the
pendulum, for the rate of its swing varies according to the force
of gravity.

Fig. 12. Water distinct.
Rigging ill-defined.

Telescopic Observations.
If we look through a telescope
at a distant object over a level
surface, such as a body of wa-
ter, the lower part is hidden by
the intervening curved surface.
(Figs. 11, 12.) This has been ob-
served in many different places,
and the rate of curvature seems
uniform everywhere and in every
direction. Persons ascending in
balloons or living on high eleva-
tions note the appreciably earlier
time of sunrise or later time of

sunset at the higher elevation.
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Shifting of Stars and Difference in Time. The proof
which first demonstrated the curvature of the earth, and one
which the student should clearly understand, is the disappear-
ance of stars from the southern horizon and the rising higher of
stars from the northern horizon to persons traveling north, and
the sinking of northern stars and the rising of southern stars
to south-bound travelers. After people had traveled far enough
north and south to make an appreciable difference in the po-
sition of stars, they observed this apparent rising and sinking
of the sky. Now two travelers, one going north and the other
going south, will see the sky apparently elevated and depressed
at the same time; that is, the portion of the sky that is rising
for one will be sinking for the other. Since it is impossible that
the stars be both rising and sinking at the same time, only one
conclusion can follow,—the movement of the stars is apparent,
and the path traveled north and south must be curved.

Owing to the rotation of the earth one sees the same stars
in different positions in the sky east and west, so the proof just
given simply shows that the earth is curved in a north and south
direction. Only when timepieces were invented which could
carry the time of one place to different portions of the earth
could the apparent positions of the stars prove the curvature of
the earth east and west. By means of the telegraph and tele-
phone we have most excellent proof that the earth is curved east
and west.

If the earth were flat, when it is sunrise at Philadelphia it
would be sunrise also at St. Louis and Denver. Sun rays ex-
tending to these places which are so near together as compared
with the tremendous distance of the sun, over ninety millions
of miles away, would be almost parallel on the earth and would
strike these points at about the same angle. But we know from
the many daily messages between these cities that sun time in
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Philadelphia is an hour later than it is in St. Louis and two
hours later than in Denver.

When we know that the curvature of the earth north and
south as observed by the general and practically uniform rising
and sinking of the stars to north-bound and south-bound trav-
elers is the same as the curvature east and west as shown by the
difference in time of places east and west, we have an excellent
proof that the earth is a sphere.

Actual Measurement. Actual measurement in many dif-
ferent places and in nearly every direction shows a practically
uniform curvature in the different directions. In digging canals
and laying watermains, an allowance must always be made for
the curvature of the earth; also in surveying, as we shall notice
more explicitly farther on.

A simple rule for finding the amount of curvature for any
given distance is the following:

Square the number of miles representing the distance, and
two thirds of this number represents in feet the departure from a
straight line.

Suppose the distance is 1 mile. That number squared is 1,
and two thirds of that number of feet is 8 inches. Thus an
allowance of 8 inches must be made for 1 mile. If the distance
is 2 miles, that number squared is 4, and two thirds of 4 feet
is 2 feet, 8 inches. An object, then, 1 mile away sinks 8 inches
below the level line, and at 2 miles it is below 2 feet, 8 inches.

To find the distance, the height from a level line being given,
we have the converse of the foregoing rule:

Multiply the number representing the height in feet by 11
2
, and

the square root of this product represents the number of miles
distant the object is situated.

The following table is based upon the more accurate formula:

Distance (miles) = 1.317
√

height (feet).
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Ht. ft. Dist. miles Ht. ft. Dist. miles Ht. ft. Dist. miles

1 1.32 50 9.31 170 17.17
2 1.86 55 9.77 180 17.67
3 2.28 60 10.20 190 18.15
4 2.63 65 10.62 200 18.63
5 2.94 70 11.02 300 22.81
6 3.23 75 11.40 400 26.34
7 3.48 80 11.78 500 29.45
8 3.73 85 12.14 600 32.26
9 3.95 90 12.49 700 34.84

10 4.16 95 12.84 800 37.25
15 5.10 100 13.17 900 39.51
20 5.89 110 13.81 1000 41.65
25 6.59 120 14.43 2000 58.90
30 7.21 130 15.02 3000 72.13
35 7.79 140 15.58 4000 83.30
40 8.33 150 16.13 5000 93.10
45 8.83 160 16.66 Mile 95.70

The Earth an Oblate Spheroid

Richer’s Discovery. In the year 1672 John Richer, the as-
tronomer to the Royal Academy of Sciences of Paris, was sent by
Louis XIV to the island of Cayenne to make certain astronom-
ical observations. His Parisian clock had its pendulum, slightly
over 39 inches long, regulated to beat seconds. Shortly after his
arrival at Cayenne, he noticed that the clock was losing time,
about two and a half minutes a day. Gravity, evidently, did not
act with so much force near the equator as it did at Paris. The
astronomer found it necessary to shorten the pendulum nearly
a quarter of an inch to get it to swing fast enough.

Richer reported these interesting facts to his colleagues at
Paris, and it aroused much discussion. At first it was thought
that greater centrifugal force at the equator, counteracting the



THE FORM OF THE EARTH 28

earth’s attraction more there than elsewhere, was the explana-
tion. The difference in the force of gravity, however, was soon
discovered to be too great to be thus accounted for. The only
other conclusion was that Cayenne must be farther from the
center of gravity than Paris (see the discussion of Gravity, Ap-
pendix, p. 278; also Historical Sketch, pp. 272–274).

Repeated experiments show it to be a general fact that pen-
dulums swing faster on the surface of the earth as one approaches
the poles. Careful measurements of arcs of meridians prove be-
yond question that the earth is flattened toward the poles, some-
what like an oblate spheroid. Further evidence is found in the
fact that the sun and planets, so far as ascertained, show this
same flattening.

Cause of Oblateness. The cause of the oblateness is the
rotation of the body, its flattening effects being more marked in
earlier plastic stages, as the earth and other planets are gener-
ally believed to have been at one time. The reason why rotation
causes an equatorial bulging is not difficult to understand. Cen-
trifugal force increases away from the poles toward the equator
and gives a lifting or lightening influence to portions on the sur-
face. If the earth were a sphere, an object weighting 289 pounds
at the poles would be lightened just one pound if carried to the
swiftly rotating equator (see p. 279). The form given the earth
by its rotation is called an oblate spheroid or an ellipsoid of
rotation.

Amount of Oblateness. To represent a meridian cir-
cle accurately, we should represent the polar diameter about

1
300

part shorter than the equatorial diameter. That this differ-
ence is not perceptible to the unaided eye will be apparent if
the construction of such a figure is attempted, say ten inches
in diameter in one direction and 1

30
of an inch less in the op-

posite direction. The oblateness of Saturn is easily perceptible,
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being thirty times as great as that of the earth, or one tenth (see
p. 258). Thus an ellipsoid nine inches in polar diameter (minor
axis) and ten inches in equatorial diameter (major axis) would
represent the form of that planet.

Although the oblateness of the earth seems slight when rep-
resented on a small scale and for most purposes may be ignored,
it is nevertheless of vast importance in many problems in sur-
veying, astronomy, and other subjects. Under the discussion of
latitude it will be shown how this oblateness makes a difference
in the lengths of degrees of latitude, and in the Appendix it is
shown how this equatorial bulging shortens the length of the year
and changes the inclination of the earth’s axis (see Precession of
the Equinoxes and Motions of the Earth’s Axis).

Dimensions of the Spheroid. It is of very great impor-
tance in many ways that astronomers and surveyors know as
exactly as possible the dimensions of the spheroid. Many men
have made estimates based upon astronomical facts, pendulum
experiments and careful surveys, as to the equatorial and polar
diameters of the earth. Perhaps the most widely used is the one
made by A. R. Clarke, for many years at the head of the English
Ordnance Survey, known as the Clarke Spheroid of 1866.

Clarke Spheroid of 1866.

A. Equatorial diameter . . . . . . . . . . . . . . . . . . . . . . . 7, 926.614 miles
B. Polar diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 899.742 miles

Oblateness
A−B
A

. . . . . . . . . . . . . . . . . . . . . . . . .
1

295

It is upon this spheroid of reference that all of the work of
the United States Geological Survey and of the United States
Coast and Geodetic Survey is based, and upon which most of
the dimensions given in this book are determined.

In 1878 Mr. Clarke made a recalculation, based upon addi-
tional information, and gave the following dimensions, though it
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is doubtful whether these approximations are any more nearly
correct than those of 1866.

Clarke Spheroid of 1878.

A. Equatorial diameter . . . . . . . . . . . . . . . . . . . . . . . 7, 926.592 miles
B. Polar diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 899.580 miles

Oblateness
A−B
A

. . . . . . . . . . . . . . . . . . . . . . . . .
1

293.46

Another standard spheroid of reference often referred to,
and one used by the United States Governmental Surveys be-
fore 1880, when the Clarke spheroid was adopted, was calculated
by the distinguished Prussian astronomer, F. H. Bessel, and is
called the

Bessel Spheroid of 1841.

A. Equatorial diameter . . . . . . . . . . . . . . . . . . . . . . . 7, 925.446 miles
B. Polar diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7, 898.954 miles

Oblateness
A−B
A

. . . . . . . . . . . . . . . . . . . . . . . . .
1

299.16

Many careful pendulum tests and a great amount of scien-
tific triangulation surveys of long arcs of parallels and meridi-
ans within recent years have made available considerable data
from which to determine the true dimensions of the spheroid.
In 1900, the United States Coast and Geodetic Survey completed
the measurement of an arc across the United States along the
39th parallel from Cape May, New Jersey, to Point Arena, Cali-
fornia, through 48◦ 46′ of longitude, or a distance of about 2, 625
miles. This is the most extensive piece of geodetic surveying ever
undertaken by any nation and was so carefully done that the to-
tal amount of probable error does not amount to more than
about eighty-five feet. A long arc has been surveyed diagonally
from Calais, Maine, to New Orleans, Louisiana, through 15◦ 1′

of latitude and 22◦ 47′ of longitude, a distance of 1, 623 miles.
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Another long arc will soon be completed along the 98th merid-
ian across the United States. Many shorter arcs have also been
surveyed in this country.

The English government undertook in 1899 the gigantic task
of measuring the arc of a meridian extending the entire length
of Africa, from Cape Town to Alexandria. This will be, when
completed, 65◦ long, about half on each side of the equator,
and will be of great value in determining the oblateness. Russia
and Sweden have lately completed the measurement of an arc of
4◦ 30′ on the island of Spitzbergen, which from its high latitude,
76◦ to 80◦ 30′ N., makes it peculiarly valuable. Large arcs have
been measured in India, Russia, France, and other countries,
so that there are now available many times as much data from
which the form and dimensions of the earth may be determined
as Clarke or Bessel had.

The late Mr. Charles A. Schott, of the United States Coast
and Geodetic Survey, in discussing the survey of the 39th par-
allel, with which he was closely identified, said:∗

“Abundant additional means for improving the existing de-
ductions concerning the earth’s figure are now at hand, and it is
perhaps not too much to expect that the International Geodetic
Association may find it desirable in the near future to attempt
a new combination of all available arc measures, especially since
the two large arcs of the parallel, that between Ireland and
Poland and that of the United States of America, cannot fail
to have a paramount influence in a new general discussion.”

A spheroid is a solid nearly spherical. An oblate spheroid is
one flattened toward the poles of its axis of rotation. The earth
is commonly spoken of as a sphere. It would be more nearly

∗In his Transcontinental Triangulation and the American Arc of the
Parallel.
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correct to say it is an oblate spheroid. This, however, is not
strictly accurate, as is shown in the succeeding discussion.

The Earth a Geoid

Conditions Producing Irregularities. If the earth had
been made up of the same kinds of material uniformly dis-
tributed throughout its mass, it would probably have assumed,
because of its rotation, the form of a regular oblate spheroid.
But the earth has various materials unevenly distributed in it,
and this has led to many slight variations from regularity in
form.

Equator Elliptical. Pendulum experiments and measure-
ments indicate not only that meridians are elliptical but that
the equator itself may be slightly elliptical, its longest axis pass-
ing through the earth from 15◦ E. to 165◦ W. and its short-
est axis from 105◦ E. to 75◦ W. The amount of this oblate-
ness of the equator is estimated at about 1

4,000
or a difference of

two miles in the lengths of these two diameters of the equator.
Thus the meridian circle passing through central Africa and cen-
tral Europe (15◦ E.) and around near Behring Strait (165◦ W.)
may be slightly more oblate than the other meridian circles, the
one which is most nearly circular passing through central Asia
(105◦ E.), eastern North America, and western South America
(75◦ W.).

United States Curved Unequally. It is interesting to
note that the dimensions of the degrees of the long arc of the
39th parallel surveyed in the United States bear out to a re-
markable extent the theory that the earth is slightly flattened
longitudinally, making it even more than that just given, which
was calculated by Sir John Herschel and A. R. Clarke. The av-
erage length of degrees of longitude from the Atlantic coast for
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Fig. 13. Gravimetric lines showing variation in force of gravity

the first 1, 500 miles corresponds closely to the Clarke table, and
thus those degrees are longer, and the rest of the arc corresponds
closely to the Bessel table and shows shorter degrees.

Diff. in
long.

Length
of 1◦

Clarke Bessel

Cape May to Wallace (Kansas) 26.661◦ 53.829 mi. 53.828 mi. . . . . . . . . . .
Wallace to Uriah (Calif.) . . . . . . 21.618◦ 53.822 mi. . . . . . . . . . . 53.821 mi.

Earth not an Ellipsoid of Three Unequal Axes. This
oblateness of the meridians and oblateness of the equator led
some to treat the earth as an ellipsoid of three unequal axes:
(1) the longest equatorial axis, (2) the shortest equatorial axis,
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and (3) the polar axis. It has been shown, however, that meridi-
ans are not true ellipses, for the amount of flattening northward
is not quite the same as the amount southward, and the math-
ematical center of the earth is not exactly in the plane of the
equator.

Geoid Defined. The term geoid, which means “like the
earth,” is now applied to that figure which most nearly corre-
sponds to the true shape of the earth. Mountains, valleys, and
other slight deviations from evenness of surfaces are treated as
departures from the geoid of reference. The following definition
by Robert S. Woodward, President of the Carnegie Institution of
Washington, very clearly explains what is meant by the geoid.∗

“Imagine the mean sea level, or the surface of the sea freed
from the undulations due to winds and to tides. This mean sea
surface, which may be conceived to extend through the conti-
nents, is called the geoid. It does not coincide exactly with the
earth’s spheroid, but is a slightly wavy surface lying partly above
and partly below the spheroidal surface, by small but as yet not
definitely known amounts. The determination of the geoid is
now one of the most important problems of geophysics.”

An investigation is now in progress in the United States for
determining a new geoid of reference upon a plan never followed
hitherto. The following is a lucid description† of the plan by
John F. Hayford, Inspector of Geodetic Work, United States
Coast and Geodetic Survey.

Area Method of Determining Form of the Earth.
“The arc method of deducing the figure of the earth may be il-
lustrated by supposing that a skilled workman to whom is given
several stiff wires, each representing a geodetic arc, either of a
parallel or a meridian, each bent to the radius deduced from

∗Encyclopaedia Americana.
†Given at the International Geographic Congress, 1904.
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the astronomic observations of that arc, is told in what latitude
each is located on the geoid and then requested to construct the
ellipsoid of revolution which will conform most closely to the
bent wires. Similarly, the area method is illustrated by suppos-
ing that the workman is given a piece of sheet metal cut to the
outline of the continuous triangulation which is supplied with
necessary astronomic observations, and accurately molded to fix
the curvature of the geoid, as shown by the astronomic observa-
tions, and that the workman is then requested to construct the
ellipsoid of revolution which will conform most accurately to the
bent sheet. Such a bent sheet essentially includes within itself
the bent wires referred to in the first illustration, and, moreover,
the wires are now held rigidly in their proper relative positions.
The sheet is much more, however, than this rigid system of bent
lines, for each arc usually treated as a line is really a belt of con-
siderable width which is now utilized fully. It is obvious that the
workman would succeed much better in constructing accurately
the required ellipsoid of revolution from the one bent sheet than
from the several bent wires. When this proposition is examined
analytically it will be seen to be true to a much greater extent
than appears from this crude illustration.”

“The area of irregular shape which is being treated as a single
unit extends from Maine to California and from Lake Superior
to the Gulf of Mexico. It covers a range of 57◦ in longitude
and 19◦ in latitude, and contains 477 astronomic stations. This
triangulation with its numerous accompanying astronomical ob-
servations will, even without combination with similar work in
other countries, furnish a remarkably strong determination of
the figure and size of the earth.”

It is possible that at some distant time in the future the
dimensions and form of the geoid will be so accurately known
that instead of using an oblate spheroid of reference (that is, a
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spheroid of such dimensions as most closely correspond to the
earth, treated as an oblate spheroid such as the Clarke Spheroid
of 1866), as is now done, it will be possible to treat any partic-
ular area of the earth as having its own peculiar curvature and
dimensions.

Conclusion. What is the form of the earth? We went to
considerable pains to prove that the earth is a sphere. That
may be said to be its general form, and in very many calcula-
tions it is always so treated. For more exact calculations, the
earth’s departures from a sphere must be borne in mind. The
regular geometric solid which the earth most nearly resembles
is an oblate spheroid. Strictly speaking, however, the form of
the earth (not considering such irregularities as mountains and
valleys) must be called a geoid.

Directions on the Earth

On a Meridian Circle. Think of yourself as standing on
a great circle of the earth passing through the poles. Pointing
from the northern horizon by way of your feet to the southern
horizon, you have pointed to all parts of the meridian circle
beneath you. Your arm has swung through an angle of 180◦,
but you have pointed through all points of the meridian circle,
or 360◦ of it. Drop your arm 90◦, or from the horizon to the
nadir, and you have pointed through half of the meridian circle,
for 180◦ of latitude. It is apparent, then, that for every degree
you drop your arm, you point through a space of two degrees of
latitude upon the earth beneath.

The north pole is, let us say, 45◦ from you. Drop your arm
221

2
◦ from the northern horizon, and you will point directly to-

ward the north pole (Fig. 14). Whatever your latitude, drop
your arm half as many degrees from the northern horizon as
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you are degrees from the pole, and you will point directly toward
that pole.∗

Fig. 14

You may be so accus-
tomed to thinking of the
north pole as northward in
a horizontal line from you
that it does not seem real to
think of it as below the hori-
zon. This is because one is
liable to forget that he is
living on a ball. To point

to the horizon is to point away from the earth.

Fig. 15

A Pointing Exer-
cise. It may not be easy
or even essential to learn
exactly to locate many
places in relation to the
home region, but the abil-
ity to locate readily some
salient points greatly clar-
ifies one’s sense of loca-
tion and conception of the
earth as a ball.

The following exercise
is designed for students
living not far from the
45th parallel. Since it
is impossible to point the
arm or pencil with accuracy at any given angle, it is roughly
adapted for the north temperate latitudes (Fig. 15). Persons

∗The angle included between a tangent and a chord is measured by one
half the intercepted arc.
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living in the southern states may use Figure 16, based on the
30th parallel. The student should make the necessary readjust-
ment for his own latitude.

Fig. 16

Drop the arm from the
northern horizon quarter
way down, or 221

2
◦, and

you are pointing toward
the north pole (Fig. 15).
Drop it half way down, or
45◦ from the horizon, and
you are pointing 45◦ the
other side of the north pole,
or half way to the equa-
tor, on the same parallel but
on the opposite side of the
earth, in opposite longitude.
Were you to travel half way

around the earth in a due easterly or westerly direction, you
would be at that point. Drop the arm 221

2
◦ more, or 671

2
◦ from

the horizon, and you are pointing 45◦ farther south or to the
equator on the opposite side of the earth. Drop the arm
221

2
◦ more, or 90◦ from the horizon, toward your feet, and you

are pointing toward our antipodes, 45◦ south of the equator on
the meridian opposite ours. Find where on the earth this point
is. Is the familiar statement, “digging through the earth to
China,” based upon a correct idea of positions and directions on
the earth?

From the southern horizon drop the arm 221
2
◦, and you are

pointing to a place having the same longitude but on the equa-
tor. Drop the arm 221

2
◦ more, and you point to a place having

the same longitude as ours but opposite latitude, being 45◦ south
of the equator on our meridian. Drop the arm 221

2
◦ more, and
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you point toward the south pole. Practice until you can point
directly toward any of these seven points without reference to
the diagram.

Latitude and Longitude

Origin of Terms. Students often have difficulty in remem-
bering whether it is latitude that is measured east and west, or
longitude. When we recall the fact that to the people who first
used these terms the earth was believed to be longer east and
west than north and south, and now we know that owing to
the oblateness of the earth this is actually the case, we can eas-
ily remember that longitude (from the Latin longus, long) is
measured east and west. The word latitude is from the Latin
latitudo, which is from latus, wide, and was originally used to
designate measurement of the “width of the earth,” or north and
south.

Antipodal Areas. From a globe one can readily ascertain
the point which is exactly opposite any given one on the earth.
The map showing antipodal areas indicates at a glance what
portions of the earth are opposite each other; thus Australia lies
directly through the earth from mid-Atlantic, the point antipo-
dal to Cape Horn is in central Asia, etc.

Longitude is measured on parallels and is reckoned from
some meridian selected as standard, called the prime merid-
ian. The meridian which passes through the Royal Observatory
at Greenwich, near London, has long been the prime meridian
most used. In many countries the meridian passing through the
capital is taken as the prime meridian. Thus, the Portuguese
use the meridian of the Naval Observatory in the Royal Park
at Lisbon, the French that of the Paris Observatory, the Greeks
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Fig. 17. Map of Antipodal Areas

that of the Athens Observatory, the Russians that of the Royal
Observatory at Pulkowa, near St. Petersburg.

In the maps of the United States the longitude is often reck-
oned both from Greenwich and Washington. The latter city be-
ing a trifle more than 77◦ west of Greenwich, a meridian num-
bered at the top of the map as 90◦ west from Greenwich, is
numbered at the bottom as 13◦ west from Washington. Since
the United States Naval Observatory, the point in Washington
reckoned from, is 77◦ 3′ 81′′ west from Greenwich, this is slightly
inaccurate. Among all English speaking people and in most na-
tions of the world, unless otherwise designated, the longitude of
a place is understood to be reckoned from Greenwich.

The longitude of a place is the arc of the parallel inter-
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cepted between it and the prime meridian. Longitude may also
be defined as the arc of the equator intercepted between the
prime meridian and the meridian of the place whose longitude
is sought.

Since longitude is measured on parallels, and parallels grow
smaller toward the poles, degrees of longitude are shorter toward
the poles, being degrees of smaller circles.

Latitude is measured on a meridian and is reckoned from
the equator. The number of degrees in the arc of a meridian
circle, from the place whose latitude is sought to the equator, is
its latitude. Stated more formally, the latitude of a place is the
arc of the meridian intercepted between the equator and that
place. (See Latitude in Glossary.) What is the greatest number
of degrees of latitude any place may have? What places have no
latitude?

Comparative Lengths of Degrees of Latitude. If the
earth were a perfect sphere, meridian circles would be true

Fig. 18

mathematical circles.
Since the earth is
an oblate spheroid,
meridian circles, so
called, curve less
rapidly toward the
poles. Since the
curvature is greatest
near the equator,
one would have to
travel less distance
on a meridian there
to cover a degree
of curvature, and a
degree of latitude is
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thus shorter near the
equator. Conversely,
the meridian being slightly flattened toward the poles, one
would travel farther there to cover a degree of latitude, hence
degrees of latitude are longer toward the poles. Perhaps this
may be seen more clearly from Figure 18.

While all circles have 360◦, the degrees of a small circle are,
of course, shorter than the degrees of a greater circle. Now
an arc of a meridian near the equator is obviously a part of a
smaller circle than an arc taken near the poles and, consequently,
the degrees are shorter. Near the poles, because of the flatness
of a meridian there, an arc of a meridian is a part of a larger
circle and the degrees are longer. As we travel northward, the
North star (polestar) rises from the horizon. In traveling from
the equator on a meridian, one would go 68.7 miles to see the
polestar rise one degree, or, in other words, to cover one degree
of curvature of the meridian. Near the pole, where the earth is
flattest, one would have to travel 69.4 miles to cover one degree
of curvature of the meridian. The average length of a degree of
latitude throughout the United States is almost exactly 69 miles.

Table of Lengths of Degrees. The following table shows
the length of each degree of the parallel and of the meridian at
every degree of latitude. It is based upon the Clarke spheroid
of 1866.
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Lat.
Deg.
Par.
Miles

Deg.
Mer.
Miles

Lat.
Deg.
Par.
Miles

Deg.
Mer.
Miles

Lat.
Deg.
Par.
Miles

Deg.
Mer.
Miles

0◦ 69.172 68.704 31◦ 59.345 68.890 61◦ 33.623 69.241
1 69.162 68.704 32 58.716 68.901 62 32.560 69.251
2 69.130 68.705 33 58.071 68.912 63 31.488 69.261
3 69.078 68.706 34 57.407 68.923 64 30.406 69.271
4 69.005 68.708 35 56.725 68.935 65 29.315 69.281
5 68.911 68.710 36 56.027 68.946 66 28.215 69.290
6 68.795 68.712 37 55.311 68.958 67 27.106 69.299
7 68.660 68.715 38 54.579 68.969 68 25.988 69.308
8 68.504 68.718 39 53.829 68.981 69 24.862 69.316
9 68.326 68.721 40 53.063 68.993 70 23.729 69.324

10 68.129 68.725 41 52.281 69.006 71 22.589 69.332
11 67.910 68.730 42 51.483 69.018 72 21.441 69.340
12 67.670 68.734 43 50.669 69.030 73 20.287 69.347
13 67.410 68.739 44 49.840 69.042 74 19.127 69.354
14 67.131 68.744 45 48.995 69.054 75 17.960 69.360
15 66.830 68.751 46 48.136 69.066 76 16.788 69.366
16 66.510 68.757 47 47.261 69.079 77 15.611 69.372
17 66.169 68.764 48 46.372 69.091 78 14.428 69.377
18 65.808 68.771 49 45.469 69.103 79 13.242 69.382
19 65.427 68.778 50 44.552 69.115 80 12.051 69.386
20 65.026 68.786 51 43.621 69.127 81 10.857 69.390
21 64.606 68.794 52 42.676 69.139 82 9.659 69.394
22 64.166 68.802 53 41.719 69.151 83 8.458 69.397
23 63.706 68.811 54 40.749 69.163 84 7.255 69.400
24 63.228 68.820 55 39.766 69.175 85 6.049 69.402
25 62.729 68.829 56 38.771 69.186 86 4.842 69.404
26 62.212 68.839 57 37.764 69.197 87 3.632 69.405
27 61.676 68.848 58 36.745 69.209 88 2.422 69.407
28 61.122 68.858 59 35.716 69.220 89 1.211 69.407
29 60.548 68.869 60 34.674 69.230 90 0.000 69.407
30 59.956 68.879



CHAPTER III

THE ROTATION OF THE EARTH

The Celestial Sphere

Apparent Dome of the Sky. On a clear night the stars
twinkling all over the sky seem to be fixed in a dark dome fitting
down around the horizon. This apparent concavity, studded
with heavenly bodies, is called the celestial sphere. Where the
horizon is free from obstructions, one can see half∗ of the celestial
sphere at a given time from the same place.

Fig. 19

If these lines met at a point 50, 000 miles dis-
tant, the difference in their direction could
not be measured. Such is the ratio of the di-
ameter of the earth and the distance to the
very nearest of stars.

A line from one side of the horizon over the zenith point
to the opposite side of the horizon is half of a great circle of
the celestial sphere. The horizon line extended to the celestial
sphere is a great circle. Owing to its immense distance, a line

∗No allowance is here made for the refraction of rays of light or the
slight curvature of the globe in the locality.

44



THE ROTATION OF THE EARTH 45

from an observer at A (Fig. 19), pointing to a star, will make
a line apparently parallel to one from B to the same star. The
most refined measurements at present possible fail to show any
angle whatever between them.

We may note the following in reference to the celestial sphere.
(1) The earth seems to be a mere point in the center of this
immense hollow sphere. (2) The stars, however distant, are ap-
parently fixed in this sphere. (3) Any plane from the observer,
if extended, will divide the celestial sphere into two equal parts.
(4) Circles may be projected on this sphere and positions on
it indicated by degrees in distance from established circles or
points.

Fig. 20

Celestial Sphere seems to
Rotate. The earth rotates on its
axis (the term rotation applied to
the earth refers to its daily or axial
motion). To us, however, the earth
seems stationary and the celestial
sphere seems to rotate. Standing
in the center of a room and turn-
ing one’s body around, the objects
in the room seem to rotate around
in the opposite direction. The point
overhead will be the only one that
is stationary. Imagine a fly on a rotating sphere. If it were on
one of the poles, that is, at the end of the axis of rotation, the
object directly above it would constantly remain above it while
every other fixed object would seem to swing around in circles.
Were the fly to walk to the equator, the point directly away
from the globe would cut the largest circle around him and the
stationary points would be along the horizon.
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Celestial Pole. The point in the celestial sphere directly
above the pole and in line with the axis has no motion. It is
called the celestial pole. The star nearest the pole of the celestial
sphere and directly above the north pole of the earth is called
the North star, and the star nearest the southern celestial pole
the South star. It may be of interest to note that as we located
the North star by reference to the Big Dipper, the South star is
located by reference to a group of stars known as the Southern
Cross.

Celestial Equator. A great circle is conceived to extend
around the celestial sphere 90◦ from the poles (Fig. 20). This is
called the celestial equator. The axis of the earth, if prolonged,
would pierce the celestial poles, almost pierce the North and
South stars, and the equator of the earth if extended would
coincide with the celestial equator.

Fig. 21

At the North Pole.
An observer at the north
pole will see the North
star almost exactly over-
head, and as the earth
turns around under
his feet it will remain
constantly overhead
(Fig. 21). Half way, or
90◦ from the North star,
is the celestial equator

around the horizon. As the earth rotates,—though it seems to
us perfectly still,—the stars around the sky seem to swing in
circles in the opposite direction. The planes of the star paths
are parallel to the horizon. The same half of the celestial sphere
can be seen all of the time, and stars below the horizon always
remain so.
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All stars south of the celestial equator being forever invisible
at the north pole, Sirius, the brightest of the stars, and many of
the beautiful constellations, can never be seen from that place.
How peculiar the view of the heavens must be from the pole,
the Big Dipper, the Pleiades, the Square of Pegasus, and other
star groups swinging eternally around in courses parallel to the
horizon. When the sun, moon, and planets are in the portion of
their courses north of the celestial equator, they, of course, will
be seen throughout continued rotations of the earth until they
pass below the celestial equator, when they will remain invisible
again for long periods.

The direction of the daily apparent rotation of the stars is
from left to right (westward), the direction of the hands of a
clock looked at from above. Lest the direction of rotation at the
North pole be a matter of memory rather than of insight, we
may notice that in the United States and Canada when we face
southward we see the sun’s daily course in the direction left to
right (westward), and going poleward the direction remains the
same though the sun approaches the horizon more and more as
we approach the North pole.

Fig. 22

At the South Pole.
An observer at the South
pole, at the other end
of the axis, will see the
South star directly over-
head, the celestial equa-
tor on the horizon, and
the plane of the star
circles parallel with the
horizon. The direction
of the apparent rotation
of the celestial sphere is
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from right to left, counter-clockwise. If a star is seen at one’s
right on the horizon at six o’clock in the morning, at noon it will
be in front, at about six o’clock at night at his left, at midnight
behind him, and at about six o’clock in the morning at his right
again.

At the Equator. An observer at the equator sees the stars
in the celestial sphere to be very different in their positions in
relation to himself. Remembering that he is standing with the
line of his body at right angles to the axis of the earth, it is easy
to understand why all the stars of the celestial sphere seem to
be shifted around 90◦ from where they were at the poles. The
celestial equator is a great circle extending from east to west
directly overhead. The North star is seen on the northern hori-
zon and the South star on the southern horizon. The planes of
the circles followed by stars in their daily orbits cut the horizon
at right angles, the horizon being parallel to the axis. At the
equator one can see the entire celestial sphere, half at one time
and the other half about twelve hours later.

Fig. 23

Between Equator
and Poles. At places
between the equator and
the poles, the observer
is liable to feel that
a star rising due east
ought to pass the zenith
about six hours later in-
stead of swinging slant-
ingly around as it actu-
ally seems to do. This is
because one forgets that

the axis is not squarely under his feet excepting when at the
equator. There, and there only, is the axis at right angles to
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the line of one’s body when erect. The apparent rotation of the
celestial sphere is at right angles to the axis.

Photographing the Celestial Sphere. Because of the
earth’s rotation, the entire celestial sphere seems to rotate. Thus
we see stars daily circling around, the polestar always stationary.
When stars are photographed, long exposures are necessary that
their faint light may affect the sensitive plate of the camera,
and the photographic instruments must be constructed so that
they will move at the same rate and in the same direction as the
stars, otherwise the stars will leave trails on the plate. When the
photographic instrument thus follows the stars in their courses,
each is shown as a speck on the plate and comets, meteors,
planets, or asteroids, moving at different rates and in different
directions, show as traces.

Rotation of Celestial Sphere is Only Apparent. For
a long time it was believed that the heavenly bodies rotated
around the stationary earth as the center. It was only about five
hundred years ago that the astronomer Copernicus established
the fact that the motion of the sun and stars around the earth is
only apparent, the earth rotating. We may be interested in some
proofs that this is the case. It seems hard to believe at first that
this big earth, 25, 000 miles in circumference can turn around
once in a day. “Why, that would give us a whirling motion of
over a thousand miles an hour at the equator.” “Who could
stick to a merry-go-round going at the rate of a thousand miles
an hour?” When we see, however, that the sun 93, 000, 000
miles away, would have to swing around in a course of over
580, 000, 000 miles per day, and the stars, at their tremendous
distances, would have to move at unthinkable rates of speed,
we see that it is far easier to believe that it is the earth and
not the celestial sphere that rotates daily. We know by direct
observation that other planets, the sun and the moon, rotate
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upon their axis, and may reasonably infer that the earth does
too.

So far as the whirling motion at the equator is concerned, it
does give bodies a slight tendency to fly off, but the amount of
this force is only 1

289
as great as the attractive influence of the

earth; that is, an object which would weigh 289 pounds at the
equator, were the earth at rest, weighs a pound less because of
the centrifugal force of rotation (see p. 14).

Proofs of the Earth’s Rotation

Eastward Deflection of Falling Bodies. Perhaps the
simplest proof of the rotation of the earth is one pointed out by
Newton, although he had no means of demonstrating it. With
his clear vision he said that if the earth rotates and an object
were dropped from a considerable height, instead of falling di-
rectly toward the center of the earth in the direction of the plumb
line,∗ it would be deflected toward the east. Experiments have
been made in the shafts of mines where air currents have been
shut off and a slight but unmistakable eastward tendency has
been observed.

During the summer of 1906, a number of newspapers and
magazines in the United States gave accounts of the eastward
falling of objects dropped in the deep mines of northern Michi-
gan, one of which (Shaft No. 3 of the Tamarack mine) is the
deepest in the world, having a vertical depth of over one mile
(and still digging!). It was stated that objects dropped into such
a shaft never reached the bottom but always lodged among tim-
bers on the east side. Some papers added a touch of the grew-
some by implying that among the objects found clinging to the

∗The slight geocentric deviations of the plumb line are explained on
p. 280.
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east side are “pieces of a dismembered human body” which were
not permitted to fall to the bottom because of the rotation of the
earth. Following is a portion of an account∗ by F. W. McNair,
President of the Michigan College of Mines.

McNair’s Experiment. “Objects dropping into the shaft un-
der ordinary conditions nearly always start with some horizontal
velocity, indeed it is usually due to such initial velocity in the
horizontal that they get into the shaft at all. Almost all com-
mon objects are irregular in shape, and, drop one of them ever
so carefully, contact with the air through which it is passing
soon deviates it from the vertical, giving it a horizontal velocity,
and this when the air is quite still. The object slides one way
or another on the air it compresses in front of it. Even if the
body is a sphere, the air will cause it to deviate, if it is rotating
about an axis out of the vertical. Again, the air in the shaft
is in ceaseless motion, and any obliquity of the currents would
obviously deviate the falling body from the vertical, no matter
what its shape. If the falling object is of steel, the magnetic
influence of the air mains and steam mains which pass down
the shaft, and which invariably become strongly magnetic, may
cause it to swerve from a vertical course . . . .

“A steel sphere, chosen because it was the only convenient
object at hand, was suspended about one foot from the timbers
near the western corner of the compartment. The compartment
stands diagonally with reference to the cardinal points. Forty-
two hundred feet below a clay bed was placed, having its eastern
edge some five feet east of the point of suspension of the ball.
When the ball appeared to be still the suspending thread was
burned, and the instant of the dropping of the ball was indi-
cated by a prearranged signal transmitted by telephone to the

∗In the Mining and Scientific Press, July 14, 1906.
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observers below, who, watch in hand, waited for the sphere to
strike the bed of clay. It failed to appear at all. Another like
sphere was hung in the center of the compartment and the trial
was repeated with the same result. The shaft had to be cleared
and no more trials were feasible. Some months later, one of the
spheres, presumably the latter one, was found by a timberman
where it had lodged in the timbers 800 feet from the surface.

Fig. 24

“It is not probable, however,
that these balls lodged because
of the earth’s rotation alone. . . .
The matter is really more com-
plicated than the foregoing dis-
cussion implies. It has received
mathematical treatment from the
great Gauss. According to his re-
sults, the deviation to the east for
a fall of 5, 000 feet at the Tama-
rack mine should be a little un-
der three feet. Both spheres had
that much to spare before strik-
ing the timbers. It is almost cer-
tain, therefore, that others of the
causes mentioned in the begin-
ning acted to prevent a vertical
fall. At any rate, these trials serve

to emphasize the unlikelihood that an object which falls into a
deep vertical shaft, like those at the Tamarack mine, will reach
the bottom, even when some care is taken in selecting it and
also to start it vertically.

“If the timbering permits lodgment, as is the case in most
shafts, it may truthfully be said that if a shaft is deep in pro-
portion to its cross section few indeed will be the objects falling
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into it which will reach the bottom, and such objects are more
likely to lodge on the easterly side than on any other.”

Fig. 25

The Foucault
Experiment. An-
other simple demon-
stration of the earth’s
rotation is by the
celebrated Foucault
experiment. In 1851,
the French physicist,
M. Leon Foucault,
suspended from the
dome of the Pantheon,
in Paris, a heavy
iron ball by wire two
hundred feet long.
A pin was fastened
to the lowest side of
the ball so that when
swinging it traced a
slight mark in a layer
of sand placed beneath it. Carefully the long pendulum was set
swinging. It was found that the path gradually moved around
toward the right. Now either the pendulum changed its plane
or the building was gradually turned around. By experimenting
with a ball suspended from a ruler one can readily see that
gradually turning the ruler will not change the plane of the
swinging pendulum. If the pendulum swings back and forth in
a north and south direction, the ruler can be entirely turned
around without changing the direction of the pendulum’s swing.
If at the north pole a pendulum was set swinging toward a
fixed star, say Arcturus, it would continue swinging toward the
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same star and the earth would thus be seen to turn around in
a day. The earth would not seem to turn but the pendulum
would seem to deviate toward the right or clockwise.

Conditions for Success. The Foucault experiment has been
made in many places at different times. To be successful there
should be a long slender wire, say forty feet or more in length,
down the well of a stairway. The weight suspended should be
heavy and spherical so that the impact against the air may not
cause it to slide to one side, and there should be protection
against drafts of air. A good sized circle, marked off in degrees,
should be placed under it, with the center exactly under the ball
when at rest. From the rate of the deviation the latitude may be
easily determined or, knowing the latitude, the deviation may
be calculated.

To Calculate Amount of Deviation. At first thought it might
seem as though the floor would turn completely around under
the pendulum in a day, regardless of the latitude. It will be
readily seen, however, that it is only at the pole that the earth
would make one complete rotation under the pendulum in one
day∗ or show a deviation of 15◦ in an hour. At the equator the
pendulum will show no deviation, and at intermediate latitudes
the rate of deviation varies. Now the ratio of variation from the
pole considered as one and the equator as zero is shown in the
table of “natural sines” (p. 310). It can be demonstrated that
the number of degrees the plane of the pendulum will deviate in
one hour at any latitude is found by multiplying 15◦ by the sine

∗Strictly speaking, in one sidereal day.
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of the latitude.

d = deviation

φ = latitude

∴ d = sinφ× 15◦.

Whether or not the student has a very clear conception of what
is meant by “the sine of the latitude” he may easily calculate
the deviation or the latitude where such a pendulum experiment
is made.

Example. Suppose the latitude is 40◦. Sine 40◦ = .6428.
The hourly deviation at that latitude, then, is .6428 × 15◦ or
9.64◦. Since the pendulum deviates 9.64◦ in one hour, for the
entire circuit it will take as many hours as that number of degrees
is contained in 360◦ or about 371

3
hours. It is just as simple to

calculate one’s latitude if the amount of deviation for one hour
is known. Suppose the plane of the pendulum is observed to
deviate 9◦ in an hour.

Sine of the latitude× 15◦ = 9◦.

∴ Sine of the latitude = 9
15

or .6000.

From the table of sines we find that this sine, .6000, corresponds
more nearly to that of 37◦ (.6018) than to the sine of any other
whole degree, and hence 37◦ is the latitude where the hourly
deviation is 9◦. At that latitude it would take forty hours (360÷
9 = 40) for the pendulum to make the entire circuit.

Table of Variations. The following table shows the deviation
of the plane of the pendulum for one hour and the time required
to make one entire rotation.
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Latitude.
Hourly

Deviation.
Circuit of
Pendulum. Latitude. Hourly

Deviation.
Circuit of
Pendulum.

5◦ 1.31◦ 275 hrs. 50◦ 11.49◦ 31 hrs.
10 2.60 138 55 12.28 29
15 3.88 93 60 12.99 28
20 5.13 70 65 13.59 26
25 6.34 57 70 14.09 25.5
30 7.50 48 75 14.48 24.8
35 8.60 42 80 14.77 24.5
40 9.64 37 85 14.94 24.1
45 10.61 34 90 15.00 24.0

Other Evidence. Other positive evidence of the rotation
of the earth we have in the fact that the equatorial winds north
of the equator veer toward the east and polar winds toward
the west—south of the equator exactly opposite—and this is
precisely the result which would follow from the earth’s rota-
tion. Cyclonic winds in the northern hemisphere in going toward
the area of low pressure veer toward the right and anti-cyclonic
winds also veer toward the right in leaving areas of high pressure,
and in the southern hemisphere their rotation is the opposite.
No explanation of these well-known facts has been satisfactorily
advanced other than the eastward rotation of the earth, which
easily accounts for them.

Perhaps the best of modern proofs of the rotation of the earth
is demonstrated by means of the spectroscope. A discussion of
this is reserved until the principles are explained (p. 108) in
connection with the proofs of the earth’s revolution.

Velocity of Rotation

The velocity of the rotation at the surface, in miles per hour,
in different latitudes, is as follows:



THE ROTATION OF THE EARTH 57

Latitude. Velocity. Latitude. Velocity. Latitude. Velocity.

0 1038 44 748 64 456
5 1034 45 735 66 423

10 1022 46 722 68 390
15 1002 47 709 70 356
20 975 48 696 72 322
25 941 49 682 74 287
30 899 50 668 76 252
32 881 51 654 78 216
34 861 52 640 80 181
36 840 53 626 82 145
38 819 54 611 84 109
39 807 55 596 86 73
40 796 56 582 88 36
41 784 58 551 89 18
42 772 60 520 89 1

2 9
43 760 62 488 90 0

Uniform Rate of Rotation. There are theoretical
grounds for believing that the rate of the earth’s rotation is
getting gradually slower. As yet, however, not the slightest vari-
ation has been discovered. Before attacking the somewhat com-
plex problem of time, the student should clearly bear in mind
the fact that the earth rotates on its axis with such unerring
regularity that this is the most perfect standard for any time
calculations known to science.

Determination of Latitude

Altitude of Celestial Pole Equals Latitude. Let us
return, in imagination, to the equator. Here we may see the
North star on the horizon due north of us, the South star on
the horizon due south, and halfway between these two points,
extending from due east through the zenith to due west, is the
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celestial equator. If we travel northward we shall be able to see
objects which were heretofore hidden from view by the curvature
of the earth. We shall find that the South star becomes hidden
from sight for the same reason and the North star seems to rise
in the sky. The celestial equator no longer extends through the
point directly overhead but is somewhat to the south of the
zenith, though it still intersects the horizon at the east and west
points. As we go farther north this rising of the northern sky and
sinking of the southern sky becomes greater. If we go halfway to
the north pole we shall find the North star halfway between the
zenith and the northern horizon, or at an altitude of 45◦ above
the horizon. For every degree of curvature of the earth we pass
over, going northward, the North star rises one degree from the
horizon. At New Orleans the North star is 30◦ from the horizon,
for the city is 30◦ from the equator. At Philadelphia, 40◦ north
latitude, the North star is 40◦ from the horizon. South of the
equator the converse of this is true. The North star sinks from
the horizon and the South star rises as one travels southward
from the equator. The altitude of the North star is the latitude
of a place north of the equator and the altitude of the South star
is the latitude of a place south of the equator. It is obvious,
then, that the problem of determining latitude is the problem
of determining the altitude of the celestial pole.

To Find Your Latitude. By means of the compasses and
scale, ascertain the altitude of the North star. This can be done
by placing one side of the compasses on a level window sill and
sighting the other side toward the North star, then measuring
the angle thus formed. Another simple process for ascertaining
latitude is to determine the altitude of a star not far from the
North star when it is highest and when it is lowest; the average
of these altitudes is the altitude of the pole, or the latitude. This
may easily be done in latitudes north of 38◦ during the winter,
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observing, say, at 6 o’clock in the morning and at 6 o’clock in the
evening. This is simple in that it requires no tables. Of course
such measurements are very crude with simple instruments, but
with a little care one will usually be surprised at the accuracy
of his results.

Fig. 26

Owing to the fact that the North star is not exactly at the
north pole of the celestial sphere, it has a slight rotary motion.
It will be more accurate, therefore, if the observation is made
when the Big Dipper and Cassiopeia are in one of the positions
(A or B) represented by Figure 26. In case of these positions
the altitude of the North star will give the true latitude, it then
being the same altitude as the pole of the celestial sphere. In
case of position D, the North star is about 11

4
◦ below the true

pole, hence 11
4
◦ must be added to the altitude of the star. In

case of position C, the North star is 11
4
◦ above the true pole, and

that amount must be subtracted from its altitude. It is obvious
from the diagrams that a true north and south line can be struck
when the stars are in positions C and D, by hanging two plumb
lines so that they lie in the same plane as the zenith meridian
line through Mizar and Delta Cassiopeiæ. Methods of deter-
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mining latitude will be further discussed on pp. 172–175. The
instrument commonly used in observations for determining lati-
tude is the meridian circle, or, on shipboard, the sextant. Read
the description of these instruments in any text on astronomy.

Queries

In looking at the heavenly bodies at night do the stars, moon,
and planets all look as though they were equally distant, or do
some appear nearer than others? The fact that people of ancient
times believed the celestial sphere to be made of metal and all
the heavenly bodies fixed or moving therein, would indicate that
to the observer who is not biased by preconceptions, all seem
equally distant. If they did not seem equally distant they would
not assume the apparently spherical arrangement.

The declination, or distance from the celestial equator, of the
star (Benetnasch) at the end of the handle of the Big Dipper
is 50◦. How far is it from the celestial pole? At what latitude
will it touch the horizon in its swing under the North star? How
far south of the equator could one travel and still see that star
at some time?



CHAPTER IV

LONGITUDE AND TIME

Solar Time

Sun Time Varies. The sun is the world’s great time-
keeper. He is, however, a slightly erratic one. At the equator
the length of day equals the length of night the year through.
At the poles there are six months day and six months night, and
at intermediate latitudes the time of sunrise and of sunset varies
with the season. Not only does the time of sunrise vary, but the
time it takes the sun apparently to swing once around the earth
also varies. Thus from noon by the sun until noon by the sun
again is sometimes more than twenty-four hours and sometimes
less than twenty-four hours. The reasons for this variation will
be taken up in the chapter on the earth’s revolution.

Mean Solar Day. By a mean solar day is meant the av-
erage interval of time from sun noon to sun noon. While the
apparent solar day varies, the mean solar day is exactly twenty-
four hours long. A sundial does not record the same time as a
clock, as a usual thing, for the sundial records apparent solar
time while the clock records mean solar time.

Relation of Longitude to Time. The sun’s apparent
daily journey around the earth with the other bodies of the

61
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celestial sphere gives rise to day and night∗ It takes the sun, on
the average, twenty-four hours apparently to swing once around
the earth. In this daily journey it crosses 360◦ of longitude, or
15◦ for each hour. It thus takes four minutes for the sun’s rays
to sweep over one degree of longitude. Suppose it is noon by the
sun at the 90th meridian, in four minutes the sun will be over
the 91st meridian, in four more minutes it will be noon by the
sun on the 92d meridian, and so on around the globe.

Students are sometimes confused as to the time of day in
places east of a given meridian as compared with the time in
places west of it. When the sun is rising here, it has already
risen for places east of us, hence their time is after sunrise or
later than ours. If it is noon by the sun here, at places east
of us, having already been noon there, it must be past noon or
later in the day. Places to the east have later time because the
sun reaches them first. To the westward the converse of this is
true. If the sun is rising here, it has not yet risen for places west
of us and their time is before sunrise or earlier. When it is noon
by the sun in Chicago, the shadow north, it is past noon by the
sun in Detroit and other places eastward and before noon by the
sun in Minneapolis and other places westward.

How Longitude is Determined. A man when in Lon-
don, longitude 0◦, set his watch according to mean solar time
there. When he arrived at home he found the mean solar time to
be six hours earlier (or slower) than his watch, which he had not
changed. Since his watch indicated later time, London must be
east of his home, and since the sun appeared six hours earlier at
London, his home must be 6×15◦, or 90◦, west of London. While
on shipboard at a certain place he noticed that the sun’s shadow
was due north when his watch indicated 2:30 o’clock, p.m. As-

∗Many thoughtlessly assume that the fact of day and night is a proof
of the earth’s rotation.
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suming that both the watch and the sun were “on time” we
readily see that since London time was two and one half hours
later than the time at that place, he must have been west of
London 21

2
× 15◦, or 37◦ 30′.

Ship’s Chronometer. Every ocean vessel carries a very
accurate watch called a chronometer. This is regulated to run as
perfectly as possible and is set according to the mean solar time
of some well known meridian. Vessels from English speaking
nations all have their chronometers set with Greenwich time.
By observing the time according to the sun at the place whose
longitude is sought and comparing that time with the time of the
prime meridian as indicated by the chronometer, the longitude
is reckoned. For example, suppose the time according to the
sun is found by observation to be 9:30 o’clock, a.m., and the
chronometer indicates 11:20 o’clock, a.m. The prime meridian,
then, must be east as it has later time. Since the difference in
time is one hour and fifty minutes and there are 15◦ difference
in longitude for an hour’s difference in time, the difference in
longitude must be 15

6
× 15◦, or 27◦ 30′.

The relation of longitude and time should be thoroughly
mastered. From the table at the close of this chapter, giving
the longitude, of the principal cities of the world, one can de-
termine the time it is in those places when it is noon at home.
Many other problems may also be suggested. It should be borne
in mind that it is the mean solar time that is thus considered,
which in most cities is not the time indicated by the watches and
clocks there. People all over Great Britain set their timepieces
to agree with Greenwich time, in Ireland with Dublin, in France
with Paris, etc. (see “Time used in Various Countries” at the
end of this chapter).

Local Time. The mean solar time of any place is often
called its local time. This is the average time indicated by the
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sundial. All places on the same meridian have the same local
time. Places on different meridians must of necessity have dif-
ferent local time, the difference in time being four minutes for
every degree’s difference in longitude.

Standard Time

Origin of Present System. Before the year 1883, the
people of different cities in the United States commonly used
the local time of the meridian passing through the city. Prior to
the advent of the railroad, telegraph, and telephone, little incon-
venience was occasioned by the prevalence of so many time sys-
tems. But as transportation and communication became rapid
and complex it became very difficult to adjust one’s time and
calculations according to so many standards as came to prevail.
Each railroad had its own arbitrary system of time, and where
there were several railroads in a city there were usually as many
species of “railroad time” besides the local time according to
longitude.

“Before the adoption of standard time there were sometimes
as many as five different kinds of time in use in a single town.
The railroads of the United States followed fifty-three different
standards, whereas they now use five. The times were very much
out of joint.”∗

His inability to make some meteorological calculations in
1874 because of the diverse and doubtful character of the time
of the available weather reports, led Professor Cleveland Abbe,
for so many years connected with the United States Weather
service, to suggest that a system of standard time should be
adopted. At about the same time several others made similar

∗The Scrap Book, May, 1906.
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suggestions and the subject was soon taken up in an official way
by the railroads of the country under the leadership of William
F. Allen, then secretary of the General Time Convention of Rail-
road Officials. As a result of his untiring efforts the railway asso-
ciations endorsed his plan and at noon of Sunday, November 18,
1883, the present system was inaugurated.

Eastern Standard Time. According to the system all
cities approximately within 71

2
◦ of the 75th meridian use the

mean solar time of that meridian, the clocks and watches being
thus just five hours earlier than those of Greenwich. This belt,
about 15◦ wide, is called the eastern standard time belt. The
75th meridian passes through the eastern portion of Philadel-
phia, so the time used throughout the eastern portion of the
United States corresponds to Philadelphia local mean solar time.

Central Standard Time. The time of the next belt is the
mean solar time of the 90th meridian or one hour slower than
eastern standard time. This meridian passes through or very
near Madison, Wisconsin, St. Louis, and New Orleans, where
mean local time is the same as standard time. When it is noon
at Washington, D. C, it is 11 o’clock, a.m., at Chicago, because
the people of the former city use eastern standard time and those
at the latter use central standard time.

Mountain Standard Time. To the west of the central
standard time belt lies the mountain region where the time used
is the mean solar time of the 105th meridian. This meridian
passes through Denver, Colorado, and its clocks as a conse-
quence indicate the same time that the mean sun does there.
As the standard time map shows, all the belts are bounded by
irregular lines, due to the fact that the people of a city usually
use the same time that their principal railroads do, and where
trains change their time depends in a large measure upon the
convenience to be served. This belt shows the anomaly of being
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bounded on the east by the central time belt, on the west by
the Pacific time belt, and on the south by the same belts. The
reasons why the mountain standard time belt tapers to a point
at the south and the peculiar conditions which consequently re-
sult, are discussed under the topic “Four Kinds of Time around
El Paso” (p. 74).

Pacific Standard Time. People living in the states bor-
dering or near the Pacific Ocean use the mean solar time of
the 120th meridian and thus have three hours earlier time than
the people of the Atlantic coast states. This meridian forms a
portion of the eastern boundary of California.

In these great time belts∗ all the clocks and other timepieces
differ in time by whole hours. In addition to astronomical obser-
vatory clocks, which are regulated according to the mean local
time of the meridian passing through the observatory, there are
a few cities in Michigan, Georgia, New Mexico, and elsewhere
in the United States, where mean local time is still used.

Standard Time in Europe. In many European coun-
tries standard time based upon Greenwich time, or whole hour
changes from it, is in general use, although there are many more
cities which use mean local time than in the United States.
Western European time, or that of the meridian of Greenwich,
is used in Great Britain, Spain, Belgium, and Holland. Central
European time, one hour later than that of Greenwich, is used in
Norway, Sweden, Denmark, Luxemburg, Germany, Switzerland,
Austria-Hungary, Servia, and Italy. Eastern European time, two
hours later than that of Greenwich, is used in Turkey, Bulgaria,
and Roumania.

∗For a discussion of the time used in other portions of North America
and elsewhere in the world see pp. 80–87.
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Telegraphic Time Signals

Getting the Time. An admirable system of sending time
signals all over the country and even to Alaska, Cuba, and
Panama, is in vogue in the United States, having been estab-
lished in August, 1865. The Naval Observatories at Washington,
D. C., and Mare Island, California, send out the signals during
the five minutes preceding noon each day.

It is a common custom for astronomical observatories to
correct their own clocks by careful observations of the stars.
The Washington Observatory sends telegraphic signals to all
the cities east of the Rocky Mountains and the Mare Island
Observatory to Pacific cities and Alaska. A few railroads re-
ceive their time corrections from other observatories. Goodsell
Observatory, Carleton College, Northfield, Minnesota, has for
many years furnished time to the Great Northern, the Northern
Pacific, the Great Western, and the Sault Ste. Marie railway
systems. Allegheny Observatory sends out time to the Pennsyl-
vania system and the Lick Observatory to the Southern Pacific
system.

How Time is Determined at the United States Naval Obser-
vatory. The general plan of correcting clocks at the United
States Naval Observatories by stellar observations is as follows:
A telescope called a meridian transit is situated in a true north-
south direction mounted on an east-west axis so that it can be
rotated in the plane of the meridian but not in the slightest de-
gree to the east or west. Other instruments used are the chrono-
graph and the sidereal clock. The chronograph is an instrument
which may be electrically connected with the clock and which
automatically makes a mark for each second on a sheet of paper
fastened to a cylinder. The sidereal clock is regulated to keep
time with the stars—not with the sun, as are other clocks. The
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reason for this is because the stars make an apparent circuit
with each rotation of the earth and this, we have observed, is
unerring while the sun’s apparent motion is quite irregular.

To correct the clock, an equatorial or high zenith star is
selected. A well known one is chosen since the exact time it
will cross the meridian of the observer (that is, be at its highest
point in its apparent daily rotation) must be calculated. The
chronograph is then started, its pen and ink adjusted, and its
electrical wires connected with the clock. The observer now
sights the telescope to the point where the expected star will
cross his meridian and, with his hand on the key, he awaits the
appearance of the star. As the star crosses each of the eleven
hair lines in the field of the telescope, the observer presses the
key which automatically marks upon the chronographic cylinder.
Then by examining the sheet he can tell at what time, by the
clock, the star crossed the center line. He then calculates just
what time the clock should indicate and the difference is the
error of the clock. By this means an error of one tenth of a
second can be discovered.

The Sidereal Clock. The following facts concerning the
sidereal clock may be of interest. It is marked with twenty-four
hour spaces instead of twelve. Only one moment in the year
does it indicate the same time as ordinary timepieces, which
are adjusted to the average sun. When the error of the clock is
discovered the clock is not at once reset because any tampering
with the clock would involve a slight error. The correction is
simply noted and the rate of the clock’s gaining or losing time is
calculated so that the true time can be ascertained very precisely
at any time by referring to the data showing the clock error when
last corrected and the rate at which it varies.

A while before noon each day the exact sidereal time is cal-
culated; this is converted into local mean solar time and this
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into standard time. The Washington Naval Observatory con-
verts this into the standard time of the 75th meridian or East-
ern time and the Mare Island Observatory into that of the 120th
meridian or Pacific time.

Sending Time Signals. By the coöperation of telegraph
companies, the time signals which are sent out daily from the
United States Naval Observatories reach practically every tele-
graph station in the country. They are sent out at noon, 75th
meridian time, from Washington, which is 11 o’clock, a.m., in
cities using Central time and 10 o’clock, a.m., where Mountain
time prevails; and at noon, 120th meridian time, they are sent
to Pacific coast cities from the Mare Island Observatory—three
hours after Washington has flashed the signal which makes cor-
rect time accessible to sixty millions of our population living
east of the Rockies.

Not only are the time signals sent to the telegraph sta-
tions and thence to railway offices, clock makers and repairers,
schools, court houses, etc., but the same telegraphic signal that
marks noon also actually sets many thousands of clocks, their
hands whether fast or slow automatically flying to the true mark
in response to the electric current. In a number of cities of the
United States, nineteen at present, huge balls are placed upon
towers or buildings and are automatically dropped by the elec-
tric noon signal. The time ball in Washington is conspicuously
placed on the top of the State, War, and Navy building and may
be seen at considerable distances from many parts of the city.

A few minutes before noon each day, one wire at each tele-
graphic office is cleared of all business and “thousands of tele-
graph operators sit in silence, waiting for the click of the key
which shall tell them that the ‘master clock’ in Washington has
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Fig. 28

begun to speak.”∗ At five minutes before twelve the instrument
begins to click off the seconds. Figure 28 (adapted from a cut
appearing in Vol. IV, Appendix IV, United States Naval Obser-
vatory Publications) graphically shows which second beats are
sent along the wires during each of the five minutes before noon
by the transmitting clock at the Naval Observatory.

Explanation of the Second Beats. It will be noticed that
the twenty-ninth second of each minute is omitted. This is for
the purpose of permitting the observer to distinguish, without
counting the beats, which is the one denoting the middle of
each minute; the five seconds at the end of each of the first four
minutes are omitted to mark the beginning of a new minute
and the last ten seconds of the fifty-ninth minute are omitted to
mark conspicuously the moment of noon. The omission of the
last ten seconds also enables the operator to connect his wire
with the clock to be automatically set or the time ball to be
dropped. The contact marking noon is prolonged a full second,
not only to make prominent this important moment but also to

∗From “What’s the Time,” Youth’s Companion, May 17 and June 14,
1906.
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afford sufficient current to do the other work which this electric
contact must perform.

Long Distance Signals. Several times in recent years special
telegraphic signals have been sent out to such distant points as
Madras, Mauritius, Cape Town, Pulkowa (near St. Petersburg),
Rome, Lisbon, Madrid, Sitka, Buenos Ayres, Wellington, Syd-
ney, and Guam. Upon these occasions “our standard clock may
fairly be said to be heard in ‘the remotest ends of the earth,’
thus anticipating the day when wireless telegraphy will perhaps
allow of a daily international time signal that will reach every
continent and ocean in a small fraction of a second.”∗

These reports have been received at widely separated sta-
tions within a few seconds, being received at the Lick Observa-
tory in 0.05s, Manila in 0.11s, Greenwich in 1.33s, and Sydney,
Australia, in 2.25s.

Confusion from Various Standards

Where different time systems are used in the same commu-
nity, confusion must of necessity result. The following editorial
comment in the Official Railway Guide for November, 1900, very
succinctly sets forth the condition which prevailed in Detroit as
regards standard and local time.

“The city of Detroit is now passing through an agitation
which is a reminiscence of those which took place throughout the
country about seventeen years ago, when standard time was first
adopted. For some reason, which it is difficult to explain, the
city fathers of Detroit have refused to change from the old local
time to the standard, notwithstanding the fact that all of the

∗“The Present Status of the Use of Standard Time,” by Lieut. Com-
mander E. E. Hayden, U. S. Navy.
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neighboring cities—Cleveland, Toledo, Columbus, Cincinnati,
etc.,—in practically the same longitude, had made the change
years ago and realized the benefits of so doing. The business
men of Detroit and visitors to that city have been for a long
time laboring under many disadvantages owing to the confusion
of standards, and they have at last taken the matter into their
own hands and a lively campaign, with the coöperation of the
newspapers, has been organized during the past two months.
Many of the hotels have adopted standard time, regardless of
the city, and the authorities of Wayne County, in which Detroit
is situated, have also decided to hold court on Central Standard
time, as that is the official standard of the state of Michigan.
The authorities of the city have so far not taken action. It is
announced in the newspapers that they probably will do so af-
ter the election, and by that time, if progress continues to be
made, the only clock in town keeping the local time will be on
the town hall. All other matters will be regulated by standard
time, and the hours of work will have been altered accordingly
in factories, stores, and schools. Some opposition has been en-
countered, but this, as has been the case in every city where
the change has been made, comes from people who evidently
do not comprehend the effects of the change. One individual,
for instance, writes to a newspaper that he will decline to pay
pew rent in any church whose clock tower shows standard time;
he refuses to have his hours of rest curtailed. How these will
be affected by the change he does not explain. Every visitor to
Detroit who has encountered the difficulties which the confusion
of standards there gives rise to, will rejoice when the complete
change is effected.”

The longitude of Detroit being 83◦ W., it is seven degrees
east of the 90th meridian, hence the local time used in the city
was twenty-eight minutes faster than Central time and thirty-
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two minutes slower than Eastern time. In Gainesville, Georgia,
mean local sun time is used in the city, while the Southern rail-
way passing through the city uses Eastern time and the Georgia
railway uses Central time.

Fig. 29

Four Kinds of Time Around El Paso. Another place
of peculiar interest in connection with this subject is El Paso,
Texas, from the fact that four different systems are employed.
The city, the Atchison, Topeka, and Santa Fe, and the El Paso
and Southwestern railways use Mountain time. The Galveston,
Harrisburg, and San Antonio, and the Texas and Pacific railways
use Central time. The Southern Pacific railway uses Pacific time.
The Mexican Central railway uses Mexican standard time. From
this it will be seen that when clocks in Strauss, N. M., a few
miles from El Paso, are striking twelve, the clocks in El Paso
are striking one; in Ysleta, a few miles east, they are striking
two; while across the river in Juarez, Mexico, the clocks indicate
12:24.

Time Confusion for Travelers. The confusion which
prevails where several different standards of time obtain is well
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illustrated in the following extract from “The Impressions of a
Careless Traveler” by Lyman Abbott, in the Outlook, Feb. 28,
1903.

“The changes in time are almost as interesting and quite as
perplexing as the changes in currency. Of course our steamer
time changes every day; a sharp blast on the whistle notifies us
when it is twelve o’clock, and certain of the passengers set their
watches accordingly every day. I have too much respect for my
faithful friend to meddle with him to this extent, and I keep
my watch unchanged and make my calculations by a mental
comparison of my watch with the ship’s time. But when we are
in port we generally have three times—ship’s time, local time,
and railroad time, to which I must in my own case add my own
time, which is quite frequently neither. In fact, I kept New York
time till we reached Genoa; since then I have kept central Europe
railroad time. Without changing my watch, I am getting back
to that standard again, and expect to find myself quite accurate
when we land in Naples.”

The Legal Aspect of Standard Time

The legal aspect of standard time presents many interesting
features. Laws have been enacted in many different countries
and several of the states of this country legalizing some standard
of time. Thus in Michigan, Minnesota, and other central states
the legal time is the mean solar time of longitude 90◦ west of
Greenwich. When no other standard is explicitly referred to,
the time of the central belt is the legal time in force. Similarly,
legal time in Germany was declared by an imperial decree dated
March 12, 1903, as follows:∗

∗Several of the following quotations are taken from the “Present Status
of the Use of Standard Time,” by E. E. Hayden.
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“We, Wilhelm, by the grace of God German Emperor, King of Prussia,
decree in the name of the Empire, the Bundesrath and Reichstag concur-
ring, as follows:

“The legal time in Germany is the mean solar time of longitude 15◦

east from Greenwich.”

Greenwich time for Great Britain, and Dublin time for Ire-
land, were legalized by an act of Parliament as follows:

A Bill to remove doubts as to the meaning of expressions relative to
time occurring in acts of Parliament, deeds, and other legal instruments.

Whereas it is expedient to remove certain doubts as to whether ex-
pressions of time occurring in acts of Parliament, deeds, and other legal
instruments relate in England and Scotland to Greenwich time, and in Ire-
land to Dublin time, or to the mean astronomical time in each locality:

Be it therefore enacted by the Queen’s most Excellent Majesty, by
and with the advice and consent of the Lords, spiritual and temporal, and
Commons in the present Parliament assembled, and by the authority of the
same, as follows (that is to say):

1. That whenever any expression of time occurs in any act of Parlia-
ment, deed, or other legal instrument, the time referred to shall, unless it
is otherwise specifically stated, be held in the case of Great Britain to be
Greenwich mean time and in the case of Ireland, Dublin mean time.

2. This act may be cited as the statutes (definition of time) act, 1880.

Seventy-fifth meridian time was legalized in the District of
Columbia by the following act of Congress:

An Act to establish a standard of time in the District of Columbia. Be
it enacted by the Senate and House of Representatives of the United States
of America in Congress assembled, That the legal standard of time in the
District of Columbia shall hereafter be the mean time of the seventy-fifth
meridian of longitude west from Greenwich.

Section 2. That this act shall not be so construed as to affect existing
contracts.

Approved, March 13, 1884.

In New York eastern standard time is legalized in section 28
of the Statutory Construction Law as follows:

The standard time throughout this State is that of the 75th meridian
of longitude west from Greenwich, and all courts and public offices, and
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legal and official proceedings, shall be regulated thereby. Any act required
by or in pursuance of law to be performed at or within a prescribed time,
shall be performed according to such standard time.

A New Jersey statute provides that the time of the same
meridian shall be that recognized in all the courts and public of-
fices of the State, and also that “the time named in any notice,
advertisement, or contract shall be deemed and taken to be the
said standard time, unless it be otherwise expressed.” In Penn-
sylvania also it is provided that “on and after July 1, 1887, the
mean solar time of the seventy-fifth meridian of longitude west
of Greenwich, commonly called eastern standard time,” shall be
the standard in all public matters; it is further provided that
the time “in any and all contracts, deeds, wills, and notices, and
in the transaction of all matters of business, public, legal, com-
mercial, or otherwise, shall be construed with reference to and
in accordance with the said standard hereby adopted, unless a
different standard is therein expressly provided for.”

Where there is no standard adopted by legal authority, dif-
ficulties may arise, as the following clipping from the New York
Sun, November 25, 1902, illustrates:

WHAT’S NOON IN A
FIRE POLICY?

Solar Noon or Standard Time
Noon—Courts Asked to Say.

Fire in Louisville at 11:45 a.m.,
Standard Time, Which Was
12:02 1-2 p.m. Solar Time—
Policies Expired at Noon and
13 Insurance Companies Wont
Pay.

Whether the word “noon,”
which marks the beginning and ex-
piration of all fire insurance policies,
means noon by standard time, or
noon by solar time, is a question
which is soon to be fought out in
the courts of Kentucky, in thirteen
suits which have attracted the at-
tention of fire insurance people all
over the world. The suits are be-
ing brought by the Peaslee-Gaulbert
Company and the Louisville Lead
and Color Company of Louisville,
and $19,940.70 of insurance money
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depends on the result.
Now, although the policies in

these companies all state that they
were in force from noon of April 1,
1901, to noon of April 1, 1902, not
one of them says what kind of time
that period of the day is to be reck-
oned in. In Louisville the solar noon
is 17 1

2 minutes earlier than the stan-
dard noon, so that a fire occurring
in the neighborhood of noon on the
day of a policy’s expiration, may eas-
ily be open to attack.

The records of the Louisville
fire department show that the fire
that destroyed the buildings of the
two companies was discovered at
11:45 o’clock Louisville standard
time in the forenoon of April 1, last.
The fire began in the engine room of
the main factory and spread to the
two other buildings which were used
mainly as warehouses. When the fire
department recorded the time of the
fire’s discovery it figured, of course,
by standard time. Solar time would
make it just two and a half minutes
after noon. If noon in the policies
means noon by solar time, of course
the thirteen companies are absolved
from any responsibility for the loss.
If it means noon by standard time,
of course they must pay.

When the insurance people got
the claims of the companies they de-
clined to pay, and when asked for

an explanation declared that noon
in the policies meant noon by so-
lar time. The burned-out companies
immediately began suit, and in their
affidavits they say that not only
is standard time the official time
of the State of Kentucky and the
city of Louisville, but it is also the
time upon which all business engage-
ments and all domestic and social
engagements are reckoned. They
state further that they are prepared
to show that in 1890 the city of
Louisville passed an ordinance mak-
ing standard time the official time of
the city, that all legislation is dated
according to standard time, and that
the governor of the state is inaugu-
rated at noon according to the same
measurement of time.

Solar time, state the companies,
can be found in use in Louisville
by only a few banking institutions
which got charters many years ago
that compel them to use solar time
to this day. Most banks, they say,
operate on standard time, although
they keep clocks going at solar time
so as to do business on that ba-
sis if requested. Judging by stan-
dard time the plaintiffs allege their
fire took place fifteen minutes before
their policies expired.

The suits will soon come to trial,
and, of course, will be watched with
great interest by insurance people.
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Iowa Case. An almost precisely similar case occurred at
Creston, Iowa, September 19, 1897. In this instance the insur-
ance policies expired “at 12 o’clock at noon,” and the fire broke
out at two and a half minutes past noon according to standard
time, but at fifteen and one-half minutes before local mean solar
noon. In each of these cases the question of whether standard
time or local mean solar time was the accepted meaning of the
term was submitted to a jury, and in the first instance the ver-
dict was in favor of standard time, in the Iowa case the verdict
was in favor of local time.

Early Decision in England. In 1858 and thus prior to
the formal adoption of standard time in Great Britain, it was
held that the time appointed for the sitting of a court must be
understood as the mean solar time of the place where the court
is held and not Greenwich time, unless it be so expressed, and
a new trial was granted to a defendant who had arrived at the
local time appointed by the court but found the court had met
by Greenwich time and the case had been decided against him.

Court Decision in Georgia. In a similar manner a court
in the state of Georgia rendered the following opinion:

“The only standard of time in computation of a day, or hours of a day,
recognized by the laws of Georgia is the meridian of the sun; and a legal
day begins and ends at midnight, the mean time between meridian and
meridian, or 12 o’clock post meridiem. An arbitrary and artificial standard
of time, fixed by persons in a certain line of business, cannot be substituted
at will in a certain locality for the standard recognized by the law.”

Need for Legal Time Adoption on a Scientific Basis.
There is nothing in the foregoing decisions to determine whether
mean local time, or the time as actually indicated by the sun at
a particular day, is meant. Since the latter sometimes varies as
much as fifteen minutes faster or slower than the average, op-
portunities for controversies are multiplied when no scientifically
accurate standard time is adopted by law.
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Even though statutes are explicit in the definition of time,
they are still subject to the official interpretation of the courts,
as the following extracts show:

Thomas Mier took out a fire insurance policy on his saloon at 11:30
standard time, the policy being dated noon of that day. At the very minute
that he was getting the policy the saloon caught fire and was burned. Ohio
law makes standard time legal time, and the company refused to pay the
$2,000 insurance on Mier’s saloon. The case was fought through to the
Supreme Court, which decided that “noon” meant the time the sun passed
the meridian at Akron, which is at 11:27 standard time. The court ordered
the insurance company to pay.—Law Notes, June, 1902.

In the 28th Nebraska Reports a case is cited in which judgment by
default was entered against a defendant in a magistrate’s court who failed
to make an appearance at the stipulated hour by standard time, but arrived
within the limit by solar time. He contested the ruling of the court, and
the supreme judiciary of the state upheld him in the contest, although
there was a Nebraska statute making standard time the legal time. The
court held that “at noon” must necessarily mean when the sun is over
the meridian, and that no construction could reasonably interpret it as
indicating 12 o’clock standard time.

Time Used in Various Countries

The following table is taken, by permission, largely from the
abstracts of official reports given in Vol. IV, Appendix IV of the
Publications of the United States Naval Observatory, 1905. The
time given is fast or slow as compared with Greenwich mean
solar time.

Argentina, 4 h. 16 m. 48.2 s. slow. Official time is referred to the meridian
of Cordoba. At 11 o’clock, a.m., a daily signal is telegraphed from the
Cordoba Observatory.

Austria-Hungary, 1 h. fast. Standard time does not exist except for the
service of railroads where it is in force, not by law, but by order of the
proper authorities.
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Belgium. Official time is calculated from 0 to 24 hours, zero corresponding
to midnight at Greenwich. The Royal Observatory at Brussels commu-
nicates daily the precise hour by telegraph.

British Empire.
Great Britain. The meridian of Greenwich is the standard time meridian

for England, Isle of Man, Orkneys, Shetland Islands, and Scotland.
Ireland, 0 h. 25 m. 21.1 s. slow. The meridian of Dublin is the standard

time meridian.
Africa (English Colonies), 2 h. fast. Standard time for Cape Colony,

Natal, Orange River Colony, Rhodesia and Transvaal.
Australia.

New South Wales, Queensland, Tasmania and Victoria, 10 h. fast.
South Australia and Northern Territory, 9 h. 30 m. fast.

Canada.
Alberta and Saskatchewan, 7 h. slow.
British Columbia, 8 h. slow.
Keewatin and Manitoba, 6 h. slow.
Ontario and Quebec, 5 h. slow.
New Brunswick, Nova Scotia, and Prince Edward Island, 4 h. slow.

Chatham Island, 11 h. 30 m. fast.
Gibraltar, Greenwich time.
Hongkong, 8 h. fast.
Malta, 1 h. fast.
New Zealand, 11 h. 30 m. fast.
India. Local mean time of the Madras Observatory, 5 h. 20 m. 59.1 s.,

is practically used as standard time for India and Ceylon, being tele-
graphed daily all over the country; but for strictly local use it is gener-
ally converted into local mean time. It is proposed soon to adopt the
standard time of 5 h. 30 m. fast of Greenwich for India and Ceylon,
and 6 h. 30 m. fast of Greenwich for Burmah.

Newfoundland, 3 h. 30 m. 43.6 s. slow. (Local mean time of St. John’s.)
Chile, 4 h. 42 m. 46.1 s. slow. The official railroad time is furnished by

the Santiago Observatory. It is telegraphed over the country daily at 7
o’clock, a.m. The city of Valparaiso uses the local time, 4 h. 46 m. 34.1 s.
slow, of the observatory at the Naval School located there.

China. An observatory is maintained by the Jesuit mission at Zikawei
near Shanghai, and a time ball suspended from a mast on the French
Bund in Shanghai is dropped electrically precisely at noon each day. This
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furnishes the local time at the port of Shanghai 8 h. 5 m. 43.3 s. fast,
which is adopted by the railway and telegraph companies represented
there, as well as by the coastwise shipping. From Shanghai the time is
telegraphed to other ports. The Imperial Railways of North China use
the same time, taking it from the British gun at Tientsin and passing it
on to the stations of the railway twice each day, at 8 o’clock a.m. and at
8 o’clock p.m. Standard time, 7 h. and 8 h. fast, is coming into use all
along the east coast of China from Newchwang to Hongkong.

Colombia. Local mean time is used at Bogota, 4 h. 56 m. 54.2 s. slow, taken
every day at noon in the observatory. The lack of effective telegraphic
service makes it impossible to communicate the time as corrected at Bo-
gota to other parts of the country, it frequently taking four and five days
to send messages a distance of from 50 to 100 miles.

Costa Rica, 5 h. 36 m. 16.9 s. slow. This is the local mean time of the
Government Observatory at San José.

Cuba, 5 h. 29 m. 26 s. slow. The official time of the Republic is the civil
mean time of the meridian of Havana and is used by the railroads and
telegraph lines of the government. The Central Meteorological Station
gives the time daily to the port and city of Havana as well as to all the
telegraph offices of the Republic.

Denmark, 1 h. fast. In Iceland, the Faroe Islands and the Danish West
Indies, local mean time is used.

Egypt, 2 h. fast. Standard time is sent out electrically by the standard clock
of the observatory to the citadel at Cairo, to Alexandria, Port Said and
Wady-Halfa.

Equador, 5 h. 14 m. 6.7 s. slow. The official time is that of the meridian of
Quito, corrected daily from the National Observatory.

France, 0 h. 9 m. 20.9 s. fast. Legal time in France, Algeria and Tunis is
local mean time of the Paris Observatory. Local mean time is considered
legal in other French colonies.

German Empire.
Germany, 1 h. fast.
Kiaochau, 8 h. fast.
Southwest Africa, 1 h. fast.
It is proposed to adopt standard time for the following:
Bismarck Archipelago, Carolines, Mariane Islands and New Guinea, 10 h.

fast.
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German East Africa, 2 h. fast or 2 h. 30 m. fast.
Kamerun, 1 h. fast.
Samoa (after an understanding with the U. S.), 12 h. fast.
Toga, Greenwich time.

Greece, 1 h. 34 m. 52.9 s. fast. By royal decree of September 14, 1895, the
time in common use is that of the mean time of Athens, which is trans-
mitted from the observatory by telegraph to the towns of the kingdom.

Holland. The local time of Amsterdam, 0 h. 19 m. 32.3 s. fast, is gen-
erally used, but Greenwich time is used by the post and telegraph ad-
ministration and the railways and other transportation companies. The
observatory at Leyden communicates the time twice a week to Amster-
dam, The Hague, Rotterdam and other cities, and the telegraph bureau
at Amsterdam signals the time to all the other telegraph bureaus every
morning.

Honduras. In Honduras the half hour nearest to the meridian of Teguci-
galpa, longitude 87◦ 12′ west from Greenwich, is generally used. Said
hour, 6 h. slow, is frequently determined at the National Institute by
means of a solar chronometer and communicated by telephone to the In-
dustrial School, where in turn it is indicated to the public by a steam
whistle. The central telegraph office communicates it to the various sub-
offices of the Republic, whose clocks generally serve as a basis for the
time of the villages, and in this manner an approximately uniform time
is established throughout the Republic.

Italy, 1 h. fast. Adopted by royal decree of August 10, 1893. This time is
kept in all government establishments, ships of the Italian Navy in the
ports of Italy, railroads, telegraph offices, and Italian coasting steamers.
The hours are numbered from 0 to 24, beginning with midnight.

Japan. Imperial ordinance No. 51, of 1886: “The meridian that passes
through the observatory at Greenwich, England, shall be the zero (0)
meridian. Longitude shall be counted from the above meridian east and
west up to 180 degrees, the east being positive and the west negative.
From January 1, 1888, the time of the 135th degree east longitude shall
be the standard time of Japan.” This is 9 h. fast.
Imperial ordinance No. 167, of 1895: “The standard time hitherto used
in Japan shall henceforth be called central standard time. The time of
the 120th degree east longitude shall be the standard time of Formosa,
the Pescadores, the Yaeyama, and the Miyako groups, and shall be called
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western standard time. This ordinance shall take effect from the first of
January, 1896.” This is 8 h. fast.

Korea, 8 h. 30 m. fast. Central standard time of Japan is telegraphed daily
to the Imperial Japanese Post and Telegraph Office at Seoul. Before
December, 1904, this was corrected by subtracting 30 m., which nearly
represents the difference in longitude, and was then used by the railroads,
street railways, and post and telegraph offices, and most of the better
classes. Since December 1, 1904, the Japanese post-offices and railways
in Korea have begun to use central standard time of Japan. In the country
districts the people use sundials to some extent.

Luxemburg, 1 h. fast, the legal and uniform time.
Mexico, 6 h. 36 m. 26.7 s. slow. The National Astronomical Observatory

of Tacubaya regulates a clock twice a day which marks the local mean
time of the City of Mexico, and a signal is raised twice a week at noon
upon the roof of the national palace, such signal being used to regulate
the city’s public clocks. This signal, the clock at the central telegraph
office, and the public clock on the cathedral, serve as a basis for the time
used commonly by the people. The general telegraph office transmits
this time daily to all of its branch offices. Not every city in the country
uses this time, however, since a local time, very imperfectly determined,
is more commonly observed. The following railroad companies use stan-
dard City of Mexico time corrected daily by telegraph: Central, Hidalgo,
Xico and San Rafael, National and Mexican. The Central and National
railroads correct their clocks to City of Mexico time daily by means of
the noon signal sent out from the Naval Observatory at Washington (see
page 70) and by a similar signal from the observatory at St. Louis, Mis-
souri. The Nacozari, and the Cananea, Yaqui River and Pacific railroads
use Mountain time, 7 h. slow, and the Sonora railroad uses the local time
of Guaymas, 7 h. 24 m. slow.

Nicaragua, 5 h. 45 m. 10 s. slow. Managua time is issued to all public offices,
railways, telegraph offices and churches in a zone that extends from San
Juan del Sur, latitude 11◦ 15′ 44′′ N., to El Ocotal, latitude 12◦ 46′ N.,
and from El Castillo, longitude 84◦ 22′ 37′′ W., to Corinto, longitude
87◦ 12′ 31′′ W. The time of the Atlantic ports is usually obtained from
the captains of ships.

Norway, 1 h. fast. Central European time is used everywhere throughout
the country. Telegraphic time signals are sent out once a week to the
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telegraph stations throughout the country from the observatory of the
Christiania University.

Panama. Both the local mean time of Colon, 5 h. 19 m. 39 s. slow, and
eastern standard time of the United States, 5 h. slow, are used. The latter
time is cabled daily by the Central and South American Cable Company
from the Naval Observatory at Washington, and will probably soon be
adopted as standard.

Peru, 5 h. 9 m. 3 s. slow. There is no official time. The railroad from
Callao to Oroya takes its time by telegraph from the noon signal at the
naval school at Callao, which may be said to be the standard time for
Callao, Lima, and the whole of central Peru. The railroad from Mollendo
to Lake Titicaca, in southern Peru, takes its time from ships in the Bay
of Mollendo.

Portugal, 0 h. 36 m. 44.7 s. slow. Standard time is in use throughout
Portugal and is based upon the meridian of Lisbon. It is established
by the Royal Observatory in the Royal Park at Lisbon, and from there
sent by telegraph to every railway station throughout Portugal having
telegraphic communication. Clocks on railway station platforms are five
minutes behind and clocks outside of stations are true.

Russia, 2 h. 1 m. 18.6 s. fast. All telegraph stations use the time of the
Royal Observatory at Pulkowa, near St. Petersburg. At railroad stations
both local and Pulkowa time are given, from which it is to be inferred
that for all local purposes local time is used.

Salvador, 5 h. 56 m. 32 s. slow. The government has established a na-
tional observatory at San Salvador which issues time on Wednesdays and
Saturdays, at noon, to all public offices, telegraph offices, railways, etc.,
throughout the Republic.

Santo Domingo, 4 h. 39 m. 32 s. slow. Local mean time is used, but there
is no central observatory and no means of correcting the time. The time
differs from that of the naval vessels in these waters by about 30 minutes.

Servia, 1 h. fast. Central European time is used by the railroad, telegraph
companies, and people generally. Clocks are regulated by telegraph from
Budapest every day at noon.

Spain, Greenwich time. This is the official time for use in governmental
offices in Spain and the Balearic Islands, railroad and telegraph offices.
The hours are numbered from 0 to 24, beginning with midnight. In some
portions local time is still used for private matters.
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Sweden, 1 h. fast. Central European time is the standard in general use. It
is sent out every week by telegraph from the Stockholm Observatory.

Switzerland, 1 h. fast. Central European time is the only legal time. It is
sent out daily by telegraph from the Cantonal Observatory at Neuchatel.

Turkey. Two kinds of time are used, Turkish and Eastern European time,
the former for the natives and the latter for Europeans. The railroads
generally use both, the latter for the actual running of trains and Turkish
time-tables for the benefit of the natives. Standard Turkish time is used
generally by the people, sunset being the base, and twelve hours being
added for a theoretical sunrise. The official clocks are set daily so as to
read 12 o’clock at the theoretical sunrise, from tables showing the times
of sunset, but the tower clocks are set only two or three times a week.
The government telegraph lines use Turkish time throughout the empire,
and St. Sophia time, 1 h. 56 m. 53 s. fast, for telegrams sent out of the
country.

United States. Standard time based upon the meridian of Greenwich, vary-
ing by whole hours from Greenwich time, is almost universally used, and
is sent out daily by telegraph to most of the country, and to Havana
and Panama from the Naval Observatory at Washington, and to the Pa-
cific coast from the observatory at Mare Island Navy Yard, California.
For further discussions of standard time belts in the United States, see
pp. 64–67 and the U. S. standard time belt map. Insular possessions have
time as follows:
Porto Rico, 4 h. slow, Atlantic standard time.
Alaska, 9 h. slow, Alaska standard time.
Hawaiian Islands, 10 h. 30 m. slow, Hawaiian standard time.
Guam, 9 h. 30 m. fast, Guam standard time.
Philippine Islands, 8 h. fast, Philippine standard time.
Tutuila, Samoa, 11 h. 30 m. slow, Samoan standard time.

Uruguay, 3 h. 44 m. 48.9 s. slow. The time in common use is the mean time
of the meridian of the dome of the Metropolitan Church of Montevideo.
The correct time is indicated by a striking clock in the tower of that
church. An astronomical geodetic observatory, with meridian telescope
and chronometers, has now been established and will in the future furnish
the time. It is proposed to install a time ball for the benefit of navigators
at the port of Montevideo. An electric time service will be extended
throughout the country, using at first the meridian of the church and
afterwards that of the national observatory, when constructed.
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Venezuela, 4 h. 27 m. 43.6 s. The time is computed daily at the Caracas
Observatory from observations of the sun and is occasionally telegraphed
to other parts of Venezuela. The cathedral clock at Caracas is corrected
by means of these observations. Railway time is at least five minutes later
than that indicated by the cathedral clock, which is accepted as standard
by the people. Some people take time from the observatory flag, which
always falls at noon.

Latitude and Longitude of Cities

The latitude and longitude of cities in the following table was
compiled from various sources. Where possible, the exact place
is given, the abbreviation “O” standing for observatory, “C” for
cathedral, etc.

Latitude Longitude from
Greenwich

Adelaide, S. Australia,
Snapper Point. . . . . . . . . . . . . 34◦ 46′ 50′′ S 138◦ 30′ 39′′ E

Aden, Arabia, Tel. Station. . . 12◦ 46′ 40′′ N 44◦ 58′ 58′′ E
Alexandria, Egypt, Eunos Pt. 31◦ 11′ 43′′ N 29◦ 51′ 40′′ E
Amsterdam, Holland, Ch. . . . 52◦ 22′ 30′′ N 4◦ 53′ 04′′ E
Antwerp, Belgium, O. . . . . . . . 51◦ 12′ 28′′ N 4◦ 24′ 44′′ E
Apia, Samoa, Ruge’s Wharf . 13◦ 48′ 56′′ S 171◦ 44′ 56′′ W
Athens, Greece, O. . . . . . . . . . . 37◦ 58′ 21′′ N 23◦ 43′ 55′′ E
Bangkok, Siam, Old Br. Fact. 13◦ 44′ 20′′ N 100◦ 28′ 42′′ E
Barcelona, Spain, Old Mole

Light. . . . . . . . . . . . . . . . . . . . . . 41◦ 22′ 10′′ N 2◦ 10′ 55′′ E
Batavia, Java, O. . . . . . . . . . . . . 6◦ 07′ 40′′ N 106◦ 48′ 25′′ E
Bergen, Norway, C. . . . . . . . . . . 60◦ 23′ 37′′ N 5◦ 20′ 15′′ E
Berlin, Germany, O. . . . . . . . . . 52◦ 30′ 17′′ N 13◦ 23′ 44′′ E
Bombay, India, O. . . . . . . . . . . . 18◦ 53′ 45′′ N 72◦ 48′ 58′′ E
Bordeaux, France, O. . . . . . . . . 44◦ 50′ 07′′ N 00◦ 31′ 23′′ W
Brussels, Belgium, O.. . . . . . . . 50◦ 51′ 11′′ N 4◦ 22′ 18′′ E
Buenos Aires, Custom House 34◦ 36′ 30′′ S 58◦ 22′ 14′′ W
Cadiz, Spain, O. . . . . . . . . . . . . . 36◦ 27′ 40′′ N 6◦ 12′ 20′′ W
Cairo, Egypt, O. . . . . . . . . . . . . 30◦ 04′ 38′′ N 31◦ 17′ 14′′ E
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Latitude Longitude from
Greenwich

Calcutta, Ft. Wm.
Semaphore . . . . . . . . . . . . . . . . 22◦ 33′ 25′′ N 88◦ 20′ 11′′ E

Canton, China, Dutch Light . 23◦ 06′ 35′′ N 113◦ 16′ 34′′ E
Cape Horn, South Summit . . 55◦ 58′ 41′′ S 67◦ 16′ 15′′ W
Cape Town, S. Africa, O. . . . . 33◦ 56′ 03′′ S 18◦ 28′ 40′′ E
Cayenne, Fr. Guiana,

Landing . . . . . . . . . . . . . . . . . . . 4◦ 56′ 20′′ N 52◦ 20′ 25′′ W
Christiania, Norway, O. . . . . . 59◦ 54′ 44′′ N 10◦ 43′ 35′′ E
Constantinople, Turkey, C. . . 41◦ 00′ 16′′ N 28◦ 58′ 59′′ E
Copenhagen, Denmark, New

O. . . . . . . . . . . . . . . . . . . . . . . . . 55◦ 41′ 14′′ N 12◦ 34′ 47′′ E
Dublin, Ireland, O. . . . . . . . . . . 53◦ 23′ 13′′ N 6◦ 20′ 30′′ W
Edinburgh, Scotland, O. . . . . . 55◦ 57′ 23′′ N 3◦ 10′ 54′′ W
Florence, Italy, O. . . . . . . . . . . . 43◦ 46′ 04′′ N 11◦ 15′ 22′′ E
Gibraltar, Spain, Dock Flag . 36◦ 07′ 10′′ N 5◦ 21′ 17′′ W
Glasgow, Scotland, O. . . . . . . . 55◦ 52′ 43′′ N 4◦ 17′ 39′′ W
Hague, The, Holland, Ch. . . . 52◦ 04′ 40′′ N 4◦ 18′ 30′′ E
Hamburg, Germany, O. . . . . . . 53◦ 33′ 07′′ N 9◦ 58′ 25′′ E
Havana, Cuba, Morro Lt. H. . 23◦ 09′ 21′′ N 82◦ 21′ 30′′ W
Hongkong, China, C. . . . . . . . . 21◦ 16′ 52′′ N 114◦ 09′ 31′′ E
Jerusalem, Palestine, Ch. . . . . 31◦ 46′ 45′′ N 35◦ 13′ 25′′ E
Leipzig, Germany, O. . . . . . . . . 51◦ 20′ 06′′ N 12◦ 23′ 30′′ E
Lisbon, Portugal, O. (Royal) 38◦ 42′ 31′′ N 9◦ 11′ 10′′ W
Liverpool, England, O. . . . . . . 53◦ 24′ 04′′ N 3◦ 04′ 16′′ W
Madras, India, O. . . . . . . . . . . . 13◦ 04′ 06′′ N 80◦ 14′ 51′′ E
Marseilles, France, New O. . . 43◦ 18′ 22′′ N 5◦ 23′ 43′′ E
Melbourne, Victoria, O. . . . . . 37◦ 49′ 53′′ S 144◦ 58′ 32′′ E
Mexico, Mexico, O. . . . . . . . . . . 19◦ 26′ 01′′ N 99◦ 06′ 39′′ W
Montevideo, Uruguay, C. . . . . 34◦ 54′ 33′′ S 56◦ 12′ 15′′ W
Moscow, Russia, O.. . . . . . . . . . 55◦ 45′ 20′′ N 37◦ 32′ 36′′ E
Munich, Germany, O.. . . . . . . . 48◦ 08′ 45′′ N 11◦ 36′ 32′′ E
Naples, Italy, O. . . . . . . . . . . . . . 40◦ 51′ 46′′ N 14◦ 14′ 44′′ E
Panama, Cent. Am., C. . . . . . . 8◦ 57′ 06′′ N 79◦ 32′ 12′′ W
Para, Brazil, Custom H. . . . . . 1◦ 26′ 59′′ S 48◦ 30′ 01′′ W
Paris, France, O. . . . . . . . . . . . . 48◦ 50′ 11′′ N 2◦ 20′ 14′′ E
Peking, China . . . . . . . . . . . . . . . 39◦ 56′ 00′′ N 116◦ 28′ 54′′ E
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Latitude Longitude from
Greenwich

Pulkowa, Russia, O. . . . . . . . . . 59◦ 46′ 19′′ N 30◦ 19′ 40′′ E
Rio de Janeiro, Brazil, O.. . . . 22◦ 54′ 24′′ S 43◦ 10′ 21′′ W
Rome, Italy, O. . . . . . . . . . . . . . . 41◦ 53′ 54′′ N 12◦ 28′ 40′′ E
Rotterdam, Holl., Time Ball . 51◦ 54′ 30′′ N 4◦ 28′ 50′′ E
St. Petersburg, Russia, see

Pulkowa
Stockholm, Sweden, O. . . . . . . 59◦ 20′ 35′′ N 18◦ 03′ 30′′ E
Sydney, N. S. Wales, O. . . . . . 33◦ 51′ 41′′ S 151◦ 12′ 23′′ E
Tokyo, Japan, O. . . . . . . . . . . . . 35◦ 39′ 17′′ N 139◦ 44′ 30′′ E
Valparaiso, Chile, Light

House . . . . . . . . . . . . . . . . . . . . . 33◦ 01′ 30′′ S 71◦ 39′ 22′′ W

United States

Aberdeen, S. D., N. N. & I. S. 45◦ 27′ 50′′ N 98◦ 28′ 45′′ W
Albany, N. Y., New O . . . . . . . 42◦ 39′ 13′′ N 73◦ 46′ 42′′ W
Ann Arbor, Mich., O. . . . . . . . 42◦ 16′ 48′′ N 83◦ 43′ 48′′ W
Annapolis, Md., O. . . . . . . . . . . 38◦ 58′ 53′′ N 76◦ 29′ 08′′ W
Atlanta, Ga., Capitol . . . . . . . . 33◦ 45′ 19′′ N 84◦ 23′ 29′′ W
Attu Island, Alaska,

Chichagoff Harbor . . . . . . . . 52◦ 56′ 01′′ N 173◦ 12′ 24′′ E
Augusta, Me., Baptist Ch. . . . 44◦ 18′ 52′′ N 69◦ 46′ 37′′ W
Austin, Tex. . . . . . . . . . . . . . . . . . 32◦ 00′ 40′′ N 100◦ 27′ 35′′ W
Baltimore, Md., Wash. Mt. . . 39◦ 17′ 48′′ N 76◦ 36′ 59′′ W
Bangor, Me., Thomas Hill . . . 44◦ 48′ 23′′ N 68◦ 46′ 59′′ W
Beloit, Wis., College. . . . . . . . . 42◦ 30′ 13′′ N 89◦ 01′ 46′′ W
Berkeley, Cal., O.. . . . . . . . . . . . 37◦ 52′ 24′′ N 122◦ 15′ 41′′ W
Bismarck, N. D. . . . . . . . . . . . . . 46◦ 49′ 12′′ N 100◦ 45′ 08′′ W
Boise, Idaho, Ast. Pier . . . . . . 43◦ 35′ 58′′ N 116◦ 13′ 04′′ W
Boston, Mass., State House . . 42◦ 21′ 28′′ N 71◦ 03′ 50′′ W
Buffalo, N. Y. . . . . . . . . . . . . . . . 42◦ 53′ 03′′ N 78◦ 52′ 42′′ W
Charleston, S. C., Lt. House . 32◦ 41′ 44′′ N 79◦ 52′ 58′′ W
Cheyenne, Wyo., Ast. Sta. . . . 41◦ 07′ 47′′ N 104◦ 48′ 52′′ W
Chicago, Ill., O. . . . . . . . . . . . . . 41◦ 50′ 01′′ N 87◦ 36′ 36′′ W
Cincinnati, Ohio. . . . . . . . . . . . . 39◦ 08′ 19′′ N 84◦ 26′ 00′′ W
Cleveland, Ohio, Lt. H. . . . . . . 41◦ 30′ 02′′ N 81◦ 42′ 10′′ W
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Latitude Longitude from
Greenwich

Columbia, S. C. . . . . . . . . . . . . . 33◦ 59′ 12′′ N 81◦ 00′ 12′′ W
Columbus, Ohio . . . . . . . . . . . . . 39◦ 57′ 40′′ N 82◦ 59′ 40′′ W
Concord, N. H. . . . . . . . . . . . . . . 43◦ 11′ 48′′ N 71◦ 32′ 30′′ W
Deadwood, S. D., P. O. . . . . . . 44◦ 22′ 34′′ N 103◦ 43′ 19′′ W
Denver, Col., O. . . . . . . . . . . . . . 39◦ 40′ 36′′ N 104◦ 59′ 23′′ W
Des Moines, Iowa. . . . . . . . . . . . 41◦ 35′ 08′′ N 93◦ 37′ 30′′ W
Detroit, Mich. . . . . . . . . . . . . . . . 42◦ 20′ 00′′ N 83◦ 02′ 54′′ W
Duluth, Minn. . . . . . . . . . . . . . . . 46◦ 48′ 00′′ N 92◦ 06′ 10′′ W
Erie, Pa., Waterworks . . . . . . . 42◦ 07′ 53′′ N 80◦ 05′ 51′′ W
Fargo, N. D., Agri. College . . 46◦ 52′ 04′′ N 96◦ 47′ 11′′ W
Galveston, Tex., C. . . . . . . . . . . 29◦ 18′ 17′′ N 94◦ 47′ 26′′ W
Guthrie, Okla. . . . . . . . . . . . . . . . 35◦ 51′ 48′′ N 100◦ 26′ 24′′ W
Hartford, Conn. . . . . . . . . . . . . . 41◦ 45′ 59′′ N 72◦ 40′ 45′′ W
Helena, Mont. . . . . . . . . . . . . . . . 46◦ 35′ 36′′ N 111◦ 52′ 45′′ W
Honolulu, Sandwich Islands. . 21◦ 18′ 12′′ N 157◦ 51′ 34′′ W
Indianapolis, Ind.. . . . . . . . . . . . 39◦ 47′ 00′′ N 86◦ 05′ 00′′ W
Jackson, Miss. . . . . . . . . . . . . . . . 31◦ 16′ 00′′ N 91◦ 36′ 18′′ W
Jacksonville, Fla., M. E. Ch. . 30◦ 19′ 43′′ N 81◦ 39′ 14′′ W
Kansas City, Mo. . . . . . . . . . . . . 39◦ 06′ 08′′ N 94◦ 35′ 19′′ W
Key West, Fla., Light House . 24◦ 32′ 58′′ N 81◦ 48′ 04′′ W
Lansing, Mich., Capitol . . . . . . 42◦ 43′ 56′′ N 84◦ 33′ 23′′ W
Lexington, Ky., Univ.. . . . . . . . 38◦ 02′ 25′′ N 84◦ 30′ 21′′ W
Lincoln, Neb. . . . . . . . . . . . . . . . . 40◦ 55′ 00′′ N 96◦ 52′ 00′′ W
Little Rock, Ark. . . . . . . . . . . . . 34◦ 40′ 00′′ N 92◦ 12′ 00′′ W
Los Angeles, Cal., Ct. House 34◦ 03′ 05′′ N 118◦ 14′ 32′′ W
Louisville, Ky. . . . . . . . . . . . . . . . 38◦ 15′ 08′′ N 85◦ 45′ 29′′ W
Lowell, Mass. . . . . . . . . . . . . . . . . 42◦ 22′ 00′′ N 71◦ 04′ 00′′ W
Madison, Wis., O. . . . . . . . . . . . 43◦ 04′ 37′′ N 89◦ 24′ 27′′ W
Manila, Luzon, C. . . . . . . . . . . . 14◦ 35′ 31′′ N 120◦ 58′ 03′′ E
Memphis, Tenn. . . . . . . . . . . . . . 35◦ 08′ 38′′ N 90◦ 03′ 00′′ W
Milwaukee, Wis., Ct. House . 43◦ 02′ 32′′ N 87◦ 54′ 18′′ W
Minneapolis, Minn., O. . . . . . . 44◦ 58′ 38′′ N 93◦ 14′ 02′′ W
Mitchell, S. D.. . . . . . . . . . . . . . . 43◦ 49′ 00′′ N 98◦ 00′ 14′′ W
Mobile, Ala., Epis. Church . . 30◦ 41′ 26′′ N 88◦ 02′ 28′′ W
Montgomery, Ala. . . . . . . . . . . . 32◦ 22′ 46′′ N 86◦ 17′ 57′′ W
Nashville, Tenn., O. . . . . . . . . . 36◦ 08′ 54′′ N 86◦ 48′ 00′′ W
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Latitude Longitude from
Greenwich

Newark, N. J., M. E. Ch. . . . . 40◦ 44′ 06′′ N 74◦ 10′ 12′′ W
New Haven, Conn., Yale. . . . . 41◦ 18′ 28′′ N 72◦ 55′ 45′′ W
New Orleans, La., Mint. . . . . . 29◦ 57′ 46′′ N 90◦ 03′ 28′′ W
New York, N. Y., City Hall . . 40◦ 42′ 44′′ N 74◦ 00′ 24′′ W
Northfield, Minn., O. . . . . . . . . 44◦ 27′ 42′′ N 93◦ 08′ 57′′ W
Ogden, Utah, O. . . . . . . . . . . . . 41◦ 13′ 08′′ N 111◦ 59′ 45′′ W
Olympia, Wash. . . . . . . . . . . . . . 47◦ 03′ 00′′ N 122◦ 57′ 00′′ W
Omaha, Neb. . . . . . . . . . . . . . . . . 41◦ 16′ 50′′ N 95◦ 57′ 33′′ W
Pago Pago, Samoa. . . . . . . . . . . 14◦ 18′ 06′′ S 170◦ 42′ 31′′ W
Philadelphia, Pa., State

House . . . . . . . . . . . . . . . . . . . . . 39◦ 56′ 53′′ N 75◦ 09′ 03′′ W
Pierre, S. D., Capitol. . . . . . . . 44◦ 22′ 50′′ N 100◦ 20′ 26′′ W
Pittsburg, Pa. . . . . . . . . . . . . . . . 40◦ 26′ 34′′ N 80◦ 02′ 38′′ W
Point Barrow (highest

latitude in the United
States) . . . . . . . . . . . . . . . . . . . . 71◦ 27′ 00′′ N 156◦ 15′ 00′′ W

Portland, Ore. . . . . . . . . . . . . . . . 45◦ 30′ 00′′ N 122◦ 40′ 30′′ W
Princeton, N. J., O. . . . . . . . . . 40◦ 20′ 58′′ N 74◦ 39′ 24′′ W
Providence, R. I., Unit. Ch. . 41◦ 49′ 28′′ N 71◦ 24′ 20′′ W
Raleigh, N. C. . . . . . . . . . . . . . . . 35◦ 47′ 00′′ N 78◦ 40′ 00′′ W
Richmond, Va., Capitol . . . . . . 37◦ 32′ 19′′ N 77◦ 27′ 02′′ W
Rochester, N. Y., O. . . . . . . . . . 43◦ 09′ 17′′ N 77◦ 35′ 27′′ W
Sacramento, Cal. . . . . . . . . . . . . 38◦ 33′ 38′′ N 121◦ 26′ 00′′ W
St. Louis, Mo. . . . . . . . . . . . . . . . 38◦ 38′ 04′′ N 90◦ 12′ 16′′ W
St. Paul, Minn. . . . . . . . . . . . . . . 44◦ 52′ 56′′ N 93◦ 05′ 00′′ W
San Francisco, Cal.,

C. S. Sta. . . . . . . . . . . . . . . . . . 37◦ 47′ 55′′ N 122◦ 24′ 32′′ W
San Juan, Porto Rico, Morro

Light House . . . . . . . . . . . . . . . 18◦ 28′ 56′′ N 66◦ 07′ 28′′ W
Santa Fe, N. M. . . . . . . . . . . . . . 35◦ 41′ 19′′ N 105◦ 56′ 45′′ W
Savannah, Ga., Exchange . . . . 32◦ 04′ 52′′ N 81◦ 05′ 26′′ W
Seattle, Wash.,

C. S. Ast. Sta. . . . . . . . . . . . . 47◦ 35′ 54′′ N 122◦ 19′ 59′′ W
Sitka, Alaska, Parade Ground 57◦ 02′ 52′′ N 135◦ 19′ 31′′ W
Tallahassee, Fla. . . . . . . . . . . . . . 30◦ 25′ 00′′ N 84◦ 18′ 00′′ W
Trenton, N. J. Capitol . . . . . . . 40◦ 13′ 14′′ N 74◦ 46′ 13′′ W
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Latitude Longitude from
Greenwich

Virginia City, Nev. . . . . . . . . . . 39◦ 17′ 36′′ N 119◦ 39′ 06′′ W
Washington, D. C., O. . . . . . . . 38◦ 53′ 39′′ N 77◦ 03′ 06′′ W
Wheeling, W. Va. . . . . . . . . . . . 40◦ 05′ 16′′ N 80◦ 44′ 30′′ W
Wilmington, Del., Town Hall 39◦ 44′ 27′′ N 75◦ 33′ 03′′ W
Winona, Minn. . . . . . . . . . . . . . . 44◦ 04′ 00′′ N 91◦ 30′ 00′′ W



CHAPTER V

CIRCUMNAVIGATION AND TIME

Magellan’s Fleet. When the sole surviving ship of Mag-
ellan’s fleet returned to Spain in 1522 after having circumnavi-
gated the globe, it is said that the crew were greatly astonished
that their calendar and that of the Spaniards did not correspond.
They landed, according to their own reckoning, on September 6,
but were told it was September 7. At first they thought they
had made a mistake, and some time elapsed before they realized
that they had lost a day by going around the world with the
sun. Had they traveled toward the east, they would have gained
a day, and would have recorded the same date as September 8.

“My pilot is dead of scurvy: may
I ask the longitude, time and day?”
The first two given and compared;
The third,—the commandante stared!

“The first of June? I make it second,”
Said the stranger, “Then you’ve wrongly reckoned!”

—Bret Harte, in The Lost Galleon.

The explanation of this phenomenon is simple. In traveling
westward, in the same way with the sun, one’s days are length-
ened as compared with the day at any fixed place. When one
has traveled 15◦ westward, at whatever rate of speed, he finds
his watch is one hour behind the time at his starting point, if

93
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he changes it according to the sun. He has thus lost an hour
as compared with the time at his starting point. After he has
traveled 15◦ farther, he will set his watch back two hours and
thus record a loss of two hours. And so it continues throughout
the twenty-four belts of 15◦ each, losing one hour in each belt;
by the time he arrives at his starting point again, he has set his
hour hand back twenty-four hours and has lost a day.

Fig. 30

Westward Travel—Days are Lengthened. To make
this clearer, let us suppose a traveler starts from London Mon-
day noon, January 1st, traveling westward 15◦ each day. On
Tuesday, when he finds he is 15◦ west of London, he sets his
watch back an hour. It is then noon by the sun where he is.
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Fig. 31

He says, “I left Monday noon, it
is now Tuesday noon; therefore
I have been out one day.” The
tower clock at London and his
chronometer set with it, however,
indicate a different view. They
say it is Tuesday, 1 o’clock, p.m.,
and he has been out a day and
an hour. The next day the pro-
cess is repeated. The traveler
having covered another space of
15◦ westward, sets his watch back
a second hour and says, “It is
Wednesday noon and I have been
out just two days.” The London
clock, however, says Wednesday, 2
o’clock, p.m.—two days and two
hours since he left. The third day
this occurs again, the traveler los-
ing a third hour; and what to him
seems three days, Monday noon
to Thursday noon, is in reality by
London time three days and three
hours. Each of his days is really a
little more than twenty-four hours
long, for he is going with the sun.
By the time he arrives at Lon-
don again he finds what to him
was twenty-four days is, in real-
ity, twenty-five days, for he has set
his watch back an hour each day
for twenty-four days, or an entire
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day. To have his calendar correct,
he must omit a day, that is, move the date ahead one day to
make up the date lost from his reckoning. It is obvious that
this will be true whatever the rate of travel, and the day can
be omitted from his calendar anywhere in the journey and the
error corrected.

Eastward Travel—Days are Shortened. Had our trav-
eler gone eastward, when he had covered 15◦ of longitude he
would set his watch ahead one hour and then say, “It is now
Tuesday noon. I have been out one day.” The London clock
would indicate 11 o’clock, a.m., of Tuesday, and thus say his
day had but twenty-three hours in it, the traveler having moved
the hour hand ahead one space. He has gained one hour. The
second day he would gain another hour, and by the time he ar-
rived at London again, he would have set his hour hand ahead
twenty-four hours or one full day. To correct his calendar, some-
where on his voyage he would have to repeat a day.

The International Date Line. It is obvious from the
foregoing explanation that somewhere and sometime in circum-
navigation, a day must be omitted in traveling westward and a
day repeated in traveling eastward. Where and when the change
is made is a mere matter of convenience. The theoretical loca-
tion of the date line commonly used is the 180th meridian. This
line where a traveler’s calendar needs changing varies as do the
boundaries of the standard time belts and for the same reason.
While the change could be made at any particular point on a
parallel, it would make a serious inconvenience were the change
made in some places. Imagine, for example, the 90th meridian,
west of Greenwich, to be the line used. When it was Sunday in
Chicago, New York, and other eastern points, it would be Mon-
day in St. Paul, Kansas City, and western points. A traveler
leaving Minneapolis on Sunday night would arrive in Chicago
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on Sunday morning and thus have two Sundays on successive
days. Our national holidays and elections would then occur on
different days in different parts of the country. To reduce to
the minimum such inconveniences as necessarily attend chang-
ing one’s calendar, the change is made where there is a relatively
small amount of travel, away out in the Pacific Ocean. Going
westward across this line one must set his calendar ahead a day;
going eastward, back a day.

As shown in Figures 31 and 32, this line begins on the 180th
meridian far to the north, sweeps to the eastward around Cape
Deshnef, Russia, then westward beyond the 180th meridian
seven degrees that the Aleutian islands may be to the east of it
and have the same day as continental United States; then the
line extends to the 180th meridian which it follows southward,
sweeping somewhat eastward to give the Fiji and Chatham is-
lands the same day as Australia and New Zealand. The following
is a letter, by C. B. T. Moore, commander, U. S. N., Governor
of Tutuila, relative to the accuracy of the map in this book:

Pago-Pago, Samoa, December 1, 1906.
Dear Sir:—The map of your Mathematical Geography is correct in

placing Samoa to the east of the international date line. The older ge-
ographies were also right in placing these islands west of the international
date line, because they used to keep the same date as Australia and New
Zealand, which are west of the international date line.

The reason for this mistake is that when the London Missionary Society
sent its missionaries to Samoa they were not acquainted with the trick of
changing the date at the 180th meridian, and so carried into Samoa, which
was east of the date line, the date they brought with them, which was, of
course, one day ahead.

This false date was in force at the time of my first visit to Samoa, in
1889. While I have no record to show when the date was corrected, I believe
that it was corrected at the time of the annexation of the Samoan Islands
by the United States and by Germany. The date in Samoa is, therefore,
the same date as in the United States, and is one day behind what it is in
Australia and New Zealand;
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Example: To-day is the 2d day of December in Auckland, and the
1st day of December in Tutuila.

Very respectfully, C. B. T. Moore,
Commander, U. S. Navy,

Governor.

Mr. Willis E. Johnson,
Vice President Northern Normal and Industrial School,

Aberdeen, South Dakota.

“It is fortunate that the 180th meridian falls where it does.
From Siberia to the Antarctic continent this imaginary line tra-
verses nothing but water. The only land which it passes at all
near is one of the archipelagoes of the south Pacific; and there it
divides but a handful of volcanoes and coral reefs from the main
group. These islands are even more unimportant to the world
than insignificant in size. Those who tenant them are few, and
those who are bound to these few still fewer. . . . There, though
time flows ceaselessly on, occurs that unnatural yet unavoidable
jump of twenty-four hours; and no one is there to be startled by
the fact,—no one to be perplexed in trying to reconcile the two
incongruities, continuous time and discontinuous day. There is
nothing but the ocean, and that is tenantless. . . . Most fortu-
nate was it, indeed, that opposite the spot where man was most
destined to think there should have been placed so little to think
about.”∗

Where Days Begin. When it is 11:30 o’clock, p.m., on
Saturday at Denver, it is 1:30 o’clock, a.m., Sunday, at New
York, It is thus evident that parts of two days exist at the same
time on the earth. Were one to travel around the earth with
the sun and as rapidly it would be perpetually noon. When he
has gone around once, one day has passed. Where did that day
begin? Or, suppose we wished to be the first on earth to hail the

∗From Chosön, by Percival Lowell.
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new year, where could we go to do so? The midnight line, just
opposite the sun, is constantly bringing a new day somewhere.
Midnight ushers in the new year at Chicago. Previous to this
it was begun at New York. Still east of this, New Year’s Day
began some time before. If we keep going around eastward we
must surely come to some place where New Year’s Day was first
counted, or we shall get entirely around to New York and find
that the New Year’s Day began the day before, and this midnight
would commence it again. As previously stated, the date line
commonly accepted nearly coincides with the 180th meridian.
Here it is that New Year’s Day first dawns and each new day
begins.

The Total Duration of a Day. While a day at any par-
ticular place is twenty-four hours long, each day lasts on earth
at least forty-eight hours. Any given day, say Christmas, is first
counted as that day just west of the date line. An hour later
Christmas begins 15◦ west of that line, two hours later it be-
gins 30◦ west of it, and so on around the globe. The people just
west of the date line who first hailed Christmas have enjoyed
twelve hours of it when it begins in England, eighteen hours of
it when it begins in central United States, and twenty-four hours
of it, or the whole day, when it begins in western Alaska, just
east of the date line. Christmas, then, has existed twenty-four
hours on the globe, but having just begun in western Alaska,
it will tarry twenty-four hours longer among mankind, making
forty-eight hours that the day blesses the earth.

If the date line followed the meridian 180◦ without any vari-
ation, the total duration of a day would be exactly forty-eight
hours as just explained. But that line is quite irregular, as pre-
viously described and as shown on the map. Because of this
irregularity of the date line the same day lasts somewhere on
earth over forty-nine hours. Suppose we start at Cape Desh-
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nef, Siberia, longitude 169◦ West, a moment after midnight of
the 3d of July. The 4th of July has begun, and, as midnight
sweeps around westward, successive places see the beginning of
this day. When it is the 4th in London it has been the 4th at
Cape Deshnef twelve hours and forty-four minutes. When the
glorious day arrives at New York, it has been seventeen hours
and forty-four minutes since it began at Cape Deshnef. When
it reaches our most western point on this continent, Attu Is-
land, 173◦ E., it has been twenty-five hours and twelve minutes
since it began at Cape Deshnef. Since it will last twenty-four
hours at Attu Island, forty-nine hours and twelve minutes will
have elapsed since the beginning of the day until the moment
when all places on earth cease to count it that day.

Fig. 32
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When Three Days Coëxist. Portions of three days exist
at the same time between 11:30 o’clock, a.m., and 12:30 o’clock,
p.m., London time. When it is Monday noon at London, Tues-
day has begun at Cape Deshnef, but Monday morning has not
yet dawned at Attu Island; nearly half an hour of Sunday still
remains there.

Confusion of Travelers. Many stories are told of the
confusion to travelers who pass from places reckoning one day
across this line, to places having a different day. “If it is such
a deadly sin to work on Sunday, one or the other of Mr. A and
Mr. B coming one from the east, the other from the west of
the 180th meridian, must, if he continues his daily vocations, be
in a bad way. Some of our people in the Fiji are in this unen-
viable position, as the line 180◦ passes through Loma-Loma. I
went from Fiji to Tonga in Her Majesty’s ship Nymph and ar-
rived at our destination on Sunday, according to our reckoning
from Fiji, but on Saturday, according to the proper computation
west from Greenwich. We, however, found the natives all keep-
ing Sunday. On my asking the missionaries about it they told
me that the missionaries to that group and Samoa having come
from the westward, had determined to observe their Sabbath
day, as usual, so as not to subject the natives to any puzzle, and
agreed to put the dividing line farther off, between them and
Hawaii, somewhere in the broad ocean where no metaphysical
natives or ‘intelligent’ Zulus could cross-question them.”∗

“A party of missionaries bound from China, sailing west, and
nearing the line without their knowledge, on Saturday posted a
notice in the cabin announcing that ‘To-morrow being Sunday
there will be services in this cabin at 10 a.m.’ The following
morning at 9, the captain tacked up a notice declaring that

∗Mr. E. L. Layard, at the British Consulate, Noumea, New Caledonia,
as quoted in a pamphlet on the International Date Line by Henry Collins.
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‘This being Monday there will be no services in this cabin this
morning.’”

It should be remembered that this line, called “inter-
national,” has not been adopted by all nations as a hard and
fast line, making it absolutely necessary to change the date the
moment it is crossed. A ship sailing, say, from Honolulu, which
has the same day as North America and Europe, to Manila or
Hongkong, having a day later, may make the change in date at
any time between these distant points; and since several days
elapse in the passage, the change is usually made so as to have
neither two Sundays in one week nor a week without a Sunday.
Just as the traveler in the United States going from a place hav-
ing one time standard to a place having a different one would
find it necessary to change his watch but could make the change
at any time, so one passing from a place having one day to one
reckoning another, could suit his convenience as to the precise
spot where he make the change. This statement needs only the
modification that as all events on a ship must be regulated by a
common timepiece, changed according to longitude, so the com-
munity on board in order to adjust to a common calendar must
accept the change when made by the captain.

Origin and Change of Date Line. The origin of this
line is of considerable interest. The day adopted in any region
depended upon the direction from which the people came who
settled the country. For example, people who went to Australia,
Hongkong, and other English possessions in the Orient traveled
around Africa or across the Mediterranean. They thus set their
watches ahead an hour for every 15◦. “For two centuries after the
Spanish settlement the trade of Manila with the western world
was carried on via Acapulco and Mexico” (Ency. Brit.). Thus
the time which obtained in the Philippines was found by setting
watches backwards an hour for every 15◦, and so it came about
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that the calendar of the Philippines was a day earlier than that
of Australia, Hongkong, etc. The date line at that time was very
indefinite and irregular. In 1845 by a decree of the Bishop of
Manila, who was also Governor-General, Tuesday, December 31,
was stricken from the calendar; the day after Monday, Decem-
ber 30, was Wednesday, January 1, 1846. This cutting the year
to 364 days and the week to 6 days gave the Philippines the
same day as other Asiatic places, and shifted the date line to
the east of that archipelago. Had this change never been made,
all of the possessions of the United States would have the same
day.

For some time after the acquisition of Alaska the people liv-
ing there, formerly citizens of Russia, used the day later than
ours, and also used the Russian or Julian calendar, twelve days
later than ours. As people moved there from the United States,
our system gradually was extended, but for a time both sys-
tems were in vogue. This made affairs confusing, some keeping
Sunday when others reckoned the same day as Saturday and
counted it as twelve days later in the calendar, New Year’s Day,
Christmas, etc., coming at different times. Soon, however, the
American system prevailed to the entire exclusion of the Rus-
sian, the inhabitants repeating a day, and thus having eight days
in one week. While the Russians in their churches in Alaska
are celebrating the Holy Mass on our Sunday, their brethren in
Siberia, not far away, and in other parts of Russia, are busy with
Monday’s duties.

Date Line East of Fiji Islands. Fiji, No XIV, 1879: An ordinance
enacted by the governor of the colony of Fiji, with the advice and consent
of the legislative council thereof, to provide for a universal day throughout
the colony.

Whereas, according to the ordinary rule of noting time, any given time
would in that part of the colony lying to the east of the meridian of 180◦

from Greenwich be noted as of a day of the week and month different from



CIRCUMNAVIGATION AND TIME 104

the day by which the same time would be noted in the part of the colony
lying to the west of such meridian; and

Whereas, by custom the ordinary rule has been set aside and time has
been noted throughout the colony as though the whole were situated to the
west of such meridian; and

Whereas, in order to preclude uncertainty for the future it is expedient
that the above custom should be legalized; therefore

Be it enacted by the governor, with the advice and consent of the
legislative council, as follows:

Time in this colony shall be noted as if the whole colony were situated
to the west of the meridian of 180◦ from Greenwich.

(Exempli gratia—To-day, which according to the ordinary rule for not-
ing time is on the island of Ovalau the 5th day of June, and on the island
of Vanua-Balevu the 4th day of June, would by this ordinance be deemed
as the 5th day of June, 1879, in the whole colony.)

Problem. Assuming it was 5 a.m., Sunday, May 1, 1898, when the
naval battle of Manila began, what time was it in Milwaukee, the city using
standard time and Dewey using the local time of 120◦ east?



CHAPTER VI

THE EARTH’S REVOLUTION

Proofs of Revolution

For at least 2400 years the theory of the revolution of the
earth around the sun has been advocated, but only in modern
times has the fact been demonstrated beyond successful contra-
diction. The proofs rest upon three sets of astronomical obser-
vations, all of which are of a delicate and abstruse character,
although the underlying principles are easily understood.

Aberration of Light. When rain is falling on a calm day
the drops will strike the top of one’s head if he is standing still
in the rain; but if one moves, the direction of the drops will
seem to have changed, striking one in the face more and more
as the speed is increased (Fig. 33). Now light rays from the
sun, a star, or other heavenly body, strike the earth somewhat
slantingly, because the earth is moving around the sun at the
rate of over a thousand miles per minute. Because of this fact
the astronomer must tip his telescope slightly to the east of a
star in order to see it when the earth is in one side of its orbit,
and to the west of it when in the opposite side of the orbit.
The necessity of this tipping of the telescope will be apparent
if we imagine the rays passing through the telescope are like
raindrops falling through a tube. If the tube is carried forward
swiftly enough the drops will strike the sides of the tube, and in
order that they may pass directly through it, the tube must be

105
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tilted forward somewhat, the amount varying with (a) the rate
of its onward motion, and (b) the rate at which the raindrops
are falling.

Since the telescope must at one time be tilted one way to
see a star and at another season tilted an equal amount in the
opposite direction, each star thus seems to move about in a tiny
orbit, varying from a circle to a straight line, depending upon
the position of the star, but in every case the major axis is 41′′,
or twice the greatest angle at which the telescope must be tilted
forward.

Fig. 33

Each of the millions of stars has its own apparent aberra-
tional orbit, no two being exactly alike in form, unless the two
chance to be exactly the same distance from the plane of the
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earth’s orbit. Assuming that the earth revolves around the sun,
the precise form of this aberrational orbit of any star can be
calculated, and observation invariably confirms the calculation.
Rational minds cannot conceive that the millions of stars, at
varying distances, can all actually have these peculiar annual
motions, six months toward the earth and six months from it,
in addition to the other motions which many of them (and prob-
ably all of them, see p. 265) have. The discovery and explanation
of these facts in 1727 by James Bradley (see p. 277), the En-
glish Astronomer Royal, forever put at rest all disputes as to the
revolution of the earth.

Motion in the Line of Sight. If you have stood near
by when a swiftly moving train passed with its bell ringing,
you may have noticed a sudden change in the tone of the bell; it
rings a lower note immediately upon passing. The pitch of a note
depends upon the rate at which the sound waves strike the ear;
the more rapid they are, the higher is the pitch. Imagine a boy
throwing chips∗ into a river at a uniform rate while walking down
stream toward a bridge and then while walking upstream away
from the bridge. The chips will be closer together as they pass
under the bridge when the boy is walking toward it than when
he is walking away from it. In a similar way the sound waves
from the bell of the rapidly approaching locomotive accumulate
upon the ear of the listener, and the pitch is higher than it
would be if the train were stationary, and after the train passes
the sound waves will be farther apart, as observed by the same
person, who will hear a lower note in consequence.

Color varies with Rate of Vibration. Now in a precisely
similar manner the colors in a ray of light vary in the rate of

∗This illustration is adapted from Todd’s New Astronomy, p. 432.
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vibration. The violet is the most rapid,∗ indigo about one tenth
part slower, blue slightly slower still, then green, yellow, orange,
and red. The spectroscope is an astronomical instrument which
spreads out the line of light from a celestial body into a band
and breaks it up into its several colors. If a ringing bell rapidly
approaches us, or if we approach it, the tone of the bell sounds
higher than if it recedes from us or if we recede from it. If we
rapidly approach a star, or a star approaches us, its color shifts
toward the violet end of the spectroscope; and if we rapidly
recede from it, or it recedes from us, its color shifts toward
the red end. Now year after year the thousands of stars in
the vicinity of the plane of the earth’s pathway show in the
spectroscope this change toward violet at one season and toward
red at the opposite season. The farther from the plane of the
earth’s orbit a star is located, the less is this annual change in
color, since the earth neither approaches nor recedes from stars
toward the poles. Either the stars near the plane of the earth’s
orbit move rapidly toward the earth at one season, gradually
stop, and six months later as rapidly recede, and stars away from
this plane approach and recede at rates diminishing exactly in
proportion to their distance from this plane, or the earth itself
swiftly moves about the sun.

∗The rate of vibration per second for each of the colors in a ray of light
is as follows:

Violet . . . . . . . . 756.0× 1012 Yellow . . . . . . . . 508.8× 1012

Indigo . . . . . . . . 698.8× 1012 Orange . . . . . . . 457.1× 1012

Blue . . . . . . . . . . 617.1× 1012 Red . . . . . . . . . . 393.6× 1012

Green . . . . . . . . 569.2× 1012

Thus the violet color has 756.0 millions of millions of vibrations each second;
indigo, 698.8 millions of millions, etc.
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Proof of the Rotation of the Earth. The same set of facts
and reasoning applies to the rotation of the earth. In the evening
a star in the east shows a color approaching the violet side of
the spectroscope, and this gradually shifts toward the red during
the night as the star is seen higher in the sky, then nearly over-
head, then in the west. Now either the star swiftly approaches
the earth early in the evening, then gradually pauses, and at
midnight begins to go away from the earth faster and faster as
it approaches the western horizon, or the earth rotates on its
axis, toward a star seen in the east, neither toward nor from
it when nearly overhead, and away from it when seen near the
west. Since the same star rises at different hours throughout the
year it would have to fly back and forth toward and from the
earth, two trips every day, varying its periods according to the
time of its rising and setting. Besides this, when a star is rising
at Calcutta it shows the violet tendency to observers there (Cal-
cutta is rotating toward the star when the star is rising), and
at the same moment the same star is setting at New Orleans
and thus shows a shift toward the red to observers there. Now
the distant star cannot possibly be actually rapidly approaching
Calcutta and at the same time be as rapidly receding from New
Orleans. The spectroscope, that wonderful instrument which
has multiplied astronomical knowledge during the last half cen-
tury, demonstrates, with mathematical certainty, the rotation of
the earth, and multiplies millionfold the certainty of the earth’s
revolution.

Actual Motions of Stars. Before leaving this topic we should
notice that other changes in the colors of stars show that some
are actually approaching the earth at a uniform rate, and some
are receding from it. Careful observations at long intervals show
other changes in the positions of stars. The latter motion of a
star is called its proper motion to distinguish it from the appar-
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ent motion it has in common with other stars due to the motions
of the earth. The spectroscope also assists in the demonstration
that the sun with the earth and the rest of the planets and their
attendant satellites is moving rapidly toward the constellation
Hercules.

Elements of Orbit Determined by the Spectroscope. As an
instance of the use of the spectroscope in determining motions
of celestial bodies, we may cite the recent calculations of Pro-
fessor Küstner, Director of the Bonn Observatory. Extending
from June 24, 1904, to January 15, 1905, he made careful ob-
servations and photographs of the spectrographic lines shown
by Arcturus. He then made calculations based upon a micro-
scopic examination of the photographic plates, and was able to
determine (a) the size of the earth’s orbit, (b) its form, (c) the
rate of the earth’s motion, and (d) the rate at which the solar
system and Arcturus are approaching each other (10, 849 miles
per hour, though not in a direct line).

The Parallax of Stars. Since the days of Copernicus
(1473–1543) the theory of the revolution of the earth around
the sun has been very generally accepted. Tycho Brahe (1546–
1601), however, and some other astronomers, rejected this the-
ory because they argued that if the earth had a motion across
the great distance claimed for its orbit, stars would change their
positions in relation to the earth, and they could detect no such
change. Little did they realize the tremendous distances of the
stars. It was not until 1838 that an astronomer succeeded in get-
ting the orbital or heliocentric parallax of a star. The German
astronomer Bessel then discovered that the faint star 61 Cygni
is annually displaced to the extent of 0.4′′. Since then about
forty stars have been found to have measurable parallaxes, thus
multiplying the proofs of the motion of the earth around the
sun.
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Fig. 34

Displacement of a Star Varies
with its Distance. Figure 34
shows that the amount of the dis-
placement of a star in the back-
ground of the heavens owing to
a change in the position of the
earth, varies with the distance of
the star. The nearer the star, the
greater the displacement; in ev-
ery instance, however, this appar-
ent shifting of a star is exceed-
ingly minute, owing to the great
distance (see pp. 44, 247) of the
very nearest of the stars.

Since students often confuse
the apparent orbit of a star de-
scribed under aberration of light
with that due to the parallax, we

may make the following comparisons:

Aberrational Orbit Parallactic Orbit

1. The earth’s rapid motion
causes the rays of light to slant (ap-
parently) into the telescope so that,
as the earth changes its direction
in going around the sun, the star
seems to shift slightly about.

1. As the earth moves about
in its orbit the stars seem to move
about upon the background of the
celestial sphere.

2. This orbit has the same max-
imum width for all stars, however
near or distant.

2. This orbit varies in width
with the distance of the star; the
nearer the star, the greater the
width.
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Effects of Earth’s Revolution

Winter Constellations Invisible in Summer. You have
doubtless observed that some constellations which are visible
on a winter’s night cannot be seen on a summer’s night. In
January, the beautiful constellation Orion may be seen early in
the evening and the whole night through; in July, not at all.
That this is due to the revolution of the earth around the sun
may readily be made apparent. In the daytime we cannot easily
see the stars around the sun, because of its great light and the
peculiar properties of the atmosphere; six months from now the
earth will have moved halfway around the sun, and we shall be
between the sun and the stars he now hides from view, and at
night the stars now invisible will be visible.

Fig. 35

If you have made a record of the observations suggested in
Chapter I, you will now find that Exhibit I (Fig. 35), shows
that the Big Dipper and other star groups have slightly changed
their relative positions for the same time of night, making a little
more than one complete rotation during each twenty-four hours.
In other words, the stars have been gaining a little on the sun
in the apparent daily swing of the celestial sphere around the
earth.
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Fig. 36

The reasons for this may be understood from a careful study
of Figure 36. The outer circle, which should be indefinitely
great, represents the celestial sphere; the inner ellipse, the path
of the earth around the sun. Now the sun does not seem to be,
as it really is, relatively near the earth, but is projected into the
celestial sphere among the stars. When the earth is at point A
the sun is seen among the stars at a; when the earth has moved
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to B the sun seems to have moved to b, and so on throughout
the annual orbit. The sun, therefore, seems to creep around the
celestial sphere among the stars at the same rate and in the same
direction as the earth moves in its orbit. If you walk around a
room with someone standing in the center, you will see that
his image may be projected upon the wall opposite, and as you
walk around, his image on the wall will move around in the same
direction. Thus the sun seems to move in the celestial sphere
in the same direction and at the same rate as the earth moves
around the sun.

Two Apparent Motions of the Sun: Daily Westward,
Annual Eastward. The sun, then, has two apparent mo-
tions,—a daily swing around the earth with the celestial sphere,
and this annual motion in the celestial sphere among the stars.
The first motion is in a direction opposite to that of the earth’s
rotation and is from east to west, the second is in the same di-
rection as the earth’s revolution and is from west to east. If
this is not readily seen from the foregoing statements and the
diagram, think again of the rotation of the earth making an ap-
parent rotation of the celestial sphere in the opposite direction,
the reasons why the sun and moon seem to rise in the east and
set in the west; then think of the motion of the earth around the
sun by which the sun is projected among certain stars and then
among other stars, seeming to creep among them from west to
east.

After seeing this clearly, think of yourself as facing the rising
sun and a star which is also rising. Now imagine the earth to
have rotated once, a day to have elapsed, and the earth to have
gone a day’s journey in its orbit in the direction corresponding
to upward. The sun would not then be on the horizon, but,
the earth having moved “upward,” it would be somewhat below
the horizon. The same star, however, would be on the horizon,
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for the earth does not change its position in relation to the
stars. After another rotation the earth would be, relative to the
stars viewed in that direction, higher up in its orbit and the sun
farther below the horizon when the star was just rising. In three
months when the star rose the sun would be nearly beneath
one’s feet, or it would be midnight; in six months we should
be on the other side of the sun, and it would be setting when
the star was rising; in nine months the earth would have covered
the “downward” quadrant of its journey around the sun, and the
star would rise at noon; twelve months later the sun and star
would rise together again. If the sun and a star set together one
evening, on the next evening the star would set a little before
the sun, the next night earlier still.

Since the sun passes around its orbit, 360◦, in a year, 365
days, it passes over a space of nearly one degree each day. The
diameter of the sun as seen from the earth covers about half a
degree of the celestial sphere. During one rotation of the earth,
then, the sun creeps eastward among the stars about twice its
own width. A star rising with the sun will gain on the sun
nearly 1

360
of a day during each rotation, or a little less than

four minutes. The sun sets nearly four minutes later than the
star with which it set the day before.

Sidereal Day. Solar Day. The time from star-rise to
star-rise, or an exact rotation of the earth, is called a sidereal
day. Its exact length is 23 h. 56 m. 4.09 s. The time between
two successive passages of the sun over a given meridian, or from
noon by the sun until the next noon by the sun, is called a solar
day.∗ Its length varies somewhat, for reasons to be explained

∗A solar day is sometimes defined as the interval from sunrise to sunrise
again. This is true only at the equator. The length of the solar day corre-
sponding to February 12, May 15, July 27, or November 3, is almost exactly
twenty-four hours. The time intervening between sunrise and sunrise again
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later, but averages twenty-four hours. When we say “day,” if
it is not otherwise qualified, we usually mean an average solar
day divided into twenty-four hours, from midnight to midnight.
The term “hour,” too, when not otherwise qualified, refers to
one twenty-fourth of a mean solar day.

Fig. 37

Causes of Apparent Motions of the Sun. The apparent
motions of the sun are due to the real motions of the earth. If
the earth moved slowly around the sun, the sun would appear
to move slowly among the stars. Just as we know the direction
and rate of the earth’s rotation by observing the direction and
rate of the apparent rotation of the celestial sphere, we know
the direction and rate of the earth’s revolution by observing the
direction and rate of the sun’s apparent annual motion.

The Ecliptic. The path which the center of the sun seems
to trace around the celestial sphere in its annual orbit is called

varies greatly with the latitude and season. On the dates named a solar
day at the pole is twenty-four hours long, as it is everywhere else on earth.
The time from sunrise to sunrise again, however, is almost six months at
either pole.
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Fig. 38. Celestial sphere, showing zodiac

the ecliptic.∗ The line traced by the center of the earth in its
revolution about the sun is its orbit. Since the sun’s apparent
annual revolution around the sky is due to the earth’s actual
motion about the sun, the path of the sun, the ecliptic, must
lie in the same plane with the earth’s orbit. The earth’s equa-
tor and parallels, if extended, would coincide with the celestial
equator and parallels; similarly, the earth’s orbit, if expanded in
the same plane, would coincide with the ecliptic. We often use

∗So called because eclipses can occur only when the moon crosses the
plane of the ecliptic.
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interchangeably the expressions “plane of the earth’s orbit” and
“plane of the ecliptic.”

The Zodiac. The orbits of the different planets and of
the moon are inclined somewhat to the plane of the ecliptic,
but, excepting some of the minor planets, not more than eight
degrees. The moon and principal planets, therefore, are never
more than eight degrees from the pathway of the sun. This belt
sixteen degrees wide, with the ecliptic as the center, is called
the zodiac (more fully discussed in the Appendix, p. 291). Since
the sun appears to pass around the center of the zodiac once
each year, the ancients, who observed these facts, divided it into
twelve parts, one for each month, naming each part from some
constellation in it. It is probably more nearly correct historically,
to say that these twelve constellations got their names originally
from the position of the sun in the zodiac. Libra, the Balance,
probably got its name from the fact that in ancient days the sun
was among the group of stars thus named about September 23,
when the days and nights are equal, thus balancing. In some
such way these parts came to be called the “twelve signs of the
zodiac,” one for each month.

The facts in this chapter concerning the apparent annual
motion of the sun were well known to the ancients, possibly
even more generally than they are to-day. The reason for this
is because there were few calendars and almanacs in the earlier
days of mankind, and people had to reckon their days by noting
the position of the sun. Thus, instead of saying that the date
of his famous journey to Canterbury was about the middle of
April, Chaucer says it was

When Zephirus eek with his sweete breeth
Enspired hath in every holt and heath
The tendre croppes, and the younge sonne
Hath in the Ram his halfe course yronne.

Even if clothed in modern English such a description would
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be unintelligible to a large proportion of the students of to-day,
and would need some such translation as the following.

“When the west wind of spring with its sweet breath hath
inspired or given new life in every field and heath to the tender
crops, and the young sun (young because it had got only half way
through the sign Aries, the Ram, which marked the beginning of
the new year in Chaucer’s day) hath run half his course through
the sign the Ram.”

Obliquity of the Ecliptic. The orbit of the earth is not
at right angles to the axis. If it were, the ecliptic would coincide
with the celestial equator. The plane of the ecliptic and the
plane of the celestial equator form an angle of nearly∗ 231

2
◦.

This is called the obliquity of the ecliptic. We sometimes
speak of this as the inclination of the earth’s axis from a per-
pendicular to the plane of its orbit.

Fig. 39

Since the plane of the ecliptic
forms an angle of 231

2
◦ with the

plane of the equator, the sun in
its apparent annual course around
in the ecliptic crosses the celes-
tial equator twice each year, and
at one season gets 231

2
◦ north of

it, and at the opposite season
231

2
◦ south of it. The sun thus

never gets nearer the pole of the
celestial sphere than 661

2
◦. On

∗The exact amount varies slightly from year to year. The following
table is taken from the Nautical Almanac, Newcomb’s Calculations:

1903 . . . . . . . . . . . . . . . . 23◦ 27′ 6.86′′ 1906 . . . . . . . . . . . . . . . . 23◦ 27′ 5.45′′

1904 . . . . . . . . . . . . . . . . 23◦ 27′ 6.39′′ 1907 . . . . . . . . . . . . . . . . 23◦ 27′ 4.98′′

1905 . . . . . . . . . . . . . . . . 23◦ 27′ 5.92′′ 1908 . . . . . . . . . . . . . . . . 23◦ 27′ 4.51′′



THE EARTH’S REVOLUTION 120

March 21 and September 23 the
sun is on the celestial equator. On
June 21 and December 22 the sun is 231

2
◦ from the celestial equa-

tor.
Earth’s Orbit. We have learned that the earth’s orbit is

an ellipse, and the sun is at a focus of it. While the eccentricity
is not great, and when reduced in scale the orbit does not differ
materially from a circle, the difference is sufficient to make an
appreciable difference in the rate of the earth’s motion in differ-
ent parts of its orbit. Figure 113, p. 284, represents the orbit of
the earth, greatly exaggerating the ellipticity. The point in the
orbit nearest the sun is called perihelion (from peri, around or
near, and helios, the sun). This point is about 911

2
million miles

from the sun, and the earth reaches it about December 31st.
The point in the earth’s orbit farthest from the sun is called
aphelion (from a, away from, and helios, sun). Its distance is
about 941

2
million miles, and the earth reaches it about July 1st.

Varying Speed of the Earth. According to the law of
gravitation, the earth moves faster in its orbit when near perihe-
lion, and slower when near aphelion. In December and January
the earth moves fastest in its orbit, and during that period the
sun moves fastest in the ecliptic and falls farther behind the
stars in their rotation in the celestial sphere. Solar days are
thus longer then than they are in midsummer when the earth
moves more slowly in its orbit and more nearly keeps up with
the stars.

Imagine the sun and a star are rising together January 1st.
After one exact rotation of the earth, a sidereal day, the star
will be rising again, but since the earth has moved rapidly in
its course around the sun, the sun is somewhat farther behind
the star than it would be in summer when the earth moved
more slowly around the sun. At star-rise January 3d, the sun



THE EARTH’S REVOLUTION 121

is behind still farther, and in the course of a few weeks the sun
will be several minutes behind the point where it would be if the
earth’s orbital motion were uniform. The sun is then said to be
slow of the average sun. In July the sun creeps back less rapidly
in the ecliptic, and thus a solar day is more nearly the same
length as a sidereal day, and hence shorter than the average.

Fig. 40

Another factor modifies
the foregoing statements.
The daily courses of the
stars swinging around with
the celestial sphere are par-
allel and are at right an-
gles to the axis. The sun in
its annual path creeps diag-
onally across their courses.
When farthest from the ce-

lestial equator, in June and in December, the sun’s movement in
the ecliptic is nearly parallel to the courses of the stars (Fig. 40);
as it gets nearer the celestial equator, in March and in Septem-
ber, the course is more oblique. Hence in the latter part of June
and of December, the sun, creeping back in the ecliptic, falls
farther behind the stars and becomes slower than the average.
In the latter part of March and of September the sun creeps in
a more diagonal course and hence does not fall so far behind the
stars in going the same distance, and thus becomes faster than
the average (Fig. 41).

Fig. 41

Some solar days being
longer than others, and the
sun being sometimes slow
and sometimes fast, to-
gether with standard time
adoptions whereby most
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places have their watches
set by mean solar time at
some given meridian, make
it unsafe to set one’s watch

by the sun without making many corrections.
The shortest day in the northern hemisphere is about De-

cember 22d; about that time the sun is neither fast nor slow,
but it then begins to get slow. So as the days get longer the
sun does not rise any earlier until about the second week of Jan-
uary. After Christmas one may notice the later and later time
of sunsets. In schools in the northern states beginning work at
8 o’clock in the morning, it is noticed that the mornings are
actually darker for a while after the Christmas holidays than
before, though the shortest day of the year has passed.

Sidereal Day Shorter than Solar Day. If one wanted to
set his watch by the stars, he would be obliged to remember that
sidereal days are shorter than solar days; if the star observed is in
a certain position at a given time of night, it will be there nearly
four minutes earlier the next evening. The Greek dramatist
Euripides (480–407 b.c.), in his tragedy “Rhesus,” makes the
Chorus say:

Whose is the guard? Who takes my turn? The first signs are setting,
and the seven Pleiades are in the sky, and the Eagle glides midway through
the sky. Awake! See ye not the brilliancy of the moon? Morn, morn, indeed
is approaching, and hither is one of the forewarning stars.

SUMMARY

Note carefully these propositions:

1. The earth’s orbit is an ellipse.
2. The earth’s orbital direction is the same as the direction of its axial

motion.
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3. The rate of the earth’s rotation is uniform, hence sidereal days are of
equal length.

4. The orbit of the earth is in nearly the same plane as that of the equator.
5. The earth’s revolution around the sun makes the sun seem to creep

backward among the stars from west to east, falling behind them
about a degree a day. The stars seem to swing around the earth,
daily gaining about four minutes upon the sun.

6. The rate of the earth’s orbital motion determines the rate of the sun’s
apparent annual backward motion among the stars.

7. The rate of the earth’s orbital motion varies, being fastest when the
earth is nearest the sun or in perihelion, and slowest when farthest
from the sun or in aphelion.

8. The sun’s apparent annual motion, backward or eastward among the
stars, is greater when in or near perihelion (December 31) than at
any other time.

9. The length of solar days varies, averaging 24 hours in length. There are
two reasons for this variation.

a. Because the earth’s orbital motion is not uniform, it being faster when
nearer the sun, and slower when farther from it.

b. Because when near the equinoxes the apparent annual motion of the
sun in the celestial sphere is more diagonal than when near the
tropics.

10. Because of these two sets of causes, solar days are more than 24 hours in
length from December 25 to April 15 and from June 15 to Septem-
ber 1, and less than 24 hours in length from April 15 to June 15
and from September 1 to December 25.

Equation of Time

Sun Fast or Sun Slow. The relation of the apparent solar
time to mean solar time is called the equation of time. As just
shown, the apparent eastward motion of the sun in the ecliptic
is faster than the average twice a year, and slower than the
average twice a year. A fictitious sun is imagined to move at a
uniform rate eastward in the celestial equator, starting with the
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apparent sun at the vernal equinox (see Equinox in Glossary)
and completing its annual course around the celestial sphere in
the same time in which the sun apparently makes its circuit of
the ecliptic. While, excepting four times a year, the apparent
sun is fast or slow as compared with this fictitious sun which
indicates mean solar time, their difference at any moment, or
the equation of time, may be accurately calculated.

The equation of time is indicated in various ways. The usual
method is to indicate the time by which the apparent sun is
faster than the average by a minus sign, and the time by which
it is slower than the average by a plus sign. The apparent time
and the equation of time thus indicated, when combined, will
give the mean time. Thus, if the sun indicates noon (apparent
time), and we know the equation to be −7 m. (sun fast, 7 m.),
we know it is 11 h. 53 m., a.m. by mean solar time.

Any almanac shows the equation of time for any day of the
year. It is indicated in a variety of ways.

a. In the World Almanac it is given under the title “Sun on
Meridian.” The local mean solar time of the sun’s crossing a
meridian is given to the nearest second. Thus Jan. 1, 1908, it is
given as 12 h. 3 m. 16 s. We know from this that the apparent
sun is 3 m. 16 s. slow of the average on that date.

b. In the Old Farmer’s Almanac the equation of time is given
in a column headed “Sun Fast,” or “Sun Slow.”

c. In some places the equation of time is indicated by the
words, “clock ahead of sun,” and “clock behind sun.” Of course
the student knows from this that if the clock is ahead of the sun,
the sun is slower than the average, and, conversely, if the clock
is behind the sun, the latter must be faster than the average.

d. Most almanacs give times of sunrise and of sunset. Now
half way between sunrise and sunset it is apparent noon. Sup-
pose the sun rises at 7:24 o’clock, a.m., and sets at 4:43 o’clock,
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p.m. Half way between those times is 12:031
2

o’clock, the time
when the sun is on the meridian, and thus the sun is 31

2
minutes

slow (Jan. 1, at New York).
e. The Nautical Almanac∗ has the most detailed and ac-

curate data obtainable. Table II for each month gives in the
column “Equation of Time” the number of minutes and seconds
to be added to or subtracted from 12 o’clock noon at Green-
wich for the apparent sun time. The adjoining column gives the
difference for one hour to be added when the sun is gaining, or
subtracted when the sun is losing, for places east of Greenwich,
and vice versa for places west.

Whether or not the student has access to a copy of the Nau-
tical Almanac it may be of interest to notice the use of this
table.

∗Prepared annually three years in advance, by the Professor of Mathe-
matics, United States Navy, Washington, D. C. It is sold by the Bureau of
Equipment at actual cost of publication, one dollar.
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AT GREENWICH MEAN NOON.
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THE SUN’S Equation
of Time

to be
Sub-

tracted
from
Mean
Time

Diff.
for

1 hour

Sidereal
Time,

or Right
Ascension of
Mean Sun

Apparent
Right

Ascension

Diff.
for

1 Hour

Apparent
Declination

Diff.
for

1 Hour

h m s s ◦ ′ ′′ ′′ m s s h m s
Wed. 1 18 42 9.88 11.057 S. 23 5 47.3 +11.13 3 10.29 1.200 18 38 59.60
Thur. 2 18 46 35.09 11.044 23 1 6.3 12.28 3 38.93 1.188 18 42 56.16
Frid. 3 18 50 59.99 11.030 22 55 57.7 13.42 4 7.28 1.174 18 46 52.71

Sat. 4 18 55 24.54 11.015 22 50 21.8 +14.56 4 35.27 1.158 18 50 49.27
SUN. 5 18 59 48.70 10.098 22 44 18.6 15.70 5 2.87 1.141 18 54 45.83
Mon. 6 19 4 12.45 10.979 22 37 48.2 16.82 5 30.06 1.123 18 58 42.39

Tues. 7 19 8 35.74 10.959 22 30 51.0 +17.94 5 56.80 1.104 19 2 38.94
Wed. 8 19 12 58.56 10.939 22 23 27.1 19.04 6 23.06 1.083 19 6 35.50
Thur. 9 19 17 20.85 10.918 22 15 36.8 20.14 6 48.79 1.061 19 10 32.06

Frid. 10 19 21 42.61 10.895 22 7 20.2 +21.23 7 13.99 1.038 19 14 28.62
Sat. 11 19 26 3.79 10.871 21 58 37.7 22.30 7 38.62 1.014 19 18 25.17
SUN. 12 19 30 24.39 10.846 21 49 29.5 23.37 8 2.66 0.989 19 22 21.73

Part of a page from The American Ephemeris and Nautical Almanac, Jan. 1908.

This table indicates that at 12 o’clock noon, on the meridian
of Greenwich on Jan. 1, 1908, the sun is slow 3 m. 10.29 s.,
and is losing 1.200 s. each hour from that moment. We know
it is losing, for we find that on January 2 the sun is slow 3 m.
38.93 s., and by that time its rate of loss is slightly less, being
1.188 s. each hour.

Suppose you are at Hamburg on Jan. 1, 1908, when it is
noon according to standard time of Germany, one hour be-
fore Greenwich mean noon. The equation of time will be the
same as at Greenwich less 1.200 s. for the hour’s difference, or
(3 m. 10.29 s.− 1.200 s.) 3 m. 9.09 s. If you are at New York on
that date and it is noon, Eastern standard time, five hours after
Greenwich noon, it is obvious that the sun is 5× 1.200 s. or 6 s.
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slower than it was at Greenwich mean noon. The equation of
time at New York would then be 3 m. 10.29 s. + 6 s. or 3 m.
16.29 s.

f. The Analemma graphically indicates the approximate
equation of time for any day of the year, and also indicates the
declination of the sun (or its distance from the celestial equa-
tor). Since our year has 3651

4
days, the equation of time for a

given date of one year will not be quite the same as that of the
same date in a succeeding year. That for 1910 will be approxi-
mately one fourth of a day or six hours later in each day than
for 1909; that is, the table for Greenwich in 1910 will be very
nearly correct for Central United States in 1909. Since for the
ordinary purposes of the student using this book an error of a
few seconds is inappreciable, the analemma will answer for most
of his calculations.

The vertical lines of the analemma represent the number of
minutes the apparent sun is slow or fast as compared with the
mean sun. For example, the dot representing February 25 is a
little over half way between the lines representing sun slow 12 m.
and 14 m. The sun is then slow about 13 m. 18 s. It will be
observed that April 15, June 15, September 1, and December 25
are on the central line. The equation of time is then zero, and the
sun may be said to be “on time.” Persons living in the United
States on the 90th meridian will see the shadow due north at
12 o’clock on those days; if west of a standard time meridian
one will note the north shadow when it is past 12 o’clock, four
minutes for every degree; and, if east of a standard time merid-
ian, before 12 o’clock four minutes for each degree. Since the
analemma shows how fast or slow the sun is each day, it is obvi-
ous that, knowing one’s longitude, one can set his watch by the
sun by reference to this diagram, or, having correct clock time,
one can ascertain his longitude.
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Fig. 42
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Uses of the Analemma

To Ascertain Your Longitude. To do this your watch
must show correct standard time. You must also have a true
north-south line.

1. Carefully observe the time when the shadow is north. As-
certain from the analemma the number of minutes and seconds
the sun is fast or slow.

2. If fast, add that amount to the time by your watch; if
slow, subtract. This gives your mean local time.

3. Divide the minutes and seconds past or before twelve by
four. This gives you the number of degrees and minutes you are
from the standard time meridian. If the corrected time is before
twelve, you are east of it; if after, you are west of it.

4. Subtract (or add) the number of degrees you are east (or
west) of the standard time meridian, and this is your longitude.

For example, say the date is October 5th. 1. Your watch
says 12 h. 10 m. 30 s., p.m., when the shadow is north. The
analemma shows the sun to be 11 m. 30 s. fast. 2. The sun
being fast, you add these and get 12:22 o’clock, p.m. This is
the mean local time of your place. 3. Dividing the minutes past
twelve by four, you get 5 m. 30 s. This is the number of degrees
and minutes you are west from the standard meridian. If you
live in the Central standard time belt of the United States, your
longitude is 90◦ plus 5◦ 30′, or 95◦ 30′. If you are in the Eastern
time belt, it is 75◦ plus 5◦ 30′. If you are in Spain, it is 0◦ plus
5◦ 30′, and so on.

To Set Your Watch. To do this you must know your
longitude and have a true north-south line.

1. Find the difference between your longitude and that of
the standard time meridian in accordance with which you wish
to set your watch. In Eastern United States the standard time
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meridian is the 75th, in Central United States the 90th, etc.
2. Multiply the number of degrees and seconds of difference

by four. This gives you the number of minutes and seconds your
time is faster or slower than local time. If you are east of the
standard meridian, your watch must be set slower than local
time; if west, faster.

3. From the analemma observe the position of the sun whe-
ther fast or slow and how much. If fast, subtract that time
from the time obtained in step two; if slow, add. This gives you
the time before or after twelve when the shadow will be north;
before twelve if you are east of the standard time meridian, after
twelve if you are west.

4. Carefully set your watch at the time indicated in step
three when the sun’s shadow crosses the north-south line.

For example, suppose your longitude is 87◦ 37′ W. (Chicago).
1. The difference between your longitude and your standard time
meridian, 90◦, is 2◦ 23′. 2. Multiplying this difference by four
we get 9◦ 32′, the minutes and seconds your time is slower than
the sun’s average time. That is, the sun on the average casts a
north shadow at 11 h. 50 m. 28 s. at your longitude. 3. From
the analemma we see the sun is 14 m. 15 s. slow on February 6.
The time being slow, we add this to 11 h. 50 m. 28 s. and get
12 h. 4 m. 43 s., or 4 m. 43 s. past twelve when the shadow
will be north. 4. Just before the shadow is north get your watch
ready, and the moment the shadow is north set it 4 m. 43 s. past
twelve.

To Strike a North-South Line. To do this you must
know your longitude and have correct time.

Steps 1, 2, and 3 are exactly as in the foregoing explanation
how to set your watch by the sun. At the time you obtain in
step 3 you know the shadow is north; then draw the line of the
shadow, or, if out of doors, drive stakes or otherwise indicate
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the line of the shadow.
To Ascertain Your Latitude. This use of the analemma

is reserved for later discussion.
Civil and Astronomical Days. The mean solar day of

twenty-four hours reckoned from midnight is called a civil day,
and among all Christian nations has the sanction of law and
usage. Since astronomers work at night they reckon a day from
noon. Thus the civil forenoon is dated a day ahead of the as-
tronomical day, the afternoon being the last half of the civil day
but the beginning of the astronomical day. Before the invention
of clocks and watches, the sundial was the common standard for
the time during each day, and this, as we have seen, is a con-
stantly varying one. When clocks were invented it was found
impossible to have them so adjusted as to gain or lose with the
sun. Until 1815 a civil day in France was a day according to
the actual position of the sun, and hence was a very uncertain
affair.

A Few Facts: Do You Understand Them?

1. A day of twenty-four hours as we commonly use the term,
is not one rotation of the earth. A solar day is a little more than
one complete rotation and averages exactly twenty-four hours in
length. This is a civil or legal day.

2. A sidereal day is the time of one rotation of the earth on
its axis.

3. There are 366 rotations of the earth (sidereal days) in one
year of 365 days (solar days).

4. A sundial records apparent or actual sun time, which is
the same as mean sun time only four times a year.

5. A clock records mean sun time, and thus corresponds to
sundial time only four times a year.
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6. In many cities using standard time the shadow of the sun
is never in a north-south line when the clock strikes twelve. This
is true of all cities more than 4◦ east or west of the meridian on
which their standard time is based.

7. Any city within 4◦ of its standard time meridian will have
north-south shadow lines at twelve o’clock no more than four
times a year at the most. Strictly speaking, practically no city
ever has a shadow exactly north-south at twelve o’clock.



CHAPTER VII

TIME AND THE CALENDAR

“In the early days of mankind, it is not probable that there
was any concern at all about dates, or seasons, or years. Herodo-
tus is called the father of history, and his history does not contain
a single date. Substantially the same may be said of Thucydides,
who wrote only a little later—somewhat over 400 b.c. If Ge-
ography and Chronology are the two eyes of history, then some
histories are blind of the one eye and can see but little out of
the other.”∗

Sidereal Year. Tropical Year. As there are two kinds
of days, solar and sidereal, there are two kinds of years, solar or
tropical years, and sidereal years, but for very different reasons.
The sidereal year is the time elapsing between the passage of the
earth’s center over a given point in its orbit until it crosses it
again. For reasons not properly discussed here (see Precession of
the Equinoxes, p. 285), the point in the orbit where the earth is
when the vertical ray is on the equator shifts slightly westward
so that we reach the point of the vernal equinox a second time
a few minutes before a sidereal year has elapsed. The time
elapsing from the sun’s crossing of the celestial equator in the
spring until the crossing the next spring is a tropical, year and

∗R. W. Farland in Popular Astronomy for February, 1895.
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is what we mean when we say “a year.”∗ Since it is the tropical
year that we attempt to fit into an annual calendar and which
marks the year of seasons, it is well to remember its length:
365 d. 5 h. 48 m. 45.51 s. (365.2422 d.). The adjustment of the
days, weeks, and months into a calendar that does not change
from year to year but brings the annual holidays around in the
proper seasons, has been a difficult task for the human race to
accomplish. If the length of the year were an even number of
days and that number was exactly divisible by twelve, seven,
and four, we could easily have seven days in a week, four weeks
in a month, and twelve months in a year and have no time to
carry over into another year or month.

The Moon the Measurer. Among the ancients the moon
was the great measurer of time, our word month comes from the
word moon, and in connection with its changing phases religious
feasts and celebrations were observed. Even to-day we reckon
Easter and some other holy days by reference to the moon. Now
the natural units of time are the solar day, the lunar month
(about 291

2
days), and the tropical year. But their lengths are

prime to each other. For some reasons not clearly known, but
believed to be in accordance with the four phases of the moon,
the ancient Egyptians and Chaldeans divided the month into
four weeks of seven days each. The addition of the week as a
unit of time which is naturally related only to the day, made
confusion worse confounded. Various devices have been used at
different times to make the same date come around regularly in
the same season year after year, but changes made by priests who

∗A third kind of year is considered in astronomy, the anomalistic year,
the time occupied by the earth in traveling from perihelion to perihelion
again. Its length is 365 d. 6 h. 13 m. 48.09 s. The lunar year, twelve new
moons, is about eleven days shorter than the tropical year. The length of
a sidereal year is 365 d. 6 h. 9 m. 8.97 s.
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were ignorant as to the astronomical data and by more ignorant
kings often resulted in great confusion. The very exact length of
the solar year in the possession of the ancient Egyptians seems
to have been little regarded.

Early Roman Calendar. Since our calendar is the same
as that worked out by the Romans, a brief sketch of their system
may be helpful. The ancient Romans seem to have had ten
months, the first being March. We can see that this was the case
from the fact that September means seventh; October, eighth;
November, ninth; and December, tenth. It was possibly during
the reign of Numa that two months were added, January and
February. There are about 291

2
days in a lunar month, or from

one new moon to the next, so to have their months conform to
the moons they were given 29 and 30 days alternately, beginning
with January. This gave them twelve lunar months in a year of
354 days. It was thought unlucky to have the number even, so
a day was added for luck.

This year, having but 355 days, was over ten days too short,
so festivals that came in the summer season would appear ten
days earlier each year, until those dedicated to Bacchus, the
god of wine, came when the grapes were still green, and those
of Ceres, the goddess of the harvest, before the heads of the
wheat had appeared. To correct this an extra month was added,
called Mercedonius, every second year. Since the length of this
month was not fixed by law but was determined by the pontiffs,
it gave rise to serious corruption and fraud, interfering with the
collection of debts by the dropping out of certain expected dates,
lengthening the terms of office of favorites, etc.

The Julian and the Augustan Calendars. In the year
46 b.c., Julius Caesar, aided by the Egyptian astronomer, Sosi-
genes, reformed the calendar. He decreed that beginning with
January the months should have alternately 31 and 30 days, save
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February, to which was assigned 29 days, and every fourth year
an additional day. This made a year of exactly 3651

4
days. Since

the true year has 365 days, 5 hours, 48 min., 45.51 sec., and the
Julian year had 365 days, 6 hours, it was 11 min., 14.49 sec. too
long.

Julian Augustan
Jan. 31 31
Feb. 29–30 28–29
Mar. 31 31
Apr. 30 30
May 31 31
June 30 30
July 31 31
Aug. 30 31
Sept. 31 30
Oct. 30 31
Nov. 31 30
Dec. 30 31

During the reign of Augustus another
day was taken from February and added
to August in order that that month, the
name of which had been changed from
Sextilis to August in his honor, might have
as many days in it as the month Quintilis,
whose name had been changed to July in
honor of Julius Caesar. To prevent the
three months, July, August, and Septem-
ber, from having 31 days each, such an ar-
rangement being considered unlucky, Au-
gustus ordered that one day be taken from

September and added to October, one from November and
added to December. Thus we find the easy plan of remembering
the months having 31 days, every other one, was disarranged,
and we must now count our knuckles or learn:

“Thirty days hath September, April, June, and November.
All the rest have thirty-one, save the second one alone,
Which has four and twenty-four, till leap year gives it one day more.”

The Gregorian Calendar. This Julian calendar, as it is
called, was adopted by European countries just as they adopted
other Roman customs. Its length was 365.25 days, whereas the
true length of the year is 365.2422 days. While the error was
only .0078 of a day, in the course of centuries this addition to
the true year began to amount to days. By 1582 the difference
had amounted to about 13 days, so that the time when the sun
crosses the celestial equator, occurred the 11th of March. In
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that year Pope Gregory XIII reformed the calendar so that the
March equinox might occur on March 21st, the same date as
it did in the year 325 a.d., when the great Council of Nicæa
was held which finally decided the method of reckoning Easter.
One thousand two hundred and fifty-seven years had elapsed,
each being 11 min. 14 sec. too long. The error of 10 days was
corrected by having the date following October 4th of that year
recorded as October 15. To prevent a recurrence of the error,
the Pope further decreed that thereafter the centurial years not
divisible by 400 should not be counted as leap years. Thus the
years 1600, 2000, 2400, etc., are leap years, but the years 1700,
1900, 2100, etc., are not leap years. This calculation reduces
the error to a very low point, as according to the Gregorian
calendar nearly 4000 years must elapse before the error amounts
to a single day.

The Gregorian calendar was soon adopted in all Roman
Catholic countries, France recording the date after December
9th as December 20th. It was adopted by Poland in 1786, and
by Hungary in 1787. Protestant Germany, Denmark, and Hol-
land adopted it in 1700 and Protestant Switzerland in 1701. The
Greek Catholic countries have not yet adopted this calendar and
are now thirteen days behind our dates. Non-Christian countries
have calendars of their own.

In England and her colonies the change to the Gregorian sys-
tem was effected in 1752 by having the date following Septem-
ber 2d read September 14. The change was violently opposed by
some who seemed to think that changing the number assigned
to a particular day modified time itself, and the members of
the Government are said to have been mobbed in London by
laborers who cried “give us back our eleven days.”
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Fig. 43. Page from Franklin’s Almanac
Showing Omission of Eleven Days,

1752.

Old Style and
New Style. Dates of
events occurring before
this change are usu-
ally kept as they were
then written, the let-
ters o.s. sometimes be-
ing written after the
date to signify the old
style of dating. To
translate a date into
the Gregorian or new
style, one must note
the century in which
it occurred. For ex-
ample, Columbus dis-
covered land Oct. 12,
1492, o.s. According
to the Gregorian calen-
dar a change of 10 days
was necessary in 1582.
In 1500, leap year was
counted by the old
style but should not
have been counted by
the new style. Hence,
in the century ending
1500, only 9 days dif-
ference had been made.
So the discovery of
America occurred Oc-
tober 12, o.s. or October 21, n.s. English historians often write
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such dates October
12

21
, the upper date referring to old style and

the lower to new style.
A historian usually follows the dates in the calendar used by

his country at the time of the event. If, however, the event refers
to two nations having different calendars, both dates are given.
Thus, throughout Macaulay’s “History of England” one sees

such dates as the following: Avaux,
July 27

Aug. 6
, 1689. (Vol. III.)

A few dates in American history prior to September, 1752, have
been changed to agree with the new style. Thus Washington
was born Feb. 11, 1731, o.s., but we always write it Feb. 22,
1732. The reason why all such dates are not translated into new
style is because great confusion would result, and, besides, some
incongruities would obtain. Thus the principal ship of Colum-
bus was wrecked Dec. 25, 1492, and Sir Isaac Newton was born
Dec. 25, 1642, and since in each case this was Christmas, it
would hardly do to record them as Christmas, Jan. 3, 1493, in
the former instance, or as Christmas, Jan. 4, 1643, in the latter
case, as we should have to do to write them in new style.

The Beginning of the Year. With the ancient Romans
the year had commenced with the March equinox, as we notice
in the names of the last months, September, October, Novem-
ber, December, meaning 7th, 8th, 9th, 10th, which could only
have those names by counting back to March as the first month.
By the time of Julius Caesar the December solstice was com-
monly regarded as the beginning of the year, and he confirmed
the change, making his new year begin January first. The later
Teutonic nations for a long time continued counting the begin-
ning of the year from March 25th. In 1563, by an edict of
Charles IX, France changed the time of the beginning of the
year to January first. In 1600 Scotland made the same change
and England did the same in 1752 when the Gregorian system
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was adopted there. Dates between the first of January and the
twenty-fifth of March from 1600 to 1752 are in one year in Scot-
land and another year in England. In Macaulay’s “History of
England” (Vol. III, p. 258), he gives the following reference:
“Act. Parl. Scot., Mar. 19, 1689–90.” The date being between
January 1st and March 25th in the interval between 1600 and
1752, it was recorded as the year 1689 in England, and a year
later, or 1690, in Scotland—Scotland dating the new year from
January 1st, England from March 25th. This explains also why
Washington’s birthday was in 1731, o.s., and 1732, n.s., since
English colonies used the same system of dating as the mother
country.

Old Style is still used in England’s Treasury Depart-
ment. “The old style is still retained in the accounts of Her
Majesty’s Treasury. This is why the Christmas dividends are
not considered due until Twelfth Day, and the midsummer div-
idends not till the 5th of July, and in just the same way it is
not until the 5th of April that Lady Day is supposed to arrive.
There is another piece of antiquity in the public accounts. In the
old times, the year was held to begin on the 25th of March, and
this change is also still observed in the computations over which
the Chancellor of the Exchequer presides. The consequence is,
that the first day of the financial year is the 5th of April, being
old Lady Day, and with that day the reckonings of our annual
budgets begin and end.”—London Times,∗ Feb. 16, 1861.

Greek Catholic Countries Use Old Style. The
Greek Catholic countries, Russia, some of the Balkan states and
Greece, still employ the old Julian calendar which now, with
their counting 1900 as a leap year and our not counting it so,
makes their dates 13 days behind ours. Dates in these countries

∗Under the date of September 10, 1906, the same authority says that
the facts above quoted obtain in England at the present time.
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recorded by Protestants or Roman Catholics or written for gen-
eral circulation are commonly recorded in both styles by placing
the Gregorian date under the Julian date. For example, the
date we celebrate as our national holiday would be written by

an American in Russia as
June 21

July 4
. The day we commemorate

as the anniversary of the birth of Christ, Dec.
12

25
; the day they

commemorate
Dec. 25, 1906

Jan. 7, 1907
. It should be remembered that if

the date is before 1900 the difference will be less than thirteen
days. Steps are being taken in Russia looking to an early revi-
sion of the calendar.

Mohammedan and Jewish Calendars. The old system
employed before the time of the Caesars is still used by the
Mohammedans and the Jews. The year of the former is the
lunar year of 35411

30
days, and being about .03 of a year too short

to correspond with the solar year, the same date passes through
all seasons of the year in the course of 33 years. Their calendar
dates from the year of the Hegira, or the flight of Mohammed,
which occurred July, 622 a.d. If their year was a full solar year,
their date corresponding to 1900 would be 622 years less than
that number, or 1278, but being shorter in length there are more
of them, and they write the date 1318, that year beginning with
what to us was May 1. That is to say, what we called May 1,
1900, they called the first day of their first month, Muharram,
1318.

Chinese Calendar. The Chinese also use a lunar calen-
dar; that is, with months based upon the phases of the moon,
each month beginning with a new moon. Their months conse-
quently have 29 and 30 days alternately. To correct the error due
to so short a year, seven out of every nineteen years have thir-
teen months each. This still leaves the average year too short,
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so in every cycle of sixty years, twenty-two extra months are
intercalated.

Ancient Mexican Calendar. The ancient Mexicans had
a calendar of 18 months of 20 days each and five additional days,
with every fourth year a leap year. Their year began with the
vernal equinox.

Chaldean Calendar. Perhaps the most ancient calendar
of which we have record, and the one which with modifications
became the basis of the Roman calendar which we have seen
was handed down through successive generations to us, was the
calendar of the Chaldeans. Long before Abraham left Ur of the
Chaldees (see Genesis xi, 31; Nehemiah ix, 7, etc.) that city had
a royal observatory, and Chaldeans had made subdivisions of the
celestial sphere and worked out the calendar upon which ours is
based.

Few of us can fail to recall how hard fractions were when we
first studied them, and how we avoided them in our calculations
as much as possible. For exactly the same reason these ancient
Chaldeans used the number 60 as their unit wherever possible,
because that number being divisible by more numbers than any
other less than 100, its use and the use of any six or a multiple of
six avoided fractions. Thus they divided circles into 360 degrees
(6 × 60), each degree into 60 minutes, and each minute into
60 seconds. They divided the zodiac into spaces of 30◦ each,
giving us the plan of twelve months in the year. Their divisions
of the day led to our 24 hours, each having 60 minutes, with
60 seconds each. They used the week of seven days, one for each
of the heavenly bodies that were seen to move in the zodiac.
This origin is suggested in the names of the days of the week.



TIME AND THE CALENDAR 143

Days of the Week

Modern
English

Celestial
Origin

Roman
Modern
French

Ancient
Saxon

Modern
German

1. Sunday Sun Dies Solis Dimanche Sunnan-daeg Sonntag

2. Monday Moon Dies Lunæ Lundi Monan-daeg Montag

3. Tuesday Mars Dies Martis Mardi
Mythical God

Tiew or Tuesco
Tues-daeg

Dienstag

4. Wednesday Mercury Dies Mercurii Mereredi
Woden

Woden’s-daeg
(Mid-week)
Mittwoche

5. Thursday Jupiter Dies Jovis Jeudi
Thor (thunderer)

Thor-daeg
Donnerstag

6. Friday Venus Dies Veneris Vendredi
Friga

Frigedaeg
Freitag

7. Saturday Saturn Dies Saturni Samedi Saeter-daeg
Samstag or
Sonnabend

Complex Calendar Conditions in Turkey. “But it is in
Turkey that the time problem becomes really complicated, very
irritating to him who takes it seriously, very funny to him who
enjoys a joke. To begin with, there are four years in Turkey—a
Mohammedan civil year, a Mohammedan religious year, a Greek
or Eastern year, and a European or Western year. Then in the
year there are both lunar months depending on the changes of
the moon, and months which, like ours, are certain artificial
proportions of the solar year. Then the varieties, of language
in Turkey still further complicate the calendars in customary
use. I brought away with me a page from the diary which stood
on my friend’s library table, and which is customarily sold in
Turkish shops to serve the purpose of a calendar; and I got from
my friend the meaning of the hieroglyphics, which I record here
as well as I can remember them. This page represents one day.
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Numbering the compartments in it from left to right, it reads as
follows:

Fig. 44

1. March, 1318 (Civil Year).
2. March, 1320 (Religious Year).
3. Thirty-one days (Civil Year).
4. Wednesday.
5. Thirty days (Religious Year).
6. 27 (March: Civil Year).
7. (March: Religious Year.)
8. March, Wednesday (Arme-

nian).
9. April, Wednesday (French)

10. March, Wednesday (Greek)
11. Ecclesiastical Day (French

R. C. Church).
12. March, Wednesday (Rus-

sian).
13. Month Day (Hebrew).
14. Month Day (Old Style).
15. Month Day (New Style).
16. Ecclesiastical Day (Arme-

nian).
17. Ecclesiastical Day (Greek)
18. Midday, 5:35, 1902; Midday,

5:21.

“I am not quite clear in my mind now as to the meaning of
the last section, but I think it is that noon according to European
reckoning, is twenty-one minutes past five according to Turkish
reckoning. For there is in Turkey, added to the complication of
year, month, and day, a further complication as to hours. The
Turks reckon, not from an artificial or conventional hour, but
from sunrise, and their reckoning runs for twenty-four hours.
Thus, when the sun rises at 6:30 our noon will be 5:30, Turkish
time. The Turkish hours, therefore, change every day. The
steamers on the Bosphorus run according to Turkish time, and
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one must first look in the time-table to see the hour, and then
calculate from sunrise of the day what time by his European
clock the boat will start. My friends in Turkey had apparently
gotten used to this complicated calendar, with its variable years
and months and the constantly changing hours, and took it as
a matter of course.”∗

Modern Jewish Calendar. The modern Jewish calendar
employs also a lunar year, but has alternate years lengthened
by adding extra days to make up the difference between such
year and the solar year. Thus one year will have 354 days, and
another 22 or 23 days more. Sept. 23, 1900, according to our
calendar, was the beginning of their year 5661.

Many remedies have been suggested for readjusting our cal-
endar so that the same date shall always recur on the same day
of the week. While it is interesting for the student to specu-
late on the problem and devise ways of meeting the difficulties,
none can be suggested that does not involve so many changes
from our present system that it will be impossible for a long,
long time to overcome social inertia sufficiently to accomplish a
reform.

If the student becomes impatient with the complexity of the
problem, he may recall with profit these words of John Fiske:
“It is well to simplify things as much as possible, but this world
was not so put together as to save us the trouble of using our
wits.”

Three Christmases in One Year. “Bethlehem, the home
of Christmases, is that happy Utopia of which every American
child dreams—it has more than one Christmas. In fact, it has
three big ones, and, strangely enough, the one falling on Decem-
ber 25th of our calendar is not the greatest of the three. It is,

∗The Impressions of a Careless Traveler, by Lyman Abbott.—The Out-
look, Feb. 28, 1903.
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at least, the first. Thirteen days after the Latin has burned his
Christmas incense in the sacred shrine, the Greek Church patri-
arch, observing that it is Christmas-time by his slower calendar,
catches up the Gloria, and bows in the Grotto of the Nativity
for the devout in Greece, the Balkan states, and all the Russias.
After another period of twelve days the great Armenian Church
of the East takes up the anthem of peace and good-will, and its
patriarch visits the shrine.”∗

Topics for Special Reports. The gnomon. The clep-
sydra. Other ancient devices for reckoning time. The week.
The Metonic cycle and the Golden Number. The calculation of
Easter. The Roman calendar. Names of the months and days
of the week. Calendar reforms. The calendar of the French
Revolution. The Jewish calendars. The Turkish calendar.

∗Ernest I. Lewis in Woman’s Home Companion, December, 1903.



CHAPTER VIII

SEASONS

Vertical and Slanting Rays of the Sun. He would be
unobservant, indeed, who did not know from first-hand experi-
ence that the morning and evening rays of the sun do not feel so
warm as those of midday, and, if living outside the torrid zone,
that rays from the low winter sun in some way lack the heating
power of those from the high summer sun. The reason for this
difference may not be so apparent. The vertical rays are not
warmer than the slanting ones, but the more nearly vertical the
sun, the more heat rays are intercepted by a given surface. If
you place a tub in the rain and tip it so that the rain falls in
slantingly, it is obvious that less water will be caught than if the
tub stood at right angles to the course of the raindrops. But
before we take up in detail the effects of the shifting rays of the
sun, let us carefully examine the conditions and causes of the
shifting.

Motions of the Earth. The direction and rate of the
earth’s rotation are ascertained from the direction and rate of
the apparent rotation of the celestial sphere. The direction and
rate of the earth’s revolution are ascertained from the apparent
revolution of the sun among the stars of the celestial sphere.
Just as any change in the rotation of the earth would produce
a corresponding change in the apparent rotation of the celestial
sphere, so any change in the revolution of the earth would pro-

147
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duce a corresponding change in the apparent revolution of the
sun.

Were the sun to pass among the stars at right angles to the
celestial equator, passing through the celestial poles, we should
know that the earth went around the sun in a path whose plane
was perpendicular to the plane of the equator and was in the
plane of the axis. In such an event the sun at some time during
the year would shine vertically on each point on the earth’s
surface. Seasons would be nearly the same in one portion of
the earth as in another. The sun would sometimes cast a north
shadow at any given place and sometimes a south shadow. Were
the sun always in the celestial equator, the ecliptic coinciding
with it, we should know that the earth traveled around the sun
at right angles to the axis. The vertical ray of the sun would
then always be overhead at noon on the equator, and no change
in season would occur. Were the plane of the earth’s orbit at an
angle of 45◦ from the equator the ecliptic would extend half way
between the poles and the equator, and the sun would at one
time get within 45◦ of the North star and six months later 45◦

from the South star. The vertical ray on the earth would then
travel from 45◦ south latitude to 45◦ north latitude, and the
torrid zone would be 90◦ wide.

Obliquity of the Ecliptic. But we know that the ver-
tical ray never gets farther north or south of the equator than
about 231

2
◦, or nearer the poles than about 661

2
◦. The plane of

the ecliptic or of the earth’s orbit is, then, inclined at an angle
of 661

2
◦ to the axis, or at an angle of 231

2
◦ to the plane of the

equator. This obliquity of the ecliptic varies slightly from year
to year, as is shown on pp. 119, 286.
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Equinoxes. The sun crosses the celestial equator twice a
year, March 20 or 21, and September 22 or 23,∗ varying from year
to year, the exact date for any year being easily found by refer-
ring to any almanac. These dates are called equinoxes (equinox;
æquus, equal; nox, night), for the reason that the days and nights
are then twelve hours long everywhere on earth. March 21 is
called the vernal (spring) equinox, and September 23 is called
the autumnal equinox, for reasons obvious to those who live in
the northern hemisphere (see Equinox in Glossary).

Solstices. About the time when the sun reaches its most
distant point from the celestial equator, for several days it seems
neither to recede from it nor to approach it. The dates when
the sun is at these two points are called the solstices (from sol,
sun; and stare, to stand). June 21 is the summer solstice, and
December 22 is the winter solstice; vice versa for the southern
hemisphere. The same terms are also applied to the two points
in the ecliptic farthest from the equator; that is, the position of
the sun on those dates.

At the Equator. March 21. Imagine you are at the equa-
tor March 21. Bear in mind the fact that the North star (strictly
speaking, the north pole of the celestial sphere) is on the north-
ern horizon, the South star on the southern horizon, and the
celestial equator extends from due east, through the zenith, to
due west. It is sunrise of the vernal equinox. The sun is seen on
the eastern horizon; the shadow it casts is due west and remains

∗The reason why the date shifts lies in the construction of our calendar,
which must fit a year of 365 days, 5 h. 48 m. 45.51 s. The time of the vernal
equinox in 1906 was March 21, 7:46 a.m., Eastern standard time. In 1907
it occurred 365 days, 5 h. 48 m. 45.51 s. later, or at 1:35 p.m., March 21.
In 1908, being leap year, it will occur 366 days, 5 h. 48 m. 45.51 s. later,
or at about 7:24 p.m., March 20. The same facts are true of the solstices;
they occur June 21–22 and December 22–23.
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due west until noon, getting shorter and shorter as the sun rises
higher.

Fig. 45. Illumination of the earth in twelve positions,
corresponding to months. The north pole is turned toward us.

Shadows. At noon the sun, being on the celestial equator, is
directly overhead and casts no shadow, or the shadow is directly
underneath. In the afternoon the shadow is due east, lengthen-
ing as the sun approaches the due west point in the horizon. At
this time the sun’s rays extend from pole to pole. The circle of
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illumination, that great circle separating the lighted half of the
earth from the half which is turned away from the sun, since it
extends at this time from pole to pole, coincides with a meridian
circle and bisects each parallel. Half of each parallel being in the
light and half in the dark, during one rotation every point will
be in the light half a day and away from the sun the other half,
and day and night are equal everywhere on the globe.

After March 21 the sun creeps back in its orbit, gradually,
away from the celestial equator toward the North star. At the
equator the sun thus rises more and more toward the north of
the due east point on the horizon, and at noon casts a shadow
toward the south. As the sun gets farther from the celestial
equator, the south noon shadow lengthens, and the sun rises
and sets farther toward the north of east and west.

On June 21 the sun has reached the point in the ecliptic far-
thest from the celestial equator, about 231

2
◦ north. The vertical

ray on the earth is at a corresponding distance from the equator.
The sun is near the constellation Cancer, and the parallel mark-
ing the turning of the sun from his course toward the polestar
is called the Tropic (from a Greek word meaning turning) of
Cancer. Our terrestrial parallel marking the southward turning
of the vertical ray is also called the Tropic of Cancer. At this
date the circle of illumination extends 231

2
◦ beyond the north

pole, and all of the parallels north of 661
2
◦ from the equator

are entirely within this circle of illumination and have daylight
during the entire rotation of the earth. At this time the cir-
cle of illumination cuts unequally parallels north of the equator
so that more than half of them are in the lighted portion, and
hence days are longer than nights in the northern hemisphere.
South of the equator the conditions are reversed. The circle of
illumination does not extend so far south as the south pole, but
falls short of it 231

2
◦, and consequently all parallels south of 661

2
◦
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are entirely in the dark portion of the earth, and it is contin-
ual night. Other circles south of the equator are so intersected
by the circle of illumination that less than half of them are in
the lighted side of the earth, and the days are shorter than the
nights. It is midwinter there.

After June 21 gradually the sun creeps along in its orbit
away from this northern point in the celestial sphere toward the
celestial equator. The circle of illumination again draws toward
the poles, the days are more nearly of the same length as the
nights, the noon sun is more nearly overhead at the equator
again, until by September 23, the autumnal equinox, the sun
is again on the celestial equator, and conditions are exactly as
they were at the March equinox.

After September 23 the sun, passing toward the South star
from the celestial equator, rises to the south of a due east line
on the equator, and at noon is to the south of the zenith, casting
a north shadow. The circle of illumination withdraws from the
north pole, leaving it in darkness, and extends beyond the south
pole, spreading there the glad sunshine. Days grow shorter north
of the equator, less than half of their parallels being in the lighted
half, and south of the equator the days lengthen and summer
comes.

On December 22 the sun has reached the most distant point
in the ecliptic from the celestial equator toward the South star,
231

2
◦ from the celestial equator and 661

2
◦ from the South star,

the vertical ray on the earth being at corresponding distances
from the equator and the south pole. The sun is now near the
constellation Capricorn, and everywhere within the tropics the
shadow is toward the north; on the tropic of Capricorn the sun
is overhead at noon, and south of it the shadow is toward the
south. Here the vertical ray turns toward the equator again as
the sun creeps in the ecliptic toward the celestial equator.
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Just as the tropics are the parallels which mark the farthest
limit of the vertical ray from the equator, the polar circles are the
parallels marking the farthest extent of the circle of illumination
beyond the poles, and are the same distance from the poles that
the tropics are from the equator.

The Width of the Zones is thus determined by the dis-
tance the vertical ray travels on the earth, and with the moving
of the vertical ray, the shifting of the day circle. This distance
is in turn determined by the angle which the earth’s orbit forms
with the plane of the equator. The planes of the equator and the
orbit forming an angle of 231

2
◦, the vertical ray travels that many

degrees each side of the equator, and the torrid zone is 47◦ wide.
The circle of illumination never extends more than 231

2
◦ beyond

each pole, and the frigid zones are thus 231
2
◦ wide. The remain-

ing or temperate zones between the torrid and the frigid zones
must each be 43◦ wide.

At the North Pole. Imagine you are at the north pole.
Bear in mind the fact that the North star is always almost ex-
actly overhead and the celestial equator always on the horizon.
On March 21 the sun is on the celestial equator and hence on
the horizon.∗ The sun now swings around the horizon once each
rotation of the earth, casting long shadows in every direction,
though, being at the north pole, they are always toward the
south.† After the spring equinox, the sun gradually rises higher

∗Speaking exactly, the sun is seen there before the spring equinox and
after the autumnal equinox, owing to refraction and the dip of the horizon.
See p. 161.

†The student should bear in mind the fact that directions on the earth
are determined solely by reference to the true geographical pole, not the
magnetic pole of the mariner’s compass. At the north pole the compass
points due south, and at points between the magnetic pole and the geo-
graphical pole it may point in any direction excepting toward the north.
Thus Admiral A. H. Markham says, in the Youth’s Companion for June 22,
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and higher in a gently rising spiral until at the summer solstice,
June 21, it is 231

2
◦ above the horizon. After this date it gradually

approaches the horizon again until, September 23, the autumnal
equinox, it is exactly on the horizon, and after this date is seen no
more for six months. Now the stars come out and may be seen
perpetually tracing their circular courses around the polestar.
Because of the reflection and refraction of the rays of light in
the air, twilight prevails when the sun is not more than about
18◦ below the horizon, so that for only a small portion of the
six months’ winter is it dark, and even then the long journeys
of the moon above the celestial equator, the bright stars that
never set, and the auroras, prevent total darkness (see p. 165).
On December 22 the sun is 231

2
◦ below the horizon, after which

it gradually approaches the horizon again, twilight soon setting
in until March 21 again shows the welcome face of the sun.

At the South Pole the conditions are exactly reversed.
There the sun swings around the horizon in the opposite di-
rection; that is, in the direction opposite the hands of a watch
when looked at from above. The other half of the celestial sphere
from that seen at the north pole is always above one, and no
stars seen at one pole are visible at the other pole, excepting the
few in a very narrow belt around the celestial equator, lifted by
refraction of light.

Parallelism of the Earth’s Axis. Another condition of
the earth in its revolution should be borne in mind in explain-
ing change of seasons. The earth might rotate on an axis and

1902:
“When, in 1876, I was sledging over the frozen sea in my endeavor to

reach the north pole, and therefore traveling in a due north direction, I was
actually steering by compass E. S. E., the variation of the compass in that
locality varying from ninety-eight degrees to one hundred and two degrees
westerly.”



SEASONS 155

revolve around the sun with the axis inclined 231
2
◦ and still give

us no change in seasons. This can easily be demonstrated by
carrying a globe around a central object representing the sun,
and by rotating the axis one can maintain the same inclination
but keep the vertical ray continually at the equator or at any
other circle within the tropics. In order to get the shifting of the
vertical ray and change of seasons which now obtain, the axis
must constantly point in the same direction, and its position at
one time be parallel to its position at any other time. This is
called the parallelism of the earth’s axis.

That the earth’s axis has a very slow rotary motion, a slight
periodic “nodding” which varies its inclination toward the plane
of the ecliptic, and also irregular motions of diverse character,
need not confuse us here, as they are either so minute as to
require very delicate observations to determine them, or so slow
as to require many years to show a change. These three motions
of the axis are discussed in the Appendix under “Precession of
the Equinoxes,” “Nutation of the Poles,” and “Wandering of the
Poles” (p. 285).

Experiments with the Gyroscope. The gyroscope,
probably familiar to most persons, admirably illustrates the
causes of the parallelism of the earth’s axis. A disk, supported
in a ring, is rapidly whirled, and the rotation tends to keep the
axis of the disk always pointing in the same direction. If the
ring be held in the hands and carried about, the disk rapidly
rotating, it will be discovered that any attempt to change the
direction of the axis will meet with resistance. This is shown in
the simple fact that a rapidly rotating top remains upright and
is not easily tipped over; and, similarly, a bicycle running at a
rapid rate remains erect, the rapid motion of the wheel (or top)
giving the axis a tendency to remain in the same plane.
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The gyroscope shown in Figure 46∗ is one used by Professor
R. S. Holway of the University of California. It was made by
mounting a six-inch sewing machine wheel on ball bearings in
the fork of an old bicycle. Its advantages over those commonly
used are its simplicity, the ball bearings, and its greater weight.

Fig. 46

Foucault Experiment. In 1852, the year after his famous
pendulum experiment, demonstrating the rotation of the earth,
M. Leon Foucault demonstrated the same facts by means of a
gyroscope so mounted that, although the earth turned, the axis
of the rotating wheel remained constantly in the same direction.

Comparative Length of Day and Night

Day’s Length at the Equinoxes. One half of the earth
being always in the sunlight, the circle of illumination is a great
circle. The vertical ray marks the center of the lighted half of the
surface of the earth. At the equinoxes the vertical ray is at the
equator, and the circle of illumination extends from pole to pole
bisecting every parallel. Since at this time any given parallel is
cut into two equal parts by the circle of illumination, one half of
it is in the sunlight, and one half of it is in darkness, and during
one rotation a point on a parallel will have had twelve hours day

∗Taken, by permission, from the Journal of Geography for February,
1904.
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and twelve hours night. (No allowance is made for refraction or
twilight.)

Day’s Length after the Equinoxes. After the vernal
equinox the vertical ray moves northward, and the circle of il-
lumination extends beyond the north pole but falls short of the
south pole. Then all parallels, save the equator, are unequally
divided by the circle of illumination, for more than half of each
parallel north of the equator is in the light, and more than half of
each parallel south of the equator is in darkness. Consequently,
while the vertical ray is north of the equator, or from March 21
to September 23, the days are longer than the nights north of the
equator, but are shorter than the nights south of the equator.

During the other half of the year, when the vertical ray is
south of the equator, these conditions are exactly reversed. The
farther the vertical ray is from the equator, the farther is the
circle of illumination extended beyond one pole and away from
the other pole, and the more unevenly are the parallels divided
by it; hence the days are proportionally longer in the hemisphere
where the vertical ray is, and the nights longer in the opposite
hemisphere. The farther from the equator, too, the greater is
the difference, as may be observed from Figure 50, page 163.
Parallels near the equator are always nearly bisected by the circle
of illumination, and hence day nearly equals night there the year
around.

Day’s Length at the Equator. How does the length of
day at the equator compare with the length of night? When
days are shorter south of the equator, if they are longer north of
it and vice versa, at the equator they must be of the same length.
The equator is always bisected by the circle of illumination, con-
sequently half of it is always in the sunlight. This proposition,
simple though it is, often needs further demonstration to be seen
clearly. It will be obvious if one sees:
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(a) A point on a sphere 180◦ in any direction from a point
in a great circle lies in the same circle.

(b) Two great circles on the same sphere must cross each
other at least once.

(c) A point 180◦ from this point of intersection common to
both great circles, will lie in each of them, and hence must be
a point common to both and a point of intersection. Hence two
great circles, extending in any direction, intersect each other a
second time 180◦ from the first point of crossing, or half way
around. The circle of illumination and equator are both great
circles and hence bisect each other. If the equator is always
bisected by the circle of illumination, half of it must always be
in the light and half in the dark.

Day’s Length at the Poles. The length of day at the
north pole is a little more than six months, since it extends
from March 21 until September 23, or 186 days. At the north
pole night extends from September 23 until March 21, and is
thus 179 days in length. It is just opposite at the south pole,
179 days of sunshine and 186 days of twilight and darkness. This
is only roughly stated in full days, and makes no allowance for
refraction of light or twilight.

Longest Days at Different Latitudes. The length of the
longest day, that is, from sunrise to sunset, in different latitudes
is as follows:

Lat. Day Lat. Day Lat. Day Lat. Day

0◦ 12 h. 25◦ 13 h. 34 m. 50◦ 16 h. 9 m. 70◦ 65 days
5◦ 12 h. 17 m. 30◦ 13 h. 56 m. 55◦ 17 h. 7 m. 75◦ 103 “

10◦ 12 h. 35 m. 35◦ 14 h. 22 m. 60◦ 18 h. 30 m. 80◦ 134 “
15◦ 12 h. 53 m. 40◦ 14 h. 51 m. 65◦ 21 h. 09 m. 85◦ 161 “
20◦ 13 h. 13 m. 45◦ 15 h. 26 m. 66◦ 33′ 24 h. 00 m. 90◦ 6 mos.
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The foregoing table makes no allowance for the fact that the
vertical ray is north of the equator for a longer time than it is
south of the equator, owing to the fact that we are farther from
the sun then, and consequently the earth revolves more slowly
in its orbit. No allowance is made for refraction, which lifts up
the rays of the sun when it is near the horizon, thus lengthening
days everywhere.

Refraction of Light

Fig. 47

The rays of light on entering the atmosphere are bent out
of straight courses. Whenever a ray of light enters obliquely a
medium of greater or of less density, the ray is bent out of its
course (Fig. 47). Such a change in direction is called refraction.
When a ray of light enters obliquely a medium of greater density,
as in passing through from the upper rarer atmosphere to the
lower denser layers, or from air into water, the rays are bent
in the direction toward a perpendicular to the surface or less
obliquely. This is called the first law of refraction. The second
law of refraction is the converse of this; that is, on entering
a rarer medium the ray is bent more obliquely or away from a
perpendicular to the surface. When a ray of light from an object
strikes the eye, we see the object in the direction taken by the
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ray as it enters the eye, and if the ray is refracted this will not be
the real position of the object. Thus a fish in the water (Fig. 48)
would see the adjacent boy as though the boy were nearly above
it, for the ray from the boy to the fish is bent downwards, and
the ray as it enters the eye of the fish seems to be coming from
a place higher up.

Fig. 48

Fig. 49

Amount of Refraction
Varies. The amount of re-
fraction depends upon the
difference in the density of
the media and the oblique-
ness with which the rays en-
ter. Rays entering perpen-
dicularly are not refracted at
all. The atmosphere differs
very greatly in density at dif-

ferent altitudes owing to its weight and elasticity. About one
half of it is compressed within three miles of the surface of the
earth, and at a height of ten miles it is so rare that sound can
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scarcely be transmitted through it. A ray of light entering the
atmosphere obliquely is thus obliged to traverse layers of air
of increasing density, and is refracted more and more as it ap-
proaches the earth.

Mean Refraction Table
(For Temperature 50◦ Fahr., barometric pressure 30 in.)

Apparent
Altitude.

Mean
Refraction.

Apparent
Altitude.

Mean
Refraction.

Apparent
Altitude.

Mean
Refraction.

0◦ 36′ 29.4′′ 8◦ 6′ 33.3′′ 26◦ 1′ 58.9′′

1 24 53.6 9 5 52.6 30 1 40.6
2 18 25.5 10 5 19.2 40 1 9.4
3 14 25.1 12 4 27.5 50 0 48.9
4 11 44.4 14 3 49.5 60 0 33.6
5 9 52.0 16 3 20.5 70 0 21.2
6 8 28.0 18 2 57.5 80 0 10.3
7 7 23.8 22 2 23.3 90 0 00.0

Effect of Refraction on Celestial Altitudes. Thus, re-
fraction increases the apparent altitudes of all celestial objects
excepting those at the zenith (Fig. 49). The amount of refrac-
tion at the horizon is ordinarily 36′ 29′′; that is to say, a star
seen on the horizon is in reality over one half a degree below the
horizon. The actual amount of refraction varies with the tem-
perature, humidity, and pressure of the air, all of which affect
its density and which must be taken into consideration in accu-
rate calculations. Since the width of the sun as seen from the
earth is about 32′, when the sun is seen just above the horizon
it actually is just below it, and since the sun passes one degree
in about four minutes, the day is thus lengthened about four
minutes in the latitudes of the United States and more in higher
latitudes. This accounts for the statement in almanacs as to
the exact length of the day at the equinoxes. Theoretically the
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day is twelve hours long then, but practically it is a few minutes
longer. Occasionally there is an eclipse of the moon observed
just before the sun has gone down. The earth is exactly be-
tween the sun and the moon, but because of refraction, both
sun and moon are seen above the horizon.

The sun and moon often appear flattened when near the
horizon, especially when seen through a haze. This apparent
flattening is due to the fact that rays from the lower portion are
more oblique than those from the upper portion, and hence it is
apparently lifted up more than the upper portion.

Twilight

The atmosphere has the peculiar property of reflecting and
scattering the rays of light in every direction. Were not this
the case, no object would be visible out of the direct sunshine,
shadows would be perfectly black, our houses, excepting where
the sun shone, would be perfectly dark, the blue sky would dis-
appear and we could see the stars in the day time just as well
as at night. Because of this diffusion of light, darkness does not
immediately set in after sunset, for the rays shining in the upper
air are broken up and reflected to the lower air. This, in brief,
is the explanation of twilight. There being practically no atmo-
sphere on the moon there is no twilight there. These and other
consequences resulting from the lack of an atmospheric envelope
on the moon are described on p. 263.

Length of Twilight. Twilight is considered to last while
the sun is less than about 18◦ below the horizon, though the
exact distance varies somewhat with the condition of the atmo-
sphere, the latitude, and the season of the year. There is thus
a twilight zone immediately beyond the circle of illumination,
and outside of this zone is the true night. Figure 50 represents



SEASONS 163

these three portions: (1) the hemisphere receiving direct rays
(slightly more than a hemisphere owing to refraction), (2) the
belt 18◦ from the circle of illumination, and (3) the segment
in darkness—total save for starlight or moonlight. The height
of the atmosphere is, of course, greatly exaggerated. The atmo-
sphere above the line AB receives direct rays of light and reflects
and diffuses them to the lower layers of atmosphere.

Fig. 50

Twilight Period
Varies with Sea-
son. It will be seen
from Figure 50 that
the fraction of a par-
allel in the twilight
zone varies greatly
with the latitude and
the season. At the
equator the sun drops

down at right angles to the horizon, hence covers the 18◦ twilight

zone in
18

360
of a day or one hour and twelve minutes. This re-

mains practically the same the year around there. In latitudes of
the United States, the twilight averages one and one-half hours
long, being greater in midsummer. At the poles, twilight lasts
about two and one-half months.

Twilight Long in High Latitudes. The reason why the
twilight lasts so long in high latitudes in the summer will be ap-
parent if we remember that the sun, rising north of east, swing-
ing slantingly around and setting to the north of west, passes
through the twilight zone at the same oblique angle. At latitude
48◦ 33′ the sun passes around so obliquely at the summer sol-
stice that it does not sink 18◦ below the horizon at midnight, and
stays within the twilight zone from sunset to sunrise. At higher
latitudes on that date the sun sinks even less distance below the
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horizon. For example, at St. Petersburg, latitude 59◦ 56′ 30′′,
the sun is only 6◦ 36′ 25′′ below the horizon at midnight June 21
and it is light enough to read without artificial light. From 66◦

to the pole the sun stays entirely above the horizon throughout
the entire summer solstice, that being the boundary of the “land
of the midnight sun.”

Twilight Near the Equator. “Here comes science now
taking from us another of our cherished beliefs—the wide su-
perstition that in the tropics there is almost no twilight, and
that the ‘sun goes down like thunder out o’ China ’crosst the
bay.’ Every boy’s book of adventure tells of travelers overtaken
by the sudden descent of night, and men of science used to bear
out these tales. Young, in his ‘General Astronomy,’ points out
that ‘at Quito the twilight is said to be at best only twenty
minutes.’ In a monograph upon ‘The Duration of Twilight in
the Tropics,’ S. I. Bailey points out, by carefully verified obser-
vation and experiments, that the tropics have their fair share
of twilights. He says: ‘Twilight may be said to last until the
last bit of illuminated sky disappears from the western horizon.
In general it has been found that this occurs when the sun has
sunk about eighteen degrees below the horizon. . . . Arequipa,
Peru, lies within the tropics, and has an elevation of 8, 000 feet,
and the air is especially pure and dry, and conditions appear to
be exceptionally favorable for an extremely short twilight. On
Sunday, June 25, 1899, the following observations were made
at the Harvard Astronomical Station, which is situated here:
The sun disappeared at 5:30 p.m., local mean time. At 6 p.m.,
thirty minutes after sunset, I could read ordinary print with
perfect ease. At 6:30 p.m. I could see the time readily by an
ordinary watch. At 6:40 p.m., seventy minutes after sunset, the
illuminated western sky was still bright enough to cast a faint
shadow of an opaque body on a white surface. At 6:50 p.m.,
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one hour and twenty minutes after sunset, it had disappeared.
On August 27, 1899, the following observations were made at
Vincocaya. The latitude of this place is about sixteen degrees
south and the altitude 14, 360 feet. Here it was possible to read
coarse print forty-seven minutes after sunset, and twilight could
be seen for an hour and twelve minutes after the sun’s disap-
pearance.’ So the common superstition about no twilight in the
tropics goes to join the William Tell myth.”—Harper’s Weekly,
April 5, 1902.

Twilight Near the Pole. “It may be interesting to relate
the exact amount of light and darkness experienced during a
winter passed by me in the Arctic regions within four hundred
and sixty miles of the Pole.

“From the time of crossing the Arctic circle until we estab-
lished ourselves in winter quarters on the 3d of September, we
rejoiced in one long, continuous day. On that date the sun set
below the northern horizon at midnight, and the daylight hours
gradually decreased until the sun disappeared at noon below the
southern horizon on the 13th of October.

“From this date until the 1st of March, a period of one hun-
dred and forty days, we never saw the sun; but it must not be
supposed that because the sun was absent we were living in total
darkness, for such was not the case. During the month follow-
ing the disappearance of the sun, and for a month prior to its
return, we enjoyed for an hour, more or less, on either side of
noon, a glorious twilight; but for three months it may be said
we lived in total darkness, although of course on fine days the
stars shone out bright and clear, rendered all the more brilliant
by the reflection from the snow and ice by which we were sur-
rounded, while we also enjoyed the light from the moon in its
regular lunations.

“On the 21st of December, the shortest day in the year, the
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sun at our winter quarters was at noon twenty degrees below
the horizon. I mention this because the twilight circle, or, to
use its scientific name, the crepusculum, when dawn begins and
twilight ends, is determined when the sun is eighteen degrees
below the horizon.

“On our darkest day it was not possible at noon to read even
the largest-sized type.”—Admiral A. H. Markham, R. N., in the
Youth’s Companion, June 22, 1899.

Effect of the Shifting Rays of the Sun.

Fig. 51

Vertical Rays and Insolation. The more nearly verti-
cal the rays of the sun are the greater is the amount of heat
imparted to the earth at a given place, not because a vertical
ray is any warmer, but because more rays fall over a given area.
In Figure 51 we notice that more perpendicular rays extend
over a given area than slanting ones. We observe the morning
and evening rays of the sun, even when falling perpendicularly
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upon an object, say through a convex lens or burning glass, are
not so warm as those at midday. The reason is apparent from
Figure 52, the slanting rays traverse through more of the atmo-
sphere.

Fig. 52

At the summer sol-
stice the sun’s rays
are more nearly verti-
cal over Europe and the
United States than at
other times. In ad-
dition to the greater
amount of heat re-
ceived because of the
less oblique rays, the
days are longer than nights and consequently more heat is re-
ceived during the day than is radiated off at night. This increas-
ing length of day time greatly modifies the climate of regions far
to the north. Here the long summer days accumulate enough
heat to mature grain crops and forage plants. It is interesting
to note that in many northern cities of the United States the
maximum temperatures are as great as in some southern cities.

How the Atmosphere is Heated. To understand how
the atmosphere gets its heat we may use as an illustration the pe-
culiar heat-receiving and heat-transmitting properties of glass.
We all know that glass permits heat rays from the sun to pass
readily through it, and that the dark rays of heat from the stove
or radiator do not readily pass through the glass. Were it not for
this fact it would be no warmer in a room in the sunshine than
in the shade, and if glass permitted heat to escape from a room
as readily as it lets the sunshine in we should have to dispense
with windows in cold weather. Stating this in more technical
language, transparent glass is diathermanous to luminous heat
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rays but athermanous to dark rays. Dry air possesses this same
peculiar property and permits the luminous rays from the sun
to pass readily through to the earth, only about one fourth be-
ing absorbed as they pass through. About three fourths of the
heat the atmosphere receives is that which is radiated back as
dark rays from the earth. Being athermanous to these rays the
heat is retained a considerable length of time before it at length
escapes into space. It is for this reason that high altitudes are
cold, the atmosphere being heated from the bottom upwards.

Maximum Heat Follows Summer Solstice. Because of
these conditions and of the convecting currents of air, and, to
a very limited extent, of water, the heat is so distributed and
accumulated that the hottest weather is in the month following
the summer solstice (July in the northern hemisphere, and Jan-
uary in the southern); conversely, the coldest month is the one
following the winter solstice. This seasonal variation is precisely
parallel to the diurnal change. At noon the sun is highest in the
sky and pours in heat most rapidly, but the point of maximum
heat is not usually reached until the middle of the afternoon,
when the accumulated heat in the atmosphere begins gradually
to disappear.

Astronomical and Climatic Seasons. Astronomically
there are four seasons each year: spring, from the vernal equinox
to the summer solstice; summer, from the summer solstice to the
autumnal equinox; autumn, from the autumnal equinox to the
winter solstice; winter, from the winter solstice to the spring
equinox. As treated in physical geography, seasons vary greatly
in number and length with differing conditions of topography
and position in relation to winds, mountains, and bodies of wa-
ter. In most parts of continental United States and Europe
there are four fairly marked seasons: March, April, and May are
called spring months; June, July, and August, summer months;
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September, October, and November, autumn months; and De-
cember, January, and February, winter months. In the southern
states and in western Europe the seasons just named begin ear-
lier. In California and in most tropical regions, there are two
seasons, one wet and one dry. In northern South America there
are four seasons,—two wet and two dry.

From the point of view of mathematical geography there are
four seasons having the following lengths in the northern hemi-
sphere:

Spring: Vernal equinox . . . . . . . . March 21

Summer solstice . . . . . . . June 21

}
92 days

Summer: Summer solstice . . . . . . . June 21
Autumnal equinox . . . . Sept. 23

}
94 days

 Summer half
186 days

Autumn: Autumnal equinox . . . . Sept. 23

Winter solstice . . . . . . . . Dec. 22

}
90 days

Winter: Winter solstice . . . . . . . . Dec. 22
Vernal equinox . . . . . . . . March 21

}
89 days

 Winter half
179 days

Hemispheres Unequally Heated. For the southern
hemisphere, spring should be substituted for autumn, and sum-
mer for winter. From the foregoing it will be seen that the
northern hemisphere has longer summers and shorter winters
than the southern hemisphere. Since the earth is in perihelion,
nearest the sun, December 31, the earth as a whole then receives
more heat than in the northern summer when the earth is far-
ther from the sun. Though the earth as a whole must receive
more heat in December than in July, the northern hemisphere is
then turned away from the sun and has its winter, which is thus
warmer than it would otherwise be. The converse is true of the
northern summer. The earth then being in aphelion receives
less heat each day, but the northern hemisphere being turned
toward the sun then has its summer, cooler than it would be



SEASONS 170

were this to occur when the earth is in perihelion. It is well
to remember, however, that while the earth as a whole receives
more heat in the half year of perihelion, there are only 179 days
in that portion, and in the cooler portion there are 186 days, so
that the total amount of heat received in each portion is exactly
the same. (See Kepler’s Second Law, p. 283.)

Determination of Latitude from Sun’s Meridian
Altitude.

In Chapter II we learned how latitude is determined by as-
certaining the altitude of the celestial pole. We are now in a
position to see how this is commonly determined by reference to
the noon sun.

Relative Positions of Celestial Equator and Celes-
tial Pole. The meridian altitude of the celestial equator at a
given place and the altitude of the celestial pole at that place are
complementary angles, that is, together they equal 90◦. Though
when understood this proposition is exceedingly simple, students
sometimes only partially comprehend it, and the later conclu-
sions are consequently hazy.

Fig. 53

1. The celestial equator is always 90◦ from the celestial pole.
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2. An arc of the celestial sphere from the northern horizon
through the zenith to the southern horizon comprises 180◦.

3. Since there are 90◦ from the pole to the equator, from the
northern horizon to the pole and from the southern horizon to
the equator must together equal 90◦.

One of the following statements is incorrect. Find which one
it is.

a. In latitude 30◦ the altitude of the celestial pole is 30◦ and
that of the celestial equator is 60◦.

b. In latitude 36◦ the altitude of the celestial equator is 54◦.
c. In latitude 48◦ 20′ the altitude of the celestial equator is

41◦ 40′.
d. If the celestial equator is 51◦ above the southern horizon,

the celestial pole is 39◦ above the northern horizon.
e. If the altitude of the celestial equator is 49◦ 31′, the lati-

tude must be 40◦ 29′.
f. If the altitude of the celestial equator is 21◦ 24′, the lati-

tude is 69◦ 36′.
On March 21 the sun is on the celestial equator.∗ If on this

day the sun’s noon shadow indicates an altitude of 40◦, we know
that is the altitude of the celestial equator, and this subtracted
from 90◦ equals 50◦, the latitude of the place. On September 23
the sun is again on the celestial equator, and its noon altitude
subtracted from 90◦ equals the latitude of the place where the
observation is made.

∗Of course, the center of the sun is not on the celestial equator all day,
it is there but the moment of its crossing. The vernal equinox is the point
of crossing, but we commonly apply the term to the day when the passage
of the sun’s center across the celestial equator occurs. During this day the
sun travels northward less than 24′, and since its diameter is somewhat
more than 33′ some portion of the sun’s disk is on the celestial equator the
entire day.
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Declination of the Sun. The declination of the sun or
of any other heavenly body is its distance north or south of the
celestial equator. The analemma, shown on page 128, gives the
approximate declination of the sun for every day in the year. The
Nautical Almanac, Table 1, for any month gives the declination
very exactly (to the tenth of a second) at apparent sun noon
at the meridian of Greenwich, and the difference in declination
for every hour, so the student can get the declination at his
own longitude for any given day very exactly from this table.
Without good instruments, however, the proportion of error of
observation is so great that the analemma will answer ordinary
purposes.

Fig. 54

How to Determine the
Latitude of Any Place. By
ascertaining the noon altitude
of the sun, and referring to the
analemma or a declination ta-
ble, one can easily compute the
latitude of a place.

1. First determine when the
sun will be on your meridian
and its shadow strike a north-
south line. This is discussed on
p. 129.

2. By some device mea-
sure the altitude of the sun
at apparent noon; i.e., when
the shadow is north. A card-
board placed level under a win-
dow shade, as illustrated in
Figure 54, will give surprisingly

accurate results; a carefully mounted quadrant (see Fig. 55),
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however, will give more uniformly successful measurements. An-
gle A (Fig. 54), the shadow on the quadrant, is the altitude of
the sun. This is apparent from Figure 56, since xy is the line to
the sun, and angle B = angle A.

Fig. 55

3. Consult the
analemma and ascer-
tain the declination of
the sun. Add this
to the sun’s altitude if
south declination, and
subtract it if north
declination. If you
are south of the equa-
tor you must subtract
declination south and
add declination north.
(If the addition makes
the altitude of the
sun more than 90◦,
subtract 90◦ from it,
as under such circum-
stances you are north
of the equator if it is a
south shadow, or south of the equator if it is a north shadow.
This will occur only within the tropics.)

Fig. 56

4. Subtract the result of
step three from 90◦, and the re-
mainder is your latitude.

Example. For example,
say you are at San Francisco,
October 23, and wish to ascer-
tain your latitude.
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1. Assume you have a north-
south line. (The sun’s shadow
will cross it on that date at 11 h.
54 m. 33 s., a.m., Pacific time.)

2. The altitude of the sun
when the shadow is north is found to be 41◦.

3. The declination is 11◦ S. Adding we get 52◦, the altitude
of the celestial equator.

4. 90◦ − 52◦ equals 38◦, latitude of place of observer.
Conversely, knowing the latitude of a place, one can ascertain

the noon altitude of the sun at any given day. From the ana-
lemma and the table of latitudes many interesting problems will
suggest themselves, as the following examples illustrate.

Fig. 57. Taking the
altitude of the sun at

sea

Problem. 1. How high above the
horizon does the sun get at St. Peters-
burg on December 22?

Solution. The latitude of St. Pe-
tersburg is 59◦ 56′ N., hence the altitude
of the celestial equator is 30◦ 4′. The
declination of the sun December 22 is
23◦ 27′ S. Since south is below the ce-
lestial equator at St. Petersburg, the al-
titude of the sun is 30◦ 4′ less 23◦ 27′,
or 6◦ 37′.

Problem. 2. At which city is the
noon sun higher on June 21, Chicago or
Quito?

Solution. The latitude of Chicago
is 41◦ 50′, and the altitude of the celes-
tial equator, 48◦ 10′. The declination of
the sun June 21 is 23◦ 27′ N. North be-
ing higher than the celestial equator at
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Chicago, the noon altitude of the sun is 48◦ 10′ plus 23◦ 27′, or
71◦ 37′.

The latitude of Quito being 0◦, the altitude of the celestial
equator is 90◦. The declination of the sun being 23◦ 27′ from
this, the sun’s noon altitude must be 90◦ less 23◦ 27′, or 66◦ 33′.
The sun is thus 5◦ 4′ higher at Chicago than at the equator on
June 21.

Latitude from Moon or Stars. With a more extended
knowledge of astronomy and mathematics and with suitable in-
struments, we might ascertain the position of the celestial equa-
tor in the morning or evening from the moon, planets, or stars
as well as from the sun. At sea the latitude is commonly as-
certained by making measurements of the altitudes of the sun
at apparent noon with the sextant. The declination tables are
used, and allowances are made for refraction and for the “dip”
of the horizon, and the resultant calculation usually gives the
latitude within about half a mile. At observatories, where the
latitude must be ascertained with the minutest precision possi-
ble, it is usually ascertained from star observations with a zenith
telescope or a “meridian circle” telescope, and is verified in many
ways.



CHAPTER IX

TIDES

Tides and the Moon. The regular rise and fall of the
level of the sea and the accompanying inflows and outflows of
streams, bays, and channels, are called tides. Since very ancient
times this action of the water has been associated with the moon
because of the regular interval elapsing between a tide and the
passage of the moon over the meridian of the place, and a some-
what uniform increase in the height of the tide when the moon
in its orbit around the earth is nearest the sun or is farthest from
it. This unquestioned lunar influence on the ocean has doubtless
been responsible as the basis for thousands of unwarranted as-
sociations of cause and effect of weather, vegetable growth, and
even human temperament and disease with phases of the moon
or planetary or astral conditions.

Other Periodic Ebbs and Flows. Since there are other
periodical ebbs and flows due to various causes, it may be well
to remember that the term tide properly applies only to the
periodic rise and fall of water due to unbalanced forces in the
attraction of the sun and moon. Other conditions which give
rise to more or less periodical ebbs and flows of the oceans, seas,
and great lakes are:

a. Variation in atmospheric pressure; low barometer gives
an uplift to water and high barometer a depression.

b. Variability in evaporation, rainfall and melting snows pro-

176
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duces changes in level of adjacent estuaries.
c. Variability in wind direction, especially strong and con-

tinuous seasonal winds like monsoons, lowers the level on the
leeward of coasts and piles it up on the windward side.

d. Earthquakes sometimes cause huge waves.
A few preliminary facts to bear in mind when considering

the causes of tides:

The Moon

Sidereal Month. The moon revolves around the earth in
the same direction that the earth revolves about the sun, from
west to east. If the moon is observed near a given star on one
night, twenty-four hours later it will be found, on the average,
about 13.2◦ to the eastward. To reach the same star a second
time it will require as many days as that distance is contained
times in 360◦ or about 27.3 days. This is the sidereal month,
the time required for one complete revolution of the moon.

Synodic Month. Suppose the moon is near the sun at
a given time, that is, in the same part of the celestial sphere.
During the twenty-fours hours following, the moon will creep
eastward 13.2◦ and the sun 1◦. The moon thus gains on the sun
each day about 12.2◦, and to get in conjunction with it a second
time it will take as many days as 12.2◦ is contained in 360◦ or
about 29.5 days. This is called a synodic (from a Greek word
meaning “meeting”) month, the time from conjunction with the
sun—new moon—until the next conjunction or new moon. The
term is also applied to the time from opposition or full moon
until the next opposition or full moon. If the phases of the
moon are not clearly understood it would be well to follow the
suggestions on this subject in the first chapter.
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Moon’s Orbit. The moon’s orbit is an ellipse, its nearest
point to the earth is called perigee (from peri, around or near;
and ge, the earth) and is about 221, 617 miles. Its most distant
point is called apogee (from apo, from; and ge, earth) and is
about 252, 972 miles. The average distance of the moon from
the earth is 238, 840 miles. The moon’s orbit is inclined to the
ecliptic 5◦ 8′ and thus may be that distance farther north or
south than the sun ever gets.

The new moon is said to be in conjunction with the sun,
both being on the same side of the earth. If both are then in
the plane of the ecliptic an eclipse of the sun must take place.
The moon being so small, relatively (diameter 2, 163 miles), its
shadow on the earth is small and thus the eclipse is visible along
a relatively narrow path.

The full moon is said to be in opposition to the sun, it being
on the opposite side of the earth. If, when in opposition, the
moon is in the plane of the ecliptic it will be eclipsed by the
shadow of the earth. When the moon is in conjunction or in
opposition it is said to be in syzygy.

Gravitation

Laws Restated. This force was discussed in the first chap-
ter where the two laws of gravitation were explained and illus-
trated. The term gravity is applied to the force of gravitation
exerted by the earth (see Appendix, p. 278). Since the explana-
tion of tides is simply the application of the laws of gravitation
to the earth, sun, and moon, we may repeat the two laws:

First law: The force of gravitation varies directly as the mass
of the object.

Second law: The force of gravitation varies inversely as the
square of the distance of the object.
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Sun’s Attraction Greater, but Moon’s Tide-Produc-
ing Influence Greater. There is a widely current notion
that since the moon causes greater tides than the sun, in the
ratio of 5 to 2, the moon must have greater attractive influence
for the earth than the sun has. Now this cannot be true, else
the earth would swing around the moon as certainly as it does
around the sun. Applying the laws of gravitation to the problem,
we see that the sun’s attraction for the earth is approximately
176 times that of the moon.∗

The reasoning which often leads to the erroneous conclusion
just referred to, is probably something like this:

Major premise: Lunar and solar attraction causes tides.
Minor premise: Lunar tides are higher than solar tides.
Conclusion: Lunar attraction is greater than solar attrac-

tion.
We have just seen that the conclusion is in error. One or both

of the premises must be in error also. A study of the causes of
tides will set this matter right.

Causes of Tides†

It is sometimes erroneously stated that wind is caused by
heat. It would be more nearly correct to say that wind is caused
by the unequal heating of the atmosphere. Similarly, it is not
the attraction of the sun and moon for the earth that causes
tides, it is the unequal attraction for different portions of the
earth that gives rise to unbalanced forces which produce tides.

∗For the method of demonstration, see p. 19. The following data are
necessary: Earth’s mass, 1; sun’s mass, 330, 000; moon’s mass, 1

81 ; distance
of earth to sun, 93, 000, 000 miles; distance of earth to moon, 239, 000 miles.

†A mathematical treatment will be found in the Appendix.
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Fig. 58

Portions of the earth toward the moon or sun are 8, 000 miles
nearer than portions on the side of the earth opposite the at-
tracting body, hence the force of gravitation is slightly different
at those points as compared with other points on the earth’s
surface. It is obvious, then, that at A and B (Fig. 58) there are
two unbalanced forces, that is, forces not having counterparts
elsewhere to balance them. At these two sides, then, tides are
produced, since the water of the oceans yields to the influence
of these forces. That this may be made clear, let us examine
these tides separately.

The Tide on the Side of the Earth Toward the Moon.
If A is 239, 000 miles from the moon, B is 247, 000 miles away
from it, the diameter of the earth being AB (Fig. 58). Now the
attraction of the moon at A, C, and D, is away from the center
of the earth and thus lessens the force of gravity at those points,
lessening more at A since A is nearer and the moon’s attraction
is exerted in a line directly opposite to that of gravity. The
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water, being fluid and easily moved, yields to this lightening of
its weight and tends to “pile up under the moon.” We thus have
a tide on the side of the earth toward the moon.

Tidal Wave Sweeps Westward. As the earth turns on its
axis it brings successive portions of the earth toward the moon
and this wave sweeps around the globe as nearly as possible
under the moon. The tide is retarded somewhat by shallow
water and the configuration of the coast and is not found at
a given place when the moon is at meridian height but lags
somewhat behind. The time between the passage of the moon
and high tide is called the establishment of the port. This time
varies greatly at different places and varies somewhat at different
times of the year for the same place.

Solar Tides Compared with Lunar Tides. Solar tides
are produced on the side of the earth toward the sun for ex-
actly the same reason, but because the sun is so far away its
attraction is more uniform upon different parts of the earth.
If A is 93, 000, 000 miles from the sun, B is 93, 008, 000 miles
from the sun. The ratio of the squares of these two numbers is
much nearer unity than the ratio of the numbers representing
the squares of the distances of A and B from the moon. If the
sun were as near as the moon, the attraction for A would be
greater by an enormous amount as compared with its attrac-
tion for B. Imagine a ball made of dough with lines connected
to every particle. If we pull these lines uniformly the ball will
not be pulled out of shape, however hard we pull. If, however,
we pull some lines harder than others, although we pull gently,
will not the ball be pulled out of shape? Now the pull of the
sun, while greater than that of the moon, is exerted quite evenly
throughout the earth and has but a slight tide-producing power.
The attraction of the moon, while less than that of the sun, is
exerted less evenly than that of the sun and hence produces
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greater tides.
It has been demonstrated that the tide-producing force of a

body varies inversely as the cube of its distance and directly as
its mass. Applying this to the moon and sun we get:

Let T = sun’s tide-producing power,

and t = moon’s tide-producing power.

The sun’s mass is 26, 500, 000 times the moon’s mass,

∴ T : t : : 26, 500, 000 : 1.

But the sun’s distance from the earth is 390 times the moon’s
distance,

∴ T : t : :
1

3903
: 1.

Combining the two proportions, we get,

T : t : : 2 : 5.

It has been shown that, owing to the very nearly equal at-
traction of the sun for different parts of the earth, a body’s
weight is decreased when the sun is overhead, as compared with

the weight six hours from then, by only
1

20, 000, 000
; that is, an

object weighing a ton varies in weight 3
4

of a grain from sunrise
to noon. In case of the moon this difference is about 21

2
times

as great, or nearly 2 grains.
Tides on the Moon. It may be of interest to note that

the effect of the earth’s attraction on different sides of the moon
must be twenty times as great as this, so it is thought that
when the moon was warmer and had oceans∗ the tremendous

∗The presence of oceans or an atmosphere is not essential to the theory,
indeed, is not usually taken into account. It seems most certain that the
earth is not perfectly rigid, and the theory assumes that the planets and
the moon have sufficient viscosity to produce body tides.
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tidal waves swinging around in the opposite direction to its ro-
tation caused a gradual retardation of its rotation until, as ages
passed, it came to keep the same face toward the earth. The
planets nearest the sun, Mercury and Venus, probably keep the
same side toward the sun for a similar reason. Applying the
same reasoning to the earth, it is believed that the period of
rotation must be gradually shortening, though the rate seems to
be entirely inappreciable.

Fig. 59

The Tide on the Side of the Earth Opposite the
Moon. A planet revolving around the sun, or a moon about
a planet, takes a rate which varies in a definite mathematical
ratio to its distance (see p. 284). The sun pulls the earth toward
itself about one ninth of an inch every second. If the earth were
nearer, its revolutionary motion would be faster. In case of plan-
ets having several satellites it is observed that the nearer ones
revolve about the planet faster than the outer ones (see p. 255).
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Now if the earth were divided into three separate portions, as
in Figure 59, the ocean nearest the sun, the earth proper, and
the ocean opposite the sun would have three separate motions
somewhat as the dotted lines show. Ocean A would revolve
faster than earth C or ocean B. If these three portions were
connected by weak bands their stretching apart would cause
them to separate entirely. The tide-producing power at B is
this tendency it has to fall away, or more strictly speaking, to
fall toward the sun less rapidly than the rest of the earth.

Moon and Earth Revolve About a Common Center
of Gravity. What has been said of the earth’s annual rev-
olution around the sun applies equally to the earth’s monthly
swing around the center of gravity common to the earth and the
moon. We commonly say the earth revolves about the sun and
the moon revolves about the earth. Now the earth attracts the
sun, in its measure, just as truly as the sun attracts the earth;
and the moon attracts the earth, in the ratio of its mass, as the
earth attracts the moon. Strictly speaking, the earth and sun
revolve around their common center of gravity and the moon
and earth revolve around their center of gravity. It is as if the
earth were connected with the moon by a rigid bar of steel (that
had no weight) and the two, thus firmly bound at the ends of
this rod 239, 000 miles long, were set spinning. If both were of
the same weight, they would revolve about a point equidistant
from each. The weight of the moon being somewhat less than
1
81

that of the earth, this center of gravity, or point of balance,
is only about 1, 000 miles from the earth’s center.

Spring Tides. When the sun and moon are in conjunc-
tion, both on the same side of the earth, the unequal attraction
of both for the side toward them produces an unusually high
tide there, and the increased centrifugal force at the side oppo-
site them also produces an unusual high tide there. Both solar
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tides and both lunar tides are also combined when the sun and
moon are in opposition. Since the sun and moon are in syzygy
(opposition or conjunction) twice a month, high tides, called
spring tides, occur at every new moon and at every full moon.
If the moon should be in perigee, nearest the earth, at the same
time it was new or full moon, spring tides would be unusually
high.

Neap Tides. When the moon is at first or last quarter—
moon, earth, and sun forming a right angle—the solar tides
occur in the trough of the lunar tides and they are not as low as
usual, and lunar tides occurring in the trough of the solar tides
are not so high as usual.

Fig. 60. Co-tidal lines

Course of the Tidal Wave. While the tidal wave is gen-
erated at any point under or opposite the sun or moon, it is out
in the southern Pacific Ocean that the absence of shallow water
and land areas offers least obstruction to its movement. Here
a general lifting of the ocean occurs, and as the earth rotates
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the lifting progresses under or opposite the moon or sun from
east to west. Thus a huge wave with crest extending north and
south starts twice a day off the western coast of South America.
The general position of this crest is shown on the co-tidal map,
one line for every hour’s difference in time. The tidal wave is
retarded along its northern extremity, and as it sweeps along the
coast of northern South America and North America, the wave
assumes a northwesterly direction and sweeps down the coast of
Asia at the rate of about 850 miles per hour. The southern por-
tion passes across the Indian Ocean, being retarded in the north
so that the southern portion is south of Africa when the north-
ern portion has just reached southern India. The time it has
taken the crest to pass from South America to south Africa is
about 30 hours. Being retarded by the African coast, the north-
ern portion of the wave assumes an almost northerly direction,
sweeping up the Atlantic at the rate of about 700 miles an hour.
It moves so much faster northward in the central Atlantic than
along the coasts that the crest bends rapidly northward in the
center and strikes all points of the coast of the United States
within two or three hours of the same time. To reach France the
wave must swing around Scotland and then southward across
the North Sea, reaching the mouth of the Seine about 60 hours
after starting from South America. A new wave being formed
about every 12 hours, there are thus several of these tidal waves
following one another across the oceans, each slightly different
from the others.

While the term “wave” is correctly applied to this tidal move-
ment it is very liable to leave a wrong impression upon the minds
of those who have never seen the sea. When thinking of this tidal
wave sweeping across the ocean at the rate of several hundred
miles per hour, we should also bear in mind its height and length
(by height is meant the vertical distance from the trough to the
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crest, and by length the distance from crest to crest). Out in mi-
docean the height is only a foot or two and the length is hundreds
of miles. Since the wave requires about three hours to pass from
trough to crest, it is evident that a ship at sea is lifted up a foot
or so during six hours and then as slowly lowered again, a mo-
tion not easily detected. On the shore the height is greater and
the wave-length shorter, for about six hours the water gradually
rises and then for about six hours it ebbs away again. Breakers,
bores, and unusual tide phenomena are discussed on p. 188.

Time Between Successive Tides. The time elapsing
from the passage of the moon across a meridian until it crosses
the same meridian again is 24 hours 51 min.∗ This, in contradis-
tinction to the solar and sidereal day, may be termed a lunar day.
It takes the moon 27.3 solar days to revolve around the earth, a
sidereal month. In one day it journeys 10

273
of a day or 51 min-

utes. So if the moon was on a given meridian at 10 a.m., on
one day, by 10 a.m. the next day the moon would have moved
12.2◦ eastward, and to direct the same meridian a second time
toward the moon it takes on the average 51 minutes longer than
24 hours, the actual time varying from 38 m. to 1 h. 6 m. for
various reasons. The tides of one day, then, are later than the
tides of the preceding day by an average interval of 51 minutes.

In studying the movement of the tidal wave, we observed
that it is retarded by shallow water. The spring tides being
higher and more powerful move faster than the neap tides, the
interval on successive days averaging only 38 minutes. Neap
tides move slower, averaging somewhat over an hour later from

∗More precisely, 24 h. 50 m. 51 s. This is the mean lunar day, or
interval between successive passages of the moon over a given meridian.
The apparent lunar day varies in length from 24 h. 38 m. to 25 h. 5 m. for
causes somewhat similar to those producing a variation in the length of the
apparent solar day.
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Fig. 61. Low tide

day to day. The establishment of a port, as previously explained,
is the average time elapsing between the passage of the moon
and the high tide following it. The establishment for Boston
is 11 hours, 27 minutes, although this varies half an hour at
different times of the year.

Height of Tides. The height of the tide varies greatly in
different places, being scarcely discernible out in midocean, av-
eraging only 11

2
feet in the somewhat sheltered Gulf of Mexico,

but averaging 37 feet in the Bay of Fundy. The shape and situ-
ation of some bays and mouths of rivers is such that as the tidal
wave enters, the front part of the wave becomes so steep that
huge breakers form and roll up the bay or river with great speed.
These bores, as they are called, occur in the Bay of Fundy, in
the Hoogly estuary of the Ganges, in that of the Dordogne, the
Severn, the Elbe, the Weser, the Yangtze, the Amazon, etc.

Bore of the Amazon. A description of the bore of the
Amazon, given by La Condamine in the eighteenth century, gives
a good idea of this phenomenon. “During three days before the
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new and full moons, the period of the highest tides, the sea, in-
stead of occupying six hours to reach its flood, swells to its high-
est limit in one or two minutes. The noise of this terrible flood is
heard five or six miles, and increases as it approaches. Presently
you see a liquid promontory, 12 or 15 feet high, followed by an-
other, and another, and sometimes by a fourth. These watery
mountains spread across the whole channel, and advance with
a prodigious rapidity, rending and crushing everything in their
way. Immense trees are instantly uprooted by it, and sometimes
whole tracts of land are swept away.”



CHAPTER X

MAP PROJECTIONS

Fig. 62

To represent the curved
surface of the earth, or any
portion of it, on the plane
surface of a map, involves se-
rious mathematical difficul-
ties. Indeed, it is impos-
sible to do so with perfect
accuracy. The term pro-
jection, as applied to the
representation on a plane
of points corresponding to
points on a globe, is not
always used in geography
in its strictly mathematical
sense, but denotes any rep-
resentation on a plane of
parallels and meridians of
the earth.

190
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The Orthographic Projection

This is, perhaps, the most readily understood projection,
and is one of the oldest known, having been used by the ancient
Greeks for celestial representation. The globe truly represents
the relative positions of points on the earth’s surface. It might
seem that a photograph of a globe would correctly represent
on a flat surface the curved surface of the earth. A glance at
Figure 62, from a photograph of a globe, shows the parallels
near the equator to be farther apart than those near the poles.
This is not the way they are on the globe. The orthographic
projection is the representation of the globe as a photograph
would show it from a great distance.

Fig. 63. Equatorial orthographic
projection

Parallels and
Meridians Farther
Apart in Center
of Map. Viewing
a globe from a dis-
tance, we observe
that parallels and
meridians appear
somewhat as repre-
sented in Figure 63,
being farther apart
toward the center and
increasingly nearer
toward the outer por-
tion. Now it is obvious
from Figure 64 that
the farther the eye is
placed from the globe, the less will be the distortion, although
a removal to an infinite distance will not obviate all distortion.
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Thus the eye at x sees lines to E and F much nearer together
than lines to A and B, but the eye at the greater distance sees
less difference.

Fig. 64

When the rays are perpendicular to the axis, as in Figure 65,
the parallels at A, B, C, D, and E will be seen on the tangent
plane XY at A′, B′, C ′, D′, and E ′. While the distance from A
to B on the globe is practically the same as the distance from D
to E, to the distant eye A′ and B′ will appear much nearer
together than D′ and E ′. Since A (or A′) represents a pole
and E (or E ′) the equator, line XY is equivalent to a central
meridian and points A′, B′, etc., are where the parallels cross it.

How to Lay off an Equatorial Orthographic Projec-
tion. If parallels and meridians are desired for every 15◦, divide
the circle into twenty-four equal parts; any desired number of
parallels and meridians, of course, may be drawn. Now connect
opposite points with straight lines for parallels (as in Fig. 65).
The reason why parallels are straight lines in the equatorial or-
thographic projection is apparent if one remembers that if the
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eye is in the plane of the equator and is at an infinite distance,
the parallels will lie in practically the same plane as the eye.

Fig. 65

To lay off the
meridians, mark on
the equator points
exactly as on the
central meridian where
parallels intersect it.
The meridians may
now be made as arcs of
circles passing through
the poles and these
points. With one foot
of the compasses in the
equator, or equator
extended, place the other so that it will pass through the poles
and one of these points. After a little trial it will be easy to lay
off each of the meridians in this way.

Fig. 66. Western hemisphere, in
equatorial orthographic projection

To be strictly correct
the meridians should not
be arcs of circles as just
suggested but should be
semi-ellipses with the cen-
tral meridian as major axis
as shown in Figure 66.
While somewhat more dif-
ficult, the student should
learn how thus to lay them
off. To construct the el-
lipse, one must first locate
the foci. This is done by
taking half the major axis
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(central meridian) as radius and with the point on the equa-
tor through which the meridian is to be constructed as center,
describe an arc cutting the center meridian on each side of the
equator. These points of intersection on the central meridian
are the foci of the ellipse, one half of which is a meridian. By
placing a pin at each of the foci and also at the point in the
equator where the meridian must cross and tying a string as
a loop around these three pins, then withdrawing the one at
the equator, the ellipse may be made as described in the first
chapter.

Fig. 67. Polar orthographic
projection

How to Lay off a Po-
lar Orthographic Pro-
jection. This is laid off
more easily than the for-
mer projection. Here the
eye is conceived to be di-
rectly above a pole and the
equator is the boundary of
the hemisphere seen. It is
apparent that from this po-
sition the equator and par-
allels will appear as circles
and, since the planes of the
meridians pass through the
eye, each meridian must
appear as a straight line.

Lay off for the equator a circle the same size as the preceding
one (Fig. 65), subdividing it into twenty-four parts, if meridians
are desired for every 15◦. Connect these points with the center,
which represents the pole. On any diameter mark off distances
as on the center meridian of the equatorial orthographic pro-
jection (Fig. 65). Through these points draw circles to repre-
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sent parallels. You will then have the complete projection as in
Figure 67.

Projections may be made with any point on the globe as
center, though the limits of this book will not permit the rather
difficult explanation as to how it is done for latitudes other than
0◦ or 90◦. With the parallels and meridians projected, the map
may be drawn. The student should remember that all maps
which make any claim to accuracy or correctness are made by
locating points of an area to be represented according to their
latitudes and longitudes; that is, in reference to parallels and
meridians. It will be observed that the orthographic system of
projection crowds together areas toward the outside of the map
and the scale of miles suitable for the central portion will not be
correct for the outer portions. For this reason a scale of miles
never appears upon a hemisphere made on this projection.

SUMMARY

In the orthographic projection:

1. The eye is conceived to be at an infinite distance.
2. Meridians and parallels are farther apart toward the center of the map.
3. When a point in the equator is the center, parallels are straight lines.
4. When a pole is at the center, meridians are straight lines. If the northern

hemisphere is represented, north is not toward the top of the map
but toward the center.

Stereographic Projection

In the stereographic projection the eye is conceived to be
upon the surface of the globe, viewing the opposite hemisphere.
Points on the opposite hemisphere are projected upon a plane
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tangent to it. Thus in Figure 68 the eye is at E and sees A at A′,
B at B′, C at C ′, etc. If the earth were transparent, we should
see objects on the opposite half of the globe from the view point
of this projection.

Fig. 68
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Fig. 69. Equatorial stereographic
projection

How to Lay off
an Equatorial Stereo-
graphic Projection. In
Figure 68, E represents
the eye at the equator,
A and N are the poles and
A′N ′ is the correspond-
ing meridian of the pro-
jection with B′, C ′, etc.,
as the points where the
parallels cross the merid-
ian. Taking the line A′N ′

of Figure 68 as diameter,
construct upon it a circle
(see Fig. 69). Divide the
circumference into twenty-

four equal parts and draw parallels as arcs of circles. Lay off the
equator and subdivide it the same as the central meridian, that
is, the same as A′N ′ of Figure 68. Through the points in the
equator, draw meridians as arcs of circles and the projection is
complete.

The Polar Stereographic Projection is made on the
same plan as the polar orthographic projection, excepting that
the parallels have the distances from the pole that are repre-
sented by the points in A′N ′ of Figure 68 (see Figs. 70, 71).

Areas are crowded together toward the center of the map
when made on the stereographic projection and a scale of miles
suitable for the central portion would be too small for the outer
portion. This projection is often used, however, because it is so
easily laid off.
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Fig. 70. Polar
stereographic projection

Fig. 71. Northern hemisphere in
polar stereographic projection

Fig. 72. Hemispheres in equatorial stereographic projection

SUMMARY

In the stereographic projection:

1. The eye is conceived to be on the surface of the globe.
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2. Meridians and parallels are nearer together toward the center of the
map.

3. When a point in the equator is the center of the map, parallels and
meridians are represented as arcs of circles.

4. When a pole is the center, meridians are straight lines.

Globular Projection.

Fig. 73

With the eye at an infinite dis-
tance (as in the orthographic pro-
jection), parallels and meridians are
nearer together toward the outside
of the map; with the eye on the sur-
face (as in the stereographic pro-
jection), they are nearer together
toward the center of the map. It
would seem reasonable to expect
that with the eye at some point in-
termediate between an infinite dis-
tance from the surface and the sur-
face itself that the parallels and meridians would be equidistant
at different portions of the map. That point is the sine of an
angle of 45◦, or a little less than the length of a radius away from
the surface. To find this distance at which the eye is conceived
to be placed in the globular projection, make a circle of the same
size as the one which is the basis of the map to be made, draw
two radii at an angle of 45◦ (one eighth of the circle) and draw a
line, AB, from the extremity of one radius perpendicular to the
other radius. The length of this perpendicular is the distance
sought (AB, Fig. 73).

Thus with the eye at E (Fig. 74) the pole A is projected to
the tangent plane at A′, B at B′, etc., and the distances A′B′,
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B′C ′, etc., are practically equal so that they are constructed as
though they were equal in projecting parallels and meridians.

Fig. 74

How to Lay off
an Equatorial Glob-
ular Projection. As
in the orthographic
or stereographic pro-
jections, a circle is
divided into equal
parts, according to the
number of parallels
desired, the central
meridian and equator
being subdivided into
half as many equal
parts. Parallels and
meridians may be
drawn as arcs of cir-
cles, being sufficiently

accurate for ordinary purposes (see Fig. 75).

Fig. 75. Hemispheres in equatorial
globular projection

The polar globular
projection is laid off pre-
cisely like the orthographic
and the stereographic pro-
jections having the pole
as the center, excepting
that the concentric circles
representing parallels are
equidistant (see Fig. 76).

By means of starlike
additions to the polar globular projection (see Fig. 77),
the entire globe may be represented. If folded back,
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the rays of the star would meet at the south pole.
It should be noticed that “south” in this projection is in a line
directly away from the center; that is, the top of the map is
south, the bottom south, and the sides are also south. While
portions of the southern hemisphere are thus spread out, pro-
portional areas are well represented, South America and Africa
being shown with little distortion of area and outline.

Fig. 76. Polar globular
projection

The globular projection is much
used to represent hemispheres, or
with the star map to represent the
entire globe, because the parallels on
a meridian or meridians on a par-
allel are equidistant and show little
exaggeration of areas. For this rea-
son it is sometimes called an equidis-
tant projection, although there are
other equidistant projections. It is
also called the De la Hire projection
from its discoverer (1640–1718).

Fig. 77. World in polar globular
projection

SUMMARY

In the globular projection:

1. The eye is conceived to be at a cer-
tain distance from the globe (sine 45◦).

2. Meridians are divided equidistantly by
parallels, and parallels are divided
equidistantly by meridians.

3. When a pole is the center of the map,
meridians are straight lines.

4. There is little distortion of areas.
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The
Gnomonic Projection

Fig. 78

When we look up at
the sky we see what ap-
pears to be a great dome in
which the sun, moon, plan-
ets, and stars are located.
We seem to be at the cen-
ter of this celestial sphere,
and were we to imagine
stars and other heavenly
bodies to be projected be-
yond the dome to an imag-
inary plane we should have
a gnomonic projection. Be-
cause of its obvious conve-
nience in thus showing the
position of celestial bodies,
this projection is a very old
one, having often been used
by the ancients for celestial
maps.

Since the eye is at the
center for mapping the ce-
lestial sphere, it is con-

ceived to be at the center of the earth in projecting parallels
and meridians of the earth. As will be seen from Figure 78, the
distortion is very great away from the center of the map and an
entire hemisphere cannot be shown.

All great circles on this projection are represented as straight
lines. This will be apparent if one imagines himself at the center
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of a transparent globe having parallels and meridians traced
upon it. Since the plane of every great circle passes through the
center of the globe, the eye at that point will see every portion
of a great circle as in one plane and will project it as a straight
line. As will be shown later, it is because of this fact that sailors
frequently use maps made on this projection.

Fig. 79. Polar gnomonic projection

To Lay off a Polar
Gnomonic Projection.
Owing to the fact that par-
allels get so much farther
apart away from the center
of the map, the gnomonic
projection is almost never
made with any other point
than the pole for center,
and then only for lati-
tudes about forty degrees
from the pole. The po-
lar gnomonic projection is
made like the polar projec-
tions previously described,
excepting that parallels intersect the meridians at the distances
represented in Figure 78. The meridians, being great circles,
are represented as straight lines and the parallels as concentric
circles.

Great Circle Sailing. It would seem at first thought that
a ship sailing to a point due eastward, say from New York to
Oporto, would follow the course of a parallel, that is, would
sail due eastward. This, however, would not be its shortest
course. The solution of the following little catch problem in
mathematical geography will make clear the reason for this. “A
man was forty rods due east of a bear, his gun would carry only
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thirty rods, yet with no change of position he shot and killed
the bear. Where on earth were they?” Solution: This could
occur only near the pole where parallels are very small circles.
The bear was westward from the man and westward is along the
course of a parallel. The bear was thus distant forty rods in a
curved line from the man but the bullet flew in a straight line
(see Fig. 80).

Fig. 80

The shortest distance
between two points on the
earth is along the arc of a
great circle. A great circle
passing through New York
and Oporto passes a little
to the north of the paral-
lel on which both cities are
located. Thus it is that
the course of vessels plying
between the United States
and Europe curves, some-
what to the northward of
parallels. This following of
a great circle by navigators

is called great circle sailing. The equator is a great circle and
parallels near it are almost of the same length. In sailing within
the tropics, therefore, there is little advantage in departing from
the course of a parallel. Besides this, the trade winds and dol-
drums control the choice of routes in that region and the Merca-
tor projection is always used in sailing there. In higher latitudes
the gnomonic projection is commonly used.

Although the gnomonic projection is rarely used excepting by
sailors, it is important that students understand the principles
underlying its construction since the most important projections
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yet to be discussed are based upon it.

SUMMARY

In the gnomonic projection:

1. The eye is conceived to be at the center of the earth.
2. There is great distortion of distances away from the center of the map.
3. A hemisphere cannot be shown.
4. All great circles are shown as straight lines.

a. Therefore it is used largely for great circle sailing.
5. The pole is usually the center of the map.

The Homolographic Projection

The projections thus far discussed will not permit the repre-
sentation of the entire globe on one map, with the exception of
the starlike extension of the polar globular projection. The ho-
molographic projection is a most ingenious device which is used
quite extensively to represent the entire globe without distortion
of areas. It is a modification of the globular projection.

How to Lay off a Homolographic Projection. First
lay off an equatorial globular projection, omitting the parallels.
The meridians are semi-ellipses, although those which are no
more than 90◦ from the center meridian may be drawn as arcs
of circles.

Having laid off the meridians as in the equatorial globular
projection, double the length of the equator, extending it equally
in both directions, and subdivide these extensions as the equator
was subdivided. Through these points of subdivision and the
poles, draw ellipses for meridians.
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Fig. 81. Homolographic projection

To draw the outer elliptical meridians. Set the points of
the compasses at the distance from the point through which
the meridian is to be drawn to the central meridian. Place one
point of the compasses thus set at a pole and mark off points on
the equator for foci of the ellipse. Drive pins in these foci and
also one in a pole. Around these three pins form a loop with
a string. Withdraw the pin at the pole and draw the ellipse as
described on page 22. This process must be repeated for each
pair of meridians.

The parallels are straight lines, as in the orthographic pro-
jection, somewhat nearer together toward the poles. If nine par-
allels are drawn on each side of the equator, they may be drawn
in the following ratio of distances, beginning at the equator: 2,
18

9
, 17

9
, 16

9
, 15

9
, 14

9
, 13

9
, 12

9
, 11

9
. This will give an approximately

correct representation.
One of the recent books to make frequent use of this projec-

tion is the “Commercial Geography” by Gannett, Garrison, and
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Fig. 82. World in homolographic projection

Houston (see Fig. 82).
Equatorial Distances of Parallels. The following table

gives the exact relative distances of parallels from the equator.
Thus if a map twenty inches wide is to be drawn, ten inches from
equator to pole, the first parallel will be .69 of an inch from the
equator, the second 1.37 inches, etc.

φ
Dis-

tance
φ

Dis-
tance

φ
Dis-

tance
φ

Dis-
tance

φ
Dis-

tance
φ

Dis-
tance

5◦ .069 20◦ .272 35◦ .468 50◦ .651 65◦ .814 80◦ .945
10 .137 25 .339 40 .531 55 .708 70 .862 85 .978
15 .205 30 .404 45 .592 60 .762 75 .906 90 1.000

The homolographic projection is sometimes called the Moll-
weide projection from its inventor (1805), and the Babinet, or
Babinet-homolographic projection from a noted cartographer
who used it in an atlas (1857). From the fact that within any
given section bounded by parallels and meridians, the area of the
surface of the map is equal to the area within similar meridians
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and parallels of the globe, is it sometimes called the equal-surface
projection.

SUMMARY

In the homolographic projection:

1. The meridians are semi-ellipses, drawn as in the globular projection,
360◦ of the equator being represented.

2. The parallels are straight lines as in the orthographic projection.

3. Areas of the map represent equal areas of the globe.

4. There is no distortion of area and not a very serious distortion of
form of continents.

5. The globe is represented as though its surface covered half of an
exceedingly oblate spheroid.

The Van der Grinten Projection

The homolographic projection was invented early in the nine-
teenth century. At the close of the century Mr. Alphons Van der
Grinten of Chicago invented another projection by which the
entire surface of the earth may be represented. This ingenious
system reduces greatly the angular distortion incident to the ho-
molographic projection and for the inhabitable portions of the
globe there is very little exaggeration of areas.

In the Van der Grinten projection the outer boundary is a
meridian circle, the central meridian and equator are straight
lines, and other parallels and meridians are arcs of circles. The
area of the circle is equal to the surface of a globe of one half
the diameter of this circle. The equator is divided into 360◦, but
the meridians are, of course, divided into 180◦.



MAP PROJECTIONS 209

Fig. 83. World in Van der Grinten projection

Fig. 84. World in Van der Grinten
projection

A modification of
this projection is shown
in Figure 83. In this
the central meridian is
only one half the length
of the equator, and
parallels are at uni-
form distances along
this meridian.
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Cylindrical Projections

Gnomonic Cylindrical Projection. In this projection
the sheet on which the map is to be made is conceived to be
wrapped as a cylinder around the globe, touching the equator.
The eye is conceived to be at the center of the globe, projecting
the parallels and meridians upon the tangent cylinder. Figure 85
shows the cylinder partly unwrapped with meridians as parallel
straight lines and parallels also as parallel straight lines. As in
the gnomonic projection, the parallels are increasingly farther
apart away from the equator.

Fig. 85

An examination of
Figure 86 will show
the necessity for the
increasing distances
of parallels in higher
latitudes. The eye at
the center (E) sees
A at A′, B at B′, etc.
Beyond 45◦ from the
equator the distance
between parallels
becomes very great.
A′B′ represents the
same distance (15◦ of
latitude) as G′H ′, but
is over twice as long
on the map. At A′

(60◦ north latitude)
the meridians of the globe are only half as far apart as they are
at the equator, but they are represented on the map as though
they were just as far apart there as at the equator. Because
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of the rapidly increasing distances of parallels, to represent
higher latitude than 60◦ would require a very large sheet, so
the projection is usually modified for a map of the earth as a
whole, sometimes arbitrarily.

G′H ′ is the distance from the equator to the first parallel, and
since a degree of latitude is about equal to a degree of longitude
there, this distance may be taken between meridians.

Stereographic Cylindrical Projection. For reasons just
given, the gnomonic or central cylindrical projection needs

Fig. 86

reduction to show the
poles at all or any
high latitudes with-
out great distortion.
Such a reduction is
well shown in the
stereographic projec-
tion. In this the
eye is conceived to be
on the equator, pro-
jecting each meridian
from the view point
of the meridian oppo-
site to it. Figure 87
shows the plan on
which it is laid off,
meridians being paral-
lel straight lines and
equidistant and paral-

lels being parallel straight lines at increasing distances away from
the equator.

The Mercator (Cylindrical) Projection. In the ortho-
graphic, stereographic, globular, gnomonic, homolographic, and
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Van der Grinten projections, parallels or meridians, or both,
are represented as curved lines. It should be borne in mind that
directions on the earth are determined from parallels and merid-
ians. North and south are along a meridian and when a meridian

Fig. 87

is represented as a
curved line, north and
south are along that
curved line. Thus the
two arrows shown at
the top of Figure 81,
are pointing in almost
exactly opposite di-
rections and yet each
is pointing due north.
The arrows at the
bottom point opposite
each other, yet both
point due south. The
arrows pointing to the
right point the same
way, yet one points
north and the other
points south. A line
pointing toward the
top of a map may or may not point north. Similarly, paral-
lels lie in a due east-west direction and to the right on a map
may or may not be to the east.

It should be obvious by this time that the map projections
studied thus far represent directions in a most unsatisfactory
manner, however well they may represent areas. Now to the
sailor the principal value of a chart is to show directions to steer
his course by and if the direction is represented by a curved
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line it is a slow and difficult process for him to determine his
course. We have seen that the gnomonic projection employs
straight lines to represent arcs of great circles, and, consequently,
this projection is used in great circle sailing. The Mercator
projection shows all parallels and meridians as straight lines at
proportional distances, hence directions as straight lines, and
is another, and the only other, kind of map used by sailors in
plotting their courses.

Fig. 89

Maps in Ancient
Times. Before the
middle of the fifteenth
century, sailors did not
cover very great por-
tions of the earth’s
surface in continuous
journeys out of sight
of land where they
had to be guided al-
most wholly by the
stars. Mathematical
accuracy in maps was
not of very great im-
portance in navigation
until long journeys had
to be made with no opportunity for verification of calculations.
Various roughly accurate map projections were made. The map
sent to Columbus about the year 1474 by the Italian astronomer
Toscanelli, with which he suggested sailing directions across the
“Sea of Darkness,” is an interesting illustration of a common
type of his day.

The long journeys of the Portuguese along the coast of Africa
and around to Asia and the many voyages across the Atlantic
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early in the sixteenth century, made accurate map projection
necessary. About the middle of that century, Emperor Charles V
of Spain employed a Flemish mathematician named Gerhard
Kramer to make maps for the use of his sailors. The word
Kramer means, in German, “retail merchant,” and this trans-
lated into Latin, then the universal language of science, becomes
Mercator, and his invention of a very valuable and now widely
used map projection acquired his Latinized name.

Plan of Mercator Chart. The Mercator projection is made
on the same plan as the other cylindrical projections, excepting
as to the distances between parallels. The meridians are rep-
resented as parallel lines, whereas on the globe they converge.
There is thus a distortion of longitudes, greater and greater,
away from the equator. Now the Mercator projection makes the
parallels farther apart away from the equator, exactly propor-
tional to the meridional error. Thus at latitude 60◦ the merid-
ians on the earth are almost exactly half as far apart as at the
equator, but being equidistant on the map, they are represented
as twice as far apart as they should be. The parallels in that
portion of the Mercator map are accordingly made twice as far
apart as they are near the equator. Since the distortion in lat-
itude exactly equals the distortion in longitude and parallels
and meridians are straight lines, all directions are represented
as straight lines. A navigator has simply to draw upon the map
a line from the point where he is to the point to which he wishes
to sail in a direct course, measure the angle which this line forms
with a parallel or meridian, and steer his ship according to the
bearings thus obtained.

To Lay off a Mercator Projection. Figure 89 shows the sim-
plest method of laying off this projection. From the extremity
of each radius drop a line to the nearest radius, parallel to the
tangent A′L. The lengths of these lines, respectively, represent
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the distances∗ between parallels. Thus N ′M equals CP , K ′N ′

equals BN , A′K ′ equals AK. The meridians are equidistant
and are the same distance apart as the first parallel is from the
equator.

Fig. 90. World in mercator projection

The table of meridional parts on page 217 gives the relative
distances of parallels from the equator. By means of this table a
more exact projection may be laid off than by the method just
suggested. To illustrate: Suppose we wish a map about twenty
inches wide to include the 70th parallels. We find in the table
that 5944.3 is the distance to the equator. Then, since the map

is to extend 10 inches on each side of the equator,
10

5944.3
is

the scale to be used in making the map; that is 1 inch on the
map will be represented by 10 inches ÷ 5944.3. Suppose we
wish to lay off parallels ten degrees apart. The first parallel
to be drawn north of the equator has, according to the table,

599.1 for its meridional distance. This multiplied by
10

5944.3

∗Technically speaking, the distance is the tangent of the angle of lati-
tude and any table of natural tangents will answer nearly as well as the table
of meridional parts, although the latter is more accurate, being corrected
for the oblateness of the meridian.
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equals slightly more than 1. Hence the parallel 10◦ should be
laid off 1 inch from the equator. The 20th parallel has for its

meridional distance 1217.3. This multiplied by the scale
10

5944.3
gives 2.03 inches from the equator. The 30th parallel has a
meridional distance 1876.9, this multiplied by the scale gives
3.15 inches. In like manner the other parallels are laid off. The

meridians will be
10

5944.3
× 60 or 600 inches ÷ 5944.3 for every

degree, or for ten degrees 6000 inches ÷ 5944.3, which equals
1.01 inches. This makes the map 36.36 inches long (1.01 inches×
36 = 36.36 inches).

Table of Meridional Parts∗

1◦ 59.6 18◦ 1091.1 35◦ 2231.1 52◦ 3647.1 69◦ 5773.1
2◦ 119.2 19◦ 1154.0 36◦ 2304.5 53◦ 3745.4 70◦ 5944.3
3◦ 178.9 20◦ 1217.3 37◦ 2378.8 54◦ 3846.1 71◦ 6124.0
4◦ 238.6 21◦ 1281.0 38◦ 2454.1 55◦ 3949.1 72◦ 6313.0
5◦ 298.4 22◦ 1345.1 39◦ 2530.5 56◦ 4054.9 73◦ 6512.4
6◦ 358.3 23◦ 1409.7 40◦ 2607.9 57◦ 4163.4 74◦ 6723.6
7◦ 418.3 24◦ 1474.7 41◦ 2686.5 58◦ 4274.8 75◦ 6948.1
8◦ 478.4 25◦ 1540.3 42◦ 2766.3 59◦ 4389.4 76◦ 7187.8
9◦ 538.6 26◦ 1606.4 43◦ 2847.4 60◦ 4507.5 77◦ 7444.8

10◦ 599.1 27◦ 1673.1 44◦ 2929.9 61◦ 4628.1 78◦ 7722.1
11◦ 659.7 28◦ 1740.4 45◦ 3013.7 62◦ 4754.7 79◦ 8023.1
12◦ 720.6 29◦ 1808.3 46◦ 3099.0 63◦ 4884.5 80◦ 8352.6
13◦ 781.6 30◦ 1876.9 47◦ 3185.9 64◦ 5018.8 81◦ 8716.4
14◦ 842.9 31◦ 1946.2 48◦ 3274.5 65◦ 5158.0 82◦ 9122.7
15◦ 904.5 32◦ 2016.2 49◦ 3364.7 66◦ 5302.5 83◦ 9583.0
16◦ 966.4 33◦ 2087.0 50◦ 3456.9 67◦ 5452.8 84◦ 10114.0
17◦ 1028.6 34◦ 2158.6 51◦ 3551.0 68◦ 5609.5 85◦ 10741.7

We see, then, that the same scale of miles cannot be used
for different parts of the map, though within 30◦ of the equator

∗From Bowditch’s Practical Navigator.
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representations of areas will be in very nearly true proportions.
The parallels in a map not wider than this, say for Africa, may be
drawn equidistant and the same distance apart as the meridians,
the inaccuracy not being very great.

SUMMARY

In the cylindrical projection:

1. A cylinder is conceived to be wrapped around the globe, tangent to the
equator.

2. All parallels and meridians are represented as straight lines, the former
intersecting the latter at right angles.

3. The parallels are made at increasing distances away from the equator:
a. In the gnomonic projection, as though projected from the center of

the earth to the tangent cylinder.
b. In the stereographic projection, as projected from the equator upon an

opposite meridian, the projection point varying for each meridian.
c. In the Mercator projection, at distances proportional to the merid-

ional excess.
Directions are better represented in this projection than in any other.

Here northward is directly toward the top of the map, eastward
directly toward the right, etc. For this reason it is the projection
most commonly employed for navigators’ charts.

4. There is great distortion of areas and outlines of continents in high
latitudes; Greenland appears larger than South America.

5. The entire globe may be represented in one continuous map.
6. The same scale of miles cannot be used for high latitudes that is used

near the equator.

Conic Projection

The portion of a sphere between the planes of two parallels
which are near together is very similar to the zone of a cone (see
Fig. 91). Hence, if we imagine a paper in the form of a cone
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placed upon the globe and parallels and meridians projected
upon this cone from the center of the globe, then this conical
map unrolled, we can understand this system.

Fig. 91

Along the parallel tangent to the cone,
points on the map will correspond exactly
to points upon the globe. Parallels which
are near the line of tangency will be repre-
sented very much in the relative positions
they occupy on the globe. In a narrow
zone, therefore, near the tangent parallel,
there will be very little distortion in lati-
tudes and longitudes and an area mapped
within the zone will be very similar in
form and area to the form and area as it
appears upon the globe itself. For this
reason the conic projection, or some mod-
ification of it, is almost always employed
in representing small areas of the earth’s

surface.

Fig. 92

To Lay off a Conic Pro-
jection. If the forty-fifth paral-
lel is the center of the area to be
mapped, draw two straight lines
tangent to the forty-fifth parallel
of a circle (see Fig. 93). Project
upon these lines points for par-
allels as in the gnomonic pro-
jection. With the apex as cen-
ter, draw arcs of circles through
these points for parallels. Merid-
ians are straight lines meeting
at the apex and are equidistant
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along any parallel.
It will be observed that parallels are farther apart away from

the tangent parallel (45◦, in this case) as in the Mercator pro-
jection they are farther apart away from the equator, which is
tangent to the globe in that projection. There is also an exag-
geration of longitudes away from the tangent parallel. Because
of this lengthening of parallels, meridians are sometimes curved
inwardly to prevent too much distortion of areas. The need for
this will be apparent if one draws parallels beyond the equator,
for he will find they are longer than the equator itself unless
meridians curve inwardly there.

Fig. 93

By taking the
tangent parallel ten
degrees north of the
equator and reducing
distances of parallels,
a fan-shaped map
of the world may
be shown. In this
map of the world on
the conic projection,
there is even greater
distortion of parallels
south of the equator,
but since meridians
converge somewhat north of the equator there is less distortion
in northern latitudes. Since most of the land area of the
globe is in the northern hemisphere, this projection is much
better suited to represent the entire world than the Mercator
projection.
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Fig. 94. North America in conic
projection

Bonne’s (Conic) Pro-
jection. This is a mod-
ification of the conic pro-
jection as previously de-
scribed to prevent exaggera-
tion of areas away from the
parallel which is conceived
to be touching the globe.
The central meridian is a
straight line and parallels
are concentric equidistant
circles. The distance be-
tween parallels is the length
of the arc of the circle which
is used as a basis for the
projection. For ordinary
purposes, the distance AB
(Fig. 93) may be taken for
each of the distances be-

tween parallels.

Fig. 96. Europe in conic projection

Having laid off the cen-
tral meridian and marked
off the arcs for parallels,
the true distance of the
meridian on each parallel
is laid off and the merid-
ian is drawn through these
points. This gives a gen-
tle inward curve for merid-
ians toward the outside of
the map of continents. In-
stead of following Bonne’s
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Fig. 95. The world in conic projection

system with strict accuracy, the map maker sometimes makes
the curve a little less in lower latitudes, allowing a slight exag-
geration of areas to permit the putting in of more details where
they are needed.

Fig. 97

Intersecting Conic Projec-
tion. Where a considerable extent
in latitude is to be represented, the
cone is sometimes conceived to cut
into the sphere. In this case, each
meridian intersects the sphere at
two parallels (see Fig. 97) and since
along and near the tangent paral-
lels (A and B) there is little distor-
tion, this plan is better adapted for
a map showing greater width north
and south than is the conic projec-
tion.

The map of Europe well illus-
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trates this difference. Europe lies between 35◦ and 75◦ north lat-
itude. On a conic projection the tangent parallel would be 55◦.
Near this parallel there would be no exaggeration of areas but at
the extreme north and south, 20◦ away from this parallel, there
would be considerable distortion. If, instead, we make an inter-
secting conic projection, we should have the cone pass through
parallels 45◦ and 65◦ and along these parallels there would be
no distortion and no part of the map being more than 10◦ away
from these lines, there would be very little exaggeration any-
where.

Fig. 98. Africa and
Europe in polyconic

projection

It should be noticed that the
region between the intersections of
the meridians must be projected
back toward the center of the sphere
and thus be made smaller in the
map than it appears on the globe.
The central parallel would be too
short in proportion to the rest.
Since this area of Europe (between
45◦ and 65◦) is the most impor-
tant portion and should show most
details, it would be a serious de-
fect, from the practical map maker’s
point of view, to minify it.

Polyconic Projection. This
differs from the conic projection in
that it is readjusted at each parallel
which is drawn, so that each one is

tangent to the sphere. This makes the circumscribing cone bent
at each parallel, a series of conic sections. The word polyconic
means “many cones.” The map constructed on this projection
is thus accurate along each parallel, instead of along but one
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as in the conic projection or along two as in the intersecting
conic projection. For representing small areas this is decidedly
the most accurate projection known. Since the zone along each
parallel is projected on an independent cone, the point which
is the apex for one cone will not be the same for any other
(unless both north and south latitudes are shown in the same
map). In the conic projection the parallels are all made from
the apex of the cone as the center. In the polyconic projection
each parallel has its own conical apex and hence its own center.
This may easily be observed by a comparison of the parallels in
Figure 94 (conic projection, all made from one center) and those
in Figure 98 (polyconic projection, each made from a different
center).

SUMMARY

In the conic projection:

1. A cone is conceived to be fitted about a portion of the globe, tangent
to some parallel.

2. The tangent parallel shows no distortion and portions near it have but
little. This projection is therefore used extensively for mapping
small areas.

a. In the conic projection on the gnomonic or central plan, the eye is
conceived to be at the center of the globe, parallels are crowded
closer together toward the central parallel, and distant areas are
exaggerated.

The cone may be conceived to intersect the globe at two parallels,
between which there is a diminution of areas and beyond which
there is an exaggeration of areas.

b. In the Bonne projection parallels are drawn at equidistant intervals
from a common center and meridians are slightly curved to prevent
distortion in longitudes.

c. In the polyconic projection many short conic sections are conceived
to be placed about the globe, one for each parallel represented.
Parallels are drawn from the apexes of the cones.
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The Scale

The area of any map bears some proportion to the actual
area represented. If the map is so drawn that each mile shall
be represented by one inch on the map, since one mile equals
63, 360 inches, the scale is said to be 1 : 63, 360. This is often

written fractionally,
1

63, 360
. A scale of two inches to the mile

is 1 : 31, 680. These, of course, can be used only when small
areas are mapped. The following scales with their equivalents
are most commonly used in the United States Geological Survey,
the first being the scale employed in the valuable geological folios
covering a large portion of the United States.

Scale 1 : 125, 000, 1 mile = 0.50688 inches.
Scale 1 : 90, 000, 1 mile = 0.70400 inches.
Scale 1 : 62, 500, 1 mile = 1.01376 inches.
Scale 1 : 45, 000, 1 mile = 1.40800 inches.

Some Conclusions

The following generalizations from the discussion of map pro-
jections seem appropriate.

1. In all maps north and south lie along meridians and east
and west along parallels. The top of the map may or may not
be north; indeed, the cylindrical projection is the only one that
represents meridians by perpendicular lines.

2. Maps of the same country on different projections may
show different shapes and yet each may be correct. To make
maps based upon some arbitrary system of triangles or lines is
not scientific and often is not even helpful.

3. Owing to necessary distortions in projecting the parallels
and meridians, a scale of miles can rarely be used with accuracy
on a map showing a large area.
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4. Straight lines on maps are not always the shortest dis-
tances between two points. This will be clear if we remember
that the shortest distance between two points on the globe is
along the arc of a great circle. Now great circles, such as merid-
ians and the equator, are very often represented as curved lines
on a map, yet along such a curved line is the shortest distance
between any two places in the line on the globe which the map
represents.

5. To ascertain the scale of miles per inch used on any map,
or verify the scale if given, measure the space along a meridian
for one inch and ascertain as correctly as possible the number
of degrees of latitude contained in the inch. Multiply this by
the number of miles in one degree of latitude, 69, and you have
the number of miles on the earth represented by one inch on the
map.



CHAPTER XI

THE UNITED STATES GOVERNMENT LAND SURVEY

Allowance for Curvature. One of the best proofs that
the earth is a sphere is the fact that in all careful measurements
over any considerable area, allowance must be made for the cur-
vature of the surface. If two lines be drawn due northward for
one mile in the northern part of the United States or in central
Europe, say from the 48th parallel, they will be found nearer to-
gether at the northern extremities than they are at the southern
ends.

Origin of Geometry. One of the greatest of the practical
problems of mathematics and astronomy has been the system-
atic location of lines and points and the measurement of surfaces
of the earth by something more definite, more easily described
and relocated than metes and bounds. Indeed, geometry is be-
lieved to have had its origin in the need of the ancient Egyptians
for surveying and relocating the boundaries of their lands after
the Nile floods.

Locating by Metes and Bounds. The system of locating
lands by metes and bounds prevails extensively over the world
and, naturally enough, was followed in this country by the early
settlers from Europe. To locate an area by landmarks, some
point of beginning is established and the boundary lines are
described by means of natural objects such as streams, trees,
well established highways, and stakes, piles of stone, etc., are

227
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placed for the purpose. The directions are usually indicated by
reference to the magnetic compass and distances as ascertained
by surveyors’ chains. But landmarks decay and change, and
rivers change their courses.∗ The magnetic needle of the compass
does not point due north (excepting along two or three isogonal
lines, called agones), and varies from year to year. This gives
rise to endless confusion, uncertainty, and litigation.

Fig. 99

Variation almost without
limit occurs in such descrip-
tions, and farms assume in-
numerable forms, sometimes
having a score of angles. The
transitory character of such
platting of land is illustrated
in the following excerpt from
a deed to a piece of property
in Massachusetts Bay Colony,
bearing the date: “Anno Do-
mini one thousand seven hun-
dred and thirty-six and in the

∗Where a meandering river constitutes the boundary of a nation or
state, changes in the course of the stream give rise to problems in civil
government, as the following incident illustrates. A minister in the southern
part of South Dakota was called upon to officiate at a wedding in a home
in a bend of the Missouri River. During the high water of the preceding
spring, the river had burst over the narrow neck at the bend and at the
time of the wedding it was flowing on both sides of the cut-off so that there
was a doubt as to whether the main channel of the stream, the interstate
boundary line, was north of them and they were in Nebraska, or south and
they were still in South Dakota. To be assured of the legality of the marriage
rite, the bridal couple, minister, and witnesses rowed to the north bank,
and up on the South Dakota bluff the marriage service was performed, the
bridal party returning—they cared not to which state, for the festivities.
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tenth year of the reign of our
sovereign Lord George the Second, King.” In this, Emma Blow-
ers deeds to William Stanley, “A certain parcel of Upland and
Swamp Ground Situate and lying in the Township of Manchester
being the thirty-first lot into the Westerly Division of Common
Rights made in said Manchester by the proprietors thereof in the
year of our Lord one thousand six hundred ninety-nine, Said lot
containing Ten Acres, more or less, being cutted and bounded
as followeth Viz: At the Northeast Corner with a maple tree
between Sowest and Abraham Master’s, from that Southeast-
erly thirty-nine poles to Morgan’s Stump, so called, from that
Southeasterly fourty-four poles upon said west Farm Line to a
black Oak tree, from that Sixty-six poles Northward to the first
bounds, or however Otherwise the Said Lot is or ought to have
been bounded.”

Fig. 100

Survey of Northwest
Territory. When, in 1785,
practically all of the terri-
tory north and west of the
Ohio River had been ceded
to the United States by the
withdrawal of state claims,
Congress provided for its sur-
vey, profiting from the expe-
riences resulting from hastily
marked boundaries. Thomas
Hutchins was appointed Geog-
rapher of the United States,
and after the selection of thir-
teen assistants, he was instructed to begin its survey. Starting in
1786 from the southwest corner of Pennsylvania, he laid off a line
due north to a point on the north bank of the Ohio River. From
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this point he started a line westward. According to the directions
of Congress, every six miles along this east-west “geographer’s
line,” meridians were to be laid off and parallels to it at intervals
of six miles, each of the six miles square to be divided into thirty-
six square miles and these divided into “quarters,” thus spread-
ing a huge “gridiron” over the land. The larger squares were
called “townships,” an adaptation of the New England “town.”
They are commonly called “Congressional townships” in most
parts of the United States, to distinguish them from the politi-
cal subdivision of the county called the “civil township” or the
“municipal township.”

Fig. 101

Jefferson is believed to
have suggested this general
plan which with some varia-
tions has been continued over
the major portion of the
United States and the western
portion of Canada. Hutchins
and his crew laid off the “ge-
ographer’s line” only forty-two
miles, making seven ranges of
townships west of the Penn-
sylvania state boundary, when
they were frightened away by
the Indians. The work was

continued, however, on the same general plan one exception be-
ing the method of numbering the sections. In these first “seven
ranges” the sections are numbered as in Figure 99, elsewhere in
the United States they are numbered as in Figure 100, and in
western Canada as in Figure 101. Each of the square miles is
commonly called a “section.”

The law passed by Congress May 20, 1785, provided that,
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“The surveyors . . . shall proceed to divide the said territory into
townships of six miles square, by lines running due north and
south, and others crossing these at right angles, as near as may
be.” Owing to the convergence of the meridians this, of course,
was a mathematical impossibility; “as near as may be,” however,
has been broadly interpreted. According to the provisions of this
act and the acts of May 18, 1796, May 10, 1800, and Feb. 11,
1805, and to rules of commissioners of the general land office, a
complete system has been evolved, the main features of which
are as follows:

Principal Meridians. These are run due north, south, or
north and south from some initial point selected with great care
and located in latitude and longitude by astronomical means.
Thirty-two or more of these principal meridians have been sur-
veyed at irregular intervals and of varying lengths. Some of
these are known by numbers and some by names. The first
principal meridian is the boundary line between Indiana and
Ohio; the second is west of the center of Indiana, extending the
entire length of the state; the third is in the center of Illinois,
extending the entire length of the state; the Tallahassee princi-
pal meridian passes directly through that city and is only about
twenty-three miles long; other principal meridians are named
Black Hills, New Mexico, Indian, Louisiana, Mount Diablo, San
Bernardino,∗ etc. To the east, west, or east and west of principal
meridians, north and south rows of townships called ranges are
laid off. Each principal meridian, together with the system of
townships based upon it, is independent of every other principal

∗The entire platting of the portions of the United States to which this
discussion refers is clearly shown on the large and excellent maps of the
United States, published by the Government and obtainable, at the ac-
tual cost, eighty cents, from the Commissioner of the General Land office,
Washington, D. C.
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meridian and where two systems come together irregularities are
found.

Base Lines. Through the initial point selected from which
to run the principal meridian, an east-west base line is run, at
right angles to it, and corresponds to a true geographic parallel.
As in case of the principal meridian, this line is laid off with great
care since the accuracy of these controlling lines determines the
accuracy of the measurements based upon them.

Tiers of townships are laid off and numbered north and south
of these base lines. In locating a township the word tier is usually
omitted; township number 4 north, range 2 west of the Michigan
principal meridian, means the township in tier 4 north of the
base line and in the second range west of the Michigan principal
meridian. This is the township in which Lansing, Michigan, is
located.

The fourth principal meridian in western Illinois and Wiscon-
sin has two base lines, one at its southern extremity extending
westward to the Mississippi River and the other constituting the
interstate boundary line between Wisconsin and Illinois. The
townships of western Illinois are numbered from the southern
base line, and all of those in Wisconsin and northeastern Min-
nesota are numbered from the northern base line. The fourth
principal meridian is in three sections, being divided by an east-
ern bend of the Mississippi River and by the western portion of
Lake Superior.

The largest area embraced within one system is that based
upon the fifth principal meridian. This meridian extends north-
ward from the mouth of the Arkansas River until it again in-
tersects the Mississippi River in northeastern Missouri and then
again it appears in the big eastern bend of the Mississippi River
in eastern Iowa. Its base line passes a few miles south of Lit-
tle Rock, Arkansas, from which fact it is sometimes called the
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Little Rock base line. From this meridian and base line all of
Arkansas, Missouri, Iowa, North Dakota, and the major por-
tions of Minnesota and South Dakota have been surveyed, an
area considerably larger than that of Germany and Great Britain
and Ireland combined. The most northern tier from this base lies
about a mile south of the forty-ninth parallel, the boundary line
between the United States and Canada, and is numbered 163.
The southern row of sections of tier 164 with odd lottings lies be-
tween tier 163 and Canada. Its most northern township is in the
extreme northern portion of Minnesota, west of the Lake of the
Woods, and is numbered 168. It thus lies somewhat more than
a thousand miles north of the base from which it was surveyed.
There are nineteen tiers south of the base line in Arkansas, mak-
ing the extreme length of this area about 1122 miles. The most
eastern range from the fifth principal meridian is numbered 17
and its most western, 104, making an extent in longitude of
726 miles.

Fig. 103.

Standard Parallels.
The eastern and western
boundaries of townships
are, as nearly as may be,
true meridians, and when
they have been extended
northward through sev-
eral tiers, their conver-
gence becomes consider-
able. At latitude 40◦

the convergence is about
6.7 feet per mile or some-
what more than 40 feet to
each township. To pre-
vent this diminution in
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size of townships to the north of the base line, standard par-
allels are run, along which six-mile measurements are made for
a new set of townships. These lines are also called correction
lines for obvious reasons.

Division of Dakotas. When Dakota Territory was divided
and permitted to enter the Union as two states, the dividing line
agreed upon was the seventh standard parallel from the base line
of the fifth principal meridian. This line is about four miles south
of the parallel 46◦ from the equator and was chosen in preference
to the geographic parallel because it was the boundary line be-
tween farms, sections, townships, and, to a considerable extent,
counties. The boundary line between Minnesota and Iowa is
what is called a secondary base line and corresponds to a stan-
dard parallel between tiers 100 and 101 north of the base line of
the fifth principal meridian.

The standard parallels have been run at varying intervals, the
present distance being 24 miles. None at all were used in the
earlier surveys. Since public roads are usually built on section
and quarter section lines, wherever a north-south road crosses
a correction line, there is a “jog” in the road, as a glance at
Figure 103 will show.

Fig. 104.
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Townships Surveyed Northward and Westward. The
practice in surveying is to begin at the southeast corner of a
township and measure off to the north and west. Thus the
sections in the north and west are liable to be larger or smaller
than 640 acres, depending upon the accuracy of the survey. In
case of a fractional township, made by the intervention of large
bodies of water or the meeting of another system of survey or a
state line, the sections bear the same numbers they would have
if the township were full. Irregular surveys and other causes
sometimes make the townships or sections considerably larger
than the desired area. In such cases 40 acre lots, or as near
that size as possible, appear in the northern row of sections, the
other half section remaining as it would otherwise be. These
lots may also appear in the western part of a township, and the
discrepancy should appear in the western half of each section.
This is illustrated in Figure 104.

Fig. 105.

Legal Subdivisions
of a Section. The legal
subdivisions of a section
are by halves, quarters,
and half quarters. The
designation of the portions
of a section is marked in
Figure 105. The abbrevi-
ations look more unintelli-
gible than they really are.
Thus N. E. 1

4
of S. E. 1

4
of

Sec. 24, T. 123 N. R. 64 W.
5 p.m. means the north-
east quarter of the south-
east quarter of section 24,

in tier of townships number 123 north, and in range 64 west of
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the fifth principal meridian. Any such description can easily be
located on the United States map issued by the General Land
Office.



CHAPTER XII

TRIANGULATION IN MEASUREMENT AND SURVEY

Fig. 106

The ability to measure the dis-
tance and size of objects without so
much as touching them seems to the
child or uneducated person to be a
great mystery, if not an impossibil-
ity. Uninformed persons sometimes
contend that astronomers only guess
at the distances and dimensions of
the sun, moon, or a planet. The principle of such measurement
is very simple and may easily be applied.

Fig. 107

To Measure the
Width of a Stream.
Suppose we wish to measure
the width of a river, yard, or
field without actually cross-
ing it. First make a triangle
having two equal sides and
one right angle (Fig. 106).

Select some easily distinguished point on the farther side, as X
(Fig. 107), and find a convenient point opposite it, as B. Now
carry the triangle to the right or left of B until by sighting you
see that the long side is in line with B when the short side is in
line with X. You will then form the triangle BAX or BCX. It

238
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is apparent (by similar triangles) that AB or CB equals BX.
Measure off AB or BC and you will have BX, the distance
sought. If you measure both to the right and to the left and
take the average of the two you will get a more nearly correct
result.

Fig. 108

To Measure the
Height of an Ob-
ject. In a similar
manner one may mea-
sure the height of a
flagstaff or building.
Let X represent the
highest point in the
flagstaff (Fig. 108) and
place the triangle on
or near the ground,

with the short side toward X and long side level. The distance
to the foot of the pole is its height. It is easy to see from this
that if we did not have a triangle just as described, say the angle
at the point of sighting was less, by measuring that angle and
looking up the value of its tangent in a trigonometrical table,
one could as easily calculate the height or distance. The angle
of the triangle from which sighting was done is 45◦, its tangent
is 1.0000, that is, XB equals 1.0000 times BC. If the angle
used were 20◦, instead of 45◦, its tangent would be .3640; that
is, XB would equal .3640 times BC. If the angle were 60◦, the
tangent would be 1.7321, that is, XB would equal that number
times BC. A complete list of tangents for whole degrees is given
in the Appendix. With the graduated quadrant the student can
get the noon altitude of the sun (though for this purpose it need
not be noon), and by getting the length of shadow and multi-
plying this by its natural tangent get the height of the object.
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If it is a building that is thus measured, the distance should be
measured from the end of the shadow to the place directly under
the point casting the longest shadow measured.

Two examples may suffice to illustrate how this may be done.
1. Say an object casts a shadow 100 feet from its base when

the altitude of the sun is observed to be 58◦. The table shows
the tangent of 58◦ to be 1.6003. The height of the object, then,
must be 1.6003 times 100 feet or 160.03 feet.

2. Suppose an object casts a shadow 100 feet when the sun’s
height is observed to be 68◦ 12′. Now the table does not give
the tangent for fractions of degrees, so we must add to tan 68◦
1
5

of the difference between the values of tan 68◦ and tan 69◦

(12′ = 1
5
◦).

The table shows that

tan 69◦ = 2.6051, and

tan 68◦ = 2.4751, hence the

difference = 0.1300.
1
5

of .1300 = 0.0260, and since

tan 68◦ = 2.4751, and we have found that

tan 12′ = 0.0260, it follows that

tan 68◦ 12′ = 2.5011.

Multiplying 100 feet by this number representing the value
of tan 68◦ 12′

100 feet× 2.5011 = 250.11 feet, answer.

By simple proportion one may also measure the height of an
object by the length of the shadow it casts. Let XB represent
a flagstaff and BC its shadow on the ground (Fig. 108). Place
a ten-foot pole (any other length will do) perpendicularly and
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measure the length of the shadow it casts and immediately mark
the limit of the shadow of the flagstaff and measure its length in
a level line. Now the length of the flagstaff will bear the same
ratio to the length of the pole that the length of the shadow of
the flagstaff bears to the length of the shadow of the pole. If the
length of the flagstaff’s shadow is 60 feet and that of the pole is
6 feet, it is obvious that the former is ten times as high as the
latter, or 100 feet high. In formal proportion

BX : B′X ′ : : BC : B′C ′.

Fig. 109

To Measure the Width of the Moon. To measure the
width of the moon if its distance is known. Cut from a piece
of paper a circle one inch in diameter and paste it high up on
a window in view of the full moon. Find how far the eye must
be placed from the disk that the face of the moon may be just
covered by the disk. To get this distance it is well to have one
person hold the end of a tapeline against the window near the
disk and the observer hold the line even with his eye. You then
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have three elements of the following proportion:

Dist. to disk : dist. to moon : : width of disk : width of moon.

From these elements, multiplying extremes and means and di-
viding, it is not difficult to get the unknown element, the diame-
ter of the moon. If the student is careful in his measurement and
does not forget to reduce all dimensions to the same denomina-
tion, either feet or inches, he will be surprised at the accuracy
of his measurement, crude though it is.

How Astronomers Measure Sizes and Distances. It
is by the aid of these principles and the use of powerful and accu-
rate instruments that the distances and dimensions of celestial
bodies are determined, more accurately, in some instances, than
would be likely to be done with rod and chain, were such mea-
surement possible.

In measuring the distance of the moon from the earth two
observations may be made at the same moment from widely
distant points on the earth. Thus a triangle is formed from
station A and station B to the moon. The base and included
angles being known, the distance can be calculated to the apex
of the triangle, the moon. There are several other methods based
upon the same general principles, such as two observations from
the same point twelve hours apart. Since the calculations are
based upon lines conceived to extend to the center of the earth,
this is called the geocentric parallax (see Parallax in Glossary).
It is impossible to get the geocentric parallax of other stars than
the sun because they are so far away that lines sighted to one
from opposite sides of the earth are apparently parallel. It is
only by making observations six months apart, the diameter
of the earth’s orbit forming the base of the triangle, that the
parallaxes of about forty stars have been determined and even
then the departure from the parallel is so exceedingly slight that
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the distance can be given only approximately. The parallax of
stars is called heliocentric, since the base passes through the
center of the sun.

Survey by Triangulation

A method very extensively employed for exact measurement
of land surfaces is by laying off imaginary triangles across the
surface, and by measuring the length of one side and the included
angles all other dimensions may be accurately computed. Im-
mense areas in India, Russia, and North America have been thus
surveyed. The triangulation surveys of the United States com-
prise nearly a million square miles extending from the Atlantic
to the Pacific. This work has been carried on by the United
States Geological Survey for the purpose of mapping the topog-
raphy and making geological maps, and by the United States
Coast and Geodetic Survey.

Fig. 110

Determination of Base Line. The surveyor selects two
points a few miles apart where the intervening surface is level.
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The distance between these points is ascertained, great care be-
ing used to make it as correct as possible, for this is the base line
and all calculations rest for their accuracy upon this distance as
it is the only line measured. The following extracts from the
Bulletin of the United States Geological Survey on Triangula-
tion, No. 122, illustrate the methods employed. “The Albany
base line (in central Texas) is about nine miles in length and
was measured twice with a 300-foot steel tape stretched under
a tension of 20 pounds. The tape was supported by stakes at
intervals of 50 feet, which were aligned and brought to the grade
established by more substantial supports, the latter having been
previously set in the ground 300 feet apart, and upon which
markings of the extremities of the tape were made. The two di-
rect measurements differed by 0.167 foot, but when temperature
corrections were applied the resulting discrepancy was somewhat
greater, owing possibly to difficulty experienced at the time of
measurements in obtaining the true temperature of the tape.
The adopted length of the line after applying the corrections for
temperature, length of tape, difference on posts, inclination, sag,
and sea level, was 45, 793.652 feet.” “The base line (near Rapid
City, South Dakota) was measured three times with a 300-foot
steel tape; temperature was taken at each tape length; the line
was supported at each 50 feet and was under a uniform tension
of 20 pounds. The adopted length of the line after making cor-
rections for slope, temperature, reduction to sea level, etc., is
25, 796.115 feet (nearly 5 miles), and the probable error of the
three measurements is 0.84 inch.” “The Gunnison line (Utah)
was measured under the direction of Prof. A. H. Thompson, in
1875, the measurement being made by wooden rods carried in
a trussed wooden case. These rods were oiled and varnished to
prevent absorption of moisture, and their length was carefully
determined by comparisons with standard steel rods furnished
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by the United States Coast and Geodetic Surveys.”
Completion of Triangle. From each extremity of the

base line a third point is sighted and with an instrument the
angle this line forms with the base line is determined. Thus
suppose AB (Fig. 111) represents the base line. At A the an-
gle CAB is determined and at B the angle CBA is determined.
Then by trigonometrical tables the lengths of lines CA and BC
are exactly determined. Any one of these lines may now be used
as a base for another triangle as with base AB. If the first base
line is correct, and the angles are determined accurately, and
proper allowances are made for elevations and the curvature of
the earth, the measurement is very accurate and easily obtained,
whatever the intervening obstacles between the points. In some
places in the western part of the United States, long lines, some-
times many miles in length, are laid off from one high elevation
to another. The longest side thus laid off in the Rocky Mountain
region is 183 miles long.

Fig. 111

“On the recent primary trian-
gulation much of the observing has
been done at night upon acety-
lene lamps; directions to the distant
light keepers have been sent by the
telegraphic alphabet and flashes of
light, and the necessary observing
towers have been built by a party
expert in that kind of work in ad-
vance of the observing party.”∗

Survey of Indian Territory. In March, 1895, Congress
provided for the survey of the lands of Indian Territory and the

∗John F. Hayford, Inspector of Geodetic Work, United States Coast
and Geodetic Survey, in a paper relating to Primary Triangulation before
the Eighth International Geographic Congress, 1904.
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work was placed in charge of the Director of the Geological Sur-
vey instead of being let out on contract as had been previously
done. The system of running principal and guide meridians,
base and correction parallels, and township and section lines
was adopted as usual and since the topographic map was made
under the same direction, a survey by triangulation was made
at the same time. The generally level character of the coun-
try made it possible to make triangles wherever desired, so the
“checkerboard” system of townships has superimposed upon it
triangles diagonally across the townships. In this way the ac-
curate system of triangulation was used to correct the errors
incident to a survey by the chain. Since so many lines were thus
laid off and all were made with extreme accuracy, the work of
making the contour map was rendered comparatively simple.



CHAPTER XIII

THE EARTH IN SPACE

The Solar System. The group of heavenly bodies to which
the earth belongs is called, after its great central sun, the so-
lar system. The members of the solar system are the sun; eight
large planets, some having attendant satellites or moons; several
hundred smaller planets called asteroids, or planetoids; and oc-
casional comets and meteors. The planets with their satellites,
and the asteroids all revolve around the sun in the same direction
in elliptical orbits not far from a common plane. Those visible
to the naked eye may be seen not far from the ecliptic, the path
of the sun in its apparent revolution. The comets and swarms of
meteors also revolve around the sun in greatly elongated orbits.

The solar system is widely separated from any of the stars,
with which the planets should not be confused. If one could fly
from the earth to the sun, 93, 000, 000 miles, in a single day,
it would take him only a month to reach the orbit of the most
distant planet, Neptune, but at that same terrific rate, it would
take over seven hundred years to reach the very nearest of the
distant stars. If a circle three feet in diameter be made to rep-
resent the orbit of the earth, an object over seventy miles away
would represent the nearest of the distant stars.

The earth’s orbit as seen from the nearest star is as a circle
a trifle over half an inch in diameter seen at a distance of a mile.
Do not imagine that the brightest stars are nearest.

247
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From the foregoing one should not fail to appreciate the im-
mensity of the earth’s orbit. It is small only in a relative sense.
The earth’s orbit is so large that in traveling eighteen and one
half miles the earth departs from a perfectly straight line only
about one ninth of an inch; it is nearly 584, 000, 000 miles in
length and the average orbital velocity of the earth is 66, 600
miles per hour.

Sun’s Onward Motion. It has been demonstrated that
many of the so-called fixed stars are not fixed in relation to
each other but have “proper” motions of their own. It is alto-
gether probable that each star has its own motion in the uni-
verse. Now the sun is simply one of the stars (see p. 265), and
it has been demonstrated that with its system of planets it is
moving rapidly, perhaps 40, 000 miles per hour, toward the con-
stellation Hercules. Many speculations are current as to whether
our sun is controlled by some other sun somewhat as it controls
the planets, and also as to general star systems. Any statement
of such conditions with present knowledge is little, if any, more
than a guess.

Nebular Hypothesis. Time was when it was considered
impious to endeavour to ascertain the processes by which God
works “in His mysterious way, His wonders to perform;” and
to assign to natural causes and conditions what had been at-
tributed to God’s fiat was thought sacrilegious. It is hoped that
day has forever passed.

This great theory as to the successive stages and conditions
in the development of the solar system, while doubtless faulty in
some details, is at present almost the only working hypothesis
advanced and “forms the foundation of all the current specula-
tions on the subject.” It gives the facts of the solar system a
unity and significance scarcely otherwise obtainable.

A theory or a hypothesis, if worthy of serious attention, is
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always based upon facts. Some of the facts upon which the
nebular theory is based are as follows:

1. All of the planets are not far from a common plane.
2. They all revolve around the sun in the same direction.
3. Planetary rotation and revolution are in the same direc-

tion, excepting, perhaps, in case of Uranus and Neptune.
4. The satellites revolve around their respective planets in

the direction of their rotation and not far from the plane of
revolution.

5. All the members seem to be made up of the same kinds
of material.

6. Analogy.
a. The nebulæ we see in the heavens have the same general

appearances this theory assumes the solar system to have had.
b. The swarms of meteorites making the rings of Saturn are

startlingly suggestive of the theory.
c. The gaseous condition of the sun with its corona suggests

possible earlier extensions of it. The fact that the sun rotates
faster at its equator than at other parts also points toward the
nebular theory. The contraction theory of the source of the sun’s
heat, so generally accepted, is a corollary of the nebular theory.

d. The heated interior of the earth and the characteristics of
the geological periods suggest this theory as the explanation.

The Theory. These facts reveal a system intimately related
and pointing to a common physical cause. According to the the-
ory, at one time, countless ages ago, all the matter now making
up the solar system was in one great cloudlike mass extending
beyond the orbit of the most distant planet. This matter was
not distributed with uniform density. The greater attraction of
the denser portions gave rise to the collection of more matter
around them, and just as meteors striking our atmosphere gen-
erate by friction the flash of light, sometimes called falling or
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shooting stars, so the clashing of particles in this nebulous mass
generated intense heat.

Rotary Motion. Gradually the whole mass balanced about
its center of gravity and a well-defined rotary motion developed.
As the great nebulous mass condensed and contracted, it rotated
faster and faster. The centrifugal force at the axis of rotation
was, of course, zero and increased rapidly toward the equator.
The force of gravitation thus being partially counteracted by
centrifugal force at the equator, and less and less so at other
points toward the axis, the mass flattened at the poles. The
matter being so extremely thin and tenuous and acted upon by
intense heat, also a centrifugal force, it flattened out more and
more into a disklike form.

As the heat escaped, the mass contracted and rotated faster
than ever, the centrifugal force in the outer portion thus in-
creased at a greater rate than did the power of gravitation due
to its lessening diameter. Hence, a time came when the centrifu-
gal force of the outer portions exactly balanced the attractive
power of gravitation and the rim or outer fragments ceased to
contract toward the central mass; and the rest, being nearer the
center of gravity, shrank away from these outer portions. The
outer ring or ringlike series of fragments, thus left off, continued
a rotary motion around the central mass, remaining in essen-
tially the same plane.

Planets Formed from Outlying Portions. Since the matter
in the outlying portions, as in the whole mass, was somewhat
unevenly distributed, the parts of it consolidated. The greater
masses in the outer series hastened by their attraction the lesser
particles back of them, retarded those ahead of them, and thus
one mass was formed which revolved around the parent mass and
rotated on its axis. If this body was not too dense it might collect
into the satellites or moons revolving around it. This process
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continued until nine such rings or lumps had been thrown off, or,
rather, left off. The many small planets around the sun between
the orbit of Mars and that of Jupiter were probably formed from
one whose parts were so nearly of the same mass that no one by
its preponderating attraction could gather up all into a planet.
The explanation of the rings of Saturn is essentially the same.

Conclusion as to the Nebular Hypothesis. This theory, with
modifications in detail, forms the basis for much of scientific
speculation in subjects having to do with the earth. That it
is the ultimate explanation, few will be so hardy as to affirm.
Many questions and doubts have been thrown on certain phases
recently but it is, in a sense, the point of departure for other
theories which may displace it. Perhaps even the best of re-
cent theories to receive the thoughtful attention of the scientific
world, the “planetesimal hypothesis,” can best be understood in
general outline, in terms of the nebular theory.

The Planetesimal Hypothesis. This is a new explana-
tion of the genesis of our solar system which has been worked
out by Professors Chamberlin and Moulton of the University of
Chicago, and is based upon a very careful study of astronomical
facts in the light of mathematics and astrophysics. It assumes
the systems to have been evolved from a spiral nebula, similar to
the most common form of nebulæ observed in the heavens. It is
supposed that the nebulous condition may have been caused by
our sun passing so near a star that the tremendous tidal strain
caused the eruptive prominences (which the sun shoots out at
frequent intervals) to be much larger and more vigorous than
usual, and that these, when projected far out, were pulled for-
ward by the passing star and given a revolutionary course about
the sun. The arms of spiral nebulæ have knots of denser matter
at intervals which are supposed to be due to special explosive
impulses and to become the centers of accretion later. The ma-
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terial thus shot out was very hot at first, but soon cooled into
discrete bodies or particles which moved independently about
the sun like planets (hence the term planetesimal). When their
orbits crossed or approached each other, the smaller particles
were gathered into the knots, and these ultimately grew into
planets. Less than one seven-hundredth of the sun was neces-
sary to form the planets and satellites.

This hypothesis differs from the nebular hypothesis in a num-
ber of important particulars. The latter assumes the earth to
have been originally in a highly heated condition, while under
the planetesimal hypothesis the earth may have been measur-
ably cool at the surface at all times, the interior heat being due
to the compression caused by gravity. The nebular hypothesis
views the atmosphere as the thin remnant of voluminous original
gases, whereas the new hypothesis conceives the atmosphere to
have been gathered gradually about as fast as consumed, and to
have come in part from the heated interior, chiefly by volcanic
action, and in part from outer space. The oceans, according to
the old theory, were condensed from the great masses of origi-
nal aqueous vapors surrounding the earth; according to the new
theory the water was derived from the same sources as the at-
mosphere. According to the planetesimal hypothesis the earth,
as a whole, has been solid throughout its history, and never in
the molten state assumed in the nebular hypothesis.

Solar System not Eternal. Of one thing we may be rea-
sonably certain, the solar system is not an eternal one. When we
endeavor to extend our thought and imagination backward to-
ward “the beginning,” it is only toward creation; when forward,
it is only toward eternity.

“Thy kingdom is an everlasting kingdom,
And thy dominion endureth throughout all generations.”

—Psalms, 145, 13.
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The Mathematical Geography of the Planets,
Moon, and Sun

The following brief sketches of the mathematical geography
of the planets give their conditions in terms corresponding to
those applied to the earth. The data and comparisons with the
earth are only approximate. The more exact figures are found
in the table at the end of the chapter.

Striving for vividness of description occasionally results in
language which implies the possibility of human inhabitancy on
other celestial bodies than the earth, or suggests interplanetary
locomotion (see p. 304). Such conditions exist only in the imag-
ination. An attempt to exclude astronomical facts not bearing
upon the topic in hand and not consistent with the purpose of
the study, makes necessary the omission of some of the most
interesting facts. For such information the student should con-
sult an astronomy. The beginner should learn the names of the
planets in the order of their nearness to the sun. Three minutes
repetition, with an occasional review, will fix the order:

Mercury, Venus, Earth, Mars, Asteroids,
Jupiter, Saturn, Uranus, Neptune.

There are obvious advantages in the following discussion in not
observing this sequence, taking Mars first, then Venus, etc.

Mars

Form and Dimensions. In form Mars is very similar to
the earth, being slightly more flattened toward the poles. Its
mean diameter is 4, 200 miles, a little more than half the earth’s.
A degree of latitude near the equator is 36.6 miles long, getting
somewhat longer toward the poles as in case of terrestrial lati-
tudes.
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Mars has a little less than one third the surface of the earth,
has one seventh the volume, weighs but one ninth as much,
is three fourths as dense, and an object on its surface weighs
about two fifths as much as it would here. A man weighing one
hundred and fifty pounds on the earth would weigh only fifty-
seven pounds on Mars, could jump two and one half times as
high or far, and could throw a stone two and one half times the
distance he could here.∗ A pendulum clock taken from the earth
to Mars would lose nearly nine hours in a day as the pendulum
would tick only about seven elevenths as fast there. A watch,
however, would run essentially the same there as here. As we
shall see presently, either instrument would have to be adjusted
in order to keep Martian time as the day there is longer than
ours.

Rotation. Because of its well-marked surface it has been
possible to ascertain the period of rotation of Mars with very
great precision. Its sidereal day is 24 h. 37 m. 22.7 s. The solar
day is 39 minutes longer than our solar day and owing to the
greater ellipticity of its orbit the solar days vary more in length
than do ours.

Revolution and Seasons. A year on Mars has 668 Mar-
tian days,† and is nearly twice as long as ours. The orbit is
much more elliptical than that of the earth, perihelion being
26, 000, 000 miles nearer the sun than aphelion. For this reason
there is a marked change in the amount of heat received when
Mars is at those two points, being almost one and one half times
as much when in perihelion as when in aphelion. The northern
summers occur when Mars is in aphelion, so that hemisphere has

∗He could not throw the stone any swifter on Mars than he could on the
earth; gravity there being so much weaker, the stone would move farther
before falling to the surface.

†Mars, by Percival Lowell.
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longer, cooler summers and shorter and warmer winters than the
southern hemisphere.

Northern Hemisphere Southern Hemisphere

Spring . . . . . . . . . . . . . . . . . 191 days Spring . . . . . . . . . . . . . . . . . 149 days
Summer . . . . . . . . . . . . . . . 181 days Summer . . . . . . . . . . . . . . . 147 days
Autumn . . . . . . . . . . . . . . . 149 days Autumn . . . . . . . . . . . . . . . 191 days
Winter . . . . . . . . . . . . . . . . 147 days Winter . . . . . . . . . . . . . . . . 181 days

Zones. The equator makes an angle of 24◦ 50′ with the
planet’s ecliptic (instead of 23◦ 27′ as with us) so the change in
seasons and zones is very similar to ours, the climate, of course,
being vastly different, probably very cold because of the rarity
of the atmosphere (about the same as on our highest mountains)
and absence of oceans. The distance from the sun, too, makes a
great difference in climate. Being about one and one half times
as far from the earth, the sun has an apparent diameter only two
thirds as great and only four ninths as much heat is received over
a similar area.

Satellites. Mars has two satellites or moons. Since Mars
was the god of war of the Greeks these two satellites have been
given the Greek names of Deimos and Phobos, meaning “dread”
and “terror,” appropriate for “dogs of war.” They are very
small, only six or seven miles in diameter. Phobos is so near
to Mars (3, 750 miles from the surface) that it looks almost as
large to a Martian as our moon does to us, although not nearly
so bright. Phobos, being so near to Mars, has a very swift
motion around the planet, making more than three revolutions
around it during a single Martian day. Now our moon travels
around the earth from west to east but only about 13◦ in a day,
so because of the earth’s rotation the moon rises in the east and
sets in the west. In case of Phobos, it revolves faster than the
planet rotates and thus rises in the west and sets in the east.
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Thus if Phobos rose in the west at sunset in less than three
hours it would be at meridian height and show first quarter, in
five and one half hours it would set in the east somewhat past
the full, and before sunrise would rise again in the west almost
at the full again. Deimos has a sidereal period of 30.3 hours and
thus rises in the east and sets in the west, the period from rising
to setting being 61 hours.

Venus

Form and Dimensions. Venus is very nearly spherical
and has a diameter of 7, 700 miles, very nearly that of the earth,
so its latitude and longitude are very similar to ours. Its sur-
face gravity is about 9

10
that of the earth. A man weighing

150 pounds here would weigh 135 pounds there.
Revolution. Venus revolves around the sun in a period

of 225 of our days, probably rotating once on the journey, thus
keeping essentially the same face toward the sun. The day, there-
fore, is practically the same as the year, and the zones are two,
one of perpetual sunshine and heat and the other of perpetual
darkness and cold. Its atmosphere is of nearly the same den-
sity as that of the earth. Being a little more than seven tenths
the distance of the earth from the sun, that blazing orb seems
to have a diameter nearly one and one half times as great and
pours nearly twice as much light and heat over a similar area.
Its orbit is more nearly circular than that of any other planet.

Jupiter

Form and Dimensions. After Venus, this is the brightest
of the heavenly bodies, being immensely large and having very
high reflecting power. Jupiter is decidedly oblate. Its equatorial
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diameter is 90, 000 miles and its polar diameter is 84, 200 miles.
Degrees of latitude near the equator are thus nearly 785 miles
long, increasing to over 800 miles near the pole. The area of the
surface is 122 times that of the earth, its volume 1, 355, its mass
or weight 317, and its density about one fourth.

Surface Gravity. The weight of an object on the surface
of Jupiter is about two and two thirds times its weight here. A
man weighing 150 pounds here would weigh 400 pounds there
but would find he weighed nearly 80 pounds more near the pole
than at the equator, gravity being so much more powerful there.
A pendulum clock taken from the earth to Jupiter would gain
over nine hours in a day and would gain or lose appreciably in
changing a single degree of latitude because of the oblateness of
the planet.

Rotation. The rotation of this planet is very rapid, occu-
pying a little less than ten hours, and some portions seem to
rotate faster than others. It seems to be in a molten or liquid
state with an extensive envelope of gases, eddies and currents of
which move with terrific speed. The day there is very short as
compared with ours and a difference of one hour in time makes
a difference of over 36◦ in longitude, instead of 15◦ as with us.
Their year being about 10, 484 of their days, their solar day is
only a few seconds longer than their sidereal day.

Revolution. The orbit of Jupiter is elliptical, perihelion
being about 42, 000, 000 miles nearer the sun than aphelion. Its
mean distance from the sun is 483, 000, 000 miles, about five
times that of the earth. The angle its equator forms with its
ecliptic is only 3◦, so there is little change in seasons. The verti-
cal ray of the sun never gets more than 3◦ from the equator, and
the torrid zone is 6◦ wide. The circle of illumination is never
more than 3◦ from or beyond a pole so the frigid zone is only
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3◦ wide. The temperate∗ zone is 84◦ wide.
Jupiter has seven moons.

Saturn

Form and Dimensions. The oblateness of this planet
is even greater than that of Jupiter, being the greatest of the
planets. Its mean diameter is about 73, 000 miles. It, therefore,
has 768 times the volume of the earth and 84 times the surface.
Its density is the lowest of the planets, only about one eighth
as dense as the earth. Its surface gravity is only slightly more
than that of the earth, varying, however, 25 per cent from pole
to equator.

Rotation. Its sidereal period of rotation is about 10 h.
14 m., varying slightly for different portions as in case of Jupiter.
The solar day is only a few seconds longer than the sidereal day.

Revolution. Its average distance from the sun is
866, 000, 000 miles, varying considerably because of its elliptic-
ity. It revolves about the sun in 29.46 of our years, thus the
annual calendar must comprise 322, 777 of the planet’s days.

The inclination of Saturn’s axis makes an angle of 27◦ be-
tween the planes of its equator and its ecliptic. Thus the vertical
ray sweeps over 54◦ giving that width to its torrid zone, 27◦ to
the frigid, and 36◦ to the temperate. Its ecliptic and our ecliptic
form an angle of 2.5◦, so we always see the planet very near the
sun’s apparent path.

∗These terms are purely relative, meaning, simply, the zone on Jupiter
corresponding in position to the temperate zone on the earth. The inap-
propriateness of the term may be seen in the fact that Jupiter is intensely
heated, so that its surface beneath the massive hot vapors surrounding it
is probably molten.
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Saturn has surrounding its equator immense disks, of thin,
gauzelike rings, extending out nearly 50, 000 miles from the sur-
face. These are swarms of meteors or tiny moons, swinging
around the planet in very nearly the same plane, the inner ones
moving faster than the outer ones and being so very minute that
they exert no appreciable attractive influence upon the planet.

In addition to the rings, Saturn has ten moons.

Uranus

Form and Dimensions. This planet, which is barely vis-
ible to the unaided eye, is also decidedly oblate, nearly as much
so as Saturn. Its mean diameter is given as from 34, 900 miles to
28, 500 miles. Its volume, on basis of the latter (and latest) fig-
ures, is 47 times that of the earth. Its density is very low, about
three tenths that of the earth, and its surface gravity is about
the same as ours at the equator, increasing somewhat toward
the pole.

Nothing certain is known concerning its rotation as it has
no distinct markings upon its surface. Consequently we know
nothing as to the axis, equator, days, calendar, or seasons.

Its mean distance from the sun is 19.2 times that of the earth
and its sidereal year 84.02 of our years.

Uranus has four satellites swinging around the planet in very
nearly the same plane at an angle of 82.2◦ to the plane of the
orbit. They move from west to east around the planet, not for
the same reason Phobos does about Mars, but probably because
the axis of the planet, the plane of its equator, and the plane of
these moons has been tipped 97.8◦ from the plane of the orbit
and the north pole has been tipped down below or south of
the ecliptic, becoming the south pole, and giving a backward
rotation to the planet and to its moons.
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Neptune

Neptune is the most distant planet from the sun, is probably
somewhat larger than Uranus, and has about the same density
and slightly greater surface gravity.

Owing to the absence of definite markings nothing is known
as to its rotation. Its one moon, like those of Uranus, moves
about the planet from west to east in a plane at an angle of
34◦ 48′ to its ecliptic, and its backward motion suggests a similar
explanation, the inclination of its axis is more than 90◦ from the
plane of its ecliptic.

Mercury

This is the nearest of the planets to the sun, and as it never
gets away from the sun more than about the width of forty suns
(as seen from the earth), it is rarely visible and then only after
sunset in March and April or before sunrise in September and
October.

Form and Dimensions. Mercury has about three eighths
the diameter of the earth, one seventh of the surface, and one
eighteenth of the volume. It probably has one twentieth of the
mass, nine tenths of the density, and a little less than one third
of the surface gravity.

Rotation and Revolution. It is believed that Mercury
rotates once on its axis during one revolution. Owing to its ellip-
tical orbit it moves much more rapidly when near perihelion than
when near aphelion, and thus the sun loses as compared with
the average position, just as it does in the case of the earth, and
sweeps eastward about 231

2
◦ from its average position. When in

aphelion it gains and sweeps westward a similar amount. This
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shifting eastward making the sun “slow” and westward making
the sun “fast” is called libration.

Thus there are four zones on Mercury, vastly different from
ours, indeed, they are not zones (belts) in a terrestrial sense.

a. An elliptical central zone of perpetual sunshine, extending
from pole to pole and 133◦ in longitude. In this zone the vertical
ray shifts eastward 231

2
◦ and back again in the short summer of

about 30 days, and westward a similar extent during the longer
winter of about 58 days. Two and one half times as much heat is
received in the summer, when in perihelion, as is received in the
winter, when in aphelion. Thus the eastward half of this zone
has hotter summers and cooler winters than does the western
half. Places along the eastern and western margin of this zone
of perpetual sunshine see the sun on the horizon in winter and
only 231

2
◦ high in the summer.

b. An elliptical zone of perpetual darkness, extending from
pole to pole and 133◦ wide from east to west.

c. Two elliptical zones of alternating sunshine and darkness
(there being practically no atmosphere on Mercury, there is no
twilight there), each extending from pole to pole and 47◦ wide.
The eastern of these zones has hotter summers and cooler win-
ters than the western one has.

The Moon

Form and Dimensions. The moon is very nearly spherical
and has a diameter of 2, 163 miles, a little over one fourth that
of the earth, its volume one forty-fourth, its density three fifths,
its mass 10

815
, and its surface gravity one sixth that upon the

earth. A pendulum clock taken there from the earth would tick
so slowly that it would require about sixty hours to register one
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of our days. A degree of latitude (or longitude at its equator) is
a little less than nineteen miles long.

Rotation. The moon rotates exactly once in one revolution
around the earth, that is, keeps the same face toward the earth,
but turns different sides toward the sun once each month.

Thus what we call a sidereal month is for the moon itself a
sidereal day, and a synodic month is its solar day. The latter
is 29.5306 of our days, which makes the moon’s solar day have
708 h. 44 m. 3.8 s. If its day were divided into twenty-four parts
as is ours, each one would be longer than a whole day with us.

Revolution and Seasons. The moon’s orbit around the
sun has essentially the same characteristics as to perihelion,
aphelion, longer and shorter days, etc., as that of the earth.
The fact that the moon goes around the earth does not materi-
ally affect it from the sun’s view point. To illustrate the moon’s
orbit about the sun, draw a circle 78 inches in diameter. Make
26 equidistant dots in this circle to represent the earth for each
new and full moon of the year. Now for each new moon make a
dot one twentieth of an inch toward the center (sun) from every
other dot representing the earth, and for every full moon make
a dot one twentieth of an inch beyond the alternate ones. These
dots representing the moon, if connected, being never more than
about one twentieth of an inch from the circle, will not vary ma-
terially from the circle representing the orbit of the earth, and
the moon’s orbit around the sun will be seen to have in every
part a concave side toward the sun.

The solar day of the moon being 29.53 of our days, its trop-
ical year must contain as many of those days as that number is
contained times in 365.25 days or about 12.4 days. The calen-
dar for the moon does not have anything corresponding to our
month, unless each day be treated as a month, but has a year
of 12.4 long days of nearly 709 hours each. The exact length of
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the moon’s solar year being 12.3689 d., its calendar would have
the peculiarity of having one leap year in every three, that is,
two years of 12 days each and then one of 13 days, with an extra
leap year every 28 years.

The earth as seen from the moon is much like the moon as
seen from the earth, though very much larger, about four times
as broad. Because the moon keeps the same face constantly
toward the earth, the latter is visible to only a little over half of
the moon. On this earthward side our planet would be always
visible, passing through precisely the same phases as the moon
does for us, though in the opposite order, the time of our new
moon being “full earth” for the moon. So brightly does our earth
then illuminate the moon that when only the faint crescent of
the sunshine is visible to us on the rim of the moon, we can
plainly see the “earth shine” on the rest of the moon’s surface
which is toward us.

Zones. The inclination of the plane of the moon’s equator
to the plane of the ecliptic is 1◦ 32′ (instead of 23◦ 27′ as in the
case of the earth). Thus its zone corresponding to our torrid∗

zone is 3◦ 4′ wide, the frigid zone 1◦ 32′, and the temperate zones
86◦ 56′.

Absence of Atmosphere. The absence of an atmosphere
on the moon makes conditions there vastly different from those
to which we are accustomed. Sunrise and sunset show no crim-
son tints nor beautiful coloring and there is no twilight. Owing
to the very slow rotation of the moon, 709 hours from sun-noon
to sun-noon, it takes nearly an hour for the disk of the sun to

∗Again we remind the reader that these terms are not appropriate in
case of other celestial bodies than the earth. The moon has almost no
atmosphere to retain the sun’s heat during its long night of nearly 354 hours
and its dark surface must get exceedingly cold, probably several hundred
degrees below zero.
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get entirely above the horizon on the equator, from the time
the first glint of light appears, and the time of sunset is equally
prolonged; as on the earth, the time occupied in rising or set-
ting is longer toward the poles of the moon. The stars do not
twinkle, but shine with a clear, penetrating light. They may be
seen as easily in the daytime as at night, even those very near
the sun. Mercury is thus visible the most of the time during
the long daytime of 354 hours, and Venus as well. Out of the
direct rays of the sun, pitch darkness prevails. Thus craters of
the volcanoes are very dark and also cold. In the tropical por-
tion the temperature probably varies from two or three hundred
degrees below zero at night to exceedingly high temperatures in
the middle of the day. During what is to the moon an eclipse
of the sun, which occurs whenever we see the moon eclipsed,
the sun’s light shining through our atmosphere makes the most
beautiful of coloring as viewed from the moon. The moon’s at-
mosphere is so rare that it is incapable of transmitting sound,
so that a deathlike silence prevails there. Oral conversation is
utterly impossible and the telephone and telegraph as we have
them would be of no use whatever. Not a drop of water exists
on that cold and cheerless satellite.

Perhaps it is worth noting, in conclusion, that it is believed
that our own atmosphere is but the thin remnant of dense gases,
and that in ages to come it will get more and more rarified,
until at length the earth will have the same conditions as to
temperature, silence, etc., which now prevail on the moon.

The Sun

Dimensions. The diameter is 866, 500 miles, nearly four
times the distance of the moon from the earth. Its surface area
is about 12, 000 times that of the earth, and its volume over a
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million times. Its density is about one fourth that of the earth,
its mass 332, 000 times, and its surface gravity is 27.6 times our
earth’s. A man weighing 150 pounds here would weigh over
two tons there, his arm would be so heavy he could not raise it
and his bony framework could not possibly support his body. A
pendulum clock there would gain over a hundred hours in a day,
so fast would the attraction of the sun draw the pendulum.

Rotation. The sun rotates on its axis in about 251
3

of our

days, showing the same portion to the earth every 271
4

days.
This rate varies for different portions of the sun, its equator
rotating considerably faster than higher latitudes. The direction
of its rotation is from west to east from the sun’s point of view,
though as viewed from the earth the direction is from our east to
our west. The plane of the equator forms an angle of about 26◦

with the plane of our equator, though only about 71
4
◦ with the

plane of the ecliptic.
When we realize that the earth, as viewed from the sun, is so

tiny that it receives not more than one billionth of its light and
heat, we may form some idea of the immense flood of energy it
constantly pours forth.

The Sun a Star. “The word ‘star’ should be omitted from
astronomical literature. It has no astronomic meaning. Every
star visible in the most penetrating telescope is a hot sun. They
are at all degrees of heat, from dull red to the most terrific white
heat to which matter can be subjected. Leaves in a forest, from
swelling bud to the ‘sere and yellow,’ do not present more stages
of evolution. A few suns that have been weighed, contain less
matter than our own; some of equal mass; others are from ten
to twenty and thirty times more massive, while a few are so
immensely more massive that all hopes of comparison fail.

“Every sun is in motion at great speed, due to the attrac-
tion and counter attraction of all the others. They go in every
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direction. Imagine the space occupied by a swarm of bees to be
magnified so that the distance between each bee and its neigh-
bor should equal one hundred miles. The insects would fly in
every possible direction of their own volition. Suns move in
every conceivable direction, not as they will, but in abject servi-
tude to gravitation. They must obey the omnipresent force, and
do so with mathematical accuracy.” From “New Conceptions in
Astronomy,” by Edgar L. Larkin, in Scientific American, Febru-
ary 3, 1906.
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Mercury ' 3, 000 88 days 6.800 0.85 0.048 0.330 0.24 0.4

Venus ♀ 7, 700 225 days 1.900 0.94 0.820 0.900 0.62 0.7

Earth ♁ 7, 918 * 1.000 1.00 1.000 1.000 1.00 1.0

Mars ♂ 4, 230 24h 37m 22.7s 0.440 0.73 0.110 0.380 1.88 1.5

Jupiter X 88, 000 9h 55m 0.040 0.23 317.000 2.650 11.86 5.2

Saturn Y 73, 000 10h 14m 0.010 0.13 95.000 1.180 29.46 9.5

Uranus Z 31, 700 ? 0.003 0.31 14.600 1.110 84.02 19.2

Neptune [ 32, 000 ? 0.001 0.34 17.000 1.250 164.78 30.1

Sun � 866, 400 25d 7h 48m 0.25 332, 000.000 27.650

Moon $ 2, 163 27d 7h 43m 0.61 0.012 0.166

∗The dimensions of the earth and other data are given in the table of
geographical constants p. 308.



CHAPTER XIV

HISTORICAL SKETCH

The Form of the Earth

While various views have been held regarding the form of
the earth, those worthy of attention∗ may be grouped under four
general divisions.

I. The Earth Flat. Doubtless the universal belief of prim-
itive man was that, save for the irregularities of mountain, hill,
and valley, the surface of the earth is flat. In all the earliest
literature that condition seems to be assumed. The ancient nav-
igators could hardly have failed to observe the apparent convex
surface of the sea and very ancient literature as that of Homer
alludes to the bended sea. This, however, does not necessarily
indicate a belief in the spherical form of the earth.

Although previous to his time the doctrine of the spherical
form of the earth had been advanced, Herodotus (born about
484 b.c., died about 425 b.c.) did not believe in it and scouted
whatever evidence was advanced in its favor. Thus in giving the
history of the Ptolemys, kings of Egypt, he relates the incident of

∗As for modern, not to say recent, pseudo-scientists and alleged divine
revealers who contend for earths of divers forms, the reader is referred to the
entertaining chapter entitled “Some Cranks and their Crotchets” in John
Fiske’s A Century of Science, also the footnote on pp. 267–268, Vol. I, of
his Discovery of America.

267
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Ptolemy Necho (about 610–595 b.c.) sending Phœnician sailors
on a voyage around Africa, and after giving the sailors’ report
that they saw the sun to the northward of them, he says, “I,
for my part, do not believe them.” Now seeing the sun to the
northward is the most logical result if the earth be a sphere and
the sailors went south of the equator or south of the tropic of
Cancer in the northern summer.

Ancient travelers often remarked the apparent sinking of
southern stars and rising of northern stars as they traveled
northward, and the opposite shifting of the heavens as they
traveled southward again. In traveling eastward or westward
there was no displacement of the heavens and travel was so slow
that the difference in time of sunrise or star-rise could not be
observed. To infer that the earth is curved, at least in a north-
south direction, was most simple and logical. It is not strange
that some began to teach that the earth is a cylinder. Anax-
imander (about 611–547 b.c.), indeed, did teach that it is a
cylinder∗ and thus prepared the way for the more nearly correct
theory.

II. The Earth a Sphere. The fact that the Chaldeans
had determined the length of the tropical year within less than
a minute of its actual value, had discovered the precession of the
equinoxes, and could predict eclipses over two thousand years
before the Christian era and that in China similar facts were
known, possibly at an earlier period, would indicate that doubt-
less many of the astronomers of those very ancient times had
correct theories as to the form and motions of the earth. So
far as history has left any positive record, however, Pythagoras

∗According to some authorities he taught that the earth is a sphere and
made terrestrial and celestial globes. See Ball’s History of Mathematics,
p. 18.
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(about 582–507 b.c.), a Greek∗ philosopher, seems to have been
the first to advance the idea that the earth is a sphere. His the-
ory being based largely upon philosophy, nothing but a perfect
sphere would have answered for his conception. He was also the
first to teach that the earth rotates† on its axis and revolves
about the sun.

Before the time of Pythagoras, Thales (about 640–546 b.c.),
and other Greek philosophers had divided the earth into five
zones, the torrid zone being usually considered so fiery hot that
it could not be crossed, much less inhabited. Thales is quoted
by Plutarch as believing that the earth is a sphere, but it seems
to have been proved that Plutarch was in error. Many of the
ancient philosophers did not dare to teach publicly doctrines
not commonly accepted, for fear of punishment for impiety. It
is possible that his private teaching was different from his public
utterances, and that after all Plutarch was right.

Heraclitus, Plato, Eudoxus, Aristotle and many others in the
next two centuries taught the spherical form of the earth, and,
perhaps, some of them its rotation. Most of them, however,
thought it not in harmony with a perfect universe, or that it
was impious, to consider the sun as predominant and so taught
the geocentric theory.

The first really scientific attempt to calculate the size of the
earth was by Eratosthenes (about 275–195 b.c.). He was the
keeper of the royal library at Alexandria, and made many as-
tronomical measurements and calculations of very great value,

∗Sometimes called a Phœnician.
†Strictly speaking, Pythagoras seems to have taught that both sun and

earth revolved about a central fire and an opposite earth revolved about the
earth as a shield from the central fire. This rather complicated machinery
offered so many difficulties that his followers abandoned the idea of the
central fire and “opposite earth” and had the earth rotate on its own axis.
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not only for his own day but for ours as well. Syene, the most
southerly city of the Egypt of his day, was situated where the
sundial cast no shadow at the summer solstice. Measuring care-
fully at Alexandria, he found the noon sun to be one fiftieth
of the circumference to the south of overhead. He then multi-
plied the distance between Syene and Alexandria, 5, 000 stadia
by 50 and got the whole circumference of the earth to be 250, 000
stadia. The distance between the cities was not known very ac-
curately and his calculation probably contained a large margin
of error, but the exact length of the Greek stadium of his day is
not known∗ and we cannot tell how near the truth he came.

Any sketch of ancient geography would be incomplete with-
out mention of Strabo (about 54 b.c.–21 a.d.) who is sometimes
called the “father of geography.” He believed the earth to be a
sphere at the center of the universe. He continued the idea of the
five zones, used such circles as had commonly been employed by
astronomers and geographers before him, such as the equator,
tropics, and polar circles. His work was a standard authority for
many centuries.

About a century after the time of Eratosthenes, Posidonius,
a contemporary of Strabo, made another measurement, basing
his calculations upon observations of a star instead of the sun,
and getting a smaller circumference, though that of Eratosthenes
was probably too small. Strabo, Hipparchus, Ptolemy and many
others made estimates as to the size of the earth, but we have no
record of any further measurements with a view to exact calcula-
tion until about 814 a.d. when the Arabian caliph Al-Mamoum
sent astronomers and surveyors northward and southward, care-
fully measuring the distance until each party found a star to have
shifted to the south or north one degree. This distance of two

∗The most reliable data seem to indicate the length of the stadium was
606 3

4 feet.
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degrees was then multiplied by 180 and the whole circumference
obtained.

The period of the dark ages was marked by a decline in
learning and to some extent a reversion to primitive concep-
tions concerning the size, form, or mathematical properties of
the earth. Almost no additional knowledge was acquired until
early in the seventeenth century. Perhaps this statement may
appear strange to some readers, for this was long after the dis-
covery of America by Columbus. It should be borne in mind
that his voyage and the resulting discoveries and explorations
contributed nothing directly to the knowledge of the form or
size of the earth. That the earth is a sphere was generally be-
lieved by practically all educated people for centuries before the
days of Columbus. The Greek astronomer Cleomedes, writing
over a thousand years before Columbus was born, said that all
competent persons excepting the Epicureans accepted the doc-
trine of the spherical form of the earth.

In 1615 Willebrord Snell, professor of mathematics at the
University of Leyden, made a careful triangular survey of the
level surfaces about Leyden and calculated the length of a de-
gree of latitude to be 66.73 miles. A recalculation of his data
with corrections which he suggested gives the much more accu-
rate measurement of 69.07 miles. About twenty years later, an
Englishman named Richard Norwood made measurements and
calculations in southern England and gave 69.5 as the length of
a degree of latitude, the most accurate measurement up to that
time.

It was about 1660 when Isaac Newton (1642–1727) discov-
ered the laws of gravitation, but when he applied the laws to
the motions of the moon his calculations did not harmonize with
what he assumed to be the size of the earth. About 1671 the
French astronomer, Jean Picard, by the use of the telescope,
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made very careful measurements of a little over a degree of lon-
gitude and obtained a close approximation to its length. New-
ton, learning of the measurement of Picard, recalculated the
mass of the earth and motions of the moon and found his law of
gravitation as the satisfactory explanation of all the conditions.
Then, in 1682, after having patiently waited over twenty years
for this confirmation, he announced the laws of gravitation, one
of the greatest discoveries in the history of mankind. We find in
this an excellent instance of the interdependence of the sciences.
The careful measurement of the size of the earth has contributed
immensely to the sciences of astronomy and physics.

III. The Earth an Oblate Spheroid. From the many
calculations which Newton’s fertile brain could now make, he
soon was enabled to announce that the earth must be, not a true
sphere, but an oblate spheroid. Christian Huygens, a celebrated
contemporary of Newton, also contended for the oblate form of
the earth, although not on the same grounds as those advanced
by Newton.

In about 1672 the trip of the astronomer Richer to French
Guiana, South America, and his discovery that pendulums swing
more slowly there (see the discussion under the topic The Earth
an Oblate Spheroid, p. 27), and the resulting conclusion that
the earth is not a true sphere, but is flattened toward the poles,
gave a new impetus to the study of the size of the earth and
other mathematical properties of it.

Over half a century had to pass, however, before the true sig-
nificance of Richer’s discovery was apparent to all or generally
accepted. An instance of a commonly accepted reason assigned
for the shorter equatorial pendulum is the following explanation
which was given to James II of England when he made a visit to
the Paris Observatory in 1697. “While Jupiter at times appears
to be not perfectly spherical, we may bear in mind the fact that
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the theory of the earth being flattened is sufficiently disproven
by the circular shadow which the earth throws on the moon.
The apparent necessary shortening of the pendulum toward the
south is really only a correction for the expansion of the pendu-
lum in consequence of the higher temperature.” It is interesting
to note that if this explanation were the true one, the average
temperature at Cayenne would have to be 43◦ above the boiling
point.

Early in the eighteenth century Giovanni Cassini, the as-
tronomer in charge of the Paris Observatory, assisted by his
son, continued the measurement begun by Picard and came to
the conclusion that the earth is a prolate spheroid. A warm
discussion arose and the Paris Academy of Sciences decided to
settle the matter by careful measurements in polar and equato-
rial regions.

In 1735 two expeditions were sent out, one into Lapland and
the other into Peru. Their measurements, while not without
appreciable errors, showed the decided difference of over half a
mile for one degree and demonstrated conclusively the oblate-
ness of a meridian and, as Voltaire wittily remarked at the time,
“flattened the poles and the Cassinis.”

The calculation of the oblateness of the earth has occupied
the attention of many since the time of Newton. His calculation
was 1

230
; that is, the polar diameter was 1

230
shorter than the

equatorial. Huygens estimated the flattening to be about 1
500

.
The most commonly accepted spheroid representing the earth
is the one calculated in 1866 by A. R. Clarke, for a long time
at the head of the English Ordnance Survey (see p. 29). Purely
astronomical calculations, based upon the effect of the bulging
of the equator upon the motion of the moon, seem to indicate
slightly less oblateness than that of General Clarke. Professor
William Harkness, formerly astronomical director of the United
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States Naval Observatory, calculated it to be very nearly 1
300

.
IV. The Earth a Geoid. During recent years many careful

measurements have been made on various portions of the globe
and extensive pendulum tests given to ascertain the force of
gravity. These measurements demonstrate that the earth is not a
true sphere; is not an oblate spheroid; indeed, its figure does not
correspond to that of any regular or symmetrical geometric form.
As explained in Chapter II, the equator, parallels, and meridians
are not true circles, but are more or less elliptical and wavy in
outline. The extensive triangulation surveys and the application
of astrophysics to astronomy and geodesy make possible, and at
the same time make imperative, a careful determination of the
exact form of the geoid.

The Motions of the Earth

The Pythagoreans maintained as a principle in their philoso-
phy that the earth rotates on its axis and revolves about the sun.
Basing their theory upon a priori reasoning, they had little bet-
ter grounds for their belief than those who thought otherwise.
Aristarchus (about 310–250 b.c.), a Greek astronomer, seems to
have been the first to advance the heliocentric theory in a sys-
tematic manner and one based upon careful observations and
calculations. From this time, however, until the time of Coper-
nicus, the geocentric theory was almost universally adopted.

The geocentric theory is often called the Ptolemaic sys-
tem from Claudius Ptolemy (not to be confused with ancient
Egyptian kings of the same name), an Alexandrian astronomer
and mathematician, who seems to have done most of his work
about the middle of the second century, a.d. He seems to have
adopted, in general, the valuable astronomical calculations of
Hipparchus (about 180–110 b.c.). The system is called after
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him because he compiled so much of the observations of other
astronomers who had preceded him and invented a most inge-
nious system of “cycles,” “epicycles,” “deferents,” “centrics,”
and “eccentrics” (now happily swept away by the Copernican
system) by which practically all of the known facts of the celes-
tial bodies and their movements could be accounted for and yet
assume the earth to be at the center of the universe.

Among Ptolemy’s contributions to mathematical geography
were his employment of the latitude and longitude of places to
represent their positions on the globe (a scheme probably in-
vented by Hipparchus), and he was the first to use the terms
“meridians of longitude” and “parallels of latitude.” It is from
the Latin translation of his subdivisions of degrees that we get
the terms “minutes” and “seconds” (for centuries the division
had been followed, originating with the Chaldeans. See p.142).
The sixty subdivisions he called first small parts; in Latin, “min-
utæ primæ,” whence our term “minute.” The sixty subdivisions
of the minute he called second small parts; in Latin, “minutæ
secundæ,” whence our term “second.”

The Copernican theory of the solar system, which has uni-
versally displaced all others, gets its name from the Polish as-
tronomer Nicolas Copernicus (1473–1543). He revived the the-
ory of Aristarchus, and contended that the earth is not at the
center of the solar system, but that the sun is, and planets all
revolve around the sun. He had no more reasons for this con-
ception than for the geocentric theory, excepting that it violated
no laws or principles, was in harmony with the known facts, and
was simpler.

Contemporaries and successors of Copernicus were far from
unanimous in accepting the heliocentric theory. One of the dis-
senters of the succeeding generation is worthy of note for his
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logical though erroneous argument against it. Tycho Brahe∗

contended that the Copernican theory was impossible, because
if the earth revolved around the sun, and at one season was at
one side of its orbit, and at another was on the opposite side,
the stars would apparently change their positions in relation to
the earth (technically, there would be an annual parallax), and
he could detect no such change. His reasoning was perfectly
sound, but was based upon an erroneous conception of the dis-
tances of the stars. The powerful instruments of the past fifty
years have made these parallactic motions of many of the stars
a determinable, though a very minute, angle, and constitute an
excellent proof of the heliocentric theory (see p. 110).

Nine years after the death of Brahe, Galileo Galilei (1564–
1642) by the use of his recently invented telescope discovered
that there were moons revolving about Jupiter, indicating by
analogy the truth of the Copernican theory. Following upon the
heels of this came his discovery that Venus in its swing back
and forth near the sun plainly shows phases just as our moon
does, and appears larger when in the crescent than when in the
full. The only logical conclusion was that it revolves around
the sun, again confirming by analogy the Copernican theory.
Galilei was a thorough-going Copernican in private belief, but
was not permitted to teach the doctrine, as it was considered
unscriptural.

As an illustration of the humiliating subterfuges to which
he was compelled to resort in order to present an argument
based upon the heretical theory, the following is a quotation
from an argument he entered into concerning three comets which
appeared in 1618. He based his argument as to their motions

∗Tycho Brahe (1546–1601) a famous Swedish astronomer, was born at
Knudstrup, near Lund, in the south of Sweden, but spent most of his life
in Denmark.
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upon the Copernican system, professing to repudiate that theory
at the same time.

“Since the motion attributed to the earth, which I as a pious
and Christian person consider most false, and not to exist, ac-
commodates itself so well to explain so many and such different
phenomena, I shall not feel sure that, false as it is, it may not
just as deludingly correspond with the phenomena of comets.”

One of the best supporters of this theory in the next gen-
eration was Kepler (1571–1630), the German astronomer, and
friend and successor of Brahe. His laws of planetary motion (see
p. 283) were, of course, based upon the Copernican theory, and
led to Newton’s discovery of the laws of gravitation.

James Bradley (1693–1762) discovered in 1727 the aberration
of light (see p. 105), and the supporters of the Ptolemaic system
were routed, logically, though more than a century had to pass
before the heliocentric theory became universally accepted.
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GRAVITY

Gravity is frequently defined as the earth’s attractive in-
fluence for an object. Since the attractive influence of the mass
of the earth for an object on or near its surface is lessened by
centrifugal force (see p. 14) and in other ways (see p. 183), it is
more accurate to say that the force of gravity is the resultant of

a. The attractive force mutually existing between the earth
and the object, and

b. The lessening influence of centrifugal force due to the
earth’s rotation.

Let us consider these two factors separately, bearing in mind
the laws of gravitation (see p. 16).

a. Every particle of matter attracts every other particle.
(1) Hence the point of gravity for any given object on the

surface of the earth is determined by the mass of the object
itself as well as the mass of the earth. The object pulls the
earth as truly and as much as the earth attracts the object.
The common center of gravity of the earth and this object lies
somewhere between the center of the earth’s mass and the center
of the mass of the object. Each object on the earth’s surface,
then, must have its own independent common center of gravity
between it and the center of the earth’s mass. The position of
this common center will vary—

(a) As the object varies in amount of matter (first law), and

278
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(b) As the distance of the object from the center of the earth’s
mass varies (inversely as the square of the distance).

(2) Because of this principle, the position of the sun or moon
slightly modifies the exact position of the center of gravity just
explained. It was shown in the discussion of tides that, although
the tidal lessening of the weight of an object is as yet an immea-
surable quantity, it is a calculable one and produces tides (see
p. 183).

b. The rotation of the earth gives a centrifugal force to every
object on its surface, save at the poles.

(1) Centrifugal force thus exerts a slight lifting influence on
objects, increasing toward the equator. This lightening influence
is sufficient to decrease the weight of an object at the equator
by 1

289
of the whole. That is to say, an object which weighs

288 pounds at the equator would weigh a pound more if the
earth did not rotate. Do not infer from this that the centrifugal
force at the pole being zero, a body weighing 288 pounds at the
equator would weigh 289 pounds at the pole, not being lightened
by centrifugal force. This would be true if the earth were a
sphere. The bulging at the equator decreases a body’s weight
there by 1

599
as compared with the weight at the poles. Thus a

body at the equator has its weight lessened by 1
289

because of
rotation and by 1

599
because of greater distance from the center,

or a total of 1
195

of its weight as compared with its weight at
the pole. A body weighing 195 pounds at the pole, therefore,
weighs but 194 pounds at the equator. Manifestly the rate of
the earth’s rotation determines the amount of this centrifugal
force. If the earth rotated seventeen times as fast, this force at
the equator would exactly equal the earth’s attraction,∗ objects

∗Other things equal, centrifugal force varies with the square of the ve-
locity (see p. 13), and since centrifugal force at the equator equals 289 times
gravity, if the velocity of rotation were increased 17 times, centrifugal force
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there would have no weight; that is, gravity would be zero. In
such a case the plumb line at all latitudes would point directly
toward the nearest celestial pole. A clock at the 45th parallel
with a pendulum beating seconds would gain one beat every 191

2

minutes if the earth were at rest, but would lose three beats in
the same time if the earth rotated twice as fast.

(2) Centrifugal force due to the rotation of the earth not
only affects the amount of gravity, but modifies the direction in
which it is exerted. Centrifugal force acts in a direction at right
angles to the axis, not directly opposite the earth’s attraction
excepting at the equator. Thus plumb lines, excepting at the
equator and poles, are slightly tilted toward the poles.

Fig. 112

If the earth were at rest
a plumb line at latitude 45◦

would be in the direction to-
ward the center of the mass
of the earth at C (Fig. 112).
The plumb line would then
be PC. But centrifugal
force is exerted toward CF ,
and the resultant of the at-
traction toward C and cen-
trifugal force toward CF
makes the line deviate to a
point between those direc-
tions, as CG, the true center of gravity, and the plumb line
becomes P ′CG. The amount of the centrifugal force is so small
as compared with the earth’s attraction that this deviation is
not great. It is greatest at the 45th parallel where it amounts to
5′ 57′′, or nearly one tenth of a degree. There is an almost equal

would equal gravity (172 = 289).
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deviation due to the oblateness of the earth. At latitude 45◦ the
total deviation of the plumb line from a line drawn to the center
of the earth is 11′ 30.65′′.

LATITUDE

In Chapter II the latitude of a place was simply defined as
the arc of a meridian intercepted between that place and the
equator. This is true geographical latitude, but the discussion
of gravity places us in a position to understand astronomical and
geocentric latitude, and how geographic latitude is determined
from astronomical latitude.

Owing to the elliptical form of a meridian “circle,” the vertex
of the angle constituting the latitude of a place is not at the
center of the globe. A portion of a meridian circle near the
equator is an arc of a smaller circle than a portion of the same
meridian near the pole (see p. 41 and Fig. 18).

Geocentric Latitude. It is sometimes of value to speak
of the angle formed at the center of the earth by two lines, one
drawn to the place whose latitude is sought, and the other to
the equator on the same meridian. This is called the geocentric
latitude of the place.

Astronomical Latitude. The astronomer ascertains lati-
tude from celestial measurements by reference to a level line or
a plumb line. Astronomical latitude, then, is the angle formed
between the plumb line and the plane of the equator.

In the discussion of gravity, the last effect of centrifugal force
noted was on the direction of the plumb line. It was shown that
this line, excepting at the equator and poles, is deviated slightly
toward the pole. The effect of this is to increase correspond-
ingly the astronomical latitude of a place. Thus at latitude 45◦,
astronomical latitude is increased by 5′ 57′′, the amount of this
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deviation. If there were no rotation of the earth, there would
be no deviation of the plumb line, and what we call latitude 60◦

would become 59◦ 54′ 51′′. Were the earth to rotate twice as
fast, this latitude, as determined by the same astronomical in-
struments, would become 60◦ 15′ 27′′.

If adjacent to a mountain, the plumb line deviates toward
the mountain because of its attractive influence on the plumb
bob; and other deviations are also observed, such as with the
ebb and flow of a near by tidal wave. These deviations are
called “station errors,” and allowance must be made for them in
making all calculations based upon the plumb line.

Geographical latitude is simply the astronomical lati-
tude, corrected for the deviation of the plumb line. Were it not
for these deviations the latitude of a place would be determined
within a few feet of perfect accuracy. As it is, errors of a few
hundred feet sometimes may occur (see p. 287).

Celestial Latitude. In the discussion of the celestial
sphere many circles of the celestial sphere were described in the
same terms as circles of the earth. The celestial equator, Tropic
of Cancer, etc., are imaginary circles which correspond to the
terrestrial equator, Tropic of Cancer, etc. Now as terrestrial lat-
itude is distance in degrees of a meridian north or south of the
equator of the earth, one would infer that celestial latitude is
the corresponding distance along a celestial meridian from the
celestial equator, but this is not the case. Astronomers reckon
celestial latitude from the ecliptic instead of from the celestial
equator. As previously explained, the distance in degrees from
the celestial equator is called declination.

Celestial Longitude is measured in degrees along the
ecliptic from the vernal equinox as the initial point, measured
always eastward the 360◦ of the ecliptic.

In addition to the celestial pole 90◦ from the celestial equator,
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there is a pole of the ecliptic, 90◦ from the ecliptic. A celestial
body is thus located by reference to two sets of circles and two
poles.

(a) Its declination from the celestial equator and position
in relation to hour circles, as celestial meridians are commonly
called (see Glossary).

(b) Its celestial latitude from the ecliptic and celestial longi-
tude from “ecliptic meridians.”

KEPLER’S LAWS

These three laws find their explanation in the laws of grav-
itation, although Kepler discovered them before Newton made
the discovery which has immortalized his name.

First Law. The orbit of each planet is an ellipse, having the
sun as a focus.

Second Law. The planet moves about the sun at such rates
that the straight line connecting the center of the sun with the
center of the planet (this line is called the planet’s radius vector)
sweeps over equal areas in equal times (see Fig. 113).

The distance of the earth’s journey for each of the twelve
months is such that the ellipse is divided into twelve equal ar-
eas. In the discussion of seasons we observed (p. 169) that when
in perihelion, in January, the earth receives more heat each day
than it does when in aphelion, in July. The northern hemi-
sphere, being turned away from the sun in January, thus has
warmer winters than it would otherwise have, and being toward
the sun in July, has cooler summers. This is true only for cor-
responding days, not for the seasons as a whole. According to
Kepler’s second law the earth must receive exactly the same to-
tal amount of heat from the vernal equinox (March 21) to the
autumnal equinox (Sept. 23), when farther from the sun, as from
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the autumnal to the vernal equinox, when nearer the sun. Dur-
ing the former period, the northern summer, the earth receives
less heat day by day, but there are more days.

Fig. 113

Third Law. The squares of the lengths of the times (sidereal
years) of planets are proportional to the cubes of their distances
from the sun. Thus,

(Earth’s year)2 : (Mars’ year)2 : :

(Earth’s distance)3 : (Mars’ distance)3.

Knowing the distance of the earth to the sun and the distance
of a planet to the sun, we have three of the quantities for our
proportion, calling the earth’s year 1, and can find the year of
the planet; or, knowing the time of the planet, we can find its
distance.
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MOTIONS OF THE EARTH’S AXIS

In the chapter on seasons it was stated that excepting for
exceedingly slow or minute changes the earth’s axis at one time
is parallel to itself at other times. There are three such motions
of the axis.

Precession of the Equinoxes. Since the earth is slightly
oblate and the bulging equator is tipped at an angle of 231

2
◦ to

the ecliptic, the sun’s attraction on this rim tends to draw the
axis over at right angles to the equator. The rotation of the
earth, however, tends to keep the axis parallel to itself, and the
effect of the additional acceleration of the equator is to cause
the axis to rotate slowly, keeping the same angle to the ecliptic,
however.

At the time of Hipparchus (see p. 274), who discovered this
rotation of the axis, the present North star, Alpha Ursa Mi-
noris, was about 12◦ from the true pole of the celestial sphere,
toward which the axis points. The course which the pole is tak-
ing is bringing it somewhat nearer the polestar; it is now about
1◦ 15′ away, but a hundred years hence will be only half a degree
from it. The period of this rotation is very long, about 25, 000
years, or 50.2′′ each year. Ninety degrees from the ecliptic is the
pole of the ecliptic about which the pole of the celestial equator
rotates, and from which it is distant 231

2
◦.

As the axis rotates about the pole of the ecliptic, the point
where the plane of the equator intersects the plane of the ecliptic,
that is, the equinox, gradually shifts around westward. Since the
vernal equinox is at a given point in the earth’s orbit one year,
and the next year is reached a little ahead of where it was the
year before, the term precession of the equinoxes is appropriate.
The sidereal year (see p. 133) is the time required for the earth
to make a complete revolution in its orbit. A solar or tropical
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year is the interval from one vernal equinox to the next vernal
equinox, and since the equinoxes “precede,” a tropical year ends
about twenty minutes before the earth reaches the same point
in its orbit a second time.

As is shown in the discussion of the earth’s revolution
(p. 169), the earth is in perihelion December 31, making the
northern summer longer and cooler, day by day, than it would
otherwise be, and the winter shorter and warmer. The traveling
of the vernal equinox around the orbit, however, is gradually
shifting the date of perihelion, so that in ages yet to come per-
ihelion will be reached in July, and thus terrestrial climate is
gradually changing. This perihelion point (and with it, aphe-
lion) has a slight westward motion of its own of 11.25′′ each
year, making, with the addition of the precession of the equi-
noxes of 50.2′′, a total shifting of the perihelion point (see “Ap-
sides” in the Glossary) of 1′ 1.45′′. At this slow rate, 10, 545
years must pass before perihelion will be reached July 1. The
amount of the ellipticity of the earth’s orbit is gradually decreas-
ing, so that by the time this shifting has taken place the orbit
will be so nearly circular that there may be but slight climatic
effects of this shift of perihelion. It may be of interest to note
that some have reasoned that ages ago the earth’s orbit was so
elliptical that the northern winter, occurring in aphelion, was so
long and cold that great glaciers were formed in northern North
America and Europe which the short, hot summers could not
melt. The fact of the glacial age cannot be disputed, but this
explanation is not generally accepted as satisfactory.

Nutation of the Poles. Several sets of gravitative influ-
ences cause a slight periodic motion of the earth’s axis toward
and from the pole of the ecliptic. Instead of “preceding” around
the circle 47◦ in diameter, the axis makes a slight wavelike mo-
tion, a “nodding,” as it is called. The principal nutatory motion
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of the axis is due to the fact that the moon’s orbit about the
earth (inclined 5◦ 8′ to the ecliptic) glides about the ecliptic in
18 years, 220 days, just as the earth’s equator glides about the
ecliptic once in 25, 800 years. Thus through periods of nearly
nineteen years each the obliquity of the ecliptic (see pp. 119, 148)
gradually increases and decreases again. The rate of this nuta-
tion varies somewhat and is always very slight; at present it is
0.47′′ in a year.

Wandering of the Poles. In the discussion of gravity
(p. 278), it was shown that any change in the position of parti-
cles of matter effects a change in the point of gravity common
to them. Slight changes in the crust of the earth are constantly
taking place, not simply the gradational changes of wearing
down mountains and building up of depositional features, but
great diastrophic changes in mountain structure and continental
changes of level. Besides these physiographic changes, meteoro-
logical conditions must be factors in displacement of masses,
the accumulation of snow, the fluctuation in the level of great
rivers, etc. For these reasons minute changes in the position of
the axis of rotation must take place within the earth. Since 1890
such changes in the position of the axis within the globe have
been observed and recorded. The “wandering of the poles,” as
this slight shifting of the axis is called, has been demonstrated
by the variation in the latitudes of places. A slight increase in
the latitude of an observatory is noticed, and at the same time
a corresponding decrease is observed in the latitude of an ob-
servatory on the opposite side of the globe. “So definite are the
processes of practical astronomy that the position of the north
pole can be located with no greater uncertainty than the area
of a large Eskimo hut.”∗

∗Todd’s New Astronomy, p. 95.
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In 1899 the International Geodetic Association took steps
looking to systematic and careful observations and records of
this wandering of the poles. Four stations not far from the
thirty-ninth parallel but widely separated in longitude were se-
lected, two in the United States, one in Sicily, and the other in
Japan.

All of the variations since 1889 have been within an area less
than sixty feet in diameter.

Seven Motions of the Earth. Seven of the well-defined
motions of the earth have been described in this book:

1. Diurnal Rotation.
2. Annual Revolution in relation to the sun.
3. Monthly Revolution in relation to the moon (see p. 184).
4. Precessional Rotation of Axis about the pole of the eclip-

tic.
5. Nutation of the poles, an elliptical or wavelike motion in

the precessional orbit of the axis.
6. Shifting on one axis of rotation, then on another, leading

to a “wandering of the poles.”
7. Onward motion with the whole solar system (see “Sun’s

Onward Motion,” p. 248).

MATHEMATICAL TREATMENT OF TIDES

The explanation of the cause of tides in the chapter on that
subject may be relied upon in every particular, although math-
ematical details are omitted. The mathematical treatment is
difficult to make plain to those who have not studied higher
mathematics and physics. Simplified as much as possible, it is
as follows:

Let it be borne in mind that to find the cause of tides we
must find unbalanced forces which change their positions. Sur-
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face gravity over the globe varies slightly in different places, be-
ing less at the equator and greater toward the poles. As shown
elsewhere, the force of gravity at the equator is less for two rea-
sons:

a. Because of greater centrifugal force.
b. Because of the oblateness of the earth.
(a) Centrifugal force being greater at the equator than else-

where, there is an unbalanced force which must cause the waters
to pile up to some extent in the equatorial region. If centrifugal
force were sometimes greater at the equator and sometimes at
the poles, there would be a corresponding shifting of the accu-
mulated waters and we should have a tide—and it would be an
immense one. But we know that this unbalanced force does not
change its position, and hence it cannot produce a tide.

(b) Exactly the same course of reasoning applies to the unbal-
anced force of gravity at the equator due to its greater distance
from the center of gravity. The position of this unbalanced force
does not shift, and no tide results.

Since the earth turns on its axis under the sun and moon,
any unbalanced forces they may produce will necessarily shift as
different portions of the earth are successively turned toward or
from them. Our problem, then, is to find the cause and direction
of the unbalanced forces produced by the moon or sun.

Fig. 114

In Figure 114, let CA be the acceleration toward the moon
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at C, due to the moon’s attraction. Let BD be the acceleration
at B. Now B is nearer the moon than C, so BD will be greater
than CA, since the attraction varies inversely as the square of
the distance.

From B construct BE equal to CA. Comparing forces BE
and BD, the latter is greater. Completing the parallelogram,
we have BFDE. Now it is a simple demonstration in physics
that if two forces act upon B, one to F and the other to E, the
resultant of the two forces will be the diagonal BD. Since BE
and BF combined result in BD, it follows that BF represents
the unbalanced force at B.

At B, then, there is an unbalanced force as compared with C
as represented by BF . At B′ the unbalanced force is represented
by B′F ′. Note the pulling direction in which these unbalanced
forces are exerted.

Note.—For purposes of illustration the distance of the moon repre-
sented in the figures is greatly diminished. The distance CA is taken arbi-
trarily, likewise the distance BD. If CA were longer, however, BD would
be still longer; and while giving CA a different length, would modify the
form of the diagram, the mathematical relations would remain unchanged.
Because of the short distance given CM in the figures, the difference be-
tween the BF in Figure 114 and BF in Figure 115 is greatly exaggerated.
The difference between the unbalanced or tide-producing force on the side
toward the moon and that on the opposite side is approximately .0467BF
(Fig. 114).

Fig. 115
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In Figure 115, B is farther from the moon than C, hence
BE (equal to CA) is greater than BD, and the unbalanced
force at B is BF , directed away from the moon. A study of
Figures 114 and 115 will show that the unbalanced force on
the side towards the moon (BF in Fig. 114) is slightly greater
than the unbalanced force on the side opposite the moon (BF in
Fig. 115). The difference, however, is exceedingly slight, and the
tide on the opposite side is practically equal to the tide on the
side toward the attracting body.

Fig. 116

Combining the arrows showing the directions of the unbal-
anced forces in the two figures, we have the arrows shown in
Figure 116. The distribution and direction of the unbalanced
forces may be thus summarized: “The disturbing force produces
a pull along AA′ and a squeeze along BB′.”∗

THE ZODIAC

This belt in the celestial sphere is 16◦ wide with the ecliptic
as the center. The width is purely arbitrary. It could have been
wider or narrower just as well, but was adopted by the ancients
because the sun, moon, and planets known to them were always

∗Mathematical Astronomy, Barlow and Bryan, p. 377.
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seen within 8◦ of the pathway of the sun. We know now that
several asteroids, as truly planets as the earth, are considerably
farther from the ecliptic than 8◦; indeed, Pallas is sometimes
34◦ from the ecliptic—to the north of overhead to people of
northern United States or central Europe.

Fig. 117

Signs. As the sun “creeps backward” in the center of the
zodiac, one revolution each year, the ancients divided its path-
way into twelve parts, one for each month. To each of these sec-
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tions of thirty degrees (360◦ ÷ 12 = 30◦) names were assigned,
all but one after animals, each one being considered appropriate
as a “sign” of an annual recurrence (see p. 118). Aries seems
commonly to have been taken as the first in the series, the be-
ginning of spring. Even yet the astronomer counts the tropical
year from the “First point of Aries,” the moment the center of
the sun crosses the celestial equator on its journey northward.

As explained in the discussion of the precession of the equi-
noxes (p. 285), the point in the celestial equator where the cen-
ter of the sun crosses it shifts westward one degree in about
seventy years. In ancient days the First point of Aries was in
the constellation of that name but now it is in the constellation
to the west, Pisces. The sign Aries begins with the First point
of Aries, and thus with the westward travel of this point all the
signs have moved back into a constellation of a different name.
Another difference between the signs and the constellations of
the zodiac is that the star clusters are of unequal length, some
more than 30◦ and some less, whereas the signs are of uniform
length. The positions and widths of the signs and constellations
with the date when the sun enters each are shown in Figure 117.

Aries, the first sign, was named after the ram, probably
because to the ancient Chaldeans, where the name seems to
have originated, this was the month of sacrifice. The sun is in
Aries from March 21 until April 20. It is represented by a small
picture of a ram or by a hieroglyphic ( ).

Taurus, the second sign ( ), was dedicated to the bull. In
ancient times this was the first of the signs, the vernal equinox
being at the beginning of this sign. According to very ancient
mythology it was the bull that drew the sun along its “furrow”
in the sky. There are, however, many other theories as to the
origin of the designation. The sun is in Taurus from April 20
until May 21.
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Gemini, the third sign, signifies twins ( ) and gets its
name from two bright stars, Castor and Pollux, which used to
be in this sign, but are now in the sign Cancer. The sun is in
Gemini from May 21 until June 22.

Cancer, the fourth sign ( ), was named after the crab,
probably from the fact that when in this sign the sun retreats
back again, crablike, toward the south. The sun is in Cancer
from June 22 until July 23.

Leo, signifying lion, is the fifth sign ( ) and seems to have
been adopted because the lion usually was used as a symbol for
fire, and when the sun was in Leo the hottest weather occurred.
The sun is in this sign from July 23 until August 23.

Virgo, the virgin ( ), refers to the Chaldean myth of the
descent of Ishtar into hades in search of her husband. The sun
is in Virgo from August 23 until September 23.

The foregoing are the summer signs and, consequently, the
corresponding constellations are our winter constellations. It
must be remembered that the sign is always about 30◦ (the
extreme length of the “Dipper”) to the west of the constellation
of the same name.

Libra, the balances ( ), appropriately got its name from
the fact that the autumnal equinox, or equal balancing of day
and night, occurred when the sun was in the constellation thus
named the Balances. The sun is now in Libra from September 23
until October 24.

Scorpio is the eighth sign ( ). The scorpion was a symbol
of darkness, and was probably used to represent the shortening
of days and lengthening of nights. The sun is now in Scorpio
from October 24 until November 23.

Sagittarius, meaning an archer or bowman, is
sometimes represented as a Centaur with a bow and
arrow. The sun is in this sign from November 23 until Decem-
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ber 22.
Capricorn, signifying goat, is often represented as having

the tail of a fish ( ). It probably has its origin as the mytho-
logical nurse of the young solar god. The sun is in Capricorn
from December 22 until January 20.

Aquarius, the water-bearer ( ), is the eleventh sign and
probably has a meteorological origin, being associated as the
cause of the winter rains of Mediterranean countries. The sun
is in this sign from January 20 until February 19.

Pisces is the last of the twelve signs. In accordance with
the meaning of the term, it is represented as two fishes ( ).
Its significance was probably the same as the water-bearer. The
sun is in this sign from February 19 until the vernal equinox,
March 21, when it has completed the “labors” of its circuit,
only to begin over again.

The twelve signs of the ancient Chinese zodiac were dedi-
cated to a quite different set of animals; being, in order, the
Rat, the Ox, the Tiger, the Hare, the Dragon, the Serpent,
the Horse, the Sheep, the Monkey, the Hen, the Dog, and the
Pig. The Egyptians adopted with a few changes the signs of the
Greeks.

Myths and Superstitions as to the Relation of the
Zodiac to the Earth

When one looks at the wonders of the heavens it does not
seem at all strange that in the early dawn of history, ignorance
and superstition should clothe the mysterious luminaries of the
sky with occult influences upon the earth, the weather, and upon
human affairs. The ancients, observing the apparent fixity of all
the stars excepting the seven changing ones of the zodiac—the
sun, moon, and five planets known to them—endowed this belt
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and its seven presiding deities with special guardianship of the
earth, giving us seasons, with varying length of day and change
of weather; bringing forth at its will the sprouting of plants and
fruitage and harvest in their season; counting off inevitably the
years that span human life; bringing days of prosperity to some
and of adversity to others; and marking the wars and struggles,
the growth and decay of nations. With such a background of be-
lief, at once their science and their religion, it is not strange that
when a child was born the parents hastened to the astrologer to
learn what planet or star was in the ascendancy, that is, most
prominent during the night, and thus learn in advance what his
destiny would be as determined from the character of the star
that would rule his life.

The moon in its monthly path around the earth must pass
through the twelve signs of the zodiac in 291

2
days or spend

about 21
2

days to each sign. During the blight of intelligence of
the dark ages, some mediæval astrologer conceived the simple
method of subdividing the human body into twelve parts to
correspond to the twelve constellations of the zodiac. Beginning
with the sign Aries, he dedicated that to the head, the neck he
assigned to Taurus, the arms were given over to Gemini, the
stars of Cancer were to rule the breast, the heart was presided
over by Leo, and so on down to Pisces which was to rule the
feet. Now anyone who was born when the moon was in Aries
would be strong in the head, intellectual; if in Taurus, he would
be strong in the neck and self-willed, etc. Moreover, since the
moon makes a circuit of the signs of the zodiac in a month,
according to his simple scheme when the moon is in Aries the
head is especially affected; then diseases of the head rage (or is it
then that the head is stronger to resist disease?), and during the
next few days when the moon is in Taurus, beware of affections
of the neck, and so on down the list. The very simplicity of
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this scheme and ease by which it could be remembered led to
its speedy adoption by the masses who from time immemorial
have sought explanations of various phenomena by reference to
celestial bodies.

Now there is no astronomical or geographical necessity for
considering Aries as the first sign of the zodiac. Our year begins
practically with the advent of the sun into Capricorn—the be-
ginning of the year was made January 1 for this very purpose.
The moon is not in any peculiar position in relation to the earth
March 21 any more than it is December 23. If when the cal-
endar was revised the numbering of the signs of the zodiac had
been changed also, then Capricorn, the divinities of which now
rule the knees, would have been made to rule the head, and the
whole artificial scheme would have been changed! Besides, the
sign Capricorn does not include the constellation Capricorn, so
with the precession of the equinoxes the subtle influences once
assigned to the heavenly bodies of one constellation have been
shifted to an entirely different set of stars! The association of
storms with the sun’s crossing the equinox and with the angle
the cusps of the moon show to the observer (a purely geometric
position varying with the position of the observer) is in the same
class as bad luck attending the taking up of the ashes after the
sun has gone down or the wearing of charms against rheumatism
or the “evil” eye.

“The fault, dear Brutus, is not in our stars,
But in ourselves, that we are underlings.”

—Shakespeare.
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PRACTICAL WORK IN MATHEMATICAL GEOGRAPHY

Concrete work in this subject has been suggested directly,
by implication, or by suggestive queries and problems through-
out the book. No instruments of specific character have been
suggested for use excepting such as are easily provided, as a
graduated quadrant, compasses, an isosceles right triangle, etc.
Interest in the subject will be greatly augmented if the following
simple instruments, or similar devices, are made or purchased
and used.

To Make a Sundial

Fig. 118

This is not espe-
cially difficult and
may be accomplished
in several ways. A
simple plan is shown
in Figure 118. An-
gle BAC should be
the co-latitude of the
place, that is, the
latitude subtracted
from 90◦, though this
is not at all essential.

The hour lines may be marked off according to two systems, for
standard time or for local time.

Standard Time Dial. If you wish your dial to indicate
clock time as correctly as possible, it will be necessary to consult
the analemma or an almanac to ascertain the equation of time
when the hour lines are drawn. Since the sun is neither fast nor
slow April 14, June 15, September 1, or December 25, those are
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the easiest days on which to lay off the hours. On one of those
dates you can lay them off according to a reliable timepiece.

If you mark the hour lines at any other date; ascertain the
equation of time (see p. 128) and make allowances accordingly.
Suppose the date is October 27. The analemma shows the sun
to be 16 minutes fast. You should mark the hour lines that many
minutes before the hour as indicated by your timepiece, that is,
the noon line when your watch says 11:44 o’clock, the 1 o’clock
line when the watch indicates 12:44, etc. If the equation is slow,
say five minutes, add that time to your clock time, marking the
noon line when your watch indicates 12:05, the next hour line
at 1:05, etc. It is well to begin at the hour for solar noon, at
that time placing the board so that the sun’s shadow is on the
XII mark and after marking off the afternoon hours measure
from the XII mark westward corresponding distances for the
forenoon. Unless you chance to live upon the meridian which
gives standard time to the belt in which you are, the noon line
will be somewhat to the east or west of north.

This sundial will record the apparent solar time of the merid-
ian upon which the clock time is based. The difference in the
time indicated by the sundial and your watch at any time is the
equation of time. Test the accuracy of your sundial by notic-
ing the time by your watch when the sundial indicates noon and
comparing this difference with the equation of time for that day.
If your sundial is accurate, you can set your watch any clear day
by looking up the equation of time and making allowances ac-
cordingly. Thus the analemma shows that on May 28 the sun is
three minutes fast. When the sundial indicates noon you know
it is three minutes before twelve by the clock.

Local Time Dial. To mark the hour lines which show the
local mean solar time (see p. 63), set the XII hour line due north.
Note accurately the clock time when the shadow is north. One
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hour later mark the shadow line for the I hour line, two hours
later mark the II hour line, etc. This dial will indicate the
apparent solar time of your meridian. You can set your watch
by it by first converting it into mean solar time and then into
standard time. (This is explained on p. 129)

It should be noted that these two sundials are exactly the
same for persons who use local time, or, living on the standard
time meridian, use standard time.

The Sun Board

The uses of the mounted quadrant in determining latitude
were shown in the chapter on seasons (see p. 172). Dr. J. Paul
Goode, of the University of Chicago, has designed a very con-
venient little instrument which answers well for this and other
purposes.

Fig. 119

A vertically placed quadrant enables one to ascertain the al-
titude of the sun for determining latitude and calculating the
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heights of objects. By means of a graduated circle placed hor-
izontally the azimuth of the sun (see Glossary) may be ascer-
tained. A simple vernier gives the azimuth readings to quarter
degrees. It also has a device for showing the area covered by a
sunbeam of a given size, and hence its heating power.

The Heliodon

Fig. 120

This appliance was designed by Mr. J. F. Morse, of the Medill
High School, Chicago. It vividly illustrates the apparent path
of the sun at the equinoxes and solstices at any latitude. The
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points of sunrise and sunset can also be shown and hence the
length of the longest day or night can be calculated.
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WHAT KEEPS THE MEMBERS OF THE SOLAR SYSTEM
IN THEIR ORBITS?

When a body is thrown in a direction parallel to the horizon,
as the bullet from a level gun, it is acted upon by two forces:

(a) The projectile force of the gun, AB. (Fig. 121.)
(b) The attractive force of the earth, AC.
The course it will actually take from point A is the diago-

nal AA′. When it reaches A′ the force AB still acts (not con-
sidering the friction of the air), impelling it in the line A′B′.
Gravity continues to pull it in the line A′C ′, and the projectile
takes the diagonal direction A′A′′ and makes the curve (not a
broken line as in the figure) AA′A′′. It is obvious from this di-
agram that if the impelling force be sufficiently great, line AB
will be so long in relation to line AC that the bullet will be
drawn to the earth just enough to keep it at the same distance
from the surface as that of its starting point.

Fig. 121

The amount of such a projectile force near the surface of the
earth at the equator as would thus keep an object at an unvary-
ing distance from the earth is 26, 100 feet per second. Fired in a
horizontal direction from a tower (not allowing for the friction of
the air) such a bullet would forever circle around the earth. Di-
viding the circumference of the earth (in feet) by this number we
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find that such a bullet would return to its starting point in about
5, 000 seconds, or 1 h. 23 m., making many revolutions around
the earth during one day. Since our greatest guns, throwing a
ton of steel a distance of twenty-one miles, give their projectiles
a speed of only about 2, 600 feet per second, it will be seen that
the rate we have given is a terrific one. If this speed were in-
creased to 37, 000 feet per second, the bullet would never return
to the earth. One is tempted here to digress and demonstrate
the utter impossibility of human beings even “making a trip to
the moon,” to say nothing of one to a much more distant planet.
The terrific force with which we should have to be hurled to get
away from the earth, fourteen times the speed of the swiftest
cannon ball, is in itself an insuperable difficulty. Besides this,
there would have to be the most exact calculation of the force
and direction, allowing for (a) the curve given a projectile by
gravity, (b) the centrifugal force of rotation, (c) the revolution of
the earth, (d) the revolution of the moon, (e) the friction of the
air, a variable quantity, impossible of calculation with absolute
accuracy, (f ) the inevitable swerving in the air by reason of its
currents and varying density, and (g) the influence on the course
by the attraction of the sun and planets. In addition to these
mathematical calculations as to direction and projectile force,
there would be the problem of (h) supply of air, (i) air pressure,
to which our bodies through the evolution of ages have become
adapted, (j ) the momentum with which we would strike into the
moon if we did “aim” right, etc.

Returning to our original problem, we may notice that if the
bullet were fired horizontally at a distance of 4, 000 miles from
the surface of the earth, the pull of gravity would be only one
fourth as great (second law of gravitation), and the projectile
would not need to take so terrific a speed to revolve around the
earth. As we noticed in the discussion of Mars (see p. 255),
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Fig. 122. Paths of Projectiles of Different Velocities (Scientific
American Supplement, Sept. 22, 1906. Reproduced by

permission)

the satellite Phobos is so near its primary, 1, 600 miles from the
surface, that it revolves at just about the rate of a cannon ball,
making about three revolutions while the planet rotates once.

While allusion has been made only to a bullet or a moon,
in noticing the application of the law of projectiles, the prin-
ciple applies equally to the planets. Governed by the law here
illustrated, a planet will revolve about its primary in an orbit
varying from a circle to an elongated ellipse. Hence we conclude
that a combination of projectile and attractive forces keeps the
members of the solar system in their orbits.
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FORMULAS AND TABLES

Symbols Commonly Employed

There are several symbols which are generally used in works
dealing with the earth, its orbit or some of its other properties.
To the following brief list of these are added a few mathematical
symbols employed in this book, which may not be familiar to
many who will use it. The general plan of using arbitrary sym-
bols is shown on page 13, where G represents universal gravita-
tion and g represents gravity; C represents centrifugal force and
c centrifugal force due to the rotation of the earth.

φ (Phi), latitude.
ε (Epsilon), obliquity of the ecliptic, also eccentricity of an

ellipse.
π (Pi), the number which when multiplied by the diameter of

a circle equals the circumference; it is 3.14159265, nearly
3.1416, nearly 31

7
. π2 = 9.8696044.

δ (Delta), declination, or distance in degrees from the celes-
tial equator.
∝, “varies as;” x ∝ y means x varies as y.
<, “is less than;” x < y means x is less than y.
>, “is greater than;” x > y means x is greater than y.

Formulas

The Circle and Sphere

r = radius. c = circumference.
d = diameter. a = area.
πd = c.
c

π
= d.
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πr2 = area.
4πr2 = surface of sphere.
4
3
πr3 = volume of sphere = 4.1888r3 (nearly).

The Ellipse

a = 1
2

major axis. o = oblateness.

b = 1
2

minor axis. e = eccentricity.
πab = area of ellipse.

o =
a− b
a

e =

√
a2 − b2

a2

The Earth Compared with Other Bodies

P = the radius of the body as compared with the radius of
the earth. Thus in case of the moon, the moon’s radius =
1081, the earth’s radius = 3959, and P = 1081

3959
.

P 2 = surface of body as compared with that of the earth.
P 3 = volume of body as compared with that of the earth.
mass

P 2
= surface gravity as compared with that of the earth.

Centrifugal Force

c = centrifugal force. r = radius.
v = velocity. m = mass.

c =
mv2

r
.

Lessening of surface gravity at any latitude by reason of the
centrifugal force due to rotation.

g = surface gravity.
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c at any latitude =
g

289
× cos2 φ.

Deviation of the plumb line from true vertical by reason of
centrifugal force due to rotation.

d = deviation.
d = 357′′ × sin 2φ.

Miscellaneous

Rate of swing of pendulum varies inversely as the square root

of the surface gravity. r =
1
√
g

.

Density of a body =
mass

vol.
.

Hourly deviation of the plane of a pendulum due to the ro-
tation of the earth = sin latitude× 15◦ (d = sinφ× 15◦).

Weight of bodies above the surface of the earth.
w = weight,
d = distance from the center of the earth.

w ∝
1

d2
.

Weight of bodies below the surface of the earth. w ∝ d.

GEOGRAPHICAL CONSTANTS∗

Equatorial semi-axis:

in feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 926, 062.

in meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 378, 206.4

in miles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3, 963.307

∗Dimensions of the earth are based upon the Clarke spheroid of 1866.
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Polar semi-axis:

in feet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20, 855, 121.

in meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 356, 583.8

in miles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3, 949.871

Oblateness of earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1÷ 294.9784
Circumference of equator (in miles) . . . . . . . . . . . . . . . . . 24, 901.96
Circumference through poles (in miles) . . . . . . . . . . . . . . 24, 859.76
Area of earth’s surface, square miles . . . . . . . . . . . . . 196, 971, 984.
Volume of earth, cubic miles . . . . . . . . . . . . . . . . . 259, 944, 035, 515.
Mean density (Harkness) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.576
Surface density (Harkness) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.56
Obliquity of ecliptic (see page 119) . . . . . . . . . . . . . . . 23◦27′4.98 s.
Sidereal year . . . . . . . . . . . 365 d. 6 h. 9 m. 8.97 s. or 365.25636 d.
Tropical year . . . . . . . . 365 d. 5 h. 48 m. 45.51 s. or 365.24219 d.
Sidereal day . . . . . . . . . . . . 23 h. 56 m. 4.09 s. of mean solar time.
Distance of earth to sun, mean (in miles) . . . . . . . . . . 92, 800, 000.
Distance of earth to moon, mean (in miles) . . . . . . . . . . . 238, 840.

MEASURES OF LENGTH

Statute mile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 280.00 feet
Nautical mile,∗ or knot . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 080.27 “

German sea mile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 076.22 “
Prussian mile, law of 1868 . . . . . . . . . . . . . . . . . . . . . . 24, 604.80 “
Norwegian and Swedish mile . . . . . . . . . . . . . . . . . . . . 36, 000.00 “

Danish mile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24, 712.51 “
Russian werst, or versta . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 500.00 “

Meter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28 “

Fathom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.00 “
Link of surveyor’s chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.66 “

∗As defined by the United States Coast and Geodetic Survey.
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TABLE OF NATURAL SINES AND COSINES

Sin Cos Sin Cos Sin Cos

0◦ .0000 90◦ 31◦ .5150 59◦ 61◦ .8746 29◦

1 .0175 89 32 .5299 58 62 .8829 28
2 .0349 88 33 .5446 57 63 .8910 27
3 .0523 87 34 .5592 56 64 .8988 26
4 .0698 86 35 .5736 55 65 .9063 25
5 .0872 85 36 .5878 54 66 .9135 24
6 .1045 84 37 .6018 53 67 .9205 23
7 .1219 83 38 .6157 52 68 .9272 22
8 .1392 82 39 .6293 51 69 .9336 21
9 .1564 81 40 .6424 50 70 .9397 20

10 .1736 80 41 .6561 49 71 .9455 19
11 .1908 79 42 .6691 48 72 .9511 18
12 .2079 78 43 .6820 47 73 .9563 17
13 .2250 77 44 .6947 46 74 .9613 16
14 .2419 76 45 .7071 45 75 .9659 15
15 .2588 75 46 .7193 44 76 .9703 14
16 .2756 74 47 .7314 43 77 .9744 13
17 .2924 73 48 .7431 42 78 .9781 12
18 .3090 72 49 .7547 41 79 .9816 11
19 .3256 71 50 .7660 40 80 .9848 10
20 .3420 70 51 .7771 39 81 .9877 9
21 .3584 69 52 .7880 38 82 .9903 8
22 .3746 68 53 .7986 37 83 .9925 7
23 .3907 67 54 .8090 36 84 .9945 6
24 .4067 66 55 .8192 35 85 .9962 5
25 .4226 65 56 .8290 34 86 .9976 4
26 .4384 64 57 .8387 33 87 .9986 3
27 .4540 63 58 .8480 32 88 .9994 2
28 .4695 62 59 .8572 31 89 .9998 1
29 .4848 61 60 .8660 30 90 1.0000 0
30 .5000 60
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TABLE OF NATURAL TANGENTS AND COTANGENTS

Tan Cot Tan Cot Tan Cot

0◦ .0000 90◦ 31◦ .6009 59◦ 61◦ 1.8040 29◦

1 .0175 89 32 .6249 58 62 1.8807 28
2 .0349 88 33 .6494 57 63 1.9626 27
3 .0524 87 34 .6745 56 64 2.0503 26
4 .0699 86 35 .7002 55 65 2.1445 25
5 .0875 85 36 .7265 54 66 2.2460 24
6 .1051 84 37 .7536 53 67 2.3559 23
7 .1228 83 38 .7813 52 68 2.4751 22
8 .1405 82 39 .8098 51 69 2.6051 21
9 .1584 81 40 .8391 50 70 2.7475 20

10 .1763 80 41 .8693 49 71 2.9042 19
11 .1944 79 42 .9004 48 72 3.0777 18
12 .2126 78 43 .9325 47 73 3.2709 17
13 .2309 77 44 .9657 46 74 3.4874 16
14 .2493 76 45 1.0000 45 75 3.7321 15
15 .2679 75 46 1.0355 44 76 4.0108 14
16 .2867 74 47 1.0724 43 77 4.3315 13
17 .3057 73 48 1.1106 42 78 4.7046 12
18 .3249 72 49 1.1504 41 79 5.1446 11
19 .3443 71 50 1.1918 40 80 5.6713 10
20 .3640 70 51 1.2349 39 81 6.1338 9
21 .3839 69 52 1.2794 38 82 7.1154 8
22 .4040 68 53 1.3270 37 83 8.1443 7
23 .4245 67 54 1.3764 36 84 9.5144 6
24 .4452 66 55 1.4281 35 85 11.43 5
25 .4663 65 56 1.4826 34 86 14.30 4
26 .4877 64 57 1.5399 33 87 19.08 3
27 .5095 63 58 1.6003 32 88 24.64 2
28 .5317 62 59 1.6643 31 89 57.29 1
29 .5543 61 60 1.7321 30 90 0.0000 0
30 .5774 60
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GLOSSARY

Aberration, the apparent displacement of sun, moon, planet, or star pro-
duced as a resultant of (a) the orbital velocity of the earth, and (b) the
velocity of light from the heavenly body.

Acceleration, increase or excess of mean motion or velocity.
Altitude, elevation in degrees (or angle of elevation) of an object above

the horizon.
Analemma, a scale showing (a) the mean equation of time and (b) the

mean declination of the sun for each day of the year.
Aphelion (ă fē′ li on), the point in a planet’s orbit which is farthest from

the sun.
Apogee (ăp′ o je), the point farthest from the earth in any orbit; usually

applied to the point in the moon’s orbit farthest from the earth.
Apparent solar day, see Day.
Apparent (solar) time, see Time.
Apsides (ăp′ si dēz), line of, a line connecting perihelion and aphelion of a

planet’s orbit, or perigee and apogee of a moon’s orbit. Apsides is plural
for apsis, which means the point in an orbit nearest to the primary or
farthest from it.

Arc, part of a circle; in geography, part of the circumference of a circle.
Asteroids, very small planets. A large number of asteroids revolve around

the sun between the orbits of Mars and Jupiter.
Autumnal equinox, see Equinox.
Axis, the line about which an object rotates.
Azimuth (ăz′ ı̆ mŭth) the angular distance of an object from the celestial

meridian of the place of the observer to the celestial meridian of the
object. The azimuth of the sun is the distance in degrees from its point
of rising or setting to a south point on the horizon.

Celestial sphere, the apparent hollow sphere in which the sun, moon,
planets, comets, and stars seem to be located.

313



GLOSSARY 314

Center of gravity the point about which a body (or group of bodies)
balances.

Centrifugal force (sen trif′ u gal), a force tending away from a center.
Centripetal force (sen trip′ e tal), a force tending toward a center.
Colures (kō lūrz′), the four principal meridians of the celestial sphere, two

passing through the equinoxes and two through the solstices.
Conjunction, see Syzygy.
Copernican system (kō per′ ni can), the theory of the solar system ad-

vanced by Copernicus (1473–1543) that the sun is the center of the solar
system, the planets rotating on their axes and revolving around the sun.
See Heliocentric theory.

Co-tidal lines, lines passing through places that have high tide at the
same time.

Day.
Astronomical day, a period equal to a mean solar day, reckoned
from noon and divided into twenty-four hours, usually numbered from
one to twenty-four.

Civil day, the same as an astronomical day excepting that it is reck-
oned from midnight. It is also divided into twenty-four hours, usually
numbered in two series, from one to twelve.

Sidereal day, the interval between two successive passages of a celestial
meridian over a given terrestrial meridian. The zero meridian from
which the sidereal day is reckoned is the one passing through the First
point of Aries. The length of the sidereal day is 23 h. 56 m. 4.09 s.
The sidereal day is divided into twenty-four hours, each shorter than
those of the civil or astronomical day; they are numbered from one to
twenty-four.

Solar day.
Apparent solar day, the interval between two successive passages of the
sun’s center over the meridian of a place; that is, from sun noon to the
next sun noon; this varies in length from 23 h. 59 m. 38.8 s. to 24 h.
0 m. 30 s.
Mean solar day, the average interval between successive passages of
the sun’s center over the meridian of a place; that is, the average of
the lengths of all the solar days of the year; this average is 24 h. as we
commonly reckon civil or clock time.

Declination is the distance in degrees of a celestial body from the celestial
equator. Declination in the celestial sphere corresponds to latitude on
the earth.
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Eccentricity (ĕk sĕn tr̆ıs′ ı̆ ty), see Ellipse.
Ecliptic (ē kl̆ıp′ t̆ık), the path of the center of the sun in its apparent orbit

in the celestial sphere. A great circle of the celestial sphere whose plane
forms an angle of 23◦ 27′ with the plane of the equator. This inclination of
the plane of the ecliptic to the plane of the equator is called the obliquity
of the ecliptic. The points 90◦ from the ecliptic are called the poles of
the ecliptic. Celestial latitude is measured from the ecliptic.

Ellipse, a plane figure bounded by a curved line, every point of which is
at such distances from two points within called the foci (pronounced fō′

s̄ı; singular, focus) that the sum of the distances is constant.
Eccentricity (ĕk sĕn tris′ ı̆ ty) is the fraction obtained by dividing the

distance of a focus to the center of the major axis by one half the major
axis.

Oblateness or ellipticity is the deviation of an ellipse from a circle and
is the fraction obtained by dividing the difference between the major
and minor axes by the major axis.

Ellipticity (ĕl l̆ıp tis′ ı̆ ty), see Ellipse.
Equation of time (ē kwā′ shun), the difference between apparent solar

time, or time as actually indicated by the sun, and the mean solar time,
or the average time indicated by the sun. It is usually indicated by the
minus sign when the apparent sun is faster than the mean sun and with
the plus sign when the apparent time is slow. The apparent sun time
combined with the equation of time gives the mean time; e.g., by the
apparent sun it is 10 h. 30 m., the equation is −2 m. (sun fast 2 m.),
combined we get 10 h. 28 m., the mean sun time. See Day.

Equator (ē kwā′ ter), when not otherwise qualified means terrestrial equa-
tor.
Celestial equator, the great circle of the celestial sphere in the plane

of the earth’s equator. Declination is measured from the celestial equa-
tor.

Terrestrial equator, the great circle of the earth 90◦ from the poles
or ends of the axis of rotation. Latitude is measured from the equator.

Equinox, one of the two points where the ecliptic intersects the celestial
equator. Also the time when the sun is at this point.
Autumnal equinox, the equinox which the sun reaches in autumn.

Also the time when the sun is at that point, September 23.
Vernal equinox, the equinox which the sun reaches in spring. This

point is called the First point of Aries, since that sign of the zodiac
begins with this point, the sign extending eastward from it 30◦. The
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celestial meridian (see Colure) passing through this point is the zero
meridian of the celestial sphere, from which celestial longitude is reck-
oned. The vernal equinox is also the time when the sun is at this point,
about March 21, the beginning of the astronomical year. See Year.

Geocentric (jē ō sĕn′ trik; from ge, earth; centrum, center),
Theory of the solar system assumes the earth to be at the center of the

solar system; see Ptolemaic system.
Latitude, see Latitude.
Parallax, see Parallax.

Geodesy (jē ŏd′ ĕ sy), a branch of mathematics or surveying which is
applied to the determination, measuring, and mapping of lines or areas
on the surface of the earth.

Gravitation, the attractive force by which all particles of matter tend to
approach one another.

Gravity, the resultant of (a) the earth’s attraction for any portion of
matter rotating with the earth and (b) the centrifugal force due to its
rotation. The latter force (b) is so small that it is usually ignored and
we commonly speak of gravity as the earth’s attraction for an object.
Gravity is still more accurately defined in the Appendix.

Heliocentric (hē l̆ı ō sĕn′ trik; from helios, sun; centrum, center).
Theory of the solar system assumes the sun to be at the center of

the solar system; also called the Copernican system (see Copernican
system).

Parallax, see Parallax.
Horizon (hō r̄ı′ zon), the great circle of the celestial sphere cut by a plane

passing through the eye of the observer at right angles to the plumb line.
Dip of horizon. If the eye is above the surface, the curvature of the

earth makes it possible to see beyond the true horizon. The angle
formed, because of the curvature of the earth, between the true horizon
and the visible horizon is called the dip of the horizon.

Visible horizon, the place where the earth and sky seem to meet. At
sea if the eye is near the surface of the water the true horizon and the
visible horizon are the same, since water levels and forms a right angle
to the plumb line.

Hour-circles, great circles of the celestial sphere extending from pole to
pole, so called because they are usually drawn every 15◦ or one for each
of the twenty-four hours of the day. While hour-circles correspond to
meridians on the earth, celestial longitude (see Longitude) is not reckoned
from them as they change with the rotation of the earth.
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Latitude, when not otherwise qualified, geographical latitude is meant.
Astronomical latitude, the distance in degrees between the plumb

line at a given point on the earth and the plane of the equator.
Celestial latitude, the distance in degrees between a celestial body

and the ecliptic.
Geocentric latitude, the angle formed by a line from a given point

on the earth to the center of the earth (nearly the same as the plumb
line) and the plane of the equator.

Geographical latitude, the distance in degrees of a given point on
the earth from the equator. Astronomical, geocentric, and geographical
latitude are nearly the same (see discussion of Latitude in Appendix).

Local time, see Time.
Longitude.

Celestial longitude, the distance in degrees of a celestial body from
lines passing through the poles of the ecliptic (see Ecliptic), called
ecliptic meridians; the zero meridian, from which celestial longitude
is reckoned, is the one passing through the First point of Aries (see
Equinox).

Terrestrial longitude, the distance in degrees of a point on the earth
from some meridian, called the prime meridian.

Mass, the amount of matter in a body, regardless of its volume or size.
Mean solar time, see Time.
Meridian.

Celestial meridian, a great circle of the celestial sphere passing
through the celestial poles and the zenith of the observer. The celestial
meridian passing through the zenith of a given place constantly changes
with the rotation of the earth.

Terrestrial meridian, an imaginary line on the earth passing from
pole to pole. A meridian circle is a great circle passing through the
poles.

Month.
Calendar month, the time elapsing from a given day of one month
to the same numbered day of the next month; e.g., January 3 to Febru-
ary 3. This is the civil or legal month.

Sidereal month, the time it takes the moon to revolve about the earth
in relation to the stars; one exact revolution of the moon about the
earth; it varies about three hours in length but averages 27.32166 d.

Synodic month, the time between two successive new moons or full
moons. This is what is commonly meant by the lunar month, reckoned
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from new moon to new moon; its length varies about thirteen hours
but averages 29.53059 d. There are several other kinds of lunar months
important in astronomical calculations.

Solar month, the time occupied by the sun in passing through a sign
of the zodiac; mean length, 30.4368 d.

Nadir (nā′ dẽr), the point of the celestial sphere directly under the place
on which one stands; the point 180◦ from the zenith.

Neap tides, see Tides.
Nutation, a small periodic elliptical motion of the earth’s axis, due princi-

pally to the fact that the plane of the moon’s orbit is not the same as the
plane of the ecliptic, so that when the moon is on one side of the plane of
the ecliptic there is a tilting tendency given the bulging equatorial region.
The inclination of the earth’s axis, or the obliquity of the ecliptic, is thus
slightly changed through a period of 18.6 years, varying each year from
0′′ to 2′′. (See Motions of the Axis in the Appendix.)

Oblateness, the same as ellipticity; see Ellipse.
Oblate spheroid, see Spheroid.
Obliquity (ŏb l̆ık′ w̆ı ty), of the ecliptic, see Ecliptic.
Opposition, see Syzygy.
Orbit, the path described by a heavenly body in its revolution about an-

other heavenly body.
Parallax, the apparent displacement, or difference of position, of an object

as seen from two different stations or points of view.
Annual or heliocentric parallax of a star is the difference in the

star’s direction as seen from the earth and from the sun. The base
of the triangle thus formed is based upon half the major axis of the
earth’s orbit.

Diurnal or geocentric parallax of the sun, moon, or a planet is
the difference in its direction as seen from the observers’ station and
the center of the earth. The base of the triangle thus formed is half
the diameter of the equator.

Perigee (pĕr′ ı̆ je), the point in the orbit of the moon which is nearest
to the earth. The term is sometimes applied to the nearest point of a
planet’s orbit.

Perihelion (pĕr ı̆ hē′ l̆ı ŏn), the point in a planet’s orbit which is nearest
to the sun.

Poles.
Celestial, the two points of the celestial sphere which coincide with
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the earth’s axis produced, and about which the celestial sphere appears
to rotate.

Of the ecliptic, the two points of the celestial sphere which are 90◦

from the ecliptic.
Terrestrial, the ends of the earth’s axis.

Ptolemaic system (tŏl ē mā′ ı̆k), the theory of the solar system advanced
by Claudius Ptolemy (100–170 a.d.) that the earth is the center of the
universe, the heavenly bodies daily circling around it at different rates.
Called also the geocentric theory (see Geocentric).

Radius (plural, radii, rā′ d̆ı ı̄), half of a diameter.
Radius Vector, a line from the focus of an ellipse to a point in the bound-

ary line. Thus a line from the sun to any planet is a radius vector of the
planet’s orbit.

Refraction of light, in general, the change in direction of a ray of light
when it enters obliquely a medium of different density. As used in as-
tronomy and in this work, refraction is the change in direction of a ray
of light from a celestial body as it enters the atmosphere and passes to
the eye of the observer. The effect is to cause it to seem higher than it
really is, the amount varying with the altitude, being zero at the zenith
and about 36′ at the horizon.

Revolution, the motion of a planet in its orbit about the sun, or of a
satellite about its planet.

Rotation, the motion of a body on its axis.
Satellite, a moon.
Sidereal day, see Day.
Sidereal year, see Year.
Sidereal month, see Month.
Sidereal time, see Time.
Signs of the zodiac, its division of 30◦ each, beginning with the vernal

equinox or First point of Aries.
Solar times, see Time.
Solstices (sŏl′ st̆ıs es; sol, sun; stare, to stand), the points in the ecliptic

farthest from the celestial equator, also the dates when the sun is at these
points; June 21, the summer solstice; December 22, the winter solstice.

Spheroid (sfē′ roid), a body nearly spherical in form, usually referring to
the mathematical form produced by rotating an ellipse about one of its
axes; called also an ellipsoid or spheroid of revolution (in this book, a
spheroid of rotation).
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Oblate spheroid, a mathematical solid produced by rotating an ellipse
on its minor axis (see Ellipse).

Prolate spheroid, a mathematical solid produced by rotating an el-
lipse on its major axis (see Ellipse).

Syzygy (s̆ız′ ı̆ jy; plural, syzygies), the point of the orbit of the moon
(planet or comet) nearest to the earth or farthest from it. When in the
syzygy nearest the earth, the moon (planet or comet) is said to be in
conjunction; when in the syzygy farthest from the earth it is said to be
in opposition.

Time.
Apparent solar time, the time according to the actual position of
the sun, so that twelve o’clock is the moment when the sun’s center
passes the meridian of the place (see Day, apparent solar).

Astronomical time, the mean solar time reckoned by hours numbered
up to twenty-four, beginning with mean solar noon (see Day, astro-
nomical).

Civil time, legally accepted time; usually the same as astronomical time
except that it is reckoned from midnight. It is commonly numbered
in two series of twelve hours each day, from midnight and from noon,
and is based upon a meridian prescribed by law or accepted as legal
(see Day, civil).

Equation of time, see Equation of time.
Sidereal time, the time as determined from the apparent rotation of

the celestial sphere and reckoned from the passage of the vernal equinox
over a given place. It is reckoned in sidereal days (see Day, sidereal).

Solar time is either apparent solar time or mean solar time, reckoned
from the mean or average position of the sun (see Day, solar day).

Standard time, the civil time that is adopted, either by law or usage,
in any given region; thus practically all of the people of the United
States use time which is five, six, seven, or eight hours earlier than
mean Greenwich time, being based upon the mean solar time of 75◦,
90◦, 105◦, or 120◦ west of Greenwich.

Tropical year, see Year.
Tropics.

Astronomical, the two small circles of the celestial sphere parallel to
the celestial equator and 23◦ 27′ from it, marking the northward and
southward limits of the sun’s center in its annual (apparent) journey
in the ecliptic; the northern one is called the tropic of Cancer and the
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southern one the tropic of Capricorn, from the signs of the zodiac in
which the sun is when it reaches the tropics.

Geographical, the two parallels corresponding to the astronomical
tropics, and called by the same names.

Vernal equinox, see Equinox, vernal.
Year.

Anomalistic year (a nom a l̆ıs′ tik), the time of the earth’s revo-
lution from perihelion to perihelion again; length 365 d., 6 h., 13 m.,
48 s.

Civil year, the year adopted by law, reckoned by all Christian coun-
tries to begin January 1st. The civil year adopted by Protestants and
Roman Catholics is almost exactly the true length of the tropical year,
365.2422 d., and that adopted by Greek Catholics is 365.25 d. The
civil year of non-Christian countries varies as to time of beginning and
length, thus the Turkish civil year has 354 d.

Lunar year, the period of twelve lunar synodical months (twelve new
moons); length, 354 d.

Sidereal year, the time of the earth’s revolution around the sun in re-
lation to a star; one exact revolution about the sun; length, 365.2564 d.

Tropical year, the period occupied by the sun in passing from one
tropic or one equinox to the same again, having a mean length of
365 d. 5 h. 48 m. 45.51 s. or 365.2422 d. A tropical year is shorter than
a sidereal year because of the precession of the equinoxes.

Zenith (zē′ n̆ıth), the point of the celestial sphere directly overhead; 180◦

from the nadir.
Zodiac (zō′ d̆ı ak), an imaginary belt of the celestial sphere extending

about eight degrees on each side of the ecliptic. It is divided into twelve
equal parts (30◦ each) called signs, each sign being somewhat to the west
of a constellation of the same name. The ecliptic being the central line
of the zodiac, the sun is always in the center of it, apparently traveling
eastward through it, about a month in each sign. The moon being only
about 5◦ from the ecliptic is always in the zodiac, traveling eastward
through its signs about 13◦ a day.
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week, 143.

De la Hire, Phillippe (fē lēp′

dė lȧ ēr′), 201.
Deadwood, S. D., 90.
Declination (see Glossary, p. 314),

125, 127, 171–175, 283.
Deimos (d̆ı′mus), 255.
Denmark, 67, 82, 88, 137.
Density of earth, 309.
Density, formula for, 308.
Denver, Col., 25, 26, 66, 90, 98.
Des Moines (de moin′), Iowa, 89.
Deshnef, Cape, 97, 100.
Detroit, Mich., 62, 72, 90.
Deviation, of pendulum, 53–56.

of plumb line, 280–282.
Dewey, George, 104.
Diameter of earth, 28–30, 44, 308.
Dimensions of earth, 308.
Dip of horizon, (see Glossary,

p. 316).
Distances, of planets, 266, 309.

of stars, 44, 247.

District of Columbia, 76, 91, 125.
Diurnal (d̄ı ûr′ nal), motion of

earth, see Rotation.
Division of Dakotas, 235.
Dryer, Charles R., 6.
Dublin, Ireland, 63, 81, 88.
Duluth, Minn., 90.

E
Earth in Space, 247–266.
Earth’s dimensions, 308.
Eastern time, in Europe, 67, 86.

in the United States, 66, 70, 74,
76.

Eastward deflection of falling ob-
jects, 50–54.

Eclipse, 23, 117, 162, 178.
Ecliptic (see Glossary, p. 315), 116,

120, 282, 285.
obliquity of, 119, 148, 286, 309.

Edinburgh (ĕd′̆ın bŭr rō), Scotland,
87.

Egypt, 82, 87, 134, 268.
El Castillo (ĕl käs tēl′yō),

Nicaragua, 84.
El Ocotal (ĕl ōk ō täl′), Nicaragua,

84.
El Paso, Tex., 67, 74.
Ellipse (see Glossary, p. 315), 21–

22, 192, 206, 307.
Ellipsoid of rotation (see Glossary,

p. 319), 35.
Encyclopaedia Britannica, 102.
England, 9, 79, 81, 88, 99, 137,

139, 272.
Ephemeris (ē fĕm′ē r̆ıs), see Nauti-

cal almanac.
Epicureans, 271.
Equador, 82.
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Equation of time (see Glossary,
p. 315), 123–127.

Equator (see Glossary, p. 315)
celestial, 46, 151, 170–175, 282,

293.
length of day at, 157.
terrestrial, 22, 32, 48, 119, 149–

153, 271, 279, 308.
Equinox (see Glossary, p. 315), 120,

149, 155, 156, 168, 169, 283.
precession of, 285–286, 301.

Eratosthenes (ẽr ȧ tŏs′ thē nēz),
269, 270.

Erie, Pa., 90.
Establishment, the, of a port, 180.
Eudoxus, 269.
Euripides (ū r̆ıp′̆ı dēz), 122.
Europe, 102, 167, 168, 220, 223,

227, 286, 292.

F
Fargo, N. D., 90.
Farland, R. W., 133.
Faroe (fā′rō), Islands, 82.
Fathom, length of, 309.
Fiji Islands, 97, 101, 103.
Fiske, John, 145, 267.
Fixed stars, 10, 109, 110, 265, 266.
Florence, Italy, 88.
Florida, 89, 91.
Form of the earth, 23–42.
Formosa, 83.
Formulas, 306–308.
Foucault (foo ko′), experiment,

with gyroscope, 155.
with pendulum, 53–56.

France, 31, 63, 82, 87, 88, 131,
137, 139, 186.

Franklin’s almanac, 137.

Fundy, Bay of, 188.

G
Gainesville, Ga., 74.
Galilei, Galileo (găl ı̆ lē′ō găl ı̆ lā′ē),

276.
Galveston, Tex., 74, 90.
Gannett, Garrison and Houston’s

Commercial Geography, 206.
Gauss, 52.
Gemini, 294, 296.
Genesis, 142.
Genoa, Italy, 75.
Geocentric, latitude, see Latitude

theory.
theory, (see Glossary, p. 316),

275, 277.
Geodesy (see Glossary, p. 316),

274.
Geodetic Association, Interna-

tional, 288.
Geographical constants, 308.
Geoid (jē′oid), 32–36, 274.
Geometry, origin of, 227.
George II., King of England, 229.
Georgia, 67, 74, 79, 88, 91.
German East Africa, 83.
Germany, 67, 75, 82, 83, 87, 88,

97, 137, 234.
Gibraltar, Spain, 81, 88.
Glasgow, Scotland, 88.
Globular projection, 199–201, 211.
Glossary, 313–321.
Gnomonic (nō mŏn′̆ık), cylindrical

projection, 210–212.
Gnomonic projection, 202–205,

211.
Goode, J. Paul, 300.
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Goodsell Observatory, Northfield,
Minn., 68.

Gravimetric lines, map showing,
32.

Gravitation, 16–18, 178, 179, 271,
316.

Gravity, 18, 24, 26, 28, 182–186,
278–281, 289, 303, 304, 307,
316.

on Jupiter, 18, 257.
on Mars, 254.
on Mercury, 260.
on moon, 19, 261.
on Neptune, 260.
on Saturn, 258.
on sun, 18, 265.
on Uranus, 259.
on Venus, 256.

Great Britain, 63, 67, 76, 79, 181,
234.

Great circle sailing, 203, 204, 213.
Greece, 83, 87.
Greenland, 218.
Greenwich (Am. pron., grĕn′ w̆ıch;

Eng. pron., gr̆ın′̆ıj; or grĕn′̆ıj),
England, 39, 40, 63, 66, 67,
72, 75, 77, 79, 81, 83, 85–92,
96, 101, 125–127, 172.

Gregorian calendar, 136–139.
Guam, 72, 86.
Guaymas, Mexico, 84.
Guiana, French, 87, 272.
Gulf of Mexico, 35, 188.
Gunnison, Utah, 244.
Guthrie, Okla., 89.
Gyroscope (j̄ı′rō skōp), 154, 155.

H
Hague, The, Holland, 83, 88.

Hamburg, Germany, 88, 126.
Harkness, William, 273, 309.
Harper’s Weekly, 163, 164.
Harte, Bret, 93.
Hartford, Conn., 90.
Harvard Astronomical Station

(Peru), 164.
Havana, Cuba, 82, 86, 88.
Hawaiian (Sandwich) Islands, 86,

101.
Hayden, E. E., 6, 72, 75.
Hayford, J. F., 34, 245.
Hegira, 141.
Helena, Mont., 90.
Heliocentric theory (see Glossary,

p. 316), 275, 276.
Heliodon (hē′ l̆ı o don), 301.
Hemispheres unequally heated, 169,

283.
Heraclitus (hĕr a kl̄ı′tus), 269.
Hercules (hẽr′cū lēz), constellation,

248.
Herodotus (he rŏd′ o tus), 133, 267.
Herschel, John, 32.
Hidalgo, Mexico, 84.
Hipparchus (h̆ıp ar′kus), 270, 285.
Historical sketch, 267–277.
Holland, 67, 83, 87, 88, 137.
Holway, R. S., 155.
Homer, 267.
Homolographic projection, 205–

208, 211.
Honduras, 83.
Hongkong, 81, 82, 88, 102.
Honolulu, Hawaiian Islands, 89,

102.
Horizon (see Glossary, p. 316), 36–

39, 46, 152, 153, 158, 170, 175.
Hungary, 137.
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Hutchins, Thomas, 229, 230.
Huygens (h̄ı′gens), Christian, 272,

273.

I
Iceland, 82.
Idaho, 89.
Illinois, 89, 231, 232.
Impressions of a Careless Traveler,

quoted, 75, 143–145.
India, 31, 81, 87, 88, 186, 243.
Indian Ocean, 186.
Indian principal meridian, 231.
Indian Territory, survey of, 245.
Indiana, 89, 231.
Indianapolis, Ind., 90.
Insolation, 166–170.
International date line, 96, 102.
International Geodetic Association,

288.
Intersecting conic projection, 222,

223.
Iowa, 79, 90.
Ireland, 31, 63, 76, 81, 88, 234.
Isle of Man, 81.
Isogonal (̄ı sŏg′ōn al) line, 228.
Italy, 67, 83, 88.

J
Jackson, Miss., 90.
Jacksonville, Fla., 90.
James II., King of England, 272.
Japan, 83, 84, 89, 288.
Java, 87.
Jefferson, Thomas, 230.
Jerusalem, 88.
Journal of Geography, 156.
Juarez (hoo ä′reth), Mexico, 74.
Julian calendar, 135, 136, 140.

Jupiter, 18, 251, 253, 256, 257,
266, 272, 276.

K
Küstner, Professor, 110.
Kamerun, Africa, 83.
Kansas, 33.
Kansas City, Mo., 90, 96.
Keewatin, Canada, 81.
Kentucky, 77, 89.
Kepler, Johann, 277.

laws of, 283–284.
Key West, Fla., 90.
Kiaochau (kē ä ō chow′), China, 82.
Korea (kō rē′a), 84.
Kramer, Gerhard, 215.

L
La Condamine (lä kôn′dä mēn),

188.
Lake of the Woods, 234.
Lake Superior, 232.
Landmarks, use of, in surveys, 227–

230.
Lansing, Mich., 90, 232.
Lapland, 273.
Larkin, E. L., 265–266.
Latitude (see Glossary, p. 317)

astronomical, 281.
celestial, 282, 283.
geocentric, 281.
geographical, 41.

determined by altitude of cir-
cumpolar star, 57–60.

determined by altitude of noon
sun, 170–175.

determined by Foucault exper-
iment, 54.

lengths of degrees, 41–43.
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of principal cities, 87–92.
origin of term, 39.

Law Notes, quoted, 80.
Layard, E. L., 101.
Leavenworth, Francis P., 6.
Legal aspect of standard time, 75–

80.
Leipzig, Germany, 88.
Length of day, 156–159.
Leo, 294, 296.
Lewis, Ernest I., 146.
Lexington, Ky., 90.
Leyden, Holland, 83, 271.
Libra (li′bra), 118, 294.
Lick Observatory, 68, 72.
Lima (lē′ma), Peru, 85.
Lincoln, Neb., 90.
Link of surveyor’s chain, 309.
Lisbon, Portugal, 39, 72, 85, 88.
Little Dipper, 9.
Little Rock, Ark., 90, 232.
Liverpool, England, 88.
London Times, 140.
London, England, 39, 62, 63, 94–

97, 100, 137.
Longitude (see Glossary, p. 317)

and time, 61–92.
celestial, 282.
how determined, 62–66, 129.
lengths of degrees, 42.
of principal cities, 87–92.

Longitude, origin of term, 39.
Los Angeles, Calif., 89.
Louis XIV., King of France, 27.
Louisiana, 89, 231.
Louisville, Ky., 77, 90.
Lowell, Mass., 90.
Lowell, Percival, 98, 254.
Luxemburg, 67, 84.

Luzon, 90.

M
Macaulay’s History of England,

139, 140.
Madison, Wis., 66, 90.
Madras (ma drăs′), India, 72, 81,

88.
Madrid, Spain, 72.
Magellan’s fleet, 93.
Magnetic compass, 152, 153, 228.
Magnetic pole, 153.
Maine, 30, 35.
Malta, 81.
Managua (mä nä′guä), Nicaragua,

84.
Manila, Philippine Is., 72, 89, 102–

104.
change of date at, 102.

Manitoba, Canada, 81.
Map, 39, 40, 231, 237.
Map projections, 190–226.
Mare Island Naval Observatory, 68,

70, 86.
Mariane Islands, 82.
Markham, A. H., 153, 164, 165.
Mars, 253–255, 266, 284, 305.
Marseilles, France, 88.
Maryland, 88.
Massachusetts, 88, 89, 228.
Mauritius (ma r̆ısh′ ı̆ ŭs) Island, 72.
McNair, F. W., 6, 51.
Mean solar day, see Day.
Measures of length, 309.
Measuring diameter of moon, 241,

242.
Measuring distances of objects, 238,

242.
heights of objects, 239.
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Mediterranean, 102.
Melbourne, Australia, 88.
Memphis, Tenn., 90.
Mercator projection, 204, 211–220.
Mercedonius, 135.
Mercury, 183, 253, 260, 261, 266.
Meridian, 22, 28, 31, 36, 96–101,

187, 189–226, 282, 317.
celestial, 282, 283, 317.
circle, 22.
length of degrees of, 42.
prime, 39, 40.
principal, for surveys, 231–237.
rate for convergence, 234.
standard time, 66–67, 70, 73, 76,

80–86, 300.
Meridional parts, table of, 217.
Meteors, 49, 249.
Meter, length of, 309.
Metes and bounds, 227, 229.
Mexico, 84, 88, 102.

Gulf of, 188.
Michigan, 50, 67, 73, 75, 88, 89,

232.
College of Mines, 51.

Midnight sun, 163.
Mile, in various countries, 309.
Milwaukee, Wis., 90, 104.
Mining and Scientific Press, 51–54.
Minneapolis, Minn., 62, 90, 96.
Minnesota, 89, 91, 232, 234.
Mississippi, 89.

River, 232.
Missouri, 89, 91.

River, 228.
Mitchell, Frank E., 6.
Mitchell, S. D., 90.
Miyako (mē yä′kō) Islands, 83.
Mobile, Ala., 90.

Mohammedan calendar, 141, 143–
145.

Mollendo, Peru, 85.
Mollweide projection, 207.
Montana, 89.
Montevideo, Uruguay, 86, 88.
Montgomery, Ala., 90.
Month (see Glossary, p. 317), 134,

135.
sidereal, 177, 187.
synodic, 177.

Moon or satellite, 10, 19, 162,
175–186, 241, 242, 247, 255,
258–264, 266, 276, 287, 296,
307.

Moore, C. B. T., 97.
Morse, J. F., 301.
Moscow, Russia, 88.
Motion in the line of sight, 107–

110.
Motions of the earth, 288.
Motions of the earth’s axis, 285–

288.
Moulton, F. R., 251.
Mount Diablo meridian, 231.
Mountain time belt, 66, 67, 74.
Munich (mū′n̆ık), Germany, 88.
Myths and superstitions of the zo-

diac, 295, 297.

N
Nadir (see Glossary, p. 318), 36.
Naples, Italy, 88.
Nash, George W., 5.
Nashville, Tenn., 91.
Natal, Africa, 81.
Nautical almanac, 119, 125, 171.
Neap tides, 185, 187.
Nebraska, 80, 89, 91, 228.
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Nebulae, 249, 251.
Nebular hypothesis, 248–252.
Nehemiah, 142.
Neptune, 253, 260, 266.
Neuchatel, Switzerland, 86.
Nevada, 91.
New Brunswick, Canada, 81.
New Caledonia, 101.
New Guinea, 82.
New Hampshire, 89.
New Haven, Conn., 91.
New Jersey, 30, 77, 89, 91.
New Mexico, 67, 74, 91, 231.
New Orleans, La., 58, 66, 91, 109.
New South Wales, 81, 88.
New Style, 138–141, 144.
New York, 75, 76, 88–92, 96, 98,

100, 204.
New York Sun, 77.
New Zealand, 81, 97.
Newark, N. J., 91.
Newchwang, China, 82.
Newcomb, Simon, 119.
Newfoundland, 81.
Newton, Isaac, 15, 50, 139, 271.
Nicaea, Council of, 137.
Nicaragua, 84.
Nile, 227.
North America, 102, 184, 213, 219,

243, 286.
North Carolina, 91.
North Dakota, 88, 89, 235.
North Sea, 186.
North, line, 11, 59, 130.

on map, 212, 218, 225.
pole, 22, 46, 152, 153, 287.
star, 42, 46, 48, 57, 149, 285.

Northfield, Minn., 68, 91.
Northwest Territory, survey of,

229–231.
Norway, 67, 84, 87.
Norwood, Richard, 271.
Noumea, New Caledonia, 101.
Nova Scotia, Canada, 81.
Numa, 135.
Nutation of poles, 286, 318.

O
Oblateness of earth, 26–32, 36, 41,

272–274.
Obliquity of the ecliptic, 119, 148,

287, 309, 315.
Observations of stars, 9.
Official Railway Guide, 72–74.
Ogden, Utah, 91.
Ohio, 89, 231.

River, 229.
Oklahoma, 89.
Old Farmer’s Almanac, 124.
Old Style, 138–140, 144.
Olympia, Wash., 91.
Omaha, Neb., 91.
Ontario, Canada, 81.
Oporto, Portugal, 204.
Opposition, 177, 178, 185.
Orange River Colony, 81.
Orbit, of earth, 22, 114–120, 122,

133, 148, 152, 247, 252, 283,
303–305.

of moon, 177, 178, 262, 287.
Oregon, 91.
Origin of geometry, 227.
Orion (o r̄ı′on), 112.
Orkneys, The, 81.
Oroya, Peru, 85.
Orthographic projection, 191–195,

199, 200, 211.
Outlook, The, 75, 143–145.
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P
Pacific Ocean, 67, 97, 98, 185, 243.
Pacific time belt, 67.
Pago Pago (pron. pango, pango),

Samoa, 91, 97.
Palestine, 88.
Pallas, 292.
Panama, 68, 85, 86, 88.
Para, Brazil, 88.
Parallax, 110, 242, 276, 318.
Parallelism of earth’s axis, 154.
Parallels, 22, 190–225.
Paris, France, 27, 28, 39, 53, 63,

88, 272.
Parliament, 76.
Pegasus (pĕg′a sŭs), Square of, 47.
Peking, China, 89.
Pendulum clock, 27, 53, 308.
Pennsylvania, 77, 89, 229, 230.
Perigee, 178, 318.
Perihelion, 120, 283, 318.
Peru, 85, 273.
Pescadores (pĕskādōr′ēz) Is., 83.
Phases of the moon, 10, 263.
Philadelphia, Pa., 25, 26, 58, 66,

91.
Philippine Is., 86, 102.
Phobos (fō′bŭs), 255, 305.
Phoenicians, 268.
Photographing, 49.
Picard (pē kär′), Jean, 271, 273.
Pierre, S. D., 91.
Pisces (p̆ıs′sēz), 293, 295.
Pittsburg, Pa., 91.
Planetesimal hypothesis, 251.
Planets, 19, 49, 247, 284, 304.
Plato, 269.
Pleiades (plē′yä dēz), 47, 122.
Plumb line, 11, 50, 280, 281.

Plutarch, 269.
Point Arena, Calif., 30.
Point Barrow, 91.
Pointing exercise, 37–39.
Poland, 31, 137.
Polar diameter of earth, 308.
Polaris, see Polestar.
Pole, celestial, 46, 170, 171, 283,

285, 318.
magnetic, 153.
nutation of, 287.
of the ecliptic, 285, 287.
terrestrial, 22, 36, 46, 53–55, 59,

152–155, 157, 192–212, 279,
285, 287, 289.

Polestar, (see North star), 9, 10,
285.

Polyconic projection, 223–224.
Popular Astronomy, 133.
Port Said (sä ēd′), Egypt, 82.
Portland, Ore., 91.
Porto Rico, 86, 91.
Portugal, 39, 85, 88.
Posidonius (pŏs′̆ı dō n̆ı us), 270.
Practical Navigator, 217.
Practical work, 298–302.
Precession of equinoxes, 285–286.
Prince Edward Island, Can., 81.
Princeton, N. J., 91.
Principal meridian, 231–237.
Projectiles, 303–305.
Projections, map, 189–226.
Proofs, form of earth, 23–28, 31–

34, 273.
revolution of earth, 105–112, 275,

276.
rotation of earth, 50–56, 61, 109,

155.
Proper motion of stars, 110.
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Providence, R. I., 91.
Psalms, 252.
Ptolemaic system, 274, 319.
Ptolemy Necho, of Egypt, 267.
Ptolemy, Claudius, 270.
Pulkowa, Russia, 72, 85, 89.
Pythagoras (p̆ı thăg′ō ras), 269,

274.

Q
Quebec, Canada, 81.
Queensland, Australia, 81.
Quito (kē′tō), Equador, 82, 163,

174.

R
Radius vector, 283, 319.
Raleigh, N. C., 91.
Ranges of townships, 231–234, 236.
Rapid City, S. D., 244.
Rate of curvature of earth’s surface,

26, 41, 42.
Refraction of light, 44, 159, 319.
Revolution (see Glossary, p. 319),

105–132, 147, 154, 184, 247,
249, 251, 254, 257–263, 276,
283–288.

Rhode Island, 91.
Rhodesia, Africa, 81.
Richer (re shāy′), John, 27, 272.
Richmond, Va., 91.
Rio de Janeiro, Brazil, 89.
Rochester, N. Y., 91.
Roman calendar, 135, 139.
Rome, Italy, 72, 89.
Rotation of earth, 22, 319.
Rotation, proofs of, 50, 155.
Rotterdam, Holland, 88.
Roumania, 67.

Russia, 31, 85, 88, 97, 103, 140,
243.

S
Sacramento, Calif., 91.
Sagittarius (săg ı̆t tā′r̆ı ŭs), 294.
Salvador (säl vä dōr), 85.
Samoa, 83, 87, 91, 97, 101.
San Bernardino, Calif., 231.
San Francisco, Calif., 91, 173.
San Jose (hō sā′), Costa Rica, 82.
San Juan del Sur, Nicaragua, 84.
San Juan, Porto Rico, 91.
San Rafael (rä fä ĕl′), Mexico, 84.
San Salvador, Salvador, 85.
Santa Fe, N. M., 91.
Santiago (sän tē ä′gō), Chile, 81.
Santo Domingo, 85.
Saskatchewan, Canada, 81.
Satellite, see Moon.
Saturn, 29, 249, 253, 258, 266.
Savannah, Ga., 91.
Scale of miles, 195, 217, 225.
Schott, C. A., 31.
Scientific American, 266, 304.
Scorpio, 294.
Scotland, 81, 88, 139, 186.
Scrap Book, 64.
Seasons, 147–175.
Seattle, Wash., 91.
Section, 236.
Seoul (sā ōōl′), Korea, 84.
Servia, 67, 85.
Seven motions of earth, 288.
Seven ranges of Ohio, 230.
Sextant, 60.
Shakespeare, 297.
Shanghai (shăng′h̄ı), China, 81.
Shetland Is., 81.



INDEX 335

Siam, 87.
Siberia, 98, 100, 103.
Sicily, 288.
Sidereal, clock, 68, 69.

day, 54, 314.
month, 177, 317.
year, 133, 285, 309, 321.

Signals, time, 70–72, 80–87.
Signs of zodiac, 116, 293, 319.
Sines, natural, table of, 310.
Sirius (s̆ır′̆ı us), 47.
Sitka, Alaska, 72, 91.
Snell, Willebrord, 271.
Solar day, see Day.
Solar system, 247–266.

table, 266.
Solstices, 149, 167, 301, 319.
Sosigenes (so s̆ıg′e nēz), 135.
South America, 32, 169, 186, 201,

213, 218, 272.
South Australia, 81.
South Carolina, 89.
South Dakota, 88–92, 228, 234,

235, 244.
South, on map, 201, 212, 225.

pole, 153.
star, 46–48, 57, 58, 149, 152.

Southern Cross, 46.
Spain, 67, 85, 87, 93, 129, 215.
Spectrograph, 110.
Spectroscope, 56, 108, 110.
Sphere, defined, 20.
Spheroid, 22, 27–32, 319.
Spitzbergen, 31.
Spring tides, 184, 187.
Square of Pegasus, 47.
St. John’s, Newfoundland, 81.
St. Louis, Mo., 25, 26, 66, 84, 91.
St. Paul, Minn., 91, 96.

St. Petersburg, Russia, 72, 85, 89,
169, 174.

Stadium (stā′ d̆ı um), 270.
Standard parallel, 234, 235.
Standard time, 64–88.
Star, distance of a, 44, 247.

motions of, 109, 110, 265, 266.
sun a, 265–266.

Stereographic projection, 195–200,
211.

Stockholm, Sweden, 86, 89.
Strabo (strā′bō), 270.
Strauss, N. M., 74.
Sun, 10–12, 18, 162, 247–249, 251,

264–266.
a star, 265–266.
apparent motions of, 113, 293.
declination of, 127, 171–175.
fast or slow, 61, 123–131.

Sun Board, 300, 301.
Sundial, 61, 64, 131, 298–300.
Survey, 29, 31, 34, 227, 271.
Surveyor’s chain, 228, 309.
Sweden, 31, 67, 86, 89, 276.
Switzerland, 67, 86, 137.
Sydney, Australia, 88.
Syene, Egypt, 270.
Symbols, 306.
Syzygy, 178, 185, 320.

T
Tables, list of, 312.
Tacubaya (tä k (oo bä′ya), Mexico,

84.
Tallahassee, Fla., 91, 231.
Tamarack mine, 50, 52.
Tangents, natural, table of, 311.
Tasmania, 81.
Taurus, 293, 296.
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Tegucigalpa, Honduras, 83.
Telegraphic time signals, 68, 80.
Tennessee, 89.
Texas, 88, 89, 244.
Thales (thā′lēz), 269.
Thompson, A. H., 244.
Thucydides (thu s̆ıd′̆ı dēz), 133.
Tidal wave, bore, etc., 184, 188.
Tides, 176–189, 279, 288–291.
Tientsin (tē ĕn′tsēn), China, 82.
Tiers of townships, 232, 235, 236.
Time (see Glossary, p. 320), ap-

parent solar, 61.
ball, 70, 81.
confusion, 64, 72–75, 144.
how determined, 68.
in various countries, 80–87.
local, 63.
signals, 68–72, 80–87.
standard, 64–88, 129.

Times, London, 140.
Titicaca, Lake, Peru, 85.
Todd, David, 107, 287.
Toga Is., 83.
Tokyo, Japan, 89.
Toledo, O., 73.
Tonga Is., 101.
Toscanelli, 213.
Township, 230–237.
Transit instrument, 68.
Transvaal, 81.
Trenton, N. J., 92.
Triangulation, 30, 31, 238, 274.
Tropics, 151, 152, 173, 268, 320.
Tunis, 82.
Turkey, 86, 88, 143–145.
Turkish calendar, 143–145.
Tutuila (too twē′lä), Samoa, 86, 97,

98.

Twilight, 162–166.

U
Unequal heating, 169, 283.
United States, 29–32, 34, 40, 47,

50, 64, 68, 70, 76, 86, 89, 97,
99, 102–103, 127, 129, 161,
168, 186, 225, 227–237, 288,
292.

United States Coast and Geodetic
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