
1 Introduction

Computer Genesis

And God completed on the seventh day
the things He had done;
and in the seventh day He rested orceased
of all the things that He had finished

Genesis [II:2]

... The End and the Beginning are only dreams!
without being born, without dying and without changing
the spirit always remains...

Bhagavad-Gita
(The Song of the Lord)
Mahabarata

Ever since Darwin set forth his theory on natural evolution and the survival of the fittest
there has accumulated an impressive amount of experimental evidence to support it. This
theory, so natural to our generation, faced seemingly unsurmountable arguments against
it (or so it would seem to a typical 19th century occidental). For, how could humming-
birds and alligators, for instance, be said to share a common ancestor? However, there
is no needfor a master plan to explain the complexity of Nature. There is noneedfor
a superior Will to mold the destiny of Man.1 Things are vastly simpler than our
forefathers would believe and, at the same time, amazingly complex. Changes occur not
in leaps, but in minute steps. And it is the yuxtaposition of millions upon millions of
such minute steps which, after the fact, gives rise to a seemingly purposeful design.

For years a battle raged between evolutionists and creationists. Then, by mid-
twentieth century DNA and the genetic code were discovered and understood. The
chemical workings of the genetic code were slowly deciphered and it turned out, in the
end, that the double helix of DNA was Nature’s answer to an efficient way to encode,
in a quaternary alphabet, the delicate workings of a living being. Furthermore, it turned
out that, regardless of how humble the living being, the genetic code is practically always

1 For a lucid defense of this point of view see [DAWK87].

the same.2 From the lowliest of virus (including the dreaded HIV) to the human genome
the code is based on the same alphabet; that when this alphabet is interpreted as
instructions every instruction is encoded in the same way. And this fact remains, in my
opinion, the strongest argument in favor of a common origin to all living things upon
Earth.

Now, whether we accept evolutionism or not, it would seem to be a rather effective
process to learn about. If indeed it was able to give rise to such a staggering variety of
lifeforms, as evolutionists would have us believe, it would be rather interesting to fathom
its innards. Simply look at the biodiversity and one cannot but help to admire the
exquisite complexity and delicacy implicit in even the most simple living organisms. It
would certainly be an asset to find out how is it that, through this evolutionary process,
nature has learned all it knows: the temperature that our bodies must maintain and how
to keep it, the way to extract oxygen dissolved in water, how to design bodies which can
fly, the best way to interconnect a vast amount of neurons to give rise to the epiphenom-
enon of intelligence, how to manufacture a living being from two others. This list is
enormous: as large as living variety.

If we attempted to capture the essence of the success of evolution we would, perhaps,
come up with a recipe such as the following:

a) Store the possible solution to a given problem (i.e. "Do I need wings to fly?") in
the individual itself (that is, give wings to the individual).

b) Test the goodness of the individual in question in front of the environment (that
is, "Once given wings, can I really fly?")

c) Allow the survival of those individuals which are best fit with preference over
other individuals (That is, when flying for fish, a pelican is probably better at it
than a pterodactyl would have been. Hence, feathered primitive flying beings had
a larger share of fish that non-feathered ones. Hence the former had more

surviving descendants than the latter. Hence, after some time, there were more
feathered flying living beings than non-feathered flying living beings).
d) From time to time, mix the solution stored in the surviving individuals to get new

mixtures of attributes and, possibly, better solutions to the problem in hand (that
is, let a bird with hollow bones breed with a bird whose bones are not3 and,

therefore, test which of the two is a better alternative).
e) Periodically enhance the set of possible solutions by disrupting the stored

information (That is, alter the code at random. If this is done once in a whilechances are
that, once in a while,4 the code resulting from the said alterations will, in fact,
give rise to enhancements of the proposed solution).

2A notable exception is the case of some viruses.
3 This is an unrealistic example. Hollow bones were inherited by birds from reptiles. But for

the purpose of this example we shall allow it.
4 This process of mutating the genetic code is not something that Nature "chooses" to do. It

is a result of errors in the reproduction process, on the one hand, and of external agents on the
other. For instance, cosmic rays and chemical alterations do have an effect on the efficient
replication of the encoded information.

3Introduction

Repeat steps (a) to (e) millions of times and a bacteria will possibly give rise to a
multi-celled organism; an arthropod will possibly give rise to a fish; a fish will give rise
to a bird, and so on.5

The question is, can we copy such a scheme?
Clearly we do not have the millions of years that Nature has invested to find the long

neck of a giraffe as the solution to the problem of reaching the leaves of acacia. But
there seems to be a way out of this problem, if only we could change the time scale; if
only we could cope with the genetic encoding problem; if only we could reproduce the
pressure of the environment on the individuals; if only we could simulate the apparent
randomness of Nature. If we could do these things we could go one step further and test
alternatives which Nature has not tried yet.

It turns out that it is possible to take advantage of such a proven method without
trying to wait for inordinately long periods of time because we may use a computer as
a vehicle to simulate (if only partially) a controlled environment. And it is upon this idea
that Genetic Algorithms have been conceived and have grown.

1.1 What is a Genetic Algorithm?

Genetic Algorithms (GAs) are computer-oriented procedures which attempt to
characterize the essentials of a system by partially simulating a process of natural
selection.

We say that they are computer-oriented because, as stressed in the introduction,
natural selection occurs over large ensembles of individuals in relatively long periods of
time. Since we expect to achieve the said characterization in short periods of time
(typically from a few seconds to, maybe, a few hours) it is obvious that the partial
simulation of natural selection mentioned above has to take place in simulated time. This
simulated time is dependent on the clock rate of the host computer but usually telescopes
real time units into millions of simulated time units. That is, we expect to simulate
millions of events in a few seconds.

Thence lies the power of GAs: by simulating a large number of simple events we
expect to achieve results which are statistically significant. In this sense GAs are the
successors of Monte Carlo simulation. Unlike Monte Carlo simulation, however, a GA
is a self-modifying simulation where its behavior is a function of how well the method
performs and whose long term operation is adaptive. That is, the GA learns from
experience and moves toward a better option as the simulation proceeds, i.e. it evolves.

Of course, the extent to which we may affirm that a system is being characterized
depends largely on the model adopted. Much of the art of Evolutionary Computation in
general and GAs in particular depends on one’s ability to reflect in the model the true

5 We do not mean to imply that the described transitions are literal. As already mentioned, the
changes are minute and imperceptible. It is the accumulation of these minute evolutionary changes
that gives rise to an apparent sudden creation.

4 A Comprehensive Approach to Genetic Algorithms

nature of the system. This is true of all kinds of models be they mathematical or
otherwise. Where the GA differs sharply from other methodologies is in the relative
uniformity achievable in the process of modeling.

There is, perhaps, no simpler way to explore the details of what a GA is and what
it can do than to present an example. In what follows, therefore, we have chosen a rather
simplified but quite practical problem.

1.1.1 Steps of the Genetic Process

Let us assume that we want to find the largest value of the functionY 2 X 2 3
subject to the conditions: a) X and Y may only take whole (integer) values; b) X must
be positive and c) X < 16.

This problem would hardly deserve more than a cursory examination to find that

max() = 447 (when X = 15) given the above conditions. The corresponding2X 2 3
graph is shown in figure F.1.1.1.1. However, this rather simple example will allow us to
identify the main components of the genetic process.

Figure F.1.1.1.1. Y = 2X2 - 3

1.1.1.1 Encoding

To begin with, we shall encode our hypothetical solution in a binary string. This rather
direct choice is not the only one. We shall choose to encode the candidate solution in 4

5Introduction

bits. This four bits shall stand for a numerical value ranging from 0 to 15. Although, as
we shall see, other encoding schemes are indeed possible, we will accept this weighted
binary encoding for our example. The purpose of this choice is twofold: first, we suspect
that the solution we are seeking may be represented by, at most, 4 bits and, thus, there
is no need for a larger string; second, it allows our example to remain simple enough.

1.1.1.2 Initial Population

We assume that we know nothing about the characteristics of the solution to our problem.
Hence, we shall let the computer pick for us the first N candidate solutions, where we
arbitrarily let N=10. Once having done so, we find that the initial population is the one
shown in Table T.1.1.1.1.

Notice that here we have implicitly described, for the first time, what we mean by
"population". Tacitly we have also defined "individual". Byindividual, therefore, we
mean a binary encoding of a possible solution. Bypopulation we mean a set of
individuals.

In randomly selecting the constitution of the individuals we face, for the first time,
one of the central issues of evolutionary computation: the viability of properly handling
randomness in a digital computer. We shall dwell upon this matter at length in chapter
2. Let us simply say, at this point, that the randomness of the initial population is
assumed without further consideration. If this is the case, we may validly ask: What are
the chances that, by mere coincidence, one of the individuals represents the solution to
the problem? In this particularly simple example such probability is easily calculated to
be p=10/16=0.625 (If the solution were found in the numbers being encoded, between
0 and 15). In general, however, this probability is so close to 0 that any exhaustive
ennumerative process is ruled out.

Table T.1.1.1.1. A population of 10 Individuals.

Number Individual

1 0111

2 0100

3 0101

4 0001

5 0000

6 1100

7 1000

8 1001

9 1000

10 1010

6 A Comprehensive Approach to Genetic Algorithms

1.1.1.3 Selection

Out of the 10 individuals which comprise our population we shall select a subset
consisting of 8. These we select to be the first 8. Later on we shall see why this choice
was made and other possible alternatives.

1.1.1.4 Evaluation

At this point we have 8 candidate solutions represented in the 8 chosen individuals. Are
the candidate solutions "good"? It is here that we must determine whether an individual
is fit. And it is here that the role played by the environment is explicitly imposed upon
our problem. How well, we ask, does an individual (or, rather, the solution encoded in
its bits) perform in terms of a given problem? Here we want to know whether the
number encoded fares well when presented with Y = 2X2-3 and the set of prescribed
conditions.

In Table T.1.1.1.2. we show the results of this evaluation. We have added a column
labelled "Decimal", where the numeric value of the encoded string is shown in base 10.
We also added a column labelled "Fitness" where we show the value taken by the
function for the said value. In this case "fitness" is easily equated to "Y" since we are
simply trying to maximize the function.

Table T.1.1.1.2. A population of 8 Individuals and their Fitness.

()Y 2X 2 3

Number Individual Decimal Fitness

1 0111 7 95.0000

2 0100 4 29.0000

3 0101 5 47.0000

4 0001 1 -1.0000

5 0000 0 -3.0000

6 1100 12 285.0000

7 1000 8 125.0000

8 1001 9 159.0000

7Introduction

1.1.1.5 Survival

Now is the time to decide on the survival of the fittest individuals. We choose the
following strategy:

a) Normalize the fitness of each of the individuals. This is easily achieved by making

(1.1.1.a)Fi

fi

N

i 1

fi

∀ i

It is assumed that the population is of sizeN.
At this point one must make sure, for reasons that will become apparent shortly, that

all fitnesses are positive. When one or more values are negative there are several ways
to condition the data. We perform the following procedure:

1) Add up all the absolute values of the fitnesses.
2) Find the mean.
3) Obtain a constant value resulting from adding up the absolute value of the smallest

(most negative) number and the mean.
4) Add this constant to each of the fitnesses.

This procedure is expressed in the following equation:

(1.1.1.b)fi fi

1
N i

fi min
i

(fi) ∀i

Equation (1.1.1.a) is, therefore, replaced by

(1.1.1.c)Fi

fi

N

i 1

fi

∀i

The results of normalizing the data are shown in Table T.1.1.1.3.
Notice that in table T.1.1.1.3 we have also included a column labelled "CDF", where

8 A Comprehensive Approach to Genetic Algorithms

we have registered the cumulative Fi. That is

(1.1.1.d)CDF(i)
i

j 1

Fj

The usefulness of CDF(i) will become apparent in what follows.
We shall think of the individuals as being more apt to survive the larger their fitness.

To establish a clear correspondence between fitness and survival we may think that we
have a die with 10,000 faces and that, in this example, 2,533 of them are labelled "6";
1,696 are labelled "8"; 1,469 are labelled "7", etc. In such case, if we roll our die a large
number of times, the probability of getting a face labelled "6" will be 0.2533; the
probability of getting a face labelled "8" will be 0.1696, etc.

Table T.1.1.1.3. A population of 8 Individuals and their CDF.

(Average Fitness=93)

Number Individual Decimal Fitness Normalized
Fitness

CDF

6 1100 12 285.0000 381.0000 0.2533

8 1001 9 159.0000 255.0000 0.4229

7 1000 8 125.0000 221.0000 0.5698

1 0111 7 95.0000 191.0000 0.6968

3 0101 5 47.0000 143.0000 0.7919

2 0100 4 29.0000 125.0000 0.8750

4 0001 1 -1.0000 95.0000 0.9382

5 0000 0 -3.0000 93.0000 1.0000

Once we have labelled our hypothetical die the process of survival reduces to rolling
the die and allowing the individuals whose numbers show up to survive. We shall roll
the die N times (N=8) and obtain a new population P1 (g=1) from the old population P0
(g=0). The individuals from population Pg-1 are replaced by the individuals of population
Pg. The individuals of population g-1 are lost.

We aim at a way to simulate the behavior of a multi-faced die in the computer. By
finding the CDF as above we may achieve this effect as follows:

9Introduction

1) Generate a random number "R" between 0 and 1 ().0 ≤ R < 1
2) Set i 1.←
3) If CDF(i) is smaller than R, select the i-th individual; otherwise, set i i+1 and←

repeat this step.

We assume that R is uniformly distributed (see section 2.3.1). If such is the case, it
is easy to convince oneself that the method above will yield the desired result.

At this point it should be clear why it is necessary to normalize the fitness. Since, in
fact, we are establishing a one-to-one correspondence between the fitness of the
individual and the frequency with which such an individual is selected, it would make
no sense to allow a negative value. Furthermore, a direct translation of axis
(i.e.) will not suffice since this would imply that the element with thefi fi min

i
(fi)

least value would have a fitness of 0 and, consequently, a probability of being chosen
equal to 0. It is, therefore, necessary to assign an arbitrary offset value to the least value.
In our case we have chosen the offset to be the mean of the absolute values of the fitness

().1
N i

fi

We have simulated the rolling of the multi-faced die 8 times. The results are shown
in table T.1.1.1.4.

Table T.1.1.1.4. A new population of 8 Individuals.

Number Old
Number

Individual

1 2 0100

2 8 1001

3 6 1100

4 6 1100

5 3 0101

6 8 1001

7 3 0101

8 6 1100

It is easy to see that, in this new table, certain individuals from the old population
have been chosen several times, while others were not selected. Of course, for such a
small N the observed frequency cannot approximate the expected probability.

10 A Comprehensive Approach to Genetic Algorithms

What we have done is to allow the survival of the individuals in direct proportion to
their fitness, as desired.

Calculating Fi from equation (1.1.1.a), we get table T.1.1.1.5. Notice that the average
fitness for population 0 (the initial population) and population 1 has increased from 93
to 162.

1.1.1.6 Crossover

Once we have the surviving population we hypothesize that, somehow, the desirable
characteristics of each individual are encoded in its genome6. Moreover, we believe that
such encoded characteristics may be enhanced by combining the genes7 of the
individuals.

It is this exchange of genetic material which gives origin to the term "Genetic
Algorithm". To achieve such a genetic recombination we propose the following
algorithm:

1. Randomly select one individual from the population. Call this individual I1.
2. Randomly select a second individual. Call it I2.
3. Randomly select a number L (), wherel = number of bits.1 ≤ L < l 1
4. Exchange the rightmost L bits of I1 and I2; this gives rise to 2 possibly different

individuals N1 and N2.
5. Replace the old individuals I1 and I2 with N1 and N2.

Table T.1.1.1.5. A new population with fitness.
(Average Fitness=162)

Number Old
Number

Individual Decimal Fitness

8 6 1100 12 285.0000

4 6 1100 12 285.0000

3 6 1100 12 285.0000

6 8 1001 9 159.0000

2 8 1001 9 159.0000

7 3 0101 5 47.0000

5 3 0101 5 47.0000

1 2 0100 4 29.0000

6 By "genome" we mean the bits which conform the individual.
7 By "gene" we mean each of the individual bits comprising an individual.

11Introduction

This process is repeated such that N new individuals replace the old population’s
individuals.

The results of applying this procedure are shown in table T.1.1.1.6. In this table we
show the individuals which give rise to the new individuals as well as the crossover locus
and the new fitness. In table T.1.1.1.7. we show the same population ordered according
to the new fitnesses.

Notice that the best individual of the new population has, indeed, a better fitness than
any of its predecessors. As an example, consider individuals 1 and 2 in table T.1.1.1.6.
The indicated crossover locus is 2. Hence, the genetic material is exchanged as shown
in figure F.1.1.1.2.

Figure F.1.1.1.2. Crossover.

Table T.1.1.1.6. Population after Crossover.

Number Old Old Locus New Indi Decimal Fitness

1 6 1100 2 1101 13 335.0000

2 3 0101 2 0100 4 29.0000

3 8 1001 2 1000 8 125.0000

4 2 0100 2 0101 5 47.0000

5 8 1001 1 1001 9 159.0000

6 8 1001 1 1001 9 159.0000

7 3 0101 2 0101 5 47.0000

8 8 1001 2 1001 9 159.0000

1.1.1.7 Mutation

The individuals of the new population result from the genetic recombination of the prior
population’s individuals. In principle, we expect the new individuals to achieve better
fitness than the old ones, as in the example. However, even if such were the case it is
clear that, in terms of string components, we have added nothing new. Most important
is the possibility of introducing a slight chance of error in the reproduction process.

12 A Comprehensive Approach to Genetic Algorithms

Nature bases evolution in the very small chance that a coding error in an individual
genome will result in a better individual once in a very long while. We shall mimic such
a fortuitous event by randomly altering the value of set of randomly selected bits in the
population. The probability Pm with which this happens is, usually, very low.

Table T.1.1.1.7. Population after crossover ordered by fitness.

Number Old Old Locus New Decimal Fitness

1 6 1100 2 1101 13 335.0000

8 8 1001 2 1001 9 159.0000

6 8 1001 1 1001 9 159.0000

5 8 1001 1 1001 9 159.0000

3 8 1001 2 1000 8 125.0000

7 3 0101 2 0101 5 47.0000

4 2 0100 2 0101 5 47.0000

2 3 0101 2 0100 4 29.0000

In table T.1.1.1.8. we show the results of applying the mutation procedure to
population P1. For the purposes of this example we have chosen Pm=0.1, which is much
larger than usual. Accordingly two bits were mutated. These have been boldfaced in the
table.

With a certain amount of luck8, both mutations9 hit upon ’0’ and transformed
individuals with decimal values "5" and "8" into values "13" and "10" respectively. The
associated fitnesses changed from 47 and 125 to 335 and 197, respectively .

8 Actually, the probability of this happening is

P00 P0× P0

17
32

× 16
32

≈ 0.2656

9 The number of mutations is, itself, a random variable. Since there are 32 bits in this
population, the expected number of mutations per generation is 3.2.

13Introduction

Table T.1.1.1.8. Population P1 after mutation.

(Pm = 0.1)

Number

Old
Individual

New
Individual

Fitness

7 0101 1101 335.0000

1 1101 1101 335.0000

3 1000 1010 197.0000

5 1001 1001 159.0000

6 1001 1001 159.0000

8 1001 1001 159.0000

4 0101 0101 47.0000

2 0100 0100 29.0000

It is important to stress the fact that, usually, mutations are not as effective as the
previous example would lead us to believe. In this case an important part of the displayed
effectiveness is due to the nature of the function we have been using.

1.1.2 A Genetic Algorithm

There are some issues which we have no yet considered. For instance, we have assumed
that all individuals are to undergo a process of crossover. A more general case would be
to allow crossover with some probability Pc > 0. When Pc = 1 we have the case already
discussed. Another issue is the one pertaining the number of descendants that each
individual may have. These and other interesting issues will be considered later in the
text.

Nevertheless, even in this restricted scenario, a genetic algorithm may now be
defined, as follows:

ALGORITHM A.1.1.2

1. Set i=0 and generate an initial population Pi (P0).
2. Select a subset of Pi.
3. Evaluate the individuals of Pi according to some fitness criteria.

14 A Comprehensive Approach to Genetic Algorithms

4. Test for some convergence criteria. If any of these is met, stop.
5. Allow the survival of a selected subset of individuals according to their fitnesses.
6. Exchange the genetic material between the surviving members of Pi.
7. Mutate some of the genes of Pi.
8. Set i i+1 and proceed with step 2.←

Notice that this algorithm has been kept independent of which subset will be selected
in step 1, which fitness criteria will be set in step 2, which convergence tests will be
performed in step 3, how we pick the surviving individuals in step 4, how the crossover
is to be performed in step 5 and, finally, how we mutate the genes during step 6. In so
doing we have defined a general genetic algorithm. If, however, all of the above steps
are performed as described in the example above, then we have what we, throughout this
text, shall call a Simple Genetic Algorithm (SGA).

If we allow the SGA to proceed and if we establish as our only stopping criterion a
prescribed number of iterations , where the algorithm will yield the results shownι ι 5
in table T.1.1.1.9.

In the table the column heading "#" corresponds to the order in which the individual
appears during the generation; the column heading "Ind." stands for the encoding of the
individual; the column heading "Fit" shows the unnormalized fitness.

The best 6 individuals for the five generations are shown in figure F.1.1.1.3. Notice
that during the first generation the best individual is far from the best value. By the third
generation one individual has already reached the optimum value. Best individuals are
found in the fourth and fifth generations. By the fifth generation four of the eight
individuals (four of the six shown) have reached the best value.

Thus, with this simple example we have illustrated the essentials of a genetic
algorithm. Several questions now arise immediately. For instance: Is this process always
better than a random walk? How do we pick the size of the population? What probability
of mutation is best? Does the algorithm always converge to the best values?

We shall try to analyze these and other related questions as we proceed in the text.
In some cases we will be able to provide reasonable answers. In some others we will not
be in such position. The genetic algorithmic process is a complex phenomenon and there
are still many unanswered questions. However, the usefulness of the method is attested
by the wealth of works under way. An interesting number of works in this area have
been and are being published in several journals and conferences throughout the world.
GAs are still in the process of being properly understood. The method requires of the
interplay of many disciplines: computer science, statistics, biology, numerical analysis,
etc. In the following section we review some of the subjects we shall be dealing with in
order to try to understand and apply the genetic algorithmic tools.

15Introduction

Table T.1.1.1.9. Genetic process in 5 Generations.

Generation 1 Generation 2 Generation 3 Generation 4 Generation 5

Ind. Fit # Ind. Fit # Ind. Fit # Ind. Fit # Ind. Fit

6 1100 285 2 1101 335 1 1111 447 3 1111 447 4 1111 447

8 1001 159 1 1101 335 4 1101 335 2 1111 447 3 1111 447

7 1000 125 6 1001 159 3 1101 335 1 1111 447 2 1111 447

1 0111 95 5 1001 159 2 1101 335 5 1101 335 1 1111 447

3 0101 47 4 1001 159 8 1001 159 4 1101 335 5 1011 239

2 0100 29 3 1001 159 7 1001 159 6 1011 239 6 1001 159

4 0001 -1 7 1000 125 6 1001 159 7 1001 159 8 0011 15

5 0000 -3 8 0100 29 5 1001 159 8 0101 47 7 0011 15

Figure F.1.1.1.3. Genetic Process.

4 Theoretical Considerations

Seeking the Truth.

The student came to the Zen master and said:
"I am seeking the truth. In what state of mind should I train myself, so as to find
it?"
There is no mind, so you cannot put it in any state. There is no truth, so you
cannot train yourself for it.
"Oh, how can you lie like this?"
I have no tong to talk to others. How can I lie to you?
"I cannot follow you. I cannot understand you."
I cannot understand myself, said the master.

Koan,Zen Buddhism

The one who knows the TAO
Does not talk about it.
The one who talks about the TAO
Does not know it.

Tao Teh King

Genetic Algorithms are a tool of our technological era. Their existence is a direct
consequence of the admixture of genetic knowledge, on the one hand, and computer
development, on the other. It should come as no surprise that the exact nature of their
behavior is, for the best part, still unknown. In other words, although there exists ample
and mounting evidence as to their effectiveness as a very practical tool to attack
otherwise intractable problems, there is, as of today, not an accepted closed theory that
explains them fully. The pioneering efforts of Holland were, for the most part, directed
to obtaining such theory. He achieved such a goal only partially, in terms of what he
calledschemas. These schemas allow a quantitative measure of a GA’s behavior only as
a function of very broad considerations and the results obtained are of relative practical
significance. Furthermore, the mentioned results are applicable only to the Simple
Genetic Algorithm. Much of the effort of the present day researchers has been, and is
being, focused at attempting a generalization of those initial results and on alternative
tools to achieve a broader and better understanding of the way GAs will behave when
faced with different problems.

On dwelling with the problem of why GAs work one faces the problem of precisely
defining which of the many variations of a GA we are really attempting to analyze. In
fact, a main problem of GA students is that, in many cases, one fails to recognize the

17Theoretical Considerations

fact that thereare many such variations. In the following sections we analyze a
methodology to establish a systematic classification of the variations just mentioned. We
also review some of the classic results of schema theory and point out some interesting
recent alternatives.

4.2 The Concept of Schema

Schemas and their properties are interesting notational devices for rigorously discussing
and classifying string similarities. A schema is a template describing a subset of strings
with similarities at certain positions. It is defined over the alphabet {0,1,*}. For example,
the schema *0000 matches two strings: {00000 and 10000}. The schema *111* matches
the strings {01110, 01111, 11110, 11111}.

There are (k+1)l possible schemas for an alphabet which consists of k symbols and
of length l. For k=2 andl=5 (as in the examples above) there are 3l = 35 = 243 schemas.

How much information do we get by examining the schemas? This is related to the
number of unique schemas contained in the population. A particular string represents 2l

schemas. Therefore, a population of size n contains N (between 2l and) schemas.n 2l

2l ≤ N ≤ n 2l

Of the N schemas in a population, how many are processed? It turns out [GOLD89a] that
the number is approximately n3 . There are, at the same time, n function evaluations. The
ratio of function evaluations to processed schemas is n2 and this characteristic is calledη
implicit parallelism.

4.2.1 Schema Order

The order of a schema H denoted by o(H) is simply the number of fixed positions (in a
binary alphabet, the number of 0 s and 1 s) present in the schema. For instance,

H = 011*1** o(H) = 4
H = 0****** o(H) = 1
H = 1*1*1** o(H) = 3

4.2.2 Defining Length

The defining length of schema H denoted by is the distance between the first andδ(H)
last specific bit position. For instance,

H = 011*1** = 5-1 = 4δ(H)
H = 0****** = 1-1 = 0δ(H)
H = 1*1*1** = 5-1 = 4δ(H)

18 A Comprehensive Approach to Genetic Algorithms

4.2.3 Selection

At time t there arem instances of a particular schema H within the population A(t) where
we write

m = m(H,t) (4.2.3.a)

During selection, a string is copied according to its fitness, i.e. string At is selected
with probability

(4.2.3.b)pt

ft

ft

(This follows from theproportional selectionstrategy defined for the SGA. If the
selection process is not defined as such, this consideration does no longer apply).

After picking a nonoverlapping population of size n with replacement from A(t), we
have:

(4.2.3.c)m(H ,t 1) m (H ,t) n
f (H)

ft

where f(H) is the average fitness of the strings representing schema H at time t.

The average fitness of the entire population may be written as and we mayf
ft

n
rewrite the reproductive schema growth equation as follows:

(4.2.3.d)m(H ,t 1) m(H ,t) f (H)

f

That is, a particular schema grows as the ratio of the average fitness of the schema
to the average fitness of the population. Therefore, the number of above-average schema
grows, while the number of below-average schema decreases.

Let us assume that a particular schema H remains above average an amount withcf
c constant. Then the schema difference equation may be written as:

m (H ,t 1) m(H ,t) (f cf)

f
m(H ,t) (1 c)

Starting at t=0 and assuming a stationary value of c, we get:

m(H,t) = m(H,0) (1 + c)t (4.2.3.e)

The effect of selection is now quantitatively clear: selection allocates exponentially

19Theoretical Considerations

increasing (decreasing) numbers of trials to above-(below)average schemas.

4.2.4 Crossover

Crossover is a structured yet randomized information exchange between strings. It creates
new structures with a minimum of disruption to the allocation strategy dictated by
selection alone.

Let us assume the following string and the corresponding schemas:

A 0 1 1 1 0 0 0
H1 1 0
H2 1 0

where the "|" signs the hypothetical crossover point. It is clear that schema is lessH1

likely to survive, in general, than schema .H2
Note that =5, while =1. There arel-1 possible crossover sites (i.e. 7-1 =δ(H1) δ(H2)

6). Therefore, is destroyed with probabilityH1

pd

δ (H1)

l 1
5/6

More generally, survival probability under this kind of crossover is10

(4.2.4.a)ps ≥ 1 δ (H)
(l 1)

If crossover is itself performed by random choice with probability pc, then we have

(4.2.4.b)ps ≥ 1 pc

δ (H)
l 1

which reduces to the previous expression when .pc 1

The combined effect of selection and crossover may now be considered, as follows:

10The "≥" is due to the fact that, when considering schema disruption we must take into
account that the schema under consideration will sometimes be created from different schemas.
That is, when crossover disrupts other schemas it may create copies of "our" schema.

20 A Comprehensive Approach to Genetic Algorithms

(4.2.4.c)m(H ,t 1) ≥ m(H ,t) f (H)

f

1 pc

δ (H)
l 1

As outlined in section 1.2.2. there are several ways to perform crossover. The schema
analysis performed above is particular to 1-point crossover. Next we examine, briefly,
crossover in the2-point anduniform variations.

4.2.4.1 Two Point Crossover

There are exactly ways to select two points of cut in a string of length if we

l

2
l > 1

consider it as joined in its end points. Assume that in this string we may find a schema
of defining length and order . If thenH breaks down when oneδ (H) o(H) o(H) 2
of the points of cut lies within the segment determined by and the other outsideδ (H)
of it. The probability of disruption of a schema of order 2 is, therefore:

(4.2.4.1.a)

Pδ (H) ,2

δ (H) (l δ (H))

l

2
δ (H) (l δ (H))

l (l 1)

If, on the other hand, we assume that the schema has all the places within definedδ (H)
(that is, , then the schema is also disrupted when the two points ofo(H) δ (H) 1
cut fall within the segment considered by . We may modify (4.2.4.1.a) and getδ (H)

(4.2.4.1.b)Pδ (H) ,δ (H) 1

δ (H) (l δ (H))

δ (H)

2

l

2

In general,

(4.2.4.1.c)Pδ (H) ≤ Pd ≤ Pδ (H) ,δ (H) 1

4.2.4.2 Uniform Crossover

21Theoretical Considerations

Let A and B be two strings which are to be crossed over to form a new couple C and
D. In this kind of crossover each position of chain C is randomly selected from A and
B. The winning (selected) bits will be "taken" so that they will occupy the same places
of C as they originally did in A or B; the losing bits will be "taken" to D.Assume that
we wish to preserve a schemaH of which one of the parent chains is an instance. This
schema has fixed bits regardless to which of the offspring the first fixed bit of Ho(H)
is taken. Whatdoesmatter is that the remaining fixed bits in the schema areo(H) 1

taken to the same offspring. Each one of these bits has a probability of staying in the1
2

same string as the first one (assuming statistical independence). Hence, the probability

that all bits from the schema are copied to the same descendant is . Therefore,

1
2

o(H) 1

the probability of disrupting schemaH is

(4.2.4.2.a)Pδ (H) ,o(H) 1

1
2

o(H) 1

The above is the worst case, i.e. when the parent strings do not agree in any of the
positions of interest for the schema. In general:

(4.2.4.2.b)Pd ≤ 1

1
2

o(H) 1

4.2.5 Mutation

Mutation is the random alteration of a single position with probability pm. For a schema
to survive all of the alleles11 must remain unaltered. This probability of survival under
mutation is, of course 1-pm for a single allele and the probability of survival of a given
schema is

(4.2.5.a)psm
(1 pm)o(H)

If we may write, after expanding (4.2.5.a) and disregarding terms of higherpm 1
degree;

(4.2.5.b)psm
≈ 1 o(H)pm

4.3 The Fundamental Theorem of Genetic Algorithms

11The different possible settings for a trait (e.g. blue, brown, hazed) are calledalleles. Very
roughly, one can think of a gene as encoding atrait.

22 A Comprehensive Approach to Genetic Algorithms

From the above we conclude that a schema "H" receives an expected number of copies
as follows (ignoring elements of low order):

(4.3.a)m(H ,t 1) ≥ m(H ,t) f (H)

f

1 pc

δ (H)
l 1

o(H)pm

This result is known as theFundamental Theorem of Genetic Algorithms. This
theorem refers, specifically, to those GAs arising from an SGA strategy for reasons that
should be fairly obvious to the reader.

The fundamental theoremis generally interpreted by observing that short, low-order
schema (usually calledbuilding blocks) give rise to longer, higher order schema12.
Furthermore, as seen from (4.2.3.e), this happens while giving exponentially increasing
trials to these building blocks. This observation results from analyzing the way the SGA
works in general.

4.4 Genetic Algorithms as a Self-Adaptive Optimizing Method

The discussion above allows us to determine how schemas are passed on from a
generation to the next one. We also concluded that above-average schemas receive
exponential number of trials during the algorithm’s development. The question now is:
Is this a good thing? In what follows we try to answer this question by analyzing the "2-
armed bandit"13 problem and its generalization, the "k-armed bandit" problem. These
problems typify a set of problems which necessitate of self-adaptive strategies in order
to be solved successfully. We shall show that these strategies give rise to the need of
exponential sampling of hypothetical solutions. Furthermore, we shall also argue that a
genetic algorithm constitutes an embodiment of such strategies.

4.4.1 The Two-armed Bandit

Suppose we have a two-armed slot machine14. In this machine we have a fixed
probability of winning a certain reward when activating arm 1 and a certain different
mean reward when activating arm 2. We denote arm’s 1 expected award µ1 and we call
its variance . Likewise we denote arm’s 2 parameters by µ2 and . Further, we knowσ2

1 σ2
2

that . Our aim is to maximize our gains or, alternatively, to minimize our losses.µ1 ≠ µ2

However, we do not know a priori which of µ1 and µ2 is the larger of the two. In fact,

12This is called theBuilding Block Hypothesisor BBH.
13Colloquially a typical one armed slot machine is called aone-armed bandit.
14We will denote the Two-Armed Bandit byTAB.

23Theoretical Considerations

we do not know any of µ1, µ2, . We propose the following strategy. Determine twoσ1,σ2

phases: an exploration phase and an exploitation phase. During the exploration phase we
shall try to determine which is the best arm. During the exploitation phase we shall try
to take advantage of the knowledge obtained in phase 1 and gain as much as we can
assuming that we were able to determine correctly which of arms 1 or 2 is the best.

We, therefore, propose the following:

- Establish a priori a global fixed number of trials to both arms (say N).
- Exploration: Allocate n trials to each arm (where 2n < N).
- Exploitation: Allocate the remaining N-2n trials to the determined best arm.

Let us call the arm with the observed higher payoffAh; let us call the arm with the
observed lower payoffAl. Assuming we know N, µ1 and µ2, where µ1 is the best arm’s
mean award, we may calculate the expected loss as

(4.4.1.a)L (N,n) (µ1 µ2) [(N n)q n(1 q)]

where q is the probability that the observed best arm is actually the worst arm. Our goal
is to find n = n* that minimizes L(N -n, n). This can be done by taking the derivative
of L(N - n, n) with respect ton, setting it to zero and solving forn. We get,

(4.4.1.b)
dL
dn

(µ1 µ2)

1 2q (N 2n) dq
dn

0

We need to expressq in terms ofn so that we can finddq/dn. q is the probability that
observed worst arml is the best arm (arm 1), or . We areq Pr (Al (N n) A1)
assuming that indeedAl(N - n) is A1. Then A1 was givenn trials. Let be the sum ofS n

1

the payoff of then trials given to A1. Also, let be the sum of the payoffs of the N -SN n
2

n trials given to A2. Then

(4.4.1.c)q Pr

SN n
2

N n
>

S n
1

n

that is, the probability that the observed average payoff of A2 is higher than that of A1.
Equivalently,

(4.4.1.d)q Pr

S n
1

n

SN n
2

N n
< 0

This probability may be estimated from the tail of the normal distribution15.

15See section 2.3.2.

24 A Comprehensive Approach to Genetic Algorithms

where (4.4.1.e)q(n) ≈ 1

2π

e x 2/2

x
x

µ1 µ2

σ2
1 σ2

2

n

And, according to Frantz [MITC96, pp. 120-122], the optimal allocation of trialsn* to
the observed second best of the two random variables corresponding to the two-armed
bandit problem is approximated by

(4.4.1.f)n ≈ c1ln

c2N 2

ln(c3N 2)

where and are positive constants. The details of the solution are not as relevantc1,c2 c3

as the form. If we rearrange the terms of (4.4.1.f) to get an expression forN - n*, the
optimal allocation of trials to the observed better arm is

(4.4.1.g)N n ≈ en /2c1
ln(c3N 2)

c2

n

As n* grows the exponential dominates and, letting c = 1/2c1, we may further approxi-
mate by

(4.4.1.h)N n ≈ ecn

In other words, to allocate trials optimally we should give slightly more than
exponentially increasing trials to the observed best arm.

The strategy just mentioned is normally unrealizable since it assumes knowledge of
the outcomes before they occur. However, a method which approaches the ideal
allocation problem is the SGA. The schema theorem guarantees giving at least an
exponentially increasing number of trials to the observed best building blocks. In this
way, the SGA is a realizable and nearly optimal procedure.

In the SGA we are no longer solving a simple two-armed problem. Rather, we
consider the simultaneous solution to many multi-armed bandits. We shall demonstrate
that the SGA may be thought of as the composition of many k-armed bandit problems.
...

4.4.3 The Minimal Deceptive Problem

The question we now pose is the following: Which problems are difficult for a SGA to
process? In terms of theBBH we look for those cases where short, low-order building
blocks lead to incorrect longer, higher order building blocks. The smallest problem we
can analyze is a 2-bit problem.

Suppose we have the following set of 4 order-2 schemas over two defining positions
as follows:

25Theoretical Considerations

* * * 0 * * * * * 0 * f00

* * * 0 * * * * * 1 * f01

* * * 1 * * * * * 0 * f10

* * * 1 * * * * * 1 * f11

----- ----δ(H)

The fitness values () are schema averages, assumed to be constant with nofxx

variance.
Let us start by assuming that

; ; (4.4.3.a)f11 > f00 f11 > f01 f11 > f10

We want a problem where one or both of the suboptimal order-1 schemas are better
than the optimal order-1 schemas, i.e. we want one or both of the following conditions
to hold:

f(0*) > f(1*) (4.4.3.b)
f(*0) > f(*1) (4.4.3.c)

In these expressions we have dropped consideration of all alleles other than the two
defining positions and the fitness expression implies an average over all strings contained
within the specified similarity subset. Thus we want:

(4.4.3.d)f (00) f (01)
2

> f (10) f (11)
2

(4.4.3.e)f (00) f (10)
2

> f (01) f (11)
2

Both expressions may not hold simultaneously and, without loss of generality, we
take the first expression to hold.

From these we recognize that there are two types of minimal deceptive problems:

Type I: f01 > f00

Type II: f00 > f01

Figures F.4.4.3.1. and F.4.4.3.2. represent sketches of these problems.

4.4.3.1 Extended Schema Analysis for the Two-Problem

From the schema theorem we expect to find difficulty when

26 A Comprehensive Approach to Genetic Algorithms

(4.4.3.1.a)
f (11)

f

1 pc

δ (11)
l 1

≤ 1

(assuming pm = 0). A more careful analysis leads us to consider crossover more closely.

Figure F.4.4.3.1. Sketch of Type I minimal
deceptive problem (f01 > f00)

We lose the schema whenever a cross occurs between the schema’s outermost
defining bits. A full crossover yield table (T.4.4.3.1.1.) is shown, where an S is used to
indicate that the offspring are the same as their parents.

Figure F.4.4.3.2. Sketch of Type II minimal deceptive
problem (f00 > f01)

27Theoretical Considerations

Table T.4.4.3.1.1.

00 01 10 11

00 S S S 01, 10

01 S S 00, 11 S

10 S 11, 00 S S

11 10, 01 S S S

Assuming proportional selection, 1-point crossover and random mating we obtain the
following autonomous nonlinear difference equations:

P t 1
11 P t

11

f11

f

1 pc

f00

f
P t

00 pc

f01 f10

f
2

P t
01P

t
10

P t 1
10 P t

10

f10

f

1 pc

f01

f
P t

01 pc

f00 f11

f
2

P t
00P

t
11

(4.4.3.1.b)P t 1
01 P t

01

f01

f

1 pc

f10

f
P t

10 pc

f00 f11

f 2
P t

00P
t

11

P t 1
00 P t

00

f00

f

1 pc

f11

f
P t

11 pc

f01 f10

f
2

P t
01P

t
10

The variable is simply generation t’s population average fitness, which may bef
evaluated from

(4.4.3.1.c)f P t
00 f00 P t

01 f01 P t
10 f10 P t

11 f11

The parameter is the probability of having a cross that falls between the twop t
c

defining bits of the schema:

(4.4.3.1.d)p t
c pc

δ (H)
l 1

These equations predict the expected proportions of the four schemas in the next
generation. With initial conditions we may follow the behavior of the schemas. A
necessary condition for the convergence of the GA is that the expected proportion of

28 A Comprehensive Approach to Genetic Algorithms

optimal schemas must go to unity in the limit, i.e. .lim
t→∞

P t
11 1

...

4.6 Hill Climbers

Hill Climbers (HCs) are a special kind of evolutionary computation variations where a
given genome (a string or set of strings) is systematically modified and tested versus an
objective function with the special purpose of finding an optimum value. For example,
assume that we are given the genome Gi = 010110and we set i=1. Assume, also, that
we wish to minimize the function . Further, assume that the genome is toY 2X 2 3
be interpreted as a weighted binary number (N = 22). In order to minimize this function
we will systematically modify the bits ofGi, evaluate the objective function, set i i+1←
and obtain a newGi. We do this a specified number of times and keep the individual
which yields the best (minimum value) fitness. The general Hill Climber algorithm is as
follows:

ALGORITHM A.4.6.1

t:= 0
initialize H(t)
evaluate H(t)
while not terminatedo

H’(t):= variation [H(t)]
evaluate [H’(t)]
H(t+1) = best[H(t), H’(t)]
t:=t+1

enddo

Notice that this algorithm is similar to algorithm A.3.1. except that only one
individual is considered. Thevariation part of the algorithm is simply a change in one
of the bits of the genome.

In a way, a Hill Climber is the utmost of mutation. Essentially what we are doing is
to mutate as best we can the genome of a given individual. The biological counterpart
of a Hill Climber is an asexual unicellular individual, such as a bacteria.

The term "Hill Climber" comes from the belief that, once we are in the vicinity of
a local optimum (hill), this kind of algorithm will efficiently zeroin (climb) on the best
local optimum. Somewhat surprisingly, hill climbers have shown to be effective tools that
sometimes might outperform genetic algorithms. In section 4.11. we incorporate an HC
into the body of a GA.

In the following sections we give three variations of HCs.

29Theoretical Considerations

4.6.1 Steepest Ascent Hill Climbing

1. Choose a string at random. Call this thecurrent hilltop.
2. Going from left to right, systematically flip each bit in the string, recording the

fitnesses of the resulting strings.
3. If any of the strings gives a fitness increase, setcurrent hilltop to the best string.

Ties are decided at random.

4. If there is no fitness increase savecurrent hilltopand go to step 1; else go to step
2.

5. When a set number of function evaluations is reached return thehilltop.

The following is one possible Xbase coding of the Steepest Ascent hill climber.
It is assumed that the string is selected from a previously existing table.

4.6.2 Next-Ascent Hill Climbing

1. Choose a string at random. Call this the current hilltop.
2. For i from 1 to l (the length of the string) flip bit i; if this results in a fitness

increase keep the new string; otherwise flip i back. When an increase occurs, set
this to current hilltop. Go to step 2 with the current hilltop but continue mutating
the new string starting at the next sequential position in the string.

3. If no increases are found go to step 1.
4. Stop when a predetermined number of function evaluations is reached.

The following is one possible Xbase coding of the Next Ascent hill climber.
It is assumed that the string is selected from a previously existing table.

4.6.3 Random-mutation Hill Climbing

1. Choose a string at random. Call this the current hilltop.
2. Choose a locus at random. Flip the bit. If this leads to a better hilltop, call this the

current hilltop.
3. Go to step 2 until an optimum string has been found or until a maximum number

of function evaluations has been performed.
4. Return the best hilltop.

The following is one possible Xbase coding of the Random Mutation hill climber.
It is assumed that the string is selected from a previously existing table.

4.7 Royal Roads

The Building Block Hypothesis states that crossover combines short, observed high-

30 A Comprehensive Approach to Genetic Algorithms

performance schemas into increasingly fit candidate solutions, but does not give any
detail as to how this occurs.

The BBH suggests two features of fitness landscapes which are relevant to genetic
algorithms:

a) The presence of short, low-order, highly fit schemas.
b) The presence of intermediate "stepping stones" (Intermediate-order higher-fitness

schemas that result from the lower-order schemas and that, in turn, can combine
to create even higher fitness-schemas).

Mitchell, Forrest and Holland designed a class of functions calledRoyal Roadsthat
were meant to capture the essence of building blocks in idealized form.

A fitness function that explicitly contains these features (Royal Road R1) is shown
next. R1 is defined using a list of schemas si. Each si is given with a coefficient ci. The
fitness R1(x) of a bit string x is defined as:

, where (4.7.a)R1(x)
i

ci δi (x) δi (x)

1 if x ∈ si

0 otherwise

For example, if x is an instance of exactly two of the order-8 schemas, .R1(x) 16
Likewise .R1(111...1) 64

= 11111111**;s1 c1 8
= ********11111111**;s2 c2 8
= ****************11111111**;s3 c3 8
= ************************11111111********************************;s4 c4 8
= ********************************11111111************************;s5 c5 8
= **11111111****************;s6 c6 8
= **11111111********;s7 c7 8
= **11111111;s8 c8 8
= 11;sopt

Figure F.4.7.1. An optimal string broken up into eight building blocks.

The function R1(x) (where x is a bit string) is computed by summing the coefficients
cs corresponding to the given schemas of which x is an instance.

For example:

R1(111111110...0) = 8
R1(111111110...011111111) = 16

Given the BBH, one might expect that the building block structure of R1 will lay out
a royal road for the GA to follow to the optimal string.

31Theoretical Considerations

One might also expect that the GA will outperform Hill-Climbing schemes since a
large number of bit positions must be optimized simultaneously in order to move from
an instance of a lower-order schema (e.g. 11111111**...*) to an instance of a higher
order intermediate schema (e.g. 11111111********11111111**...*).

4.7.1 Experimental Results16

A GA was run on R1 with population size 128.Sigma Truncationselection was used to
assign the expected number of offspring to each individual. In this scheme, each
individual i’s expected number of offspring is

(4.7.1.a)1 (Fi F) /2 σ

where Fi is i’s fitness; is the mean fitness of the population and is the standardF σ
deviation of the fitness of the population. The number of expected offspring of any string
was cut off at 1.5 (if the above formula gave a higher value, the value was reset to 1.5).
This is a strict cutoff since it implies that most individuals will reproduce only 0, 1 or
2 times.

The effect of this selection scheme is to slow down convergence by restricting the
effect that a single individual can have on the population regardless of how much fitter
it is than the rest of the population.

The single point crossover rate was 0.7 per pair of parents and the bitwise mutation
rate was 0.005.

The GA’s performance on R1 was compared to those of three different iterated hill-
climbers:

a) Steepest Ascent Hill Climber
b) Next Ascent Hill Climber
c) Random Mutation Hill Climber

200 runs of each algorithm were performed. Each run used a different random seed.
In each run the algorithm was allowed to run until an optimum was found. The total
number of function evaluations was recorded. The mean and median for the number of
function evaluations are given in the next table.

Table T.4.7.1.1. Comparison between a Genetic Algorithm and Hill Climber Varia-
tions for a Royal Road Function.

16We follow an analysis by Mitchell [MITC96b].

32 A Comprehensive Approach to Genetic Algorithms

200 runs GA SAHC NAHC RMHC

Mean 61,334 >256,000 >256,000 6,179

Median 54,208 >256,000 >256,000 5,775

It is a remarkable fact that for theRoyal Roadfunction, the GA has been so strikingly
"defeated" by the Random Mutation Hill Climber. The above results shed light on two
important issues that have been already mentioned:

a) Deception.
b) The Building Block Hypothesis.

We now discuss the causes for the GA’s poor performance and analyze the behavior
of the hill climber. We propose a special kind of GA called anidealized GA (IGA)in
which the essence of a GA is typified. By trying to capture the essence of a GA (in an
IGA) we shall be able to conclude as to when a GA will be expected to perform
optimally.

4.7.2 Spurious Correlation in Genetic Algorithms

One of the reasons why the GA performed badly on the RR function was "hitchhiking"
(also referred to asspurious correlation): once an instance of a higher-order schema is
discovered, its high fitness allows the schema to spread quickly in the population, with
zeros in other positions in the string hitchhiking along with the ones in the schema’s
defined positions.

This slows the discovery of schemas in the other positions, especially those that are
close to the highly fit schema’s defined positions.

Hitchhiking seriously limits the implicit parallelism of the GA by restricting the
schemas sampled at certain loci. Hitchhiking in GA’s has also been called "spurious
correlation".

It is, therefore, important to realize that a poor behavior of the GA’s is not
necessarily related to deception. There are other causes that may interfere with its
performance.

4.8 Markov Chain Models

In the preceding sections we made an analysis which basically relies on the concept of
a schema. We were able to arrive at certain interesting conclusions about the SGA. Here
we approach the behavior of GAs by modeling them as finite Markov chains. Our
treatment follows the one by Rudolph [RUDO97].

Markov chains are stochastic processes in which the probability that the process will

33Theoretical Considerations

be in statej at time t depends only on the statei at time t-117. A "state" of a finite-
population GA is simply a particular finite population. The set of all states is the set of
all possible populations of sizen. These can be enumerated in some canonical order and
indexed byi. We may represent thei-th such population as a vector of length 2l. Thep
yth element of is the number of occurrences of stringy in population Pi. Under anp
SGA the current population Pj depends only on the population at the previous generation.
Therefore, the GA may be modelled as a Markov chain.

The set of all possible populations of sizen can be represented by a matrix inΞ
which the columns are all possible population vectorsi. There arep

(4.8.a)N

n 2l 1
2l 1

populations of sizen.

EXAMPLE E.4.8.1

Let n = 2 andl = 2. The possible populations are

P0

00
00 P1

00
01 P2

00
10 P3

00
11 P4

01
01

P5

01
10 P6

01
11 P7

10
10 P8

10
11 P9

11
11

The matrix isΞ

Ξ

2 1 1 1 0 0 0 0 0 0
0 1 0 0 2 1 1 0 0 0
0 0 1 0 0 1 0 2 1 0
0 0 0 1 0 0 1 0 1 2

A state for the Markov chain corresponds to a column of . Now we can set up aΞ
transition matrixP. P is an N N matrix, and each element Pi,j is the probability that×
population Pj will be produced from population Pi under an SGA.

A finite Markov chain describes a probabilistic trajectory over a finite spaceS of
cardinality , where, as remarked, the states may be numbered from 1 ton. TheS n
probability pij(t) of passing from state to state at stept is called thei ∈ S j ∈ S
transition probabilityfrom i to j at stept. If the transition probabilities are independent
from t, i.e., pij(t) = pij(s) for all and for all , the Markov chain is saidi , j ∈ S s, t ∈
to be homogeneous.

The transition probabilities of a homogeneous finite Markov chain can be gathered

17See section 2.6.

34 A Comprehensive Approach to Genetic Algorithms

in thetransition matrixP = (pij). If for each entry, and for allpij ∈ [0 , 1] S

j 1
pij 1 i ∈ S

a matrix is calledstochastic. Given an initial configuration 0 as a row vector, thep
configuration of the chain after thet-th step is determined by t = 0 Pt. Therefore, ap p
homogeneous finite Markov chain is completely determined by the pair (0 P).p

4.8.1 Markov Chain Analysis of Genetic Algorithms

The SGA can be described as a Markov chain. The state of the SGA depends only on
the genes of the individuals so that the state space isS = = , wheren denotesIB N IB l n

the population size andl is the number of genes. Each element of the state space can be
regarded as an integer number in binary representation. The projection representsπk(i)
the segment of lengthl from the binary representation of individualk in statei and is
used to identify single individuals of the population. The probabilistic changes of the
genes within the population caused by the genetic operators18 are captured by the
transition matrixP, which can be decomposed into a product of stochastic matricesP =
C M S, where C, M and S describe the intermediate transitions caused by
crossover, mutation and selection, respectively. This leads to:

THEOREM 4.8.1.1

The transition matrix of the SGA with mutation probability is regular.pm ∈ (0 ,1)

Proof:

The crossover operator may be regarded as a random total function whose domain
and range areS, therefore, each state ofS is mapped probabilistically to another state.
Hence,C is stochastic. The same holds for other operators and their transition matrices.

The mutation operator is applied independently to each bit in the population and the
probability that statei becomes statej after mutation is expressed bymij p

Hij

m (1 pm)N Hij

> 0 for all where Hij denotes the Hamming distance between the binaryi , j ∈ S
representation of statei and statej. ThusM is positive.

The probability that selection does not alter the state generated by mutation can be
bounded by

18Crossover, mutation and selection.

35Theoretical Considerations

sii ≥
Π
n

k 1
f (πk(i))

n

k 1

f (πk(i))

n
> 0

(4.8.1.a)

so thatS is c-allowable. From lemma 2.6.1. we know thatP = C M S is positive.
Since every positive matrix is regular the proof is completed.

COROLLARY 4.8.1.2

The SGA as defined in theorem 4.8.1.1. is anergodicMarkov chain, that is, there exists
a unique limit distribution for the states of the chain with nonzero probability to be in
any state at any time regardless of the initial distribution.

This implies that the initial distribution has no effect on the limit behavior of thep 0

Markov chain. The initialization of the algorithm can be done arbitrarily.

DEFINITION 4.8.1.3

Let be a sequence of random variables representingZt max{ f (π (t)
k (i)) k 1, ... ,n}

the best fitness within a population represented by statei at stept. An SGA converges
to the global optimum iff

(4.8.1.b)lim
t→∞

P{ Zt f } 1

where is the global optimum of the problem.f max{ f (b) b ∈ IB l }

This leads to:

THEOREM 4.8.1.4

The Simple Genetic Algorithm does not converge to a global optimum.

Proof:

Let be any state with and the probabilityi ∈ S max{ f (πk(i)) k 1, ... ,n} < f p t
i

that the GA is in such statei at stept.
Clearly . From theorem 2.6.1.3. theP{ Zt ≠ f } ≥ p t

i ⇔ P{ Zt f } ≤ 1 p t
i

probability that the GA that is in statei converges to . Consequently,p ∞
i > 0

36 A Comprehensive Approach to Genetic Algorithms

(4.8.1.c)lim
t→∞

P{ Zt f } ≤ 1 p ∞
i < 1

so that condition (4.8.1.b) is not fulfilled.

When working with GAs the logical practice is to keep track of the best individual,
so that one might argue that Markov chains do not represent a practical GA. In fact, after
a finite number of transitions the global solution will be visited and copied. This is
consequence of the following:

THEOREM 4.8.1.5

In an ergodic Markov chain the expected transition time between an initial statei and any

other statej is finite regardless of the statesi and j.

In section 4.7.5., conclusion 2 states that to approach an IGA the desired schemas
must be sequestered. This is the principle behind elitist models. This intuitive conclusion
is formalized in the following

THEOREM 4.8.1.6

The SGA maintaining the best solution found over timeafter selection converges to the

global optimum.

Proof.

Let us adapt the Markov chain description by enlarging the population by an
additional, say, "super individual" which does not take part in the evolutionary process.

The cardinality of the space grows from2n-l to . For convenience let the super2(n 1) l

individual be placed at the leftmost position in the (n+1)-tuple and let it be accessible byπ0(i)

from a population at statei. The transition probabilities of those states containing the
same super individual string are assumed to be listed one below the other in the transition
matrix and the better the super individual’s fitness the higher the position of the
corresponding state in the matrix. Since the super individual’s string is not affected by
a genetic operator, the extended transition matrices for crossover, mutation and selection
(C+, M +, S+) can be written as block diagonal matrices:

, , (4.8.1.d)C

C
C

...
C

M

M
M

...
M

S

S
S

...
S

37Theoretical Considerations

with 2l square matricesC, M andS of size possessing the same structure as in2nl×2nl

the ergodic case so that

(4.8.1.e)C M S

CMS
CMS

...
CMS

CMS > 0. The copy operation is represented by anupgradematrix U which upgrades
an intermediate state containing an individual better than its super individual to a state
where the super individual equals the better individual. Letb denote the best individual
of the population at any statei excluding the super individual. Thenuij = 1 if f (π0(i)) < f (b)
with , otherwiseuii = 1.j (b,π1(i),π2(i), ... ,πn(i)) ∈ S

Thus, there is exactly one entry in each row which does not hold for the columns
because for every state with one getsuijj ∈ S f (π0(j)) < max{f (πk(j) k 1, ... ,n}
= 0 for all . In other words, a state either becomes upgraded or remains unaltered.i ∈ S
Therefore, the upgrade matrix can be written as

(4.8.1.f)U

U11

U21 U22

...
U2l,1 U2l,2 ... U2l,2l

with submatricesUab of size . For convenience, let us assume that the problem2nl× 2nl

has only one global optimizer. Then onlyU11 is a unit matrix whereas all matricesUaa

with are unit matrices with some zero diagonal entries. WithP = CMS thea ≥ 2
transition matrix for the GA becomes

P

P
P

...
P

U11

U21 U22

...
U2l,1 U2l,2 ... U2l,2l

(4.8.1.g)P

PU11

PU21 PU22

...
PU2l,1 PU2l,2 ... PU2l,2l

with PU11 = P > 0. The submatricesPUa1 with a ≥ 2 may be gathered in a rectangular
matrix so that theorem 2.6.1.4. applies from which the corresponding GAR ≠ 0
converges to a global optimum.

38 A Comprehensive Approach to Genetic Algorithms

We state a complementary theorem whose proof is an adaptation of the above:

THEOREM 4.8.1.7

The SGA maintaining the best solution found over timebeforeselection converges to a
global optimum.

Note that theorems 4.8.1.6. and 4.8.1.7. do not cover the case of elitist selection.
When using elitist selection the best individual is not only maintained but also utilized
to generate new individuals. This algorithm has another transition matrix and, therefore,
different search dynamics which may be better in some cases and worse in other cases.
Clearly, however, it converges to a global optimum.

In the case of a canonical SGA global convergence is not guaranteed. The reason is
quite clear: for an SGA there is a minimal probability bounded from zero to lose the
global optimum solution at each generation. It follows from the Borel-Cantelli Lemma19

that this event will occur with probability one. On the other hand, there is a minimal
probability to find again a global solution if it was lost, so that this event will also occur
with probability one. In fact, the global best solution will be lost and found infinitely
often so that the sequence of best individuals found over time in the SGA is an
irreducible Markov chain on the state space {0, 1, ...,n} which does not converge
although the expectation does.

4.8.2 Conclusions

The previous analysis shows that global convergence is not an inherent property of an
SGA. In other words, the original SGA cannot be regarded as an optimization algorithm
for the static optimization problems because it is provable that it will not converge to any
subset of states containing at least one global solution, even in infinite time. Static
optimization, however, was not the original purpose in the design of the SGA. In fact,
the interest was concentrated on a strategy which performs an optimal allocation of trials
so as to minimize expected losses in an uncertain environment, possibly with time
varying rewards. Thefundamental theorem of GAs(equation 4.3.a) does not imply that
the SGA will converge to the global optimum in static optimization problems. Moreover,
due to the irreducibility of the SGA it is clear that the SGA will not converge at all.

It also shows, however, that by the simple expedient of maintaining the best observed
individual we may guarantee such global convergence. This is a very strong result which
gives solid foundation to the claim made in our opening paragraphs that GAs are a robust
and general optimization alternative.

19See W.Feller,An Introduction to Probability Theory and Its Applications, Vol. 1., Wiley,
1970.

39Theoretical Considerations

Therefore we have now two proven facts:

a) GAs are near optimal strategies to attackdynamicproblems.
b) GAs are guaranteed to converge to a global optimum instatic problems.

As also pointed out, however, certain optimizing techniques, such as hill climbers,
may outperform GAs in terms of how efficiently they find the said static solutions. We
would now like to discuss certain heuristic rules which will allow us to increase the GAs’
efficiency.

4.9 Non-Standard Models

At this point, it should be clear that we have at least two broad fields of application for
GAs: dynamicoptimization problems andstatic optimization problems. It has also been
proved that either of these fields may be approached with success with the proper GA
variation. Our concern is now to find a way to make these effective techniques more
efficient. By modifying the basic strategy of the SGA we come tonon-standard models
of Genetic Algorithms.

4.9.1 Elitism

As discussed above, when one does keep a copy of the best individual we may guarantee
global convergence for an optimization problem. There are variations in elitist models
which we have denoted aspartial elitismandfull elitism. By partial elitism we mean that
in a population of sizen we keep a copy of the best individuals up to generationτ < n
k. In the case discussed in theorems 4.8.1.6. and 4.8.1.7. = 1. By full elitism we meanτ
that we keep a copy of the bestn individuals up to generationk. In other words, given
that we have testednk individuals by generationk, our population will consist of the best
n up to that point.

In figure F.4.9.1.1. we depict the case of full elitism. Notice that in generationk we
have selected the best possiblen individuals out of thenk total individuals considered up
to that point. In so doing we artificially force the population to lean towards a focalized
set of hyperplanes. The obvious risk is that we restrict the search space in a way that
hampers the GA excessively. To avoid this risk we may alter the multi-faced die strategy
as discussed in what follows.

4.9.2 Deterministic Selection

In the SGA we have considered proportional selection as per equation 1.1.1.c. In fact, the
schema theorem has been derived from such consideration. Now we consider the
deterministicselection outlined in section 4.1.1.3. In deterministic selection we no longer

40 A Comprehensive Approach to Genetic Algorithms

rely on the individual fitness to determine the most desirable descendants. Rather, we
propose to emphasize genetic variety by imposing a strategy which enforces crossover
of predefined individuals. There are two contrasting points of view. In one of these, we
encourage the genes of the best individuals to cross between themselves; in the other we
encourage the best individuals to cross with theworst ones. One of these two strategies
is called the Nietzsche model (NM), where the best elements of the population intermix
in an effort to preserve the "best" genes. The other strategy is called the Vasconcelos
model (VM), where the "best" individuals are intermixed with the "worst" individuals in
an effort to explore the widest range of the solution space.

G E N E R A T I O N

1 2 . . . k

Best
n

Individuals

1

... . . .

n

. . .

Figure F.4.9.1.1. Full Elitism.

4.9.2.1 Nietzsche Model

In this model we adopt the strategy of deterministically selecting individuali to cross it
with individual i+1 . It assumes that full elitism has been applied. Therefore, we are
forcing the genes of individuals 1 and 2 to cross; the genes individuals 3 and 4 to cross;
and so on up to the genes of individualsn-1 andn to cross.

A superficial analysis would suggest that a mechanism which enhances the beneficial
traits of the individuals should lead to a better algorithm. However, simulation of the
process does not enforce this view. The reason is, simply, that to sequester the desirable
schemas in this fashion leads to what is calledpremature convergence. That is, the
deterministic selection of best individuals in this fashion does not allow for a sufficiently
vast exploration of the solution space. In a sense, we are curtailing the exploration phase
while maximizing the exploitation of positive features of the individuals.

41Theoretical Considerations

4.9.2.2 Vasconcelos Model

In this model we adopt the strategy of deterministically selecting individuali to cross it
with individual n-i+1. As in the NM, we assume full elitism. Hence, here we adopt a
strategy which, superficially, destroys the good traits of the best individual by deliberately
crossing it with the worst individual. However, when taken in conjunction with full
elitism this strategy leads to the implicit analysis of a wider variety of schemas (i.e. it
maximizes the exploration of the solution landscape). The exploration of such vast
landscape is focused via the full elitism implicit in the model.

The VM allows the algorithm to trap the best schemas without restricting the search
space in a sensible way. In this fashion we are able to approximate the IGA of section
4.7.4. We now make a brief review of the demands for any GA to approach an IGA:

a) No single locus is fixed at a single value in a large majority of the strings of the
population.

This is clearly achieved because we are deterministically disrupting the troublesome
locus’ by best-worst crossover.

b) Selection has to be strong enough to preserve desired schemas that have been
discovered but also should prevent significant hitchhiking on some highly fit
schemas.

Because we are working with full elitism we preserve desired schemas and, as before,
we avoid hitchhiking by crossing over dissimilar individuals.

c) The crossover rate has to be such that the time for crossover that combines two
desired schemas is small with respect to the discovery time for such schemas.

Full elitism guarantees that, even in the Vasconcelos strategy, the worst individual for
populationk is in the top 1/k percentage. For example, ifn = 50 and we look at the 20th
population, the individuals in such population are among the best 5% of the total
individuals analyzed. This characteristic is incrementally exposed as the GA proceeds.

d) The string has to be long enough so that the speedup factorN (in equation
(4.7.4.c) is significant.

This is the only element we cannot guarantee. It seems that for relatively smallN’s
hill climbers may outperform our Genetic Algorithms.

42 A Comprehensive Approach to Genetic Algorithms

4.10 Self-Adaptation

When running a GA there are several parameters that are to be seta priori: Three of
these are the most common:a) The crossover rate (Pc), b) The mutation rate (Pm), and
c) The size of the population (N).

In many cases the user tries to fine tune these parameters by making a number of
runs on different "representative" case problems (see, for instance De Jong[DEJO75],
Galavíz [GALA96], pp. 156]). Here we discuss in more detail theself-adaptationof the
mentioned parameters, which was already briefly touched in section 4.1.1.12. under the
endogenous variation.

In a self-adaptive GA the three parameters are included as an extension of the
genome in such a way that the parameters evolve along with the individual. This was
also mentioned when discussing Evolution Strategies, in section 3.1. The idea behind
self-adaptation is that not only does the GA explore the solution landscape but the
parameter landscapeas well. In this way, the genome is divided in two sub-genomes:
a strategy genomeand asolution genome. In terms of a classical GA, the solution
genome corresponds to what has simply been referred, up to this point, as thegenome.
Both sub-genomes are subject to the genetic operators. We should consider the parameter
sub-genome as a set of three sub-genomes which are functionally independent. The self-
adaptive genome is shown in figure F.4.10.1. Notice that the size of the populationN is
implicitly dealt with by considering not the population’s size itself, but rather the number
of descendants product of crossover. Recall, for instance, that in the Royal Roads the
number of descendants was handled via sigma truncation. There we had an embryo self-
adaptation strategy, for the parameter determining the details of offspring size was set a
priori.

Pm

Mutation
Probability

Pc

Crossover
Probability

N
Number of

Descendants
Individual’s Encoding

lpm lpc n

STRATEGY SUB-GENOME SOLUTION SUB-GENOME

FULL GENOME

Figure F.4.10.1. Self-Adaptive Genome

43Theoretical Considerations

4.10.1 Individual Self-Adaptive Genetic Algorithm

In this case, the different parameters take their values from considerations affecting the
individuals as independent units, as opposed to individuals as members of the population
(see next section). For example, we may encode thecontrol parametersas follows:

a) Probability of Mutation

Let be the probability of a bit mutation for a given individual.pm ispm ∈ [0,1]
represented in binary as an integern where and . There areNn Kpm K ∈
mutation rates which we denote by . These evolve in time under the(pm)

i
i 1,2, ...,N

GA’s operators. Each individual is then mutated with probability .(pm)
i

b) Probability of Crossover

Let be the probability of crossover for a given individual. As in the case ofpc ∈ [0,1]
pm, pc is encoded in binary as an integern where . The code ofpc is also an Kpc

genetic string and is subject to the genetic operators. Given two individuals with
crossover probabilitiespc1 andpc2, they are crossed with probability:

(4.10.1.a)pc12

pc1 pc2

2
c) Number of Descendants

Each individual has a number of descendants which is also encoded and considered to
be a genetic string subject to the genetic operators. Letc1 and c2 be the number of
descendants of two individuals. When such individuals are crossed the offspring they will
generate is given by:

(4.10.1.b)n

c1 c2

2

f1,2

fmax

where is the mean fitness for these two individuals and is the best fitness forf 1,2 f max

the population in the current generation. The number of descendants determined as
described insures that poor genetic structures have less chance to survive than the better
ones.

4.10.2 Population Self-Adaptive Genetic Algorithm

In this case of self-adaptation the way the operators affect the performance of the GA
takes into consideration the population (for any given generation) as a whole. In a sense,
this self-adaptive GA is aimed at improving the mean values of the population rather than

44 A Comprehensive Approach to Genetic Algorithms

the values of each individual.

a) Probability of Mutation

As in the individual self-adaptive scheme,pm is encoded in every individual. Here,
however, the mutation rate for the whole population in thek-th generationgk is calculated
as follows:

(4.10.2.a)(pm)k

1
N

N

i 1

(pm)i

Therefore, the mutation operator’s rate is fixed for all the individuals duringgk.

b) Probability of Crossover

pc is, as before, encoded in the genome of every individual. Now, in generationgk the
crossover rate is given by

(4.10.2.b)(pc)k

1
N

N

i 1

(pc)i

Here, again, the crossover operator’s rate is fixed for all the individuals duringgk.

c) Number of Descendants

As before,n, the number of descendants, is encoded in the genome of every individual
and, as before, the number of descendantsnk in the k-th generation is given by

(4.10.2.c)nk

1
N

N

i 1

ni

As in the two preceding cases, the number of descendants is fixed for all the
individuals duringgk.

Utilizing a self-adaptive strategy one is freed from offset arbitrary parameter
selection, to a certain extent. It is usual to set upper bounds on the possible values
encoded inpm, pc and n. In that sense, there is still an arbitrary selection of initial
parameter values. However, individuals which represent the better parameters for the
particular problem are allowed tolearn from the problem that is being solved. The self-
adaptive alternative has been shown to compare favorably [GALA96, p. 162] with
traditional fixed parameter GAs.

4.11 An Eclectic Universal Genetic Algorithm

45Theoretical Considerations

At this point we have all the elements, both theoretical an practical to propose what we
shall call anEclectic Universal Genetic Algorithm (UGA). Eclecticism here refers to the
fact that we are willing to adopt the strategies we consider best regardless of the problem.
In fact, we arrive at a mixed algorithm: strictly not merely a GA any more. Universal is
meant to stress the fact that the variation of the GA to be discussed is applicable to a
wide range of problems without the need for special considerations. In fact, we shall
utilize this UGA to solve problems both numerical and non-numerical. We shall apply
them both to optimization and to learning. This will be accomplished without changing
the EGA and simply by designing the fitness function in a way exactly analogous to the
way it was described in chapter 3.

Throughout the text we have repeatedly stressed the fact that GAs are flexible, easy
to adjust to the problem in hand, robust and able to perform global search characteristics
in the solution landscape. We also showed that they approach a near optimal tool for
dynamic problems and guaranteed to converge in static problems (via elitism).

The disadvantage that is frequently cited is that GAs, as all artificial intelligence
"weak" methods, incorporate the knowledge about the problem in the structure of the
method itself, rather than explicitly displaying it in the strategies involved. In the GA this
problem dependent "knowledge" is represented by the values that must be set in its
operators and the values that these operators take.

We have given theoretical arguments that explain the shortcomings of GAs and,
consequently, allow us to take the corresponding counter-measures so that we may
overcome them. Via the IGA we were able to determine the desirable features an
effective GA must face to avoid deception and spurious correlation.

Even when we are able to determine the causes for possible GA’s suboptimal
performance we are still faced with the parameter setting problem. This may be
overcome by self-adaptation. In what follows we make a brief synthesis of these matters
and add a hybridizing element in the GA which will allow us to overcome the N-factor
problem discussed in the last paragraph of section 4.9.2.2.

4.11.1 Selection, Elitism and Self-Adaptation

The EGA includes the following components:

a) Deterministic selection.
b) Elitism.
c) Self-Adaptation.

We have already discussed at length the possibilities and advantages of each of these
elements in the preceding sections. It only remains to define the particular variation of
each component.

Selection is done as perVasconcelos’ strategy: cross individuali with individual N-
i+1 for i = 1, 2, ..., N.

Elitism is full retaining always the bestN individuals out of theNk tested up to

46 A Comprehensive Approach to Genetic Algorithms

generationk.
Self-Adaptation is on thepopulation. Three parameters are encoded and self-adapted:

mutation, crossoverandnumber of descendants.
Mutation is uniform.
Crossover isannular.

In annular crossover, the genome (as shown in figure F.4.11.1.1.) is no longer seen
as a linear collection of bits but rather as a ring whose leftmost bit is contiguous to its
rightmost bit.

When applying annular crossover, there are two

Figure 4.11.1.1. Annular Genome.

parameters to consider for each interchange:

a) The starting crossover locus.

That is, where the segment to be extracted from the
individual starts.

b) The length of the semi-ring.

That is, how many genes of the individual are to
extracted.

Clearly, for a genome of lengthl there arel possible locus andl-1 possible lengths.
When extracting the first individual’s genes, however, we must no longer concern
ourselves with position encoding dependencies such as the ones discussed in section
4.1.1.10. An example of annular crossover is shown in figure F.4.11.1.2.

Figure 4.11.1.2. Annular Crossover.

As already mentioned, this algorithm approaches the behavior of an idealized Genetic
Algorithm. In including a self-adaptive behavior it modifies its behavior without

47Theoretical Considerations

impairing the desirable characteristics.

4.11.2 Adaptive Hill Climbing

As exposed by the experiments summarized in table T.4.7.1.1., the Random Mutation Hill
Climber (HC) is capable of outperforming the SGA in certain functions. To take
advantage of the hill climber in cases as this one we include a RMHC as part of the
algorithm. That is, the EGA consists of a self-adaptive GAplus an HC. How do we
determine when the HC should be activated instead of the GA proper? We do this with
a self-adaptive mechanism which we describe next.

a) The first step is to define two bounds:

1) The minimum Hill Climber percentage ().ηλ

2) The maximum Hill Climber percentage ().ηµ

where

(4.11.2.a)0 < ηλ < ηµ ≤ 1

The HC algorithm will then be activated, at least, of the time and, at most, ofηλ ηµ

the time.

b) As a second step, we must define two other bounds:
1) The minimum number of function evaluations to be performed by the HC upon

invocation ().Nλ

2) The maximum number of such function evaluations ().Nµ

These two bounds are given as a percentage of the population’s sizeN. The actual
percentage of HC function evaluations (relative toN) is included in the strategy sub-
genome and is subject to the genetic operators. The actual number of evaluations upon
HC invocation in generationk is given byNη

(4.11.2.b)(Nη)k

1
N

N

i 1

(Nη)i

c) At generationgk the hill climber’s effectiveness is evaluated from

(4.11.2.c)ηφ
1
N

N

i 1

(ιη)i

where

(4.11.2.d)ιη

1 if individual was found by the HC
0 otherwise

48 A Comprehensive Approach to Genetic Algorithms

To be able to determine ’s value we must include a new element in the genome.ιη

This element is of type boolean. It will be set when the individual has been found by the
HC and reset otherwise.

The genome for the EGA is shown in figure F.4.11.2.1. In it we may find all the
elements for the self-adaptive schemeand the HC algorithm.

Pm

Mutation
Probability

Pc

Crossover
Probability

N
Number of

Descendants

ιη

Originated
by HC

HC
Function

Evaluations
Individual’s
Encoding

lpm lpc
n η Nη

STRATEGY SOLUTION

Figure F.4.11.2.1. Self-Adaptive Genome for Eclectic Genetic Algorithm.

d) Denoting the probability of invoking the HC by , we have:ητ

(4.11.2.e)ητ

ηλ if ηφ < ηλ

ηφ if ηλ ≤ ηφ ≤ ηµ

ηµ if ηφ > ηµ

e) Generate a random number , where . Prepare to invoke the HC ifρK 0 < ρK ≤ 1

.ητ ≤ ρK

f) Once the HC is scheduled to start, the string upon which it will operate is selected
randomly from the first five in the population. Recall that the individuals in the
population are ordered from best (individual 1) to worst (individualN). Therefore,
to select the string upon for the HC to operate, we makeιη

(4.11.2.f)ιη R×5 1

whereR is a random number uniformly distributed and 0 <R ≤ 1.

The result of the strategy just outlined is to guarantee that the HC will be active
whenever it has proved to be effective. The probability that the HC will override the GA
proper is, however, bounded above by . This prevents the HC from taking over theηµ

whole process. On the other hand, the HC will be invoked with probability≥ which,ηλ

in turn, avoids the possibility that due to poor performance of the HC at some generation
gk, the HC is shut out for the rest of the process. In essence, therefore, the EGA

49Theoretical Considerations

incorporates an HC process which is self-adaptive on two accounts: a) Because its
activity is determined by its effectiveness, and b) Because the adequate number of
function evaluations is evolved as the GA unfolds.

It was remarked earlier that the name "Hill Climber" refers to the fact that these
processes are thought to zeroin on optimality points when the algorithm has reached a
neighboring space in the solution landscape. Here, however, the HC serves a double
purpose: a) It does indeed zeroin on local, close maxima, and b) It enforces population
variety by exploring new schemas which the GA would otherwise pass by. The most
striking fact about this mixed mode (GA-HC) algorithm is that it is the GA which
actually does the fine search of local optima, with the HC serving as a triggering agent
which locates suboptimal solutions quite efficiently. The reader will have the opportunity
to verify the EGA’s behavior with the software included in the companion diskette.

Notice that, in a GA as the one just described, the Schema Theorem (equation 4.3.a)
is clearly not applicable. In fact, seldom do the criteria employed there have any bearing
upon the way the EGA may be analyzed. As stated before, the theoretical treatment of
genetic algorithms is still in its infancy and the generalization of the basic concepts
derived from schema or Markov chain analysis is still lacking. This is not to say that we
may not benefit from the theory already developed. It does give us an efficient way to
establish comparisons between different GA variations. Therefore it will be useful to
establish a relative performance criterion to evaluate the eclectic genetic algorithm and
other variations which will be explored later in the text.

The EGA may be characterized, according to the proposed taxonomy, as:

EGA = (1, 1, 3, 2, 2, 3, 1, 3, 1, 1, 1, 2, 1) (4.11.2.g)Γ

Although the schema theorem is away from the EGA’s spirit we may still remark, if
only qualitatively, how it does compare with theIGA whose desirable features were
identified from a traditional schema analysis. By incorporating self-adaptation and hill
climbing the eclectic genetic algorithm approaches the behavior of theIGA discussed
above since:

a) Via Vasconcelos’ strategy no locus is fixed at a single value.
b) Via full elitism, desired schemas are sequestered to preserve good traits.
c) Via self-adaptation crossover is chosen so as to dynamically maintain the best

crossover rate.
d) The speedup factor (in equation 4.7.4.c) is at least equal to the hill climber’s due

to the fact that a hill climbing mechanism is explicitly included.

