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FOREWORD

The history of mechanics is one of the most important branches of
the history of science. From earliest times man has sought to develop

tools that would enable him to add to his power of action or to defend

himself against the dangers threatening him. Thus he was uncons-*

ciously led to consider the problems of mechanics. So we see the first

scholars of ancient times thinking about these problems and arriving

more or less successfully at a solution. The motion of the stars which,

from the Chaldean shepherds to the great Greek and Hellenistic astronomers,

was one of the first preoccupations of human thought, led to the discovery

of the true laws of dynamics. As is well known, although the principles

of statics had been correctly presented by the old scholars those ofdynamics,
obscured by the false conceptions of the aristotelian school, did not begin
to see light until the end of the Middle Ages and the beginning of the modern

era. Then came the rapid development of mechanics due to the memor*

able work of Kepler, Galileo, Descartes, Huyghens and Newton; the

codification of its laws by such men as Euler, Lagrange and Laplace ;

and the tremendous development of its various branches and the endlessly

increasing number of applications in the Nineteenth and Twentieth

Centuries. The principles of mechanics ivere brought to such a high

degree of perfection that fifty years ago it was believed that their develop

ment was practically complete. It was then that there appeared^ in sue-

cession^ two very unexpected developments of classical mechanics on the

one hand, relativistic mechanics and on the, other, quantum and wave

mechanics. These originated in the necessity of interpreting the very

delicate phenomena of electromagnetism or of explaining the observable

processes on the atomic scale. Whereas reativistic mechanics, while up

setting our usual notions of time and space only*, in a sense, completed

and crowned the work of classical mechanics^ the quantum and wave

mechanics brought us more radically new ideas and forced us to give

up the continuiuty and absolute determinism of elementary phenomena.
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Relativistic and quantum mechanics today form the two highest peaks of the

progress of our knowledge in the whole field of mechanical phenomena.

To appraise the evolution of mechanicsfrom its origin up to the present

time would be obviously a difficult task demanding a considerable amount

of work and thought. Few men would be tempted to write such a history

of mechanics ; for its compilation would require not only a wide and

thorough knowledge of all the branches of mechanics ancient and modern,

but also a great patience, a well-informed scholarship and an acute and

critical mind. These varied qualities M. Rene Dugas who has already
become known for his fine studies on certain particular themes in the

history of dynamics andfor his critical essays on different matters in class

ical, relativistic and quantum mechanics unites these to a high degree.

More than this, he has tackled this overwhelming task and, after several

years, has brought it to a successful conclusion. The important work

that he now publishes on the history of mechanics constitutes a compre
hensive view of the greatest interest which will be highly appreciated by
all those who study the history of scientific thought.

Mr. Dugas' book is in certain ways comparable with Ernest Mack's

famous book "
Mechanics, A historical and critical presentation of its

development.
"

Certainly the reading of Mach's book, so full of original
ideas and profound comments, is still extremely instructive and absorbing.
But Mr. Dugas'' history of mechanics has the advantage of being less

systematic and more complete. Mactfs thought was in fact dominated

by the general ideas which secured his adherence in Physics to the energetic
school and in Philosophy to the positivistic thesis. He frequently sought
to find an illustration, in the history of mechanics, of his own ideas. Often
this gives his book a character which is a little too systematic, that of a

thesis in which the arguments in favour of preconceived ideas are

rehearsed. Mr. Dugas' attitude is quite different. A scrupulous historian,
he has patiently followed all the vagaries of thought of the great students

of the subject, collating their texts carefully and always preserving the

strictest objectivity.

More impartial than Mach, Mr. Dugas has been helped by the, deve

lopment of historical criticism on the one hand, by the progress of science
on the other, and has been able to be more complete. He has given us
a much more detailed picture of the efforts that were made and the remits
obtained in Antiquity and, especially, in the Middle Ages. It is parti
cularly to the authoritative ivork of Pierre Duhem that Mr. Dugas oiws
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his ability to show us the important contributions made to the development

of the principles of mechanics by masters like Jordanus of IVemore, Jean

Buridan, Albert of Saxony , Nicole Oresme and a great artist of universal

interest like Leonardo da Vinci. Of DuhemSs magnificent researches

which are often a little difficult to study in that eminent and erudite phy-
sicisfs original text, usually lengthy and somewhat vague Mr. Dugas
has been able to make, in a few pages, a short presentation that the reader

will read easily and tvith the greatest profit.

Well informed of the most recent progress of the science, the author,

accustomed to reflect of the new contemporary forms of mechanics, has

devoted the last part of his book to relativistic mechanics and wave and

quantum mechanics. This very accurate presentation made by following

closely, as is the authors practice, the ideas of the innovators and the

text of their writings, naturally makes Mr. Dugas' history of mechanics

much more complete that those of his predecessors.

The central part of the book, devoted to the developments of mechanics

in the Seventeenth, Eighteenth and Nineteenth Centuries, has demanded

a great amount of work^ for the material is immense. Being unable to

follow all the details of the development of mechanics in the Eighteenth

Century, and especially in the Nineteenth Century, Mr. Dugas has selected

for a thorough study certain questions of special importance, either in

themselves or because of the extensions which they hav& had into the con*

temporary period. It seems to me that this selection has been made very

skillfully and has enabled the author, without losing himself in details,

to outline the principal paths followed by scientific thought in this domain.

Perhaps, in, reading Mr. Dugas'' so clear text, the reader will not

appreciate the work that the writing of such a book represents. Not

only has Mr. Dugas had to sift various questions to select those which

would most clearly illustrate the decisive turning-points in the progress

of mechanics, but he has always referred to the original texts themselves,

never wanting to accomplish the task at second hand. When^ for ex

ample ^ he summarises for us the work of Kepler in a few p&gs>> it is

after having re-examined and* in some way, rethought these arguments

often complicated and a tittle quaint and, moreover, written in a bad

lAitin whose meaning is often difficult to appreciatewhich enabled

the great astronomer to discover the correct laws of the motion of the planets.

It is this necessary conjunction ofthe procedures ofa patient erudition and a

wide knowledge of the past and present results of the science which mak$s
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the history of science particularly difficult and restricts the number of

those who can, with profit, devote themselves to it. Therefore Mr. Rene

Dugas should be warmly thanked for having placed at the service of the

history of science, qualities of mind and methods of work rarely united

in one man, andfor having given us a remarkable work which will remain

a document of the first rank for the historian of mechanics.

of the AcadAmie franyaite

permanent secretary of the Academic des sciences ,



PREFACE

Mechanics is one of the branches of physics in "which the number

of principles is at once very few and very rich in useful consequences.
On the other hand, there are few sciences which have required so

much thought the conquest of a few axioms has taken more than

2000 years.

As Mr. Joseph Per^s has remarked, to speak of the miracle of Greece

or of the night of the Middle Ages in the evolution of mechanics is not

possible. Correctly speaking, Archimedes was able to conquer statics

and knew how to construct a rational science in which the precise

deductions of mathematical analysis played a part. But hellenic

dynamics is now seen to be quite erroneous. It was however, in touch

with every-day observation. But, being unable to recognise the func

tion of passive resistances and lacking a precise kinematics of accelerated

motion, it could not serve as a foundation for classical mechanics.

The prejudices of the Schoolmen, whose authority in other fields

was undisputed, restricted the progress of mechanics for a long period.

Annotating Aristotle wan the essential purpose of teaching throughout
the Middle Ages. Not that the mediaeval scholars lacked originality.

Indeed, they displayed an acute subtlety which haa never been surpassed,

but most often they neglected to take account of observation, preferring

to exercise their minds in a pure field. Only the astronomers were an

exception and accumulated the facts on which, much later, mechanics

was to be based*

The Thirteenth Century had, however, an original school of ntatics

which advocated, in the treatment of heavy bodies, a new principle

under the name of gmvitax secundum situm that was to develop

into the principle of virtual work; moreover, thitf principle solved, long

before Stevin and Galileo, the problem of tin* equilibrium, of a heavy

body on an inclined plane, which Pappus had not sueeeecled in doing

correctly. In the fourteenth century, Buridan formulated the first

theory of energy under the name of impetus. Thin theory explicitly

departs from the Peripatetic ideas, which demanded the constant inter

vention of a mover to maintain violent motion in the Aristotelian sense.

Incorporated into a continued tradition in which it was deformed in



12 HISTORY OF MECHANICS

order to conform to an animist doctrine, which in the hands of the

German metaphysicians of the fifteenth century was to subsist with

Kepler, the theory of impetus became, in the hands of Benedetti, an

early form of the principle of inertia, while one of its other aspects was
to become, after a long polemic, the doctrine of vis viva. And in the

Fourteenth Century, the Oxford School, which in other respects indulged
in such artificial quibbling, was to clarify the laws of the kinematics of

uniformly accelerated motion.

The mechanics of the Middle Ages received something of a check

during the Renaissance, which caused a return to classical traditions.

The Schools were attacked by the humanists. Yet, before Galileo,

Dominico Soto successfully formulated the exact laws of heavy bodies

even if he did not verify them experimentally.

Under what may seem an ambitious title, A History of Mechanics,
we shall deal with the evolution of the principles of general mechanics,
while we shall omit the practical applications and, a fortiori, tech

nology.
As far as possible we shall follow a chronological order, in the manner

of elementary text books which begin with early history and end with
the latest war. After considerable reflexion, this order has seemed to

us preferable to the one adopted by important critics, which consists

in choosing a given principle or problem and analysing its evolution

throughout the centuries. This latter method offers the advantage of

isolating a theory and treating it closely ; it lends itself to short cuts

which are striking but which sometimes seem a little artificial : the
different key problems of mechanical science evolved in fact along
parallel lines, profiting by the progress made in mathematical language ;

what is more, these problems were interconnected. We have preferred
here to follow the elementary order in time. Each century will thus

appear in full light, with its own mentality and atmosphere. So we
jump necessarily from one theme to another, but the works find once
more their unity and their natural background, without the distortion
caused by juxtaposing them in time.

The present book is divided into five parts. The first treats of the

originators, the precursors, from the beginning up to and including
the Sixteenth Century; the second, of the formation of classical
mechanics. In this domain the Seventeenth Century deserves to be
considered as the great creative century, with three great peaks formed
by Galileo, Huyghens and Newton. The third part is devoted to the

Eighteenth Century, which emerges as the century of the organisation
of mechanics and finds its climax in the work of Lagrange, immediately
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preceded by Euler and d'Alembert. The development of mathematical

analysis enabled mechanics to take a form which, for a considerable

time, appeared to be finally established, and which is still a part of

the classical teaching.
We have found ourselves somewhat embarrassed in the writing

of the fourth part, which is concerned with classical mechanics after

Lagrange. Indeed, nothing would be gained by duplicating the

textbooks. Therefore we have confined ourselves to a selection from
the work of the Nineteenth Century and the beginning of the Twentieth

Century. This selection may appear somewhat arbitrary to the well-

informed reader. Moreover, it is rather interesting to observe that

the uneasiness about the structure of classical mechanics which is

evident in the writings of the critics did not prepare the way for the

relativistic and quantum revolutions, dated 1905 and 1923 respectively.

These came from outside, imposed by the necessities of optics, electro-

magnetism and the theory of radiation. However, these reflections

of the critics were not valueless, for they showed that the lagrangian
science was not intangible and that the axioms of mechanics, to use

Mach's words,
" not only assumed but also demanded the continual

control of experiment."
Thus the determinism or, if it is preferred, legality of which the

students of mechanics were so proud and which made their science

the model of all physical theories, now appears, after the development
of wave mechanics, as justified in the macroscopic domain because of

statistical compensation between the individuals of a large assembly,
without there being an underlying determinism.

The fact of collecting in one book the stammerings of the early

students, the creation and organisation of the classical science and the

rudiments of the new mechanics the object of the fifth part of this

book may appear a wager. It is only so iu appearance. Indeed,

the original works never had that codified aspect which is, of necessity,

lent them by the textbooks. Just as the French currency remained

stable for more than a century, Lagrange'n mechanics was able to

appear as complete for a period of roughly the same length* Despite
its mathematical perfection, it had no other foundation that that of

common experiment. The double revolution of 1905 and 1923 the

second much more radical than the firstprofoundly disturbed the

classical structure. For these new doctrines intended to rule over

the whole of physics, only admitting the validity of classical mechanics

in the limits at which the velocity oflight can be considered infinite and

Planck's universal constant negligible. As regards the principles, cer

tain thinkers have made the mistake of incorporating into a system
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what was only a stability of fact, a stage in evolution, as long as this

stability appeared to be verified and however important were, and still

are, its conquests.
For the historian, who is only a spectator and who, by his profession,

is aware of the fragility of our anthropomorphic science, these revolu

tions are not an object of scandal or even a surprise. This does not

mean that innovations must be accepted without analysis, or new

dogmas professed without reserve.

It is difficult for us to indicate in detail what this work owes to the

great historians and critics of mechanics. From Duhem we have taken

what material he could extract from the manuscripts of the Middle

Ages, at the same time bringing to this semi-darkness the light of his

particularly profound and alert mind. We must confess however that

we have had to disagree with several of his opinions, which appeared
too categorical to us. Duhem had undergone the polarisation of the

investigator which leads him to attach too great an importance some
times to the original he has just discovered. Besides, Duhem's attach

ment to energetics made him somewhat biassed. For example, the

principle of virtual work triumphed over that of virtual velocity which,

up to the the early writings of Galileo, remained inspired by peripatetic
doctrines, but it already explained correctly the laws of the equilibrium
of simple machines, and long preceded the former. Curiously enough,
Duhem makes Leonardo da Vinci the centre of his studies of the Pre

cursors, to the extent of considering the Unknown Man of the Thirteenth

Century, that same one who discovered the law of the equilibrium of a

heavy body on an inclined plane, as a precursor of Leonardo, whereas
this latter was always in error on this problem, and of qualifying as

plagiaries or successors of Leonardo a large number of authors of the
Sixteenth Century who may very well not have come under the influence
of the great painter who in mechanics was scarcely more than an
amateur of genius.

These few reserves, for which we beg to be excused, do not prevent
Duhem's historical work from being of the greatest importance. An
indefatigable reader, he succeeded not only in bringing to life workfi of
the Scholastics of the Middle Ages, that were until then little known,
but in establishing between them and the classical period filiations of

indisputable interest. It is certain that, on more than one point, this
Scholastic sheds light on and prefigures Descartes.

From Emile Jouguet, who honoured us with his teaching, we have
borrowed several of his Lectures given conscientiously and with great
regard for the original authors and a number of opinions that were,



PREFACE 15

out of modesty, consigned to notes, lest they should hide his perfect

knowledge of the Ancients.

In many places we have cited the very personal, and sometimes

very judicious, observations of Mach. His Mechanics was one of the

first systematic works of its kind and represented both a very wide

reading and a critical mind of remarkable independence.
1

Strictly speaking, Painleve did not treat the history of mechanics.

On his own account, with the analytical mind that he applied to every

thing, he rethought the evolution of mechanics. The lectures which

he gave us at the cole pofytechnique were revised and developed in

his Axiomes de la Mecanique. This contains not only an original

discussion of the classical principles, but an often constructive and

always valuable criticism of relativistic doctrines.

In spite of the contributions of the great critics we have just mention

ed, in spite of the several researches of the original authors themselves

which this book contains, we do not conceal its imperfections and its

omissions. Certain of these omissions, especially from the classical

field after Lagrange, have been accepted deliberately ; others may be

unknown to us and, for this reason, more serious. We have not sought

to restrict ourselves too narrowly to our nubject, and have made some

incursions into the domain of astronomy and that of hydrodynamics

when it seemed that these served our purpose. But a presentation

of a system of the world, or a complete history of the mechanics of

fluids, should not be looked for here ; these subjects themselves would

require whole volumes.

This book will only be read with profit by those who already have

some knowledge of the didactic aspect of things. It also presupposes,

as does all mechanics, a somewhat extensive mathematical background.

Our purpose will have been achieved if the reader finds in it, with less

effort than it has cost us to unite and explain the original texts, a reflec

tion of the joy of knowledge that we have found.

I must thank the " Editions du Griffon
"

for having applied all their

recourses to the production of this book,

1 Throughout this book, DuHEM'S Origines de ia Statique are indicated by the

initials 0. 6'., MACK'S Mechanics by the imtial M., and JOUGUKT'B Lectures de Mtca-

nique by the initials L. M.
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THE ORIGINS





CHAPTER ONE

HELLENIC SCIENCE

1. ARISTOTELIAN MECHANICS.

For lack of more ancient records, history of mechanics starts with
Aristotle (384-322 B. C.) or, more accurately, with the author of the

probably apocryphal treatise called Problems of Mechanics (Mriywvmv.

nQoftkrifjiVLTy.) . This is, in fact, a text-book of practical mechanics

devoted to the study of simple machines.

In this treatise the power of the agency that sets a body in motion is

defined as the product of the weight or the mass of the body the

Ancients always confused these concepts and the velocity of the motion
which the body acquires. This law makes it possible to formulate the

condition of equilibrium of a straight lever with two unequal arms
which carry unequal weights at their ends. Indeed, when the lever

rotates the velocities of the weights will be proportional to the lengths
of their supporting arms, for in these circumstances the powers of the

two opposing powers cancel each other out.

The author regards the efficacy of the lever as a consequence of a

magical property of the circle.
" Someone who would not be able to

move a load without a lever can displace it easily when he applies a

lever to the weight. Now the root cause of all such phenomena is the

circle. And this is natural, for it is in no way strange that something
remarkable should result from something which is more remarkable,
and the most remarkable fact i the combination of oppoeites with each

other. A circle is made up of such opposites, for to begin with it is

made up of something which moves and something which remains

stationary. ..." *

In this way Problems of Mechanics reduces the study of all simple
machines to one and the same principle.

** The properties of the balance

are related to those of the circle and the properties of the lever to those

of the balance. Ultimately most of the motions in mechanics are

related to the properties of a lever.
'*
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To Aristotle himself, just as much in his Treatise on the Heavens,

(IIsQi OVQWOV) as in his Physics, concepts belonging to mechanics were

not differentiated from concepts having a more general significance.

Thus the notion of movement included both changes of position and

changes of kind, of physical or chemical state. Aristotle's law of

powers, which he caUed Mvayug or fcyj^g, is formulated in Chapter V

of Book VII of his Physics in the following way.
" Let the motive agency be a, the moving body /?,

the distance tra

velled y and the time taken by the displacement be <5. Then an equal

power, namely the power a, will move half of /? along a path twice y in

the same time, or it will move it through the distance y in half the time d.

For in this way the proportions will be maintained.
"

Aristotle imposed a simple restriction on the application of this

rule a small power should not be able to move too heavy a body,
" for then one man alone would be sufficient to set a ship in motion.

"

This same law of powers reappears in Book III of the Treatise on

the Heavens. Its application to statics may be regarded as the origin

of the principle ofvirtual velocities which will be encountered much later.

In another place Aristotle made a distinction between natural

motions and violent motions.

The fall of heavy bodies, for example, is a natural motion, while the

motion of a projectile is a violent one.

To each thing corresponds a natural place. In this place its

substantial form achieves perfection it is disposed in such a way that

it is subject as completely as possible to influences which are favourable,

and so that it avoids those which are inimical. If something is moved

from its natural place it tends to return there, for everything tends to

perfection. If it already occupies its natural place it remains there at

rest and can only be torn away by violence.

In a precise way, for Aristotle, the position of a body is the internal

surface of the bodies which surround it. To his most faithful commen

tators, the natural place of the earth is the concave surface which deiines

the bottom of the sea, joined in part to the lower surface of the atmo

sphere, the natural place of the air. 1

Concerning the natural motion of falling bodies, Aristotle maintained

in Book I of the Treatise on the Heavens that the " relation which weights

have to each other is reproduced inversely in their durations of fall.

If a weight falls from a certain height in so much time, a weight which

is twice as great will fall from the same height in half the time*

In his Physics (Part V), Aristotle remarked on the acceleration of

1
Cf. DXIHEM, Origines de la Statique, Vol. II, p. 21. Throughout the prenent hook

this work of Duhem will be indicated by the letters 0. S.
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falling heavy bodies. A body is attracted towards its natural place by
means of its heaviness. The closer the body comes to the ground, the

more that property increases.

If the natural place of heavy bodies is the centre of the World, the na

tural place of light bodies is the region contiguous with the Sphere of the

Moon. Heavenly bodies are not subject to the laws applicable to terres

trial ones every star is a body as it were divine, moved by its own divinity.
We return to terrestrial mechanics. All violent motion is essentially

impermanent. This is one of the axioms which the Schoolmen were to

repeat Nullum violentum potest esse perpetuum. Once a projectile is

thrown, the motive agency which assures the continuity of the motion

resides in the air which has been set in motion. Aristotle then assumes

that, in contrast to solid bodies, air spontaneously preserves the impul
sion which it receives when the projectile is thrown, and that it can in

consequence act as the motive agency during the projectile's flight.

This opinion may seem all the more paradoxical in view of the fact

that Aristotle remarked, elsewhere, on the resistance of the medium.
This resistance increases in direct proportion to the density of the me
dium. " If air is twice as tenuous as water, the same moving body
will spend twice as much time in travelling a certain path in water as

in travelling the same path in air.
"

Aristotle also concerned himself with the composition of motions.
" Let a moving body be simultaneously actuated by two motions that

are such that the distances travelled in the same time are in a constant

proportion. Then it will move along the diagonal of a parallelogram
which has as sides two lines whose lengths are in this constant relation

to each other.
" On the other hand, if the ratio between the two com

ponent distances travelled by the moving body in the name time varies

from one instant to another, the body cannot have a rectilinear motion.
" In such a way a curved path is generated when the moving body is

animated by two motions whose proportion does not remain constant

from one instant to another.
"

These propositions relate to what we now call kinematics. But
Aristotle immediately inferred from them dynamical results concerning
the composition of forces. The connection between the two disciplines
is not given, but as Dutxem has indicated, it is easily supplied by making
use of the law of powers a fundamental principle of aristotelian dyna
mics. In particular, let us consider a heavy moving body describing
some curve in a vertical plane. It is clear that the body is actuated

by two motions simultaneously. Of these, one produces a vertical

descent while the other, according to the position of the body on its

trajectory, results in an increase or a decrease of the distance from the
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centre. In Aristotle's sense, the body will have a natural falling motion

due to gravity, and will be carried horizontally in a violent motion.

Consider different moving bodies unequally distant from the centre of

a circle and on the same radius. Let this radius, in falling, rotate about

the centre. Then it may be inferred that for each body the relation of

the natural to the violent motion remains the same. " The contem

plation of this ecpiality held Aristotle's attention for a long time. He

appears to have seen in it a somewhat mysterious correlation with the

law of the equilibrium of levers.
" x

Aristotle believed in the impossibility ofa vacuum (Physics, Book IV,

Chapter XI) on the grounds that, in a vacuum, no natural motion, that

is to say no tendency towards a natural place, would be possible.

Incidentally this idea led him to formulate a principle analogous to

that of inertia, and to justify this in the same way as that used by the

great physicists of the XVIIIth Century.
" It is impossible to say why a body that has been set in motion in

a vacuum should ever come to rest
; why, indeed, it should come to

rest at one place rather than at another. As a consequence, it will

either necessarily stay at rest or, if in motion, will move indefinitely
unless some obstacle comes into collision with it.

"

Aristotle's ideas on gravitation and the figure of the Earth merit our

attention, if only because of the influence which they have had on the

development of the principles of mechanics. First we shall quote from
the Treatise on the Heavens (Book II, Chapter XIV).

" Since the

centres of the Universe and of the Earth coincide, one should ask one
self towards which of these heavy bodies and even the parts of the
Earth are attracted. Are they attracted towards this point because it

is the centre of the Universe or because it is the centre of the Earth ?

It is the centre of the Universe towards which they must be attracted. . . .

Consequently heavy bodies are attracted towards the centre of the

Earth, but only fortuitously, because this centre is at the centre of the
Universe.

"

If the Earth is spherical and at the centre of the World, what
happens if a large weight is added to one of the hemispheres ? The
answer to this question is the following.

" The Earth will necessarily
move until it surrounds the centre of the World in a uniform way, tlie

tendencies to motion of the different parts counterbalancing one an
other." Duhem points out that the centre, TO ueaov, that in every body
is attracted to the centre of the Universe, was not defined in a precise

1 DUHEM, 0. S., Vol. I, p. 110. Note here that,/or the samefall, the longer the'lever
the less the natural motion will be disturbed. It is therefore natural to assume that
a weight has more power at the end of a long lever than at the end of a short one.
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way by Aristotle. In particular, Aristotle did not identify it with the

centre of gravity, of which he was ignorant.
1

In this same treatise Aristotle repeatedly enumerates the arguments
for the spherical figure of the Earth. He distinguishes a posteriori

arguments, such as the shape of the Earth's shadow in eclipses of the

Moon, the appearance and disappearance of constellations to a traveller

going from north to south, from a priori arguments, ofwhich he says
"
Suppose that the Earth is no longer a single mass, but that, poten

tially, its different parts are separated from each other and are placed
in all directions and attracted similarity towards the centre. Then let

the parts of the Earth which have been separated from each other and

taken to the ends of the World be allowed to reunite at the centre ;

let the Earth be formed by a different procedure the result will be

exactly the same. If the parts are taken to the ends of the World and

are taken there similarily in all directions, they will necessarily form a

mass which is symmetrical. Because there will result an addition of

parts which are equal in all directions, and the surface which defines the

mass produced will be everywhere equidistant from the centre. Such

a surface will therefore be a sphere. But the explanation of the shape
of the Earth would not be changed in any way if the parts which form

it were not taken in equal quantities in all directions. In fact, a larger

part will necessarily push away a smaller one which it finds in front of

it, for both have a tendency towards the centre and more powerful

weights are able to displace lesser ones.
"

To Aristotle, heaviness does not prove rigorously that the Earth

will be spherical, but only that it will tend to be so. On the other

hand, for the surface of water, this is obvious if it is admitted that "
it

is a property of water to run towards the lowest

places,
" that is, towards places which are

nearest the centre.

Let ftey be an arc of a circle with centre a ;

the line a<5 is the shortest distance from cc to (iy*
" Water will run towards <3 from all Hides until

its surface becomes equidistant from the centre.

It therefore follows that the water takes up the

same length on all the lines radiating from the Fig. 1

centre. It then remains in equilibrium. But
the locus of equal lines radiating from a centre in a circumference of a

circle. The surface of the water, /5tey, will therefore be spherical.
"

Adrastus (360-317 B. C), commenting on Aristotle, made the pre-

* DUHEM, 0. 5., Vol. II, p. II.



24 THE ORIGINS

ceding proof precise in the following terms. " Water will run towards

the point <5 until this point, surrounded by new water, is as far from oc

as
/3 and y. Similarity, all points on the surface of the water will be at

an equal distance from a. Therefore the water exhibits a spherical
form and the whole mass of water and Earth is spherical.

"

Adrastus supplemented this proof with the following evidence,
which was destined to become classical.1

"
Often, during a voyage, one cannot see the Earth or an approach

ing ship from the deck, while sailors who climb to the top of a mast can

see these things because they are much higher and thus overcome the

convexity of the sea which is an obstacle.
"

We shall say no more about aristotelian mechanics. However inad

equate they may seem now, these intuitive theories have their origin in

the most everyday observations, precisely because they take the passive
resistances to motion into account. To an unsophisticated observer,
a horse pulling a cart seems to behave according to the law of powers,
in the sense that it develops an effort which increases regularly with
the speed. In order to break away from Aristotle's ideas and to con
struct the now classical mechanics, it is necessary to disregard the va
rious ways in which motion may be damped, and to introduce these

explicitly at a later stage as factional forces and as resistances of the
medium. However it may be, aristotelian doctrines provided the
fabric of thought in mechanics for nearly two thousand years, so that
even Galileo, who was to become the creator of modern dynamics,
made his first steps in science in commenting Aristotle, and proved in

his early writings to be a faithful Peripatetic ; which, it may be said in

passing, in no way diminishes his glory as a reformer, on the contrary,
it only adds to it.

2. THE STATICS OF ARCHIMEDES.

Unlike Aristotle, whose mechanics is integrated into a theory of

physics which goes so far as to incorporate a system of the world, Archi
medes (287-212 B.C.) made of statics an autonomous theoretical science,
based on postulates of experimental origin and afterwards supported
by mathematically rigourous demonstrations, at least in appearance*

Here we shall follow the treatise On the Equilibrium of Planes or on
the Centres of Gravity of Planes 2 in which Archimedes discussed the

principle of the lever.

X
s thesis of ADRASTUS is known to us by means of A Collection of Mathematical

Knowledge useful for the Reading of Plato, by THEON OF SMYRNA.
2
Translation by PEYRARD, Paris, 1807. The reader .should also refer to that of

P. VER EECKE, Paris and Anvers, Desclee de Brouwer, 1938.
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Archimedes made the following postulates as axioms

1) Equal weights suspended at equal distances (from a fulcrum) are

in equilibrium.

2) Equal weights suspended at unequal distances cannot be in

equilibrium. The lever will be inclined towards the greater weight.

3) If weights suspended at certain distances are in equilibrium, and

something is added to one of them, they will no longer be in equilibrium.
The lever will be inclined towards the weight which has been increased.

4) Similarily, if something is taken away from one of the weights,

they will no longer be in equilibrium, but will be inclined towards the

weight which has not been decreased.

5) If equal and similar plane figures coincide, their centres of gravity
will also coincide.

(The concept of Centre of Gravity appears to have been defined

by Archimedes in an earlier manuscript, of which no trace remains.)

6) The centres of gravity of unequal but similar figures are similarity

placed.

7) If magnitudes suspended at certain distances arc in. equilibrium,

equivalent magnitudes suspended at the same distances will also be in

equilibrium.

8) The centre of gravity of a figure which is nowhere concave is

necessarily inside the figure.

With this foundation, Archimedes proved the following propositions.

Proposition I. When weights suspended at equal distances are in

equilibrium, these weights are equal to each other.

(Proof by reductio ad absurdum based on Postulate 4).)

Proposition II. Unequal weights suspended at equal distances

will not be in equilibrium, bxit the greater weight will fall.

(Proof based on Postulates 1) and 3).)

Proposition III. Unequal weights suspended at unequal distances

may be in equilibrium, in which case the greater weight will be suspended
at the shorter distance.

(Proof based on Postulates 4), 1) and 2). Thin proof only confirms

the second part of the proposition, and does not demonstrate the possi-

bility of the equilibrium of two unequal weights. This must be regarded
as an additional postulate of experimental origin.)
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Proposition IV. If two equal magnitudes do not have the same

centre of gravity, the centre of gravity of the magnitude made up of

these two magnitudes is the point situated at the middle of the line

which joins their centres of gravity.

(The proof, based on Postulate 2), is a demonstration by reductio ad

absurdum which, moreover, assumes that the centre of gravity of the

combined magnitude lies on the line joining the centres of gravity of

the component magnitudes.)

Proposition V. If the centres of gravity of three magnitudes lie

on the same straight line, and if the magnitudes are equally heavy and

the distances between their centres of gravity are equal, the centre of

gravity of the combined magnitude will be the point which is the centre

of gravity of the central magnitude.

(This is a corollary of Proposition IV, which Archimedes later

extended to the case of n magnitudes. The enunciation is suitably
modified if n is even.)

Proposition VI. Commensurable magnitudes are in equilibrium
when they are reciprocally proportional to the distances at which they
are suspended.

Fig. 2

" Let the commensurable magnitudes be A and B, and let their
centres of gravity be the points A and B. Let ED be a certain length
and suppose that the magnitude A is to the magnitude B as the lengthDC is to the length CE. It is necessary to prove that the centre of

gravity of the magnitude formed of the two magnitudes A and B i

the point C.
" Since A is to B as DC is to CE and since the areas A and B are

commensurable, the lengths DC and CE will also be commensurable.
Therefore the lengths EC and CD have a common measure, say IV.
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Suppose that each of the lengths DH and DK is equal to the length EC,
and that the length EL is equal to the length DC. Since the length DH
is equal to the length CJ5, the length DC will be equal to the length .EH,
and the length LE will be equal to the length EH. Hence the length
LH is twice the length DC, and the length HK twice the length CE.
Therefore the length N is a common measure of the lengths DH and HK
since it is a common measure of their halves. But A is to B as DC is

to CE, so that A is to B as LH is to HK. Let A be as many times

greater than Z as LH is greater than N. The length LH will be to the

length IV as A is to Z. But KH is to LH as B is to A. Therefore, by
equality, the length KH is to the length N as B is to Z. Then B is as

many times greater than Z as KH is a multiple of N. But it has been

arranged that A is also a multiple of Z, Therefore Z is a common
measure of A and B. Consequently, if LH is divided into segments
each equal to JV, and A into segments each equal to Z, A will contain

as many segments equal to Z as LH contains segments equal to N.

Therefore, if a magnitude equal to Z is applied to each segment of LH
in such a way that its centre of gravity is at the centre of the segment,
all the magnitudes

1 will be equal to A. Further, the centre of gravity
of the magnitude made up of all these magnitudes will be the point JS,

remembering that they are an even number and that LE is equal to HE
(Proposition V). Similarity it could be shown that if a magnitude

equal to Z was applied to each of the segments of KH> with its centre

of gravity at the centre of each segment, all those magnitudes
l would

be equal to B and that the combined centre of gravity would be D.

But the magnitude A is applied at the point E and the magnitude B at

the point D. Therefore certain equal magnitudes are placed on the

same line, their centres of gravity are separated from each other by the

same interval and they are an even number. It is therefore clear that

the centre of gravity of the magnitude composed of all these magnitudes
is the point at the middle of the line on which the centres of gravity of

the central magnitudes lie (Proposition V). But the length LJE is

equal to the length CD and the length EC to the length CK. Thus the

centre of gravity of the magnitude composed of all these areas is the

point C, Therefore, if the magnitude A is applied to the point E and

the magnitude B to the point D, the two areas will be in equilibrium
about the point C.

"

Archimedes then extended this proportion to the caae of magnitudes
A and B which were incommensurable. This demonstration depended
on the method of exhaustion. We have reproduced this proof of

1 Read,
** the combination of ali these magnitudes.

"
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Proposition VI in its entirety in order to illustrate the nature of Archi

medes' logical apparatus. This should not be allowed, however, to

create too great an illusion of power.

Indeed, Archimedes assumes in this proof that the load on the

fulcrum of a lever is equal to the sum of the two weights which it

supports.
1 Further, he made use of the principle of superposition

of equilibrium states, without emphasising that this was an experi

mental postulate. Finally, and this is the most telling objection to

the proceeding analysis, Archimedes, together with those of his suc

cessors who tried to improve his proof, tacitly made the hypothesis

that the product PL measures the effect of a weight P placed at a

distance L from a horizontal axis. In fact, in the case of complete

symmetry which is envisaged in Archimedes' first postulate, equili

brium obtains whatever law of the form Pf(L)is taken as a measure

of the effect of the weight P. It is therefore impossible, with the help

of Archimedes' postulates alone, to substantiate Proposition VI in a

logical way.
2

For the rest, the treatise On the Equilibrium of Planes is concerned

with the determination of the centres of gravity of particular geome
trical figures. After having obtained the centres of gravity of a tri

angle, a parallelogram and a trapezium, Archimedes determined the

centre of gravity of a segment of a parabola by means of an analysis

which is a milestone in the history of mathematics (Book II, Pro

position VIII).
We shall now concern ourselves with Archimedes' treatise on

Floating Bodies. The author starts from the following hypothesis
66 The nature of a fluid is such that if its parts are equivalently

placed and continuous with each other, that which is the least compress
ed is driven along by that which is the more compressed. Each part
of the fluid is compressed by the fluid which is above it in a vertical

direction, whether the fluid is falling somewhere or whether it in

driven from one place to another.
"

From this starting point, the following propositions derive in a

logical sequence.

Proposition I. If a surface is intersected by a plane which always*

passes through the same point and if the section is a circumference

(of a circle) having this fixed point as its centre, the surface in that

of a sphere.

1 This is a point which can be established rigorously by considerations of symmetry
alone, as FOURIER was to show, much later, in his perfection of a similar attempt due
to D'ALEMBERT.

2
Cf. MACH, Mechanics, p. 21. Throughout this work, Mach's treatise will be

indicated by the letter M.
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Proposition II. The surface of any fluid at rest is spherical and
the centre of this surface is the same as the centre of the Earth.

This result had already, as we have seen, been enunciated by Aristotle.

Proposition III. If a body whose weight is equal to that of

the same volume of a fluid (a) is immersed in that fluid, it will sink

until no part of it remains above the surface, but will not descend

further.

We shall reproduce the proof of this proposition, which is the

origin of Archimedes' Principle.
" Let a body have the same heaviness as a liquid. If this is possi

ble, suppose that the body is placed in the fluid with part of it above

the surface. Let the fluid be at rest. Suppose that a plane which

passes through the centre of the Earth intersects the fluid and the

f.

body immersed in it in such a way that the section of the fluid is Alt(!D

and the section of the body is ERTF. Let K be the centre of the

Earth, BHTC be the part of the body which is immersed in the fluid

and DEFC the part which projects out of it. Construct a pyramid
whose base is a parallelogram in the surface of the fluid (a) and whose

apex is the centre of the Earth. Let the intersection of the faces

of the pyramid by the plane containing the are ABCD be KL and

KM. In the fluid, and below EFTII draw another spherical surface

XOP having the point K as its centre, in such a way that XOP is the

section of the surface by the plane containing the are ABCD. Take

another pyramid equal to the first, with which it is contiguous and

continuous, and such that the sections of its faces are KM and KN.

Suppose that there is, in the fluid, another solid RSQY which is made
of the fluid and is equal and similar to BHTC, that part of the body
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EHTF which, is immersed in the fluid. The portions of the fluid

which are contained by the surface XO in the first pyramid and the

surface OP in the second pyramid are equally placed and continuous

with each other. But they are not equally compressed. For the

portions of the fluid contained in XO are compressed by the body
EHTF and also by the fluid contained by the surfaces LM, XO and
those of the pyramid. The parts contained in PO are compressed

by the solid RSQY and by the fluid contained by the surfaces OP, MN
and those of the pyramid. But the weight of the fluid contained

between MN and OP is less than the combined heaviness of the fluid

between LM and XO and the solid. For the solid RSQY is smaller

than the solid EHTF RSQY is equal to BHTC and it has been
assumed that the body immersed has, volume for volume, the same
heaviness as the fluid. If therefore one takes away the parts which
are equal to each other, the remainder will be unequal. Consequently
it is clear that the part of the fluid contained in the surface OP will

be driven along by the part of the fluid contained in the surface JtO,
and that the fluid will not remain at rest. Therefore, no part of the

body which has been immersed will remain above the surface. How
ever, the body will not fall further. For the body has the same
heaviness as the fluid and the equivalently placed parts of the fluid

compress it similarily.
"

Proposition IV. If a body which is lighter than a fluid is placed
in this fluid, a part of the body will remain above the surface.

(Proof analogous to that of Proposition III,)

Proposition V. If a body which is lighter than a fluid is placed
in the fluid, it will be immersed to such an extent that a volume of
fluid which is equal to the volume of the part of the body immersed
has the same weight as the whole body.

The diagram is the same as the preceding one (Proposition III)." Let the liquid be at rest and the body EHTF be lighter than
the fluid. If the fluid is at rest, parts which are equivalently placed
will be similarly compressed. Then the fluid contained by each of
the surfaces XO and OP is compressed by an equal weight. But,
if the body BHTC is excluded, the weight of fluid in the first pyramid
is equal, with the exclusion of the fluid RSQY, to the weight of fluid
in the second pyramid. Therefore it is clear that the weight of the
body EHTF is equal to the weight of the fluid RSQ Y. From which
it follows that a volume of fluid equal to that of the body which is

immersed has the same weight as the whole body.
"
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Proposition VI. If a body which is lighter than a fluid is totally

and forcibly immersed in it, the body will be thrust upwards with

a force equal to the difference between its weight and that of an equal

volume of fluid.

Proposition VII. If a body is placed in a fluid which is lighter

than itself, it wiU fall to the bottom. In the fluid the body will be

lighter by an amount which is the weight of the fluid which has the

same volume as the body itself.

The first Book of the treatise On Floating Bodies concludes with

the following hypothesis
" We suppose that bodies which are thrust

upwards aU follow the vertical which passes through their centre of

gravity.
"

. .

In Book II, Archimedes modified the principle which is the subject

of Proposition V, Book I, to the following form

" If any solid magnitude which is lighter than a fluid is immersed

in it, the proportion of the weight of the solid to the weight of an

equal volume of fluid will be the same as the proportion of the volume

of that part of the solid which is submerged to the volume of the whole

solid-"
- i. i. A i.- A

We shall pass over the proof of this proposition, in which Archimedes

once more deploys that powerful logical apparatus with which we are

now familiar. The rest of Book II is devoted to a detailed study of

the equilibrium of a floating body which is shaped like a right segment

of a "
parabolic conoid.

" In Archimedes' language (in the treatise

On Conoids and Spheroids), this term refers to the figure which we

would now call a parabolic cylinder. It may be surmised that Archi

medes was interested in this problem for a most practical reason, for

this surface is similar to that of the hull of a ship.

It is of interest that, throughout this study, Archimedes approxi

mated the free surface of a fluid by a plane, and that he treated verticals

an if they were parallel. This is necessary if the concept of centre

of gravity is to be utilised. Thus Archimedes must have understood

the necessity and the practical importance of this approximation,

even though his principle was based on the convergence of the verticals

at the centre of the Earth, the spherical symmetry of fluid surfaces

and a rather vague hypothesis about the pressures obtaining in the

interior of a fluid.
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ALEXANDRIAN SOURCES AND ARABIC MANUSCRIPTS

1. THE " MECHANICS
" OF HERO OF ALEXANDRIA.

It seems that Hero of Alexandria lived at some time during the

Ilnd Century A. D. His treatise Mechanics discusses certain simple

machines the lever, pulley-block and the screw alone or in various

combinations, and is only available to us in the form of an arabic version

which has been translated and published by Carra de Vaux. 1

As far as it concerns the history of mechanics, the essential import

ance of this work lies in the fact that its author used the now classical

idea of moment in his discussion of a lever which was not straight.

Whether or not this conception was an original one remains doubtful.

Indeed alexandrian learning had access to a treatise of Archimedes that

was devoted to levers (TZegJ vy&v) and in which the problem of the

angular lever had been treated. No trace

of this writing is extant.

However this may be, we shall quote
from Hero's Mechanics.

" Consider an arm of a balance which

does not have the same thickness or

heaviness throughout its length. It may
be made of any material. It is in equili

brium when suspended from the point }'

by equilibrium we understand the arrant

of the beam in a stable position, even

though it may be inclined in one direction

or the other. Now let weights be suspended
at some points of the beam say at b

and . The beam will take up a new position of equilibrium after the

weights have been hung on. Archimedes has shown, in this case as

1 Journal asiatique, 1891.
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well, that the relation of the weights to each other is the same as the

inverse relation of the respective distances. 1
Concerning these distances

in the case of irregular and inclined beams, it should be imagined that

a string is allowed to fall from y towards the point Construct a

line which passes through the point the line
77

and which should

be arranged to intersect the string at right angles. When the beam is

at rest the relation of
77

to is the same as the relation of the weight

hung at the point e to the weight hung at the point <5.
"

Hero employed a similar argument in his discussion of the wheel and
axle. In fact, in reducing the study of these machines to the principle

of circles he was implicitly using the notion of moment. Thus it is

clear, though not explicitly stated, that in his discussion of the axle

Hero understands that a weight can be replaced by an equal force

applied tangentially at A, because AF has the same moment as .
2

2. PAPPUS'S THEORIES OF THK INCLINED PLANE AND OF THE CENTRE
OF GRAVITY.

Pappus (IVth Century A. D.) appears to be the only geometer of

Antiquity who took up the problem of the motion arid equilibrium of

a heavy body on an inclined plane. The proof that we shall analyse
now is taken from Book VIII of his (Collections (From among the varied

and delightful problems of mechanics) .

Pappus assumes that a certain effort y is necessary to move a weight
a on the horizontal plane fiv, and that a power is necessary to draw it

1 OAKKA I>E YAVX'S nurmiHe that Hero in referring to the treatise

probably correct.
2
Cf. JorcuET, Lectures de Mvcaniquv, Vol. I, p. 215. Throughout the present

book thin treatise will be indicated by the letterH L. M.
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up the inclined plane px. He sets out to determine the relation between

y and 0.

The weight a on the plane px has the form of a sphere with centre e.

Pappus reduces the investigation of the equilibrium of this sphere on

Fig. 6

the inclined plane to the following problem. A balance supported at A

carries the weight oc at & and the weight ft which is necessary to keep

it in equilibrium at y the end of the horizontal radius eq. The law of

the angular lever, which Pappus borrows from Archimedes' UeQl

or from Hero's Mechanics, provides the relation

On the horizontal plane where the power necessary to move a is y,

the power necessary to move along /? will be

Pappus then assumes that the power that is able to move the

weight oc on the inclined plane px will be the sum of the powers <3 and

y, that is
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Evidently the necessity of a power y for pulling the weight a on the

horizontal plane derives from Aristotle's dynamics, in which all unnat
ural motion requires a motive agency. The argument by which Pappus
introduces the lever eArj supporting the two weights a and ft is rather a

natural one, even though it does not lead to a correct evaluation of ft.

The last hypothesis, concerning the addition of d and y, the powers
that are necessary to move ft and a respectively on the horizontal plane
is, on the other hand, most strange.

However incorrect it may have been, this proof was destined to

inspire the geometers of the Renaissance. Guido Ubaldo was to adopt
it and Galileo was to be occupied in demonstrating its falsehood.

Archimedes certainly formulated a precise definition of centre of

gravity, but there is no trace of anything of this kind in those of his

writings that are available to us. Therefore it is of some value to

record the definition which is due to Pappus.

Imagine that a heavy body is suspended

by an axis a/? and let it take up its equili

brium position. The vertical plane pass

ing through oc/J
u will cut the body into

two parts that are in equilibrium with each

other and which will be hung in such a way,
on one side of the plane and on the other,

as to be equal with respect to their weight.
"

Taking another axis &.'ft

f and repeating the

same operation, the second vertical plane
n^"

passing through a'/?' will certainly cut the

first if it were parallel to it
" each of these two planes would divide

the body into two equal parts which would be at the same time of equal

weight and of unequal weight, which is absurd.
"

Now suspend the body from a point y and draw the vertical yd

through the point of suspension when equilibrium is established. Take
a second point of suspension y

r

and, in the same way, draw the vertical

y'd'. The two lines yd, y'd' necessarily intersect. For if not, through
each of them a plane could be drawn so as to divide the body into two

parts in equilibrium with each other, and in such a way that these two

planes were parallel to each other. This is impossible.
All lines like yd will therefore intersect at one unique point of the

body that is called the centre of gravity.

Pappus did not distinguish clearly, as Guido Ubaldo was to do in his

Commentary on Archimedes* two books on the equilibrium of weights (1588)

between "equiponderant" parts, that is parts that are in equilibrium, in

the positions which they occupy, and parts which have the same weight.
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3. THE FRAGMENTS ATTRIBUTED TO EUCLID IN ARABIC WRITINGS.

Greek antiquity does not attribute any work on mechanics to Euclid.

However his name occurs frequently in this connection in the writings
of arahic authors.

Euclid's book on the balance, an arabic manuscript of 970 A. D.

which has been brought to light by Dr. Woepke,
1 seems to have remain

ed unknown to the western Middle Ages. This relic of greek science may
be contemporaneous with Euclid and may thus antedate Archimedes.
It contains a geometrical proof of the law of levers which is independent
of Aristotle's dynamics and which makes explicit appeal to the hypo
thesis that the effect of a weight P placed at the end of an arm of a lever

is expressed by the product PL. We have had occasion to emphasise
the necessity of this hypothesis in our analysis of Archimedes' proof.

The treatise Liber Euclidis de gravi et levi, often simply called De

ponderoso et Zevi, has been known for a long time. It includes a very
precise exposition of aristotelian dynamics which is arranged, after

Euclid's style, in the form of definitions and propositions. The latin

text renders the terms dvvKjLus and ioyvQ, by which Aristotle meant
"
power ", as virtus and fortitude. Bodies that travel equal distances

in the same medium air or water in times which are equal to each

other, are said to be equal in virtus. Bodies that travel equal distances
in unequal times are of different virtus, and that which takes the shorter
time is said to have the greater virtus. Bodies of the same kind are
those that, volume for volume, are equal in virtus. That which lias

the greater virtus is said to be solidius (more dense).
The virtus of bodies of the same kind is proportional to their dimen

sions
; that is, the bodies fall with velocities which are proportional to

their volume. If two heavy bodies are joined together, the velocity
with which the combination will fall will be the sum of the velocities
of the separate bodies.

Duhem has found, in a XlVth Century manuscript,
2 four proposi

tions on questions in statics which complete De ponderoso et kvi. This

manuscript contains a theory of the roman balance, and shows that the
fact that the balance is a heavy homogenous cylinder does not alter the
relation of the weights to each other.

Finally, in a Xlllth Century manuscript, Duhem has unearthed a
text called Liber Euclidis de ponderibus secundum terminorum circonfe-
rentiam 3 which connects the law of levers with aristotelian dynamics
and also contains a theory of the roman balance.

1 Journal asiatique, Vol. 18, 1851, p. 217.
2
BMiothSque Nationale, Paris, latin collection, Ms. 10,260

3
Ibid., Ms. 16,649.



ALEXANDRIAN SOURCES AND ARABIC MANUSCRIPTS 37

4. THE BOOK OF CHARISTION.

Liber Charastonis is the latin version of an arabic text due to

the geometer Thabit ibn Kurrah (836-901). The original greek version

remains unknown, and the question of whether karaston (in Arabic

karstun) refers merely to the roman balance or to the name of the greek

geometer Charistion (a contemporary of Philon of Byzantium in the

Ilnd Century B. C.) has been the subject of much scholarly debate.

We shall follow Duhem l in summarising the theory of the roman
balance which is found in Liber Charastonis,

<f 9

Fig. 8

A heavy homogeneous cylindrical beam ab whose arms ag and bg
are unequal may be maintained in a horizontal position by means of a

weight e hung from the end of the shorter arm ag. If bd is the amount

by which the longer arm exceeds the shorter arm and u is the centre of

&<J, the weight e will be to bd as gu> is to ga. If p is the total weight of

the beam
db

If this weight were known it could be represented exactly by a

scale-pan hung from the shorter arm, and the karaston arranged in this

way could be treated as a weightless beam.
We must also mention, as one of the sources of statics, the treatise

De Canoniof a latin translation of a greek text which adds nothing
essential to Liber Charastonis.

1 0. S., Vol. T, p. 90.
2
Bibliothvqiie Nationale^ Paris., latin collection, Ms. 737B A.



CHAPTER THREE

THE XHIth CENTURY
THE SCHOOL OF JORDANUS

1. JORDANUS OF NEMORE AND " GRAVITAS SECUNDUM SITUM.
"

The Middle Ages had access to the Problems of Mechanics and to the

works of Aristotle. They had also inherited the fragments attributed

to Euclid with the exception of the Book on the Balance as well as

the Liber Charastonis from arabic learning. They had no knowledge
of Archimedes, Hero of Alexandria and Pappus.

In spite of the researches of the scholars, the personality of Jordanus

remains mysterious. At least three XHIth Century manuscripts on

statics have been attributed to him, although these are clearly in the

style of different authors. Neither Jordanus's nationality nor the pe
riod in which he lived is known with any certainty. Daunou believes

him to have lived in Germany about 1050, Chasles associates him with

the Xlllth Century while Curtze places him about 1220 under the name
of Jordanus Saxo. Michaud has identified him with Raimond Jordan,

provost of the church of Uzs in 1381 which is clearly too late. With

Montucla, we shall here adopt the intermediate view that associates

Jordanus of Nemore with the Xlllth Century.
Like Duhem, we shall follow the Elementa Jordani super demonstra*

tionem ponderis.
1 This work comprised seven axioms or definitions

followed by nine propositions. The essential originality of Jordanus lay
in the systematic use, in his study of the motion of heavy bodies, of the

effective path in a vertical direction as a measure of the effect of a weight,
which was usually placed at the end of a lever and described a circle m
consequence. Thus his statics stems, implicitly, from the principle of

virtual work. The word work, taken in the modern sense, is to be con-

1
Bibliothdque Nationals, Paris, Ms. 10,252, dated 1464. There also exists an in

complete manuscript of the same work, dating from the Xlllth Century, in the Biblio-

theque Mazarine, Ms. 3642.
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trasted with the word velocity and with the concept of virtual velocities

which may be traced in the arguments of Problems of Mechanics. Of
course Jordanus never used the word " work "

itself. He considered

the heaviness of a particle relative to its situation (gravitas secundum

situm) without making clear the relation that exists between this quan
tity and the heaviness in the strict sense.

Jordanus formulated his principle in a picturesque Latin which merits

quotation.
" Omnis ponderosi motum esse ad medium, virtutemque ipsius poten-

tiam ad inferiora tendendi et motui contrario resistendi.
" Gravius esse in descendendo quando ejusdem motus ad medium rectior.
" Secundum situm gravius, quando in eodem situ minus obliquus est

descensus.
64

Obliquiorem autem descensum in eadem quantitate minus capere de

directo.
"

Or
" The motion of all heavy things is towards the centre,

1 its strength

being the power which it has of tending downwards and of resisting a

contrary motion.
" A moving body is the heavier in its descent as its motion towards

the centre is the more direct.
46 A body is the heavier because of its situation as, in that situation,

its descent is the less oblique.
44 A more oblique descent is one that, for the same path, takes less

of the direct.
"

Thus a certain weight placed at 6,

at the end of the lever c6, has a smaller

gravity secundum situm than the same

weight has when it is at a, at the end
of the horizontal radius ca. Indeed, on
the circumference of the circle with

centre c and radius ca =-- c6, if the

body falls from b to h along the arc

oh the effective path in a vertical

direction is b' h f

. On, the other hand
if the body starts from a and falls

along an^arc c5, which is equal to

the arc bh> the effective vertical path
is cz

r and is greater than V h*. Thus the descent 6A, equal to the

descent oz, is more oblique than that and takes less of the direct.

1 Understood as the common centre of all heavy things in Aristotle's sense.
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This idea led Jordamis to a proof of the rule of the equilibrium of the

straight lever whose originality cannot be contested.

h b

Fig, 10

46 Let acb be the beam, a and b the weights that it carries, and suppose
that the relation of b to a is the same as that of ca to c6. I maintain
that this rule will not change its place. Indeed, if the arm supporting b
falls and the beam takes up the position c?ce, the weight 6 will descend

by he and a will rise by fd. If a weight equal to the weight b is placed
at I, at a distance such that d = c6, this will rise in the motion by
gm = he. But it is clear that dfis to mg as the weight Z is to the weight a.

Consequently, what is sufficient to bring a to A will be sufficient to bring
1 to m. But we have shown that b and I counterbalance each other exact

ly, so that the supposed motion is impossible. This will also be true
of the inverse motion.

"

Duhem writes in this connection I

"
Underlying this demonstration of Jordanus the following principle

is clearly evident that which can lift a weight to a certain height can
also lift a weight which is k times as

great to a height which is k times less.

This principle is then the same as that
which Descartes took as a basis for his

complete theory of statics and which,
thanks to John Bernoulli, became the

principle of virtual work. "

Jordanus was less fortunate when he
turned his attention to the angular lever.

He considered a lever acf carrying equal
weights at a and /which were placed in

such positions that ac =
ef. JordanuH

was of the opinion that, under these

Fig. 11

1 o. s., Vol. r, P . 121.
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conditions, a would dominate /. He arrived at this conclusion bycon-

sidering two equal arcs al and mf. It is clear that the " direct
" taken

by the weight a is greater than the " direct
"
taken by the weight /.

This incorrect conclusion is obtained because, since the linkages are

rigid, the two displacements al andjfm are not simultaneously possible.

Jordanus thus misunderstood the idea of moment.
As early as the Xlllth Century the Elementa Jordani were generally

united by the copyists with De Canonio to form the Liber Euclidis de

ponderibus.* This artificial associations and this imaginative titles

are the despair of the scholars and it has needed all the learning of

Duhem to elucidate them.

Every truly novel idea evokes a reaction. The Elementa Jordani

did not provide an exception to this rule. In the Xlllth Century a

critic wrote a commentary of Jordanus which Duhem calls the Peripa
tetic Commentary.* This author at every turn invokes the authority of

Aristotle and has scruples about applying the gravitas secundum situm

to a motionless point in modern language, about making appeal to

a virtual displacement. It does not appease his conscience to consider

that rest is the end of motion. " The scientific value of the Commen

tary is nothing,
"

declares Duhem.3 " But its influence did not

disappear for a very long time, and even the great geometers Tarta-

glia, Guido Ubaldo and Mersenne had not entirely freed themselves

from it.
"

2. TlIE ANONYMOUS AUTHOR OF " LlBER JORDANI DK RATIONE PON-

DERIS.
"

TlIE ANGULAR LEVKR. TlIE INCLINED PLANE.

We now come to an especially noteworthy work which figures in the

same manuscript as the Peripatetic Commentary under the title Liber

Jordani de ratione pondrris, and which did not remain unknown in the

Renaissance, Tartaglia sent it to CurtiuH Trojanus who published it

in 1565. This work supereedes and rectifies the Klementa Jordani on

many important points. All the same, it is based on the same principle
of gnivitas secundum situm.

Duhem, who brought this manuscript to light, terms the anonymous
author a u Precursor of Leonardo da Vinci.

"
Indeed, in many respects

this precursor surpassed Leonardo, who, for example, spent himself

in fruitless efforts to evaluate the apparent weight of a body on an

inclined plane. It seems more natural to simply speak of an anonymous

Nationals, Paris, latin collection, MHH. 7310 and 10,260,
2

Ibid., Ms. 7378 A.
3 0. S., Vol. I, p. 13k
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author of the Xlllth Century, a disciple of Jordanus who had out

stripped his master.

In connection with the bent lever this author corrected Jordanus's

error. As before, let a lever acf carry equal weights at a and f and
be placed in such a position that aa

f

ff'.

Fig. 12

It is impossible that the weight a should dominate the weight /.

For if two arcs aft, j#, are considered on the two circles drawn through
a and / and corresponding to equal angles ach and

jfr the descent
of a along rh necessitates that the equal weight at /should rise through
a distance In which is greater than rh. This is impossible.

In the same way it can be seen that / will not dominate a. For
if the arcs/E and am correspond to equal

anglesfcx and acm, the descent of/along
tx makes it necessary that the equal
weight placed at a should rise by pm,
which is greater than tx. This is impos
sible. Therefore there is equilibrium in

the position considered, in which aa'^ff'.
The anonymous author generalised

this result to an angular balance

carrying unequal weights at a and 6,
Fig. 13
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and obtained the result that in equilibrium it is necessary that the

distances aaf and 66' from a and 6 to the vertical drawn through the

point of support, c, are in inverse ratio to the weights a and 6.

We see that this author knew and used the notion of moment.
Elsewhere he wrote on this subject,

" If a load is lifted and the

length of its support is known, it can be determined how much
this load weighs in all positions. The weight of the load carried at

e by the support be will be to the weight carried at / by fb as el is

to fr or as pb is to xb. A weight placed at e, at the end of the

lever 6e, will weigh as if it were at

u on the lever 6/.
"

Thus the idea of gravitas secundum

situm, which Jordanus had used qua
litatively, became precise.

Our anonymous author also con

cerned himself with the stability of

the balance, and rectified certain

errors which were contained in the

relevant parts of Problems of Mecha
nics. x p o

More than this, he resolved the

problem of the equilibrium of a heavy
l^*

body on an inclined plane, a problem
which had eluded the wisdom of the greek and alexandrian geometers.

In order that this may be done, it is first observed that the gravitas

secundum situm of a weight on an inclined plane is independent of

its position on the plane. The author then attempts a comparison of

the value that that gravity takes on differently inclined planes. We
shall quote from Duhetn's translation of this same Xlllth Century

manuscript.
u If two weights descend by differently inclined paths, and if they

are directly proportional to the declinations, they will be of the same

strength in their descent.
" Let ab be a horizontal and W, a vertical. Suppose that two

oblique lines da and dc fall on one side and on the other of 6rf, and

that dc IISLS the greater relative obliquity. By the relation of the obli

quities I understand the relation of the declinations and not the relation

of the angles ; this means the relation of the lengths of the named
lines counted as far as their intersection with the horizontal, in such

a way that they take simUarily of the direct.
** In the second place, let e and h be the weights placed on dc and

da respectively, and suppose that the weight e is to the weight h as
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dc is to da. I maintain that in such a situation the two weights will

have the same strength.
"
Indeed, let dk be a line having the same obliquity as dc and,

on that line, let there be a weight g which is equal to e.

"
Suppose that the weight e should descend to Z, if that is possible,

and that it should draw the weight h to m. (It is clear that the author

imagines the two weights to be connected by a thread which passes

over a pulley at d.) Take gn equal to Am, and consequently equal
to el. Draw a perpendicular to db which passes through g and A,

say ghy. Drop a perpendicular It from the point I onto db. Then

drop [the perpendiculars] nr, mx, and ez. The relation of nr to ng is

that of dy to dg and also that of db to dk. Therefore mx is to nr as

dk is to da ; that is to say, as the weight g is to the weight h. But as c

is not able to pull g up to n (nr
=

ez), it is no better able to pull h up
to m. The weights therefore remain in equilibrium.

"

This demonstration, which leads to the correct law of the apparent
heaviness of a body on an inclined plane, was directly inspired by that

of Jordanus concerning the equilibrium of a straight lever* Like

that, it implicitly proceeds according to the principle of virtual work.

We shall now give some indication of the ideas on dynamics which
were used by the author of Liber Jordani de ratione pondcris.

The environment's resistance to the motion of a body depends
on the shape of the body, which penetrates the environment the better

as its shape is the more acute and its figure the more smooth. It

depends, in the second place, on the density of the fluid traversed. AH
media are compressible ; the lower strata, compressed by the upper
ones, are the denser and those which hinder motions more. At the

front of the moving body will be a part of the medium compressed
on, and sticking to it. But the other parts of the medium, which
are displaced by the moving body, curl round behind to occupy the
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space which the body has left empty. This motion of lateral parts
of the medium may be compared to the bending of an arc.

The more heavy the medium is at traversal, the slower is the des

cent of a heavy body.
The descent is slower in a fluid which is more dense.

Greater width diminishes the gravity.
A heavy thing will move more freely as the duration of its fall in

creases.
" This is more true in air than in water, because air is suited

to all kinds of motion. Thus a falling body drags with it, from the outset

of its motion, the fluid that lies behind it and sets in motion the fluid

in its immediate contact. The parts of the medium set in motion
in this way, in their turn move those that adjoin them, in such a way
that the latter, which are already in motion, present a lesser obstacle

to the falling body. For this reason the body becomes heavier and

imparts a greater impulsion to the parts of the medium which it dis

places until these are no longer simply pushed by the body, but drag it

along with them. Thus it happens that the gravity of a moving
body is increased by their traction and that, reciprocally, their motion

is multiplied by this gravity so that it continually increases the velocity
of the body.

"

The shape of a heavy body affects the strength of its weight.
The strength of a motive agency seems to be equally baulked by

a body's very large or very small weight.
Rotation of a propellant increases its strength, and does so more

effectively as the radius is greater.

A body whose parts are coherent is thrown directly backwards if

it is stopped by a collision during its motion. " The parts of a moving
body A that He in front are the first to meet the obstacle C. They
are therefore compressed by the mass and the impetuosity of the parts
which lie behind them, and are forced to condense. The impetuosity
of the parts behind is annulled in this way. The parts in front now
assume their original volume again and recoil backwards, thus com

municating an impulsion to the others. If the parts which are com

pressed in this way are able to detach themselves from each other

they will be thrown off in one direction and another.
**

If the heaviness of a body is not uniform, the denser part will

place itself in front, whatever the part to which the impulsion is given.
1

These ideas on dynamics held by Jordanus's School are much
less interesting and moreover, less original than its statics. We have

cited them here as curiosities.

1
Cf., DUHEM, tude$ sur Leonard de Vinci^ Series I (Hermann), 1906*
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From the historical point of view it must be remarked that Duhem,
in writing his first studies on the origin of statics, first believed the

work of this unknown disciple of Jordanus to be entirely original.

But the later discovery of a XHIth Century manuscript
1 led him to

a treatise De Ponderibus which was more complete than the Liber

Jordani de ratione ponderis.
Now this treatise, divided into four books, seems to be a complex

in which various works have been artificially united. There is first

a book, of indisputable Medieval origin, that repeats the demonstra

tions Jordanus used and supplements them by the condition for the

equilibrium of the angular lever and the determination of the apparent

weight of a body on an inclined plane. The second book appears
to have been inspired by De Canonio while the third treats the concept
of moment and the conditions for the stability of the balance. Finally
there is a fourth book devoted to dynamics.

The last two books are closely related to Problems of Mechanics

although they alter, correct and complete this work in many places.
Certain indications led Duhem to surmise that the two books are a

relic of greek science and were probably handed on by the Arabs
this because no latinised greek terms are found in them.2 Accord

ingly it is possible that our unknown author did not discover the

idea of moment himself. This limits the originality of his work, but
it remains that gravitas secundum situm properly belongs to the Xlllth

Century School, and that it was used by this School to obtain a correct

solution of the problem of the inclined plane long before Stevin and
Galileo did so,

1
Biblioth&que Nationale, latin collection, Ms. 8680 A.

2
C/. DUHEM, 0. S., Vol. II, note F, p. 318. LEONARDO DA VINCI himself seema to

have been unaware of the three last books ofDe Poncferi&us another argument for not
regarding the unknown author as his precursor.



CHAPTER FOUR

THE XlVth CENTURY
THE SCHOOLS OF BURIDAN AND ALBERT OF SAXONY

NICOLE ORESME AND THE OXFORD SCHOOL

1. THE DOCTRINE OF " IMPETUS "
(JOHN

The idea of attributing a certain energy to a moving body solely
on account of its motion is entirely foreign to aristotelian dynamics.

In Antiquity John of Alexandria surnamed Philopon who lived

in the Vth Century A. C., was alone in disputing Aristotle's belief in

this matter. Thus he held that the air which was set in motion could

not become the motive agency of a projectile, whose motion was,
on the contrary, easier in a vacuum than in air.

" Whoever throws a

projectile embodies in it a certain action, a certain power of self-move

ment which is incorporated. . . . Nothing prevents a man from throwing
a stone or an arrow even when there is no other medium than the vacuum.
A medium hinders the motion of projectiles, which cannot advance

without dividing it nevertheless they can move through these media*

Nothing therefore prevents an arrow, a stone or any other body from

being thrown in the vacuum. Indeed, the motive agency, the moving
body and the space that will receive the projectile are all present."

1

Philopon's thesis was handed on to the Middle Ages by the Arabs
in particular, by the astronomer Al Bitrogi, But while assuming the

existence of a "
property which remains attached to a stone or an arrow

after the projectile has been thrown,
"

he held that this property
decreased at such a rate and to such an extent as the projectile was

separated from its motive agency.
Albertus Magnus and Saint Thomas Aquinas knew of this tradition

but did not give the least credit to John Philopon's argument. For

example, Saint Thomas Aquinas believed that if the existence of an

1 Erudissima commentaria in prim&s quatuor Aristotelis de naturali auscultations

libros* Venice (1532), Trans. DUHEM,
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apparent property impressed on a moving body were assumed,
" violent

motion would arise from an intrinsic property of a moving body, which

is contrary to the very notion of violent motion. Moreover, it would

follow from this that a stone would be altered in its substantial form

by the very fact that it moved from place to place, which is contrary

to common sense.
" I

Roger Bacon, Walter Burley and John of Jandun all adopted
Aristotle's doctrine on this matter. The first Schoolman to oppose
this opinion was William of Ockham (1300-1350). He asked himself

where the motive agency might be. It cannot reside in the apparatus
or organism that has thrown the projectile, for this apparatus can be

destroyed immediately after the launching without interupting the pro

gress of the projectile.

Nor can the motive agency be the air which is set in motion. For

the arrows of two archers which are shot towards each other can be

arranged to collide with each other, which requires that the same air

produces two different motions at the same time.

There cannot be distinguished elsewhere a cause that could provide
the motive power. Such a cause cannot reside in the launching appa
ratus nor in the motion of the projectile itself. If something which is

its own motive agency is thrown, that which moves the body cannot be

distinguished from the moving body itself. Moreover, motion from

place to place is not something which is renewed at each instant, requir

ing the constant presence of a motive cause. It is true that the pro

jectile passes through a different region at each instant, but this does not

in itself constitute anything novel. It is only novel with respect to the

moving body.
2

Thus William of Ockham decided to reject Aristotle's axiom which

requires the continuous existence of a motive agency in contact with,

yet not part of, the projectile. He did not, however, replace it by any
new principle.

We now arrive at the doctrine of impetus that was conceived by
Buridan. John I. Buridan, of Bethune, was rector of the University of

Paris in 1327 and canon of Arras in 1342. He died in Paris after 1358. :i

In a memoir called Quaestiones octavi libri physicorum^ Buridan

1
Opera omnia, Vol. Ill Commentaria in libros Aristotclis de Caclo ft Mundo*

Book III, lect. VII.
2
Cf. DUBDEM, Etudes sur Leonard de Vinci, Series II, p. 192.

3 DUHEM, who has studied BURIDAN'S works in detail, including those concerning
free will, says that he has found no trace of the parable of the ass, which apart from IUH
status in the history of mechanics, has made Buridan's name classical.

4
BiUiotheque Nationale, Paris, latin collection, Ms. 14,723, fol 106-107. In the

text we are following DUHEM'S translation.
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discussed the scholastic thesis of the motion of projectiles. Aristotle,

he says, mentions two opinions on this matter.

The first invokes &vTineQiaTcx.ai,<;. As a projectile moves rapidly

away from its position, Nature, who does not allow the existence of a

vacuum, makes the air behind the projectile rush in towards this position
with the same velocity. This air pushes the projectile and the same
effect is reproduced, at least for a certain distance. This opinion is

rejected by Aristotle if no other principle than &.VTmetier&oi<; is

invoked, it is necessary that all bodies which are behind the particle,

including the sky itself, participate in the projectile's motion. Indeed,
the air will also leave its position. It is then necessary that another

body must replace it, and so on in an indefinite sequence, unless it is

assumed that a certain rarefaction of bodies behind the projectile is

produced.

According to the second opinion, which Aristotle seems to have

supported, the launching of a projectile disturbs the ambient air at the

same time. This air, violently set in motion, has, in its turn, the power
to move the projectile. The first mass of air moves the projectile until

this comes to a second mass of air. This second one moves it until a

third is reached, and so on. Further, Aristotle is heard to say, there

is not merely a single moving body, but sxiccessive moving bodies, a

series of consecutive or contiguous motions.

Buridan set the following observations against these theories. A top
or a grindstone will turn for a very long time without leaving its position,
in such a way that the air does not have to follow it to fill an abandoned

place. Further, the wheel will continue to txirn if it is covered and thus

separated from the surrounding air. A javelin whose following end is

armed with a point as sharp as its tip will move as rapidly as if this were

not tapered at the back. Now since the air is easily divided by the

javelin's sharpness, it cannot push strongly on this backward pointed

part. A ship will continue to move for a long time after towing has

been stopped, and a boatman will not feel the air pushing it on the

contrary, he feels the air slowing down the ship's motion.

The air set in motion should be able to move a feather more easily

than a stone. Now we are not able to throw a feather as far as a stone.

Buridan himself put forward the following thesis.
" Whenever some agency sets a body in motion, it imparts to it a

certain impetus, a certain power which is able to move the body along
in the direction imposed upon it at the outset, whether thia be upwards,
downwards, to the side or in a circle. The greater the velocity that the

body is given by the motive agency, the more powerful will be the

impetus which is given to it. It is this impetus which moves a stone
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after it lias been thrown until the motion is at an end. But because

of the resistance of the air and also because of the heaviness, which
inclines the motion of the stone in a direction different from that in

which the impetus is effective, this impetus continually decreases. Con

sequently the motion of the stone slows down without interruption.

Finally the impetus is overcome and destroyed at the point where

gravity dominates it, and henceforth the latter moves the stone towards
its natural place. . . .

" All natural forms and dispositions are received by matter in pro

portion to itself. Consequently the more matter a body contains, the

more impetus can be imparted to it, and the greater is the intensity with
which it can receive the impetus. ... A feather receives such a weak

impetus that this is immediately destroyed by the resistance of the air.

In the same way, if someone throws projectiles and sets in motion with

equal velocities a piece of wood and a piece of iron, which have the same
volume and the same shape, the piece of iron will travel further because
the impetus which is imparted to it is stronger. It is for the same reason
that it is more difficult to stop a large blacksmith's wheel, moving
rapidly, than a smaller one. ..."

In short the impetus, in Buridan's sense, increases with the velocity.
In addition, it is proportional to the density and to the volume of the

body concerned. Further, in Buraidan's view, the existence of impetus
explained the acceleration of falling bodies.

" The existence of impetus seems to be the cause by which the natural
fall of bodies accelerates indefinitely. At the beginning of the fall,

indeed, the body is moved by gravity alone. Therefore it falls more
slowly. But before long this gravity imparts a certain impetus to the

heavy body an impetus which is effective in moving the body at the
same time as gravity does. Therefore the motion becomes more rapid.
But the more rapid it becomes, the more intense the impetus becomes.
Therefore it can be seen that the motion will be accelerated con

tinuously.
"

Further, Buridan applied the notion of impetus to stars as well as
to terrestrial bodies.

46 In the Bible there is no evidence of the existence of intelligences
charged with communicating their appropriate motion to the heavenly
bodies. It is therefore permissible to show that there is no necessity to

suppose the existence of such intelligences. Indeed it can be said that
when He created the World, God set each of the heavenly bodies in
motion in the way that he had chosen that He imparted to each of
them an impetus which has kept it moving ever since. Thus God no
longer has to move these bodies, except for a general influence similar
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to that by "which He gives his consent to all things that occur. It is for

this reason that, on the seventh day, He was able to rest from the tasks

which He had accomplished and to confine himself to the creation of

things concerning mutual actions and feelings. The impetus that God

imparted to the heavenly bodies is neither weakened nor destroyed by
the passage of time. For in these heavenly bodies there are no ten

dencies towards other motions and because, moreover, there is no longer

any resistance which could corrupt and repress this impetus. I do not

say all this with complete assurance. I would only ask the theologians
to show me how all these things happen.

"

As a true Scholastic Buridan believed himself obliged to defend the

doctrine of impetus from the metaphysical objections that could be

advanced against it. The motion of a projectile is a violent one in

Aristotle's sense. Now, according to the Ethics (Book III), violent

phenomena stem from an extrinsic, not an intrinsic, cause. To this

Buridan replied that the impetus of a moving body is effectively violent,

not natural. The nature of heavy things favours a different motion

and the destruction of the impetus. On the question of whether the

impetus is distinct from the motion and whether it is of a permanent
kind, Buridan replied that impetus could not itself be motion because

all motion requires a motive agency ;
that impetus was a permanent

reality, distinct from the local motion of the projectile ; and that it was

probable that the impetus was a quality whose nature was to actuate the

body to which it was imparted.
These subtleties add nothing to Buridan's positive doctrine. It is

more important to remark that Buridan maintained that the impetus
lasted indefinitely if it was not diminished by a resistance of the medium
or modified by some agency affecting the moving body. This is the

germ of the modern principle of inertia.

2. TlIE SPHERICITY OF THE EARTH AND THE OCEANS ALBERT OF

SAXONY AND THE ARLSTOTLETIAN TRADITION. H

In the first chapter of this book we referred to the a priori, or physical

proofs, and the a posteriori proofs which Aristotle gave of the sphericity
of the Earth and the oceans. For better or worse, tradition preserved
and enriched these proofs.

Pliny the Elder, in his Natural History, supplemented Aristotle's

evidence with facts that strictly derive from capillarity the sphericity
of drops of water, the meniscuses of liquids, etc. . * . Ptolemy only
retained the a posteriori proofs which Aristotle had given. Simplicius,
in his commentary on De CaeJo, corrected the dimensions attributed to
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the Earth after Erastosthenes' evaluation. Averroes confined himself

to an elaboration of Aristotle's evidence.

John Sacro Bosco the author of a treatise called De Sphaera which

became the most widely known cosmography in the Xlllth Century

reproduced Ptolemy's account. Albertus Magnus firmly excluded the

evidence depending on the sphericity of water drops. Saint Thomas

Aquinas limited himself to Aristotle's proofs alone, while Roger Bacon

supplemented them with the following corollary which was acclaimed

by the Schoolmen any given vessel will contain a smaller quantity
of liquid as it is taken further from the centre of the Earth.

We now come to Albert of Rickmersdorf, called Albert of Saxony.

Though his biography is somewhat mysterious, it is certain that he was
enlisted at the Sorbonne from 1350 to 1361 and that he was rector of

the University of Paris from 1353. His Acutissimae Quaestiones on
Aristotle's Physics had considerable repercussions, and his influence was
felt by most students of mechanics, including Galileo himself.

Albert of Saxony suggested going back to the measurement of a

degree of meridian at different latitudes in order to determine the true

figure of the Earth. (This idea was applied by John Femel at the

beginning of the XVIth Century and, of necessity, repeated in the

XVIIth Century.)
"

If these two paths are found to be equal this is

a certain indication that the Earth is circular from north to south. If

on the contrary, it were found that they lacked equality this would be
an indication that the Earth was not round from north to south.

"

Like Albertus Magnus, Albert of Saxony excluded the evidence pro
vided by small drops, which is common to all liquids, like mercury, and
is especially noticeable in small quantities.

Albert of Saxony stated the following corollaries, which were to

become popular among the Schoolmen.
"

1. From the fact that the Earth is round it follows that lines normal
to the surface of the Earth will approach each other continuously, and
meet at the centre.

"2. It follows that if two vertical towers are built, the higher they
become, the further away from each other they will be ; and that the

deeper they are, the nearer together they will be.

"
3. If a well is dug with a plumb-line, it will be larger near the

opening than at the bottom.
"

4. Any line such that all its points are at an equal distance front
the centre is a curved line. If a straight line touches the Earth's surface
at its middle point, this point will be nearer to the centre than the ends
of the line. It follows that if a man goes along this straight line, he
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descend for a time and then will rise. He will descend, indeed,

until lie has come to the point which is nearest to the centre of the

Earth and will rise from the moment that he leaves that point behind

him.
" From this it can be concluded that a body which describes a tra

jectory between two fixed ends, a trajectory which either rises or falls

without interruption, must necessarily travel a shorter distance than if

the path went from one point to the other without rising or falling. This

is seen clearly if it is supposed that the first trajectory is a diameter of

the Earth and the second is a half-circumference having this diameter

as chord.

"
5. When a man walks on the surface of the Earth his head moves

more quickly than his feet. . . . One can conceive of a man so tall that

his head moves in the air twice as quickly as his feet move over the

ground.
"

These paradoxes are typical of the scholastic attitude of mind and it

is for this reason that we have quoted them. Undoubtedly they were

intended to stimulate the minds of students, and perhaps, too, to confuse

those who were not scholars. The dialectic of the Schoolmen was not

in the least concerned with orders of magnitude. It was amusing to

proliferate the consequences of the convergence of verticals and their

practical parallelism was of no concern that was a notion suitable for

craftsmen. And these, in their turn, were not much worried by the

comments of the Schoolmen when they were building their towers and

digging their wells according to the simple rules of their practice.

3, ALBERT OF SAXONY'S THEORY OF CENTRE OF GRAVITY.

When commenting on that thesis of Aristotle according to which

there exists, in each heavy body, a centre of gravity (to IJL&GQV) which

tends to be carried towards the centre of the Universe, Albert of Saxony

specified that " each of the parts of a heavy body is not moved in such

a way that its own centre would come to the centre of the World, for

this would be impossible. Rather it is the whole body which falls in

such a way that its centre would become the centre of the World. It is

false, and contrary to observation, to say that a large body falls more

slowly than a lighter body, or that ten stones which are united together
hinder each other's fall.

"

The Earth, limited partly by the concave surface of the water and

partly by the concave surface of the air, is in ita natural position when
its centre of gravity is at the centre of the World. If this is not so, it
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will start falling and will move until the centre of the aggregate which

it forms with all the other heavy bodies becomes the centre of the

World.

It should be remarked, as Jouguet has done in this connection,
1

that Albert of Saxony's concept of centre of gravity, the point of a body
at which all the weight appears to be concentrated, was a purely experi

mental one, to Mm and his School. It was not the same as the modern

conception of centre of gravity, which depends on the approximation
that verticals are parallel. On the contrary, it was developed together
with a systematic consideration of the convergence of verticals which

was carried to the point of paradox, as we have seen. This co-existence

was at the root of several fallacies which were to perplex people, even

such eminent ones as Fermat, until the XVIIth Century.
2

We return to Albert of Saxony. Suppose that the Earth is displaced
from its natural place for example, to the concavity of the orbit of the

Moon and held there by force. Suppose that, there, a heavy body is

allowed to fall. Then this body will be attracted towards the centre of

the World, not towards the centre of the Earth. " If heavy bodies

move towards the ground, this is in no way caused by the Earth, but

happens because they approach the centre of the World by going to

wards the Earth.
"

The Earth does not have a uniform gravity
" the part which is not

covered by sea, being exposed to the rays of the Sun, is more dilated

than the part the waters cover. Besides, if its geometrical centre were
to coincide with its centre of gravity, and consequently with the centre
of the World, it would be entirely covered by the waters.

"

Here, in Albert of Saxony's writings, is the trace of an argument that

had preoccupied some of his immediate predecessors. If all elements,
declared Walter Burley (1275-1357), had the form of spheres with centres

at the centre of the Universe, each would be in its natural place but
then the Earth would be completely covered with water. John Duns
Scot (1275-1308) resolved this difficulty, in his Doctor Subtilis, with a

finalist explanation to witt, a part of the Earth is uncovered with a
view to the safety of living beings.

Albert of Saxony believed therefore that it was the Earth's centre,
of gravity, not its geometrical centre, that was placed at the centre of
the World. Furthermore, the Earth was not fixed in position. A
host of reasons, such as heating by rays of the Sun, could produce a
variation of the distribution of gravity in the terrestrial mass, and could

1
JOUGUET, L. M., Vol. I, p. 60.

2 This question was at the root of the controversy on Geostatics, to which we
shall return.
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displace its centre of gravity. As a more substantial mechanism, Albert

of Saxony mentioned erosion.

The question arose as to how the mass of the waters could be intro

duced. On this point Albert of Saxony's opinion was somewhat variable.

In commenting on the Physics he wrote,
" What I have written

about the Earth alone may be understood equally for the whole aggre

gate formed by the Earth and the waters. These two elements undoub

tedly form a total and unique gravity whose centre of gravity is at the

centre of the World. " At this same centre of the World was also to

be found the centre of lightness of light bodies.

It is this that explains the following picture which he boldly painted.
" Since the cold is especially intense at the poles, the layer of igneous

element there must be thinner than at the equator if fire, which is con

tinuously created at the equator is not to run towards the poles. In

the same way that water constantly runs towards lower places in order

that the centre of all gravity shall be at the centre of the World, so we
must assume that fire travels, without interruption, from the equator
towards the poles in order that its centre of lightness shall be at the

centre of the World.
"

It should be imagined that, at the poles, fire is constantly being
transformed into air, and at the equator air is constantly being trans

formed into fire ; and that fire continually runs from the equator to

wards the poles in order that the centre of all lightness, like the centre

of gravity, shall be found at the centre of the World. "

In short, as Duhem has observed,
1 "the common centre of heavy

bodies both the closed earth and the water and the common centre

of light bodies both air and fire are placed at the centre of the

World. "

However, in commenting on De Caelo, Albert of Saxony took a

different view.
" We reply by denying that the centre of the World coincides with

the centre of the aggregate formed by the earth and the water. Indeed,
if it is imagined that all the water were lifted off, the centre of gravity
of the Earth would still be at the centre of the World. . . . For, essen

tially, the earth is heavier than water. Therefore, whatever may be
the quantity of water which is found on one side of the Earth and not

on the other, this part of the Earth will in no way receive more help
than previously in counterpoising and pushing awy the other part. ..."

It is explained
" that one part of the Earth rises out of the waters.

The Earth, indeed, is not uniformly heavy, so that its centre of gravity

1 DUHEM, 0. $., Vol. II, p. 28.
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is placed at a great distance from its geometrical centre. The centre

of gravity is much nearer one of the convex hemispheres that define

the Earth than the other. Therefore the water, which is unifirmly

dense and tends towards the centre of the World, runs towards that

part of the terrestrial sphere that is nearest the centre of gravity of the

Earth, so that the other hemisphere, that which is further distant from

the centre of gravity, remains uncovered.
"

The weakness of this argument is clear. But undoubtedly the

theory was in harmony with the belief, common at that time, in the

existence of a terrestrial hemisphere completely covered by a vast

ocean. It is paradoxical to see Albert of Saxony thus holding that the

waters of the sea do not exert any heaviness, but this is in accord with

a more general thesis that is indicated below.

Albert of Saxony distinguished between heaviness in the potential

state, that of a heavy body occupying its natural place, and the actual

heaviness that sets a body in motion when it has been displaced from its

natural place (or shows itself as a resistance to obstacles which oppose

the body's motion).
We shall quote from Duhem's commentary.
" The parts of a heavy body, be they solid or liquid, do not push

the adjacent parts when they are in their natural place, since their

heaviness remains in its potential state. Thus the bottom of the sea

does not support any load or any pressure that is due to the water

above it. In all circumstances the strength of the heaviness, whether it

is habitual or actual*, has the same magnitude in the same heavy body.

A part of the earth inclines towards its natural place just as much if it

is placed higher up than if it is lower down.
"

It is clear that this thesis contradicts the fundamental axiom of

Jordanus Gravius esse in descendendo quando ejusdem motus ad medium

rectior. Moreover, it is not surprising that Albert of Saxony should have

rejected the idea of gravitas secundum situm, and have substituted for

it the concept of a greater or smaller resistance of the supporting medium
to the fall of a moving body.

4. ALBERT OF SAXONY'S KINEMATICS. THE ACCELERATION OF FALUN*;

BODIES.

Whether explicitly or not, the physicists and astronomers of Anti

quity treated only the simple uniform motions of translation and rota

tion, and confined themselves to a simple qualitative description of

accelerated motion.
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In a Xlllth Century manuscript
1 there is the statement that it is

correct to ascribe the velocity of its mid-point to a radius turning about

its centre. This text is mentioned by Thomas Bradwardine, proctor
of the University of Oxford, in his Tractatus Proportionum (1328).
Bradwardine denies this statement and attributes the velocity of its

most rapidly moving point to a body in uniform rotation.

Albert of Saxony stated these two opinions and supported that of

Bradwardine. To set against this, he gave a correct definition of the

angular velocity of rotation (velocitas circuitionis) . Further, he distin

guished between deformed motions, in which the velocity of a moving
body varies from one point to another, and irregular motions, in which

the velocity varies from one instant to another.

In Book II, paragraph XIII of his Quaestiones? Albert of Saxony
examined two possible laws which might govern the fall of bodies an

increase of velocity which is proportional to the distance travelled and

an increase proportional to the time taken.

In another place, he rejects these two laws, which lead to velocities

which become infinite with the distance travelled or the time taken,

and contemplates a law which would necessitate that the velocity

approach a finite limit when the time increases indefinitely. On this

occasion, Albert of Saxony declares himself a supporter of the doctrine

of impetus in order to explain the acceleration of falling bodies. He
observes, however, that the resistance, increasing more quickly than

the impetus is acquired, will limit the velocity of the moving body. It is

important to notice this connection between Albert of Saxony and

John Buridan's doctrine, and to recognise the considerable authority
which the latter's work had over this long period.

5. THE DISCUSSION OF ACTION AT A DISTANCE.

In commenting on Aristotle, AverroSs and Albertus Magnus had
held that the weight of a heavy body did not vary with its distance

from the centre of the World. On the other hand Saint Thomas Aquinas,

arguing from the acceleration of falling bodies, assumed that a heavy
body increased in weight as it approached this centre.

In the XlVth Century John of Jandun, in his commentary on

De Caelo (Book IV, para. XIX), declared himself for the first opinion.
The natural place cannot be the " motor "

of a heavy body, because the

motor must always accompany the moving body. It is not possible to

have action at a distance. The attraction of iron by a magnet presumes

1
Biblioth&que National^ Paris, latin collection, Ms. 8680 A.
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the alteration of the medium, the propagation of a species magnetica.

On the other hand, William of Oekham denied that the motive agency
should always accompany the moving body. He declared that iron is

attracted at a distance by a magnet without the intermediary of any

quality, either in the medium or the iron. He assumed that the magnet
was, in itself, the total cause of the effect.

In his Quaestiones (Book III, para. VII), Albert of Saxony held that

the effect of a body's natural place on a body was different from the

action of a magnet on iron. It is true that a heavy body accelerates in

falling,,
" but its initial 1

velocity is not greater when it is close to its natural

place than when it is separated from it.
" Thus the gravity doe ks not

depend on the distance from the centre of the World the attraction of

a magnet, on the other hand, vanishes at some distance.

The Schoolmen of the XlVth Century therefore rejected the hypo
thesis that ascribed weight to an attraction at a distance exerted by
the centre of the Earth. But, as Duhem has observed,

" in order to

prove this hypothesis wrong, it was necessary to work out its conse

quences. They [the Schoolmen] discovered that, on the basis of this

supposition, the weight of a body would vary with its distance from the

centre of attraction. From this, it was argued that the body would

have, in falling, an initial velocity
1 which was less if its starting-point

were further away from the centre.
" 2

These discussions on the attraction and even the more metaphysical

argument about the plurality of worlds made the copernican revolution,
to a certain extent, possible.

6. NICOLE ORESME A DISCIPLE OF BURIDAN.

From 1348, Nicole Oresme, of the diocese of Bayeux, was a student
of theology. In 1362 he was grand master of the College of Navarre.
He became Bishop of Lisieux on August 3rd, 1377 and died there on

July llth, 1382.

Charles V entrusted Oresme with the task of translating (into French)
and annotating certain of Aristotle's works which had previously only
been accessible to the scholars. The four books of On the Heavens and
the World were included in the commission, though this particular part

1 The question here is one of a free fall the initial velocity in the modern Berne in

therefore zero. The velocity which ALBERT OF SAXONY intended, however, is the velocity
acquired after a very short time if the body starts from rest. This velocity is propor
tional to the weight and can serve as a measure of the gravity.

2 DUHEM, JStudes sur Leonard de Vinci, Series II, p. 90.
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of the translation was never printed. At the beginning of the XVIth

Century the remainder of the translation (Ethics, Politics and Economics)
was published, together with Oresme's Treatise on the Sphere.

In dynamics, Oresme was a disciple of Buridan and adopted from
him the doctrine of impetus. Thus he maintains, in his Treatise on the

Heavens and the World,
1 written about 1377, that the acceleration of

falling bodies is not, strictly speaking, accompanied by an increase of

the heaviness of the body. Rather there is an increase of an " accidental

property which is caused by the reinforcement of the isnelte (velocity)
and this property can be called impetuosity (impetus).

"

This property is not the same as the heaviness " because if a hole

were to be dug to the centre of the earth and then out the other side,

and a heavy thing were to fall in this hole, when it came to the centre

it would pass beyond it and rise, through the agency of this acquired
and accidental property. Then it would fall back and go and come in

the way that we see in a heavy thing hanging by a long string. There

fore this is not strictly heaviness, since it is able to make [the body]
ascend.

"

7. ORESME'S RULE IN KINEMATICS. (UNIFORMLY ACCELERATED MOTION.)

Oresme was above all a mathematician, and in this capacity he

emerges as Descartes' forerunner in the matter of the invention of

co-ordinates. As will be seen, and as Moritz Cantor has pointed out,
2

we shall not stray from, the subject in hand if we emphasise this aspect
of his work.

We shall follow the Tractatus de Jiguratione potentiarurn et mensu-

rarum difformitatum^ Oresme starts from the principle that every
measurable thing can be thought of as a continuous quantity. Each

intensity can be represented by means of a straight line erected vertical

from each point of the "
subject

" which affects the intensity.
Extension (longitudo) ia represented diagrammatically by a horizon

tal line drawn in the direction of the subject. At each point of this line

a vertical is erected whose height (altitudo or latitudo) is proportional
to the intensity (intensio) of the property at the point corresponding to

the subject.
Thus the triangle of figure 16 represents a uniformly deformed

quality (uniformiter difformis) terminated at a value zero. The

1
Bibliothtque National^ Paris, frcnch collection, Ms, 1083.

2
Vorlesungen uber die Ceschichte der Math^matik, 2nd Ed., Vol. II, p, 129. (Leipzig,

1900.)
8
Bibliothdque National^ Paris, latin collection, Ms. 7371, Trans. DUHEM.
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a) b) c) d)

Fig. 16

rectangle 6 represents a uniform quality and the trapezium c a uniform-

ely deformed quality terminated by certain values at one end and at

the other. Any other quality is said to be deformably deformed that

is, non-uniformly deformed or non-uniformly varying (difformiter

difformis) . Such a one can be represented in the same way by erecting

a vertical proportional to the intensity from each point of the extension.

Oresme pointed out explicitly that the scale of such a representation

could be chosen at will. Therefore the same quality can be represented

by diagrams whose verticals are in a given relation to each other. Thus

Oresme understands that the same quality can be represented by a

diagram which is, for example, either circular or elliptical. He then

proceeds to a classification of deformities according to the direction of

their concavity and according to whether they arc rational (circular)

or not. In this way he was able to enumerate 62 different kinds of

deformity.
Oresme came very near to modern analytical geometry when he

wrote,
" A uniformly deformed quality is such that when any three

points of the subject are given, the relation of the interval between the

first and the second to the interval between the second and the third

is the same as the relation of the excess of intensity of the first over the

second to the excess intensity of the second over the third.
" This

statement expresses the relation between the co-ordinates of three points
on a straight line explicitly.

Oresme went further than this in envisaging superficial qualities

qualities which had two dimensions with respect to the subject and
whose intensity must be represented by a normal to a plane surface

which defines the extension. Similarly, he put the question of how a

corporeal quality one having three dimensions with respect to the sub

ject can be represented. This passage merits quotation.
" A superficial quality is represented by a solid figure. Now a

fourth dimension does not exist and it is impossible to conceive of one.

Nevertheless a corporeal quality may be thought of as having a double

corporeity. One in a real extension, through the effect of the extension

of the subject, has a locus in all dimensions. But there is also another

which is only imagined and which arises from the intensity of the qua-
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lity. This quality is repeated an infinite number of times by the multi

tude of surfaces which may be traced with respect to the subject.
"

In kinematics, Oresme accepted Albert of Saxony's ideas but ex

pressed them with the help of his graphical representation. Velocity
is susceptible of a double extension, either in time or with respect to

the subject. It can be uniform or deformed with respect to each of

these two extensions.

Further, Oresme defined the total quality or the measure of a quality
which was linear (or superficial) with respect to the subject as the area

(or the volume) of the diagram which represents it.

It is clear that if time is taken as the variable of extension, the

measure or total quality of the velocity of a uniform motion is equal
to the distance travelled. Oresme
did not confine himself to this 4i

instance. He contemplated a suc

cession of uniform motions in the

following way.
He divides the time t into

proportional parts which form a

geometrical progression with ratio

and the first term -. The velo-
2

. .

2
.

city has intensity ni in the nth

interval. Under these conditions Oresme states that the total distance

travelled is equal to four times the first rectangle, that is 4 UH
Oresme stated the following general rule for uniformly deformed qua

lities
" Omnis qualitas, sifuerit umformiter difformis, secundum gradum

puncti medii ipsa cst tanta quanta qualitas cjusdem subjecti.
" That is,

any uniformly deformed quality lias the same total quality (meas

ure) as if it were related to the

subject with the value which it

takes at the middle point.
Oresme verifies this rule for a

linear uniformly deformed quality
that starts with an intensity AC
at A and finishes with zero value

at J3. If D is the centre of the

line AB which represents the

Fig. 17

Fig. 18

B

1 It should be remarked in passing that this fact shows that Oresme knew how to

calculate the sum of the series whose general term is
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subject (subjectiva linea), the corresponding intensity is DE. The

uniform quality that has the rectangle AFGB as its measure has the

same measure as the uniformly deformed quality represented by the

triangle ACB, because the area ACE is equal to the area AFGB.

Oresme declares, "Any uniformly deformed quality or velocity

is thus found to be equivalent to a uniform velocity,
" but he does not

explain, at this point, the identity of the measure and the distance

travelled. So that he does not apply the rule which he has just for

mulated to a uniformly deformed motion, although this rule includes

the law of distance travelled in such a motion. Indeed, in modern lan

guage we may write simply

We have seen that some of the Schoolmen discussed the fall of

bodies while others were concerned with kinematics, and that each of

these sections developed a representation which contained a key to

the law of the distance travelled by a moving body. But the union

of these two problems was not effected. Undoubtedly the reason for

this lies in the fact that the Schoolmen were satisfied when they had

constructed abstract systems, whose niceties distracted their attention

from the rudimentary experimental basis which they possessed.

8. ORESME AS A PREDECESSOR OF COPERNICUS.

Except to the extent that it impinges on the history of the prin

ciples of mechanics, we are not here concerned with the history of

world-systems. However, by considering this aspect of Orcsme's nrnst

original work, we shall see him to have been a prophet of Copernicus.
1

The following quotations are taken from Nicole Oresrne'B Treatise

on the Heavens and the World.

Aristotle had established, in the second book of De Caelo? that the

Earth remained motionless at the centre of the World* Grewme

declared,
" no observation could prove that the Heavens moved with

a diurnal 2
motion, and that the Earth did not.

"

In this connection he made use, in an especially complete way, of

the relativity of all motion.
" If a man were placed in the Heavens, suppose that he were moved

with a diurnal motion. Then if this man who is carried above the

Earth sees the Earth clearly, and picks out the mountains, the valleys,

1
Cf. DUHEM, Revue gfafrale des Sciences, Nov. 15, 1909.

2
Lit., "journal."
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rivers, towns and castles, it will seem to him that that the Earth is

moved diurnally just as, to us on the Earth, the Heavens seem to

move. And similarily, if the Earth is moved with a diurnal motion

and the Heavens not, it will seem to us that the Earth is still and that

the Heavens move. "

Oresme discussed Aristotle's argument according to which a stone

thrown vertically upwards should fall to the west if the Earth is not

at rest. In this connection, he declares that a stone thrown vertically

in this way would be carried very rapidly towards the east,
"
together

with the air through which it passes and with all the mass of the lower

part of the World " which participates in the diurnal motion. In

short, Oresme believed that the stone links its motion with that oft

the Earth, from which it originally obtained its impetus. This thesis

is correct, at least in its essentials.1

In a similar way, Oresme gave the lie to Ptolemy's argument that

an arrow shot vertically from the deck of a ship moving very rapidly

towards the east will fall far to the west of the ship. He then discussed

the following reasons which had been given in support of the hypothesis

that the Heavens moved and the Earth was stationary.

1) Any simple body can only have a simple motion. The Earth

can only have a natural falling motion.

2) Apart from this natural falling motion could not have a circular

motion this motion,
" which is violent, could not be perpetual.

"

3) AverroSs holds that any motion from place to place can be

related to a body at rest and, for this reason, he assumes that the

Earth is necessarily fixed, at the centre of the Heavens.

4) All motion supposes a " motive virtue.
" Now the Earth

cannot be moved circularly by means of its heaviness. " And if it is

moved in this way by some outside agency, such a motion will be

violent and not perpetual.
"

5)
" If the Heavens were not moved with a diurnal motion, all

Astrology
2 would be false.

"

1 We now know that, in a free downward fall, a heavy moving body HufFers a small

deflection towards the East as a result of the rotation of the Earth. The complete
calculation requires that account he taken of the compound centrifugal forcet but a

very simple intuitive argument can give the direction of this deflection, by means of

the hypothesis that the motion of the body, starting from rest, proceeds according to

the law of areas ^ ^ c<mgtant

Initially, r === r and 6 = co, the velocity of rotation of the Earth. During.the motion r

will decrease. The inequality r < r<> requires, by the law of areas, that > to, which

shows that the body is diverted towards the East.
2 Read "

Astronomy.
"
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6) Motion of the Earth would contradict the Holy Scriptures--

44 Oritur sol et occidit, et ad locum suum revertitur . . . Deus firmavit

orbem Terrae qui non commovebitur.
"

7) The Scriptures also say that the Sun stopped in Joshua's time,

and that is started its journey again in the time of King Hezekiah.

And if it was the Earth which moved, not the Heavens,
" such a cess

ation would have been inversed.
"

Oresme's replies to these arguments were the following.

1) It is more reasonable to believe that every simple body and part

of the World, except for the Heavens, is activated by a rotational

motion in its natural place. And that, if a part of such a body is dis

placed from its place in the whole it will, if this is allowed, return there

as directly as possible.

2) The rotational motion of the Earth is certainly a natural one, but

parts of the Earth that are displaced from their accustomed position

have a natural, ascending or descending, motion.

3)
"
Supposing that circular motion requires the presence of some

other body at rest,
"

it does not follow that the body at rest should

be inside the body which moves, for there is nothing at rest inside a

grindstone "except a single mathematical point, which is not a body."

4) The virtue which produces the rotational motion of the lower part,

of the World is the nature of this part. It is the same thing that also pro

duces the motion of the Earth towards its natural place when it has been

displaced from it, in the same way that iron is drawn towards a magnet.

5) All appearances, all conjunctions, oppositions, constellations and

influences in the Heavens remain unchanged when it is supposed
that the motion of the Heavens is apparent and the motion of the

Earth is real.

6) The Holy Scriptures are consistent here,
" in the manner of

ordinary human speech,
"

to the same extent that they agree in many
other places. Things are not " as the letter sounds.

" Thus it is

written that God covered the Heavens with clouds "
Qui opcrit ("aelttm

nubibus.
"

Now, on the contrary, all the evidence shows that it LH

the Heavens which cover the clouds. Here again the words indicate

the appearance and not the truth. It is the same for the motion of

the Earth and the Heavens.

7) The stopping of the Heavens in the time of Joshua was an

illusion in fact, it was the Earth which stopped, and which started

its motion again, or accelerated, in Hezekiah's time.

Oresme then gives us several "
good reasons

"
intended to show

that the Earth has a diurnal motion and the Heavens do not.
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Every thing which benefits from another thing must set itself

to receive, by its own motion, the benefit which it obtains from the

other. Thus each element is moved towards its natural place, where

it is kept. On the other hand, the natural place does not move towards

the element.

From which it follows that the Earth and the elements on the

Earth, which benefit from the heat and the influence of the Heavens,
must arrange themselves by their own motion to duly receive this

benefit ;

"
also, to speak familiarly, as something which is roasted

at the fire receives the heat of the fire about itself because it is turned,

and not because the fire is turned towards it.
"

It is natural that the motions of the simple bodies of the World
should have the same direction. Now, according to the Astronomers,
it is impossible that all these motions should take place from east to

west. On the contrary, if it is assumed that the Earth moves from west

to east then this will agree with the other motions,
" the Moon in one

month, the Sun in a year, Mars in about two years and similarly for

the others.
"

In this way, the part of the Earth which is habitable will be at the

top and on the left of the World. u And it is reasonable that human
habitation should be found in the most noble place that there is in the

Earth.
"

According to Aristotle, the most noble thing which is and can be

has its perfection at rest. Terrestrial bodies are set in motion towards

their natural place in order to rest there. We pray that God should

give the dead rest Requiem aetcrnam. . . . The Earth, the most com
mon thing, is displaced more rapidly than air, the Moon or the stars.

In the hypothesis of the stationary Earth, the velocities which must
be assigned to the stars, because of their distance from the centre, are

inadmissible.

The constellation of the North Wind Major Ursa -does not turn

round, with the chariot in front of the cattle, as it would if it partook
of a diurnal motion.

All the appearances can be saved by means of a minor change the

diurnal motion of the Earth, whose size is so small in comparison with

the Heavens and without demanding so many different and incredible

processes that God and Nature would have created for no purpose.

By this means, the introduction of a IXth sphere is also made unneces

sary.
When God accomplishes a miracle, he does so cc without changing

the common course of nature, except to the extent that this must be

done. '* Thus it is natural that the arrest of the Sun in Joshua's time,
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and the start again in Hezekiah's time, should be the result of terrestrial

motion alone.

Oresme concluded that considerations such as these " are valuable

for the defence of our Faith.
" More astute than Galileo, and safe

from the thunderbolts that were to be hurled at this thesis later, he

was nominated Bishop of Lisieux in reward for his work.

Since, as we have said, Oresme's Treatise on the Heavens and the

World was never printed, it is very unlikely that his ideas on the diurnal

motion of the Earth could have become available to Copernicus.

Perhaps the reader will decide that we have devoted too much
attention to this early philosopher. But we have seen the best and the

worst of Oresme's arguments about the system of the World. We have
felt the mood of the time, at once naive and acute, fantastic and serious,

familiar and dogmatic. Of the originality of Oresme as a mathemati

cian, and of the vigour of his penetrating thought, there is no doubt.

The prejudices of the Schools and the accepted ideas of the time did not

imprison him. In the field of mechanics he was one of the first to

address himself to the great French public, or, as he said himself, more

accurately,
" to all men of free condition and noble intellect.

"

9. THE OXFORD SCHOOL.

In his study of the representation of qualities Oresme invoked the

authority of certain veteres whom he did not name. It is reasonable
to believe that the ancients who preceeded Oresme in the general study
of forms were the logicians of the Oxford School.

One of the most eminent masters of this school was William Heytes-

bury, or Hentisberus. It is said that Heytesbury was a fellow of
Merton College in 1330, that he belonged to Queen's College about 1340
and that he was Chancellor of the University of Oxford in 1371,

Primarily Heytesbury was a logician of the most acute kind. But
he was also concerned with kinematics, and it is in this connection that
he claims our attention. In his Regulae solvendi sophismata the follow

ing rule is given without proof when the velocity of a moving body
increases with the time in such a way that it is uniformly deformed,
in a given time the body travels the same path as if it had moved uni

formly with the velocity acquired half way through this time. This
is Oresme's rule applied specifically to distance.

To set against this, Heytesbury supported Thomas Bradwardme*B
opinion referred to earlier that the effective velocity of a rotating
body was that of its most rapidly-moving point.
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The most remarkable feature of Heytesbury's work is the appearance,
albeit shrouded in obscurity, of the concept of acceleration. This was
unknown to the Paris School.

In fact, in his treatise De Tribus praedicamentis, Heytesbury distin

guished between the latitudo motus (velocity) and the velocitas intensionis

vel remissionis motus whose value was the increase or the decrease of the

former. This quantity corresponds to acceleration.
" For a moving body which starts from rest there can be imagined

a range of velocity which increases indefinitely. In the same way can

be imagined a range of acceleration or of slowing down (latitudo inten

sionis vel remissionis) according to which a body can accelerate or slow

down its motion with an infinitely variable quickness or slowness.

This second range is related to the range of motion (velocity) as the

motion (velocity) is related to the magnitude (distance) that may be

travelled in a continous manner. " 1

Through this obscure language we catch the first glimpse of quantities
that have become familiar tools of our trade, the vector representing

J O

the distance travelled, S ; the velocity (vector derivative), ; and the

d*S
acceleration (vector derivative of the velocity), ~-r%-at

We must also refer to the Liber Calculationum. In order to avoid

the labyrinths of the Oxford School, we shall confine ourselves to a

mention of Swineshead (variously called Suincet, Suisset, Suisseth, . . .

by the continental copyists). The tradition of the XVth and XVIth

Centuries, on the publication of Liber Calculationum in 1488, 1498 and

1520, added the epithet
" Calculator

"
to this name. The document is

the most typical of the Oxford dialectic that is available to us, and in

spite of the relentless attacks of the Humanists, it was very highly

regarded until the XVII th Century. Thus Leibniz, writing to Wallis,

could express his wish to see it republished.

Unfortunately, this work has only been attributed to Swineshead in

error. Duhem, that tireless investigator, found a manuscript
2 of this

work which goes back to the XlVth Century, and in which the copyist
attributes the work to Ricardus of Ghlymi Eshedi. (This must refer

to William Collingham, a Master of Arts of Oxford.)
This treatise is concerned with the general theory of forms, and

sophist discussions make up the essential part of it. We shall quote a

single extract from Chapter XV, which is called De medio uniformiter

difformi.

I Venice Edition, 1494.
II

Biblioth&que Nationals, Paris, latin collection, Ms. 6558,
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" If the motion of a body is uniformly accelerated and starts with

a value zero, the body will travel three times further in the second half

of the time than in the first half.
"

This is a direct corollary of the law of distances in uniformly varying
motion.

In this way then, in XlVth Century Oxford, the kinematics of uni

formly varying motion was known and commonly taught. The English
School has the merit of having stated the law of distances more precisely
than the School at Paris on the other hand, it seems to have neglected
Oresme's remarkable representation of uniformly deformed qualities.

Just as much at Oxford as at Paris, these developments in kinematics,
and the related general study of properties in intensity and extension,
had no influence on the study of the fall of bodies. The description of

these phenomena remained completely qualitative.

10. THE TRADITION OF ALBERT OF SAXONY AND OF BlJRIDAN.

The tradition of Albert of Saxony and of Buridan was preserved in

France and Germany by Themon, a son of Jew who taught at Paris in

1350, and Marsile of Inghen, who became rector of Heidelberg in 1386
after having been at the University of Paris in 1379. It is noteworthy
that Marsile modified Buridan's doctrine in a somewhat unfortunate

way. Thus he held that the impetus was at first weak in those parts
of a body that were not in contact with the motive agency, and that it

was strengthened there as the whole impetus became uniformly distri

buted throughout the moving body.
We must also refer to Pierre d'Ailly (1330-1420) who was high master

of the College of Navarre in 1384 and who added the following original
items to Albert of Saxony's paradoxes.

" Someone who owns a field adjoining another piece of land, mid
who excavates his earth in such a way that the area of the cavity remains
constant, is defrauding his neighbour.

" If the Earth is cut by a plane surface whose centre is at the centre
of the World, when water is poured on this plane it will tend to assume
the form of a hemisphere.

" In the second place, if the bottom of a pool is flat, this pool will

certainly be deeper in the middle than at the sides. ..."
Pierre d'Ailly also gave Roger Bacon's paradox which has been

quoted above (p. 52).
With such intellectual games did the Schoolmen of the XlVth Cen

tury delight themselves. So alive was this tradition that it maintained
itself for over two hundred years.



CHAPTER FIVE

XVth AND XVIth CENTURIES
THE ITALIAN SCHOOL

BLASIUS OF PARMA THE OXFORD TRADITION
NICHOLAS OF CUES AND LEONARDO DA VINCI

NICHOLAS COPERNICUS
THE ITALIAN AND PARISIAN SCHOOLMEN

OF THE XVIth CENTURY
DOMINIC SOTO AND THE FALL OF BODIES

1. BLASIUS OF PARMA AND HIS TREATISE ON WEIGHTS.

Blasius of Parma (Biagio Pelacani), who became a doctor at Padua
in 1347, taught at Padua and Bologna. He went to Paris about 1405

and died at Parma in 1416.

His Treatise on Weights is known to us through a copy made by
Arnold of Brussels and dated 1476.

This treatise derives from Jordanus' School and links up the idea

ofgravitas secundum situm a first principle of Xlllth Century statics

with the tendency of a heavy body to fall along a chord rather than

along an arc of a circle, and thus to take the shortest path, in Aristotle's

sense, to its natural place.
Blasius of Parma observed that when a balance with equal arms

supporting equal weights is moved away from the centre of the World,
these weights will appear to become heavier. Indeed, the line along
which each of the weights tends to fall makes an angle with the vertical

through the point of support which is the more acute as the balance is

the further away from the centre of the World. This embellishment adds

no thing useful to the positive statics of the authors of De Ponderibus.

In a general way, Blasius of Parma was a critic and a sceptic who
was content to multiply the objections to his predecessors' theories. For

example, he observed that it is necessary to take account of passive

resistances, though the correctness of the propositions of statics depends
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on the process of neglecting all resistances occasioned by the medium.
In a very naive way Blasius of Parma attempted to take these resistances

into consideration.

Apart from his Treatise on Weights, Blasius of Parma also wrote Quaes-
tiones super tractatu de latitudinibusformarum, which was printed in 1486.

In it he appears as an unsophisticated commentator of Oresme's doctrine.

Although a critic of no great originality, Blasius of Parma was one
of the means by which the statics of the Xlllth Century and the kine

matics of the XlVth Century were handed on to the Italian School,
which was destined to dominate mechanics during the period that we
are going to study.

2. THE ITALIAN TRADITION OF NICOLE ORESME AND THE OXFORD SCHOOL.

Together with Blasius of Parma, we must refer to Ga^tan of Tiene.

Like Blasius, this author taught at Padua and died there in 1465, and
he is responsible for having preserved the tradition of William Heytes-
bury and the " Calculator

"
in Italy. One by one, he annotated the

sophisms of the Oxford School, and his work was printed in Venice in

1494, together with the works of Heytesbury.
In particular, GaStan of Tiene emphasised the distinction between

latitude* motus (velocity) and latitude intensionis motus (acceleration).
In this way the Italian School explained, more clearly than Heytesbury
had done, the fact that a uniformly deformed motion corresponds to a

constant latitude intensionis motus that is, to a constant acceleration ;

and that a deformably deformed motion corresponds to a uniformly
deformed latitude intensionis motus.

Bernard Torni, a Florentian physician who died about 1500, carried
on the work of Gaetan of Tiene, and published Annotata to Heytesbury's
treatise which made frequent mention of the "

Calculator.
" He was

equally enthusiastic about Oresme's analysis, though he was only con
cerned with the arithmetical procedures contained in this work.

John of Forli, who taught medicine at Padua about 1409 and died
there in 1414, wrote a treatise De intensione et remissions formarum
which was printed at Venice in 1496. In it he refuted W. Burley,
rejected Oresme's rule for the evaluation of a uniformly deformed quality,
and attempted to introduce into medicine a terminology which was
inspired by the Oxford School. The Humanists, especially VivSs, made
him their target.

It may be inferred, as Duhem has remarked,1 " that thanks to

1 DUHEM, Etudes sur Leonard de Finci, Series III, p. 509.
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Nicole Oresme, William Heytesbury and the * Calculator \ at the

middle of the Quattrocento the Italian masters were well-acquainted
with all the laws of uniformly accelerated or uniformly retarded motion.

But it seems that none of them was inspired to assume that the fall of

bodies was uniformly accelerated or, for this reason, to apply these

laws to that phenomenon.
"

3. NICHOLAS OF CUES (1404-1464) AND THE DOCTRINE OF " IMPETUS

IMPRESSUS.
"

Nicholas of Cues studied at Heidelberg from 1416, and later at Padua
in 1424. On returning to Germany he devoted himself to theology and
science. He became Bishop of Brixen (Tyrol) in 1450 and died at Todi

(Umbria) on August llth, 1464,

His works were published in three parts between 1500 and 1514,

and later reprinted at Basle in 1575.

Nicholas of Cues was primarily a metaphysician. In De docta

ignorantia he maintained that it was impossible to accept the idea of

absolute truth, and argued the identity of the absolute maximum and
the absolute minimum, as well as the existence of an Universe at once

finite and unlimited.

In mechanics, Nicholas of Cues has left us the dialogues De ludo globi.

He is concerned with a game where a hemisphere is thrown in such a

way that it meets some pins which are arranged in a spiral. The problem
is to explain the trajectory of the body. Further, in the dialogue De

Possest^
1 he concerned himself with the gyroscopic motion of a toy top.

" A child takes up this dead toy, devoid of motion, and wishes to

make it live. For this purpose, by a procedure which he has invented

and which is the instrument of his intelligence, he impresses on the toy
the permanence of the idea which he has conceived. By a motion of

his hands which is at once straight and oblique, consisting simultaneously
of a pressure and a traction, he impresses on it a motion which is, for

a top, supernatural. Naturally the plaything would have no other

motion than the downward motion common to all heavy bodies the

child gives it the opportunity to move circularly, like the Heavens.

This motive spirit, imparted by the child, is invisibly present in the ma
terial of the toy the length of time for which it remains there depends
on the impressive force which communicates this property. When this

spirit ceases to animate the toy, it resumes its motion towards the centre,

as at the beginning. Do we not have here an image of what happened
when the Creator wanted to give the spirit of life to an inanimate body?

"

1
Dialogus trilocutorius de Possest, translated into French by DUHEM.
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The World-system accepted at that time assumed that the motion
of the different celestial spheres was maintained by that of the outer

most sphere, itself activated by a Prime Mover. Nicholas of Cues

held that is was sufficient that the Creator should have imparted an

impetus to the spheres at the beginning, and that the impetus would
then be conserved indefinitely. Thus we come across the "

chique-

naude,
"
the fillip, of which Pascal talked in connection with Descartes.

This was also the doctrine of the Parisian Schoolmen of the XlVth

Century, of Buridan and Albert of Saxony in these celestial bodies

there is no influence which can corrupt the initial impetus. In a manner

which, for Nicholas of Cues, is very precise, the rotational motion
of any perfect sphere is a natural motion. The impression of impetus
on a moving body is comparable with the creation of a soul in the body.

Nicholas of Cues became one of the inspirations of Copernicus
and of Kepler, as well as of Leonardo da Vinci.

4. LEONARDO DA VINCI'S CONTRIBUTION TO MECHANICS.

In mechanics, Leonardo da Vinci cuts the figure of a gifted amateur.

Though he had read and meditated upon the Schoolmen that preceded
him, his bold imagination was not inhibited as theirs was. He tackled
all kinds of problem, often with more faith than success. Frequently
he returned to the same problem by very different paths, and did not

scruple to contradict himself.

Leonardo made no concessions to systematics. But it seems that
the original ideas which he threw off throughout his manuscripts were
taken over by more than one of his successors.

His work in mechanics is quite
^ sn n unique, and the few pages which

we are able to devote, in this book, to

an attempt at analysing its objective
content can only provide a feeble echo
of the torrent of ideas which flowed from
this

"
autodidacte l

par excellence."

a) Leonardo da Vinci's concept of
lg * 19 moment, Leonardo da Vinci grasped

the idea of moment and applied it in
a most complete way to a heavy body turning about a horizontal axis,
a body which he described as being

"
convolutable.

"
Thus, for a lever

nb turning about a point n, Leonardo stated the following rule.

1 Autodidacte = one who is self-taught.
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" The ratio of the distance (length) mn to the distance nb is such

that it is also the ratio of the falling weight at d to the (same) weight
at the position 6.

" l

That is, the effect of a heavy body suspended at d is the same as

if the body were suspended from the arm of the horizontal lever, nm,
that is obtained by projecting nd onto the horizontal nb. Leonardo

called this arm of a horizontal lever, equivalent to the inclined arm rad,

the " arm of the potential lever.
"

It would seem here that he had read

the XHIth Century statists. 2

b) The motion of a heavy body on an inclined plane. This is one

of the problems that captured Leonardo da Vinci's interest, and which

evoked some rather strange arguments from him. Thus we find the

following passage among his writings.

Fig. 20

" A heavy spherical body will assume a motion which is all the

more rapid as its contact with its resting place is further separated

from the perpendicular through its central line. The more ab is shorter

than ac, the more slowly the ball will fall along the line ac [than along

the vertical at] . . . because, if p is the pole of the ball, the part m
which is outside p would fall more rapidly if there were not that small

resistance provided by the counterpoising of the part o. And if there

were not this counterpoise, the ball would fall along the line ac more

quickly if o divided into m more often. That is, if the part o divides

into m one hundred times, and the part o is missing throughout the

1 Les Manuscrits de Leonard de Find, published by Ch.

Paris, 1890, Ms. E, fol. 72.
2 See above p. 42.
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rotation of the ball, this will fall more quickly on n by one hundredth

of the ordinary time Iff is the pole at which the ball touches the plane,

the greater the distance between n and p, the more rapid the ball's journey

will be.
" i

Elsewhere Leonardo wrote on the same subject in the following terms.

" On motion and weight. All heavy bodies seek to faU to the centre,

and the most oblique opposition provides the smallest resistance.

" If the weight is at A 9 its true and direct resistance will be AB.

But the pole is at the place where the circumference touches the earth,

and the portion which is furthest outside the pole falls. If SX is the

pole, it is clear that ST will weigh more than SR, from which it follows

that the part ST falls, that it dominates over SI? and lifts it up, and

then moves along the slope with fury. If the pole were at IV, the

more often AN divided into AC, the more quickly the wheel would

run along the slope than if it were at X. " 2

Fig. 21

I am reluctant to comment on these texts and to attribute to Leo

nardo things that he did not intend. Certainly he, like the aristotelianB,

did not differentiate between dynamics and statics. It is also true

to say that he reproduced and repeated the law of powers which Aris

totle had formulated (see above, page 20). Further, Duhem, arguing
from the relation of velocities that Leonardo gave, believes that he im

mediately applied this same relation to powers that is, to the apparent

weights of a given body on differently inclined planes and that he

arrived in this way at the accurate law which we now accept.

1 Ms. A, fol. 52.
2
Ibid., fol. 21.
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I believe that it is more accurate to take a view of this kind that

Leonardo only sketched the solution of a problem which his rich im

agination had formulated, but that he never gave it a final form.

It certainly seems that Leonardo was unaware of the solution of the

same problem that the unknown author of Liber Jordani de ratione

ponderis had given, and which was based on the single concept of

gravitas secundum situm, considered as a first principle of the statics

of heavy bodies.1

'm
Fig. 22

Leonardo has, moreover, the merit of having attempted to solve

this same problem of the inclined plane by another method, one which

was unknown to his predecessors. Thus he observes 2 that a uniform

heavy body which falls obliquely divides its weight into two different

aspects, along the line be and along the line nm. But here again we
are left in suspense he does not carry out the resolution of the weight
into its two components along be and nm (normal to be).

c) Leonardo da Vinci and the reso

lution of forces. Leonardo asked him
self how the weight of a heavy body, sup

ported by two strings, was apportioned
between these two. He was of the

opinion that the weight of the body
suspended at b was divided between the

strings bd and ba as the ratio of the lengths
ea and de. This guess contradicts the now
classical rule of the parallelogram.

However Leonardo used, at least implicitly, the following rule.
" With respect to a point taken on one of the components of a

force, the moment of the other component is equal to the moment of

the total force with respect to the same point.
"

Fig. 23

1 See above, p. 43.
* Ms. G, fol. 75.
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Fig. 24

Thus, through the intermediary of the concept of moment, Leonardo

arrived at the resolution of forces. Indeed, on different occasions he

drew the figure opposite, in which the weight JV is hung from two

strings CB, CA, which are equally inclined

to the vertical through JV. He wrote
" The pole of the angular balance formed

of AD and AF is A 9 and its appendages are

DN and FC.
" As the angle of the string that carries

the weight N at its centre increases, the

length of its potential lever decreases and
the length of the potential counter-lever

which carries the weight increases.
"

This remains somewhat mysterious, but,

like Duhem,1 one may believe that the ten

sion of the string CB, and the weight IV,

would maintain the rigid body formed of the

two potential arms AB and AF in equili

brium, if the body were able to turn about the point A.
" A confusion of ideas poured from Leonardo's mind but, to a high

degree, he lacked the power of discriminating between the true and
the false. Also, as an inevitable consequence, a truth which might
emerge from the surface of incomplete or false beliefs and become
clear to him at one instant, was thrown back again, to await the future

which would finally return it to the shore.
"

d) Leonardo and the Energy of moving bodies. Leonardo was
aware of Buridan's doctrine through the intermediary of Albert of

Saxony, who had adopted it. Moreover, he had read Nicholas of Cues.

Leonardo reconciled these doctrines in the following way.
At the outset he defined a quantity called impeto, analogous to

impetus in Buridan's sense "
Impeto is a virtue created by motion

and transmitted from the motor to the moving body, which has as much
motion as the impeto has life.

" 2

Elsewhere he says,
"
Impeto is the impression of motion which is

transmitted from the motor to the moving body. . . . All impression
desires permanance, as is shown us by the similarity of the motion

impressed on the body.
" 3

Leonardo regarded the motion of a projectile as being separated

1 0. S., Vol. I, p. 181.
2 Ms. E, fol. 22.
3 Ms. G, fol. 73.
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into three phases. In the first the motion is purely violent and is

effected as if the projectile had no mass and was subject only to the

initial impeto.
In the third period, the impeto has completely disappeared. The

moving body has a purely natural motion under the sole influence of

gravity.
Between these two extreme phases Leonardo assumed the existence

of an intermediate period in which the motion was mixed, part violent,

part natural. This is the period of compound impeto.
The following quotation will illustrate this idea.
" A stone or other heavy thing, thrown with fury, changes the

direction of its travel half way along its path. And if you are able

to shoot a cross-bow for 200 yards, place yourself at a distance of 100

yards from a tower, aim at a point above the tower and shoot the

arrow. You will see that 100 yards from the tower the arrow will be

driven in perpendicularly. And if you find it thus, it is a sign that

the arrow has finished its violent motion and has started the natural

motion, that is, that being heavy, it falls freely towards the centre.
" x

Or better still

" On convolutory motion. A top which loses the power which the

inequality of its weight has about the centre of its convolution because

of the speed of this convolution, because of the effect of the impeto
which dominates the body, is one which will never have that tendency
to fall lower, which the inequality of the weight seeks to do, as long
as the power of the body's motive impeto does not become less than

the power of the inequality.
" But when the power of the inequality surpasses the power of

the impeto, then it becomes the centre of the motion of convolution

and the body, brought to a recumbent position, expends the remainder

of the aforesaid impeto about this centre.
" And when the power of this inequality becomes equal to the power

of the impeto, then the top is inclined obliquely, and the two powers

struggle with each other in a compound motion, both moving in a wide

circuit, until the centre of the second kind of convolution is established.

In this the impeto expends its power.
" 2

Following the example of Nicholas of Cues, Leonardo concerned

himself with the "
game of the sphere ." He wrote

" On compound impeto. A compound motion is one in which the

impeto of the motor and the impeto of the moving body participate

1 Ms. A, fol. 4.
2 MH. K, fol. 50.
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together, as in the motion FBC which is intermediate between two

simple motions. One of these is close to the beginning of the motion

and the other close to the end. But the first is determined solely by
the motor, and the second only by the shape of the body.

" On decomposed impeto. Decomposed
impeto is associated with a moving body
which has three kinds of impeto. Two of

these arise from the motor and the third

arises from the moving body. But the

two that arise from the motor are the

rectilinear motion due to the motor and
the curved motion of the moving body,
and are mixed together. The third is

the simple motion of the moving body,
which only tends to turn round with its

centre of convexity in contact with the

plane on which it turns and lies.
" L

Here da Vinci's imagination is given
free rein. Our author becomes even more

lyrical when he defines the forza.
" As for the forza I say that the

forza is a spiritual quality, an invisible

power which, by means of an external and accidental violence, is

caused by the motion and introduced, fused, into the body ; so that this

is enticed and forced away from its natural behaviour. The forza gives
the body an active life of magical power, it constrains all created things
to change shape and position, hurtles to its desired death and changes
itself according to circumstances. Slowness makes it powerful and
speed, weak it is born of violence and dies in freedom. The stronger
it is, the more quickly it consumes itself. It furiously drives away
anything that opposes it until it is itself destroyed it seeks to defeat
and kill anything that opposes it and, once victorious, dies. It be
comes more powerful when it meets great obstacles. Every thing
willingly avoids its death. All things which are constrained constrain
themselves. Nothing moves without it. A body in which it is born
does not increase in weight or size. No motion that it creates is lasting.
It grows in exertion and vanishes in rest. A body on which it is im
pressed is no longer free.

" 2

Or again,
"

I say that forza is a spiritual, incorporeal, invisible power
which is created in bodies which, because of an accidental violence, are

1 Ms. E, fol. 35.
2 Ms. A, fol. 35.

Fig. 25
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in some other state that their natural being and rest, I have said

spiritual because there is in this forza an active incorporeal life, and I

have said invisible because bodies in which it is born change neither in

weight nor in shape ; of short life, because it always seeks to overcome

its cause, and having done so, to die.
" 1

We shall attempt, without too much quotation, to indicate Leo

nardo's ideas on forza, ideas which were inspired by the metaphysics of

Nicholas of Cues.

Forza can be born of the "
expansion undergone by a tenuous body

in one that is dense, like the multiplication of fire during the firing of

cannons.
"

It can also be born of a deformation as in a cross-bow.

Finally, one forza can engender another this is the case of impact.
Leonardo returned to a pythagorean doctrine according to which a

heavy body that is detached from a star to which it belongs tends to

return there, in order to reconstitute the completeness of the star. He
contrasted weight with forza, saying that these oppose each other.

"
Weight is natural and seeks stability, then rest forza seeks

killing and death for itself.
"

Weight is indestructible. When a heavy

body arrives on the ground it exerts a pressure on it,
" and penetrates,

from one support to another, to the centre of the World. " A weight
embodies power, /orza, motion and impact at the same time. But the

fall of a body is itself preceeded by an accidental ascent. To be precise,

at the origins of all actions in mechanics there must be a prime mover.

And Leonardo, seduced by metaphysics, concludes all motion arises

from the mind.

Further comment on this adventurous thesis of Leonardo seems, to

us, unnecessary its qualities are more of poetry than of precision, of

eloquence than solidity, more metaphysical than positive.

e) Leonardo da Vinci and perpetual motion. Leonardo denied the

possibility of perpetual motion on, the grounds that forza continually

expends itself. On the other hand, gravity seeks to produce equili

brium, all motions which are set in train by gravity have rest as their

ultimate end.

f
)
Leonardo and the Figure of the Earth. Having read and medi

tated Albert of Saxony, Leonardo wrote in connection with the figure of

the Earth

"
Every heavy body tends downwards, and things which are at a

height will not remain there, but will all, in time, fall down. Thus, in

time, the World will become spherical and in consequence, will be com-

1 Ms. B, fol. 63.
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pletely covered with water.
" l And, without hesitation, he adds, the

Earth will be uninhabitable.

In Leonardo's belief, the seas exerted no pressure on the part of the

globe which they covered. Quite the contrary.
" A heavy body

weighs more in a lighter medium. Therefore the Earth, that is covered

by air is heavier than that covered by water.
" 2

g) Leonardo da Vinci and the theory

of centre of gravity. The flight of birds.

Leonardo considered two towers ABIQ,
CDL/C in " continual uprightness,

"

erected parallel to each other from the

bases AB, CD, on the Earth. He pre
dicted that " the two towers will

tumble down towards each other if their

construction is continued above a cer

tain height in each case.
"

Here is his argument.
" Let the

two verticals through B and C be pro
duced in

c continual straightness.
'

If

they cut one of the towers in GC and the

other in jBF, it follows that these lines

do not pass through the centre of gravity
of the lengths of the towers. Therefore

KLCG, a part of one tower, weighs more than the remainder, GCD,
and of these unequal things, one will be dominant over the other, in

such a way that, of necessity, the greatest weight of the tower will carry
away all the opposite tower. And the other tower will do the same, in a

way which is inverse to the first.
" 3

To recapitulate, Leonardo asserted that the vertical from the centre
of gravity should not pass outside the base. This is, implicitly, the now
classical theorem of the polygon of sustentation, but it contains the

error, common to all the Schoolmen, that the convergence of the ver
ticals has not been neglected.

In this connection, Leonardo almost goes as far as to suggest that a
measurement of the distance apart of two verticals at the top and the
bottom of a tower should be used to deduce the length of the Earth's
radius.4

Fig. 26

1 Ms. F, foL 70.
2
Ibid., fol. 69.

3
Ibid., fol. 83.

4 DUHEM, 0. S., Vol. II, p. 81,
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Going over from statics to dynamics, Leonardo, guided by his bold

and ubiquitous imagination, affirmed that "
any heavy body moves

towards the side on which it weighs more. , . . The heaviest parts of

bodies which move in air become guides for their motion. " x

He also wrote,
"
Every thing which moves on a perfectly plane

ground in such a way that its pole is never found between parts of equal

weight, never comes to rest. An example is provided by those who
slide on ice, and who never stop if their parts do not become equidistant
from their centres.

" 2

In his Treatise on Painting, Leonardo applied the preceding ideas

to the flight of birds.
66

Any body that moves by itself will do so with greater velocity if

its centre of heaviness is further removed from its centre of support.
" This is mentioned principally in connection with the motion of

birds. These, without any clapping of wings or assistance from the

wind, move themselves. And this occurs when the centres of their

heaviness are displaced from the centres of their support, that is, away
from the middle of the extension of their wings. Because, if the middle

of the two wings is in front of or behind the middle, or the centre, of

the heaviness of the whole bird, then the bird will carry its motion

upwards or downwards [and this all the more so] as the centre of heavi

ness is more distant from the middle of the wings. ..."

h) Leonardo and the fall of bodies. It was inevitable that Leonardo

should have become interested in the fall of heavy bodies. After having
hesitated for some time between the two laws of velocity that were

mentioned by Albert of Saxony (see above, page 57), Leonardo declared

himself entirely in favour of the correct law v = kt . To set against this,

the content of the studies on the latitude of forms (Oresme, Heytesbury)

completely escaped him. Throughout he believed that motion (moto)
was proportional to velocity (vclocitas) and, in consequence, was

mistaken about the law of distances.

In this connection we shall confine ourselves to a single quotation.
" On motion. A heavy body which falls freely acquires one unit of

motion in each unit of time ; and one unit of velocity for each unit of

motion.
" Let us say that in the first unit of time it acquires one unit of

velocity. In the second unit of time it will acquire two units of motion

and two units of velocity, and so on in the way described above.
" 3

1 Ms. E t fol. 57.
2 Ms. A, fol. 21.
3 Ms. M, fol. 45.
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i) Leonardo's hydrostatics. Like the ancients, Leonardo set out to

explain now water could appear in springs at the tops of mountains.

He wrote,
" It must be that the cause which keeps blood at the top of

a man's head is the same as that which keeps water at the tops of

mountains. " Leonardo sought this mechanism in the nature of heat,
" There are veins which thread throughout the body of the Earth. The
heat of the Earth, distributed throughout this continuous body, keeps
the water raised in these veins even at the highest summits.

" l To be

accurate, Albert of Saxony, in his commentary of the relevant parts of

Aristotle's treatise Meteores, had already invoked the intervention of

heat in this matter.

Leonardo was more fortunate when he gave a complete formulation

of the law of the flow of currents.
" All motion of water of uniform breadth and surface is stronger at

one place than at another according as the water is shallower there than
at the other.

" Leonardo also outlined a theory of hydraulic pumps in

the writing Del moto e misura delVacqua in which a hint of Pascal's

principle can be discovered.2

j) Leonardo da Vinci and the geocentric hypothesis. On looking for

it in Leonardo's writings, there can always be found evidence of the

kind that Duhem indefatigably sought. Thus there is the following

passage, which is aimed at the geocentric hypothesis.
"

, , . Why the

Earth is not at the centre of the circle of the Sun nor at the centre of the

World, but rather at the centre of its elements, which accompany it

and with which it is united.
" 3

5. NICHOLAS COPERNICUS (1472-1543). His SYSTEM OF THE WORLD
AND HIS IDEAS ON ATTRACTION.

In this book we can only discuss the different World-systems to the
extent that they have had an influence on the development of mechanics.
The copernican system that was, in the hands of Kepler and Newton,
to play a fundamental part in the creation of dynamics, had no imme
diate influence on the scientists of the Renaissance. On the whole,
these remained faithful to aristotelian ideas. We remark, for example,
that the Sorbonne in the XVIth Century remained closed to copernican
ideas and continued to teach Ptolemy's system.

Our attention, therefore, should only be held for a short time by
1 Ms. A, fol. 56.
2
Cf. DUHEM, Etudes sur Leonard de VincL Series I, t> 198

3 Ms. F, fol. 41.
*
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Copernicus' ideas on dynamics and the circumstances which facilitated

the copernican revolution.

From Antiquity there had been writers whose opinions were similar

to those of Copernicus. Philolaus of Crete (a disciple of Pythagoras),
Nicete of Syracuse and Aristarchus of Samos had attributed to the

Earth both a daily and an annual motion, circular and oblique, about
the Sun. (There was also supposed to an invisible earth which was

symmetrical with ours with respect to the Sun.)
In the Middle Ages William of Ockham, Buridan and Albert of

Saxony assumed that the Earth could have a rotational motion which
was not necessarily identical with the apparent motion of the stars.

Albert of Saxony was not alone in attributing the precession of the

equinoxes to a slow displacement of the Earth. We have seen in detail

how Nicole Oresme, who was certainly unknown to Copernicus, had
defended the theories of a fixed Heaven and an Earth which had a
diurnal motion. The appeal to the doctrine of impetus in Oresme's thesis,
which was used to destroy that of Aristotle, is especially important.

In the religious fiels the Church in the XHIth Century, tolerant

because of its power, had the wisdom to brush aside the a priori questions
which could be opposed to every doctrine that deviated from the geo
centric hypothesis. As early as 1277 Etienne Tempier, Bishop of Paris,
made the assumption that the question of whether the Heavens had a
translation motion, or not, could be discussed. Thus the Church in the
XHIth Century assumed that the study of world-systems could be

pursued as a piece of contingent research. In fact, a century later,

Nicole Oresme did not compromise his ecclesiastical career in any way
by believing in the motion of the Earth.

In the field of metaphysics, even the debate on the plurality of
worlds helped the copernican revolution. In reaction against the pytha-
gorean doctrine, Aristotle explicitly understood the term " Heavens "

(OvQKv6$) in the sense of " All
"

or of " Universe.
" The absolute

fixity of the Earth and the perpetual rotation of the Heavens consti

tuted a dogma of science. The Universe is unique and each body has
a unique natural place, to which it returns of its own accord if it is

violently displaced from it. Any other world which can exist must

necessarily be made of the same elements as ours* To Aristotle, this

meant that the co-existence of several worlds implied a contradiction.

Beyond this Eight Sphere there can be neither space nor time.

This thesis was to be attacked in the Xlllth Century on the very
grounds of the omnipotence of God.

Michael Scot (1230) was of the opinion that God could have created

several worlds, but that Nature would not have been able to accommodate
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them. Saint Thomas Aquinas attempted to reconcile Aristotle's doc

trine with the principle of divine omnipotence the creation of similar

worlds would be superfluous, the creation of dissimilar worlds would

detract from the perfection of each of them, for only the ensemble can

be perfect.

In 1277 the theologians of Paris, at the request of Etienne Tempier,
condemned the anti-pluralist thesis.

William ofOckham intervened in the same direction he argued that

identical elements could simultaneously be directed towards different

places. Thus a fire at Oxford would not move towards the same place
as if it had been lit at Paris. The direction of a natural motion could

therefore depend on the initial position of the element. Albert of

Saxony decided against the plurality of worlds except
u in a super

natural way, to the liking of God.
" On the other hand, towards the

end of the XVth Century Joannes Majoris asserted, in his De infinite,

not only the plurality of worlds but the existence of an infinite number
of worlds.

These discussions in no way lessen the originality of Copernicus'

work, but to a certain extent they explain why he ventured to present
his thesis. Being by profession Canon of Thorn, he protected himself

with certain cautious declarations. Thus, in dedicating his works to

Pope Paul III, he wrote,
" I have believed that I would be readily

permitted to examine whether, in supposing the motion of the Earth,

something more conclusive (firmiores demonstrations) might not be
found in the motion of the celestial bodies.

"

Strictly speaking, the doctrinal opposition only came much later

with, for example, Melanchton and Father Riccioli. The latter was
able to enumerate 77 arguments against the motion of the Earth and to

refute 49 of the copernican arguments. As far as the Congregation of

Cardinal Inquisitors was concerned, it only officially condemned Coper
nicus' writings on March 5th, 1616. In order to fix certain essential

dates, we recall that Copernicus was born at Thorn on January 19th,
1472. He received his doctorate at Krakov, and made his way to

Bologna and then to Rome, where he devoted himself to astronomy.
Copernicus gave himself up to a thorough study of the different

world-systems which had been proposed by the Ancients, and used the
motions of Mercury and Venus in order to place the Sun at the centre of
the planets. In referring to the Pythagoreans, he proposed that the
Sun should be placed at the centre of the World. Not wishing to ad
vance anything without evidence, he started observation of planetary
motions. The account of this task, completed in 1530, was only printed
on his death in 1543,
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If, in not making the centre of the Earth coincide with that of the

Universe, he dispensed with the aristotelian doctrine on an essential

point, he kept, for the rest, most of the ideas of the Schoolmen. How
ever, he did dispose of the distinction which Albert of Saxony had made
between the centre of gravity and the geometrical centre of the Earth.

We shall quote from Copernicus' De revolutionibus orbium caelestium.
" The Earth is spherical because, on all sides, it strives towards the

centre. The element of the Earth is the heaviest of all, and all heavy
bodies are carried towards it and seek its intimate centre.

" To my mind, gravity is nothing else than a certain natural quality

given to the parts of the Earth by the divine providence of He who made
the Universe, in order that they should converge towards their unity
and integrity, by uniting in the form of a globe. It is probable that

this property also belongs to the Sun, the Moon and to the wandering

lights so that these too, by its virtue, keep that round shape in which

we see them. "

And here Copernicus attacks Albert of Saxony.
" Because of their gravity, water and earth both tend towards the

same centre. . . . One should not heed the Aristotelians when they claim

that the centre of gravity is separate from the geometrical centre. . . .

It is clear that both earth and water strive towards a unique centre of

gravity at the same time, and that this centre is in no way different from
the centre of the Earth.

"

Copernicus' doctrine on the figure of the Earth agreed perfectly
with all the geographical observations. More simple than that of

Albert of Saxony an abstraction founded on prejudices opposed to the

motion of the Earth it was destined to triumph. But at this point
the copernican ideas came up against a scholastic tradition whose root

must be found in Aristotle's Meteores the four elements earth, water,
air and fire have equal masses and therefore occupy volumes which are

inversely proportional to their densities. Moreover, the Aristotelians

held that when a given mass of an element became "
corrupted

**
in

order to produce the next element in the succession, its volume increased.

Aristotle himself mentioned this relationship for the single instance

of the transformation of water into air, but his commentators applied
it without hesitation to the transformation of earth into water and,

carrying the argument to the limit, said that the total volume of water

was greater than the total volume of earth. Gregory Reisch, prior of

Fribourg, put forward opinions of this kind in his Margarita philosophica

(1496), a small encyclopedia that was widely circulated in the XVIth,

Century. Twelve years after the end of Magellan's navigation of the

globe which should have clarified the scholastic opinion of the face
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of the Earth Mauro of Florence (1493-1566) took up Reisch's thesis

again, and held that the volume of the closed earth was ten times less

than that of the waters. Copernicus felt himself obliged to refute this

author. We have only stressed this geophysical issue in order to show
the kind of objection which the great reformer of the system of the world

met during his lifetime.

6. JOHN FERNEL (1497-1558) AND THE FIGURE OF THE EARTH.

John Fernel, chief physician to Henry II, deserves to be mentioned
in a history of mechanics for having been the first among the moderns
who had the initiative to measure a degree of terrestrial meridian. This

he did by counting the number of revolutions of the wheels of his car

riage between Paris and Amiens. In his Cosmotheoria, published at

Paris in 1528, Jean Fernel disputed Albert of Saxony's doctrine, and
decided in favour of the existence of a unique spherical surface for the

combined mass of earth and water. He imagined the Earth to be abso

lutely immobile and to present the shape of a globe which had been
hollowed out in places and whose cavities had been filled with water.

If one is to believe the chronicles,
1 John Fernel, who was a distin

guished astronomer and mathematician, would certainly have written
other things

"
if his wife had not compelled him, so to speak, to leave

the sterile study of mathematics. "

7. ITALIAN SCHOLASTICISM IN THE xvith CENTURY.

At the beginning of the XVIth Century the Italian Schoolmen were
divided into three camps ; there were the Averroists, the Alexandrists
those who made appeal to Alexander of Aphrodisias and the Huma

nists.

As an example of the first school, we shall cite Agostino Nifo, to
whom we owe a commentary of De Caelo et Mundo dated 1514. In this

manuscript there is nothing but scorn for the parisian school of the
XlVth Century, whose representatives are called Juniores, terminalista

(nominalists), Sorticoles (disciples of Sortes, that is, of Socrates) and
Captiunculatores (a corruption of Calculators). Albert of Saxony is

ridiculed with the title of Albertutius or Albertus Parvus.
The Averrolsts rejected the doctrine of impetus and returned to

Aristotle's explanation of the motion of projectiles. Concerning the

1 LALANDE, Astronomic, Vol. 1, p. 189.
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fall of heavy bodies, Nifo, like Saint Thomas Aquinas,
1 held that proxi

mity to its natural place contributed towards a body's acceleration.

He added to this an " instrumental cause,
" and a quality belonging

to the moving body.

Among the Alexandrists Peter Pomponazzi of Mantua, who is said

to have taught at Bologna, devoted a treatise De intensione et rernissione

formarum (1514) to an attack on the Oxford School. In his De reactione

(1515) he called William Heytesbury
" the greatest of the Sophists

"

and contrasted him with " the clear and great voice of Aristotle.
"

The thesis of Alexander of Aphrodisias, to whom this faction gave

allegiance, has been preserved for us by Simplicius. It consisted of the

assumption that a heavy body which was placed at a height became

lighter. This lightness obtained at the beginning of the fall and then,

continuously, became less apparent.
The Italian Humanists reproached the Schoolmen for their "

parisian

manner,
" which was described as barbarous, sordid, gross and uncul

tured, but approved of their religious orthodoxy. In addition the

Humanists, in the person of Giorgio Valla who taught at Padua (1470)

and at Venice (1481), made an especial attack on the AverroXsts. These

were taken to task for their language studded with arabic terms and

for their exclusive cult of Aristotle and consequent neglect of Plato.

Valla went as far as to consider Averroes, in Latin, of course, as a
"
primitive creature emerging from the mud " and as "

pigheaded.
"

In dynamics Valla echoed the thesis of intermediate rest (quies inter"

media) between the ascent and the descent of a body, which compro
mised the continuity of the motion. He assumed the existence, in

every moving body, of a vis insita* This quantity, however, has no

connection with Buridan's impetus, but rather is accounted for by the

proximity of a motive agency or the natural place, according as a violent

or a natural motion is in question.
These violent polemics added nothing new to mechanics, and we

have only described them in order to illustrate the atmosphere of the

time, with which original thinkers had to contend.

8. PARISIAN SCHOLASTICISM IN THE xvith CENTURY.

The teachings of Buridan and Albert of Saxony were preserved at

the College of Montaigu under the Scotsmen Joannes Majoris and

George Lockhart. Jean Dullaert de Gand and the Spaniard Luiz

Coronel taught at the same college. Another Spaniard, Jean de Celaya,

taught at Sainte-Barbe.

1 See above, p. 57.
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This tradition was eclectic. It declared that it followed " the triple

voice of Saint Thomas Aquinas, the Realists and the Nominalists. "

Nevertheless, this School quibbled and argued much more than the

masters of the XlVth Century, and lacked their originality.

Joannes Majoris, who was primarily a great teacher, taught Oresme's

work on the latitude of forms and, in 1504, had Buridan's Summulae

printed. In his Disputationes Theologiae Majoris argued, more explicitly
than Buridan had dared to do, the identity of the dynamics of celestial

and terrestrial bodies. Thus, like Nicholas of Cues, he prepared the way
for Kepler. But it was left to him to fight the Reformation and
to defend the dialectic which the students had begun to neglect. It was
a time when,

" covered with threadbare garments and with empty
purses, the unhappy logicians of the University of Paris mused sadly
on chairs which were no longer surrounded by pupils. They listened to

the raillery that was poured on their learning, which they had only

acquired with great effort, and to which they had consecrated their

working lives.
" l

Already attacked by the Humanists, Scholasticism

no longer paid.
In 1509 Jean Dullaert de Gand (1471-1513) continued the printing

of Buridan's works. In 1506 he himself published some Quaestions on
Aristotle's De Caelo and Physics. At Montaigu he taught the doctrine

of impetus. He assumed that the impetus was modified by the shape
of the projectile and supported the notion of intermediate rest, which
he took to be at the moment when the impetus of the ascending motion
was overcome by the gravity. He came to no conclusion as to the
nature of impetus, whether it was a distinct property of a moving body
or not. Concerning the fall of heavy bodies, he assumed that the im

petus increased continually, though he did not know whether it should
be taken as proportional to the size of the body. Similarity, Dullaert

taught Oresme's rule on uniformly deformed motion through the reading
of Bernard Torni, though he confined the treatment to the algebraic
form of the rule. He lost himself in discussions on the nature of motion,
a " successive entity truly distinct from all permanent things.

"

Luiz Nunez Coronel, of Segovia, published Physicae Perscrutationes
in 1511. In dynamics, he believed in the gradual weakening of the

impetus of all violent motion, which was a serious regression from Bu
ridan's thesis. As for intermediate rest, he "

imagined instances in
which a stone thrown in the air remains there at rest for as much as an
hour, two hours or even three,

"
without being dismayed by the objection

that such rest was never seen. " This objection is not conclusive. The

1 DUHEM, Etudes sur Leonard de Vinci, Series III, p. 179.
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great distances may prevent one from seeing the rest, or it may even

happen that the stone remains motionless for a time which is imper

ceptible.
"

To Coronel, impetus was an aptitude of the moving body, a certain
" actual entity,

"
produced in it by means of a repeated series of local

motions. Impetus was thus identified with a cognition acquired by the

repetition of the same perception, like that of handwriting to the fingers

of the hand. This physiological model, however arbitrary it may be,

was taken up again by Kepler. In the theory of gravitation, Coronel

showed himself to be singularity naive. If weight is a property emanat

ing from the natural place, in order to prevent this property from passing

through the surface of the earth, it will be sufficient if this is covered

with a garment. . . . Elsewhere Coronel attributes the generation, in

a free fall, of an impetus of greater or lesser intensity, exclusively to

gravitation or to the substantial form of the heavy body.
In the motion of projectiles, Coronel assumed a mixture of decreasing

impetus and progressive agitation of the air, which resulted in a certain

compensation and assured a maximum violence at the middle of the

trajectory.
In 1517 Jean de Celaya published Expositio in libris Physicorum, a

literal commentary on Aristotle. The relevant discussion only appear
ed later under the title Sequitur glosa, and is distinguished by having

explained, rather clearly, a law of inertia in the following terms.
" It would follow from the theory that a body which is projected

will move forever. However, this result is false and the reason is clear.

The theory does not include anything which will destroy the impetus,
and it will therefore move the projectile forever.

u To this we reply by refusing to recognise the validity of the argu
ment, and this because we deny the antecedent. Indeed, this impetus
is sometimes destroyed by the resisting medium, sometimes by the

shape or the property of the projectile that exerts a resisting action,

sometimes, finally, by an obstacle.
"

Celaya assumes that in the absence of these three mechanisms of

destruction, impetus lasts indefinitely.
" It is not necessary to suppose

as many intelligences as there are heavenly bodies. It is sufficient to

say that there is in each star an impetus? that this impetus was put there

by the Prime Cause, and that it is this which moves the star. This

impetus is not modified for the very reason that the heavenly body has

no inclination towards a different motion*
"

This is entirely in agreement with Buridan's thesis.

In the general sense, impetus was a second quality to Celaya. He

compared it to **

knowledge and dispositions of the soul.
**
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Celaya was rather reticent on the subject of the plurality of worlds.

The Catholic faith provides no argument from which the existence of

several worlds can be deduced, and the Philosopher (Aristotle) saw

objections to such a happening. All the same,
" from the supernatural

point of view, there can exist several worlds, either simultaneously or

successively, either concentrically or excentrically.
" For " God can

do all things that do not imply a contradiction,
" and here there is none.

The opinion of the Philosopher according to which the World contains

all possible matter "
is heretical, and the Philosopher would not be able

to prove it.
"

Finally, we remark that though Celaya taught the work
of Nicole Oresme and the Oxford School, like Jean Dullaert, he only
knew them through the Italian tradition.

9. THE ATTACK OF THE HUMANISTS.

The rapid sketch which we have given above is sufficient to show
that Parisian Scholasticism in the XVIth Century was in regression
from the original work of the XlVth Century. The Humanists who
were to proclaim its decadence were pupils of the College of Montaigu
Didier Erasme and Jean Luiz Vives.

Moreover, in mechanics, these Humanists preserved the tradition
which they had received from Majoris and Dullaert. Thus, in his

immensely successful Colloquia (1522), Erasme discussed the oscillation

of a heavy body that travelled through to the centre of the Earth this

is, as we know, a problem that had already been raised by Oresme in
terms that his masters would not have disowned. Erasme's Eulogy of
madness, which antedates the Colloquia and was published in 1508,
includes a determined attack on the theologians,

" those quibblers who
are so puffed up with the wind and smoke of their empty and quite
verbal learning that they will not give way on any point.

"

Jean Luiz Vives (1492-1540) was born at Valence and was a pupil
of Jean Dullaert before becoming a professor himself at Louvain. In
De prima philosophia (1531) he discussed " intermediate rest

"
at great

length, in terms which were in complete conformity with the pure scho
lastic doctrine. He had therefore retained traces of the teaching of

Montaigu. His violent diatribes were directed at the Parisian masters
and at the Oxford School with its XVth Century tradition, which sought
to extend the Calculator's dialectic to medicine.

In De philosophiae naturae corruptione (1531) Vives wrote,
" How can

there be learning in subjects so divorced, so completely separated,
from God on the one hand and from sensibility and spirit on the other ?
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In a domain in which, founded on nothing, there is seen a vast structure

of contradictory assertions concerning the increase and decrease of

intensity, the dense and the tenuous, uniform motion, non-uniform

motion, uniformly varying motion and non-uniformly varying motion ?

It is not possible to count those who, without any limit, discuss instances

which never occur, which could never turn up in nature ; who talk of

infinitely tenuous and infinitely dense bodies ; who divide an hour into

proportional parts for this reason or that, and consider, in each of these

parts, a motion, or an acceleration, or a rarefaction, varying in a given

way. . . .

"

Further, in De medicina we find,
** the young people and adolescents

who have been educated by means of these specious and tricky discus

sions know nothing of plants, of animals, nor of nature in the round.

They have been brought up with no experience of natural things,
without knowledge of reality. They have no prudence. Their judge
ment and their counsel are excessively weak, and yet they are expected
to be able to win honour for themselves !

"

And he concludes (In pseudodialecticos) ,

" For myself, I have a great

gratitude to God, and I thank him that I have at last left Paris, that

I have emerged from the Cimmerian darkness, have come out into the

light, that I have discovered the truly dignified studies of mankind
those which have earned the name Humanities. "

10. DOMINIC DE SOTO (1494-1560) AND THE LAWS OF FALLING BODIES.

At the very moment that Scholasticism appeared to be discredited

by the attacks of the Humanists, there intervened an original work
which succeeded in formulating the laws of falling bodies correctly. We
shall now analyse this work in some detail.

Dominic de Soto was born in 1494, the son of a gardener at Segovia.
He attended the University of Alcala of Henares, and then took himself

to the University of Paris where the Spaniards were already rather

numerous. He returned to Alcala in 1520 and gave up the chair which

he had obtained in order to take the habit of a preaching friar. From
1532 to 1548 he taught theology at Salamanca. As confessor to Charles V,
he followed his king to Germany. Later he returned to Salamanca

and taught theology there from. 1550 until his death in 1560.

Soto had been a witness of the furious attacks of the Humanists upon
the Paris School but remained, for his part, a Schoolman. However,
he eschewed nominalism and attacked it in his Quaestiones (1545) on

Aristotle's Physics.
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We shall not discuss the metaphysical content of Soto's work, in

which he rejected the concept of an actual infinity in favour of a virtual

one, and shall only be concerned with his contribution to mechanics.

In the first place we note, in passing, that Soto adopted Albert of

Saxony's opinion on the equilibrium of the earth and the seas. In

connection with the motion of projectiles, he taught the doctrine of

impetus, and presented it in the following way.

" First Conclusion. It cannot be denied that a man or a mechan

ism sets the air in motion when throwing a projectile, just as we see

the circular agitation of water around a stone which has been thrown

into it. The truth of this conclusion is especially evident for cannons,

from which the air is driven in the form of a very violent explosion at

the same time as the shot.

" Second Conclusion. Air is not the only cause of the motion of

projectiles. Whatever has thrown the moving body is also a cause,

through the intermediary of the impetus which it has impressed on the

body.
" i

Thus Soto sought to reconcile Aristotle's doctrine with that of

impetus by assuming that the agitation of the air played some part in

the motion of projectiles. However, he summarily dismissed Marsile

Inghen's opinion (see above, page 68).
" Observation proves that air too is a cause of the motion of pro

jectiles. Indeed, we know that an arrow does not hit an object which
is near with as much violence as it hits one that is a little more distant.

This is why Aristotle says, in the second book of the Heavens, that

natural motion is more intense towards the end, while the greatest

intensity of the motion of a projectile is attained neither at the beginn

ing nor at the end, but near the centre.
" Some suppose that the reason for this happening is the following

one the impetus is not all imparted to the arrow at the first instant.

Later it becomes more intense, or else distributed through the extension
of the arrow, so that it moves it in a more urgent way. But this is not

very easy to understand. Indeed, one cannot see what could increase

the intensity of the impetus after the arrow has been separated from the

ballista, for an accident does not, of itself, become more intense. On
the other hand, as the arrow is a continuous body, the impetus is simul

taneously imparted to the whole body. Therefore it cannot distribute

itself further later.
" 2

1
Quaestiones in libros Physicorum, Vol. II, fol. 100.

2 Ibid.
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Soto regarded impetus as a "
property distinct from, the subject in

which, it is encountered,
"

like gravity or lightness. Conversely, he

saw gravity as a " natural impetus.
"

In his desire to reconcile Aristotle and Buridan, Soto went as far as

to argue that Aristotle did not doubt the doctrine of impetus, but that

he must have taken it as obvious, from the analogy with heavy and

light bodies, and passed over it in silence.

But the essential part of Soto's work is that which concerns the fall

of bodies. Some of the Schoolmen who had proceeded him had discussed

the fall of bodies, albeit in a purely qualitative manner; others had
discussed uniformly varying motion in the field of pure kinematics ;

but these studies had remained separate. It has now been established

that the synthesis of these discussions was accomplished in Soto's time.

He himself does not describe this achievement as a personal success. Is

this modesty on his part or, on the other hand, the reflection of a move
ment which had already been completed by the Schoolmen ? The
answer to this question is of little importance what does matter is the

law which was clearly expressed by this Spanish master.

We shall quote Soto's own text, as translated by Duhem.1

" Motion which is uniformly deformed with respect to time is that

in which the deformity is so if it is divided according to time, that is

according to intervals which succeed each other in time, in each part
the motion at the central point exceeds the weaker terminal motion in

this part by an amount equal to that by which it itself exceeded by the

more intense terminal motion,
" This kind of motion is one which is appropriate to bodies which

have a natural motion and to projectiles (Haec motus species proprie
accidit naturaliter motis et projectis) .

u
Indeed, each time that a mass falls from the same height in a

homogeneous medium, it moves more quickly at the end than at the

beginning. On the contrary, the motion of bodies which are projected

[upwards] is weaker at the end than at the beginning. And similarily
the first motion is uniformly accelerated and the second, uniformly
retarded.

"

Soto was concerned with the law of distances for uniformly varying

motion, and in his writings the ideas of Nicole Oresme and of the Oxford

School may be clearly identified. After some hesitation he declared

himself for the correct law.
"
Uniformly deformed motion with respect to time follows almost

the same law as uniform motion does. If two bodies travel equal

1
Theologi ordinis prdedicatorum super octo libri Physicorum Aristotelis Quaestiones,

Salamanca, 1572, fol. 92 d.
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distances in a given time, even though one moves uniformly and the

other in any deformed manner for example, in such a way that it

covers one foot in the first half-hour and two feet during the second

from the moment that the latter covers as many feet as the former,
which moves uniformly, in the whole hour, the two moving bodies

will move equally.
" But here an uncertainty arises. Should the velocity of a body

in uniformly varying motion be denominated by its most intense degree ?

If for example, the velocity of a falling body increases in one hour

from degree zero to degree eight, should it be said that this body has

a motion of degree eight ? It seems that the affirmative reply is the

correct one, for this is the law which seems to be followed by uniformly

varying motion with respect to a subject moving body. Nonetheless

we reply that the velocity of uniformly varying motion is evaluated

by the mean degree and should be given the denomination of that

degree. One should not argue in this respect as in the case of uniformly

varying motion with respect to the subject. Indeed, in the latter

case the reason for the rule adopted is the following each part of

the moving body describes the same line as the most rapidly moving
point, in such a way that the whole moves as quickly as this point.
Whereas a body which moves with a motion that is uniformly deformed
with respect to time does not describe a path as great as if it were mov
ing uniformly with the velocity which it attains at its supreme degree.
This goes without saying. Therefore we believe that uniformly de
formed motion should be denominated by its mean degree. Example
// the moving body A moves for one hour and constantly accelerates its

motion from degree zero to degree eight, it will travel just as great a path
as the moving body B which moves uniformly with degree four for the same
time.

" It follows from this that when bodies move with a deformed
motion, these motions should be reduced to uniform ones.

" 1

1
Ibid., fol. 93 and 94.



CHAPTER SIX

XVIth CENTURY
(Continued)

THE ITALIAN SCHOOL
OF NICHOLAS TARTAGLIA AND BERNARDINO BALDI

1. NICHOLAS TARTAGLIA.

Nicholas Fontana, called Tartaglia, derived his surname which

indicates stammering from an injury obtained when he was wounded,
while still an infant, in the sack of Brescia. He was born at Brescia

at the beginning of the XVIth Century and died at Venice in 1557.

Tartaglia was one of the means by which the original statics of

the XHIth Century, which had been forgotten, was preserved for the

Italian School of the XVIth Century. Indeed, Tartaglia entrusted

Curtius Trojanus with the publishing of the work of the unknown
author of the XIHth Century. This appeared in 1565 under the

title of Jordani opusculum de ponderosite Nicolai Tartaleae studio

correctum.1 Instead of giving his predecessors credit for their work,

Tartaglia, who was not very scrupulous in matters of scientific pro

priety, claimed their demonstrations as his own.

Dynamics is treated in two of Tartaglia's works, Nova Scientia

(1537) and Quesiti et inventioni diversi (1546).
In the first of these works Tartaglia attributes the acceleration

of falling bodies to their approach to their natural place.
" A heavy

body hastens towards its proper nest, which is the centre of the World,
and if it comes from a place which is more
distant from this centre it will travel more

quickly in approaching it.
"

Elsewhere he distinguished three phases
in the trajectory of a projectile AB
(rectilinear), BC (a curved join) and CD
(vertical). He held that the velocity was Fig. 27

1 See above, pp. 41 to 46.
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least at C, at the point at which the violent motion finished and the

natural motion began.
This dynamics is improved a little in the Quesiti, in which he

asserts that, except for the case in which the particle is thrown

vertically, the trajectory of a shot has no rectilinear portion. It is

the natural gravity which makes the trajectory curve downwards.
The more rapidly a heavy body is thrown in the air, the less heavy it

is and the straighter it travels through the air, which supports a

lighter body more effectively. The more the velocity decreases the

more the gravity increases, and this gravity continually acts upon the

body and draws it towards the earth.1

Tartaglia adds that the motion of a projectile starts with an accel

eration. He says that, for the same cannon with the same charge
of powder and the same elevation, a second shot will go further than
the first because it will find the air already divided and more easily

penetrable.

2. JEROME CARDAN (1501-1576).

Jerome Cardan was born at Padua in 1501, died at Rome in 1576,
and was at once physician, astrologer, algebraist and a student of

mechanics.

Cardan's two works which are relevant to mechanics are the De
Subtilitate (1551) which was translated into French by Richard le

Blanc in 1556 and the Opus novum (1570).
In statics Cardan believed that that he had surpassed Archimedes,

whom he had read and admired, by treating the weight of the two
arms of a balance. Indeed he wrote,

" The heavinesses [moments] of
the two arms of a beam [horizontal, cylindrical and homogeneous]
have the same proportion to each other as that of the squares of the

lengths of the two arms . . . Hoc est quod
Archimedes reliquit intactum.

" 2

Cardan uses the concept of moment fully." It is clear that, in balances and in

things which lift loads, the further the burden
is from the fulcrum the heavier it is. Now the

weight at C is separated from the fulcrum

by the length of the line CJ5 and that at JP,

Fig. 28 by the length of the line FP. " 3

1
C/. DUHEM, Etudes sur Leonard de Vinci, Series III, p. 188. It may be that

Tartaglia used Leonardo da Vinci's notes without acknowledgement.
Opus novum, Proposition XCIL

3 De subtilitate, translated by RICHARD LE BLANC, p. 16.
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Like his predecessors of^the Xlllth Century, Cardan then consi

dered equal arcs FG and CE starting from the points jP and C, but

he directed his attention to the velocities and not to the paths, by
observing that the fall from F to G was more "

tardy
" than the fall

from C to E.

He concludes,
" then this argument is general that the further

the weights are from the end, or the line fall of along the straight line

or the oblique, that is to say along the angle, the heavier they are. . . .

Thus the intention of the weight is to be carried directly towards the

centre. But because it is prevented from doing this by the linkages,

it moves as best it can.
" l

Duhem interprets this rather obscure passage in the following way.
" When a heavy body falls vertically the power of the body is

measured, as Aristotle intended, by the velocity with which it falls.

But through the agency of the mechanism that carries it, because

of the linkages or constraints to use the modern term it may happen
that the body does not move vertically. Therefore in order to reckon

its motive power it is necessary to take account, not of the body's
total velocity, but only of the vertical component of this velocity,

or in other words, of the velocity of fall.

" If then a given weight is suspended from some point of a solid

which can move about a horizontal axis, the power of this weight
will be greater as the point of suspension falls more rapidly when a

given rotation is applied to the support. Therefore it will be greater
as the point of suspension is further from the vertical plane containing
the axis.

" 2

Like Leonardo, Cardan investigated the pul

ley-block, together with the screw and the jack.
Cardan was of the opinion that on an

inclined plane the heaviness of a given body
is proportional to the velocity with which it

moves down the plane. Therefore this hea

viness is zero on a horizontal plane and
increases with the angle of inclination. Car

dan assumes that the apparent weight is
(,

proportional to this angle.
" Let a sphere a, of weight , be placed at <lg " ""

the point b and suppose that it is desired to

draw it along the plane be. The vertical plane is bf. On the horizontal

plane be the force needed to move a may be taken as small as desired. . . .

1 Ibid.
2 DUHEM, 0. S., Vol. I, p. 46.
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Consequently, according to tke consensus of opinion, the force which

will move a along be will be zero. On the other hand, a will be moved
towards / by a constant force equal to g ; in the direction be by a

constant force equal to fc ; in the direction bd by a constant force equal
to ft. Since the motion along be is produced by a zero force, the rela

tion of g to k will be as the relation of the force which moves a along bf
to thejforce which moves a along 6c, and as the relation of the right

angle ebf to the angle ebc. In the same way the force which moves a

along bf isjx> the force which moves a along bd as the angle ebf is to

the angle ebd.
" l

There is no clearer distinction between statics and dynamics in

Cardan's work than can be discovered in that of Leonardo da Vinci.

Like Leonardo, Cardan asserted the impossibility of perpetual motion

unless natural motions were in question. We shall quote De Subtilitate

on this subject.
" Either the continuity of motion will arise from the fact that the

motion is in conformity with nature,
"

(hereby Cardan excepts the

motion of the Heavens),
" or else this continuity will not be

maintained equal to itself. Now that which continually diminishes

and is not augmented by some external action, cannot be per

petual. . . .

" The motions that bodies can have are of three kinds ; they may
essentially tend to the centre of the World ; they may not be directed

towards the centre in a simple way, like the running of water ; or they

may stem from a particular characteristic, like the motion of iron to

wards a magnet. Patently, perpetual motion should be sought in mo
tions of the first two kinds. Now when a weight is pulled more strongly,
or held back more energetically, than is consistent with its nature its

motion is natural, it is true, but not free of violence. Examples of these

two conditions are seen in the weights of clocks. As for motion in a

circle, this only belongs naturally to the sky and the air, and the latter

is not actuated by an ever-present mechanism. For other bodies, it

[motion in a circle] always has its root in vertical motion. Thus in

rivers, at the rate and to the extent that the waters are generated by
the source, they continually descend along the slope of the bed. Now
in order that a motion should be perpetual, it would be necessary
that the bodies which were displaced and came to the end of

their path should be carried back to their initial position. But they
can only be carried there by means of a certain excess of motive

power. ..."

1
Opus novum. Proposition LXXIL
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3. JULIUS-CAESAR SCALIGER AND BURIDAN'S DOCTRINE.

Julius-Caesar Scaliger was a supporter of the parisian Scholasticism

and one of Cardan's opponents. The latter, in Book XVI of De Subti-

litate, had had the naive audacity to make a classification of genius, in

order of decreasing merit, in the following way Archimedes, Aristotle,

Euclid, John Duns Scot, Swineshead the Calculator, Apollonius of

Pergum, Archytas of Tarento, etc. . . . Scaliger replied on this matter.
" You have given a simple artisan the place above Aristotle, who was
not less erudite than he in these same mechanical skills ; above John
Duns Scot, who was like the file of truth ; above Swineshead the Calcu

lator, who almost surpassed the limits imposed on the human intelli

gence ! You have passed over Ockham in silence, that genius who
outwitted all previous geniuses. . . . You have placed Euclid after

Archimedes, the torch after the lantern. . . .

" x

Scaliger explicitly refused to consider the agitated air as the seat

of the motive agency of projectiles, and accepted Buridan's doctrine in

all but form. In this he differed from Cardan, who remained an Aristo

telian in this matter and who added nothing to the work of Tartaglia
and da Vinci.

" The motio (here synonymous with impetus) is an entity which

implanted in the moving body and which can remain there even when
the prime mover is taken away. By prime mover I mean that which
causes this entity to penetrate into the body. For it is not necessary
that the efficient cause should continue to exist with its effect.

" 2

Scaliger continued
"
Heavy bodies, stones for example, have nothing which favours

their being set in motion. They are, on the contrary, quite opposed to

it. ... Why then does a stone move more easily after the motion has

started ? Because the stone has already received the impression of

motion. To a first part of the motion a second succeeds, and each time

the first remains. So that, rather than a single motor exerting its

action, the motions which it imparts in this continuous succession are

multiplied. For the first impetus is kept by the second, and the second

by the third
" 3

4. BENTO PEREIRA (1535-1610). THE CLASSICAL REACTION.

In 1562 Bento Pereira published at Rome a treatise called De com-

munibus omnium rerum naturalium principiis which became very po-

1 Exotericarum evercitationum libri, Paris 1 557t Exerc. 324. Translated by DUHEM.
2
Ibid., Exerc. 76.

3
Ibid., Exerc. 77.
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pillar and which was studied by Galileo himself. Bento Pereira knew
of Scaliger's Exercitationes but adhered, himself, to Aristotle's doctrine

on the motion of projectiles. Cesalpin and Borro may also be cited as

representatives of this classical reaction.

5. THE " MECHANICORUM LIBER " OF GUIDO UBALDO (1545-1607).

We now come to a student of mechanics who was a great authority
until the beginning of the XVIIIth Century, and who was one of Galileo's

masters. Descartes, who gave few references, recalled having read him
and even Lagrange quoted him often in the historical part of his Meca-

nique Analytique. To the classical impedimenta of the Medieval authors,
Guido Ubaldo added a reading of Archimedes and of Pappus, and

through the latter achieved a partial knowledge of Hero of Alexandria.

His Mechanicorum Liber is dated 1577.

Guido Ubaldo, who was Marquis del Monte, lived in seclusion in his

Castle del Monte Barrochio, and devoted all his leisure to study.
In his writings on statics he reproached the Schoolmen of the Xlllth

Century, with good reason, for having made a first principle of gravitas
secundum situm without having justified this action in any way. He
wished to see substituted for this concept, the effect of the reaction of

the support.
" The mind cannot be at peace while the variation of gravity has not

been attributed to some other cause than this. Indeed, it seems that

[the variation secundum situm] is a symbol rather than a true reason.
" The line CD resists a weight placed at

D less than the line CL resists a weight at L.

Thus, then, the same weight can be heavier

or lighter in virtue of the effect of the posi
tion it occupies ; not that by the very fact

of this situation it really acquires a new
gravity or that it loses its original gravity
rather it always keeps the same gravity in

whatever place it may be
; but because it

always weighs more or less on the circumfer-
ence.

"

Guido Ubaldo confined himself to this

qualitative statement, for he did not have at his disposal the law of
the composition of forces.

Nevertheless, he used the concept of moment to substantiate the
condition for the equilibrium of a lever, by means of an argument whose
form is directly inspired by Archimedes. He corrected certain errors in
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the Xlllth Century discussion of the stability of the balance, but made
the mistake of using the same treatment when the verticals were assum
ed parallel as he used when they were supposed to converge.

Guido Ubaldo favoured Pappus' solution of the problem of the

inclined plane we have already seen the weakness and superficial
character of this solution. Thus he was led to attribute a gravity to a

moving body situated on a horizontal plane, contrary to the content of

Xlllth Century statics. However, he in general preferred to consider

virtual displacements than virtual velocities. He said that it is necessary
to deploy a greater power in order to move a body than is necessary to

maintain it in equilibrium, which shows that he did not understand the

part played by the passive resistances.

Guido Ubaldo took over Pappus' definition of the centre of gravity
and supplemented it with the following commentary, which was to have
a great influence on the authors of the XVIIth Century.

" The rectilinear fall of bodies shows clearly that heavy bodies fall

according to their centres of gravity. . . . Strictly speaking, a heavy
body weighs through its centre of gravity. The very name centre of

gravity seems to declare this truth. Clearly, all the force, all the gravity
of the weight is massed and united at the centre of gravity ;

it seems to

run from all sides towards this point. Because of its gravity, indeed, the

weight has a natural desire to pass through the centre of the Universe.
But it is the centre of gravity that properly tends to the centre of the
World. "

Thus to Guido Ubaldo, just as much as to the writers of the XlVth
Century, the concept of centre of gravity was a purely experimental one.

It was not linked in any way with the parallelism of verticals.

Guido Ubaldo's works,
" sometimes erroneous, always mediocre,

were often a regression from the ideas that had inspired the writings of

Tartaglia and Cardan.
" T

However, this work is a milestone in the

history of mechanics in that it had a direct stimulating influence on the

great founders of mechanics, to whom it brought the content of the
researches of Antiquity and the Middle Ages. Its value was at least

that of a link with the past.

6. J.-B. VlLLALPAND (1552-1608) AND THE POLYGON OF SUSTENTATION.

J.-B. Villalpand was born at Cordoba in 1552 and belonged to the

Society of Jesuits. He became concerned with mechanics because of
the diversion of an archeological mission to Jerusalem. He took it

1 DUHEM, 0. S., Vol. I, p. 226.
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upon himself to refute certain of EzechiePs commentators, who had

claimed that, because of its physical geography, Judea offered better

possibilities for agriculture and construction than a plain of the same

area would have done.

This explains the title of Villalpand's book, Apparatus Urbis ac

Templi Hierosolymitani, which was printed at Rome in 1603.

In it Villalpand states, among others, the following proposition
" A heavy body that rests on the ground and covers a certain area

remains in equilibrium when the vertical drawn through the centre of

this area passes through the centre of gravity ; or, otherwise, when a

vertical drawn through the edge of this area passes through the centre

of gravity or leaves it on the same side as the area. But if it leaves the

centre of gravity on the other side of the area, the heavy body will

necessarily fall.
"

Here is his proof
" If the line FC, when produced, leaves the centre of gravity L of

the body on the opposite side to the area BC upon which the heavy

body rests, the body will necessarily fall. Indeed, the weight CLG is

H

Fig. 31

equal to the weight CLA. The weight CGH will be greater than the

weight CHA. The heavier volume will drag the less heavy one along. . . ,

and the body will fall on the side of G.
"

It is quite probable that Villalpand, either directly or otherwise,

borrowed this result, together with his later considerations on the walk-
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ing of living beings and the flight of birds, from da Vinci. However it

may be, we are indebted to P. Mersenne for having made the preceding
theorem on the polygon of sustentation classical. That tireless scholar

was able to extract it from the religious exposition in which it had been

lost, and to reproduce it in his collection Synopsis mathematica (Mecha-
nicorum libri), published at Paris in 1626.

f

7. J.-B. BENEDETTI (1530-1590). STATICS. FIGURE OF THE EARTH.

DOCTRINE OF " IMPETUS.
"

From the start of his scientific career in 1553 Benedetti denied the

truth of the following proposition of Aristotle, a proposition which had
been adopted by Jordanus's School Let two bodies, A and J5, be made
of the same substance and let A have twice the volume of B. The

velocity of fall for A is twice that for B.

More generally, Benedetti rejected Aristotle's statics.
" The laws

of the lever,
" he wrote,

" do not depend in any way on the rapidity or

on the extent of the motion.
"

This does not mean that he adopted
Jordanus's doctrine, or in other words, that he substituted the concept
of virtual work for that of virtual velocities. In fact, he reduced the

whole of statics to the single rule of the lever and the concept of moment.
" The ratio of the gravity of the weight

placed at C to the gravity of the weight placed
at F is equal to the ratio of BC to Bu. . .

This will appear evident to us if we imagine a

vertical thread jFu, and if we imagine that the

weight at jF hangs from the end of the thread

at M. It is clear that the weight hung in this

way would produce the same effect if it were

placed at F. "
It seems that Benedetti had

an inkling of the general utilisation of mo
ments for measuring the effects of weights or

of any motive powers whatever.

To a certain extent then this criticism of Benedetti's was useful and

constructive. On the other hand his rejection of the solution of the

problem of the inclined plane, due to the unknown author of the Xlllth

Century, and his repetition of Leonardo da Vinci's errors concerning the

division of a weight between two convergent supports, was less fortunate.

In the matter of the figure of the Earth and the separation between

the continents and the oceans, Benedetti found his inspiration in Coper
nicus. In 1579 he denied the truth of Albert of Saxony's opinions in

the following terms.

M
Fig. 32
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" We are certain that the spherical surface of the water is everywhere

equidistant from the centre of the Universe, the point sought by all

heavy bodies. Moreover, because of the numerous islands, because of

the different countries which navigation has discovered in all regions,
we can be sure and certain that the water and the earth comprise one

globe, and that the geometrical centre of the Earth, together with the

centre of its gravitation, is at the centre of the Universe.
"

We must add that Benedetti considered the copernican system to be

a plausible one, though he did not accept it himself.

It is said that Benedetti's works, united under the title Diversarum

speculationum mathematicarum et physicarum and published in 1585,

covered all the branches of mechanics. It remains to us to speak of

Benedetti's important contribution to the doctrine of impetus.
At the outset Benedetti maintained that a constant motive agency

produced an accelerated motion. " In natural and rectilinear motion
the impressio, the impetuositas recepta, increases continually, for the

moving body contains in itself the motive cause, that is to say the pro

pensity to take itself to the place to which it is assigned. Aristotle

should not have said that a body moves more rapidly as it approaches
its goal, but rather that a body moves more rapidly as it becomes further

separated from its point of departure. For the impressio increases pro

portionally as the natural motion is prolonged, the body continually

receiving a new impetus. Indeed it contains in itself the cause of motion,
which is the tendency to regain the natural place from which it has been
torn by violence.

"
This qxiotation shows that even if Benedetti remain

ed impregnated with Aristotle's ideas, he was not imprisoned by them.
As we shall see, he was also able to amend Buridan's thesis.

Benedetti believed that the entity which was conserved in motion
was the impetus in a straight line. In his opinion a horizontal wheel,
as exactly symmetrical as possible and resting on a single point, cannot
have a perpetual motion of rotation. He gives four different reasons
for this.

The first is
" that such a motion is not natural for the wheel.

"

The second is because of the friction at the support.
The third, because of the resistance of the air.

The fourth reason, which is the only truly important one, we shall

quote from Benedetti's text. 1

66 We consider each of the corporeal parts which moves on its own
by means of the impetus which has been imparted to it. This part has
a natural tendency to rectilinear motion, not to a curvilinear one. If a

1 Translated into French by DUHEM.
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particle chosen on the circumference of the aforesaid wheel was cut off

from this body, there is no doubt that, at a certain time, this detached

part would move in a straight line through the air. We can see this in

the example of the slings which are used to throw stones. In these

slings the impetus of motion which has been imparted to the projectile

describes, by a kind of natural propensity, a rectilinear path. The stone

which is thrown sets out on a rectilinear path along the line which is

tangent to the circle which it describes at the outset, and which touches

this circle at the point at which the stone was released, as it is reasonable

to assume.
"

In short, Benedetti was the first to have clarified the idea that

the impetus was conserved in a straight line. From this correct idea,

however, he formed an incorrect conclusion. Thus he maintained

that the motion of a wheel must slow down spontaneously, because its

particles do not follow the rectilinear paths which they have an innate

tendency to take.

In fact, when the Schoolmen of the XlVth Century applied their

doctrine of impetus indiscriminately to rectilinear and curvilinear

motions, they confused two notions which a classical science should

have distinguished ; the principle of inertia, or the conservation, in

certain privileged connections, of the rectilinear uniform motion of

an isolated material point ; and the principle of energy, which entails

the conservation of the living force when these forces do no work.

If he had the essential merit of having caught a glimpse of the principle
of inertia, Benedetti, on the other hand, misunderstood part of the

truth of Buridan's thesis.

8. GIORDANO BRUNO (1548-1600) AND THE COMPOSITION OF MOTION.

Giordano Bruno is best known as a metaphysician. A remote

disciple of Nicholas of Cues, he believed at the same time in the unity
and the infinity of worlds. He illustrated this by means of a system
of Monads which were at once material and spiritual, which were not

born and did not perish, but combined with and separated from each

other. He was burnt alive at Rome on February 17th, 1600 for his

lampooning of the Papacy rather than, it seems, for his metaphysical
ideas.

Bruno, who taught at the College of France and accepted Coper
nicus' system, was a determined adversary of aristotelian ideas. Thus
he rebutted, in his Cena de le Ceneri (1584), Aristotle's objection to

the motion of the Earth which had depended on the fact that a stone

thrown vertically upwards fell again at its starting-point. This he
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accomplished by an argument which was analogous to; but more

precise than, that of Oresme.

For this purpose, he visualises two men, one on the deck of a ship

and the other on the bank, and each holding a stone in his hand. It

is arranged that, at some instant, the hands are in sensibly the same

position and that, then, the stones are allowed to fall simultaneously
on the deck of the ship. The second man's stone will fall behind that

of the first. For the stone belonging to the man on the ship
" moves

with the same motion as the ship. It has therefore a certain virtus

impressa which the other does not possess . . . even though the stones

have the same gravity ; though they traverse the same air ; though

they start from points which are, as nearly as can be arranged, the

same ; though they are subject to the same initial impact.
"

9. BERNARDINO BALDI (1553-1617). STATICS AND GRAVITY
" EX VIOLENTIA. "

Bernardino Baldi was at once a theologian, archeologist, linguist and

geographer. He was a familiar of Guido Ubaldo and, in mechanics,
seems to have been influenced by Leonardo da Vinci and others. In

1582 he wrote Exercitationes in mechanica Aristotelis problemata which

was not printed until 1621. Bernardino Baldi rejected the point of

view of virtual velocities that of Aristotle in statics.
u We cannot

be sure that the admirable effect of a lever has as its cause the velocity
which follows from the lengths of the arms. Indeed, what is the

velocity of something that does not move ? Now the lever and the

balance do not move when they are in equilibrium and nevertheless

a small power can then support a large weight. It will be retorted

that if a very great velocity is not apparent in very long arms, it will

at least be potentially present. Now the force which maintains [the

lever] maintains the action.
"

In a more positive way Baldi concerned himself with the equili
brium of a tripod and, in this connection, gave the rule of the polygon
of sustentation. He took the product of the weight of a body and
the height of the centre of gravity as a measure of the effort necessary
to overturn the body. He also discovered the correct law for the

stability of the balance and made a study of the sensitivity of the

balance. He accepted Leonardo's solution of the problem of the in

clined plane without rectifying it.

In dynamics Baldi distinguished between gravity by nature and

gravity by violence, in which the influence of an external motive

agency was concerned. In a projectile animated by a simple motion
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of translation, the centre of the natural gravity , J3, coincides with the

centre of the gravity ex violently under the influence of an impulsion
with direction BD. These two centres are "

only distinct by rea

soning and not in reality.
" And Baldi adds

"
Projectiles cease to move because the im

pression whose nature and impetuosity governs
them is in no way natural, but purely acci

dental and violent. Now nothing which is

violent is perpetual. ... As long as violence

predominates, violent motion is entirely similar

to natural motion it is lower at the start
;

later, by the very fact of the motion, it becomes

more rapid ; then, as the impressed violence

weakens bit by bit, it slows down ; finally

the motion disappears at the same time as the impetus and the moving
body comes to rest.

"

As Duhem has remarked,
1 " this opinion is strange and not very

logical. If one can assume that the natural gravity, which is a per
manent motive agency, creates at each instant a new impetus, one

cannot conclude from this that the artificial gravity, that is the impetus

imparted by the motive agency, engenders in its turn an impetus of a

second kind.
" However strange it may be this thesis, handed on

by Mersenne, was to be taken over by Roberval. Duhem has even

followed its trail as far as Descartes.
" 2

1 Studes sur Leonard de Fmci, Vol. I, p. 139.
2
Cf. a letter from DESCARTES to MERSENNE on April 26th, 1643, which discusses

the question of whether a sword thrust is more effective if it is made with the point,
the central part or that near the hilt of the sword.



CHAPTER SEVEN

XVIth CENTURY

(Continued)

XVIIth CENTURY

TYCHO-BRAHE AND KEPLER

1. THE SYSTEM DUE TO TYCHO-BRAHE (1546-1601).

While the students of mechanics of the Renaissance remained
faithful to the Schoolmens' tradition and rehearsed their arguments
without taking account of the observations that were available to

them the astronomers were patiently accumulating a host of data

that were to be seized by classical science for the formulation of the

laws of dynamics. Tycho-Brahe occupies a prominent place among
these observers because of the volume and the precision of his obser

vations, which were the foundation upon which Kepler's laws were
based. We must say a word here of his system of the World and of

his ideas on dynamics.

Tycho-Brahe rejected Ptolemy's system because of the complexity
of its epicycles. He rejected Copernicus' system on the grounds that

the comets observed in opposition to the Sun were not affected by the
annual motion of the Earth.

In his Astronomiae instauratae progymnasmata (1582) he wrote,
" That heavy mass of the earth, so ill-disposed towards motion, cannot
be displaced and agitated in this way without conflicting with the

principles of physics. The authority of the Holy Scriptures opposes
it. ... I have set out to examine seriously whether there is any
hypothesis which is completely in accord with the phenomena and the

mathematical principles without being repugnant to physics and without

incurring the censures of theology. It has turned out as I had hoped. . . .

"
I believe, firmly and without reservation, that the motionless

earth must be placed at the centre of the World, in accord with the
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feelings of ancient astronomers or physicists and the testimony of the

Scriptures. I in no way assume, like Ptolemy and the Ancients, that

the earth is the centre of the orbits of the secondary moving bodies.

Rather I believe that the celestial motions are arranged in such a way
that only the Moon and the Sun and the Eighth Sphere the most
distant of all have the centres of their motions at the earth. The five

other planets turn round the Sun as round their Chief and King, and
the Sun is always at the centres of their spheres and is accompanied by
them in its annual motion. Thus the Sun will be the law and the

end of all these revolutions and, like Apollo among the Muses, it

alone will determine all the celestial harmony of the motions which
surround it.

"

Tycho-Brahe's initial faith in his system is embodied in the following
formula. " Nova mundani systematis hypotyposis ab authors nuper
adinventa qua turn vetus ilia Ptolemaica redundantia et inconcinnitas,

turn etiam recens Coperniana in motu terrae physica absurditas excluduntur,

omniaque apparentiis caelestibus aptissime correspondent.
"

However, this assurance is less obvious in a letter written to Roth-

mann and dated February 21st, 1589, " If you prefer to make the

earth and the seas, together with the moon, revolve ; if you wish that

the earth, however ill-suited to motion and far below the stars it may
be, behave like a star in the ethereal regions, you are certainly
the master. . . . But are not earthly things being confused with

celestial things ? is not the whole order of nature being turned upside-
down? "

Fundamentally it was religious prejudice that dictated the form of

Tycho-Brahe's thesis, for he was too wideawake not to admit the super

iority of the copernican system over that of Ptolemy.
"

I acknowledge
that the revolution of the five planets, which the Ancients attributed

to epicycles, are easily and at little cost explained by the simple motion

of the Earth ; that the mathematicians have adopted many absurdities

and contradictions which Copernicus set aside ; and that his system
even agrees a little more accurately with celestial phenomena.

"

In order that the planets might turn about the Sun, Tycho-Brahe
was obliged to assume that the rotation of the Sun round the Earth

was due to an attraction that was different from that between the planets
and the Sun.

In dynamics he opposed the motion of the Earth with the objection
that a stone dropped from the top of a tower fell at the bottom. Thus
he did not appreciate the fallacies in this argument, which Oresme and
Giordano Bruno had already indicated, though he was almost certainly

unaware of their writings.
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2. KEPLER (1571-1631). THE GENERAL CHARACTER OF HIS CONTRI

BUTION.

It may seem strange that this review of the origin of mechanics

should finish with Kepler's work. But if he is numbered among the

classics for his three fundamental laws on the motion of the planets,

his metaphysical tendencies and his ideas on dynamics place him in

the scholastic tradition. Though a forerunner of Newton, his own

inspiration were the writings of Nicholas of Cues.

Kepler's character is most complex. A tireless calculator, he

returned to the interpretation of observations without ever being discou

raged, and rejected every law that allowed the slightest imprecision.

With great wisdom he remarked that in the domain of Astronomy
innovations were apt to lead to absurdities. By this he meant that the

observations of the Ancients, however rough, should not be neglected.

Though a disciple of Tycho-Brahe, he had no less respect for Ptolemy
and was alive to the necessity of not adhering to the copernican system.

His preconceived ideas, his errors, inconsistencies and illusions are not

hidden from the reader. Occasionally his writings have the air of the

confessional thus he declares that his desire to succeed makes him

blind,
" cum essem caecus pro cupiditate.

" l He compares scientific

truth to a nymph who steals away after allowing herself to be seen, and

quotes Virgil
2 in this connection. We see him sacrificing himself to

metaphysics, seeking the reflection of preordained harmonies on every

occasion, and even lending himself to astrology. Should we regard this

as a fashion of the time, or as evidence of difficulties of quite another

kind ? Indeed, the following declaration is attributed to Kepler

Astronomy would die of hunger if her daughter, Astrology, did not

earn enough bread for two. . . .

Kepler's first scientific work, Mysterium Cosmographicum, was

published at Tubingen in 1596. The pythagorean influence which was
to become apparent in all Kepler's thought emerges clearly from this

youthful work. Thus he sought to incorporate the dimensions of the

different planetary orbits into the copernican system by comparing
them with the radii of spheres inscribed or circumscribed to five regular

polyhedra. He assumed that the planets moved under the influence

of an anima matrix localised in the Sun, whose action on the planets

1 Astronomia nova, p. 215.
2 " Malo me Galataea petit, lasciva puella

Et fugit ad salices, et se cupit ante videri.
"

The question here is the discovery of the elliptic trajectories of the planets, Astro
nomia nova, p. 283.
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was greater as they came nearer to the Sun. This property, confined

to the plane of the ecliptic, is therefore inversely proportional to the

distance. The same is true of the velocity produced, in accordance

with the aristotelian dynamics to which Kepler remained faithful.

At least Mysterium Cosmographicum had the merit of attracting the

interest of Tycho-Brahe, who thereupon used Kepler in the analysis of

planetary observations and, if the tradition is to be believed, charged

Kepler with the task of preparing a new table of the planets. Kepler

completed this task in 1627, with the publication of Tabulae Rudolphinae.

3. THE ORIGIN OF THE LAW OF AREAS.

We shall now follow Kepler's fundamental work in theoretical astro

nomy Astronomia nova ocmoAoy^ro g,
1 seu Physica Caelestis tradita

commentariis de motibus stellae Martis ex observationibus G. V. Tychonis

Brake, Prague, 1609.

In this work Kepler seeks a theory of Mars which will take account

of the observations in a precise way and which will be, at the same time,

compatible with the systems of Ptolemy, Copernicus and Tycho-Brahe,
The following is a very much abbreviated version of Kepler's demon

stration of the law of areas in the case of eccentrics.2

In the figure a is the centre of the World^ that is, the Sun in the coper-
nican system and the Earth in the other astronomical systems.

The centre of the eccentric which the planet describes is at /?. (This
term refers to the Earth in the copernican system and the Sun in the

others.)

The point y is the equant (punctum aequantis), or the point about

which, according to Ptolemy's hypothesis, the "
planet

"
appears to

describe a circle with uniform velocity. Kepler draws this circle as a

dotted line with the point y as centre and radius equal to that of the

eccentric of centre /?.

Further, like Ptolemy, Kepler assumes the bisection of the eccentricity,

or that a/3 is equal to fiy.

Starting from the aphelion (or apogee) 8 and the perihelion (or

perigee) , two very small arcs dip and sco are drawn in such a way that

the points y>, a and o> are colinear. Then the lines yyj and yo> are drawn

to cut the dotted circle in % and r respectively.
"
According to Ptolemy, since the entire circle vcp (equal to the eccen-

1 That is,
"
concerning the search for causes,

"
meaning at once dynamical and

metaphysical causes.
2 Astronomia nova, Chapter XXXII, p. 165.
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trie but with centre y (is a measure of the planet's period, then the

arc v% will be a measure of the time the planet (mora) spends on the

arc &p of the eccentric.
"

Kepler calls the arc 5y arcus itineris and the

arc v% 9 arcus temporis* The same is true for the arcs ea) and cpr*

Having supposed the angle (5oc^
to be very small, Kepler writes

7^ the arc VY , ys the arc SGI

(1)
.

J

the arc the arc rep

Fig. 34
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Because of the bisection of the eccentricity, the length fid is the

arithmetic mean of yd and a<5. But the arithmetic mean of two quan
tities which are nearly equal to each other is just greater

1 than their

geometric mean this Kepler verifies by means of a numerical example.
Then

/9<5 (or yv) <x.d

=^= and >
yd fid

From which follows through eq (1)
^-^

, ^
the arc vy , <x.d

(2) 4 == and >
the arc ipS fid

In the same way, if /? is the arithmetic mean between and ye and

oce, it is found that

ys ^e== and <
fie (or y(p) oce

Hence, by (1),

the arc sa> Be-^ = and <
the arc <pr as

If then one considers, on the eccentric, two very small arcs dip and

O>, assumed to be equal to each other, each of them will be the mean pro

portional between the arc v% the time spent at the aphelion and the
< v

arc (pr the time spent at the perihelion. Further, the ratio of the
^ ^

. //?e\
2

arc v% to the arc (pr will be very nearly equal to ( 1

Or again, more clearly, if two very small and equal arcs dy and O>

are taken on the eccentric, the ratio of the times spent on the arcs will
t>

be the ratio of the arcs v% and 9?r, and will be equal to , since, to the

. , . a<5 fe0\*
square in the eccentrics, =

)
.^

Now Kepler is in a position to state the law of areas for eccentrics.
"
Quanto longior est oc(5 quam oce, tanto diutius moratur Planeta in

certo aliquo arcui excentrici apud 6, quam in aequali arcu excentrici apud s."

That is, the greater a<5 is than as, the longer the planet will remain
on a certain arc in the immediate neighbourhood of d than on an equal
arc of the eccentric in the neighbourhood of .

1 In the modern sense,
"
approximately equal to and greater than

"
or " =s= and >.'*
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In the neighbourhoods of other points on the eccentric which are

opposite to each other with respect to the centre of the world a, the

behaviour of the planet is analogous,
"
quanto evidentior in demonstra-

tione? tanto minor in effectu.
"

In fact, Kepler confined himself to the remark that the proportion
of

oc/^
to OLV is smaller, and that of a0 to oa is much smaller, than the

proportion of oc<5 to oca. (See fig. 34.)

Kepler translated this purely geometrical and kinematic analysis

into dynamical terms in the very title of the chapter which we have

analysed Virtutem quam Planetam movet in circulum attenuari cum
discessu afonte. (The strength understood as the force by means of

which the Planet moves circularly falls off with the distance from the

source [of motion].) This is evidence of the fact that Kepler remained

faithful to aristotelian dynamics. Indeed, the force is measured in

Kepler's mind by the inverse of a duration of sojourn on an arc, that

is, by the velocity to which it corresponds. We see here the continuity
of Kepler's views from his Mysterium Cosmographicum to his Astro-

nomia nova.

4. ORIGIN OF THE LAW OF THE ELLIPTICITY OF PLANETARY TRAJECTORIES.

Tycho-Brahe and Longomontanus had prepared a table of the oppo
sitions of Mars since 1580. Tycho-Brahe, who had started Kepler on
his study of the theory of Mars, himself represented the orbit of that

planet by an eccentric whose geometrical centre did not bisect the eccen

tricity.

Now Kepler, either by tradition or because of his metaphysics, was
attached to the hypothesis of the bisection of the eccentricity, which

Ptolemy had put forward in connection with the major planets alone.

He even went as far as to extend it to the Earth's orbit (in the context
of Copernicus' system) and to that of the Sun (in the other systems).

Kepler immediately started a methodical refinement of the values

assigned to the radii of the Earth's orbit, which determined the scale

of all the other interplanetary distances.

He then turned his attention to Mars. Being unable to follow him

through all the various detours that he made, we shall only record that
he succeeded in accounting for all of twelve oppositions of Mars to

within 2' of arc. This was accomplished by a painful method of trial

and error in which four longitudes of Mars in opposition were used

simultaneously. This necessitated, on Kepler's own confession,
1 no

1 Astronomia nova, Chapter XVI, p. 95.
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less than seventy repetitions of the calculation. But the longitudes of
Mars in position other than opposition invalidated the eccentric calcu
lated in this way. Moreover, the eccentric did not satisfy the hypothesis
of the bisection of the eccentricity it transpired that the distances

from the geometrical centre to the Sun and to the equant were not
7-232

equal, but were in the ratio^
11-332

Returning to the hypothesis of the bisection of the eccentricity for

the orbit of Mars, and relying on the observation of the opposition of
Mars in 1613, Kepler found an error of about 8' in the annual parallax
of the planet. Fortunately for theoretical astronomy and for the deve

lopment of newtonian mechanics, Kepler
refused to neglect such a disparity
between calculation and observation.

He proceeded to evaluate the distances

from Mars to the Sun in terms of the

distances from the Earth to the Sun.

The accompanying diagram shows how
a knowledge of the longitudes of Mars
and of the Earth, together with a

knowledge of the two radii (SB and SC)
of the Earth's orbit, allow the distance

from the Sun to Mars (SM) to be de

termined. In the diagram the circle

with centre represents the Earth's Fi * 35

orbit, S the Sun and M, Mars, while B
and C are two positions of the Earth for the same position of Mars.
In particular, Kepler proceeded in this way for the distances from Mars
to the Sun in the neighbourhood of the aphelion and of the perihelion,
and thus obtained the eccentricity of the planet.

Kepler compared these observations with a circular eccentric satis

fying the principle of the bisection of the eccentricity. He established a

systematic failure of distances with respect to the circumference of the

circle,
"

Itaque plane hoc est ; orbita planetae non est circulus, $ed ingre-
diens at latera utraque paulatim, iterumque ad circuit amplitudinem in

perigeo exiens, cujusmodi figuram itineris ovalem appellitant.
" x

Only observation could make Kepler give up the hypothesis of the

circle, which was based on the authority of the ancients and, for the

rest, agreed with his own metaphysics.
At first Kepler was reluctant to make an ellipse of this oval orbit,

1 Astronomia nova. Chapter XLIV, p. 213.
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though he did investigate whether a particular ellipse that he had
chosen could reconcile the data, only to discover that this was not so. 1

Finally, however, after many unsuccessful attempts, he wrote,
"

Inter

circulum vero et ellipsin, nihil mediat nisi ellipsis alia
"
(between a circle

and an ellipse there can be nothing but a second ellipse). And he con

cludes that "
Ergo ellipsis est Planet ae iter.

" 2

5. KEPLER'S THIRD LAW.

The extremely important positive success of the theory of Mars did

not turn Kepler's interest away from astrology and metaphysics. Thus
more than ten years elapsed before Harmonices Mundi was published
at Linz in 1619. Of the first five books in this work only the last makes
mention of astronomy, and even this is confused with strange meta

physical conceptions. For example, we see him develop an analogy
between the angular velocities of the planets about the Sun and the

frequencies of musical notes, and expressing the oscillation of these

angular velocities during the course of a revolution by means of a musical

notation. The question is really one of pythagorean harmony, with

the reservation that it remains abstract and that Kepler did not pretend
that it was perceptible by our senses.

In following the Astronomia nova we have seen that Kepler carne

across the law of areas before that of ellipticity. It has however become

customary to reverse the order in which these two laws are presented,
and to forget that Kepler, without justification, extended the law of

areas to elliptical trajectories allthough he had only established it for

eccentrics.

Kepler's third law is stated in Chapter III of Book V of Harmonices
MundL3 He recalls the fruitless efforts that he had made, since the

beginning of his scientific career, to establish a connection between the

periods of the planets and the dimensions of their orbits. Not until

March 8th, 1618, did he come across the characteristic ratio in this law
a gross error of calculation made him reject it at first. Finally he

persuaded himself of its correctness " Res est certissima exactissimaque,

quod proportio quae est inter binorum quorumcunque Planetarum tempora
periodica, sit praecise sesquialtera proportionibus mediarum distantiarum^
id est Orbium ipsorum.

"
(One thing is absolutely certain and correct,

3
that the ratio between the periods of any two planets is, to the power ~,

1 Astronomia nova, Chapter XLV.
2

Ibid., Chapter LV, p. 285.
8 P. 189.
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exactly that of their mean distances, that is, of their orbits.) This

quite empirical result may be written

6. KEPLER AND THE CONCEPT OF INERTIA.

Kepler had the merit of having emphasised the concept of inertia

more completely than his predecessors had done indeed it is sometimes

maintained that he actually formulated the principle of inertia. This

is not true in the sense that Kepler's concept of inertia remained linked

with Aristotle's mechanics and with Buridan's doctrine as modified by
the German School of the XVth Century.

" The proper characteristic of material which forms the greatest

part of the Earth is the inertia. Motion is repugnant to it, and more so

as a great quantity of material is confined in a smaller volume. " 1

Kepler adds

" This material inertia of a terrestrial body, this density of the same

body, constitute exactly the subject on which the impetus of rotational

motion is impressed. It is impressed there exactly as in a top which
turns because of violence. The heavier the material of the top is, the

better it assimilates the motion impressed by the external force and the

more lasting this motion is.
" 2

Kepler's dynamics follows directly from the ideas of Nicholas of Cues,

whom he called " divinus mihi Cusanus. " He took up the example of

the toy top which Nicholas of Cues had given, and applied the doctrine

of impetus impressus to celestial bodies.
" Could not God have produced [such an impetus impressus] in the

Earth, as from the exterior, at the beginning of time ? It is this im

pression which has produced all the past rotations of the Earth and
which maintains them even now, though their number already exceeds

two millions. Indeed, this impression keeps all its vigour because the

rotation of the Earth is not hindered by impact or by any external

roughness ; or by the ethereal fluid, which is devoid of density. No
more is it hindered by any weight, or by any internal gravity. As for

the inertia of the material, that is the very subject which receives the

impetus and conserves it as long as the motion continues.
" 3

1
Opera omnia, Vol. VI, p. 174.

2
Ibid., p. 175.

3
Ibid., p. 176.
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Kepler believed that the material of the Earth was separated into

circular fibres whose centres were aligned with the axis of rotation.
" This arrangement of the Earth into circular fibres predisposes it to

the motion that it receives. All the same, it appears that these fibres

are the instruments of the motive cause rather than the motive cause

itself.
" i

The impetus communicated to the Earth by the Creator becomes a

soul. " It is a soul of a strange kind. It confers on the Earth neither

growth nor discursive reason (sic) it merely moves it. But, better

than a simple corporeal faculty, this motive soul assures the perfect

regularity of diurnal motion. This motion, indeed, is no longer a vio

lent motion, in any sense, for the Earth. What is there, indeed, more
natural to a material than its form, to a body than its faculty or soul ?

" 2

7. KEPLER AND THE DOCTRINE OF ATTRACTION.

Following the example of Copernicus,
3
Kepler showed himself to be

a Pythagorean in the matter of gravitation. He therefore denied the

thesis that Albert of Saxony had made classical since the XlVth Century.
" The doctrine of gravitation is erroneous. A single mathematical

point, whether it be the centre of the World or any other point, cannot

effectively move heavy bodies, nor be the object towards which they
tend. Therefore let them, the Physicists, prove that such a force can

belong to a point, which is not a body and which is only conceived in an

entirely relative way.
" It is impossible that the [substantial] force of a stone, which sets

the body in motion of itself, should seek a mathematical point, the

centre of the World without regard to the body in which that point

may be situated. Therefore let them, the Physicists, establish that

natural things have sympathy for that which does not exist.
" 4

And Kepler expounds
" the true doctrine of gravity.

"

"
Gravity is a mutual affection between parent bodies (Gravitas est

affectio corporea, mutua inter cognata corpora) which tends to unite them
and join them together. The magnetic faculty is a property of the

same kind. It is the Earth which attracts the stone, even though it

might not tend towards the Earth. In the same way, if we place the

centre of the Earth at the centre of the World, it is not towards the

centre of the World that bodies are carried, but rather towards the

1
Opera omnia, Vol. VI, p. 178.

2
Ibid., p. 179.

8 See above, p. 85.
4 Astronomia nova, Introductio, para. VIII.
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centre of the body around which they belong, that is to say, the Earth.

Also, the heavy bodies will be carried towards whatever place the Earth

is carried to, because of the faculty which animates it.

" If the Earth was not round, heavy bodies would not move directly

towards the centre from all directions. But according to whether they
come from one place or another, they will be carried to different points.

"
If, in a certain position in the World, two stones are placed near each

other and outside the sphere of attraction of all other bodies which

could attract them, these stones, like two magnets, will tend to unite

in an intermediate position and the distances they will travel in order

to unite will be in inverse ratio to their masses.
" 1

1 Ibid.
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CHAPTER ONE

STEVIN'S STATICS

SOLOMON OF CAUX

1. THE STATICS OF STEVIN (1548-1620).

Stevin's first work on statics was published in Flemish at Leyden
in 1586, under the title De Beghinselen der Weegconst* A more complete
version appeared in 1605. Finally, in 1608, Stevin united these works

under the title of Hypomnemata Mathematica. This work was trans

lated into French as early as 1634.

Stevin's statics is developed geometrically in a manner similar to

that used by Archimedes.

In it, the author systematically neglects
" the motions of machines,

formed of wood or iron, in which certain parts are lubricated with oil

or lard, others are swollen by the humidity of the air or corroded with

rust, in which these varied circumstances and also many others some

times facilitate the motion, sometimes hinder it.
"

Moreover, Stevin refuses to consider the excess of motive power
which motion demands,

" for the obstacles to motion have no certain

and unique relation with the object moved. "

Still more rigorously, Stevin rejected the consideration of arcs

of a circle described by the ends of the arms in the problem of the

equilibrium of a lever. And he justified this by means of a syllogism.
"
Something which does not move does not describe a circle. Two

weights in equilibrium do not move. Therefore two weights in equi
librium do not describe circles.

"

We see that Stevin eschewed the point of view of virtual velocities

in order to romp in the field of pure statics. At least he imposed this

restriction on the form of his writing. He was not, however, to main
tain it exclusively, as we shall show.

On the subject of the lever, Stevin added some further refinements

to Archimedes' demonstrations which we shall pass over.



124 THE FORMATION OF CLASSICAL MECHANICS

He solved the problem of the equilibrium of a heavy body on an
inclined plane by a method that was completely original and which
was based on the impossibility of perpetual motion.

This is his demonstration, taken from the French edition of 1634.
" Given. Let ABC be a triangle whose plane is perpendicular

to the horizon and whose base AC is parallel to the horizon. Let
a weight D be placed on the side AB, which is to be twice J3C, and
a weight JS, equal to D, be placed on the side BC.

" The Requirement. It is necessary to show that the power
(or capacity of exerting power) of the weight E is to that of the weightD as AB is to BC, that is, as 2 is to 1.

"
Construction. Round the triangle let there be arranged a

system of fourteen spheres equal in weight, size, and equidistant from
each other at the points D, E, F P, Q, B, and threaded on a cord

passing through their centres in such a way that there are two spheres
on BC and four on BA .... Let S, T, V be three fixed points on which
the cord can run freely without being caught."

Demonstration. If the power of the weights D, JR, Q, P were not
equal to the power of the weights E, F, one of the sides would be heavier
than the other. Suppose then that the four D, jR, Q, P are heavier
than the two E9 L. Now the four 0, N, M, F are equal to the four
G, H, /, K. Now the side with eight spheres D, R, Q, P, 0, JV, M, L
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will be heavier than that of the six spheres JS, .F, G, H, I, K and, since

the heavier part will dominate the lighter, the eight spheres will fall

and the six will rise. Thus D will come to where is at present and
the others will do the same. That is, that , F, G, H come to the

positions where P, Q, .R, D are now and JT, K to where jE, jF are. How
ever the effect of the spheres will have the same disposition as pre

viously and for the same reason the eight spheres will weigh more

and, when they fall, will make eight others come in their place. Thus
this motion will have no end, which is absurd. The demonstration will

be the same in the opposite case. Therefore the part jD, R . . . . L
of the ring will be in equilibrium with the part J5, JF, .... 1C. If there

be taken away from both sides the heavinesses which are equal and

similarily arranged, the four spheres 0, JV, M, L on the one hand and
the four G, fl, I, K on the other, the four D, It, (), P which will be left

will be in equilibrium with the two .E, F. Hence E will have a power
twice that of D. Therefore the power of E is to that of D as the side

BA 9 let it be 2, is to the side BC, let it be 1.
"

Stevin had read Cardan and referred to his Opus novum. He could

not have been ignorant ofDe Subtilitate in which Cardan, after Leonardo
da Vinci, held that perpetual motion was impossible.

Stevin was legitimately proud of his demonstration. He reproduced
the associated diagram in the frontispiece of Hypomnemata Mathema-
tica with the legend

" Wonder en is gheen wonder "
(The magic is not

Fig. 37

magical), no doubt intending to indicate that he had logically explained
a fact instead of invoking magic as the Greeks had done, before Archi

medes, in connection with levers.

From this theorem on the inclined plane Stevin deduced the value

of the weight E which could support the column D on an inclined
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plane by means of a thread parallel to the plane and starting from

the centre of gravity of the column. The result was given by

D
~E

AB
BC

He then studied a series of more complicated examples, like the

following one in which the direct elevation, M, in equilibrium with

the column D is compared with an oblique elevation, such as E, which

is able to hold the column on the inclined plane.

In these circumstances M is equal to D, and the preceding result

v w D AB
is applicable : -= = ^7=E CB

BC DI
ATN W ^ m * M DL

Therefore- =

Fig. 38

Thus Stevin, after many false starts, arrived at an enunciation

and even a verification of the rule of the parallelogram of forces for

the particular instance in which the two forces are at right angles.

Let a column of centre of gravity C be hung from the points D
and E by means of two strings CD, CE. Complete the parallelogram
CHIK whose diagonal CI is vertical.

" The direct elevation is to the oblique elevation as CI is to CH. But
the direct elevation CI is equal to the weight of the column. Therefore

the weight of the whole column to the weight which occurs at D is as

CI is to CjfiT. In the same way, the weight which occurs at E will

be found by producing the line IK from I parallel to DC to meet CJE.
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In words, the weight of the column which occurs at E will be as the

straight elevation CI is to the oblique elevation CK. "

Fig. 39

From these considerations Stevin deduced the tension of the threads

of a funicular polygon and thus became the originator of graphical
statics.

2. STEVIN AND THE PRINCIPLE OF VIRTUAL WORK.

Returning to the point of view which had turned statics into a

purely deductive science, and starting only from the assumption of

the impossibility of perpetual motion, Stevin quite clearly stated the

principle of virtual work. This occurs in volume IV of his Hypomnemata
in connection with Stevin's work on the equilibrium of systems of

pulleys.
" The distance travelled by the force acting is to the distance tra

velled by the resistance as the power of the resistance is to that of

the force acting. (Ut spatium agentis ad spatium patientis, sit potentia

patientis ad potentiam agentis) .
"
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3. STEVIN'S HYDROSTATICS.

Stevin's contribution to hydrostatics is quite remarkable. He
clearly stated the principle of solidification according to which a solid

body of any shape and of the same density as a given fluid can remain
in it at equilibrium whatever its position may be, and without the

pressures in the rest of the fluid being modified. He used this principle
to determine the pressure on each element of the base by solidifying
all the liquid except that in a narrow channel abutting on this element,
and verified that this pressure was independent of the shape of the

receptacle and depended only on the weight of the column of liquid
which filled the channel. This led him to state the hydrostatic paradox
that a fluid, by means of its pressure, can exert a total effort on the

bottom of a vessel which can be considerably greater than the total

weight of the fluid. He also determined the resultant of the pressures
on an inclined plane boundary wall by dividing this surface into hori

zontal slices and passing to the limit by increasing the number of

slices indefinitely.

Finally, he related Archimedes' principle to the impossibility
of perpetual motion. Thus he was guided by the same idea as in

the problem of the inclined plane.

4. SOLOMON OF CAUX (1576-1630) AND THE CONCEPT OF WORK.

Solomon of Caux was a practical Norman who was concerned
with the construction of hydraulic screws. In 1615, after having
read Cardan, he published at Frankfurt a work entitled The reasons

of moving forces together with various machines, as much useful as plea
sant, to which are added some designs of grottoes and fountains.

It is to this author that we owe the term work in the sense that it

is used in mechanics now.



CHAPTER TWO

GALILEO AND TORRICELLI

1. GALILEO'S STATICS.

Galileo (1564-1642) started his scientific career in the way that

was customary in his time, by annotating Aristotle's De Caelo. His

manuscript remained unpublished until 1888 and is a typical scholastic

document, even though it refers to certain moderns like Cardan and

Scaliger.

Nevertheless, holding a chair of mathematics at the University
of Pisa at the early age of twenty- five, Galileo was not long in causing
a scandal by publicly experimenting on the fall of heavy bodies, by
attacking his elders, and by offending a natural protector like John
de Medici by wounding his pride in his inventions. However, his

fierce intellectual independence, which, in its turn, was to earn him

many rebuffs, developed very rapidly. He did not long remain a

slave to the scholastic discipline.

We shall not concern ourselves here with Galileo's biography,
which belongs to the general history of science, but shall make an

analysis of his contribution to statics and dynamics.
First we shall follow the Mechanics of Galileo in the French version

which Mersenne published at Paris in 1634. Chronologically this

work lies between the manuscript of Galileo's lectures at Padua in

1594 and the treatise Delia Scienza meccanica which was printed at

Ravenna in 1649, seven years after its author's death.

At the beginning of the Mechanics Galileo emphasises
" that ma

chines are useful for manoeuvring great loads without dividing them,
because often there is much time and little force . . . but he who would
shorten the time and use only a little force will deceive himself.

"

That is, Galileo considers the product of the force and the velocity
in conformity with Aristotle's thesis.

To Galileo the heaviness of a body was a " natural inclination

of the body to take itself to the centre of the Earth.
"
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The moment was the inclination of the same body considered in

the situation which it occupied on the arm of a lever or a balance.

It is
" made up of the absolute heaviness of the body and its separation

from the centre of the balance, and corresponds to the Greek QOTZIJ.
"

The existence of a centre of heaviness (centre of gravity) of a body
was just as much an experimental fact to Galileo as it was to the School

men. " Each body principally weighs through the centre in which

it masses and unites all its impetuosity and weight.
"

In turn, Galileo studied the lever, the steelyard, the lathe, the fly

wheel, the crane, the winch, the pulley and the screw.

The discussion of the screw entailed a study of the inclined

plane and, in this connection, Galileo

/ was able to do better than his prede
cessors had done.

He envisages a perfectly round and

polished ball to be placed on a per

fectly smooth surface. On the hori

zontal plane AB " the ball is indifferent

to motion and rest, so that the wind or

the smallest force can move it.
" But

w ^ u

a greater lorce is necessary in order to

Flg> 40
lift the ball on the inclined planes AC,
AD, AE and finally,

"
it will only be

possible to lift the ball on the perpendicular plane with a force equal
to its whole weight.

"

Galileo proceeds by considering two equal weight, A and C, in

equilibrium on the lever ABC. In this way he is able to amend Pappus's
demonstration, which he cites in this connection. If the arm BC
falls to JBF, the moment of the weight F becomes less than the moment

BK
of the equal weight A in the ratio p~^*

" When the weight is at F it is partly maintained by the circular

plane CI and its slope or the tendency which it has to the centre

of the earth is diminished by the extent that BC exceeds BK. So

that it is supported by this plane to the same extent as if it had been

supported by the tangent GFH? more especially as the slope of the

circumference at the point F only differs from the slope of the tangent
GFH by the insensible angle of contact.

"

By means of this remarkable artifice Galileo reduces the effect

of the weight F on the inclined plane GFH to the effect of the same

weight suspended as if from the arm of the lever BF. And he concludes

that " the ratio of the total and absolute moment of the moving body,
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in the perpendicular
to the horizon, to the moment which it has on

the inclined plane HF is the same as the ratio of FH to FK.

BF .
,FH

For 1S 6q ~FK.'

Galileo also solves the problem of the inclined plane by appealing,

this time, to the concept of virtual work.

"imagine that in the triangle ABC the line AB represents the

horizontaf plane, the line AC the inclined plane whose height mil

be measured by CB. On the plane AC

is placed a body E attached to the

string EDF. At F the string carries a

weight, or a force, which is related to

the weight E in the ratio of the line

BC to the line CA. If the weight F

starts to fall, drawing the body E along

the inclined plane, the body E will

travel a path in the direction of AC

which is equal to that which the heavy

body F describes in its fall. But the

Fig. 42

body escres n .

following observations are necessary. It is true that the body E

have travelled all the line AC in the same time that the weight F

have SL to fall an equal distance. But during this time, the body

E will not have been separated from the common centre of heavy
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things by a distance greater than the vertical J5C, while the weight F,

falling vertically, will have fallen a distance equal to the whole line AC.

Now the bodies only resist an oblique motion to the extent to which

they are taken away from the centre of the earth We can legitima

tely say that the path of the force F keeps the same ratio to the path
of the force E as the ratio of the length AC to the length CJ5, and is

therefore equal to the ratio of the weight E to the weight F.
"

2. GALILEO AND THE FALL OF BODIES.

Thanks to a letter which Galileo wrote to Paolo Sarpi, dated October

16th, 1604,
x we know that as early as this Galileo believed in the now

classical law of distances 5 = constant X t
2

.

" The distances gone through in natural motion are in square
ratio to the times of fall. Consequently the distances travelled in

equal times are related to each other like the consecutive odd numbers

starting from unity.
"

Nevertheless, at first Galileo associated this law of distances with

an incorrect law of velocities, namely v = k - 5.

"We recall that as early as the XlVth Century
Albert of Saxony had hesitated between this

law and the correct one, v=k*t.

To Galileo, the law v = k s was explained
in the following way.

" A body which moves naturally increases

in velocity to the extent that it is separated
from the source of its motion. "

The arguments by which Galileo sought to

verify these two laws simultaneously are

\
k " rather odd. Certainly they are incorrect, but

they show us the development of his thought
and deserve to be quoted as showing what
detours he made before he became eman

cipated from them.
" If the heavy body starts from the point A

and falls along the line AB, I suppose that

the degree of velocity at the point D exceeds

the degree of velocity at the point C in the

ratio of DA to CA ; that in the same way, the degree of velocity at E
is to the degree of velocity at D as EA is to DA. Thus, at every
point of AB the body will have a velocity proportional to the

1 The Works of Galileo, Italian National Edition, Vol. X, p. 115.

f

B

7

43
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distance from this same point to the origin A. This principle appears
to me to be very natural. It corresponds to all the observations that

we make of machines whose purpose is hitting. Given this principle,
I will demonstrate the rest.

" Let the line AK make any angle with the line AF and, through
the points C, D, E, F let the parallels CG, DH, EI9 FK be drawn.
Since the lines FK, El, DH, CG have the same relation to each other as

the lines FA, EA, DA, CA, the velocities at the points F, E, D, C are

therefore related to each other like the lines FK, El, DH, CG. There

fore the degrees of velocity at all the points of the line AF are constantly

increasing according to the increasing of the parallels drawn from
these same points.

"
Moreover, since the velocity with the moving body goes from

A to D is made up of all the degrees of velocity acquired at all the

points of the line AD, and since the velocity with which it has travelled

the line AC is made up of all the degrees of velocity acquired at all

the points of the line AC, the ratio of the velocity with which it has

travelled the line AD to the velocity with which it has travelled the

line AC is that between all the parallels drawn from all the points
of the line AD to the line AH. This [ratio] is that of the triangle
ADH to the triangle ACG, that is, the ratio of the square of AD to the

square of AC. Therefore the relation of the velocity with which the

moving body has travelled the line AD to the velocity with which it

has run through the line AC is the square of the ratio of DA to CA.
" But the ratio of a velocity to a velocity is the inverse of the ratio

of the corresponding times, for the time decreases when the velocity
increases. The ratio of the duration of motion along AD to the dur

ation of motion along AC is therefore the square root of the ratio of the

distance AD to the distance AC. Therefore the distances from the

starting point are as the squares of the times. However, the distances

travelled in equal times are to each other as the consecutive odd numbers

starting from unity. This is in accord with what I have always said

and with observations made. All the verities are thus in accord.
" l

Briefly, from the inexact hypothesis that v = k s, Galileo obtains

^ l . v(D) DA
the relation -77^

= -
v(C) CA

Then by a consideration of a series of parallels erected from each

f ATX 1. J J 1 T. , -
VAD DA *

point ol AM he deduces, incorrectly, the relation
v(AC) \CA

where v(AD) and v(AC) are the mean velocities on AD and AC.

1
Complete Works of Galileo, Italian Edition, Florence 1908, Vol. VIII, p. 373.
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From the last relation, and again incorrectly, he concludes that

the ratio

t(AC}~ V CA

and thus arrives at the correct law

5 = constant X t
2

.

We shall now follow the treatise Discorsi e dimostrazioni matema-

tiche intorno a due nuove scienze attenanti alia Meccanica ed i movimenti

localL The first edition of this work appeared in 1638 and was later

supplemented by the author, although these additions only appear

in an edition that was printed at Bologna in 1655.

In these Discorsi three characters, Salviati (Galileo), Sagredo (a

Venetian senator and friend of Galileo) and Simplicio (who represents

Scholasticism) discuss the work. This dialogue form has the obvious

inconvenience of making the book difficult to read, but has the in

estimable advantage of allowing the author to show the development

of his thought.
The Text declares that the fall of bodies is uniformly accelerated,

or that the " increase of the velocity is like that of the time.
"

Starting

from rest, the moving body receives equal degrees of velocity. This

the Text assumes a priori.
" Why indeed not believe that the increases in velocity follow

the most simple and banal law ?
"

Refusing to lose himself in the discussions which had occupied
the Schoolmen, Salviati brushes aside all argument on the cause of

the fall of bodies.

He recalls that he had, for some time, believed that the velocity

could increase as the distance did. As we have just seen, this was

his opinion in 1604. He now rejects this belief.

" If the velocities are proportional to the distances travelled, the

distances will be travelled in equal times. Therefore, if the velocities

with which the body travelled the 4 cubits were double those with

which it travelled the first two cubits (as the distances are doubled) the

durations of travel will be equal. But the same moving body can only
travel the 4 or the 2 cubits in the same time if this motion is instan

taneous. Now it is apparent that the motion of a heavy body lasts a

certain time, and that it travels the first two cubits in less time than

the four. Therefore it is not true that its velocity increases as the

distance.
"
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We note here, with Jouguet,
1 that this argument of Galileo is not

quite correct. The law v = k-s immediately leads to s = s exp(kt).
In order that there should be motion it is necessary that, contrary to

the hypothesis, s should be different from zero when t = 0. Other

wise it is necessary to assume that in the first instant the body travels

the distance s instantaneously.
Given this, Salviati makes the following postulate.

" I assume that

the degrees of velocity acquired by the same moving body on differently

inclined planes are equal whenever the heights of the planes are equal.
"

The moving body is assumed to be perfectly smooth and the planes
to be perfectly polished.

In order to substantiate this principle Salviati starts from the follow

ing postulate, in which Galileo's physical intuition is very apparent.
"
Imagine that this sheet of paper is a vertical wall, that a nail is

fixed in it and that a ball of lead weighing an. ounce or two is hung

from the nail by a thread AB. The thread is to be two or three cubits

long, perpendicular to the horizon and at a distance of about two

fingers from the wall. Draw a horizontal CD on the wall to cut the

thread AB squarely. Draw aside the thread AB and the ball into the

position AC. Then release the ball. We will see this descend, describ

ing the arc CB, and pass the extremity B in such a way that it will go

up again, along J3D, almost to the line CD which has been drawn.

Each time there will be a small deficiency, and this circumstance is

precisely due to the resistance of the air and of the thread. From this

we can conclude, in all truth, that the impeto at the point B which is

1 JOUGUET, L. M., Vol. I, p. 96.
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acquired by the ball in its descent of the arc CB is such that it suffices

to make it remount the identical arc BD to the same height. When
this observation has been repeated again and again, fix in the wall a

nail which projects about five or six fingers, exactly opposite the vertical

AB for example, at E or at F. The ball will describe the arc CB, the

thread turning as before. When the ball comes to I?, the thread will

tangle in the nail E and the ball will be obliged to travel the circum

ference BG which has E as centre. Then we see that this can produce,
at the extremity JB, the very impeto that can make the moving body
rise again along the arc BD until it almost reaches the horizontal CD.

Now, gentlemen, you will see with pleasure that the ball attains the

horizontal at the point G. The same thing would happen if the nail

were fixed lower, at F for example. The ball will describe the arc BI

and will always finish its ascent on the line CD. And, if the nail were

too low for the ball to attain the height CD (this would happen if the

nail were nearer jB than CD) the thread would wrap itself round the

nail. This observation prevents one from doubting the truth of the

principle that has been supposed. Since the two arcs CJ?, DB are equal
and similarly placed, the momenta acquired at jB along CB suffices to

make the same body rise again along BD. Therefore the momenta

acquired along D.B is equal to that which would make the same moving
body rise again, along the same arc, from JB to D. So that in general,
the momenta acquired along any arc is equal to that which can make
the same body rebound along the same arc. But all the mamenti which
make the body rebound along the arcs J5D, B G, BI are equal, since they
are produced from the momento acquired in the descent CB, as obser

vation shows. Therefore all the mamenti acquired in descending the

arcs DB, GJB, IB are equal.
"

Salviati goes on to consider motions along variously inclined planes.
" We cannot show with the same clarity that the same thing will

happen when a perfect ball falls along inclined planes that are drawn

along the chords of these same arcs. On the contrary, since the planes
form an angle at the point J5 9 it is plausible that the ball, having descend
ed along the chord CjB and meeting an obstacle at the bottom of the

planes which mount along the chords JBD, BG, J5J, will lose a part of

its impeto in rebounding, and will not be able to ascend again to the

height of the line CD. But since the obstacle raised in this way prevents
the observation, it seems to me that the mind will go on believing that

the impeto (which contains, indeed, the force of the whole fall) will be
able to make the body go up again to the same height. Therefore take
this assertion as a postulate for the moment its absolute truth will

be established later when we shall see that the conclusions depending
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Fig. 45

on this hypothesis are, in detail, in conformity with observation.
"

Galileo then established the now classical laws of falling bodies. In

particular, we shall describe how, going back on his opinion of 1604, he

established the law of velocities.
66

Since, in a accelerated motion, the velocity is continuously augment
ed, the degrees of the velocity cannot be divided into any determinate

number. For since the velocity changes from mo
ment to moment and increases continuously, they are

of infinite number. However, we can represent our

intention better by constructing a triangle ABC,
taking as many equal parts AD, DE, EF, FG as

we please on the side AC, and in drawing straight
lines parallel to the base BC through the points D,

E, F, G. Then, if the parts marked on the line AC
are equal times, we assume that the parallels

drawn through the points D, J5, F represent the

degrees of the accelerated velocity, degrees which

increase equally in equal times. . . .

" But because the acceleration is continuous

from moment to moment and not of a discontinuous

kind of this or that duration . . . before the moving
body attains the degree of velocity DH that is acquired in the time AD,
it has passed through an infinity of smaller and smaller degrees gained
in the infinite number of instants that the time AD contains and which

correspond to the infinity of points that lie on the line DA. However,
in order to represent the infinity of degrees of velocity that precede the

degree DJEf, it is necessary to imagine an infinity of lines, always smaller

and smaller, which should be drawn from the various of the infinite

number of points of the line DA. In ultimo, this infinity of lines will

represent the surface of the triangle AHD.
64

Complete the whole parallelogram AMBC and produce as far as

the side JBM, not only the parallels which have been drawn in the

triangle, but also the infinite number of parallels that was imagined to

start from all the points of the side AD. The line BC, which is the

longest parallel drawn in the triangle, represents the highest degree of

the velocity acquired by the moving body in its accelerated motion.

The total surface of the triangle is the mass and the total of all the velocity
with which the body has travelled such a distance in the time AC. In

the same way the parallelogram will be the mass and the union of degrees
of velocity each of which is equal to the maximum degree BC. This

latter mass of velocities will be twice the mass of the increasing velocities

of the triangle, because the parallelogram is twice the triangle. Conse-
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quently, ifa moving body takes degrees ofan accelerated velocity, in falling,

which conform to the triangle ABC, and if it passes through such a distance

in such a time, it will, when moving uniformly, travel twice the distance

that it has travelled in the accelerated motion.
"

By an analogous argument whose detailed reproduction would serve

no useful purpose, Galileo arrived at the following theorem.
" If a body starts from rest and moves with uniformly accelerated

motion, the time that it takes to travel a certain distance is equal to

the time that the same body would take to travel the same distance

with a uniform motion whose degree of velocity was half of the greatest

and final degree of the velocity of the uniformly accelerated motion.
"

We know that the Schoolmen, thanks to the efforts of Oresme,

Heytesbury and Soto, had already obtained this fundamental result.

But Galileo did not confine himself to the a priori assertion that the fall

of bodies was uniformly accelerated. He submitted the fall of a body
on an inclined plane to an experiment which was, for the time, per

formed in a scrupulous manner and repeated a hundred times. We
shall quote this essential passage of the Discorsi, noting its very marked

difference from the tendencies of purely rationalist Scholasticism.
" In the thickness of a ruler, that is, of a strip of wood about twelve

cubits long, half a cubit wide and three fingers thick, a channel, a little

wider than one finger, was hollowed out. It was made quite straight

and, in order that it should be polished and quite smooth, the inside

was covered with a sheet of parchment as glazed as possible. A short

ball of bronze that was very hard, quite round and well-polished, was

allowed to move down the channel. The ruler, made as we have des

cribed, had one of its ends lifted to some height of about one or two

cubits above the horizontal plane. As I have said, the ball was

allowed to fall in the channel and the duration of its whole journey
was observed in the way that I have explained. The same trial was

repeated many times in order to be quite sure of the length of this time.

In this repetition, no difference greater than a tenth of a pulse was ever

found. When this observation had been repeated and established with

precision, we made the ball fall through only a quarter of the length of

the channel, and found that the measured duration of fall was always

equal to half of the other. . . .

" When this observation had been repeated a hundred times, the

distances travelled were always found to be in the ratio of the squares
of the times, and this was true whatever the inclination of the plane,
or that of the channel in which the ball fell, was made to be. We also

observed that the durations of fall on differently inclined planes were

in the proportion assigned to them [by our demonstrations].
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u As for the measurement of the time, a large bucket filled with

water was suspended in the air. A small hole in its base allowed a thin

stream of water to escape, and this was caught in a small receptacle

throughout the duration of the ball's descent of the channel, or of

portions of it. The quantities of water caught in this way were weighed
on a very accurate balance. The differences and relations of these

weights gave the differences and relations of the times with such accur

acy that, as I have said, these operations never gave a noticeable differ

ence when repeated many times.
"

Galileo then introduced the notion of impeto, which he also called

talento and momenta del discendere.

For a given body, this tendency to motion is greatest along the ver

tical BA. It is less on the planes AD, AE, AF. Finally, the impeto
is completely reduced to nothing on the horizontal CA, where the body
(as we have seen in reading the Mechanics)

"
is indifferent to motion

or to rest, and does not of itself show any tendency to move in any
direction or any resistance to being set in motion.

"
Salviati gives the

following explanation of this fact.
" In the same way that it is impossible that a heavy body, or an

ensemble of heavy bodies should, of its own accord, move upwards and

thereby go further away from the common centre to which heavy things

tend, so it is impossible that it should spontaneously move if its centre

of gravity does not approach the common centre in its motion. There

fore the impeto of the moving body will be nothing on some chosen

horizontal, or on a surface which is equidistant from the aforesaid centre

and is without inclination.
"

This is the Galilean form of the principle of inertia. Galileo arrived

at it by a kind of limiting process, starting from the principle of virtual

work.

Galileo then returned to the demonstration which he had given of

the law of heaviness on an inclined plane, and in which he had appealed
to the principle of virtual work. He completed it, however, in the

following way.
"
Manifestly, the resistance, or the smallest force which suffices to

stop or prevent a heavy body in its descent, is as great as the impeto
of that body. In order to measure this force, I shall make use of the

gravity of another body. Imagine that a body G rests on the plane
FA and that it is attached to a thread which passes over F and supports
a weight H. . . . In the triangle AFC9 the displacement of the body G,

for example upwards from A to .F, is made up of the transverse and

horizontal motion AC and the vertical motion CF. Now the resistance

to motion due to the horizontal displacement is zero. . . . Consequently
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the resistance is solely due to the fact that the body must climb the

vertical CF. Therefore the body G, moving from A to F, only resists

because of the vertical elevation CF. But the other body, H, necessarily

descends the whole length FA in a vertical direction. . . . We can there

fore say that when equilibrium is established the moments of the bodies,

their velocities or tendencies to motion, that is, the distances which

they would travel in the same time, will be in inverse ratio to their

Fig. 46

gravities in accordance with the law which is true in every instance of

motion in mechanics. It follows that to prevent the fall of G, it will

suffice thatH should be so much lighter with respect to G as the distance

CF is less than FA. ... And since we have agreed that the impeto of a

moving body, the energy., the moment or the tendency to motion has the

same size as the force, or least resistance, which suffices to keep it still, we

conclude that the body H is sufficient to prevent the motion of the body
G. . . .

"

We note that Galileo's fundamental idea consists in measuring the

impeto, or the tendency to motion, by means of the static force which

can be opposed to it. This was an essentially original procedure which

had escaped the notice of all the Schoolmen. As Jouguet
1 has legiti

mately remarked, the same word impeto, in Galileo's work, sometimes

meant the velocity acquired by a body in a given time, and sometimes the

distances travelled on differently inclined planes in a certain time,

starting from rest.

By means of the preceding considerations Galileo verified that the

postulate according to which the velocities of a body which starts from

1 L. M., Vol. I, p. 106.
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rest and falls along the line of greatest slope on differently inclined

planes of equal height are the same when it arrives at a given horizontal.

He also showed that "
if the same moving body falls, starting from rest,

on an inclined plane and along the vertical with equal height, the dura

tions of fall have the same relation as the lengths of the inclined plane
and of the vertical.

"

This demonstration was necessary in order to give full weight to his

experimental verification of the law of falling bodies.

3. GALILEO AND THE MOTION OF PROJECTILES.

We have seen that the Schoolmen and those interested in mechanics

in the XVIth Century had only been able to treat the motion of projec
tiles very imperfectly. Galileo solved this problem by means of a very
remarkable analysis in which, together with the principle of inertia,

there appears the principle of the composition of motions or of the inde

pendence of the effects of forces.

"We shall quote from the text of the Discorsi.
" The Text. I imagine a moving body thrown on a horizontal

plane without any obstacle. It is said that its motion on the plane will

remain uniform indefinitely if the plane extends to infinity. But if the

plane is limited, and if it is set up in air, when the body, which we

suppose to be under the influence of gravity, passes the end of the plane
it will add to the first uniform and indestructible motion, the downward

propensity which it has because of its gravity. From this will arise a

compound motion, composed of the horizontal motion and the naturally
accelerated motion of descent. I call this kind of motion, projection.

" Animated by the motion composed of a uniform horizontal motion

and a naturally accelerated falling motion, the projectile describes a

parabola.
" Let there be a horizontal or a horizontal plane, AB, which is

placed in air and along which a body moves uniformly from A to B.

At B, where its support is missing, the body, because of its weight, is

forced by its gravity into a natural downward motion along the vertical

BN. Produce AB into the line BE, which we shall use to measure the

passage of time. Mark off equal lines BC, CD, DE on BE, and draw

parallels to BN through the points C, D, E. On the first of these paral
lels take an arbitrary length CI ; on the next one, a length DF which
is four times as great ; on the third, a length EH nine times greater ;

and so on, the successive lengths increasing as the squares of CB, DB,
EB. . . . Imagine that the vertical descent along CI is added to the

displacement of the body as it is carried from B to C in uniform motion.
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At the time BC the body will be at I. At the time BD, which is twice

BC, its vertical distance of fall will be equal to 4CI. For it has been

proved that the distances are as the squares of the times in naturally
accelerated motions. In the same way, the distance EH that is tra

velled in the time BE will be nine times CI, so that the distances Eff,

DF, CI are related to each other as the squares of the lines EB, DB,
CB. . . . The points I, F, H therefore lie on a parabola.

"

D

Fig. 47

The discussion between the three characters in the dialogue is of

considerable interest. Sagredo remarks that the argument supposes
that the two motions combined in this way

" neither alter each other,

nor confuse each other, nor mutually hinder each other in mixing up.
"

He objects that, since the axis of the parabola is vertical and goes

through the centre of the earth, the particle will be separated from this

centre. . . . Simplicio reproaches the text for, in the first place, neglec

ting the convergence of the verticals and, in the second, neglecting the

resistance of the medium.
Salviati replies that, to a first approximation, these objections may

be dismissed. He has experimented on a ball of wood and one of lead

which were arranged to fall from a height of 200 cubits. The wooden
ball, which was more sensitive to the resistance of the air, was not

noticeably retarded. Salviati recalls that the projectiles from firearms

have such velocities that their trajectories can be modified by the re

sistance of the air.
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4. GALILEO AND HYDROSTATICS.

Galileo took up the study of hydrostatics in a manuscript called

Discorso intorno alle cose che stanno in su Vacqua o che in quella si muo-

vono. This was published at Florence in 1612. Essentially, his hydro
statics was based on the principle of virtual velocities, which was directly

inspired by Aristotle's mechanics. In this work, Galileo called the

product of the force and the velocity, momenta.
" I borrow two principles from the Science of mechanics. The first

is this two absolutely equal weights that are moved with equal velo

cities are of the same power, or the same momenta, in all their doings.
" To students of mechanics, momento means that property, that

action, that efficient power by which the motive agency moves and the

body resists. This property does not only depend on the simple

gravity, but also on the velocity of motion, the different inclinations

and the different distances travelled. Indeed, a heavy body produces
a greater impeto when it descends on a very steep surface than when
it descends on a surface which is less steep. Whatever may be the

ultimate cause of this property, it always keeps the name momento.
" The second principle is that the power of the gravitation increases

with the velocity of the thing that is moved, so that absolutely equal

weights that are animated with unequal velocities have unequal powers,

strengths, unequal momenti. The more rapid is the more powerful, and

this in the ratio of its own velocity to the velocity of the other weight. . . .

" Such a compensation between the gravity and the velocity is

found in all machines. Aristotle has taken it as a principle in his Pro

blems of Mechanics. Hence the assertion, that two weights of unequal
size are in equilibrium with each other, and have equal momenti, when
ever their gravities are in inverse ratio to the velocities of their motion,

may be taken as wellestablished.
"

In discussing the siphon, Galileo remarked that a small mass of

water contained in a narrow vessel could maintain in equilibrium a

large mass of water contained in a wide vessel, because a small lowering
of the second entailed a great increase in the height of the first. In this

respect Galileo preceded Pascal. If Duhem is to be believed, Galileo

was guided by a tradition that went back to Leonardo da Vinci.1

The Discorsi were attacked by L. della Colombe and V. di Grazia,

and defended by Benedetto Castelli (1577-1644), a faithful disciple of

Galileo. The same Castelli was the author of a treatise on the measu
rement of running water (Della misura delVacque correnti, 1628) which

repeated Leonardo da Vinci's law of flow, Sv = constant.

1 fitudes sur Leonard de Vinci, Vol. II, p. 214.
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Further, Galileo related the properties of the equilibrium of floating
bodies to the principle of virtual velocities.

Like his contemporaries, Galileo also believed in the horror vacui

(resistenza del vacuo) . However, it is reported that he was very sur

prised to learn that a newly constructed pump, whose aspiration tube
was very long, could not lift water higher than eighteen Italian ells.

Therefore he believed that this height implied a kind of ceiling to the

horror of the vacuum. In addition, Galileo attempted to determine the

weight of air by weighing a balloon that was filled with air, then heated
in order to partially expel the air, and weighed again. As Mach has

remarked, it is very true that the heaviness of air and the horror vacui

were quite separate concepts before Pascal's time.1

5. GALILEO AND THE COPERNICAN SYSTEM.

We shall briefly summarise Galileo's astronomical work. By means
of a lunette which he had had constructed at Venice in 1609, he disco

vered the satellites of Jupiter on Jan 7th, 1610 and observed that they
accompanied the planet in its annual motion. This suggested the same

possibility for the Moon in relation to the Earth. On the other hand,
he noticed the phases of Venus and the sunspots, and thus obtained

proof of the rotation of these two stars which was of first importance
for supporting the hypothesis of the Earth's rotation. Finally he
demonstrated a libration in the Moon's longitude. He was forced to

retract his views on the Earth's rotation when he was first accused by
the Inquisition in 1615. Nevertheless Galileo hastened to publish, at

Florence in 1632, Four Dialogues on the two principal systems of the

World, those of Copernicus and Ptolemy. (This in spite of the fact that

he usually hesitated about printing his work because of his shortage of

money ; even though he was content to distribute a few copies of the
Discorsi among his friends in 1636.)

The three speakers that will later appear in the Discorsi, Simplicio,
Sagredo, and Salviati also appear in these dialogues. Galileo applied a

searching dialectic to the scholastic arguments, here expressed by Simpli
cio. For example, in Dialogue II, Simplicio enumerates the scholastic

axioms, such as the unity of the cause and the unity of the effect, the

necessity ofan extrinsic source for all motion, natural or otherwise. These
axioms conflict with the triple motion of Earth which Copernicus has

suggested. This triple motion comprises the diurnal motion, the annual
motion and the displacement of the Earth's axis parallel to itself.

1 MACH, AT., p. 106.
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(Rather oddly, Copernicus had believed this to be one of the modes of

the Earth's motion.) Salviati replies to this by assembling the experi
mental evidence. And if he dares to contradict Aristotle, it is because

the telescope has made the eyes of the astronomer thirty times more

powerful than those of the philosopher.
" Jam autem nos, beneficio

Telescopii, tricies aut quadragies propius quam Aristoteles admovemur

Caelo, sic ut in eo plurima possumus observare quae non potuit Aristoteles

et, inter alia, maculas istas in Sole, quae prorsus ei fuerunt invisibiles.

Ergo de Caelo, deque Sole, nos Aristotele certius tractare possumus.
" x

In his third dialogue Galileo concludes that though the copernican

system may be difficult to visualise, it is simple in its effects. "
Systema

Copernicanum intellectu difficile et effectu facile est.
"

It is reported that this work brought Galileo a denunciation from the

Holy Office, which obliged him to renounce his copernican beliefs and
to remain in compulsory residence at Arcetri, near Florence. Here he

died, surrounded by a number of disciples. Among these was Torricelli,

who had only belonged to the circle for a few months.

6. TORRICELLI'S PRINCIPLE.

We know that Galileo had already related the problem of the

inclined plane to the principle of virtual work and that he had maint

ained, in his Discorsi, that an ensemble of heavy bodies could only
start to move spontaneously if its centre of gravity came nearer to

the common centre of heavy things.
Torricelli made this remark precise, and raised it to the status of

a principle, in his treatise De Motu gravium naturaliter descendentium

et projectorum (Florence, 1644).
" We shall lay down the principle that two bodies connected together

cannot move spontaneously unless their common centre of gravity
descends.

"
Indeed, when two bodies are connected together in such a way

that the motion of one determines that of the other, this connection

being produced by means of a balance, a pulley or any other mechanism,
the two bodies will behave as a single one formed of two parts. But
such a body will never set itself in motion unless its centre of gravity
falls. But if it is made in such a way that its centre of gravity cannot

fall, the body will certainly remain at rest in the position that it occupies.
From another point of view, it would move in vain because it would
take a horizontal motion which did not tend downwards in any way.

"

1 We have quoted a Latin edition which appeared at Lyons in 1641.

10
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Torricelli applied this principle to two bodies on differently inclined

planes and attached to each other by a weightless thread. Similarity,
he applied it to the balance. All these examples are instances of

indifferent equilibrium. If f is the height of the centre of gravity,
reckoned algebraically on an ascending vertical, Torricelli's principle

may be written

(5C-0

for all virtual displacements compatible with the constraints. But the

examples which he gave were all of the type

<Jf
= 0.

Torricelli's true merit is not so much that of having won this principle
from Galileo's mechanics, but that of having specified that the verticals

should be treated as parallel. At the same time he renounced the

scholastic conception of a common centre of heavy bodies at a finite

distance, where the verticals converged.
He writes,

" This is an objection that is very common among
the most thoughtful authors Archimedes has made a false hypothesis
in regarding the threads that support the two weights hung from a

balance as being parallel to each other in reality, the directions

of these two threads meet at the centre of the Earth. . . .

" The foundation of mechanics which Archimedes adopted, namely
the parallelism of the threads of a balance, may be deemed false when
the masses hung from the balance are real physical masses, tending
towards the centre of the Earth. It is not false when these masses,
whether they be abstract or concrete, do not tend towards the centre

of the Earth, or to any other point near the balance, but towards some

point which is infinitely distant.
" We shall continue to call this point, towards which masses hung

from the balance tend, the centre of the Earth.
"

Beneath these verbal precautions, and in spite of the fact that

he did not refer to the orders of magnitude, Torricelli's intention of

treating the verticals as parallels is clear. In Torricelli's principle
the word " descend "

is intended to indicate a tendency towards a
centre which is taken to infinity,

7. TORRICELLI AND THE MOTION OF PROJECTILES.

Galileo fully discussed the parabolic motion of a projectile which
was thrown horizontally. Only in passing did he remark that, if a

projectile was thrown obliquely from the point B with a velocity equal
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and opposite to that with which it arrived at B after having been

thrown horizontally from A, it would describe the same parabola
in the opposite direction. Galileo made use of this appeal to an

inverse return without proof. Moreover, he announced that the

greatest range for a given velocity, if the

projectile was thrown from JB, was obtained

when the trajectory at B made half a right-

angle with the horizontal.

In this matter too, Torricelli systematised
Galileo's work. Thus, in Book II of his

De motu gravium, he considered a body that

was projected obliquely. He compounded
the uniform velocity in the direction of the

velocity of projection with the accelerated

motion. . ,.,.

Gassendi had studied the same problem
<-> ^

as early as 1640, in a treatise Tres Epistolae
de motu impresso a motore translate. He considered a body projected

upwards from the deck of a ship in uniform motion, and showed that

the trajectory was a parabola.

8. TORRICELLl'S EXPERIMENT.

No doubt inspired by Galileo's researches on the resistenza del vacua,

Torricelli was lead to make experiments on a column of mercury rather

than a column of water. The classical experiment with which his

name is still associated was, however, accomplished by Viviani in 1643.

9. TORRICELLl'S LAW FLOW THROUGH AN ORIFICE.

Torricelli seems to have been the inventor of hydrodynamics.
Thus he observed the flow of a liquid through a narrow orifice near

the bottom of a vessel. Dividing the total duration of flow into equal

parts, he established that the quantities of liquid caught by some
suitable receptacle increased regularly, from the last interval of time
to the first, and that they were proportional to the odd numbers taken

consecutively. This analogy with the law of falling bodies induced
him to investigate the height to which the water that flowed out of

the orifice could rise, if suitably directed upwards. He established

that this height was always less than that of the liquid in the vessel.

Moreover, he supposed that the stream would attain this height if
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the resistances did not exist. TorricelE then formulated the law that

the velocity of the liquid flowing out of the orifice was proportional

to the square root of the height of the liquid. This statement was

obtained by analogy with the motion of heavy bodies and was given

without proof. It attracted the attention of Newton and Varignon,

and thus lies at the bottom of the first investigations in hydrodynamics.



CHAPTER THREE

MERSENNE (1588-1648)

AS AN INTERNATIONAL GO-BETWEEN
IN MECHANICS

ROBERVAL (1602-1675)

1. THE ARRIVAL OF FOREIGN THEORIES IN FRANCE. THE PART PLAYED
BY MERSENNE.

In 1634 there appeared simultaneously, in French, the translation

of Stevin's mathematical work, P. Herigone's Cours Mathematique
and Mersenne's translation of Galileo's Mechanics.

Herigone's Cours Mathematique was inspired by Stevin's work,
and took over the proof concerning equilibrium on an inclined plane.

However, a column of liquid was unhappily substituted for Stevin's

necklace of spheres. Herigone also borrowed many things from

Guido Ubaldo and the statics of Jordanus and his school in particular,

the solution of the problem of the inclined plane. In this he was

helped by the Italian Renaissance and the tradition which we have

discussed in connection with Tartaglia that honoured Jordanus*

contribution to statics.

Though an omniverous reader, Father Mersenne (1588-1648) did not

thereby arrive at a synthesis of his material. However, he established

contact between the great students of mechanics, to whom he was

continually posing questions, providing references and transmitting

replies. His correspondence is like an international review of mechanics.

Mersenne's Synopsis mathematica (1626) reviewed the work of

Archimedes, Luca Valerio, Stevin, Guido Ubaldo and many others.

As early as 1634 he translated Galileo's Mechanics. He told of Galileo's

first work on the fall of bodies in Harmonicorum libri (1636), and added

to this a traetise on mechanics by Roberval. He also made the work
of Benedetto and Bernardino Baldi known to french students of the

subject. In 1644 he published another compilation under the title

Tractatus mechanicus.
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Muck original work has only been preserved for us in the form

of letters to Mersenne. In a time when authors were not liberal of refe

rences, and disposed to pass of their writings as entirely original, Mer-

senne's self-imposed task of liason and dissemination was quite essential.

2. ROBERVAL AND COMPOUND MOTION.

We cannot describe the work in kinematics in the XVIIth Century,
for an analysis of this would more properly belong to a history of

geometry. Nevertheless, Roberval's kinematic geometry deserves a

special mention because he was able to solve the problem of drawing

tangents to different curves a preoccupation among geometers of

the time by means of the composition of velocities.

The Treatise on compound motion was only published by the Academic

des Sciences in 1693. It was edited by a gentleman of Bordeaux on

the basis of Roberval's lectures, and the latter confined his own con

tribution to the addition of marginal notes. The essential principle
used in this treatise is the following one.

"
Using the particular properties of the curved line that will be

given to you, examine the different motions that a point which describes

the line can have in the neighbourhood of the point at which you
wish to find the tangent. Of all these component motions, take the

line of the direction of the compound motion. You will have the

tangent to the curved line.
"

For example, in the curve described by a point M fixed on a circle

which rolls without sliding on a straight line, Roberval compounds
an elementary translation of the base with an elementary rotation

of the circle. This leads to a direction of compound motion which
is perpendicular to the straight line joining M to the point of contact

of the circle with the base. Roberval treates fourteen examples in the

same way for instance the cycloid, the conchoid, Archimedes' spiral and
the conies, and he succeeds in drawing their tangents correctly. How
ever, it turns out that he begs the question by giving the components of

the velocity without precise justification. Descartes was to replace this

by a method that became that of the instantaneous centre of rotation.

3. ROBERVAL'S TREATISE ON MECHANICS.

In 1650 Roberval wrote to Hevelius,
" We have constructed a

new mechanics on the foundation already laid. Except for a small

number, the ancient stones with which it has previously been constructed

have been completely rejected. It consists of eight stages, corres

ponding to a similar number of books.
"
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The Bibliotheque Nationale (Paris) has a manuscript (No. 7226)
which is undoubtedly an outline of this work. Even though he denies

this, the mechanics which the author " in the chair of Ramus "

at the College of France contemplates is most often inspired by
Aristotle and the Italian Renaissance. Roberval claims to have

only read Archimedes, Guido Ubaldo and Luca Valerio. But he is

clearly subject to Baldi's influence. For example, this is what Roberval
writes on the motion of projectiles.

" The violence of a cannon-shot is made up of two impressed

[motions]. One is purely violent, arising from the cannon itself and
from the powder which is ignited to drive the shot along. The other

is natural, being caused by the shot's own weight. Of the first impress
ion, the violence increases somewhat at some distance from the cannon
because of the degrees acquired by the motion, which are added to

the impression of the powder before this has decreased appreciably.
It then happens that, since the impression decreases much more in

itself than it is added to by the degrees of velocity acquired, it conti

nually slows down and, after a certain time, finishes. Now at the

beginning the line of the direction of this violent impression is directed

towards the place at which the cannon points. Later it changes conti

nually and the cause of this change is the natural impression, that is,

the body's heaviness carrying it towards the centre of the Earth. For

the mixture of these two impressions, violent and natural, means that

the shot does not exactly proceed along one direction or the other. But
at the beginning it almost entirely follows the violent one, which is,

without comparison, much greater than the natural one. Later the

violent one disappears bit by bit, and so the shot begins to descend a

curved line, and this all the more as the violent impression decreases

and the natural motion is added to by the degrees acquired.
"

4. ROBERVAL AND THE LAW OF COMPOSITION OF FORCES.

Roberval's first claim to fame in statics is that of having justified
the law of the parallelogram offerees. This he accomplished by starting
from the condition for the equilibrium of the angular lever. We shall

follow the treatise that Mersenne appended to his Harmonicorum libri.

Roberval's work is more modest than the one to which we have just

referred, and only occupies 36 pages.
We shall analyse Roberval's demonstrations instead of quoting

them their style is heavy and artificially complicated, while their basis

is simple.
In the first place, Roberval considers a weight P suspended at B by
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two strings AB and BC. The string A passes through the fixed point A.

Roberval sets out to determine the traction Q which must be applied
to the string BC in order to support the weight P. He replaces the

arm AB, whose length is fixed, by an angular lever Ap, Aq, where Ap

Q

Fig. 49

is the perpendicular on the line of action of the weight P, and Aq is the

perpendicular to the string BC. The equilibrium of an angular lever

requires that

P = Aq
Q~ Ap'

From this the value of Q is obtained.

Roberval then applies this result to the next diagram. Here QG
and CB are, respectively, perpendicular to CA and QA. Further, CF
and QD are perpendicular to the line of action of the weight A.

The weight A is suspended from the two strings CA, QA^ to which
are applied the powers K and E. The equilibrium of the lever CF, CB

A CB
gives the ratio = . Similarity, the lever ()D, Q G gives the ratio

Jb CJT

K~ QD
" Therefore it is observed that in both cases two perpendiculars are

drawn from each power one on the direction of the weight and the

other on the string of the other power. Also that, in the ratios of the

weight to the powers, the weight is homologous to the perpendiculars

falling on the strings of the powers. Similarly the powers are homolo

gous to the perpendiculars falling on the direction of the weight.
"
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By these purely geometrical considerations Roberval finally trans

forms the statement of the preceding rule and arrives at the decompo

sition of the weight into its two components in the directions of CA

and QA.

"
If, from some point taken on the line of the direction of the weight,

the line parallel to one of the strings is drawn to the other string, the sides

of the triangle thus formed will be homologous to the weight and the two

'js interesting to remark that Roberval attempted to relate the

rule of the composition of forces to the principle of virtual work.

" In connection with a weight suspended by two strings, we have

noticed a thing that has given us much pleasure.
This is that when the

weight is supported thus by two powers, it can neither rise nor fall

without the reciprocal proportion of the paths with the weight and the

two powers being changed, and this contrary to the common order. . . .

" If a line AP is taken underneath A, in the line of its direction, it

turns out that if the weight A falls as far as P, drawing the strings with

it and making the powers rise, the reciprocal ratio of the paths that the

powers travel in rising and the path which the weight travels in tailing

will be greater than that of the same weight and the two powers taken

together. Thus the powers will be raised further in the proportion
that

the weight descends in carrying them along, which is contrary to the

common order.
"

. ,

An analogous argument is applied to the rising of the weight, ana

this conclusion follows- "
Consequently the weight A, in remaining in

its place also remains in the common order.
"



CHAPTER FOUR

DESCARTES' MECHANICS
PASCAL'S HYDROSTATICS

1. DESCARTES' STATICS.

Descartes 9
statics stems directly from the principle of virtual work,

which he assumed a priori. We shall quote a letter from Descartes to

Constantin Huyghens dated October 5th, 1637.
" The invention of all [simple machines] is only based on a single

principle, which is that the same force that can lift a weight of, for

example, a hundred pounds to a height of two feet, can also lift one of

two hundred pounds to a height of one foot, or one of four hundred

pounds to a height of half a foot, and so on, however this may be applied.
" And this principle cannot fail to be accepted if it is considered

that the effect should always be proportional to the action which is

needed to produce it. So that if it necessary to use the action by which
a weight of a hundred pounds can be lifted to a height of two feet, in

order to lift some weight to a height of one foot, this weight should

weigh two hundred pounds. For it is the same to lift a hundred pounds
to a height of one foot, and then again, to lift a hundred pounds to the

same height of one foot as to lift two hundred pounds to a height of one
foot and also the same as to lift one hundred pounds to a height of two
feet.

" Now the machines which serve to make this application of a kind
that acts on a weight over a great distance, and makes this rise by a

smaller one, are the pulley, the inclined plane, the wedge, the lathe or

turner, the screw, the lever and some others. For if it is not desired to

relate some, they could be further enumerated. And if it is desired to

relate them in such a way, there is no need to put down as many.
" If it is desired to lift a body F, of weight 200 pounds, to the height

of the line BA, in spite of the fact that the force is is only sufficient to

lift one hundred pounds, it is only necessary to drag or roll the body
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F

Fig. 51

along the inclined plane CL4, which I suppose to be twice as long as

the line AB. For in order to bring it to the point A by this path,

only the force which is necessary to make
a hundred pounds rise twice as high would
be used. . . .

" But to be set against this calculation

is the difficulty there will be in moving the

body F along the plane AC if this plane
had been laid along the line BC, whose

parts I assume to be equally distant from
the centre of the Earth. Since this obstruc

tion will be less as the plane is harder, more even and more polished, it is

a fact that it can only be expressed approximately and is not very
considerable. Further, there is no need to consider that the plane AC
should be slightly curved on account of the fact that the line BC is a

part of a circle which has the same centre as the Earth . . . for this is

in no way appreciable.
"

In Descartes' work on the lever, the resistance is always a weight

hung from the lever, and the power is constantly perpendicular to the

arm of the lever. G-uido Ubaldo had made use of this practical observa

tion and Descartes followed him. We shall return to the text.
" I have postponed speaking about levers until the end because, of

all the machines, used to lift weights, this is the most difficult to explain.
" Consider this that while the force which moves the lever descends

along the whole semicircle ABCDE, although
the weight also describes the semicircle FGHIK
it is not lifted the whole length of the line

FGHIK, but only the length of the straight
line FOK. So that the proportion that the

force which moves the weight must bear to

the heaviness of the weight should not be

measured by the proportion of the two dia

meters, but rather by the proportion of the

greatest circumference to the smallest dia

meter.
"
Moreover, consider that in order to turn

the lever it is by no means necessary that the

force should be as great when the lever is near

A or near E as when it is near B or near D.

The reason for this is that, there, the weight rises less, as it is easy to

see. And to evaluate exactly what this force should be at each

point of the curved line ABCDE, it is necessary to know that it acts in

x^"
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the same way as if drew the weight on a circular inclined plane. Also

that the inclination at each of these points on the circular plane should

be measured by that of the straight line which touches the circle at

that point.
"

Not only did Descartes assert the principle of virtual work but and

in this regard his priority is certain he indicated its infinitesimal

character.
" The relative weight of each body should be measured by the start

of the movement which the power that maintains it can produce, rather

than by the height to which it can rise after it has fallen down. Note

that I say start to fall and not simply fall, because it is the start of the

fall that must be taken care of.
"

In passing, we recall Descartes' contempt of his contemporaries

and predecessors. Naturally Mersenne had drawn his attention to

Galileo here is Descartes reply.
" And in the first place, concerning Galileo, I will say to you that

I have never seen him, nor have I had any communication with him,

and that consequently I could not have borrowed anything from him.

Also, I see nothing in his books that causes me envy, nor anything

approaching what I would wish to call my own.
" It seems to me foolish to think of the screw as a lever if my

memory is correct, this is the fiction that Guido Ubaldo used.
"

To assert his independence of Galileo he wrote to Mersenne in the

following terms.
" As for what Galileo has written on the balance and the lever, it

explains the quod itafit rather well, but not the cur ita fit as I have done

with my Principle.
" This shows that Descartes believed that a prin

ciple that had been set up overrode all other considerations, even experi

mental ones. . . .

In the texts that we have quoted, Descartes continually uses the

word force to denote what we now call work. Even in his own time

some misunderstandings arose, and he was quick to take offence. On
November 15th, 1638, he wrote to Mersenne on this matter.

" At last you have understood the word force in the sense that I use

it when I say that it takes as much force to lift a weight of 100 pounds
to a height of one foot as to lift one of 50 pounds to a height of two feet.

That is, that as much action or as much effort is needed.
" Descartes

clarifies this later (September 12th, 1638).
" The force of which I have spoken always has two dimensions and is

not the force which might be applied at some point to maintain a weight,
which always has only one dimension.

"

Force in Descartes sense is therefore expressed by the product pi of
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a weight and a distance while the momenta in Galileo's sense 1 is express
ed by the product pv of a weight and a velocity. Descartes formally
claims to have excluded consideration of the velocity,

" which would
make it necessary to attribute three dimensions to the force.

" He adds
" As for those who say that I should consider the velocity as Galileo

has done I believe, among ourselves, that they are people who only
talk nonsense and that they understand nothing in this matter.

"

Writing to Boswell in 1646, Descartes returned to this theme, which

lay close to his heart.
"

I do not deny the material truth of what the students of mechanics

are accustomed to say. Namely, that the greater the velocity at the

end of the long arm of a lever is, in relation to the velocity at the other

end, the less force it requires to be moved. But I deny that the velocity
or the slowness are the causes of this effect.

"

Thus Descartes rejects all connection between statics and Aristotle's

dynamics of which traces subsist even in some of Galileo's concepts.
Statics is made to depend on a single principle, which he asserts to be an

obvious reality. Writing to Mersenne on September 12th, 1638, he said,
" It is impossible to say anything good concerning the velocity without

having to explain what heaviness is, and, in the end, the whole system
of the World. "

With regard to Roberval, who had claimed Mersenne's recognition
of his own priority in connection with the postulate of statics that

Descartes used, the latter shows himself to be even more contemptuous.
"

I have just read your RobervaPs Treatise on Mechanics, in which

I learn that he is a professor something I did not know. ... As for

his Treatise, I would be able to find a large number of mistakes in it

if I wished to examine it carefully. But I will say to you that, on the

whole, he has taken a great deal of trouble to explain a thing that

is very easy, and that, by means of his explanation, he has made it

more difficult than it naturally is. Stevin showed the same things
before him, and in a much more facile and general way. It is true

that I do not knowwhether either ofthem is correct in his demonstrations,
for I cannot have the patience to read the whole of these books. When
he claims to have included something in a Corollary that is the same
as I have done in my Writing on Statics, aberrat toto Caelo, he is making
something that I made a principle, a conclusion, and he talks of time

and of velocity in places where I talk of distance. This is a very
serious mistake, as I have explained in my earlier letters.

" 2

This haughtiness had its inconveniences. For this refusal to

1
Cf. above, p. 143.

2 Letter to MERSENNE, October llth, 1638.
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read Roberval entailed Descartes' ignorance of the law of the compo
sition of forces. In fact, the quantity pi had been considered as a

measure of the work done by a weight by Jordanus and by Descartes

contemporaries, Roberval and Herigone.
We can agree with Duhem that " Descartes gave statics the order

and the clarity which are the very essence of his method, but there

is no truth in Descartes' statics that men had not know before. Blind

ed by his prodigious pride, he only saw the error in the work of his

predecessors and contemporaries.
" l

2. DESCARTES AND THE FALL OF HEAVY BODIES.

Descartes discussed the fall of bodies with Isaac Beeckman during
his first stay in Holland (1617-1619). The fragment that we are

going to analyse dates from this time, but Descartes returned to the

subject in a letter to Mersenne dated November 16th, 1629.

Descartes starts by recalling that a body which falls from A to B
and then from B to C travels much more quickly in BC than in AB,

" for it keeps all the impetus by means of

which it moves along AB and besides, a new

impetus which accumulates in it because of

the effect of the gravity, which hurries it

along anew at each instant.
"

This is the

scholastic doctrine on the accumulation of

impetus.
" The triangle ABCDE shows the propor

tion in which the velocity increases.
" The line 1 denotes the strength of the

impressed velocity at the first moment, line 2,

the strength of the velocity impressed at the

second moment, etc. . . . Thus the triangle
lg4 ABE is formed and represents the increase

of the velocity in the first half of the distance

which the body travels. As the trapezium BCDE is three times greater
than the triangle ABE, it follows that the weight falls three times
more quickly from B to C than from A to B. That is, that if it falls

from A to B in 3 moments, it will fall from B to C in a single moment.
Thus in four moments its path will be twice as long as in three ; in

twelve, twice as long as in nine ; and so on.
" 2

1 0. S., Vol. I, p. 351.
2 CEuvres completes, Vol. I, p. 69.
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Therefore Descartes, like Galileo in 1604, assumed the law v=ks.

Before he developed his own analytical geometry, he used the geome
trical representation of uniformly varying quantities that was due to

Oresme. Descartes called the measure of such a quantity the augmen-
tatio velocitatis. But he confused the augmentatio along AB with the mean

velocity along AB, which lead to a conclusion that was not only incorrect,

but also in contradiction with the law from which he had started.

Isaac Beeckman's Journal, which was used by Adam and P. Tannery
in their edition of Descartes' works, contains further details of these

discussions.1

Beeckman assumes the correct law v=kt and correctly deduces

from it the law of distances. If AD represents a duration of one hour,

the distance travelled is represented by the triangle ADE. In two
hours the distance is represented by the triangle ADC. The ratio

of the areas, and therefore that of the distances, is therefore the squared
ratio of the times.

Beeckman makes use of the method of indivisibles in order to

justify this result.
"

If, during the first moment of time, the body
has travelled a moment of distance AIRS, during the first two moments
of time it will have travelled 3 moments of

distance, represented by the figure AJTURS.
The distance travelled in any time whatever

is therefore represented by the corresponding

triangle supplemented by the small triangles

ASR, RUT, etc. . . . which are equal to each

other. But these equal triangles added in this

way are smaller as the moments of distance

are smaller. Therefore these added areas

will be of zero magnitude when it is supposed
that the moment is of magnitude zero. It

follows that the distance which the thing
falls in one hour is to the distance through
which it falls in two hours as the triangle

ADE is to the triangle ACB. "

The two propositions which Dominic Soto has stated are thus

linked with each other by the bond of indivisibles.

Beeckman ascribed even this argument to Descartes. " Haec ita de-

monstravit Mr. Peron.
"

Unfortunately Beeckman did not persist in this point of view.

In another writing
2 he went back to the law v = ks and repeated

1 (Euvres completes, Vol. X, p. 58.
2
Ibid., Vol. X, p. 75.

Fig. 54
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the very same error as Descartes in the evaluation of the mean velocity.

In spite of the efforts which Duhem made to elucidate them,1 these

essays remain somewhat confused. In this matter of the fall of heavy
bodies, it remains that Descartes' contribution was not lasting and much
less than that of Galileo, whose progress from 1604 to 1638 was conti

nuous. Moreover, Galileo had a respect for observation, which Des

cartes eschewed.

3. DESCARTES AND THE CONSERVATION OF QUANTITIES OF MOTION.

As early as 1629 Descartes, writing to Mersenne, was categorical

on the indestructibility of motion. " I suppose that the motion that

is once impressed on a body remains there forever if it is not destroyed

by some other means. In other words, that something which has start

ed to move in the vacuum will move indefinitely and with the same

velocity.
"

In his Dioptrics Descartes fell back on a mechanical model to ex

plain the laws of reflection. A ball impelled from A to B bounces off

the earth CBE. He explicitly neglects
" the heaviness, the size and

Fig. 55

the shape
"

of the ball, and supposed the earth to be "
perfectly hard

and flat.
" He asserts that on meeting the earth the ball is reflected,

and the " determination to tend to B which it had "
is modified " with

out there being any other alteration of the force of its motion than this.
"

In this connection, but in passing, he denied the theory of intermediate

rest, which was dear to the hearts of some of the Schoolmen. He
1 DUHEM, Etudes sur Leonard de Kinci, Vol. Ill, p. 566.
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deemed " the determination to move towards some direction, like

the movement, to be divided into all the parts of which it can be im

agined that it is composed.
" The ball is thus animated by two " deter

minations.
" One makes it descend and the other makes it travel

horizontally. The impact with the ground can disturb the first but

can have no effect on the second. Combining these principles with

that of the conservation of the force of the motion of the ball, Descartes

explained the laws of reflection.

In his Principles (1644), Descartes reasserts the conservation of

motion in a very detailed way, making it part of a metaphysical system.
" God in his omnipotence has created matter together with the

motion and the rest of its parts, and with his day-to-day interference,

he keeps as much motion and rest in the Universe now as he put there

when he created it. ..."

By motion, Descartes understands what we now call quantity of

motion, however precise his ideas on mass may be.
64 When a part of matter moves twice as quickly as another that

is twice as large, we ought to think that there is as much motion in

the smaller part as in the larger. And that each time the motion of

one part decreases, that of some other part is increased proportionally.
"

Further, Descartes asserts the relativity of motion.
" We would not be able to understand that the body AB is moved

from the neighbourhood of the body CD if we did not also know that

the body CD is moved from the neighbourhood of the body AB. No

difficulty is created by saying that there is as much motion in one as

in the other.
"

Moreover, he distinguishes between the proper motion of a body
and " the infinity of motions in which it can participate because it

is part of other bodies which move differently.
" In order to illustrate

this, he gives the example of the watch of a sailor that takes part

in the motion of his vessel.

Again, Descartes affirmed that the motion is conserved in a straight line :

" Each part of nature, in its detail, never tends to move along curved

lines, but along straight lines. This rule . . . results from the fact that

God is immutable and conserves motion in nature by a very simple

operation ;
for he does not conserve it as it might have been some time

previously, but as it is at the precise moment he conserves it.
" And

Descartes here recalls the motion of a stone in a sling ; he points out

that we cannot
"
conceive any curvature in the stone,

"
of that we are

"
assured by experience

"
for the stone leaves

"
straight from the sling. . . ;

which makes manifest to us that any body that is moved in a circle

tends unceasingly to recede from the centre of the circle it describes ;

11
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and we can even feel this with our hand while we turn the stone in the

sling, because it pulls and makes the string taut in its effort to recede

directly from our hand. "

4. DESCARTES AND THE IMPACT OF BODIES.

Descartes formulated the following rules for the impact of bodies.

1) If two equal bodies impinge on one another with equal velocity,

they recoil, each with its own velocity.

2) If one of the two is greater than the other, and the velocities

equal, the lesser alone will recoil, and both will move in the same

direction with the velocity they possessed before impact.

3) If two equal bodies impinge on one another with unequal vel

ocities, the slower will be carried along in such a way that their common

velocity will be equal to half the sum of the velocities they possessed

before impact.

4) If one of the two bodies is at rest and another impinges on it,

this latter will recoil without communicating any motion to it.

5) If a body at rest is impinged on by a greater body, it will be

carried along and both will move in the same direction with a velocity

which will be to that of the impinging body as the mass of the latter is

to the sum of the masses of each body.

6) If a body C is at rest and is hit by an equal body J5, the latter

will push C along and, at the same time, C will reflect B. If B has a

velocity 4 it gives a velocity 1 to C and itself moves backwards with

velocity 3.

This, as an example, is how Descartes justifies this rule.

" It is necessary that either B will push C along and not be reflected,

and thus transfer 2 units of its own motion to C ; or that it will be reflec

ted without pushing C along and, as a consequence, that it will retain

these 2 units of velocity together with the 2 that cannot be lost to it ;

or, further, that it will be reflected and retain a part of these two

units and that it will push C along by transferring the other part.

It is clear that, since the bodies are equal and, consequently, that

there is no reason why B should be reflected rather than that it should

push C along, these two effects will be equally divided. That is to

say that B will transfer to C one of these 2 units of velocity and will

be reflected with the other.
"

7) Descartes also formulated a seventh rule relating to two unequal
bodies travelling in the same direction.

We remark that Descartes' guiding idea was the conservation of

the quantity of motion, m\v , in absolute value. This idea was to persist
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among the Cartesians until the resolution of the controversy about

living forces that we shall come to much later.

Nearly all Descartes' rules on impact are experimentally incorrect.

We remark that he may have suspected this, without being very much
disturbed, when he said

" It often happens that, at first, the observations seem to be at

variance with the rules I have just described. But the reason for

this is clear. For the rules presuppose that the two bodies B and C
are perfectly hard and so separated from all others that there is no

other near them which can help or hinder their motion. We see nothing
of this kind in the World. "

Jouguet has a very legitimate comment to make on the preceding
declaration. * 6 This passage is very characteristic of Descartes'

thought. He could observe nature and argue accurately from his

laws as well as any other. But he had the pretension of rebuilding

everything in a rational way according to the principles of his philosophy.
He considered that the source of certainty lay in thought alone. It

is known that he did not wish to assume the principles that were accepted
in geometry and physics further, by an exaggeration of his system,
he came to neglect observation.

" *

5. THE DISCUSSION BETWEEN DESCARTES AND ROBERVAL ON THE
CENTRE OF AGITATION.

In his Exercitationes we know that Bernardino Baldi had introduced

a distinction between the centre of gravity and the centre of violence,

or the centre of accidental gravity.
2

Mersenne, who had read Baldi's work, suggested to geometers
that they should search for a solid that would have the same period
of oscillation as a simple pendulum of given length. Descartes replied
to him in a letter dated March 2nd, 1646.3

"
[The] point of your letter which I do not wish to postpone

answering is the question concerning the size that each body that

is hung in the air by one of its extremities should have, whatever its

shape may be, in order that it should carry out its comings and goings

equally with those of a lead hung by a thread of given length. , . . The

general rule that I give in this connection is the following one. Just

as there is a centre of gravity in all heavy bodies, so there is also a

centre of their agitation in the same bodies, when these are hung from some

1 L. AT., Vol. I, p. 90.
2 See above, p. 106.
8 CEuvres completes, Vol. IV, pp. 362-364.
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part and move. Also, that all those bodies in which this centre of

oscillation is equally distant from the point from which they are sus

pended, execute their comings and goings in equal times, provided
that the change of this proportion that can be produced by the air

is excepted.
"

He returned to this question on March 30th, 1646.1

" In the first place, since the centre of gravity is so situated in

the middle of a heavy body, the action of any part of the body, which

could, by its weight, divert this centre from the line along which it

falls, is prevented by another part which is opposed to the first and
which has just as much force. From this it follows that, in descent,
the centre of gravity always moves along the same line as it would
take if it were alone, and if all the other parts of which it is the centre

were taken away. Similarly, what I call the centre of agitation of a

suspended body is the point to which the different agitations of all

the other parts of the body are related, so that the force which each

part has to make itself move more or less quickly than it does is pre
vented by that of another which is opposed to it. From which it

also follows, ex definitione, that this centre of agitation will move about

the axle from which the body is suspended with the same velocity
that it would have if the remainder of the body of which it is a part
were taken away and, as a consequence, the same velocity as a lead

hung from a thread at the same distance from the axle.
"

Here Descartes raised an analogy to the status of a principle,
and drew all the logical consequences from it with his accustomed

vigour and clarity. But he did not confine himself to this. He tried

to determine the position of the centre of agitation by forming the

quantity mv for each element, or the proportional quantity mr (where
r is the distance from the axis). But he took no account of the direction

of these velocities he always considered v, not v and related every

thing to a plane passing through the centre of gravity and the axis

of rotation.

Roberval pointed out this error in a letter to Cavendish dated May,
1646.2 " The defect of [Descartes'] argument is that he considers

only the agitation of the parts of the agitated body, forgetting the direc

tion of the agitation of each of those parts. For the centre of gravity
is the cause of its reciprocation from left to right.

"

Descartes replies
3 that Roberval was mistaken " in thinking that

the centre of gravity contributes anything to the measure of its vibra-

1 CEuvres completes, Vol. IV, pp. 379-388.
2
Ibid., p. 400.

3
Ibid., p. 432.
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tions beyond what the centre of agitation does. For the word centre

of gravity is relative to bodies that move freely or which do not move
in any way. For those which move about an axle to which they are

attached, there is no centre of gravity with respect to that position
and the motion has only a centre of agitation.

"

Fig. 56

Without delaying ourselves further with this controversy in which

Descartes appears as his usual peremptory self, we shall confine our

selves to the question of a plane figure oscillating about an axis through
O.1 As we have already indicated, Descartes' calculation starts by
bringing each element of the figure, M, to M! along the arc MM' of

centre 0. The motion is then supposed to correspond to a quantity
of motion applied perpendicularly to OG at M'. On the other hand,

Roberval supposes that nw is applied at the point I on OG. Only the

component normal to OG matters, since the other is nullified by the

fixity of the support. Thus Roberval arrives at a correct determination

of the centre of oscillation 0' in the case of a sector of a circle oscillating

about an axis passing through the centre.

Morsenne's correspondence has established that Huyghens was in

volved in the same question as early as 1646, at the age of seventeen.

At the beginning, his attitude to the problem was determined by the

Cartesian discipline and he did not emancipate himself from this until

much later, when he solved the problem of the centre of oscillation in

his Horologium oscillatorium (1673) by appealing to the principle of living

forces.

1
C/. JotrcuET, L. M., Vol. I, p. 158.
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6. THE QUARREL ABOUT GEOSTATICS.

We are now going to say a little about a controversy which has, at

least, the interest of showing that traces of Scholasticism remained

even in the most distinguished minds of the XVIIth Century.

In 1635 Jean de Beaugrand announced to Galileo, Cavalieri, Castelli

and those interested in mechanics in France, that he had found the law

which determined how the weight of a body varied with its distance

from the centre of the Earth the weight was proportional to the

distance.

This result appeared in 1636 in his Geostatics.

In a letter to Mersenne, Descartes denied this in the following terms.

"
Although I have seen many scpiarings of the circle, perpetual

motions and many other would-be demonstrations which were false,

I can nevertheless say that I have never seen so many errors united in

one single proposition Thus I can say in conclusion that what

this book on Geostatics contains is so irrelevant, so ridiculous and

mistaken that I wonder that any honest man has ever deigned to take

the trouble of reading it. I would be ashamed of that which I have

taken in recording my feeling in this letter if I had not done so at your

request.
"

In May, 1636, Fermat formulated a proposition which he called

Propositio Geostatica and which he expressed in the following way.
Let B be the centre of the Earth, BA a terrestrial radius and J5C a

part of the opposite radius. Consider two bodies A^ and C which are

placed at A and C. If the weight A is to the weight C as JBC is to JEL4,

the two bodies are in e<pzilibrium.

Fig. 57

He adds,
" It is very easy to demonstrate this result by following in

the steps of Archimedes. "

Given this, Fermat deduces the following result from his geostatic

hypothesis.

//

-e
*

Fig. 58
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44 Wherever a body JV is placed between B and A, if the proportion
of AB to BN is equal to the proportion of the weight JV to the power R
which is applied at A, the weight JV will be kept in equilibrium by the

power. Therefore the nearer a body approaches the centre of the Earth,
the smaller is the power at A that is necessary to maintain it in equili
brium. This, errors apart, coincides with Beaugrand's geostatic pro

position.
" x

Fermat gave the following explanation to Mersenne, who had not

indicated his accord with this strange proposition in which Fermat had

applied the laws of a lever to longitudinal forces.2

44

Every body, in whatever place except the centre of the Earth it

may be, and taken by itself and absolutely, always weighs the same. . . .

In my Proposition I never consider the body by itself, but only in

relation to a lever, and thus there is nothing in the conclusions which is

not included in the premisses.
44 Let A be the centre of the Earth, and let the body E be at the

point E and the point JV be in the surface or somewhere else that is

further away from the centre than the body E. I do not

say that E weighs less when it is at E than when it is at JV.

But I do say that if the body is suspended from the point JV

by the thread JVE, this force at the point JV will support it

more easily than if it were nearer to the said force, and this

in the proportion that I have indicated to you.
"

Fermat was legitimately attacked by Et. Pascal and
Roberval. Descartes also condemned him, and in this con

nection, made clear his own ideas on heaviness in a Note
of July 13th, 1638.

64 It is necessary to decide what is meant by absolute Fig. 59

heaviness. Most people understand it as an internal pro

perty or quality in each of those bodies that are called heavy, which

makes these bodies tend towards the centre of the Earth. According
to some, this property depends on the shape, according to others, only
on the material. Now according to these two beliefs, of which the first

is most common in the Schools and the second most often accepted by
those who can understand something out of the ordinary, it is clear

that the absolute heaviness of bodies is always the same and that it

does not change in any way because of their different distances from the

centre of the Earth.
44 There is also a third belief that of those who believe that there

is no heaviness which is not relative, and that the force or property

1 (Euvres completes de Fermat, Vol. II, p. 6.
2
Ibid., p. 17, Letter of Fermat to Mersenne, 24th June 1636.



168 THE FORMATION OF CLASSICAL MECHANICS

which makes the bodies that we call heavy descend does not lie in the

bodies themselves, but in the centre of the Earth or in all its mass, and

that this attracts them towards itself as a magnet attracts iron

And according to these, just as the magnet and all other natural agents

which have a sphere of activity are always more effective at small than

at great distances, so it should be said that the same body weighs more

when it is closer to the centre of the Earth.
" For myself, I understand the true nature of heaviness in a sense

that is very different from these three. . . . But all that I can say [here]

is that by this I do not add anything to the clarification of the proposed

question,
x
except that it is a purely factual one. That is to say that it

can only be settled by a man in so far as he can make certain observa

tions, and also that from the observations that are made here in our air

it is not possible to know what there might be much lower down, towards

the centre of the Earth, or much higher, among the clouds. Because

if there is a decrease or increase of heaviness, it is not obvious that it

follows the same proportion throughout.
"

Descartes was of the opinion that observation seemed to show that

heaviness decreased as a weight was separated from the centre of the

Earth. He gave strange evidence for this, such as " the flight of birds,

the paper dragons that children fly and the balls of pieces of artillery

that are fired directly towards the zenith and appear not to fall down

again.
" Another piece of evidence was that " since the planets which

do not have light inside themselves, like the Moon, Venus and Mercury,
are probably bodies of the same kind as the Earth, and since the skies

are liquid as nearly all Astronomers of this Century believe, it seems that

these planets would be heavy things and would fall towards the Earth

if their great separation from it had not removed this inclination.
"

Returning to observation in the neighbourhood of the Earth, Des

cartes considered the absolute heaviness as being practically constant.
" If this equality in the absolute heaviness is supposed, it can be shown
that the relative heaviness of all hard bodies, considered in the free air

without any support, is somewhat less when they are near the centre

of the Earth than when they are separated from it, though it may not

be the same for liquid bodies. On the contrary, if it is supposed that

two equal weights are opposed to each other on a perfectly accurate

balance, when the arms of the balance are not parallel to the horizon,

that one of the two bodies which is nearer the centre of the Earth will

weigh more precisely to the extent that it is closer to it. To leave the

example of the balance, it also follows that of the equal parts of the

1 The question is that of knowing whether a body weighs more or less when it is

near the centre of the Earth than when it is further away.
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same body, the highest parts weigh more than than the lowest ones to

the extent that they are further separated from the centre of the Earth,
so that the centre of gravity cannot be fixed in any body, even a spher
ical one.

"

As a general rule the convergence of the verticals renders consider

ation of the centre of gravity illusory. Such was Descartes' conclusion.

He also assumed, as Guido Ubaldo had already done, the law of attrac-

k
tion -

(inversely proportional to the distance).

This conclusion was important and, if one is to [believe Duhem,1 it

stemmed from the Italian School from Torricelli through the agency
of Castelli. However, the Beaugrand-Fermat law of attraction kr (pro

portional to the distance) allowed the existence of a fixed centre of

gravity in a body. This had been shown by P. Saccheri in his Neo
Stattica.

7. PASCAL'S HYDROSTATICS.

Mersenne had advertised Torricelli's experiment in France as early
as 1644. Pascal set about repeating the experiment with the collabo

ration of Petit and convinced himself, by this means, of the possibility

of a vacuum,
" which Nature does not avoid with as much horror as

many imagine.
" In 1647 Pascal published New Experiments concerning

the Vacuum. He gave full details of his plan for his great experiment in

a letter to Perier dated November 15th, 1647, and the experiment itself

was completed at the Puy de Dome a mountain in Central France on

September 19th, 1648. The account of the experiment was published
in October of the same year. The principal result was that the difference

of level of mercury columns separated by a height of 500 toises was

3 pouces, one and a half lines.

The Treatise on the Equilibrium of Liquids and the Heaviness of the

Mass of Air appeared in 1663.

In this work Pascal established that liquids
"
weigh

"
according to

their height, and that in this respect a vessel of ten pounds capacity
was equivalent to a vessel of one ounce capacity if both heights were

the same. From this Pascal directly obtained the principle of the

hydraulic press.
" A vessel full of water is a new principle in mechanics, and a new

machine for multiplying forces to whatever degree might be desired.
"

Pascal immediately relates this principle to that of virtual work.

1 0. S., Vol. II, p. 183.
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** And it is wonderful that in this new machine there is encountered the

same constant order that is found in all the old ones, namely the lever,

the windlass, the endless screw, . . . which is that the path increases in

the same proportion as the force. ... It is clear that it is the same

thing to make a hundred pounds travel a path of one pouce as to make
one pound travel a path of a hundred pouces.

"

It is in this connection that Pascal defines the pressure the water

beneath both pistons of a hydraulic press is equally compressed.
In Chapter II of the Treatise on the Equilibrium of Liquids there is

mention of a " small treatise on mechanics,
" now lost, in which Pascal

had given
" the reason for all the multiplications of forces which are

found in all the instruments of mechanics so far invented-
"

This principle does not seem to have differed from Torricelli's prin

ciple which Pascal used, without quotation, in hydrostatics.

Fig. 60

" I take it as a principle that a body never moves because of its

weight unless the centre of gravity descends. From this I prove that
the two pistons in the diagram are in equilibrium of this kind. For
their common centre of gravity is at a point which divides the line of
their respective centres of gravity in the proportion of their weights.
Now if they move, if this is possible, their paths will be related to each
other as their reciprocal weights, as we have shown. Now if their com
mon centre of gravity is taken in this second situation, it will be found in

exactly the same position as previously. Therefore the two pistons,
considered as one and the same body, move in such a way that their
centre of gravity does not descend, which is contrary to the principle.
Therefore they are in equilibrium. Q.E.D."

The reason for the equilibrium in all Pascal's examples lies in the
fact that " the material which is extended over the base of the vessels,
from one opening to the other, is liquid.

" In mechanics this property
which belongs to incompressible fluids of wholly transmitting a pressure
has been called Pascal's Principle,

We shall not detain ourselves further with Pascal's Treatise which
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has become classical nor with the suggestive forms that he gave
the hydrostatic paradox. Stevin had anticipated some of these ideas.

Pascal's contribution to physics was in marked contrast with Des

cartes
9

fragile conceptions in the same field. However, it had its con

temporary opponents thus Pascal was obliged to contend with Aristo

telians like Father NoeL At first Pascal took various verbal precautions
when he argued the futility of the horror of the vacuum. But eventually

he became forthright in his conviction that this scholastic prejudice was

absurd. " Let all the disciples of Aristotle gather together all the

strength in the writings of their master and his commentators in order,

if they can, to make these things reasonable by means of the horror of

the vacuum. Except that they know that experiments are the true

masters that must be followed in physics. And that what has been

accomplished in the mountains reverses the common belief of the world

that Nature abhors a vacuum ; it has also established the knowledge
which will never die that Nature has no horror of a vacuum, and

that the heaviness of the mass of air is the true cause of all the effects

which have previously been attributed to this imaginary cause.
"



CHAPTER FIVE

THE LAWS OF IMPACT

(WALLIS, WREN, HUYGHENS, MARIOTTE)
THE MECHANICS OF HUYGHENS

(1629-1697)

1. THE MECHANICS OF WALLIS (1616-1703).

In 1668 the Royal Society of London took the initiative of choosing
for discussion the subject of the laws of impacting bodies. Wallis

(November 26th, 1668) discussed the impact of inelastic bodies, while

Wren (December 17th, 1668) and Huyghens (January 4th, 1669) dis

cussed the impact of elastic bodies.

Wallis' memoir should be set against the background of his other

work in mechanics, which was the subject of a treatise Mechanic^ sive

de Motu (London, 1669-1671). In this treatise Wallis considered the

vis matrix and the resistantia, which were opposed to each other in

every machine. He hesitated between the concept of memento in

Galileo's sense, which could be expressed by the product pvs of the

weight and the vertical component of the velocity, and the notion of

moment, or the product ph of the weight and the height of fall. In the
first Chapter, Wallis even went as far as to consider a mixed solution

by the product pvs as a measure of the momentum of the motive force

and the product ph as a measure of the impedimentum of the resistance.

Very fortunately he did not adhere to this peculiar choice and declared
himself in favour of the product ph in the second Chapter of his Treatise,
which was concerned with the fall of bodies. He went further and
generalised the principle that Descartes had laid at the foundation of
statics by extending it to forces other than the heaviness.

" In an absolutely general way, the progress effected by a motive
force is measured by the movement effected in the direction of this

force, the recoil by the movement in the opposite direction. . . . The
progress or recoil effected under the action of any force is obtained by
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taking the products of the forces by the lengths of the progress or recoil

reckoned in the line of direction of the force.
"

Here Wallis supposes the displacements to be finite and rectilinear

and the forces to be constant in magnitude and direction. But he
assumes that a curvilinear trajectory can be represented as a limit of its

tangents. It is said that Wallis also exploited the notion of work in

all its generality, in so far as displacements due to a constant force were
concerned.

Without delaying ourselves over-much with this treatise, we shall

discuss Wallis's treatment of the laws of impact. Wallis called a body
perfectly hard if it did not yield in any way in impact. This is a category
that must be distinguished from soft and elastic.

" A soft body is one that yields at impact in such a way as to lose

its original shape, like clay, wax, lead. . . . For these bodies part of the

force is used to deform them the whole force is not expended in the

obstacle. It is necessary to take account of this part.
"

Like Jouguet,
1 we remark that from the point of view of energy,

Wallis had good reason to make this distinction. According to whether
the internal energy of a body depends on its deformation or not, the

living force lost in the impact is not equivalent, or is equivalent, to the

heating of the body. But from the point of view of the quantity of

motion, which was the one that Wallis took, this energetic distinction

is irrelevant. Mariotte abandoned it, and was followed by others.

Wallis called a body elastic if it yielded in impact, but then sponta

neously regained its original shape, like a steel spring.

Finally, he defined the direct impact of two bodies in the way that

is now accepted.
We now come to Wallis's proposition relating to soft impact (Chapter

XI, Proposition II).
" If a body in motion collides with a body at rest, and the latter is

such that it is not moving nor prevented from moving by any external

cause, after the impact the two bodies will go together with a velocity
which is given by the following calculation.

" Divide the momentum furnished by the product of the weight and

the velocity of the body which is moving by the weight of the two

bodies taken together. You will have the velocity after the impact.
"
Indeed, let a body A be in motion along the line AA that passes

through its centre of gravity and through that of the body B which is

at rest. Letp and v be the weight and the velocity ofA. The impelling
force (vis impellens) will be pv. Let p' be the weight of the body B

1 L. M.9 Vol. I, p. 123.
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whose velocity is nothing. The weight of the two bodies is p + p'.

After the impact the two bodies will move with the same velocity.

Indeed, JB cannot go more slowly than A 9
since A follows it. Neither

can it go more quickly, for it is supposed that there is no other cause of

motion than that which arises from the impulsion of A. (If there is

another force, like the elastic force, which can impell B more quickly,
the problem is of another order, to which we shall return.) Therefore

the weight p + p' is moved by a force pv and its velocity is -.
"

P + P
This demonstration is based on the conservation of the total quantity

of motion of the system. It has already been remarked that Wallis did

not distinguish between the weight and the mass.

Fig. 61

Wallis generalised this argument to the situation in which J5 is in

motion with a smaller velocity than that of A, but in the same direction.

If v
f
is the velocity of JS, the common velocity of the two bodies A and

B after the impact is

pv + p'v'

This is always obtained by dividing the sum of the moments by the
sum of the weights.

If the velocity of B is in the opposite direction to the velocity v of

A, and is denoted by i/, the common velocity of the two bodies A
and B after the impact is

pv p'v
f

P+P'
'

It is seen that Wallis, unlike Descartes, was careful to take account of
the signs of the quantities of motion. That is why he arrived at rules
which were, apart from the confusion of the weight and the mass, correct.

Finally, Wallis remarked that " the magnitude of the impact is equal to
twice the decrease that is experienced by the greatest moment in direct

impact.
"

Indeed,
" Consider the body which has the greatest moment as

hitting, and the other body as being hit. The body which is hit receives
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as much moment as is lost by the body which hits it. These moments
that are gained or lost are both the restdt of the impact. The impact
is therefore equal to their sum, that is, to twice the decrease experienced

by the greater moment. "

Wallis was also concerned with elastic impact (in Chapter XIII of

his Treatise). He related this to the theory of soft impact.
He introduced an elastic force (vis elastica) whose nature he did not

specify, confining himself to an appeal to experimental facts. He
stated the following proposition.

" If a body hits an obstacle directly, and if the two bodies or only
one of them are elastic, the first body will rebound with a velocity

equal to that which it had before the impact, and will follow the same
direction.

"

Indeed,
"

if the elasticity were nothing, the body A would come to

rest.
"

(This conclusion is obtained by applying the theory of soft

impact to an immovable obstacle B. Moreover, we add that Wallis

extended this result to an obstacle whose force of resistance was limited

by comparing this force with a moment greater than that of the body A.)
Wallis continues

44 Therefore all motion remaining after the impact is the result of the

vis elastica. Now this is always equal to the force of the impact. . . .

Indeed, the elasticity does not resist as a simple impedimentum, but

rather as a contrary force acting by reaction and with the same energy
that the compression requires. Now what the elasticity suffers during
the compression is equal to the impact. The restitutive force is there

fore equal to the impact. . . . Now, in particular, since the body A
has weight p and velocity t;, the magnitude of the impact is 2pv. This

is also that of the elastic force. Since it is developed equally in the two

parts half of this force, that is pv, acts on the obstacle and is dissipated

there, while the other half repels the body A with velocity v.
"

Wallis also treats, for example, the elastic collision of two equal
bodies which have equal and opposite velocities and borrowing this

from Wren the collision of unequal bodies with velocities inversely

proportional to their weights. Each body rebounds with the velocity
that it has before the impact. These demonstrations are analogous
to the preceding one and we shall not describe them here.

2. WREN (1632-1723) AND THE LAWS OF ELASTIC IMPACT.

We shall describe the paper presented by Wren at the meeting in

1668 and which is included in the Philosophical Transactions of 1669.

Wren starts from the concept ofproper velocity which, for any body,
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is inversely proportional to the weight. The impact of two bodies R
and S which travel with their proper velocities results in the conserva

tion of these velocities. If the velocities differ from their proper values,

the bodies R and S " are brought back to equilibrium by the impact.
"

This is to say that if, before the impact, the velocity ofR is greater than

its proper velocity by a certain amount and that of S is less than its

proper velocity by the same amount, as a result of the impact this

amount is added to the proper velocity of S and subtracted from that

of JR.

Wren seems to have regarded the impact of two bodies with their

proper velocities as equivalent to a balance oscillating about its centre

of gravity. Wren expressed this analogy in the diagrams that he used

to represent the effect of the impact. Strictly speaking, he did not

justify his results in a logical and satisfactory way, but he had the merit

of making experiments and of embodying his conclusions in a clear and

precise law.

3. HUYGHENS (1629-1697) AND THE LAWS OF IMPACT.

Following Wren's example, Huyghens confined himself to elastic

impact. His researches were collected in a posthumous volume De
Motu corporum ex percussione (1700).

Huyghens' investigation was based on the following three hypo
theses.

1) The first is the principle of inertia. "
Any body in motion tends

to move in a straight line with the same velocity as long as it does not

meet an obstacle.
"

2) The second is the following principle. Two equal bodies which

are in direct impact with each other and have equal and opposite velocities

before the impact, rebound with velocities that are, apart from sign, the

same.

3) The third hypothesis asserts the relativity of motion. Huyghens
shows himself to be a Cartesian in this matter.

" The expressions
4 motion of bodies

' and '

equal or unequal velo

cities
'
should be understood relatively to other bodies that are consider

ed as at rest, although it may be that the second and the first both parti

cipate in a common motion. And when two bodies collide, even if both
are subject to a uniform motion as well, to an observer who has this

common motion they will repel each other just as if this parasitica
1

motion did not exist.
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" Thus let an experimenter be carried by a ship in uniform, motion

and let him make two equal spheres, that have equal and opposite
velocities with respect to him and the ship, collide. We say [hypo
thesis 2] that the two bodies will rebound with velocities that are equal
with respect to the ship, just as if the impact were produced in a ship at

rest or on terra firma.
"

Huyghens appealed to this relativity in order to justify the following

proposition.
"
Proposition /. If a body is at rest and an equal body collides with

it, after the impact the second body will be at rest and the first will have

acquired the velocity that the other had before the impact.
"
Imagine that a ship is carried alongside the bank by the current

of a river and that it is so close to the edge that a passenger on the ship
can hold the hands of an assistant on the bank. In his two hands, A
and B, the passenger holds two equal bodies E and F which are hung
from threads. Let the distance EF be divided into two equal parts by
the point G. By displacing his two hands equally towards each other,

the passenger will make the two spheres E and F collide with equal
velocities with respect to himself and the ship (hypotheses 2 and 3).

But during this time the ship is supposed to be carried to the right with

a velocity GE equal to that with which the right hand of the passenger
is moved towards the left.

"
Consequently the right hand, A, is motionless with respect to the

bank and the assistant who is placed there, while the passenger's left

hand, B, is displaced with a velocity EF twice of GE or FG with

respect to the assistant. Suppose that the assistant placed on the bank

grasps the passenger's hand A^ as well as the end of the thread which

supports the globe jB, with his own hand C. Also, that with his hand D
he grasps the passenger's hand B, which is the one that holds the thread

from which the sphere F hangs. It is seen that when the passenger
makes the spheres E and F meet each other with velocities that are

equal with respect to himself and the ship, at the same time his assistant

makes the sphere E motionless with respect to himself and the bank

collide with the sphere jF whose velocity is FE. And it is certain that,

if the passenger displaces the spheres in the way that has been described,

there is nothing to prevent his assistant on the bank from seizing

his hands and the ends of the threads, provided only that he accompanies
the motion and does not oppose any hindrance to them. In the same

way, when the assistant on the bank is directing the sphere F against

the motionless sphere E, there is no obstacle to the passenger grasping
his hands, even though the hands A and C are at rest with respect to

the bank while the hands D and JB move with the same velocity EF.
12
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" As we have seen, the spheres E and F rebound after the impact
with velocities that are equal with respect to the passenger and the

ship that is, the sphere E with the velocity GE and the sphere F with

the velocity GF. During this time the ship moves towards the right

passenger's hand

t's hand

O
F

O
Fig. 62

with the velocity GE or FG. Therefore, with respect to the bank and
the assistant on it, the sphere F remains motionless after the impact
and the sphere E moves to the left with a velocity twice GJ5 that is,

with the velocity FE with which F has hit E. We therefore show that,

to an observer on the earth, when a motionless body is hit by an equal
one, after the impact the second one loses all its motion which is, on the

other hand, completely taken over by the other.
"

With the help of this remarkable artifice Huyghens treats all

instances of the impact of two equal bodies by starting from the symme
trical case, whose solution he assumes a priori. Thus he shows that

two equal bodies that have unequal velocities exchange these velocities

in a direct impact.
He then passes to a consideration of unequal bodies and establishes

the conservation ofthe relative velocity in the impact of two elastic bodies.

It is of some interest to remark here that Huyghens showed,by examples,
that the quantity of motion was not always conserved. In this context
he was concerned with the quantity of motion m| v|,

in Descartes' sense.

Finally, he demonstrates Wren's rule on the conservation of proper
velocities.

"
Proposition VIII. If two bodies moving in opposite directions

and with velocities inversely proportional to their magnitudes collide with
each other, each one rebounds with the velocity that it had before the impact.
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" Let two bodies A and JB collide with each other. (A > B).

Suppose that the velocity BC of the body B is to the velocity AC of the

body A as the magnitude A is to the magnitude B. We wish to show
that after the impact, A will be reflected with a velocity CA and B
with a velocity CD. If the former is true for A 9 the latter is true for B
(conservation of relative velocity). Suppose that A is reflected with

Fig. 63

a velocity CD < CA. Then B will rebound with a velocity CE > CB
and DE = AB. Imagine that A has acquired its original velocity AC
by falling from the height HA and that its vertical motion has then been

changed into the horizontal motion with velocity A C. In the same way,

suppose that B has acquired its velocity by falling from the height KB.
These heights are in the square ratio of the velocities. That is,

HA fCA^ 2

-- =
J

-
j

. Then suppose that after the impact the bodies A and B
KB \CBJ
change their horizontal motions whose velocities are CD and CE
into vertical upwards motions and thus arrive at the points L and M

, , AL /CD\ 2

such thatm =(m).
" When the centre of gravity of A is at H and that of B at jK,

their common centre of gravity is at Q. After the impact this

centre of gravity is at the point N. Now it can be shown that IV is

above Q.
" *

In this matter Huyghens invokes a principle which we find developed

in some detail in the Horologium oscillatorium^ and reduces, in fact,

to the principle of the conservation of living forces.

1 This is a question of pure geometry.
2 See below, p. 187.
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66 It is a well-established principle of Mechanics that, in the

motion of several bodies under the influence of their centre of

gravity alone, the common centre of gravity of these bodies cannot
be raised.

"

If this principle is assumed, the supposition which has been made
about the velocity with which A rebounds (CD < CA) implies a con
tradiction. Huyghens dismisses the hypothesis that A is reflected with
a velocity CD > CA in an analogous way. Therefore A rebounds with
the velocity CA and B with the velocity CB. Q. E. D.

Huyghens related all cases of the direct elastic impact of two unequal
bodies to the preceding situation by using the artifice of the moving
ship on every occasion.

We now know that by invoking the relativity of impact phenomena,
Huyghens carried the discussion into a privileged field. It follows from
the rule of the composition of velocities that a percussion remains the
same when a " fixed

"
system of reference is replaced by a "

moving
"

one, from the moment when the relative motion of the two systems
becomes continuous. With this restriction alone, the relative motion
of the two systems can be accelerated in any way. Huyghens, however,
restricted himself to a uniform and rectilinear relative motion namely,
that of the ship with respect to the river-bank.

We add that in using the principle of inertia, on the other hand,
Huyghens confined himself to an infinite number of reference points,
to day termed absolutes. In fact, the principle of inertia is irrelevant
to impact phenomena because of their instantaneous character.

In all his writings, Huyghens took care to explain his hypotheses
clearly and to deduce his propositions from them logically. His style
is similar to that of Archimedes. By this means a perfect clarity is

achieved at the price of some tedium. However, the rigour of this work
is sometimes only an apparent one.

Jouguet has come to the following conclusion after an exhaustive

study of the interdependence of certain of Huyghens' hypotheses.
1

It was sufficient for Huyghens to assume the conservation of the total

living force of the system in every system of reference, or its conservation
in two arbitrary systems in continuous (and not zero) relative motion
with respect to each other. Such a hypothesis is itself equivalent to
the twin hypothesis of the conservation of living force in one arbitrary
system of reference and the simultaneous conservation of the total

quantity of motion in direction and sign as Wallis intended not in
Descartes' sense of absolute value.

1 L. M., Vol. I, p. 151.
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4. THE PLAN OF HUYGHENS' FUNDAMENTAL TREATISE.

We now come to Huyghens* major work in dynamics the treatise

Horologium oscillatorium sive de motu pendulorum ad horologia aptato

demonstrationes geometricae (Paris, 1673).
1

This work consists of five parts a description of the clock; on the

fall and motion of bodies on a cycloid ; the evolution and dimensions of

curved lines ; on the centre of oscillation or agitation ;
and finally, on

the construction of a new clock with a circular pendulum, and theorems

on the centrifugal force.

Huyghens had constructed cycloidal clocks at The Hague since 1657.

He planned this treatise over a long period of time and only completed
it in 1669. In 1665 he was invited hy Colbert to visit Paris and to work
at the Academy of Sciences, where he obtained a royal monopoly for

the reproduction of his clocks. As early as 1667 there is mention of
" three clocks made at Paris, at the expense of the King, to be used on

the voyage to Madagascar.
"

Huyghens had already tried out his

marine clock aboard an English vessel in 1664. Aware of the defect of

the isochronism of the finite oscillations of a circular pendulum,

Huyghens strove to find a pendulum which might be theoretically

isochronous for all amplitudes.
" It is the oscillations of marine clocks

that most noticeably become unequal, because of the ship's continual

shaking. So that it is necessary to take care that oscillations of large

and small amplitudes should be isochronous.
"

Huyghens also made
astronomical clocks, both at Leyden and Paris, that were correct to one

second a day.
" We have,

" he wrote,
"
regarded the cyloid as the cause of this pro

perty of isochronism that we have found, without having the least

understanding of anything except that it is consistent with the rules

of the craft.
" In theory,

"
it has been necessary to corroborate and

to extend the doctrine of the great Galileo on the fall of bodies. The

most desired result and, so to speak, the greatest, is precisely this pro

perty of the cyloid that we have discovered. ... To be able to relate

this property to the use of pendulums, we have had to study a new

theory of curved lines that produce others in their own evolution.
"

The question here is that of the theory of developable curves, and

Huyghens established that the development of a cycloid is an equal

cycloid.

Huyghens describes his " automatic "
at great length. In this clock

the motion of the pendulum is determined by pulleys that are actuated

1 The complete Works of Christiaan Huyghens, published by the Dutch Society of

the Sciences, The Hague, 1934, Vol. XVII.
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by the driving weights
" the oscillations of the pendulum impose the

law and the rule of motion on the whole clock.
" He also evolved a

new and ingenious suspension which assured the continuity of the

clock's motion when the driving weights were removed and replaced.

Fig. 64

We return to the question of the cycloidal pendulum. The pendu
lum oscillates between two thin plates whose function is to assure the

constancy of the period in spite of variations in the amplitude. These

plates, Km and Ki9 are cut from two half-cycloids, KM and KI.

The pendulum KMP has a length equal to twice the diameter of the

generating circle. Huyghens wrote, "I do not know whether any
other line has this remarkable property, namely that of describing
itself in its evolution

"
in other words, of being identical with its

development. This mathematical problem was to be taken up by
Euler.

5. HUYGHENS AND THE FALL OF BODIES.

Though, as we have remarked in connection with the laws of impact,

Huyghens was a Cartesian to the extent that he used the relativity
of motion, he was much more a direct successor of Galileo and Torri-

celli, and provided a link between them and Newton. To use his

words, he " corroborated and extended Galileo
"

in the matter of the

fall of bodies.

He clearly stated the principle of inertia and the principle of the

composition of motions, and applied these principles to the fall of

bodies and to rectilinear uniform motion in any direction.
" Each of

these motions can be considered separately. One does not disturb
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the other.
" He accepted Galileo's laws on the rectilinear fall of bodies

and improved the associated demonstrations. For example, he

established the following proposition.
"
Proposition I. In equal times the increases of the velocity of a

body which starts from rest and falls vertically are always

equal, and the distances travelled in equal times form ,
^

a series in which successive differences are constant. M n
,

"
Suppose that a body, starting from rest at A, falls

through the distance AB in the first time and has acquir-
ed a velocity at JB which would allow it to travel the

distance BD during the second time. \
" We know then that the distance travelled in the

second time will be greater than BD, since the distance

BD would be travelled even if all the action of the weight
ceased at B. In fact, the body will be animated by a

compound motion consisting of the uniform motion

which would allow it to travel the distance BD and the

motion of the fall of bodies, by means of which it must

necessarily fall a distance AB. Therefore at the end

of the second time, the body will arrive at the point E
which is obtained by adding to BD a length DE which

is equal to AB. ..."

Huyghens showed in the same way that, at the end

of the third time, the body will arrive at G a point
such that EF2BD and FG=AB. The same procedure
was repeated.

Thus Huyghens arrived at the following proposition.
Fl&- 65

"
Proposition II. The distance that a body starting

from rest travels in a certain time is half the distance it would travel in

uniform motion with the velocity acquired, in falling, at the end of the

time considered.
"

To show this, Huyghens considers the distances AB, BE, EG and

GK travelled in the first four intervals of time. He doubles the value

of these times so that the body travels along AE in the first instant

and along EK in the second. Necessarily

BE = AD
BE EK AE

~

AB
~~~

AB

Now KE=2AB + 5BD and

Therefore KEEA = 4BD
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4BD ADAB BD
and consequently

__ =___=.
Therefore AE = 4>AB and BD = 2AB. Q. E. D.

These demonstrations have been quoted because they differ from

those of Galileo. In particular, they make use of a composition of

the velocity acquired and the new fall of the body at each instant.

With a little good-will it is possible to regard them as the expression

of the ideas of the Schoolmen of the XlVth Century in a more sophis

ticated mathematical language. Thus Buridan, in particular, believed

that heaviness continually caused a new impetus to the one that was

already present.

Huyghens then sets out to establish a hypothesis
" that Galileo

asked should be granted to him as obvious.
" Thus Salviati, in the

Discorsi, had been obliged to take the following principle as a postulate.
1

" The velocities acquired by a body in falling on differently inclined

planes are equal when the heights of the planes are so.
"

B D

Fig. 66

"... Let there be two inclined planes whose sections by a vertical

plane are AB and CB. Their heights, AE and CD, are equal. I maintain

that in these two circumstances the velocity acquired at B is the same.

Indeed, if in falling along CB the body acquires a velocity that is smaller

than in falling along AB, this velocity will be equal to that which

would be acquired in some descent FB < AB. But along CB the body
acquires a velocity that allows it to rise again along the whole length
of BC. [This in virtue of proposition IV, which we have not quoted
and which demonstrates this fact for a rectilinear rise.] Therefore

it will acquire, along FB, a velocity which can make it rise again along
BC this can be achieved by reflection at an oblique surface. It

will therefore rise as far as C, or to a height greater than that from
which it fell, which is absurd.

"

1 See above, p. 135.
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In the same way it is shown that in descending along AB the body
cannot acquire a smaller velocity than in falling along CB. This

establishes the proposition.

Huyghens shows that the durations of fall have the same relation

to each other as the lengths of the planes. He also shows that when
the body falls in a continuous motion from a given height along any
number of differently inclined planes, it always acquires the same

velocity as that obtaining at the end of a vertical fall from the same

height. Conversely, in rising again along a trajectory formed of

contiguous and differently inclined planes, the body will achieve its

original height (Proposition IX). A passage to the limit then allows

the question of the motion of a body on a curve contained in a vertical

plane to be considered.

6. THE ISOCHRONISM OF THE CYCLOIDAL PENDULUM.

Huyghens arrived at a proof of the isochronism of a cycloidal

pendulum by means of an argument in infinitesimal geometry. Ad
mirable though this was, it required no less than a dozen propositions,
and we cannot reproduce it here. 1 The principal result is stated

in the following terms.
"
Proposition XXV. In a cycloid whose axis is vertical and whose

summit is placed below, the times of descent in which a particle starts

from any point on the curve and reaches the lowest point are equal to

each other ; their ratio with the time of vertical fall along the whole axis

of the cycloid is equal to the ratio of half the circumference of a circle to

its diameter.
"

This result may be obtained easily by means of a well-known

analysis. Thus the motion of a heavy particle on a cycloid is defined

by the differential equation

dt2 4R

Here 5 denotes the distance of the particle from A as measured

along the arc. If the particle starts from rest at the point J3, and

rr
if the arc AB is equal to $ , it follows that s= s cos y ~- - 1. The sum-

jt /4iR
mit, A, is attained in a time T= V/ Now if the particle were

o

1
Cf. The Complete Works of Christiaan Huyghens, Vol. XVIII, pp. 152 to 184.
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allowed to fall freely along DA, it would reach A
after_a

time T given

by 2R == i gT'
2
, from which it foUows that T = V/

Therefore it

< O

must be that = -, which is the statement that Huyghens makes.1

T 2

B

Fig. 67

We shall pass over the third part of Huyghens' treatise, which

is devoted to curved lines. The question is that of the search for

developments. Huyghens called the development of a curve, the

evoluta, and the development the descripta ex evolutions.

Notable among this work is the development of the cycloid, which

rationally justified the use of the cycloidal shape in his clock. He

also studied the developments of conies in particular, those of the

parabola, which he called paraboloides.
2

7. THE THEORY OF THE CENTRE OF OSCILLATION.

"We now come to the fourth part of the Horologium oscillatorium,

which is devoted to an investigation of the centre of oscillation.

" A long time ago, when I was still almost a child, the very wise

Mersenne suggested to me, and to many others, the investigation of

centres of oscillation or agitation.
" Thus Huyghens expresses him

self at the beginning of the fourth part of his major work. At first

he found nothing "which might open the way to this contemplation.
"

However, he returned to the question in order to improve the pendulums
of his "

automatic,
"
to which he had been led to add moveable weights

above the principal fixed weight. Huyghens completely resolved

1 It is of some interest to remark that this study of the cycloid was very popular

among XVIIth Century geometers. WHEN had calculated its length, ROBERVAL had

defined the tangents while PASCAL determined the centre of gravity and calculated

the area. WALLIS too, had made analogous investigations.
2 HUYGHENS knew the development of a parabola as early as 1659, as a result of

his work with Jean VAN HEURAET of Harlem.
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this question by appealing to a kind of generalisation of TorricellTs

principle that depended on the principle of living forces.

First he defines the compound pendulum and the centre of oscillation.

The latter is the point on the perpendicular to the axis of oscillation

through the centre of gravity which is separated from the axis by a

distance equal to the length of the simple isochronous pendulum.

Huyghens starts from the following fundamental hypothesis.
" We suppose that when any number of weights starts to fall, the

common centre of gravity cannot rise to a height greater than that from
which it starts.

"

In the commentary which accompanies this hypothesis, Huyghens
specifies that verticals should be considered as parallels if the conside

ration of a centre of heaviness is to have any meaning. His hypothesis
reduces to the following no heavy body can rise by the sole agency
of its own gravity ; what is true for a single body is also true for bodies

which are attached to each other by rigid rods.

If, now, the bodies considered are no longer connected to each other,

they nevertheless have a common centre of gravity, and it is this which

cannot rise spontaneously.
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" Let there be weights A, B, C and let D be their common centre

of gravity. Suppose the horizontal plane is drawn and that EDF is

a right section of it. Let DA, DB, DC be the rigid lines joining the

points to each other in a rigid way. Now set the weights in motion
so that A comes to E in the plane EF. Since all the rods are turned

through the same angle, B will now be at G and C at H.
"
Finally suppose that B and C are joined by the rod HG which

cuts the plane EF in F. The point F must also be the centre of gravity
of these two weights taken together, since D is the centre of gravity of

the three weights at E, G, H and that of the body E is also in the plane
DEF. The weights H and G are once more set in motion about the

point F as about an axis and, without any force, simultaneously arrive

in the plane EF. Thus it appears that the three weights, which were

originally at A, B and C, have been carried exactly to the height of their

centre of gravity by their own equilibrium, Q. E. D. The demonstra
tion is the same for any other number of weights.

" Now the hypothesis that we have made is also applicable to liquid
bodies. By its means, not only may all that Archimedes has said about

floating bodies be demonstrated, but also many other theorems in

mechanics. And truly, if the inventors of new machines who strive in

vain to obtain perpetual motion were able to make use of this hypothesis,

they would easily discover their errors for themselves and would under
stand that this motion cannot be obtained by any mechanical means. "

Huyghens' second hypothesis consists of the neglect of the resistance

of the air and all other disturbances of motion.

His first three propositions relate to the geometry of masses. We
come to the fourth.

"
Proposition IV. If a pendulum composed of several weights, and

starting from rest, has executed some part of its whole oscillation, and it is

imagined that, from that moment on, the common bond of the weights is

broken and that each of the weights directs its acquired velocity upwards
and rises to the greatest height possible, then by this means the common
centre of gravity will rise to the height it had at the start of the oscillation.

" Let a pendulum composed of any number of weights A, B, C be
connected by a weightless rod which is suspended from an axis D per
pendicular to the plane of the diagram. The centre of gravity, E, of
the weights A, B, C is supposed to be in this plane. The line of the

centre, DE, makes an angle EDF with DF and the pendulum is drawn
aside as far as this. Suppose that it is released in this position and
that it executes a part of its oscillation in such a way that the weights
A, B, C come to G, H, K. Suppose that each of these weights directs

its velocity upwards when the bond is broken (this can be arranged by



WALLIS, WREN, HUYGHENS, MARIOTTE 189

the adjunction of certain inclined planes) and rises to the greatest

possible height, as far as L, M, N. Let P be the centre of gravity of

the weights when they have attained these positions.
I maintain that

this point is at the same height as E.

R

B

Fig. 69

"
First, it is certain that P is not higher than E (hypothesis I).

But

neither is it at a lesser height. Indeed, if this is possible,
let P be lower

than E. Suppose that the weights fall downp*^*?
heights that they travelled in mounting namely LG, Mti, I\^. it

clear that they will attain the same velocity as they had at the beginning

of their climb-that is to say the velocity they acquired m the motion

of the pendulum from CBAD to KHGD. Consequently ^
jhey

are

simultaneously attached again to the rod which supported
^em,

they

will continue their motion along the arcs winch they had started along

(This will happen if, before coming to the rod they rebound on the

planes 00.) The pendulum reconstituted in this way will effect the

rest of its motion without any interruption. So that the centre of gra

vity E travels, in rising and falling, along the equal arcs EF and *,

and finds itself at R-at the same height as at E. But we have supposed

that R is higher than P, the centre of gravity of the weights whe*.they

are at L, M, N. Therefore R will also be higher than P. The centre

of gravity of the weights which have fallen from L M, N will herefore

have risen by a height greater than that from which they fell which

is absurd. The centre of gravity P is not, therefore, lower than E.
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No more is it at a greater height. It must therefore be that it is at the

same height. Q. E. D. "

"
Proposition V. Being given a pendulum composed ofany number

of weights, if each of these is multiplied by the square of the distance from
the axis of oscillation, and the sum of these products is divided by the

product of the sum of the weights with the distance of their centre of gravity

from the same axis of oscillation, there will be obtained the length of the

simple pendulum which is isochronous with the compound pendulum that

is, the distance between the axis and the centre of oscillation of the com

pound pendulum.
"

We shall analyse this demonstration instead of reproducing it. Let

A, JB, C be the material points which constitute the compound and

a, ft, c be their weights. Suppose that DA = e, DB = /, DC = g and
ED = d. Also suppose that E is the centre of gravity of the weights.

Initially the compound pendulum is released from rest in the position
DABC. Let FG be a simple pendulum isochronous with the compound

pendulum and placed, initially, at FG. Let the angle FGH be equal

to the angle EDF. On DE, mark oS the length of the simple pendulum,

Fig. 70

x FG. There is isochronism between the simple pendulum and the

compound pendulum if, at corresponding points of the two oscillations,

and P such that the arc GO is equal to the arc LP the velocities

of G and L are equal.
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We shall show that this equality holds for

-
(a + b + C

)
d

Indeed, suppose that the velocity from L to P is greater than that

from G to 0.

Let SP, RQ, YO be the descents from the points L, JE, G to the

corresponding points P, (), 0.

d
If SP = y, then RQ = y -.

re

The simple pendulum G has a velocity at which is sufficient to

enable it to return to the height of M, either along OM or along OY
by means of a suitably chosen elastic impact. Then the point L has,

at P, a velocity greater than that which would enable it to return along

PS = OY.
Let hL be greater than y, the height to which L can return.

The points A 9 JS, C travel the arcs AT, BF, CX while L travels LP.

Thus for yi there obtains the relation

v(A) to T D.A ^ e_

v(L) to P
""

DL
~~~

x

Now the heights of return are proportional to the squares of the

velocities. Therefore the height of return of A 9 say ft^, is greater than

e 2

y, from the moment that L exceeds y.
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The same is true for B and C, so that

Now this inequality expresses the fact that the centre of gravity E
can return to a greater height than the one RQ from which it fell,

for hE = . This result is in contradiction with pro-
a + b + c

r

position IV and therefore impossible. In the same way the hypothesis
that the velocity from L to P will be less than the velocity from G to

implies a contradiction with the same proposition. Therefore the pen
dulum FG of length x is synchronous with the compound pendulum.
This establishes the required result.

We shall not discuss the applications of these propositions here, but
shall indicate how Huyghens was able to demonstrate the reciprocity
between the axis of suspension and the axis of oscillation. Huyghens
stated the following proposition.

"
Proposition XVIII. If the plane space, whose product with the

number of particles of the suspended magnitude is equal to the sum of the

squares of their distancesfrom the axis of gravity., is divided by the distance

between the two axes, the result obtained is the distance from the centre

of gravity to the centre of oscillation.
"

In this enunciation, the axis of gravity is the axis through the centre

of gravity and parallel to the axis of suspension.

yya
Huyghens' plane space has the value =

, where r' is the distance
n

from the axis of gravity of one of the n equal particles constituting the

suspended magnitude. It is therefore identical with the square of the
radius of gyration of the pendulum,

2
, about this axis. If x denotes

the length of the simple isochronous pendulum and d the distance

between the centre of gravity and the axis of suspension, Huyghens'
statement may be written

nd a

V 2

Now, because of proposition V, the length x is equal to , where
nd

r is the distance from one of the n particles to the axis of suspension.

This is equal to , where K is the radius of gyration of the pendulum
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ibout this axis. Huyghens' long demonstration of proposition XVIII
educes, then, to the verification of the equality

This is an immediate consequence of the very definition of the mo
ment of inertia, which was to he introduced by Euler.

Huyghens then states the following proposition.
66

Proposition XIX. When the same magnitude oscillates, the suspen
sion being sometimes shorter, sometimes longer, the distances from the

centre of oscillation to the centre of gravity are inversely proportional to

the distances from the axes of suspension to the centre of gravity.
"

r . . i -i . x d d r

., .

Ihis statement is equivalent to the equation f

-- = and is a
x f

d' d

direct consequence of proposition XVIII.

Finally, Huyghens was able to state the reciprocity of the two axes,
"
Proposition XX. The centre of oscillation and the point of sus

pension are reciprocal.
"

This reciprocity is a direct consequence of Proposition XIX and the

constancy of the product d (x d).

In Huyghens' work the whole theory of the centre of oscillation rests

on the fundamental hypothesis described on page 187. This is equi
valent to the a priori assumption of the conservation of living forces.

In Lagrange's opinion, he thus sets out from an " indirect precept.
"

Huyghens' theory produced its critics, like Roberval, Catelan, Jacques
Bernoulli and others but these had nothing more than " evil objec
tions.

" x However, criticism had the value of attracting the attention

of geometers as did the efforts of Descartes and Roberval to solve the

same problem to the investigation of the velocities lost or gained in

the constrained motion of the elementary weights that constitute a com

pound pendulum. Jacques Bernoulli was at first mistaken in this

investigation, in that he considered the velocities acquired in a finite

time. The Marquis de 1'Hospital drew his attention to the fact that

an infinitesimal motion of the system should be considered. It was due

to this remark, made in 1680, that Jacques Bernoulli arrived at a new
solution of the problem of the centre of oscillation (1703). We shall

return to a discussion of this solution, which prepared the way for

d'Alembert's principle.

1
Mfaanique analytique, Part II, Section I.

13
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8. THE THEORY OF CENTRIFUGAL FORCE.

The Horologium oscillatorium finishes with thirteen unproved propo
sitions on centrifugal force and the conical pendulum. These proposi
tions were the subject of De vi centrifuga. This manuscript was written

in 1659 but did not appear until 1703, in a form that was edited by de

Voider and Fullenius and published posthumously with the remainder

of Huyghens work.

In this treatise Huyghens regards gravity as a tendency (conatus)

to fall. This tendency is made apparent by the tension of the thread

which supports a body. To measure it, it is necessary to consider the

first motion of the body after the thread has been broken. In this way
the conatus is caught in life, before there has been time for it to have

been destroyed.
Given this, Huyghens sets out to determine the conatus of a body

attached to a revolving wheel. By an artifice whose object is clearly

that of introducing a reference system bound to the wheel, he assumes that

the wheel is sufficiently large to carry a man who is attached to it. This

man holds a thread, supporting a ball of lead, in his hand. Because of

the rotation the thread is stretched with the same force as if it were

fixed at the centre of the wheel. In equal times the man travels the

6

Fig. 72

very small arcs BE and BF. If it is released at B, the lead will travel

along the rectilinear paths BC and CD which are equal to these arcs.

The points C andD do not fall on the radii AE and EF, but very slightly
behind them.
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If the points C and D coincide with y and <?, points on the radii AE,
4F, the lead will tend to move away from the man along the radius.

The distances JEJy, F<5, . . . increase as the square numbers 1, 4, 9, 16, . . .

and this becomes more accurate as the arcs BE, jEF, . . . become smaller.

Now, according to Galileo's laws, the distances travelled by a body
that starts its fall from rest increase as the successive square numbers

1, 4, 9, 16, ... The conatus which is sought will therefore be, on this

hypothesis, the same as that of a heavy body suspended by a thread.

In fact, however, the points C and D lie behind y and d. Therefore,

with respect to the radius on which it is placed, the weight tends to

describe a path which is tangential to the radius. But at the moment
of the separation of the lead and the wheel, these curves can be regarded
as being the same as their tangents J5y, F<3, . . . with the consequence
that the distances EC, FD, . . . must be considered as increasing as

the series 1, 4, 9, 16, . . . And here is Huyghens' conclusion.
" The conatus of a sphere attached to a revolving wheel is the

same as if the sphere tended to advance along the radius with a uni

formly accelerated motion. ... It is sufficient, indeed, that this motion

should be observed at the beginning. Afterwards, the motion can

follow every other law. This cannot affect the conatus that exists at

the beginning of the motion in any way. This conatus is entirely

similar to that of a body hung by a thread. From which we conclude

that the centrifugal forces of unequal particles that move with equal
velocities on equal circles have the same relation to each other as their

gravities, that is, as their quantities of solid (quantitates solidae) . [Here
we catch a fleeting glimpse of the concept of mass.] Indeed, all bodies

tend to fall with the same velocity in the same uniformly accelerated

motion. But their conatus has a moment (momentum) that is greater
as the bodies themselves are greater. It must be the same for bodies

that tend to move away from a centre, since their conatus is similar

to that which arises from their gravity. But while the same sphere

always has the same tendency to fall whenever it is hung from a thread,

the conatus of a sphere attached to a revolving wheel depends on the

velocity of rotation of the wheel. It remains to us to find the magnitude
or the quantity of conatus for different velocities of the wheel.

" l

So much for the principle of centrifugal force that Huyghens
developed in his preamble. We shall now state the propositions
that he established in a much abbreviated form.

1) For a given period of rotation, the centrifugal force is propor
tional to the diameter.

1 The Complete Works of Christiaan Huyghens, Vol. XVI, p. 266.
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2) For a given velocity on the circumference, it is inversely propor
tional to the diameter.

3) For a given radius, it is proportional to the square of the velocity

on the circumference.

4) For a given centrifugal force, the period of revolution is propor
tional to the square root of the radius.

5)
" When a particle moves on the circumference with the velocity

that it would have acquired in falling from a height equal to a quarter

of the diameter, its centrifugal force is equal to its gravity. In other

words, it will stretch the cord to which it is attached with the same force

as if it were suspended.
"

We shall summarise Huyghens' proof of this proposition.

The particle is supposed to describe the circumference of a circle

with uniform motion and the velocity (\/Kg) which it would have
T)

acquired in falling from the height CJB = . If it is detached at B, it

2i

travels along the tangent uniformly, covering a distance BD = R in the

time
I
i/ __

J

which it would have spent in falling along CB. We consider
\ o /

a very small fraction of BD namely BE and draw the straight line

C C* / R T?\ ^

EFAH. We also suppose that _==(_). Then BE, or
( <\/2R.CG) ,

Ojt> \ JoXx /

is proportional to the time of free fall along CG, which is equal to

V1
-

8
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The particle detached at B travels the distance EE uotformly

in the time it would have spent in falling freely from the height CG.

Now BE can be approximated to by the arc BF. If it is shown that

CG^FE it will have been proved that the conatus of the centrifugal

force is equal to the conatus of the gravity, for the particle
considered.

- B2 = i\\= CG. The proposition
is etablished.

2R 2 \ JR /
*

It must be pointed out that for Huyghens centrifugal force is in no

way a fictitious force. On the contrary, he attributed to it both measure

ment and special privilege by identifying it with gravity in the part-

icular case we have just seen.

Let us continue our examina

tion of the propositions that end

the Horologium oscillatorium :

6) A conical pendulum is iso

chronous with a simple pendulum

having as length half the latus

rectum (parameter)
of the par

aboloid of which it describes a

parallel.

7) The period of a conical pen

dulum depends only on the height

of the cone.

8) It is proportional
to the

square root of this height.

9) The period of motion of a

conical pendulum
" on extremely

small circumferences
"

is equal to

n T, T being the time it falls freely

from a height twice the length of

the pendulum.

10) If a mobile runs along a

circumference and if the period of

its uniform motion is equal to the

time in which a conical pendulum,

whose length is equivalent to the
. * i

radius, describes an extremely small circumference, its centrifugal

force is equal to its gravity. .

11) The period of revolution of a conical pendulum is equal to the

time it takes to fall freely from a height equal to its length, if the string

Fig. 74
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forms with the horizontal plane an angle the sine of which is equal to

12) The tension of the string of a conical pendulum of given height
is proportional to the length of the pendulum.

13) When a simple pendulum performs a maximum lateral motion,
that is, when it descends by a whole quarter of the circumference, the

tension of the string at the lowest point is three times the weight of the

pendulum.
1

Without spending time over the demonstrations ofthese propositions,
we may mention, for the sake of curiosity, a clock constructed by
Huyghens, which illustrates this theory.

The axis KH is vertical, the curved line AI is the evolute of the

parabola FEC. In the rotation of the axis, the pendulum BF, which

escapes tangentially from the evolute, describes a parallel, a straight
section of the paraboloid engendered by FEC.

9. HUYGHENS AND THE PRINCIPLE OF RELATIVITY.

In Huyghens' sense, the principle of relativity is that it is impossible
that an observer in uniform rectilinear motion can discover his own
translation. We have seen how Huyghens exploited this principle
in his study of the laws of impact.

Huyghens appears to have assumed, however, in his work on the

centrifugal force, the tangible reality of uniform, circular motion,
which he called motus verus. Nevertheless, he went back on this opinion
after the appearence of Newton's Principia. In the last analysis,
he rejected the concept of absolute motion and remained a Cartesian.

Indeed, in a fragment of his writing that must be placed later than
1688, he wrote,

" In circular motion as well as in straight and free

motion there is nothing that is not relative, in the sense that this

is all there is to know of motion. "

We do not have the time to deal with Huyghens' contribution to

physics. We only recall that he outlined an undulatory theory of light
in 1673 he had learnt of Erasme Bartholin's experimental discovery
of the birefringence of Iceland Spar in 1670, and sought to find a rational

explanation of this phenomenon. Huyghens read his Treatise on Light
before the Academic des Sciences at Paris in 1690.

1 (Euvres completes de Huyghens, vol. XVI, p. 280 sq.
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10. MARIOTTE AND THE LAWS OF IMPACT.

Mariotte dealt with the theory of impact in his Treatise on the

percussion or impact of bodies.

This work added nothing essentially novel to the work of Wallis,
Wren and Huyghens, but was distinguished by its much more expe
rimental approach to the subject. Mariotte rejected the concept of

perfectly hard bodies in the sense that "Wallis had used the term. He
confined himself to bodies that were flexible and resilient (that is,

perfectly elastic) and bodies that were flexible and not resilient (that is,

perfectly soft).

In order to obtain velocities of direct impact that were in any
given relationship, Mariotte described an apparatus consisting of two

equal pendulums which were allowed to fall from positions J3J',

EL' that could be chosen at will.

Mariotte had the merit of recognis

ing the part played by the mass in

the laws of impact. Thus he wrote
" The weight of a body is not

understood, here, to be the tendency
which makes it move towards the centre

of the Earth, but rather to be its

volume together with a certain solidity
or condensation of the parts of its

material which is probably the cause

of its heaviness. "

Mariotte was also concerned with

the investigation of centres of percussion. He combined the laws of

statics with those of impact in this investigation. He investigated
the percussions exerted on a balance by jets of water of known amount
and came to the following conclusion. " Two bodies that fall on a

balance, on one side and the other, are in equilibrium at the moment
of impact if the distances [from the centre] of the points where they
fall are in reciprocal proportion to their quantities of motion. "

Fig. 75



CHAPTER SIX

NEWTON
(1642-1727)

1. THE NEWTONIAN METHOD.

Thanks to Galileo and Huyghens, mechanics had been emancipat

ed from the scholastic discipline. Essential problems like the motion

of projectiles in the vacuum and the oscillations of a compound pendulum
had been solved. Nevertheless, the task of constructing an organised

corpus of principles in dynamics remained. This was the work of

Newton, who set his seal on the foundation of classical mechanics

at the same time that he extended its field of application to celestial

phenomena.
Newton's work in mechanics is called Philosophiae naturalis prin-

cipia mathematica (1687) -
1 It proceeds by a method that is at once

rational and experimental, to which the author himself gave us the

key.
A first rule of the newtonian method consists in not assuming

other causes than those which are necessary to explain the phenomena.
A second is to relate as completely as possible analogous effects to

the same cause. A third, to extend to all bodies the properties which

are associated with those on which it is possible to make experiments.

A fourth, to consider every proposition obtained by induction from

observed phenomena to be valid until a new phenomenon occurs and

contradicts the proposition or limits its validity.

It was by relying on the third of these rules that Newton was

able to formulate the law of universal gravitation. In expressing

this law, Newton had no intention of assigning a cause to gravitation.
" But hitherto I have not been able to discover the cause of those pro

perties of gravity from phenomena, and I frame no hypotheses (hypo-

1 The manuscript of the Principia was deposited with the Royal Society on April

28th, 1686. It was published for the first time in 1687, on the intervention of HALLEY.
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theses non fingo). For whatever is not deduced from the phenomena,
is to be called an hypothesis ; and hypotheses, whether metaphysical
or physical, whether of occult qualities or mechanical, have no place
in experimental philosophy. In this philosophy particular propo
sitions are inferred from the phenomena, and afterwards rendered

general by induction.
" 1

It is not surprising that Newton himself should have departed
from this rule and that he should have introduced purely abstract

entities into some of his arguments. But on the whole, his work is

a practical expression of the natural philosophy whose foundation

he laid.

2. THE NEWTONIAN CONCEPTS.

Newton introduced the notion of mass into mechanics. This

notion had appeared in Huyghen's work, but only in an impermanent
form.2

"
Definition /. The Quantity of Matter is the measure of the same,

arising from its density and bulk conjunctly.
"... I have no regard in this place to a medium, if such there

is, that freely pervades the interstices between the parts of bodies.

It is this quantity that I mean hereafter every where under the name
of Body or Mass. And the same is known by the weight of each body
For it is proportional to the weight, as I have found by experiments
on pendulums, very accurately made. ..."

In these experiments Newton worked with pendulums made of

different materials and of the same length, and established that their

acceleration did not depend on the nature of the material. He eliminat

ed the variations of the resistance of the air by using pendulums
formed of spheres of the same diameter, suitably hollowed-out to

ensure equality of the weights.
When Newton declared that the mass was known by the weight,

he contemplated the weight in a given place. For he was well aware

of the fact that the weight of a body varied with its distance from

the centre of the Earth, while its mass remained constant.

This Newtonian definition of the mass has been often and justly

criticised. Thus Mach wrote,
" The vicious circle is clear, since the

density can only be defined as the mass of unit volume. Newton clearly

believed that to each body was associated a characteristic determinant

1 In the Englishtranslation ofthe presentbook quotations fromthework ofNEWTON
are taken from Andrew MOTTE'S translation of the Principia (1724).

2 See above, p. 195.
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of its motion, which was different from its weight and which we, with

him, call mass. But he did not succeed in expressing this idea correctly."
l

"
Definition II. The Quantity of Motion is the measure of the

same, arising from the velocity and quantity of matter conjunctly.
"
Definition III. The vis insita, or Innate Force of Matter, is

a power of resisting, by which every body, as much as in it lies, endeavours

to persevere in its present state, whether it be of rest, or ofmoving uniformly

forward in a right line.
"

To Newton, this vis insita was always proportional to the quantity
of matter. He also gave it with a meaning different from that which
is accepted now the name of force of inertia. This force is resistive

when it is desired to change a body's state of motion, and impulsive
to the extent that a body in motion acts on an obstacle.

"
Definition IV. An impressed force (vis impressa) is an action

exerted upon a body, in order to change its state, either of rest, or of moving
uniformly forward in a right line.

"

Therefore, to Newton, the vis impressa is the determinant of the accel

eration. " This force consists in the action only ; and remains
no longer in the body, when the action is over. For a body maintains

every new state it acquires, by its vis insita only.
" The impressed

force acts by impact, pressure or at a distance.
"
Definition V. A Centripetal force is that by which bodies are

drawn or impelled, or any way tend, towards a point as to a centre.
"

As examples of centripetal force, Newton cites the gravity which
makes bodies tend towards the centre of the Earth, the magnetic
force that attracts iron towards a magnet, and that force whatever
its nature might be that makes each planet describe a curved orbit.

The force exerted by a hand that whirls a stone in a sling is also a

centripetal force. Newton adds,
" And the same thing is to be under

stood of all bodies, revolved in any orbits ; and were it not for the

opposition of a contrary force which restrains them to, and detains
them in their orbits, which I therefore call Centripetal, would fly off

in right lines, with an uniform motion. "

Newton then distinguishes the absolute quantity, the accelerative

quantity and the motive quantity of the centripetal force (Definitions
VI, VII and VIII).

The absolute quantity depends on the efficacy of the cause that

propagates the centripetal force for example, the size of a stone or the

strength of a magnet.
The accelerative quantity is measured by the velocity produced in

1 M., p. 190.



NEWTON 203

a given time. Therefore, in modern language, it is the acceleration

produced by the force.

Newton takes the value of the motive quantity to be the quantity

of motion produced in a given time. Therefore it is the motive quantity
which satisfies the law that is now written

(1) F = my.

For heavy bodies, the motive quantity becomes identified with the

weight.
In this way Newton multiplied the definitions and concepts. Instead

of deducing the concept of motive force from the concepts of mass and
acceleration by using the law (1), he consciously regarded the mass and
the force as two primarily distinct notions.

Newton also took certain precautions in order to anticipate the

objections of the cartesian philosophy, and to make the notion of action

at a distance acceptable.
" I likewise call Attractions and Impulses,

in the same sense, Accelerative and Motive ; and use the words Attrac

tion, Impulse or Propensity of any sort towards a centre, promiscuously,
and indifferently, one for another ; considering those forces not Physi

cally but Mathematically Wherefore the reader is not to imagine, that

by those words I any where take upon me to define the kind, or the

manner of any Action, the causes and the physical reason thereof, or

that I attribute Forces, in a true and Physical sense, to certain centres

which are only mathematical points.
"

Newton then proceeds to discuss the currently used concepts of

time, space, place and motion. He introduces a distinction between

the relative, apparent and common senses of the words and the absolute,

true and mathematical senses.
"

I, Absolute, true and mathematical time, of itself, and from its

own nature flows equably without regard to any thing external and by
another name is called duration relative, apparent and common time

is some sensible and external (whether accurate or unequable) measure

of duration by the means of motion, which is commonly used instead

of true time ; such as an hour, a day, a month, a year.
66 II. Absolute space, in its own nature, without regard to anything

external, remains always familar and immoveable. Relative space is

some moveable dimension or measure of the absolute spaces ; which our

senses determine, by its position to bodies ; and which is vulgarly taken

for immoveable space. ..."

Or again,
" It may be, that there is no such thing as an equable

motion, whereby time may be accurately measured. All motions may
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be accelerated and retarded, but the true, or equable progress, of abso

lute time is liable to no change. . . .

" For times and spaces are, as it were, the places as well of themselves

as of all other things. All things are placed in time as to order of

succession ; and in space, as to order of situation. It is from their

essence or nature that they are places ; and translations out of those

places, are the only absolute motions.
"

Newton concerns himself with distinguishing absolute and relative

motions by their causes and their effects.

" The causes by which true and relative motions are distinguished,

one from the other, are the forces impressed upon bodies to generate
motion. True motion is neither generated nor altered, but by some

force impressed on the body moved but the relative motion may be

generated or altered without any force impressed upon the body. . . .

" The effects which distinguish absolute from relative motion, are

the force of receding from the axe of circular motion. For there are

no such forces in a circular motion, purely relative, but in a true and
absolute circular motion, they are greater or less, according to the quan
tity of motion.

" If a vessel, hung by a long cord, is so turned about that the cord

is strongly twisted, then filled with water, and held at rest together with

the water ; after by the sudden action of another force, it is whirled

about the contrary way, and while the cord is untwisting itself, the

vessel continues for some time in this motion ; the surface of the water

will at first be plain, as before the vessel began to move but the vessel,

by gradually communicating its motion to the water, will make it begin

sensibly to revolve, and recede by little and little from the middle, and
ascend to the sides of the vessel, forming itself into a concave figure

(as I have experienced) and the swifter the motion becomes, the higher
will the water rise, till at last, performing its revolutions in the same
times with the vessel, it becomes relatively at rest in it. This ascent

of the water shows its endeavour to recede from the axe of its motion ;

and the true and absolute circular motion of the water, which is here

directly contrary to the relative, discovers itself, and may be measured by
this endeavour. At first, when the relative motion of the water in the

vessel was greatest it produced no endeavour to recede from the axe
the water shewed no tendency to the circumference, nor any ascent

towards the sides of the vessel, but remained of a plain surface, and
therefore its true circular motion had not yet begun. But afterwards,
when the relative motion of the water had decreased, the ascent thereof

towards the sides of the vessel, proved its endeavour to recede from the
axe ; and this endeavour shewed the real circular motion of the water
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perpetually increasing, till it had acquired its greatest quantity, when
the water rested relatively in the vessel. ..."

Again Newton stresses the distinction between absolute and relative

quantities.
" And if the meaning of the words is to be determined by

their use ; then by the names time, space, place and motion, their

measures are properly to be understood ; and the expression will be

unusual, and purely mathematical, if the measured quantities themselves

are meant. Upon this account, they do strain the Sacred Writings, who
there interpret those words for the measured quantities. Nor do those

less defile the purity of Mathematical and Philosophical truths, who
confound real quantities themselves with their relations and vulgar
measures,

"

Newton did not conceal the difficulty of distinguishing true from

apparent motions, because " the parts of that immoveable space in

which those motions are performed, do by no means come under the

observation of our senses.
" In order to accomplish this it is necessary,

according to him, to make use simultaneously of the apparent motions,
u which are the differences of the true motions " and the forces,

" which

are the causes and the effects of the true motions.
"

As an example he cites the motion of two spheres attached by an

inflexible thread and turning about their centre of gravity. The tension

of the thread allows " the quantity of circular motion "
to be measured.

To Newton, force therefore appears as a true or absolute element and

is opposed to motion, which only has a relative character with respect

to a suitably chosen reference system. Certain modern critics notably
Mach reproach the Newtonian philosophy for its metaphysical cha

racter in this connection. Absolute space and time appear to them as

purely abstract entities which can only be deduced from observation.

More correctly, theoretical physics is based on the introduction of pure
unobservables as intermediaries in the calculation. Under a cloak of

metaphysical appearance it contains a profound physical truth. It

"
explicitly proclaims to the student of mechanics the necessity of

considering the privileged reference frames in time and space and of thus

avoiding the confusion that is so apparent in the ideas of Descartes and

Huyghens."
1

3. THE NEWTONIAN LAWS OF MOTION.

Newton stated the principle of inertia at the beginning. This had

already been discovered by Galileo and reformulated by Huyghens.
" Law L Every body perseveres in its state of rest, or of uniform

1 JOUGUET, L. M., Vol. II, p. 11, note 9.
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motion in a right line, unless it is compelled to change that state by forces

impressed thereon.
"

He next repeats the idea that the motive force is the determinant of

acceleration.
" Law II. The alteration of [the quantity of] motion is ever propor

tional to the motive force impressed ; and is made in the direction of the

right line in which that force is impressed,
"

The third law constitutes the principle of the equality of the action

and the reaction.
" Law III. To every action there is always opposed an equal

reaction or the mutual actions of the two bodies upon each other are

always equal, and directed to contrary parts.
" Whatever draws or presses another is as much drawn or pressed

by that other. If you press a stone with your finger, the finger is also

pressed by the stone. If a horse draws a stone tyed to a rope, the

horse (if I may so say) will be equally drawn back towards the stone

For the distended rope, by the same endeavour to relax or unbend it

self, will draw the horse as much towards the stone, as it does the stone

towards the horse, and will obstruct the progress of the one as much
as it advances that of the other.

" If a body impinge on another, and by its force change the motion

of the other, that body also (because of the equality of the mutual

pressure) will undergo an equal change, in its own motion, towards the

contrary part.
" The changes made by these actions are equal, not in the velocities,

but in the [quantities of] motion of the bodies ; that is to say, if the

bodies are not hindered by any other impediments. For because the

motions are equally changed, the changes of velocity made towards

contrary parts, are reciprocally proportional to the bodies. This law

also takes place in attractions. ..."
It is interesting to see how Newton contrary to the custom of the

time pays homage to his predecessors.
" Hitherto I have laid down such principles as have been received

by all mathematicians, and are confirmed by abundance of experiments.

By the two first Laws and the first two Corollaries, Galileo discovered

that the descent of bodies observed the duplicate ratio of the time, and
that the motion of projectiles was in the curve of a parabola ; expe
rience agreeing with both, unless so far as these motions are a little

retarded by the resistance of the air. . . .

" On these same laws and corollaries depend those things which
have been demonstrated concerning the times of vibration of pendulums,
and are confirmed by the daily experiments of pendulum clocks. By
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the same together with the third Law Sir Christopher Wren, Dr. Wallis

and Mr. Huyghens, the greatest geometers of our times, did severally

determine the rules of the congress and reflection of hard bodies, and
much about the same time communicated their discoveries to the Royal
Society, exactly agreeing among themselves, as to those rules,

Dr. Wallis indeed was something more early in the publication ; then

followed Sir Christopher Wren, and lastly, Mr. Huyghens. But Sir

Christopher Wren confirmed the truth of the things before the Royal
Society by the experiment of pendulums, which Mr. Mariotte soon after

thought fit to explain in a treatise entirely upon that subject.
"

For his part, Newton repeated the experiments with great care.

From them he concluded that " the quantity of motion, collected from
the sum of the motions directed towards the same way, or from the

difference of those that were directed towards contrary ways, was never

changed,
" whether the bodies were hard or soft, elastic or not.

In order to justify the equality of action and reaction in the case of

attractions, Newton argued in the following way.
"
Suppose an obstacle is interposed to hinder the congress of any

two bodies A, B, mutually attracting one the other then if either body
as A, is more attracted towards the other body jB, than that other

body B is towards the first body A, the obstacle will be more strongly

urged by the pressure of the body A than by the pressure of the body B ;

and therefore will not remain in aequilibrio but the stronger pressure
will prevail, and will make the system of the two bodies, together with

the obstacle, to move directly towards the parts on which B lies ; and

in free spaces, to go forward in infinitum with a motion perpetually
accelerated. Which is absurd, and contrary to the first law. For by
the first law, the system ought to persevere in it's state of rest, or of

moving uniformly forward in a right line ; and therefore the bodies

must equally press the obstacle, and be equally attracted one by
the other.

" I made the experiment on the loadstone and iron. If these placed

apart in proper vessels, are made to float by one another in standing
water ; neither of them will propel the other, but by being equally

attracted, they will sustain each others pressure, and rest at last in

equilibrium.
"

4. NEWTON AND THE DYNAMICAL LAW OF COMPOSITION OF FORCES.

We have seen how Stevin and Roberval had established the rule of

the composition of forces in statics. Newton arrived at the law of the

parallelogram of forces by purely dynamical considerations.
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"
Corollary I (to the second law). A body by two forces conjoined

will describe the diagonal of a parallelogram, in the same time that it would

describe the sides, by those forces apart.
" If a body in a given time, by the force

M impressed apart in the place A, should

with an uniform motion be carried from A
to B ; and by the force N impressed apart
in the same place, should be carried from

A to C compleat the parallelogram
76 ABCD, and by both forces acting together,

it will in the same time be carried in the

diagonal from A to D. For since the force N acts in the direction of

the line AC, parallel to BD, this force (by the second law) will not at

all alter the velocity generated by the other force M, by which the body
is carried towards the line BD. The body therefore will arrive at the

line BD in the same time, whether the force N be impressed or not ;

and therefore at the end of that time, it will be found somewhere in the

line jBD. By the same argument, at the end of the same time it will

be found somewhere in the line CD. Therefore it will be found in the

point D, where both lines meet. But it will move in a right line from A
to D by Law I.

"

Newton's demonstration is clearly based on the postulate of the

independence of forces. The words " with an uniform motion " show
that he considered the impulsion of the force M or N during an infinitely
short time. This force acts instantaneously, like a percussion this

explains the importance of the laws of impact in Newton's thought.
The students of mechanics in the XVIIth Century had all perceived that

the phenomenon of impact was a means of crystallising the effect of a

force into the velocity acquired in a first instant.
"

Corollary II. And hence is explained the composition of any one

direct force AD, out of any two oblique forces AB and BD ; and, on the

contrary the resolution of any one direct force AD into two oblique forces
AB and BD which composition and resolution are abundantly confirmed

from Mechanics. "

Newton deduces the condition of equilibrium for simple machines

(the balance, inclined plane and wedge) from this proposition.
We have already seen that Aristotle compounded motions according

to the rule of the parallelogram.
1 Since the force was the determinant

of the velocity in his belief, it may be held, as Duhem has done, that
Aristotle compounded forces in the same way.

1 See above, p. 21.
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For Newton too, the composition of forces according to the rule of

the parallelogram had an origin in dynamics. But, to him, the force

was the generator of a quantity of motion in a given elementary time

(Definition VIII, para. 2 above).

5. THE MOTION OF A POINT UNDER THE ACTION OF A CENTRAL FORCE.

By a very simple and direct geometrical argument, Newton esta

blished that the motion of a material point that is subject to a central

force was contained in a plane, and followed the law of areas which

Kepler had formulated in a semi-empirical way (the radius vector

sweeps through equal areas in equal times). Here is Newton's argument.
"
Suppose the time to be divided into equal parts, and in the first

part of that time, let the body by its innate force describe the right

line AB. In the second part of that time, the same would (by Law I),

if not hindered, proceed directly to c, along the line Be equal to AB ;

so that by the radii AS, BS, cS

drawn to the centre, the equal
areas ASB, J3Sc, would be de

scribed. But when the body arriv

ed at B, suppose that a centripetal

force acts at once with a great im

pulse, and turning aside the body
from the right line Be, compells it

afterwards to continue its motion

along the right line J5C. Draw cC

parallel to BS meeting JBC in C ;

and at the second part of the time,

the body (by Cor. I of the laws) will be found in C, in the same plane

with the triangle ASB* Join SC, and, because SB and Cc are parallel,

the triangle SBC will be equal to the triangle SJ3c, and therefore also

to the triangle SAB.
" By the like argument, if the centripetal force acts successively

in C, D, E, and c and makes the body in each single particle of time, to

describe the right lines CD, DE, EF, and c they will all lye in the same

plane ; and the triangle SCD will be equal to the triangle SBC, and

SDE to SCD, and SEF to SDE. And therefore in equal times, equal

areas are described in one immoveable plane and, by composition,

any sums SADS, SAFS, of those areas, are one to the other, as the times

1 We shall encounter this method of argument again in the next paragraph. It is

equivalent to making use of the deviation (in the kinematic sense) produced by the

force during an infinitely short time.

14



210 THE FORMATION OF CLASSICAL MECHANICS

in which they are described. Now let the number of those triangles be

augmented, and their breadth diminished in infinitum ; and their ulti

mate perimeter ADF will be a curve line
"

Newton establishes the converse of this proposition. He then exa
mines the circular trajectory of a body gravitating about the centre of

this trajectory its gravity is equal to the centripetal force. Therefore
the gravity can be evaluated by using the propositions given by
Huyghens in his Horologium oscittatorium.1

Newton then studies a particle which describes a circular orbit under
the action of a force emanating from any point in the plane of the circle.

Given this, he comes to the fundamental problem of the motion of the

planets.

6. NEWTON'S EXPLANATION OF THE MOTION OF THE PLANETS.

We shall quote the original text of the Principia (De motu corporum.
Liber I9 Prop. VI, cor. 5).

" Si corpus P revolvendo circa centrum S describat lineam curvam

APQ ; tangat vero recta ZPR curvam illam in puncto quovis P et ad

Fig. 78

tangentem ab alio quovis curvae puncto Q agaturQR distantiae SPparallela,
ac demitatur QT perpendicularis ad distantiam illam SP : vis centripeta

SPquad X QT quadent reciproce ut sohdum si modo solidi illius ea
QR

semper sumatur quantitas quae ultimo sit., ubi coeunt puncta P et Q.
44 Nam QR aequalis est sagittae dupli arcus QP in cujus media est P ;

et duplum trianguli SPQ, sive SP X QT, tempori quo arcus iste duplus
describitur^proportionale est ; ideoquepro temporis exponente scribi potest."

1 These are the propositions which HUYGHENS included, -without proof, at the end
of his treatise.
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That is,
" If a body P revolving about tke centre S, describes a

curve line APQ, which a right line ZPR touches in any point P ; and

from any other point Q of the curve, QR is drawn parallel to the distance

SP, meeting the tangent in R ; and QT is drawn perpendicular to the

distance SP the centripetal force will be reciprocally as the solid

SP2 QT2

QR
-,

if the solid be taken of that magnitude which it ultimately

acquires when the points P and Q coincide.
" For QR is equal to the versed sine (sagitta) of double the arc ()P,

whose middle is P and double the triangle SQP, or SP X QT is pro

portional to the time, in which that double arc is described ; and there

fore may be used for the exponent of the time.
"

No purpose is served in indicating the generality and the remarkably
direct character of this argument. The quantity QR is now called, in

kinematics, the deviation.

* dt2

This deviation has the value y , where y is the acceleration. Now
2

since, here, the acceleration is central, like the force, and since it passes

through the pole S, it is seen that QR is parallel to SP. Since the law

of areas is applicable, the area of the triangle SPQ is proportional to dt.

Since the force is itself proportional to the acceleration it is therefore,

SP2-QT2

in the last analysis, inversely proportional to the expression .

QR

Fig. 79
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Newton applies this general law to trajectories which are conic

sections. We shall confine ourselves here to the elliptic trajectory and
shall summarise the solution of Problem VI, proposition XI

"
Revol-

vatur corpus in ellipsi : requiritur lex vis centripetae tendentis ad umbi-
licum ellipseos.

"

The original solution has, to some extent, the character of a rebus

we shall attempt to distinguish the essential steps and to express them
in a way that will make this argument clearer.

If DK is the diameter conjugate to CP, Newton first verifies that

PE = a. Then drawing the line Qxv parallel to the tangent, cutting

QR PE a
SP and PC in x and v 9 he verifies that

-=j
=

-5
= -^ because of the

JTV Jrd Jr(^i

similar triangles. In the same way, if QT is perpendicular to SP and
PF is perpendicular to the tangent,

Qx _ a

Further, by Apollonius' Theorem

_o_ CD
PF~~ b

"

Hence

Now in the limit when Q tends to P, tends to unity. Therefore
Qx

We form the expression

,. -
.. ^2hm pr

= hm SP2-^=
QR

By the ecpiation of the ellipse referred to oblique conjugate axes
CD and CP

CD2 CP2

whence

Qv
2

= CP2 - Cv2 _ (CP+Cv)Pv
Cl)2

~~

CP2

~
CP2
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Therefore

limJg^^lim;^^
QR CP*-a-Pv aPC* *

Whence the conclusion

2J2" Vis centripeta reciproce e$t ut SP2
, id est reciproce in ratione

a

duplicata distantiae SP. " The law of force is inversely proportional to

the distance.

In short, this proof rests on the newtonian definition of force ; on
the use of the kinematic idea of deviation ; and on a direct argument of

infinitesimal geometry making use of the classical properties of conies.

Except for the finite properties of conies, all its steps were unknown to

Newton's predecessors, and were indispensible for the justification of

Kepler* semi-empirical laws and for the fashioning of celestial mechanics

into a chapter of dynamics.

7. THE UNIVERSAL ATTRACTION.

The scope of this work does not allow us to deal with the numerous

problems that are treated in the Principia. We shall only describe the

path that was travelled by Newton's predecessors, and by Newton

himself, and which ended in the law of universal attraction.1

Only an excessive schematisation can make the spontaneous blossom

ing of a physical theory credible. The fall of an apple did not suffice

to give Newton the idea of universal gravitation rather, this was the

product of a long development.
As Early as the Xlllth Century Pierre de Maricourt, in a letter

written in castris in 1269, analysed the polarities of a magnet in a very
detailed way the magnetic property tends to conserve the integrity
of the magnet by binding its parts together.

We have seen how the Schools of the XlVth Century, in the persons
of Jean de Jandun, William of Ockham and Albert of Saxony, discussed

the possibility of action at a distance.2 We have seen how Copernicus
maintained that gravity was only a " natural desire

"
given to the parts

of the Earth in order that their integrity might result.3

In De sympathia et antipathia rerum (1555), Frascator held that when
two parts of the same whole were separated from each other, each of

1 For farther details the reader should consult DUHEM'S Tkeorie physique (Paris,

">), pp. 364 et se
2 See above, p
3
Ibid., p. 85.

1906), pp. 364 et seq.
2 See above, pp. 57-58.
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them emitted a species which was propagated in the intermediate space.
In De Magnete (London, 1600), Gilbert argued that the rectilinear

motion of heavy bodies was the motion of the reunion of separated

parts. He added that " this motion, which is only the inclination

towards its source, does not only belong to the parts of the Earth, but
also to the parts of the Sun, the Moon, and to those of the other celestial

orbs.
" Here Gilbert enters on the metaphysical plane.

" We give
the cause of this coming together and this motion which touches all

nature. ... It is a substantial form which is special, particular, belong

ing to primary and principal spheres ; it is a proper entity and an essence

of their homogeneous and their uncorrupted parts, which we call a pri

mary, radical and astral form ; it is not Aristotles' first form, but that

special form by which the orb conserves and disposes what is its own. . . .

It constitutes that true magnetic form that we call the primary energy.
" 1

This animist philosophy, as Duhem has called it, was adopted by
Francis Bacon. Kepler himself was stimulated by it, but substituted

in it the idea on one single property belonging to any part of any star.

We have already remarked
2 that Kepler regarded gravity as a " mutual

affection between parent bodies that tends to unite them. "

As far as the tides are concerned, Ptolemy had already produced
an explanation by invoking a special influence of the Moon on the seas.

In order to get rid of what seemed to them an occult quality, Averroes,
Albertus Magnus and Roger Bacon attributed this action to the heat

of the light from the Moon. Albert of Saxony championed an animist

theory of the tides. Cardan, followed by Scaliger, believed only in an
obedience of the waters to the Moon.

Kepler himself wrote,
" Observation proves that everything that

contains humidity swells when the Moon waxes and shrinks when the

Moon wanes. " 3 But later he corrected this opinion, and thereby anti

cipated the Newtonian thesis.
" The Moon acts not as a moist or damp star, but as a mass similar

to the mass of the Earth. It attracts the waters of the sea, not because

they are fluids but because they are gifted with terrestrial substance, to

which they also owe their gravity.
" 4

This attraction is reciprocal.
" If the Moon and the Earth were in

no way held by a sensual force or by some equivalent force, each in its

orbit, the Earth would rise towards the Moon and the Moon would
descend towards the Earth until these two stars joined together. If the

1 Translated into French by DUHEM.
2 See above, p. 118.
3
Opera omnia, Vol. I, p. 422.

4
Ibid., Vol. VII, p. 118.
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Earth ceases to attract the waters that cover it to itself, the waves of

the sea would all rise and run towards the body of the Moon. " *

Returning to a thesis which had already been put forward by
Calcagnini, Galileo held that the ebb and the flow of the sea was explain
ed by the following relative motion. The Earth turns from East to

West at the same time that it is animated by a translational velocity v.

At a the two motions add together at 6,

they tend to cancel out. Because of their

inertia, the waters of the sea do not follow

this motion exactly. The ebb and flow,

thanks to the delay, is produced twice a

day although, if the composition of the

motions were perfect, they would have the

period of the rotation of the Earth.

Therefore Galileo interpreted the tidal

phenomena as proof of the motion of the

Earth, while the opponents of the copernican system held to a lunar

attraction.

The astrologers of the XVIth Century, following Grisogone, were

inspired to separate the whole tide into a solar tide and a lunar tide.

In 1528 Grisogone wrote,
" The Sun and the Moon attract the swelling

of the sea towards themselves, so that the maximum swelling is perpen

dicularly beneath each of them. Therefore, for each of them, there are

two maxima of swelling, one beneath the star and one on the opposite

side, which is called the nadir of the star.
"

Ideas on the law of attraction itself were yet more vague and chan

geable. To Roger Bacon, all actions at a distance were propagated in

straight rays, like light. Kepler took up this analogy now, it has been

known since the time of Euclid that the intensity of the light emitted

by a source varies in inverse ratio of the square of the distance from the

source. In this optical analogy, the virtus movens emanating from the

Sun and acting on the planets must follow the same law. But in dyna
mics Kepler remained an Aristotelian force was, to him, proportional
to velocity. Therefore Kepler deduced the following result from the

law of areas rv = constant. The virtus movens of the Sun on the planets
is inversely proportional to the distance from the Sun. In order to

reconcile this law with the optical analogy Kepler held that light spread
out in all directions in space, while the virtus movens was only effective

in the plane of the solar equator.

Boulliau, writing Astronomia Philolaica in 1645, carried the optical

1
Opera omnia, Vol. Ill, p. 151.
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analogy to its limit and supported the law of attraction inversely pro

portional to the square of the distance. But it should be remarked

that this attraction was normal to the radius vector, and not central

as the Newtonian theory demanded.

Descartes confined himself to replacing Kepler's virtus movens by

a vortical ether.

BoreUi has the merit of having invoked the example of the sling in

order to explain why the planets did not fall on the Sun he sets the

instinct by which the planet carries itself towards the Sun against the

tendency of aU bodies in rotation to move away from their centre this

vis repellens is inversely proportional
to the radius of the orbit.

In a paper caUed An Attempt to prove the annual Motion of the Earth

(1674) Hooke, curator of the Royal Society, clearly formulated the prin

ciple of universal gravitation.
" AU celestial bodies without exception

exert a power of attraction or heaviness which is directed towards their

centre ; in virtue of which they not only retain their own parts and

prevent them from escaping, as we see to be the case on the Earth, but

also they attract all the celestial bodies that happen to be within the

sphere of their activity. Whence, for example, not only do the Sun and

the Moon act on the progress and motion of the Earth in the same way

that the Earth acts on them, but also Mercury, Venus, Mars, Jupiter

and Saturn have, because of their attractive power, a considerable

influence on the motion of the Earth in the same way that the Earth

has an influence on the motion of these bodies.
" Hooke assumed that

the attraction decreased with the distance and, in 1672, declared him

self for the inverse square law. No doubt he was guided by the optical

analogy.
In order to justify this result it was necessary to know the laws of

centrifugal force. Now we know that although Huyghens had written

his treatise De vi centrifuga as early as 1659, only the statements of the

thirteen propositions that conclude the Horologium oscillatorium were

published during his lifetime.

Halley appears to have applied Huyghens' theorems to Hooke's

hypothesis. By assuming Kepler's third law
(

=
constant)

he dis

covered the law of the inverse square.

This whole development, that we have only been able to summarise,

shows that one cannot talk of the spontaneous generation of the theory

of gravitation.
For his part, Newton was in possession of the laws of uniform circular

motion in 1666. By an analysis analogous to that which Halley had

made, and starting from Kepler's third law, he formulated the law of
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an attraction inversely proportional to the square of the distance. But
more careful than his predecessors, Newton sought experimental veri

fication for this law. He tried to discover whether the attraction exert

ed by the Earth on the Moon corresponded to this law, and whether this

attraction could be identified with terrestrial heaviness.

Since the radius of the Earth's orbit is of the order of 60 terrestrial

radii, the force that maintains the Moon in its orbit is 3600 times weaker
than the heaviness at the centre of the Earth. Now a body falling

freely in the neighbourhood of the Earth falls a distance of 15 Paris

feet l in the first second. The Moon would therefore fall a distance of

pouce in the first second. Knowing the period of the Moon's motion

and the radius of its orbit, it is easy to calculate this fall of the Moon,
With the data on the Earth's radius that were accepted in England,

Newton obtained a fall of only pouce.
2>&

Faced with this divergence, he gave up his idea. It was only 16

years later (1682) that he learnt of the measurement of the terrestrial

meridian that had been made by Picard. (This happened at a meeting
of the Royal Society.) By assuming the value given by this determin

ation, Newton obtained the expected value of pouce. He was then
250

able to declare,
" Lunam gravitare in Terrain et vi gravitatis retrahi

semper a motu rectilineo et in orbe suo retineri
"

; and, by an induction

conforming to the very principles of his philosophy, to affirm the doctrine

of universal gravitation.
The theory of the attraction of spheres allowed him to concentrate

at their centres the masses of stars that were supposed to be formed

of homogeneous concentric layers, and thus to reduce them to material

points whose mutual attractions could be studied.

Newton evaluated the masses and densities of the Sun and the planets
that were surrounded by satellites. He also calculated the heaviness

at a point on their surface. He showed that the comets described

very elongated elliptical trajectories and replaced these by parabolas
whose elements he calculated. In this way he was able to connect the

segments of trajectory of a comet that had appeared on each side of

the Sun in 1680. Halley then showed that the appearances in 1531,

1607 and 1682 were those of this same comet.

Newton also showed that the rotation of the Earth must entail

its flattening at the two poles, and calculated the variation of gravity

1 In these discussions in the Priracipia, the distances are given in French units.



218 THE FORMATION OF CLASSICAL MECHANICS

along a meridian. He related the theory of tides to the combined
attraction of the Moon and the Sun and thus justified the anticipations
of the astrologers of the XVIth Century. Finally, calculating the

actions of the Moon and the Sun on the equatorial bulge, he arrived at

a theory of the precession of the equinoxes.



CHAPTER SEVEN

LEIBNIZ AND LIVING FORCE

1. THE " vis MOTRIX " m THE SENSE OF LEIBNIZ.

Leibniz protested against the cartesian mechanics in a memoir
which appeared in 1686 in the Ada eruditorum at Leipzig, under the

title A short demonstration of a famous error of Descartes and other

learned men, concerning the claimed natural law according to which

God always preserves the same quantity of motion ; a law which they
use incorrectly , even in mechanics.

Leibniz set out to show that the vis motrix (or, in the words of the

XVIIIth Century, the force of bodies in motion), was distinct from
the quantity of motion in Descartes' sense.

Like Huyghens, Leibniz assumes that a body <

falling freely from a given height will acquire
the " force

"
necessary to rise again to the same

height, if the resistance of the medium is

neglected and no external inelastic obstacle is ~

encountered. On the other hand, like Des- r

cartes, he assumes that the same " force
"

(in
^-^

the modern sense of work) is needed to lift a

body A, whose weight is one pound, to a height -p. ^
DC of four ells as to lift a body J3, whose weight
is four pounds, to a height of one ell.

In falling freely from the height CD the body A acquires the same
" force

"
as the body B acquires in falling from the height EF. For

when it has arrived at D, the body A has acquired the force that it

needs to climb again to C, and the body J5, when it has come to F,

has acquired the force needed to climb to E. By hypothesis, these

two forces are equal. Now the quantities of motion of A and B are

far from being equal.

Indeed, Galileo's laws show that the velocity acquired in the free fall

CD is twice the velocity acquired in the free fall EF. The quantity
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of motion of A is then proportional to 1x2, while that of B is pro

portional to 4x1, and is therefore twice that of A. This contradicts

the cartesian thesis in which the quantity of motion is used to evaluate

the " force.
"

Leibniz recognised that in simple machines (the lever, the windlass,

the pulley, the wedge and the screw) the same quantity of motion

tended to be produced, in one part and the other, when equilibrium

obtained. " Thus it happens by accident that the force can be reckoned

as the quantity of motion. But there are other instances in which

this coincidence no longer exists.
"

And Leibniz concludes,
" It should be said, therefore, that the

forces are in compound proportion to the bodies (of the same specific

weight or density) and the generating heights of the velocities that

is, the heights from which the bodies are able to acquire their velo

cities in falling, or more generally (since often no velocity has been

produced at this point), the heights that will be generated.
" x

2. LEIBNIZ AND THE LAWS OF IMPACT.

Writing to the Abbe de Conti in 1687, Leibniz suggested that for

the cartesian principle of the conservation of the quantity of motion

should be substituted a natural law which he took as universal and

inviolate. This was,
" that there is always a perfect equality between

the complete cause and the whole effect.
"

In this connection he went on to discuss Descartes' third rule

on the impact of bodies.2

"
Suppose that two bodies, B and C, each weighing one pound

and travelling in the same direction, collide with each other. The

velocity of B is 100 units and that of C, 1 unit. Their total quantity
of motion will be 101. But if C, with its velocity, can rise to a height
of one pouce, the velocity ofB will enable it to rise to a height of 10,000

pouces. Thus the force of the two united bodies will be that of lifting

one pound to 10,001 pouces. Now according to Descartes third rule,

after the impact the bodies will go together in company with a common

velocity of 50 and a half. . . . But then these 2 pounds are only able

to lift themselves to a height of 2550 pouces and a quarter, which
is equivalent to lifting one pound to 5100 pouces and a half. Thus
almost half the force will be lost according to this rule, without there

being any reason and without its having been used for anything.
"

1 Translated into French by JOUGUET.
2 See above, p. 162.
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In this discussion lies the germ of the controversy about living

forces that was to divide the geometers at the beginning of the XVIIIth

Century, and to which we shall return. We know now that Descartes

third rule is correct and is applicable to perfectly soft bodies (soft,

in order that they should travel together after the impact). The

total quantity of motion is conserved (no difficulty of sign occurs

here) and a part of the living force is transformed into heat.

3. LIVING AND DEAD FORCES.

Leibniz showed himself to be even more systematic in his Specimen

dynamicum (1695).

We shall pass over the several quantities that he introduced and

only concern ourselves with the distinction between living forces and

dead forces.
44 Force is twin. The elementary force, which I call dead because

motion does not yet exist in it, but only a solicitation to motion, is

like that of a sphere in a rotating tube or a stone in a sling.
44 The other is the ordinary force associated with actual motion,

and I call it living.
44

Examples of dead force are provided by centrifugal force, by

gravity or centripetal force, and by the force with which a stretched

spring starts to contract.
44 But in percussion that is produced by a body which has been

falling for some time, or by an arc which has been unbending for some

time, or by any other means, the force is living and born of an infinity

of continued impressions of the dead force.
"

Leibniz reproached the Ancients " for having had exclusively an

understanding of dead forces, and for only having studied the first

conatus [in Huyghens sense] of bodies to each other, even though the

latter had not acquired an impetus [in the sense of quantity of motion]

by the action of the forces.

In modern language, Leibniz's assertion that the living force is

born of an infinity of impressions of the dead force may be expressed by

This leads to the fundamental law m = F and identifies the dead
at

force as the static force.



CHAPTER EIGHT

THE FRENCH - ITALIAN SCHOOL OF ZACCHI AND VARIGNON

1. ZACCHI AND SACCHERI. LAMY AND THE COMPOSITION OF FORCES.

We shall devote this chapter to a brief analysis of some works
which can only appear as miniatures in comparison with those of

Galileo, Huyghens and Newton. But in leaving the peaks on which
the work of the creators of dynamics lies, we shall have a better appre
ciation of the extent to which those dominated their own century.

In a Nova de machinis philosophia (Roma, 1649) Zacchi was concern
ed with an attempt to isolate the principles implicit in Aristotle's

statics. Under the term virtus he confused the concepts of force

and work, and thus misunderstood Descartes' principle.
Father Fabri (1606-1688) was a teacher at the Jesuit College at

Lyons and a friend of Mersenne. His Tractatus physicus de motu
locali (1646) was a work on dynamics which took over the ideas of

Jordanus and Albert of Saxony. Among the moderns it only makes
mention of Galileo's statics and this, as we have seen, was impregnated
with the ideas of Aristotle.

FatherLamyattacked Descartes in hisTreatise on Mechanics (1679) and
contested Stevin's argument on the inclined plane. He claimed that no

thingproved that the lower part of the chain of balls hung symmetrically.
We now know that this criticism is not justified and that if the

number of balls is infinite the necklace outlines a perfectly symme
trical catenary underneath the plane.

In order to solve the problem of the equilibrium of a body on an
inclined plane, Lamy preferred to return to the arguments of Bernardino
Baldi and da Vinci.

To set against this is a letter addressed by Lamy to M. de Dieulamant,
an engineer at Grenoble, which is concerned with the law of the com
position of forces and deserves a little of our attention.

"
1. When two forces draw the body Z along the lines AC and JBC,

which are called the lines of direction of the forces, it is clear that the
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body Z will not travel on the line AC or on the line JBC, but on another

line between AC and BC, say X.
" 2. If the path X were closed then Z, which is forced to travel

by this path, would remain motionless, so that the forces would be

in equilibrium.

Fig. 82

"
3. Force is that which can move things. Motions are only mea

sured by the distances which they travel. Suppose then that the force

A is to the force B as 6 is to 2. Then if A 9 in a first instant, draws the

body Z as far as the point E on its own, in the same instant B would

only draw it as far as F I CF = - CE
).

We have seen that Z cannot
\ 3

^
/

go along AC or along BC. Thus it is necessary that in the first instant

it should come to D, where it corresponds to E and to F that is to say,

where it has travelled the value of CE and of FC. . . .

" This line X is related to the lines of direction of the two forces A
and B in such a way that at any point from which two perpendiculars on

the two lines are drawn, their relation to each other will be the reciprocal

of that of the forces, or the relation of DE to DF. "

Lamy's demonstration is very similar to that on Newton. The

simultaneity (1687) of the two demonstrations makes it seem however,

that they were independent of each other. On the other hand, Lamy
was accused of plagiarism from Varignon, who published his plan for

a new mechanics at the same time. Lamy vigorously defended himself
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against this charge. If, like Duhem,1 we put the emphasis on the

words " in a first instant,
"

it is reasonable to believe that Lamy used
an argument which would have been acceptable in modern mechanics.

On the other hand, Varignon who only cared for statics, a branch of

the subject in which he showed great skill did not progress beyond
Aristotle's dynamics.

We must also say a little about Neostatique (1703), a rather original
work due to Father Saccheri.

Saccheri regarded the vis matrix as proportional to the impetus, the

term which he used to denote the absolute value of the velocity. As he

was not concerned with the impetus of a body, starting from rest, in

the first instant, this rule is equivalent to that of Aristotle. However,
Saccheri arrived at an accord with Newton's dynamics. Thus he called

the oriented velocity the impetus vivus, and used the term impetus
subnascens for a quantity which, for a body of weight p, reduced to the

projection of the acceleration on the tangent. In identifying them
impetus subnascens as the incrementum of the impetus vivus, he was able

to write down the Newtonian law of motion. This illustrates the extent

to which the language and the ideas of the XVIIth Century were
confused.

Father Ceva had drawn Saccheri's attention to the law of Beaugrand
and Fermat which we have mentioned in connection with the contro

versy on geostatics.
2

This is the law of an attraction which is proportional to the distance.

Saccheri had the merit of showing that, according to this law, the

heaviness passed through a centre of gravity that was fixed in the body.
Also, that a body falling freely from rest and subject to this law, arrived

at the common centre of heavy bodies in a time which did not depend
on its distance from the centre.

2. THE STATICS OF VARIGNON (1654-1722).

Varignon produced his Project for a New Mechanics in 1687, and the

New Mechanics or Statics only appeared posthumously in 1725. At the

beginning of the Project Varignon acknowledged the influence of Wallis

and that of Descartes. The latter had declared that it was " a ridicul

ous thing to wish to use the argument of the lever in the pulley
"

;

Varignon persuaded himself that it was equally useless to treat the

1 0. S., Vol. II, p. 259.
2 See above, p. 166.
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inclined plane by starting from the lever. Of a more practical mind
than his predecessors, he attached more weight to a study of the modes
of equilibrium than to its necessity, and reduced everything to the prin

ciple of compound motions. " It seems to me that the physical reason
for the effects that are most admired in machines is exactly that of

compound motion. "

It is important to remark that Varignon interpreted the composition
of forces and of motions in Aristotle's sense, for he remained consciously
faithful to aristotelian dynamics. Indeed, in his New Mechanics he
wrote

" Axiom VI. The velocities of a single body or of bodies of equal
mass are as all the motive forces which are there used, or which cause
these velocities ; conversely, when the velocities are in this ratio they
are those of a single body or of bodies of equal masses.

"

To Varignon, all force is analogous to the tension of a thread. In
the diagrams which appear in his books, the hands holding the threads

materialise the powers. He neglects all friction and even heaviness,
which he identifies with a tension.

"
Requirement II. That it may be permissible to neglect the

heaviness of a body and to consider it as if it had none ; but to regard
it as a power which may be applied to the weight ; when it will be con

sidered as weight, notice will be given. ..."

Varignon starts from a general principle which he expresses in the

following way.
" Whatever may be the number of forces or powers, directed as may

be chosen, that act at once on the same body, either this body will not

be displaced at all ; or it will travel along one path and along a line

which will be the same as if, instead of being pushed in this way, com

pressed or drawn by all these powers at once, the body was only follow

ing the same line in the same direction by means of a single force or

power equivalent or equal to the resultant of the meeting of all those

forces.
"

Therefore everything reduces to the determination of this resultant.

And it is here that Varignon affirms his allegiance to the Ancients.
" It is what we are going to find by means of compound motions

known to the ancients and the moderns Aristotle treats them in the

problems of mechanics ; Archimedes, Nicodemus, Dinostratus, Diocles,

etc. . . . have used them for the description of the spiral, the conchoid,
the cissoid, etc. . . . ; Descartes used them to explain the reflection and
refraction of light ; in one word, all mathematicians use compound
motions for the generation of an infinity of curved lines, and all correct

physicists for determining the forces of impact or of oblique percussions,
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etc. . . . Thus I claim nothing but the principle I indicated nearly forty

years ago, and that I use once more for the explanation of machines. "

Given this, it is easy to see how Varignon reduced the composition
of forces to that of velocities. The superiority of Varignon's work in

statics is a didactic one. He treats all simple machines in detail by
means of the composition of forces alone this by ingenious procedures
that are still commonly used.

In Duhem's opinion, it does not seem that the geometers of the

XVIIth Century, and even of the XVIIIth Century, had attached any
importance to the distinction that can now be made between the method
of Newton and of Lamy on the one hand, and of Varignon on the other,

in the matter of the proof of the rule of the parallelogram.
" The pro

positions that aristotelian dynamics, over a period of two thousand

years, had made customary in physics were also familar to all minds.

They were still invoked naturally on all occasions when conscience did

not too violently conflict with the truths of the new Dynamics. When
Varignon, in 1687, produced his Project of a New Mechanics, he took as

his starting point axioms which were said to have been borrowed
from Physica auscultatio or De Caelo ; but at the same time Newton and

Lamy showed that the same consequences could be obtained from an
accurate dynamics.

" *

3. VARIGNON AND TORRICELLI'S LAW OF FLOW.

In the second Book of the Principia Newton had undertaken a proof
of Torricelli's law of flow. He remarked that a column of liquid falling

freely in a vacuum assumed the shape of a solid of revolution whose
meridian was a curve of the fourth degree. Indeed, the velocity of

each horizontal slice is proportional to the square root of the height
from which it has fallen. On the other hand, this same velocity is

inversely proportional to the section of the column, and consequently
to the square of the radius. In a vessel having this shape and kept
filled with water, it is clear that each particle of the fluid has its velocity
of free fall and that, in consequence, Torricelli's law is justified.

Newton then imagines that in a cylindrical vessel whose base is

pierced with a hole, the fluid separates into two parts. One, the cata

ract, takes the shape of free fall of which we have spoken. The other

remains motionless. It is easy to see that this solution contradicts the

principles of hydrostatics.

Varignon had the merit of giving TorricellFs law a more natural

1 0. S., Vol. II, p. 260.
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explanation. He assumed that the water remained sensibly immobile

up to the immediate neighbourhood of the hole. At that point each

particle instantaneously received, in the form of a finite velocity, the

effect of the weight of the fluid that was above it. It is easy to see,

taking account of the quantity of water flowing out, that the quantity
of motion thus created in each particle is proportional to the square
of the velocity. If the weight of the column of water above it is pro

portional to the height A, Varignon can retrieve Torricelli's law, h = kv2
.

Lagrange
l criticised this argument by observing that the pressure

cannot suddenly produce a finite velocity. This was a difficulty that

could not detain Varignon, to whom all force was generated by velocity.

But one can, like Lagrange, assume that the weight of the column acts

on the particle throughout the time that it is leaving the vessel. If it

is then assumed that the fluid remains sensibly stagnant in the very
interior of the vessel, Torricelli's law can be verified.

1
MGcanique analytique, Section VI, part I Sur les principes de Vhydrostatique.
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CHAPTER ONE

JEAN BERNOULLI
AND THE PRINCIPLE OF VIRTUAL WORK

(1717)

DANIEL BERNOULLI
AND THE COMPOSITION OF FORCES

(1726)

1. JEAN BERNOULLI AND THE PRINCIPLE OF VIRTUAL WORK.

Classical mechanics was born in the XVIIth Century. The organ
isation and development of the general principles had still to be ac

complished this was to be the work of the XVIIIth Century.
The achievements of Galileo, Huyghens and Newton appear rather

as disjointed parts than as the continuous development of a single

discipline. Their successors, on the other hand, were to participate
in a collective labour which, in the hands of Lagrange, was to end
in an ordered science whose form approached perfection.

In the preceding parts of this book we have treated each author

in isolation from his contemporaries, and have attempted to follow

the chronological order. In order to analyse the collective work
of the XVIIIth Century, it will be more satisfactory if we devote

each chapter to an attempt to collect together the work of different

men that was relevant to one single topic.

Although, at the end of the XVIIth Century, Varignon had tried

to found statics on the one law of the composition of forces, we see Jean

Bernoulli, in a letter to Varignon himself (January 26th, 1717), taking

up the generalisation of what was really the principle of virtual work.

We have seen that this principle had been used implicitly as early
as the Xlllth Century, by the School of Jordanus, and that later it

had been affirmed by Descartes and Wallis.

Jean Bernoulli wrote, in the letter to Varignon,
"
Imagine several

different forces which act according to different tendencies or in different
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directions in order to hold a point, a line, a surface or a body in equi

librium. Also, imagine that a small motion is impressed on the whole

system of these forces. Let this motion be parallel to itself in any

direction, or let it be about any fixed point. It will be easy for you

to understand that, by this motion, each of the forces will advance

or recoil in its direction ;
at least if one or several of the forces do not

have their tendency perpendicular to that of the small motion, in

which case that force or those forces will neither advance nor recoil.

For these advances or recoils, which are what I call virtual velocities,

are nothing else than that by which each line of tendency increases or

decreases because of the small motion. And these increases or decreases

are found if a perpendicular is drawn to the extremity of the line of

tendency of any force. This perpendicular will cut ofi" a small part

from the same line of tendency, in the neighbourhood of the small

motion, which will be a measure of the virtual velocity of that force.

f

C

Fig. 83

44 For example, let P be any point in a system which maintains

itself in equilibrium. Let F be one of the forces, which would push
or draw the point P in the direction FP or PF. Let Pp be a short

straight line which the point P describes in a small motion, by which

the tendency FP assumes the position fp. Either this will be exactly

parallel to FP, if the small motion is, at every point, parallel to a straight

line whose position is given ; or it will make an infinitely small angle

with FP when this is produced, and if the small motion of the system
is made around a fixed point. Therefore draw PC perpendicular
to fp and you will have Cp for the virtual velocity of the force F, so

that F X Cp is what I call the energy.
44 Observe that Cp is either positive or negative. The point P is

pushed by the force F. It is positive if the angle FPp is obtuse and
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negative if the angle FPp is acute. But on the contrary, if the point
P is pulled, Cp will be negative when the angle FPp is obtuse and

positive when it is acute. All this being understood, I form the follow

ing general proposition.
" In all equilibrium of any forces, in whatever way they may be

applied and in whatever direction they may act through intermedia

ries or directly the sum of the positive energies will be equal to the

sum of the negative energies taken positively.
"

Jean Bernoulli's statement is much more general than those of

his predecessors. Nevertheless, it must be remarked that the virtual

displacements that are contemplated reduce to translations or rotations,

to displacements in which the system behaves as a solid. Displacements
of this kind are not necessarily compatible with the constraints of

the system they do not necessarily include the most general virtual

displacement which is compatible with the constraints.

Jean Bernoulli's principle does not seem to have accomplished
a modification of Varignon's point of view. The latter was content

to verify the principle in a large number of examples, which he treated

with the methods to which he was accustomed.

2. DANIEL BERNOULLI AND THE COMPOSITION OF FORCES.

In a memoir which appeared in 1726, called Examen principiorum
mechanicae et demonstrationes geometricae de compositione et resolutione

virium, Daniel Bernoulli set out to show that the law of the composition
of forces was of necessary, and not of contingent, truth. We shall

find that Euler and d'Alembert had similar preoccupations in other

fields. The search for such a separation of purely rational truths

from those which are subject to the uncertainties of, and correction

by, experiment, was ever present in learned minds throughout the

XVIIIth Century.
The question, by its nature, is illusory. But the influence of

Bernoulli's demonstration remained alive, and even Poisson was sub

ject to it in 1833.

Bernoulli regarded the hypothesis of the composition of motions

on which Varignon had based his statics to be of a contingent kind.

But a necessary truth can arise from two contingent hypotheses. In

particular, the necessary law of the composition of forces depends,
not only on the contingent hypothesis of the proportionality of the

forces to the velocities that they produce but also, on the following

hypothesis A force which acts on a body that is already moved by
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another force impresses the same velocity on the body as if the latter

were at rest.

Basically, the development of Bernoulli's demonstration is the

following
x

Hypothesis I. The composition of forces is associative.

Hypothesis II. The composition of two forces in the same direction

reduces to algebraic addition.

Hypothesis III. The resultant of two equal forces is directed

along their internal bisector " a metaphysical axiom that must
be regarded as a necessary truth.

"

With this basis, Bernoulli shows that ifthree forces are in equilibrium,
so too are three forces which are the multiples of the first by the same
number. He then establishes that the resultant of two equal forces

at right angles is the diagonal of the square that has these two forces

as sides.

He continues with a consideration of two unequal rectangular
forces and finds that the resultant is equal to the diagonal of the rect

angle of which these two components form two sides. He also discusses

the direction of the resultant.

Bernoulli then treats pairs of components forming a rhombus

whose angle is equal to I I I L Then, in order, components forming
\ 2 / \2 /

any rhombus, a rectangle, and a parallelogram.

1 For further details, c/. JOUGUET, L. M., Vol. II, p. 58.
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THE CONTROVERSY ABOUT LIVING FORCES

We know that* as early as 1686,
1 in criticising the Cartesian notion

of the conservation of quantities of motion, Leibniz had suggested
that the " force

"
acquired by a body falling freely should be evaluated

by the height to which this body could rise. Thus a body whose

velocity is twice that of another is endowed with a force that is four

times a great.

The Abbe de Catelan protested that the body effected this ascent

in twice the time. To produce a quadruple effect in twice the time

is not to have a quadruple force, but only one which is twice as great.

A child, in time, and bit by bit, will carry a sack of corn weighing 240

pounds. All force will be infinite if no regard is paid to time.

After much hesitation, Jean Bernoulli came round to the opinion

of Leibniz. In 1724 the Academie des Sciences, without using the words

living force, chose the subject of the communication of motion for

competition.
Father Maziere, an adversary of the doctrine of living forces, was the

successful competitor, in spite of a contribution from Jean Bernoulli that

defended Leibniz. In this debate MacLaurin, Stirling and Clarke were

opposed by the supporters of Leibniz s'Gravesande, Wolf and Bulfinger.

Bernoulli believed that the law v = Js\/Ti was related to that of

gravity and that it was not an independent a priori law. Bodies

would rise to infinity if no cause prevented them. The limitation

is due to gravity, whose reiterated obstacles consumed a body's force

of ascent. Bernoulli made use of other examples, of which the following

is typical.
If a perfectly elastic sphere A, moving with the velocity AC, collides

obliquely with an identical sphere which it projects in the direction CD,
the body C will be displaced on CD with the velocity CD = BC, while

the body A will continue its journey with the velocity CE = CB.

1 See above, p. 219.
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Now the sum of the forces after the impact must be the same as the sum

of the forces before the impact. This would be impossible if the force

were proportional to the velocity, for CE + CD > AC. On the other

hand, this relation is verified if the force is proportional to the square

of the velocity, for AC* = CD2 +

A B

C

Fig. 84

In a Dissertation of the Estimation and the Measurement of the Motive

Forces of Bodies (1728) de Mairan, like the Abbe de Catelan, opposed
the evaluation of the force that the followers of Leibniz had suggested.
His premises were simple.

" As soon as I conceive that a body may be in motion, I conceive

of a force that makes it move [to be understood as the vis motrix

or the force of a body in motion, and not the corresponding dead force,
which is zero for uniform motion]. A uniform motion can never

indicate to us another measure of the force than the product of the

simple velocity and the mass,
"

Here is the argument
" A massive body having two units of velocity is in such a state

that it can mount to a height that is four times as great as that to

which a body with only one unit of velocity would mount.
" This proportion implies common measure. This common measure

is the time ; at least I can take the time or the times to be equal. . . .

" Now given this, in the effects of a body which has twice as much
velocity, I only find an effect which is double and not quadruple
a distance travelled which is double, and a displacement of matter
which is double, in equal times. From which I conclude, by the very
principle of the proportionality of causes to their effects, that the Motive
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Force is not quadruple but only double, as the simple velocity and not

the square of the velocity.
"

And de Mairan adds,
"
Strictly speaking, the concept of motion

only includes uniformity. All motion should, on its own, be uniform,

just as it should be effected in a straight line ; the acceleration and
retardation are limitations which are foreign to its nature, as the curve

that it is made to describe is to its proper direction. . . .

" It is not the distances travelled by the body in retarded motion

that give the evaluation and the measure of the motive force, but

rather, the distances which are not travelled, and which should be travel

led, in each instant by uniform motion. These distances which are

not travelled are proportional to the simple velocities. And therefore

the distances which correspond to a retarded or decreasing motive

force, in so much as it is consumed in its action, are always proportional
to this force and to the motion of the body, just as much in retarded

motions as in uniform motions.
"

To explain this " kind of paradox,
"

de Maixan considers the

example of two bodies, A and B, which ascend along AD and Bd. The

body A has two units of velocity and B has only one.
" If nothing opposes its motive force, in the first ,. ^

time B will travel the two toises Bd without losing
T

any part of this force or any part of the unit of velocity

which gives rise to it. But because the contrary

impulsions of the heaviness, which are continually

applied to it succeed in consuming this force and

its velocity, and in completely stopping it, the body
will only travel one toise in its retarded motion.

" In the same way, A would travel four toises

in the first instant. The impulsions of the heaviness g '

make it fall back through one toise, so that it only
travels three. These impulsions have consumed one unit of force

and one unit of velocity, as for B. But A remains with one unit and, at

C, it finds itself in the initial case ofB. It therefore has what it needs to

travel the two toises CE. But the impulsions of the heaviness oppose it

and it only travels CD, being pulled back through the one toise ED."
Thus the distance which is not travelled by B in the first instant

is fid. In the first instant the distance not travelled by A is CD, and

in the second, is DJ?.

This discussion is interesting its metaphysical content is so apparent
that we shall not emphasise it.

Supporters and adversaries of the doctrine of living forces opposed
each other with examples of impacting bodies.
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Thus Herman considers a perfectly elastic body M, of mass 1 and

velocity 2, colliding with a motionless sphere N of mass 3. The

body N will take, after the impact, the velocity 1 while the body M
will be thrown back with the velocity 1. If M then meets a motion

less body of mass 1, it can communicate its velocity to the latter

and remain at rest. Therefore the force of M, which has mass 1 and

velocity 2, is equivalent to four times the force of a body of mass 1

and velocity 1, which verifies the law of living forces and contradicts

that of quantities of motion.

De Mairan observed that this coincidence was accidental and

stemmed from the equality 2 + 2 = 2x2. For his part, he considered

a body M of mass 1 and velocity 4 which he arranged to collide with a

body N of mass 3 which was initially at rest. If M communicates
a velocity 2 to JV, the force of N is as 6. The body M, which keeps
the velocity 2, can transfer this to a body of mass 1, initially at rest.

The total force of M is therefore as 6 + 2 = 8, and not as 16 as the

law of living forces would require.
The Marchioness of Chatelet came round to the doctrine of living

forces rather late in the day, and added an erratum to her book on the

nature of fire (1740). While Koenig was a supporter of Leibniz,

Maupertuis and Clairaut remained indifferent to this controversy.
In the meantime, de Mairan tried to convince the Marchioness of Cha
telet and, in 1741, Voltaire himself proclaimed his doubts about the

measure of living forces.

The error of the Cartesians, which was corrected in the course

of the controversy by de Mairan, was that of reckoning the quantity
of motion as

m|t;|,
without regard to the direction of the velocities.

The reader will easily verify, in all the examples which have been

cited which are examples of elastic impact that if the direction

is introduced, that is, if quantities of motion mv are considered, then

the quantities mt; and mt;2 a*6 both conserved. Therefore the con

troversy of living forces was based on a mis-statement of the doctrine.

It rested on a misunderstanding concerning the definition of quantity
of motion which, as d'Alembert observed, divided the geometers for

more than thirty years.



CHAPTER THREE

EULER AND THE MECHANICS OF A PARTICLE

(1736)

Euler (1707-1783) was concerned with all branches of dynamics,
and we shall have occasion to return to his work in different connec

tions. For the moment, we shall confine ourselves to the basic ideas

of his treatment of the dynamics of a particle. This is found in

Mechanic^ sive motus scientia analytics exposita which was published
in 1736.

The very title is a programme. Euler had read the great creators

of mechanics, especially Huyghens and Newton, and he set out to

fashion mechanics into a rational science by starting from definitions

and logically ordered propositions. He tried to demonstrate the laws

of mechanics in such a way that it would be clear that they were not

only correct, but also necessary truths.

To Euler, power or force is characterised by the modification of

the motion of a particle that is produced by it. A power acts along
a definite direction at each instant. This is what Euler expresses
in the following definitions.

" Potentia est vis corpus vel ex quiete in motum perducens, vel motum

ejus alterans.
"

" Directio potentiae est linea recta secundum quam ea corpus movere

conatur.
"

In passing we remark that, in Eider's work, the term "
corpus

"

denotes a particle.

In the absence of force a particle either remains at rest, or is animated

with a rectilinear and uniform motion. Euler expresses this principle

with the help of the concept of " force of inertia.
"

" Vis inertiae est ilia in omnibus corporibus insita facultas vel in

quiete permanendi vel motum uniformiter in directum continuendi.
"

Euler believes that " the comparison and the measurement of

different powers should be the task of Statics.
"

Euler's dynamics
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is therefore primarily based on the notion of force, which he borrows

directly from, statics in accordance with Galileo's procedure.
Euler attempted to show that the composition or the equivalence

of forces in statics could be extended to their dynamical effects. In

fact, he was here concerned with a postulate. He also distinguished
between absolute powers, such as gravity, that acted indifferently
on a body at rest or in motion, and relative powers, whose effects

depended on the velocity of the body. As an example of such
a power, he cited the force exerted by a river on a body this

force disappears when the velocity of the body is the same as that

of the river.

In order to determine the effect of a relative power, an absolute

power is associated with it, at least when the body has a known

velocity.
We return to the vis inertiae in the sense that Euler used it. For

any body, this is proportional to the quantity of matter that the body
contains.

64 The force of inertia is the force that exists in every body by means
of which that body persists in its state of rest or of uniform motion
in a straight line. It should therefore be reckoned by the force or

power that is necessary to take the body out of its state. Now different

bodies are taken out of their state to similar extents by powers which
are proportional to the quantities of matter that they contain. There
fore their forces of inertia are proportional to these powers, and conse

quently, to the quantities of matter.
"

Euler assigns the same vis

inertiae to one body, whether it is at rest or in motion. For in both
cases the body is subject to the same action and the same absolute

power.
Here we see a systematisation of Newtonian ideas. Basically

Euler introduces the mass in the guise of a logical deduction by
means of the physical assertion of proportionality between the powers
necessary to produce a given effect and the quantities of matter.

As an example of Euler's analysis, we shall give his treatment of

the following problem.
"
Proposition XIV. Problem. Being given the effect of an

absolute power on a particle at rest, to find the effect of the same power
on the same particle^ when the latter is moving in any way.

"

The absolute power which is given will make a body A, initially
at rest, travel the path dz = AC in the time dt.

If A has the velocity c, in the absence of any power it will travel

the path AB cdt in the time dt.

But the given power, being absolute, acts on A in motion in the
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same way as it acts on A at rest. Therefore the effect of the power
is compounded with that of the velocity, and the body A comes to

D, where BD = AC.

A

Fig. 86

Under the effect of the given power, the velocity of A will become
AD

A simple geometrical argument shows that

dc = cos BAG.
dt

Strictly speaking it would be more natural to regard the effect

of the power as being the increase of the velocity between the time

t and the time t + dt ; that is, to consider the quantity 2dc instead

of the difference between the initial velocity c and the mean velocity
of A during the time dt.1

Euler then studies the effect of a power B on a body when the

effect of a power A on the same body is given. He concludes
" If a body is affected by many powers, at first it may be thought

of as divided into as many parts, on each of which one of the powers
acts. Then, when the different parts have been drawn by their respec
tive powers for an element of time, it is imagined that they suddenly
unite. When this is accomplished, the position of their reunion will

be that at which the whole body would have arrived in the same time

by the simultaneous action of all the powers. The truth of this princi

ple can be illustrated by remarking that the parts of a body can be

held together by very strong springs which though they act in an

undefined manner, can be supposed to relax completely in the interval

1
C/. JOUGUET, L. M., Vol. II, p. 43.

16
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of time, and to contract suddenly with an infinite force, afterwards,
in such a way that the conjunction of the separated parts takes no
time.

"

Thus Euler's law of dynamics takes the form

The increase, dc, of the velocity is proportional to pdt, where p is the

power acting on the body during the time dt. This applies to a single

body ; if several bodies are considered simultaneously, their masses
must be introduced.

Therefore this law emphasises the impulse of the force during an

elementary time, or the impulse that gives rise to an increase of

momentum.
Euler declared that this law was not only true, but also a necessary

truth, and that a law identifying mdc as p*dt or as p^dt would imply
a contradiction. Clearly this is an illusion of the author.

Eider's treatise then continues with a study of a large number
of problems. First he treats a free particle, and concludes with a

particle bound on a curve or a surface, either in a vacuum or a resisting
medium. His work was the first to merit, for the order and the pre
cision of its demonstrations, the name of a treatise of rational mechanics.



CHAPTER FOUR

JACQUES BERNOULLI
AND THE CENTRE OF OSCILLATION

(1703)

D'ALEMBERT'S TREATISE ON DYNAMICS
(1743)

1. JACQUES BERNOULLI AND THE CENTRE OF OSCILLATION.

In 1703 Jacques Bernoulli returned to the famous problem of

the search for a centre of oscillation, and gave a solution of it which

contained the germ of d'Alembert's principle. Jacques Bernoulli's

paper was called " (General demonstration of the centre of balancing
and of oscillation deduced from the nature of the lever.

"

He considers a lever which is free to turn about a point A and whose
different arms carry weights or powers which act perpendicularly to

the arms. If the powers are divided into two groups that act on the

lever in opposite senses, and if the sum of the products of the arms

of the lever and the powers has the same absolute value for each group,
then the lever will remain in equilibrium. This had been shown by
Mariotte in the Treatise on the percussion of bodies.

Given this, let A represent the axis of suspension, and let AC and
AD join A to two arbitrary elements of a compound pendulum (for

simplicity assumed to be plane). Then let AM be the simple pendulum
isochronous with the compound pendulum. ^

Consider the motion of the elements C, D and M of the compound
pendulum. Their velocities are proportional to AC^ AD and AM.
At each instant the gravity adds an impact or an impulse which is

represented by MN9 CO, DP, " short vertical and equal lines.
" Take

NK, OT and PV perpendicular to the arcs MK, CT, DV.
Bernoulli considers the " motions "

MZV, CO, DP as being decom

posed into motions MK and KN ; CT and TO ; DV and VP. The
motions JfiCJV, TO, VP " distribute themselves over the whole axis A
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and there lose themselves completely.
" Because of the isochronism

of the points C, D and M, the motions MK, CT and VD suffer " some

change.
"

If, for example, M comes to K (without alteration), then C
comes to R and D to S, and the arcs MK, CR and DS will be similar.

The effort of gravity acting on the point C is not exhausted at JR and
" the remainder, RT, must be used to push the body D along VS. "

But D itself resists as much as it is pushed, and everything happens as

if D travelled to S as if there were a force " which tries to repel it

from S to V.
"

Fig. 87

To sum up, the lever CAD is in equilibrium under the action of

weights like C,
"
pulling or pushing from one side with forces or velo

cities .RT," and weights like D, pulling or pushing in the opposite sense.

Therefore Bernoulli writes S (C X CA X RT) = S (D X AD X

VS) and, from this, deduces the solution of the problem of the centre

of oscillation.

2. THE INTRODUCTORY ARGUMENT OF D'ALEMBERT'S TREATISE ON
DYNAMICS.

The first edition of d'Alembert's Traite de dynamique is dated 1743.

Here we shall follow an edition of 1758, which was corrected and added
to by the author.

In an introductory discussion, d'Alembert explains his philosophy
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of mechanics. The Sciences are divided into two groups those which
are based on principles which are necessarily true and clear in themselves ;

and those which are based on physical principles, experimental truths,

or simply on hypotheses. Mechanics belongs to the first category of

purely rational sciences, although it appears to us as less direct than

Geometry and Algebra. It has failed to clarify the mystery of impene
trability, the enigma of the nature of motion, and the metaphysical

principle of the laws of impact. . . .

The best method of discussing any part of mathematics "
is to

regard the particular subject of that science in the most abstract and
direct way possible ; to suppose nothing, and to assume nothing about

that subject, that the properties of the science itself does not suppose.
"

D'Alembert sets out " to throw back the boundaries of mechanics

and to smooth out the approach to it ... and, in some way, to achieve

one of these objects by means of the other. That is, not only to deduce

the principles of mechanics from the clearest concepts, but also to apply
them to new ends.

" He strives " to make everything clear at once ;

both the futility of most of the principles that have so far been used in

mechanics, and the advantage that can be obtained from the combin
ation of others, for the progress of that Science. In a word, to extend

the principles and reduce them in number.
"

The nature of motion has been much discussed. "
Nothing would

seem more natural than to conceive of it as the successive application,
of the moving body to the different parts of infinite space.

" But the

Cartesians,
" a faction that, in truth, now barely exists,

"
refuse to

distinguish space from matter. In order to counter their objections,
d'Alembert makes a distinction between impenetrable space, provided

by what are properly called bodies, and space pure and simple, penetr
able or not, which can be used to measure distances and to observe

the motion of bodies.
" The nature of time is to run uniformly, and mechanics supposes

this uniformity.
"

This is Newtonian.

"A body cannot impart motion to itself,
" There must be an extern

al cause in order to move it from rest. But "
if the existence of

motion is once supposed, without any other particular hypothesis, the

most simple law that a moving body can observe in its motion is the

law of uniformity, and consequently, this is that which it must conform

to. ... Therefore motion is inherently uniform. "

D'Alembert defines the force of inertia as the property of bodies of

remaining in their state of rest or motion. Among the means that can

alter the motion of a body, apart from constraints, he only allows

two impact (or impulse) and gravity (or, more generally, attraction).
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In this connection it seems that d'AIembert criticises the very prin

ciple of Euler's mechanics.
" Why have we gone back to the principle, which the whole world

now uses, that the accelerating or retarding force is proportional to the

element of the velocity ? A principle supported on that single vague and
obscure axiom that the effect is proportional to its cause.

" We shall in no way examine whether this principle is a necessary
truth or not. We only say that the evidence that has so far been pro
duced on this matter is irrelevant. Neither shall we accept it, as some

geometers have done, as being of purely contingent truth, which would

destroy the exactness of mechanics and reduce it to being no more than an

experimental science. We shall be content to remark that, true or false,

clear or obscure, it is useless to mechanics and that, consequently, it

should be abolished.
"

This shows in what sense d'AIembert interpreted the task of making
mechanics into a rational science, and the extent to which he valued his

own principle.

D'AIembert made appeal to a principle of the composition of motions,
of which he intended to give simple evidence.

When a body changes in direction, its motion is made up of the

initial motion and an acquired motion. Conversely, the initial motion
can be compounded of a motion which is assumed and a motion which
is lost.

D'AIembert established the laws of motion in the presence of any
obstacle in the following way. The motion of the body before meeting
the obstacle is decomposed into two motions one which is unchanged,
and another which is annihilated by the obstacle.

If the obstacle is insurmountable, the laws of equilibrium are used.

These laws are expressed by a relation of the kind

m v

m r

v

where v, v' are the velocities with which the masses m, m! tend to move.

Only when there is perfect symmetry, or when

m = m' v' = v

does the problem appear inherently clear and simple to d'AIembert,
and he tries to reduce all other situations to this one. We have seen

that this was an illusion which Archimedes had in his investigation of

the equilibrium of the lever.

And d'AIembert concludes,
" The principle of equilibrium, together

with the principles of the force of inertia and of compound motion,
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therefore leads us to the solution of all problems which concern the

motion of a body in so far as it can be stopped by an impenetrable and
immovable obstacle that is, in general, by another body to which it

must necessarily impart motion in order to keep at least a part of its

own. From these principles together can easily be deduced the laws

of the motion of bodies that collide in any manner whatever, or which
affect each other by means of some body placed in between them and
to which they are attached.

"

Lagrange said, and it is often repeated, that d'Alembert had reduced

dynamics to statics by means of his principle. The last quotation shows

clearly that d'Alembert himself did not accept such a simple interpreta
tion. On the contrary, he stressed the fact that " the three principles
of the force of inertia, of compound motion and of equilibrium are

essentially different from each other.
"

D'Alembert's beliefs are thus clearly expressed in the first pages on
his introduction. But he also made clear his view on the problems
which were popular in his time. Above all, he intended to take account

of motion without being concerned with motive causes ; he completely
banished the forces inherent to bodies in motion,

" as being obscure and

metaphysical, and which are only able to cover with obscurity a subject
that is clear in itself.

"

This is why d'Alembert refused " to start an examination of the

celebrated question of living forces, which has divided the geometers
for thirty years.

" To him, this question was only a dispute about

words, for the two opposing sides were entirely in agreement of the fun

damental principles of equilibrium and of motion. Their solutions ofthe

same problem coincided,
"

if they were sound.
"

D'Alembert also discussed the question of knowing whether the laws

of mechanics are of necessary or contingent truth. This question had

been formulated by the Academy of Berlin.

In order that this question may have a meaning, it is necessary to

dispense with "
every sentient being capable of acting on matter, every

will of intellectual origin.
"

It is said that d'Alembert rejected every
finalist explanation involving the wisdom of the Creator we shall

return to this in connection with the principle of least action.

To d'Alembert, the principles of mechanics are of necessary truth.
" We believe that we have shown that a body left to itself must

remain forever in its state of rest or of uniform motion ; that if it tends

to move along the two sides of a parallelogram at once, the diagonal
is the direction that it must take ; that is, that it must select from all

the others. Finally, we have shown that all the laws of the communic
ation of motion between bodies reduce to the laws of equilibrium, and
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that the laws of equilibrium themselves reduce to those of the equili
brium of two equal bodies which are animated in different senses by
equal virtual velocities. In the latter instance, the motions of the two
bodies evidently cancel each other out ; and by a geometrical conse

quence, there will also be equilibrium when the masses are inversely

proportional to the velocities. It only remains to know whether the

case of equilibrium is unique that is, whether one of the bodies will

necessarily force the other to move when the masses are no longer

inversely proportional to the velocities. Now it is easy to believe that

as soon as there is one possible and necessary case of equilibrium, it

will not be possible for others to exist without the laws of impact
which necessarily reduce to those of equilibrium becoming indeter

minate. And this cannot be, since, if one body collides with another,
the result must necessarily be unique, the inevitable consequence of

the existence and the impenetrability of bodies.
"

3. D'ALEMBERT AND THE CONCEPT OF ACCELERATING FORCE.

Of all the causes that could influence a body, d'Alembert was of the

opinion that only impulse (that is, impact) was perfectly determinate.

All other causes are entirely unknown to us and can only be distinguished

by the variation of motion which they produce. The "
accelerating

force
"

9? is introduced by the relation cpdt
= du, a relation between the

time t and the velocity u the only observable kinematic quantities.
This relation is the definition of (p.

Therefore, to d'Alembert, this force was a derived concept, though
to Daniel Bernoulli and Euler it constituted a primary concept.

To Daniel Bernoulli, the law cpdt
= du was a contingent truth ; to

Euler, a necessary truth.

D'Alembert wrote,
" for us, without wishing to discuss here whether

this principle is a necessary or a contingent truth, we shall be content

to take it as a definition, and to understand by the phrase
6

accelerating
force ', merely the quantity to which the increase in velocity is propor
tional.

" i

4. D'ALEMBERT'S PRINCIPLE.

D'Alembert's principle was made the subject of a letter to the

Academic des Sciences as early as 1742. In this book, we shall follow

the presentation of the principle which appears in the 1758 edition of

the Traite de Dynamique (2nd Part, Chapt. I, p. 72).

1 Trait^ de Dynamique^ cor. VI, p. 25 (1758 edition).
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PRESENTATION OF THE PRINCIPLE

" Bodies only act on each other in three ways that are known to

us either by immediate impulse as in ordinary impact ; or by means of

some body interposed between them and to which they are attached ;

or finally, by a reciprocal property of attraction, as they do in the

Newtonian system of the Sun and the Planets. Since the effects of this

last mode of action have been sufficiently investigated, I shall confine

myself to a treatment of bodies which collide in any manner whatever,

and of those which are acted upon be means of threads or rigid rods.

I shall dwell on this subject even more readily because the greatest

geometers have only so far (1742) solved a small number of problems
of this kind, and because I hope, by means of the general method which

I am going to present, to equip all those who are familar with the calcu

lations and principles of mechanics so that they can solve the most

difficult problems of this kind.

DEFINITION

" In what follows, I shall call motion of a body the velocity of this

same body and shall take account of its direction. And by quantity

of motion, I shall understand, as is customary, the product of the mass

and the velocity.

GENERAL PROBLEM

" Let there be given a system of bodies arranged in any way with

respect to each other ; and suppose that a particular motion is imparted

to each of these bodies, which it cannot follow because of the action of the

other bodies to find the motion that each body must take.

SOLUTION

" Let A 9 JB, C, etc be the bodies that constitute the system and

suppose that the motions a, 6, c, etc. . , . are impressed on them ; let

there be forces, arising from their mutual action, which change these

into the motions a, I>, c, etc. ... It is clear that the motion a impressed

on the body A can be compounded of the motion a which it acquires

and another motion a. In the same way the motions fr, c, etc. . . . can

be regarded as compounded of the motions 1> and /?, c and #, etc. . . .

From this it follows that the motions of the bodies -4, B, C, etc. . . .

would be the same, among themselves, if instead of their having been
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given the impulses a, 6, c, etc. . . . they had been simultaneously given
the twin impulsions a and a, b and /?, c and #, etc. . . . Now, by sup
position, the bodies A^ B, C, etc. . . . have assumed, by their own action,
the motions a, b, c, etc. . . . Therefore the motions a, /?, , etc. . . .

must be such that they do not disturb the motions a, b, c, etc. ... in

any way. That is to say, that if the bodies had only received the mo
tions a, /?, X, etc. . . . these motions would have been cancelled out

among themselves, and the system would have remained at rest.
44 From this results the following principle for finding the motion of

several bodies which act upon each other. Decompose each of the

motions a, &, c, etc. . . . which are impressed on the bodies into two others,

a and a, b and /?, c and X, etc. . . . which are such that if the motions

a, I), c, etc. . . . had been impressed on the bodies, they would have been

retained unchanged ; and if the motions a, /?, X, etc. . . . alone had been

impressed on the bodies, the system, would have remained at rest. It is

clear that a, b, c, etc. . . . will be the motions that the bodies will take

because of their mutual action. This is what it was necessary to find.
"

5. D'ALEMBERT'S SOLUTION OF THE PROBLEM OF THE CENTRE OF OSCIL

LATION.

Although d'Alembert's principle is perfectly clear, its application is

difficult, and the Traite de Dynamique remains a difficult book to read.

As a concrete example of its application, we
C shall give d'Alembert's solution of the celebrat

ed problem of the centre of oscillation. 1

46 Problem. To find the velocity of a rod CR
fixed at C, and loaded with as many weights as

may be desired, under the supposition that these

bodies, if the rod had not prevented them, would
have described infinitely short lines AO, BQ, jRT,

perpendicular to the rod, in equal times.

"All the difficulty reduces to finding the

line RS travelled by one of the bodies, J?, in the

._ . time that it would have travelled RT. For then

_. 00 the velocities J3G, AM, of all the other bodies
rig. oo i

are known.
44 Now regard the impressed velocities, RT,

BQ, AO as being composed of the velocities RS and ST ; EG and

GQ ; AM and MO. By our principle, the lever CAR would have

1 Trait^ de Dynamique, p. 96.
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remained in equilibrium if the bodies jR, B, A had received the motions

ST, GQ, MO alone.

" Therefore

A-MO.AC + B.QG-BC = R.ST-CR.

"
Denoting AO by a, BQ by 6, J?Tby c, (L4 by r, CB by r', CjR by Q

and JRS by 2, we will have

R (c-*) Q =Ar- a + Br' -
\Q / \ Q

"
Consequently

_ Aarq + Bbr'g + RCQ**~~
Ar* + Br'2 + RQ*

"

"
Corollary. Let .F,/, <p be the motive forces of the bodies A, B,

The accelerating force will be found to be

Fr+fr' + w Ke+ Br2 +RQ
- . F f <P

on giving a, 6, c, their values -?, ~, * Therefore, if the element of arc
joL O /x

described by the radius CR is taken to be ds and the velocity of R to

be u, then, in general,

whatever the forces F, /, cp may be. It is easy, by this means, to solve

the problem of centres of oscillation under any hypothesis.

6. THE PRIORITY OF HERMAN AND EULER IN THE MATTER OF D'ALEM-

BERT'S PRINCIPLE.

After recalling Jacques Bernoulli's solution of the problem of the

centre of oscillation, d'Alembert remarks that Euler, in Volume III of the

old Commentaries of the Academy of Petersbourg (1740), had used the

principle according to which the powers JR-JRS, B-J3G, A -AM must be

equivalent to the powers JR-JRT, B-BQ, A-AO. "But M. Euler has

in no way demonstrated this principle and this, it seems to me, can only

be done by means of ours. Moreover, the author has only applied this

principle to the solution of a small number of problems concerning the

oscillation of flexible or inflexible bodies, and the solution that he has

given to one of these problems is not correct. [This was the problem
of the oscillation of a solid body on a plane.] This shows to what extent



252 THE PRINCIPLES OF CLASSICAL MECHANICS

our principle is preferable for solving not only problems of tbat kind,
but in general, all questions of dynamics.

" 1

Lagrange had the following comment to make on this matter.
" If it is desired to avoid the decompositions of motions that d'Alem-

bert's principle demands, it is only necessary to establish immediately
the equilibrium between the forces and the motions they generate, but

taken in the opposite directions. For if it is imagined that there is

impressed on each body the motion that it must take, in the opposite

sense, it is clear that the system will be reduced to rest. Consequently,
it is necessary that these motions should destroy those that the body
had received and which they would have followed without this inter

action. Thus there must be equilibrium between all these motions or

between the forces which can produce them.
" This method of recalling to mind the laws of Dynamics is certainly

less direct than that which follows from d'Alembert's principle, but it

offers greater simplicity in applications. It reduces to that of Herman 2

and of Euler,
3 who used it in the solution of many problems in Mechan

ics, and which is found in many treatises on mechanics under the name
of d?Alember?$ Principle.

"

However clear these priorities may be, they do not detract from the

originality of d'Alembert's conceptions. His work stands out because

of its philosophic breadth of view, because of its property of unifying
and generalising, and its equal is not found among the work of his

immediate predecessors.

7. D'ALEMBERT AND THE LAWS OF IMPACT.

D'Alembert systematically applied his principle to the solution of

all the problems which appear in his Traite, whether they concern bodies

which are supported by threads or rods, bodies which oscillate on planes,
bodies which interact by means of threads on which they can run freely,
or different modes of impact.

In the problems of impact d'Alembert, at first, only considers
* 4 hard bodies

"
(that is, bodies deprived of their elasticity). Thus, if

a body of mass M and velocity U collides directly with a body of mass
m and velocity w, d'Alembert writes the following relations between the

velocities.

u v + u v

u= v+ u-v
1 TraitS de Dynamique^ p. 101.
2
Phoronomia, sive De viribus et motibus corporum solidorum et fluidorum, Amster

dam, 1716.
3 The paper cited by d'ALEMBERT (see the beginning of this ).
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Here v and V are the velocities of the first and the second bodies

after the impact.
After the impact V = v and because of the principle, m(u v) -j-

M(U V) = 0. Therefore Fand v = *"" + MU
.

V ' M + 771

D'Alembert next deduces the laws of the impact of elastic bodies

from those of the impact of hard bodies by the following procedure.
"
If as many bodies as may be desired collide with each other so that when

it is supposed that they are perfectly hard and without elasticity, they all

remain at rest after the impact ; I say that if they are ofperfect elasticity

each one will rebound after the impact with the velocity it had before the

impact. For the effect of the elasticity is to give back to each body
the velocity which it has lost because of the action of the others.

" l

Thus d'Alembert separated the theory of impact from all appeal to

the conservation of living forces.

8. D'ALEMBERT AND THE PRINCIPLE OF LIVING FORCES.

D'Alembert prepared the way for Lagrange by setting out to show
that the principle of the conservation of living forces was a consequence
of the laws of dynamics for systems with restraints composed of threads

and inflexible rods, just as the laws of impact were a consequence of

this same principle. Without giving a general demonstration of this

fact, d'Alembert gave
" the principles sufficient for obtaining the de

monstration in every particular case.
"

We shall confine ourselves here to a very simple case.
"
Imagine two bodies, A and jB, of an infinitely small extension, to

be attached to an inflexible rod AB. And suppose that any directions

and velocities are imparted to these bodies, and that these velocities

are represented by the infinitely short lines AK and J5D. According to

our principle, it is necessary to construct the parallelograms MC and

NL 9 in which LC = AB and B X BM= A X AN. The velocities and

the directions of the bodies B and A will be BC and AL. Now J3C2 =
ED* 2CE- CD CD* and AD = Z8? + 2PL -KL KL*. Therefore

B.B& + A.JI* = A. AK* + B . HEM- AQPL-JSL KL*

B(2CE- CD + CD2
), which reduces to A AK* + B BD* A - KL*

B*CD\ since CE = PL and A-KL = B-CD.
"Therefore

1 Traite de Dynamique, p. 218.
2
Ibid., p 253.



CHAPTER FIVE

THE PRINCIPLE OF LEAST ACTION

1. RETURN TO FERMAT.

On January 1st, 1662, Fermat wrote to C. de la Chambre concerning
refraction.

" M. Descartes has never demonstrated his principle. For apart
from the fact that comparisons are not of much use as foundations for

demonstrations, he uses his own in the wrong way and even supposes
that the passage of light is easier in dense bodies than in rare ones,
which is clearly false.

"

In his investigation of the refraction of light, Fermat starts "
from

the principle, so common and so well-established, that Nature always acts

in the shortest ways.
"

He first shows that in a parti
cular numerical example, the recti

linear path is not the most rapid for

the traversal of two media by light.
If the medium AGB is supposed

to be more dense than the medium
ACB, " so that the passage through
the rarer medium is twice as easy as

that through the denser one,
" the

time taken by the light in going from
C to G by the straight line COG can

FiS- 89 be represented
"
by the sum of half

CO and the whole of OG. "

Taking CO = 10, H = OD = 8 and OF = 1, Fermat shows that

+OG-15 CF = FG = ^/85

CQ
and that, consequently,- -fFG is less than , and therefore less than 15.

2 4
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Fermat adds,
" I arrived at this point without much trouble, but

it was necessary to carry the investigation further ; and because, in

order that my conscience might be satisfied, it was not sufficient to

have found a point such as F through which the natural motion was

accomplished more quickly, more easily and in less time than by the

straight line COG, it was also necessary to find the point which allowed

the passage from one side to the other in less time than any other there

might be. In this connection, it was necessary to use my method of

maximis and minimis, which is rather successful for expediting this

kind of problem.
"

Fermat did not doubt the truth of his principle, but he had been
warned from all sides that experiments confirmed Descartes' law.

Therefore it was dangerous to try to introduce a "
proportion different

from those which M. Descartes has given to refractions.
'*

Moreover,
it was necessary to " overcome the length and the difficulty of the calcu

lation, which at first presented four lines by their fourth roots and

accordingly became entangled in assymmetries. ..." However, his
"
passionate desire

"
to succeed fortunately inspired him to find a

method which shortened his work by a half, in reducing these four

asymmetries to only two.

Fermat's calculation is found in his paper Synthesis ad refractiones,

probably written in February, 1662.

Fig. 90

Let there be a circle of diameter ANB, an incident ray MZV and a

refracted ray NH. Let MRH be another trajectory passing through

any point of AB, chosen, for example, on the right of IV.
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Fermat introduces the ratios

velocity on MN _ MN __ velocity on MR _ MR
* '

velocity on NH
~~

~IN
""

velocity on RH
~~

PJR
>

whence

time on MN _ MN _IN_
IN

time on NH
~

~N3
' MN ~ NH

and, similarly,

time on MR PR
time on RH

"

so that

time on MIVH = IN + NH
time on MRH

~~
PR + RH'

The point jff,
" at which Nature herself takes aim "

corresponds to

a projection on AB such that

=
v '

ivs "ivi

It is necessary to show that

PR + RH > IN + NH.

Immediately

DIV MR, ... ...- =- by (1) and (2).NS PR ^ ' V ;

Putting

MN RN . DN NO
and

DJV NO NS NV
, f As DJV < MN, therefore JVO < RN
( '

\
As NS < DN, therefore NV< NO.

Now, by (3),

MR* = MN2 + NRZ + 2DN-NR = MN2 + NR* + 2MN-NO.

Therefore, by (4)

(5) MR > MN + NO.

Now, by (1), (2), (3),

DN = MN = NO = JVO + MJV MR
NS IN NV NV + IN
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Therefore, by (5),

RP> NI + NV.

It remains to prove that

RH> HV

for then it is clear that

PR + RH > NI + NH.

Now
RH2 = NH2 + NR* 2SN-NR

and by (3)

DN NO
DN JWV NO

Therefore

HN NR
NS NV

or SN-NR = HN-NV

since, by (4), NR > NV it follows that RH>NHNV=HV,
which completes the proof.

We return to the letter which we quoted at the beginning of this

section. Fermat concludes,
" The reward of my work has been most

extraordinary, most unexpected, and the most fortunate that I have
ever obtained. For after having gone through all the equations, multi

plications, antitheses and other operations of my method, and finally

having settled the problem. . . , I found that my principle gave exactly
the same proportion of the refractions that M. Descartes has established.

I was so surprised by a happening that was so little expected that I only
recovered from my astonishment with difficulty. I repeated my alge
braic operations several times and the result was always the same,

though my demonstration supposes that the passage of light through
dense bodies is more difficult than through rare ones something I

believe to be very true and necessary, and something which M. Descartes

believes to be the contrary.
" What must we conclude from this ? Is it not sufficient, Sir, that

as friends of M. Descartes, I might allow him free possession of his

theorem ? Is it not rather glorious to have learned the ways of Nature
in one glance, and without the help of any demonstration ? I therefore

cede to him the victory and the field of battle. ..."
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2. CARTESIAN OBJECTIONS TO FERMAT'S PRINCIPLE.

Although his demonstration was mathematically incontestible,

Fermat was not successful in convincing the Cartesians, who opposed
it with metaphysical objections which, at that time, took place over

pure and simple reason.

These facts emerge from the correspondence between Fermat and

Clerselier. Thus Clerselier, writing to Fermat on May 6th, 1662,

declares that Fermat's principle is, in his eyes,
" a principle which is

moral and in no way physical ; which is not, and which cannot be, the

cause of any effect of Nature.
" To Clerselier, the straight line is the

only determinate " this is the only thing that Nature tends to in all

her motions.
" And he explains

" The shortness of the time ? Never. For when the radius MN
has come to the point JV, according to this principle it must there be

indifferent to going to all parts of the circumference BHA, since it takes

as much time to travel to one as to the other. And since this reason of

the shortness of time will not, then, be able to direct it towards one

place rather than towards another, there will be good reason that it

must follow the straight line. For in order that it might select the

point H rather than any other, it is necessary to suppose that this ray

MN, which Nature cannot send out without an indefinite tendency
towards a straight line, remembers that it has started from the point M
with the order to discover, at the meeting between the two media,
the path that it must then travel in order to arrive at H in the

shortest time. This is certainly imaginary, and in no way founded on

physics.
" Therefore what will make the direction of the ray MN (when it

has come to IV) change at the meeting with the other medium, if not

that which M. Descartes urges ? Which is that the same force that

acts on and moves the ray MIV, finding a different natural arrangement
for receiving its action in this medium than in the other, one which

changes its own in this respect, makes the direction of the ray conform
to the disposition that it has at the time.

"

And Clerselier concludes
" That path, which you reckon the shortest because it is the quickest,

is only a path of error and bewilderment, which Nature in no way
follows and cannot intend to follow. For, as Nature is determinate
in everything she does, she will only and always tend to conduct her

works in a straight line.
"

As for the velocity of light in dense and rare bodies, Clerselier believed

that it would be "
clearly more reasonable "

to accept Fermat's thesis.
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But, with a fine assurance, lie writes,
" M. Descartes in the 23rd page

of his Dioptrique proves and does not simply suppose, that light moves
more easily through dense bodies than through rare ones.

"

A letter from Fermat to Clerselier, dated May 21st, 1662, contains

the following bitter ironical reply.
" I have often said to M. de la Chambre and yourself that I do not

claim and that I have never claimed, to be in the private confidence of

Nature. She has obscure and hidden ways that I have never had the

initiative to penetrate ; I have merely offered her a small geometrical
assistance in the matter of refraction, supposing that she has need

of it. But since you, Sir, assure me that she can conduct her

affairs without this, and that she is satisfied with the order that

M. Descartes has prescribed for her, I willingly relinquish my pre
tended conquest of physics and shall be content if you will leave me
with a geometrical problem, quite pure and in abstracto, by means of

which there can be found the path of a particle which travels through
two different media and seeks to accomplish its motion as quickly as it

can.
"

Thus the problem was taken back on to the mathematical plane,
the only profitable one.

In a letter written in 1664 to an unknown person, Fermat returns

to " the intrigue of our dioptrics and our refractions.
"

If one is to

judge from the text, the Cartesians had not confessed themselves

beaten.
46 The Cartesian gentlemen turned my demonstration, which was com

municated to them by M. de la Chambre, upside down. At first they
were of the opinion that it must be rejected, and although I represented
to them very sweetly that they might be content that the field of battle

should remain with M. Descartes, since his opinion was justified and

confirmed, albeit by reasons different from his own ; that the most
famous conquerors did not regard themselves less fortunate when their

victory was won with auxiliary troops than if it was won by their own.
At first they had no wish to listen to raillery. They determined that

my demonstration was faulty because it could not exist without des

troying that of M. Descartes, which they always understood to have
no equal. . . . Eventually they congratulated me, by means of a letter

from M. Clerselier. . . . They acclaimed as a miracle the fact that the

same truth had been found at the ends of two such completely opposed
paths and announced that they would prefer to leave the matter un
decided, saying that they did not know, in this connection, whether to

value M. Descartes' demonstration more highly than my own, and
that posterity would be the judge.

"
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In a paper in the Ada of Leipzig for 1682, Leibniz rejected Fermat's

principle. Light chooses the easiest path, which must not be confused

with the shortest path or with that which takes the shortest time.

Leibniz contemplated a path of least resistance or, more accurately,
a path for which the product of the path and the " resistance

"
might

be a minimum. Leibniz also supported Descartes' opinion on the relative

velocity of light in rare and dense bodies with the aid of the following

arguments. Although glass
"

resists
" more than air, light proceeds

more quickly in glass than in air because the greater resistance prevents
the diffusion of the rays, which are confined in the passage after the

manner of a river which flows in a narrow bed and thus acquires a

greater velocity.

4. MAUPERTUIS' LAW OF REST.

Before coming to Maupertuis' dynamics, we shall devote a little

attention to a law of minimum and maximum which was put forward

by this author in the Memoires de VAcademie des Sciences for 1740, and
in which the concept of potential makes its appearance.

46 Let there be a system of bodies which gravitate, or which are

attracted towards centres by the forces that act on each one, as the
7i
th
power of their distances from the centre. In order that all these

bodies should remain at rest, it is necessary that the sum of the products
of each mass with the intensity of the force 1 and with the (n + l)

th

power of its distance from the centre of its force (which may be called

the sum of the forces at rest) should be a maximum or a minimum. "

By means of this law of rest Maupertuis rediscovered the essential

theorems of elementary statics (the rule of the parallelogram, the

equilibrium of an angular lever).

5. THE PRINCIPLE OF LEAST ACTION IN MAUPERTUIS' SENSE (1744).

The debate between Fermat and the Cartesians, and Leibniz's

objections to Fermat's principle, prepared the way for Maupertuis'
intervention. The latter stated the principle of least action in a paper
read to the Academic des Sciences on April 15th, 1744. The paper is

entitled The agreement between the different laws of Nature that had,
until now, seemed incompatible.

1 The force is here of the form kmrn .



THE PRINCIPLE OF LEAST ACTION 261

Haupertuis starts by recalling the laws which light must obey
rectilinear propagation in a uniform medium, the law of reflection and
the law of refraction. He seeks simple mechanical analogies.

" The first of the laws is common to light and to all bodies. They
move in a straight line unless some outside force deflects them.

44 The second is also the same as that followed by an elastic ball

which is thrown at an immoveable surface.
44 But it is also very necessary that the third law should be explained

as satisfactorily. When light passes from one medium into another,

the phenomena are quite different from those which occur when a ball

is reflected from a surface which does not yield to it in any way ; or

those which occur when a ball, on meeting one that does yield to it,

continues its progress, only changing the direction of its path. . . .

Several mathematicians have extracted some fallacy which had escaped
the notice of Descartes, and have made the error of his explanation
clear.

" Newton gave up the attempt to deduce the phenomena of refrac

tion from those which occur when a body encounters an obstacle, or

when it is forced along in media that resist differently, and fell back on
his attraction. Once this force, which is distributed through all bodies

in proportion to the quantity of matter, is assumed, the phenomena of

refraction are explained in the most correct and rigorous way. . . .

44 M. Clairaut, who assumes that light has a tendency towards

transparent bodies, and who considers this to be caused by some atmo

sphere which could produce the same effects as the attraction, has

deduced the phenomena of refraction. . . .

44 Fermat was the first to become aware of the error of Descartes'

explanation. . . . He did not rely on atmospheres about the bodies,

or on attraction, although it is known that the latter principle was
neither unknown nor disagreeable to him. 1 He sought the explanation
of these phenomena in a principle that was quite different and purely

metaphysical.
44 This principle was 4

that Nature, in the production of her effects,

always acts in the most simple ways.
'

Therefore Fermat believed that,

1 MAUPERTUIS is here referring to a passage from FERMAT'S work (var. oper.

p. 114) and which he cited elsewhere with the intention of showing that FERMAT
had anticipated NEWTON. This does not seem very convincing, for FERMAT'S attrac
tion remained metaphysical in essence. Here is this passage.

" The common opinion
is that gravity is a quality which resides in the falling body itself. Others are of the

opinion that the descent of bodies is due to the attraction of another body, like the

Earth, which draws those that descend towards itself. There is a third possibility
that it is a mutual attraction between the bodies which is caused by the mutual
attraction that bodies have for each other, as is apparent for iron and a magnet.

"
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in all circumstances, light followed at once the shortest path in the

shortest time.1 This led him to assume that light moved more easily

and more quickly in the rarer media than in those in which there is a

greater quantity of matter.
"

When Maupertuis wrote it was generally agreed that light moved

more quickly in denser media, in the manner specified by the newtonian

law of the proportionality of the indices of refraction to the velocities

of propagation.
"All the structure that Fermat has built up is therefore destroyed

In the paper that M. de Mayran has given on the reflection and re

fraction, there can be found the history of the dispute between Fermat

and Descartes, and the difficulty and inability there has so far been to

reconcile the law of refraction with the metaphysical principle.
"

Therefore, unlike Fermat, Maupertuis sought a minimum principle

that might be compatible with the newtonian law, and not with the

now generally accepted law which goes back to Huyghens. The strange

thing is not that he succeeded in finding it. Rather it is that, in boldly

extending one is even tempted to say gratuitously extending this

minimum principle into the field of dynamics, he was led to a law which

was truly sufficient, and which he successfully opposed to the thesis of

Descartes on the conservation of momentum and of Leibniz on the con

servation of kinetic energy.

Up to this point, our author has only criticised the different inter

pretations of the laws of refraction that had been put forward. We
shall now look at his achievement. The relevant passage merits quota

tion in its entirely on the rational plane, it would be impossible to

conceal its extreme weakness.

We now enter the metaphysical plane in the most complete sense

of the word.
" In meditating deeply on this matter, I thought that, since light

has already forsaken the shortest path when it goes from one medium

to another the path which is a straight line it could just as well not

follow that of the shortest time. Indeed, what preference can there

be in this matter for time or distance ? Light cannot at once travel

along the shortest path and along that of the shortest time why should

it go by one of these paths rather than by the other ? Further, why
should it follow either of these two ? It chooses a path which has a

very real advantage the path which it takes is that by which the quantity

of action is the least.

1 As far as it concerns the path, this is incorrect. What is a minimum, to FERMAT,
is the sum In -f I'n', the sum of the products of each trajectory with the corresponding
refractive index in SNELL'S sense.
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" It must now be explained what I mean by the quantity of action.

When a body is carried from one point to another a certain action is

necessary. This action depends on the velocity that the body has and

the distance that it travels, but it is neither the velocity nor the distance

taken separately. The quantity of action is the greater as the velocity
is the greater and the path which it travels is the longer. It is propor
tional to the sum of the distances, each one multiplied by the velocity
with which the body travels along it.

1

"It is the quantity of action which is Nature's true storehouse , and

which it economises as much as possible in the motion of light.
"

Maupertuis' demonstration follows.
" Let there be two different media, separated by a surface which is

represented by the line CD, such that the velocity in the upper medium
is proportional to m and the velocity in the lower medium is propor
tional to n. Let there be a ray of light, starting from the given point A,
which must pass through the given point B. In order to find the point
JR at which it must break through, I seek the point at which, if the ray
breaks through, the quantity ofaction is least. I have m AR + n> RB,
which must be a minimum.

66
Or, having drawn the perpendiculars AC, BD, to the common

surface of the two media, I have

m VAC* + CR* + n VBD* + DR* =

ff D

C

Fig. 91

or, since AC and BP are constants

nPR-dDR __

VAC* + CR2 VBP* +
1 A footnote adds the following detail

" As there is only one body, the mass is

neglected.
"
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"
But, since CD is a constant, there obtains

dCR = dDR.

" Therefore

mCR nDR , CR RD
. .

n
and

AR BR AR BR m

or, in words, the sine of the incidence, or the sine of the refraction, are in

inverse proportion to the velocity which the light has in each medium.
" All the phenomena of refraction now agree with the great principle

that Nature in the production of her works, always acts in the most simple

ways.
"

Maupertuis then shows without difficulty that " this basis, this

quantity of action that nature economises in the motion of light through
different media, she also saves in the reflection and the linear propa

gation. In both these circumstances, the least action reduces to the

shortest path and the shortest time. And it is this consequence that

Fermat took as a principle.
"

Maupertuis concludes,
" I know of the repugnance that several

mathematicians have for final causes when applied to physics, and to

a certain extent I am in accord with them. I believe that they are not

introduced without risk. The error, which men like Fermat and those

that followed him, have committed, only shows that, too often, their

use is dangerous. It can be said, however, that it is not the principle

which has betrayed them, but rather, the haste with which they have

taken for the principle what is merely one of the consequences of it.

It cannot be doubted that all things are regulated by a Supreme Being

who, when he impressed on matter the forces which denote his power,
destined it to effect the doings which indicate his wisdom. "

6. THE APPLICATION OF THE PRINCIPLE OF LEAST ACTION TO THE DIRECT

IMPACT OF TWO BODIES.

In a paper published by the Royal Academy of Berlin in 1747, and
called On the laws of motion and of rest, Maupertuis applied the principle
of least action to the direct impact of two bodies.

He only considered the effect of the direct impact of two homogeneous
spheres, and started from the hypothesis that " the magnitude of the

impact of two given bodies depends uniquely on their respective velocity,
"

that is, on their relative velocity. He distinguished between
"

Perfectly hard bodies. These are those whose parts are inseparable
and inflexible, and whose shape is consequently unalterable.
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"
Perfectly elastic bodies. These are those whose parts, after being

deformed, right themselves again, taking up their original situation and

restoring to the body its original shape.
"

Modern language would call the first category completely devoid of

elasticity or perfectly soft. But the important matter here is that of the

experimental laws which Maupertuis stated.

"After the impact, hard bodies travel together with a common velocity. . . .

The respective velocity of elastic bodies after the impact is the same as that

before.
"

Maupertuis did not treat the intermediate case,
" that of soft or

fluid bodies, which are merely aggregates of hard or elastic ones.
"

He started from the principle that " when any change takes place
in Nature, the quantity of action necessary for this change is the smallest

possible.
"

We shall quote (notation apart) Maupertuis' argument on the impact
of hard bodies.

" Let there be two hard bodies A and B, whose masses are m and

/ra', which move in the same direction with velocities v and v ; but A
more quickly than B, so that it overtakes B and collides with it. Let

the common velocity of the two bodies after the impact = vx < v

and > VQ. The change which occurs in the Universe consists in that

the body A, which used to move with a velocity VQ and which, in a

certain time, used to travel a distance = t? , now moves with the velocity

i?!
and travels no more than a distance = v. The body -B, which only

used to move with a velocity v' and travelled a distance = v^ moves
with the velocity vl and travels a distance = v.

" This change is therefore the same as would occur if, while the body
A moved with the velocity v and travelled a distance = t; , it were

carried backwards on an immaterial plane, which was made to move
with a velocity t; v^ through a distance = t; i7x ; and that while

the body B moved with the velocity v$ and travelled a distance = v&
it were carried forwards by an immaterial plane, which was made to

move with a velocity v VQ through a distance v VQ.
" Now whether the bodies A and B move with their appropriate

velocities on the moving planes, or whether they are immobile there,

the motion of the planes loaded with these bodies being the same, the

quantities of action produced in Nature will be m(vQ t;x)
2 and

m/
(
v
i vo)

2
' an<^ fr *s the sum these which must be as small as

possible. Therefore it must be that

mv\ 2mvQv1 + mv\ + Hz't;f 2m f

v1VQ + m r

v'^
= Min.

or 2mv dv1 -\- 2mv1dvl + 2m f

vidvl ^m'v^dv^ =
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whence the common velocity

mvn + m f

v,(

1 m + m'

is obtained.
"

No purpose would be served by reproducing the argument relevant

to two bodies moving towards each other. Here too the condition of

least action reduces to the conservation of the total momentum.

Next treating the impact of elastic bodies, Maupertuis used an

argument which was completely analogous to that which we have

reproduced. Apart from sign, the "
respective

"
velocity is conserved

after the impact, or

The cpiantity of action involved has the value

and it follows from the condition of least action that

_ __
1
~~

m + m 1 m + m'

On this occasion the living forces are conserved,
" but this con

servation only takes place for elastic bodies, not for hard ones. The

general principle, which applies to the first and to the others, is that the

quantity of action necessary to produce some change in Nature is the

smallest that is possible.
"

At the end of his paper, Maupertuis dealt with the principle of the

lever, and deduced it from the principle of least action.
" Let c be the length of the lever, which I suppose to be immaterial,

and at whose ends are placed two bodies whose masses are A and B.

Let z be the distance of the body A from the point of support which is

sought, and c % be the distance of the body B. It is clear that, if the

lever has some small motion, the bodies A and B will describe small

arcs which are similar to each other and proportional to the distances

of the bodies from the point which is sought. Therefore these arcs will

be the distances travelled by the bodies, and at the same time will

represent their velocities. The quantity of action will therefore be

proportional to the product of each body by the square of its arc. Or

(since the arcs are similar) to the product of each body by the square
of its distance from the point about which the lever turns, that is, to
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Az~ and B(c s)
2
, and it is the sum of these which must be the smallest

possible. Therefore

Az*+ B(c-z)* = Min.

or

2Azdz + 2Bzdz ZBcdz =

from which it is deduced that

Be
Z ~~

A + B

which is the fundamental proposition of statics.
"

7. THE PRINCIPLE OF LEAST ACTION IN MAUPERTUIS' WORK.

Maupertuis, who had been a musketeer, had a great liking for geo

metry. He was a surveyor and, in an amateur way, a geographer,

astronomer, biologist, moralist and linguist. . . . And to crown and

grace it all, Maupertuis was a metaphysician. Although he had a

systematic mind, because of a trait rather common to men of his pro
vince he was not free from fantasy. From this fantasy, or perhaps
from his temperament, sprang naivety.

We shall therefore turn over the pages of Maupertuis' work, seeking
an explanation of the principle of least action.1

Here we shall only dwell on the Essai de Cosmologie. In this docu

ment Maupertuis contrasted the rationalist school,
"
wishing to submit

Nature to a purely material regime and to ban final causes entirely,
"

with the school which, on the contrary,
" makes continual use of these

causes and discovers the intentions of the Creator in every part of

Nature. . . . According to the first, the Universe could dispense with

God ; according to the second, the tiniest parts of the Universe are as

much demonstrations "
of the existence of God.

He declared,
" I have been attacked by both these factions of

philosophy. . . . Reason defends me from the first, an enlightened

century has not allowed the other to oppress me. "

Thus Maupertuis flattered himself with having found a happy mean
between these two extreme attitudes. " Those who make immoderate

use (of final causes) have wished to persuade me that I seek to deny the

evidence of the existence of God which the Universe everywhere

presents to the eyes of all men in order to substitute for it one which

has only been given to a few.
"

1 We have referred both to the Dresden edition (Walter, 1752) and the Lyons
edition (Bruyset, 1756).
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Among the evidence of the existence of God, Maupertuis intended

to dispense with all that was provided by metaphysics. He also took

no account of that which sprang from the structure of animals and

plants, such as the proof to cite only one offered by the folds in the

skin of a rhinoceros, who would not be able to move without them.
"
Philosophers who have assigned the cause of motion to God have

been reduced to this because they did not know where else to place it.

Not being able to conceive that matter had any ability to produce,
distribute and destroy motion, they have resorted to an Immaterial

Being. But when it is known that all the laws of motion are based on

the principle of better, it cannot be doubted that these have their found

ation in an omnipotent and omniscient Being, whether he gave bodies

the power to interact with each other, or whether he used some other

means which is still less understood by us.
"

He was not concerned, like Fermat, with assuming that Nature acts

in the most simple ways. He was not concerned, as Descartes was,
with assuming that the same quantity of motion was always conserved

in Nature " He deduced his laws of motion from this ; observation

belied them, for the principle was not true.
"

Finally he was not

concerned, like Leibniz, in assuming that the living force was always
conserved. Huyghens and Wren had discovered the laws of the impact
of elastic bodies simultaneously, but Huyghens had not taken these

laws onto the plane of a universal principle. The conservation of living
forces does not apply to the impact of hard bodies and, on this occasion,

Maupertuis accused the followers of Leibniz "
of preferring to say that

there are no hard bodies in Nature " than to give up their principle.
" This has been reduced to the strangest paradox that love of a system
could produce for the primitive bodies, the bodies that are the

elements of all others, what can they be but hard bodies ?
"

Therefore Maupertuis denied all general principles that were not

final.
" In vain did Descartes imagine a world which could arise from

the hand of the Creator. (Strictly speaking, Descartes' system supposes
the initial intervention of the Creator, and the continuance of his
"
customary assistance. ") In vain did Leibniz, on another principle,

devise the same plan.
"

And he concludes,
" After so many great men have worked on this

matter, I hardly dare say that I have discovered the principle on which
all the laws of motion are founded ; a principle which applies equally
to hard bodies and elastic bodies; from which the motions of all corpo
real substances follow. . . . Our principle, more in conformity with the
ideas of things that we should have, leaves the world in its natural
need of the power of the Creator, and is a necessary result of the wisest
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doing of that same power. . . . What satisfaction for the human mind,
in contemplating these laws so beautiful and so simple that they

may be the only ones that the Creator and the Director of things has

established in matter in order to accomplish all the phenomena of the

visible world.
"

8. D'ALEMBERT'S CONDEMNATION OF FINAL CAUSES.

D'Alembert himself was not directly involved in the polemic on the

principle of least action that we shall describe in the next section. But
he did completely condemn the intervention of final causes in the prin

ciples of mechanics.

Indeed, he wrote,
1 " The laws of equilibrium and of motion are

necessary truths. A metaphysician would perhaps be satisfied to prove
this by saying that it was the wisdom of the Creator and the simplicity
of his intentions never to establish other laws of equilibrium and of

motion than those which follow from the very existence of bodies and

their mutual impenetrability. But we have considered it our duty to

abstain from this kind of argument, because it has seemed to us that

it is based on too vague a principle. The nature of the Supreme Being
is too well concealed for us to be able to know directly what is, or is

not, in conformity with his wisdom. 2 We can only discover the effect

of his wisdom by the observation of the laws of nature, since mathema
tical reasoning has made the simplicity of these laws evident to us, and

experiment has shown us their application and their scope.
" It seems to me that this consideration can be used to judge the

value of the demonstrations of the laws of motion which have been

given by several philosophers, in accordance with the principle of final

causes ; that is, according to the intentions that the Author of nature

might have formulated in establishing these laws. Such demonstra

tions cannot have as much force as those which are preceded and

supported by direct demonstrations, and which are deduced from prin

ciples that are more within our grasp. Otherwise, it often happens
that they lead us into error. It is because he followed this method,
and because he believed that it was the Creator's wisdom to conserve

the same quantity of motion in the Universe always, that Descartes

has been misled about the laws of impact.
3 Those who imitate him

1 Traite de Dynamique, Discours preliminaire, 1758 edition, p. 29.
2
Clearly an allusion to MAUPERTUIS.

3 The reader knows that DESCARTES' error is not, in fact, that of having asserted

the conservation of momentum, but of having considered m\v\ instead of mv.
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run the risk of being similarly deceived ;
or of giving as a principle,

something that is only true in certain circumstances ; or finally, of

regarding something which is only a mathematical consequence of cer

tain formulae as a fundamental law of nature.
"

9. THE POLEMIC ON THE PRINCIPLE OF LEAST ACTION.

In the Acta of Leipzig for 1751 Koenig, Professor at The Hague,

reproduced part of a letter which he aUeged had been written by Leibniz

to Herman in 1707, and which contained the following passage.

"Force is therefore as the product of the mass and the square of

the velocity, and the time plays no part, as the demonstration which

you use shows clearly. But action is in no way what you think. There

the consideration of the time enters as the product of the mass by the

distance and the velocity, or of the time by the living force. I have

pointed out that in the variations of motions, it usually becomes a

minimum or a maximum. From this can be deduced several important

propositions. It can be used to determine the curves described by
bodies that are attached to one or several centres. I wished to treat

these things in the second part of my Dynamics but I suppressed them,

because the hostile reception with which prejudice, from the first,

accorded them, disgusted me.
"

Maupertuis, for his part, represented the affair in the following way.
1

"
Koenig, Professor at The Hague, took it into his head to insert in

the proceedings of Leipzig a dissertation in which he had two ends in

view rather contradictory ones for such a zealous partisan of M. de

Leibniz, but which he found it possible to unite. . . . He attacked my
principle as strongly as possible. And, for those that he was unable to

persuade of its falsehood, he quoted a fragment of a letter from Leibniz

from which it could be inferred that the principle belonged to that one.
"

Summoned by Maupertuis to produce the letter, Koenig referred

him to " a man whose head has been cut off" (Henzi, of Berne). No
trace of this letter was found in spite of all the searches ordered by the

King at the request of the Academie. The matter became a very acri

monious one. " It was no longer a matter of reasons. M. Koenig and

his supporters only replied with abuse. Finally they resorted to libel. . . ."

At the time, Maupertuis presided over the Academy of Berlin on the

appointment of Frederic II. Koenig returned his diploma to the

Academy and published an Appeal to the public from the judgement

1 (Euvres completes, 1756 edition, Letter XI. Sur ce qui s'est passe d /'occasion

du principe de moindre action.
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that the Academy of Berlin had pronounced in this matter. In 1753

he emphasised this with a Defence of the Appeal to the public which he

addressed to Maupertuis and which he claimed not only the priority

of Leibniz, but also that of Malebranche, Wolf, s'Gravesande and Engel-
hardt.

Voltaire took part in the controversy. Maupertuis wrote,
1 " The

strangest thing was to see appear as an auxiliary in this dispute a man
who had no claim to take part. Not satisfied with deciding at random
on this matter which demanded much knowledge which he lacked he

took this opportunity to hurl the grossest insults at me, and was soon

to cap them with his Diatribe.2 I allowed this torrent of gall and filth

to run on, when I saw myself defended by the pen and the sceptre.

Although the most eloquent pen of all had uttered these libels, justice

made his work burn on the gibbets and in the public places of Berlin.
"

" My only fault,
"
declared Maupertuis,

" was that of having disco

vered a principle that created something of a sensation.
"

Euler,

director of the Academy of Berlin, presented the following report.
" This great geometer has not only established the principle more

firmly than I had done but his method, more ubiquitous and penetrating
than mine, has discovered consequences that I had not obtained. After

so many vested interests in the principle itself, he has shown, with

the same evidence, that I was the only one to whom the discovery could

be attributed.
"

1 Ibid.
2 La Diatribe du Dr Akdkia^ medecin du Pope, is too well known to need emphasis

here. We confine ourselves to the extraction of what is directly relevant to our subject.
At the beginning VOLTAIRE writes,

" We ask forgiveness of God for baving pretended
tbat tbere is only proof of bis existence in A -f- B divided by Z, etc. ..." This is both
a reference to the demonstration of the equilibrium of the lever by means of the principle
of least action and to MAUPERTUIS' rejection, in his Essai de Cosmologie, of metaphysical
proofs of the existence of God.

Then, in the guise of SL Decision of the professors of the College of Wisdom^ VOLTAIRE
makes, in spite of the malicious terms in which it is couched, an accurate criticism.
" The assertion that the product of the distance and the velocity is always a minimum
seems to us to be false, for this product is sometimes a maximum, as Leibniz believed

and as he has shown. It seems that the young author has only taken half of Leibniz's

idea ; and, in this, we vindicate him of ever having had an idea of Leibniz in its entirety."
And finally, concerning the part played by EULER, which MAUPERTUIS had not

thought of concealing, the same Decision declares,
" We say that the Copernicus's,

the Kepler's, the Leibniz's . . . are something, and that we have studied under the

Bernoulli's, and shall study again ; and that, finally, Professor Euler, who was very
anxious to serve us as a lieutenant, is a very great geometer who has supported our

principle with formulae which we have been quite unable to understand, but which
those who do understand have assured us they are full of genius, like the published
works of the professor referred to, our lieutenant. ..."

We must also add that MAUPERTUIS is caricatured in a consistently malicious way
in Microm6ga$, Candide, and in ISHomme aux quarante ecus.
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10. EULER'S JUDGEMENT ON THE CONTROVERSY ON LEAST ACTION.

Traces of Eider's opinion about the controversy on least action can
be found in a Dissertation on the principle of least action, with an exam
ination of the objections to this principle made by Professor Koenig. This

was printed at Berlin, in Latin and French, in 1753.

Euler discloses a great respect for Maupertuis, our "
illustrious

President.
" He pays homage to Maupertuis law of rest in the following

terms. This principle indicates " the marvellous accord of the equili
brium of bodies, whether rigid, flexible, elastic or fluid. From each

attraction can be deduced the Efficacy of each force, and there is equili
brium when the sum of all the efficacies is least.

"

Euler remarks,
" Professor Koenig places us under the twin obli

gation of proving that the principle of least action is true, and that it

does not belong to Leibniz.
"

To Koenig, all instances of equilibrium can be deduced successfully
from the principle of living forces.

The "
Koenigian principle

"
consists of " the annihilation of the

living force if there were no equilibrium.
"

It can be seen,
" more clearly than the day,

"
that where the applied

forces produce no living force, there is equilibrium. In short, in stating
the principle of the nullity of the living force Professor Koenig is

" con

cealing that which he found first,
6 that in the state of equilibrium there

is neither motion nor living force '.
" In this form, the principle of

Koenig may appear a truism but, to be accurate, his method proceeds
in the following way. First, the system is displaced from its equili
brium position and the living force calculated. Then this is cancelled
out and the conditions of equilibrium deduced. This method searches
the difficulty, for the calculation of motion is, in general, more difficult

than that of equilibrium. And Euler concludes,
"
Koenig's principle

usually leads to great circumlocutions and is, often, incapable of appli
cation.

"

To Koenig, action does not differ from living force. He considers
himself able to assert that " It is clearly seen that all equilibrium arises

from the nullity of the living force or from the nullity of the action,
taken correctly, and in no way from their Min. of Max. "

Euler

forthrightly condemned this thesis and, in passing, made the following
observation.

" Professor Koenig seems too attached to metaphysical speculations
to be able successfully to withdraw his mind from those subtle abstrac
tions and to apply it to the ordinary and material ideas such as those
which are the subject of mechanics.

"
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In the next section we shall study Euler's personal contribution to

the extremum principle in dynamics. In the document which concerns

us here, he only made the following allusion to this matter.
44 1 am not in any way concerned, here, with the observation which

I have made in the motion of the celestial bodies and, general, of those

attracted to fixed centres of force, that if the mass of the body is multi

plied by the distance travelled, at each instant, and by the velocity,
then the sum of all these products is always the least.

" To Euler, the

question is one of an a posteriori verification and not of an a priori
deduction.

Further, Euler acknowledged Maupertuis' priority in the principle
of least action. " Since this remark was only made after M. Maupertuis
had presented his principle, it should not imply any prejudice against
his originality.

"

11. EULER AND THE LAW OF THE EXTREMUM OF / mvds.

As early as 1744 Euler published a work called Methodus inveniendi

lineas curvas maximi minimive proprietate gaudentes (Bousquet, Lau

sanne). Here we are concerned with his Appendix II De motu

projectorum in medio non resistente per methodum maximorum ac mini-

moTum determinando.

Euler starts from the following principle.
" Since all the effects of

Nature obey some law of maximum or minimum, it cannot be denied

that the curves described by projectiles tinder the influence of some
forces will enjoy the same property of maximum or minimum. It

seems less easy to define, a priori, using metaphysical principles, what
this property is. But since, with the necessary application, it is possible
to determine these curves by the direct method, it may be decided which
is a maximum or a minimum. " x

Euler emphasised, in the Dissertation which we have analysed in 10,

that the matter was, to him, one of the a posteriori verification of the

existence of an extremum in particular examples of the dynamics of a

particle.

The quantity which Euler considered was, at first, Mds-\/~v. Here
M is the mass of the particle, ds the element of distance travelled and
v the height of fall. Since the velocity is

-\/~v.>
dt = ds : *\/~v9 and

J ds <\/ v = J vdt. The first integral refers to momenta and the second

to living forces. This duality enabled Euler to emphasise that he did

not offend the feelings of any party to the controversy on living forces.

1 Translated into French by JOUGUET.
18
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Euler verified that the integral J ds <\/~v
= J vdt is an extremum in

the parabolic motion of a particle subject to a central force. He then

generalised this result to a particle attracted by any number of fixed

centres.

Mach remarks in this connection,
u
Euler, a truly great man, lent

his reputation to the principle of least action and the glory of his inven

tion to Maupertuis ; but he made a new thing of the principle, practic
able and useful.

" One should observe, however, that Euler did not
condemn the doctrine of final causes as d'Alembert had done. On the

contrary, the true significance of an extremum principle should be, in

his opinion, sought in a sound metaphysics. Indeed, he concludes in

the following terms.

Since bodies, because of their inertia, resist all changes of state,

they will obey forces which act on them as little as possible ifthey are free.

Therefore, in the motion generated the effect produced by the forces will

be less than if the bodies were moved in some other way. The strength
of this argument may not be sufficiently clear. If, however, it is in accord
with the truth I have no doubt that a sounder metaphysics will enable
it to be demonstrated clearly. I leave this task to others, who make a

profession of metaphysics (quod negotium aliis, qui metaphysicam pro-
faentur, relinquo) .

"

12. FINAL REMARK.

To recapitulate, Fermat, in geometrical optics, stated the first mini
mum principle that was not trivial. He was not able to convince the
Cartesians although he eventually accepted a reduction of his principle
to the rank of a " small geometrical assistance

"
offered to Nature

without any pretension to dictate her doings.
No one accepted Format's conclusion, however plausible it might

have been, on the relative velocity of light in dense and rare media.

Maupertuis cannot be reproached for having shared the errors of his

time, reinforced as they were by the double authority of Descartes and
Newton.

By means of a very simple differential argument, Maupertuis succeed
ed in making both the newtonian law of propagation and that of refrac
tion amenable to an extremum law.

Was the development of his thought as was said at the time, of an

exclusively metaphysical kind ? Yes, if the explanation of his motives
with which he prefaced his analysis is considered on its own. I am
reluctant to suggest a more natural, but much more worldly, explana
tionthat Maupertuis had, in his presentation, reversed the order of
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the arguments ; that he first discovered the differential argument which

we have reproduced and then presented it, a posteriori, as the conse

quence of an economic principle which indicated both the power and

the wisdom of the creator.

If this had been the whole of Maupertuis' contribution, his name
would have fallen into oblivion, at least as far as the invention of prin

ciple is concerned. For in optics only Fermat's principle, which Mau

pertuis had set out to demolish, has survived.

Maupertuis' extension of the principle of least action to dynamics

appears rather gratuitous, for it rests on a fragile analogy yet it is

this principle which has survived and assured the fame of its author.

Certainly, as early as 1744, Eider gave the exact mathematical justifi

cation of the principle in the special but important case of the mechanics

of a particle. Following Euler's example, Lagrange stated the prin

ciple of the greatest or the least living force without Maupertuis. But
Euler himself was determined to leave the honour of having to disco

vered the principle of least action to Maupertuis ; and on this fact, he

knew the evidence.

The term u least
"

is only justifiable on the metaphysical plane,
where every maximum would be evidence of the imperfection of the

Creator's wisdom. Despite the criticism of Lagrange and, later, that

of Hamilton, the name has survived and even now it is encountered in

all the books.

In the domain of the laws of impact Maupertuis' contribution was
most constructive. His principle enabled him to encompass the cases

of elastic bodies and hard bodies which had previously appeared

separate, if not contradictory. A trace of this disjunction was still

apparent in Lagrange's work.



CHAPTER SIX

EULER AND THE MECHANICS OF SOLID BODIES

(1760)

In 1760 Euler published a Theoria motus corporum solidorum seu

rigidorum. This was eventually amended and added to by his son, in

a new edition which appeared in 1790.

The treatise starts with an introduction in which Euler confirms

the principles of his Mechanica (1736) .
x

In connection with the mechanics of solids, Euler states that he
will consider the characteristic property of a solid to be the conservation
of the mutual distances of its elements. For every solid he defines a cen

trum massae or centrum inertiae, remarking that the term " centre ofgrav
ity

"
implies the more restricted concept of a solid that is only heavy,

while the centre of mass of inertia is defined by means ofthe inertia alone

(per solam inertiam determinari) , the forces to which the solid is subject
being neglected. This apt comment has not prevailed against usage.

Euler also defines the moments of inertia a concept which Huyghens
lacked and which considerably simplifies the language and calculates

these moments for homogeneous bodies.

He systematically studies the motion of a solid body about a fixed

axis, the given forces being at first zero and then being equated to the

gravity alone. He demonstrates the existence of spontaneous or

permanent axes of rotation for a solid body and thus clarifies the notion
of the principle axes of inertia.

He then investigates the motion of a free solid by decomposing
it into the motion of the centre of inertia, and the motion of the solid

about the centre of inertia. Euler clearly distinguishes
1) the variation of the velocity of the centre of inertia I ;

2) the variation of the direction of the point I ;

3) the variation of the rotation of the solid about an axis passing
through I.

4) the variation of this axis of rotation.

1 See above, p. 239.
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We shall make this clear by an analysis of problems which Euler

himself treated.
" Problem 86. Being given a solid body actuated by a given angular

velocity about some axis passing through its centre of inertia, to find
the elementary forces which must act on the elements of the solid in order

that the axis of rotation and the angular velocity should undergo given
variations in the time dt." 1

Let I be the centre of inertia ; L4, IB, 1C the principal [or central]

axes of the solid ; a, ft, y the angles between the axis of rotation and
IA, IB, and 1C; co the angular velocity of rotation of the solid ; x, y, z

the coordinates of some element of the solid with respect to the principal
axes ; u, v 9 w the components of the velocity of this element along
the same axes ; X, Y, Z the unknown force applied to the particular
element considered, whose mass is dM.

The data of the problem are da, d/?, dy and doo and the unknowns,
X, Y, Z. According to the fundamental law of Euler's dynamics,

du, dv and dw are proportional to -r-r-r,
-rvji

and
-^-.

Therefore the

problem reduces to the calculation of du, dv and dw. Now

(u

= co (z cos ft y cos y) (dx = udt = a>dt (z cos
/? y cos y

v = co (x cos y z cos a) < dy = ----

w = CD (y cos a x cos
/?) (

dz = ----

A simple differentiation gives

du = dco (z cos ]8 y cos y) wzdfi sin /? + coydy sin y
+ co

2dt (y cos a cos
/3 + % cos a cos y x sin2 a)

dv = ...

dw= . . ,

and the unknown forces, X, Y, Z, applied to the element dM (x,y,z)
are deduced from the fundamental law.

In the next problem (No. 87) Eider calculates the moments P, (),

jR, with respect to the principal axes, of the forces applied in the con
ditions specified. By the definition of moments,

dP = (ydw - zdv) dQ = . . . dR = . . .

for the element dM.

1
Page 337 of the new latin edition of EULER'S -work, which we follow here.
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By summing over all the solid body, after replacing du, dv and

dw by their appropriate value, Euler finds

jP = (Adco cos a oAda. sin a -f- co
2
(C jB) at cos P cos y).

/T?\ J dt
(EMe=

>

(A, JB, C, central moments of inertia of the solid.)

Having obtained this result, Euler poses the following problem.
" Problem 88. If a solid body, turning about an axis passing

through its centre of inertia with angular velocity o>, is acted upon by some

forces, to find the variation of the axis of rotation and the angular velocity

at the end of a time dt.
*'

A linear combination of the equations (E) gives the result in the form

(C - B) (A - C) (B
- A)

da) = oral cos a cos p cos y
ABC

IP cos a Q cos
/5

JR cos y
4- at I -\ h

V A B C

But Euler discovered that the equations can be cast into a much
more simple form by introducing the components of the angular velocity
of instantaneous rotation about the central axes of inertia ; that is,

by introducing the quantities p = a) cos a, q a> cos {3 and r = co cos y.

Under these conditions a, /?
and y no longer appear in the equations

(E), which take the form

Q = B + (A - C) rp

Etder immediately saw the importance of these equations
" summa

totius Theoriae motus corporum rigidorum his tribus formulis satis

simplicibus continebitur.
"

Thus Euler's mathematical talent enabled him to discover the

equations which express the general motion of a solid body under
the influence of arbitrary forces by means of the decomposition of

this motion into the motion of the centre of inertia and the rotation

about the centre of inertia. An essential part of this process was
the consideration of the central axes of inertia that is, the con

sideration of a real moving reference frame fixed in the solid.



CHAPTER SEVEN

CLAIRAUT AND THE FUNDAMENTAL LAW OF HYDROSTATICS

1. CLAIRAUT'S PRINCIPLE OF THE DUCT.

Clairaut (1713-1765) was led to formulate the general law of the

equilibrium of a fluid mass by the contemporary investigations of

the figure of the Earth.1

Clairaut did not openly take sides in the conflict between the

doctrine of vortices and that of attraction. However, he remarked
that the Neo-Cartesians, while recognising part of the newtonian system,
assumed a priori, whatever the shape of the Earth might be, that

the gravity was inversely proportional to the square of the distance.

They then compounded this gravitational force with the centrifugal
force calculated for a given shape of the Earth. In the procedure
of the attraction, on the other hand, the law of gravity depended on
the shape of the Earth itself.

" The Newtonians must find a spheroid
such that a corpuscle, placed at an point on its surface and which
is subject to both the centrifugal force and the attractions of all the

parts of the spheroid, will take a direction perpendicular to that sur

face.
" 2

Huyghens assumed that the gravity must be normal at each point
of the surface of a fluid mass. Newton supposed the equality of the

weights of two liquid columns ending at the centre of mass. Bouguer
had the merit of observing, as early as 1734 3

, that these two hypotheses
were incompatible for certain laws of gravity. Whence the theme
of Clairaut's investigation

" To find the laws of hydrostatics which agree equally with all

kinds of hypotheses about gravity.
" 4

1 Theorie de la figure de la Terre tirie, des principes de Vhydrodynamique (Durand,
Paris, 1743).

2
J/oc. eft., p. xxj.

3
Comparaison des deux lois que la Terre et les autres Planetes doivent observer dans

la figure que la Pesanteur leur fait prendre, Mtimoires de FAcad&mie des Sciences, 1734.
4
CLAIRAUT, Joe. ct., p. xxxij.
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Clairaut states the following principle at the beginning of his paper.
"A mass of fluid cannot be in equilibrium unless the efforts of all

the parts which are contained in a duct of any shape, which is imagined
to traverse the whole mass, cancel each other out.

" l

N

He justifies this in the following way.
" Since the whole mass PEpe is supposed to be in equilibrium,

any part of the fluid could become solid without the remainder changing
its condition. Suppose that all the mass is solidified except for what
is necessary to form the duct ORS. The duct will therefore be in

equilibrium. Now this can only occur if the efforts of 01? to leave the

duct through S are equal to those of SR to leave through 0.
"

This principle includes Newton's hypothesis, as may be verified by
the consideration of a duct MCN passing through the centre C. It also

includes Huyghens' hypothesis it suffices, indeed, to consider a duct
FGD lying along the surface. This duct may be in equilibrium in

two ways the first, from the fact of Huyghens' hypothesis itself ;

the second, because of the fact that a part FG thrusting towards D
is compensated by a part GD thrusting towards F. But since the

length of the duct is arbitrary, a small piece FG should be in equilibrium
just as much as the whole duct, which excludes the preceding com
pensation. Therefore it is necessary to return to Huyghens' hypothesis.

But the most valuable form in which Clairaut stated his principle
is the following one.

1
CLAIRAUT, Joe. tit., p. 1.
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" In order that a mass offluid may be in equilibrium^ it is necessary

that the efforts of all the parts of the fluid which are contained in a duct

which is re-entrant upon itself should cancel each other out.
" a

This proposition can be justified immediately by solidifying all

the fluid except that in the duct IKLT. The efforts of the parts

IKL, ITL must be equivalent to each other,
" or else there would

be a perpetual current in the duct.
"

It can also be deduced from
the preceding proposition by the consideration of two ducts FIKLG
andFITLG.

Fig. 94

Clairaut then observes that in the consideration of two ducts ab^

a/?, which are filled with liquid and rotate about an axis Pp, the total

effort of the centrifugal force on the duct ab will be the same as that

1
CLAIRAUT, Joe. cit., p. 5.
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on the duct a/? if a and a, b and /5 are respectively at the same distance

from the axis. It follows that " when it is desired to investigate

whether a law of gravity is such that a mass of fluid turning about

an axis can preserve a constant shape, no purpose it served by paying
attention to the centrifugal force. That is, that if the mass of fluid

can have a constant shape when not rotating, it will also be able to

have one when rotating.
"

If a duct abed is considered in the mass, this must be in equilibrium
in order that the mass should have a constant shape. Now it is seen

that the sum of the effects of the centrifugal force on abed is nothing ;

for ab and cb will thrust on b to the same extent, just as ad and cd

will thrust equally on d . Therefore the rotation will not prevent the

equilibrium of a duct which is re-entrant upon itself. Accordingly,
"

if the duct is in equilibrium when only gravity alone is considered,
it will still be in equilibrium if it is supposed that, instead of gravity,
the actual weight, composed of gravity and the centrifugal force, is

considered.
"

2. THE CONDITION TO BE SATISFIED BY THE LAW OF GRAVITY TO ASSURE
THE CONSERVATION OF THE SHAPE OF A ROTATING FLUID MASS.

Clairaut supposes that gravity has two components, P and Q,
which are parallel to the axes CP and CE. He considers an arbitrary
duct ON which ends on the surface, and an element of this duct, Ss 9

which has Sr = dx and sr = dy.
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The force Q acts along SH. The projection of Q on the direction

rs
of the duct has the value Q ^. By multiplying by the mass of the

oS

element, it is found that " the effort which the force Q will cause

the cylinder to exert on the point 0" has the value Qdy. Similarly,

the force P gives the effort Pdx. Whence the total effort of gravity is

N

It is necessary that the sum of the efforts of gravity on any duct

ON should have the same value as if any other duct passing through
the points 0, N had been taken. " The equilibrium of the fluid requires
that the weight of ON does not depend on the curvature of OSN or,

that is, on the value ofy as a function of x. Therefore it is necessary
that Pdx + Qdy can be integrated without knowing the value of x ;

that is, it is necessary that Pdx -f- Qdy should be a complete differential,

or that

. -r= LJL. 1

dy dx

3. CONDITION FOR THE EQUILIBRIUM OF A FLUID MASS.

Clairaut set himself [the following problem.
2 "

Supposing that

the force which actuates the particles of a fluid had been decomposed
into three others, of which the first acts perpendicularly to the plane

1 CLAIRAUT gave this last condition in the Memoires de I*Academic des Sciences
for 1740, p. 294.

2 CLAIRAUT, loc. cit., p. 96.
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QAP and the second and third along two perpendicular directions,

QA and AP, in the plane QAP, it is required to find the relation there

must be between these three forces in order that the equilibrium of

the fluid may be possible.
"

Fig. 97

If P, Q and R are the components of the force parallel to AP,

AQ and AR, and Nr9 rs and $n are represented by dx, dy and dz, then

an argument quite analogous to that of the preceding gives the

condition

Pdx _j_ Qfy -|_ Rdz = complete differential

or

'By Hz
__

3z~~ dy*

Apart from this, Clairaut also defines the lines and surfaces of

intensity of gravity. He verifies that a fluid mass that is imagined
to be divided into an infinite number of layers which are defined by
the surfaces of intensity, will be in equilibrium if, at each point of one

of the surfaces, the weight is inversely proportional to the thickness

of the layer.

This remarkable analysis, which can be regarded as the introduction

of the concept of potential, enabled Clairaut to make an important
contribution to the theory of the figure of the Earth. Newton had

assumed, a priori, the shape of an elliptic spheroid. He considered

two columns one connecting the centre to a Pole and the other, the

centre to the Equator and equated the difference in their weight to

the sum of the centrifugal force on the different portions of the Equitorial
229

column. The ratio of the axes obtained in this way was TTTTT:-

The Neo-Cartesians, on their side, announced the ratio
"r^r.
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As early as 1737 Clairaut was able to show that the elliptic spheroid
was an equilibrium figure.

230
Newton's value or that of MacLaurin ;rry supposed the Earth

to be homogeneous. This value was disproved by experiments made
in Lapland by an expedition sent at the command of the King. This

expedition consisted of four members of the Academic des Sciences

Clairaut, Camus, Le Mourner and Maupertuis who were joined by
two others Celsius and the Abbe Outhier. It embarked at Dunkirk

on May 2nd, 1736.1

The relative magnitudes of degrees of meridian obtained in this way

indicated a flattening about ^-r, less than that which Newton had

announced. It was therefore necessary to give up the hypothesis
of the homogeneity of the Earth. If the Earth were formed of similar

layers, it shape would not conform to the fundamental law of hydro
statics. And Clairaut decided on the existence of layers which were

flatter as they were further from the centre, the flattening following a

law that depended on the decrease of the density between the centre

and the surface.

^ l For the account of this mission, see MAUPERTUIS' Discours lit dans VAssembtie

publique de VAcademic Royale des Sciences sur la mesure de la Terre au Cercle polaire

(CEuvres completes, Vol. Ill, 1756, p. 89).



CHAPTER EIGHT

DANIEL BERNOULLI'S HYDRODYNAMICS

D'ALEMBERT AND THE RESISTANCE OF FLUIDS

EULER'S HYDRODYNAMICAL EQUATIONS
BORDA AND THE LOSSES OF KINETIC ENERGY IN FLUIDS

1. RETURN TO THE HYDRODYNAMICS OF THE xviith CENTURY.

We have already described the attempts of Newton and Varignon
to explain the law which Torricelli had formulated. We must now
return to the work of Mariotte, who emerges as the forerunner of the

important XVIIIth Century school of hydrodynamics.
As early as 1668 a Committee of the Academic des Sciences was

formed and instructed to verify TorriceUi's law experimentally. The
Committee's members were Huyghens, Picard, Mariotte and Cassini.

It extended its investigations to the determination of the effect of

the impact of a fluid stream on a plane surface.

Influenced by these investigations, Mariotte published, in 1684,
the Traite du mouvement des eaux in which he carried the subject further.

He verified Torricelli's law without observing the contraction of the

stream. Newton corrected this error in the second edition of the

Principia.
In the matter of the impact of a fluid stream on a surface, Mariotte

had the merit of demonstrating the importance of the deviation from
the momentum of the fluid. But he compared this problem with
the action of a fluid current on a completely immersed solid, thus

disregarding the reconstitution of the stream-lines behind the obstacle.

Mariotte was also the first to introduce considerations of similitude

in the resistance of fluids, and the first after Huyghens to state that the

resistance of a fluid was proportional to the square of the velocity.

Finally, Mariotte turned his attention to hydraulics, and studied

the velocity of flow in rivers or canals, and the friction of water in

pipes.
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2. DANIEL BERNOULLI'S HYDRODYNAMICS.

The beginning of the XVIIIth Century was a period of extraordinary

development for both theoretical and applied hydrodynamics. In the

compass of the present history limited to a study of the evolution

of the principles of dynamics it would be impossible to analyse the

complex development of the mechanics of fluids in any detail. This

investigation rapidly became an independent branch of science, both

theoretical and experimental.

However, we consider it valuable to deal with a few typical achie

vements of the XVIIIth Century in this field.

In 1738 Daniel Bernoulli published Hydrodynamica, sive de viribus

et motibus fluidorum commentarii. This was a most remarkable work
which has only aged a little in the last two centuries.

In D, Bernoulli's sense, the term hydrodynamica includes hydro
statics the science of equilibrium and hydraulics the science of

fluid motion. " My theory is novel,
" he declared,

** because it considers

both the pressure and the motion of fluids. It might be called hydraulico-
stattica.

"

D. Bernoulli's guiding principle was that of the conservation of

livingforces or, more accurately, that of the equality between the actual

descent and the potential ascent (aequalitas inter descensum actualem

ascensumque potentialem) .

As the controversy on living forces was then at its height,
D. Bernoulli took certain precautions in this respect. Quite legiti

mately, he emphasised that the doctrine of Leibniz stemmed, in fact,

from a principle that Huyghens had formulated. (No body freely

can rise to a height greater than that from which it has fallen.)
*

Moreover inelastic impact, which entails a loss of kinetic energy,
has its analogy in hydrodynamics, where it appears as a reduction

of the ascensus potentialis. D. Bernoulli excluded this occurrence from

the theory, adding that this was a reason for applying the theory
with care.

Apart from the hypothesis of the conservation of living forces,

D. Bernoulli also assumed that all the particles of a slice of fluid which

was perpendicular to the direction of motion moved with the same

velocity, which was inversely proportional to the cross-section of the

slice. Further, he only studied stationary states (fingenda est unifor-

mitas in motu aquarum).
We shall give a concrete example of one of the numerous problems

which D. Bernoulli solved.

1 See above, p. 187.
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"Let there be a vessel of very large cross-section, ACEB, which is

kept full of fluid, and let it be pierced with a horizontal cylindrical tube

ED. At the end of the tube is an orifice through which the fluid escapes

with constant velocity. It is required to find the pressure exerted on the

walls of ED.

B

Fig. 98

a c r
I I

6 b d D

" Let a be the height of the surface AB above the orifice o. When
the steady state is established (siprimafluxus momenta excipias) the velo

city with which the water leaves through o is constant and equal to -y/ a,

since we suppose that the vessel remains full. If n is the ratio of the

section of the tube to that of the orifice, the velocity of the water in
/

the tube will be . If the whole end FD were missing the velocity
71

of the water in the tube would be \/a, which is greater than

Therefore the water in the tube strives towards a greater motion,
71

to which the end FD presents an obstacle. From this there results an

over-pressure which is transmitted to the boundary walls. The press
ure on the boundary walls is thus proportional to the acceleration

which the fluid would take if the obstacle were instantaneously taken

away and the fluid were allowed to escape into the atmosphere.
" All this happens as if, during the escape through the orifice

o, the tube FD were suddenly broken off at cd and the acceleration

of the small portion of fluid abed were sought. . . . Thus we must
consider the vesselABEcdC and, with its help, try to find the acceleration

A/ ^
which the particle, of velocity , takes on escaping.
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** Let v be the variable velocity of the water in the tube Ed ; n be

the cross-section of the tube ; c its length, equal to EC ; and let dx be

the length ac. A portion of the fluid enters the tube at E at the same

time that abed escapes from it. The portion at E, whose mass is ndx,

acquires the velocity v or the living force nv2
dx, which is generated

suddenly. Indeed, since the section of the vessel Ae is infinite, the

portion of the liquid at E does not have any velocity before entering
the tube. To the living force nvzdx will be added the increase of the

living force which the water receives in Eb when the portion ad escapes

say 2ncvdv. These two quantities together are due to the real descent

of the portion of the fluid from the height BE, or a. Therefore

2ncvdv = nadx

or

vdv a

dx 2c

"
Throughout the motion the increase dv of the velocity is propor

tional to the pressure produced in the time . Therefore the press

ure which is exerted on the portion ad is proportional to the quantity
dv , . a t;

2

v ; that is, to
dx

' ---- '

2c

At the instant when the tube is broken, v = or v2 = -.

n n2

71
~ - 1i

This expression is to be substituted in --
, which becomes a^

2c
" And it is this quantity which is proportional to the pressure of the

water on the portion ac of the tube, whatever the section of the tube

may be and whatever the orifice in the end might be. ...
" If the orifice is infinitely small, or n is infinitely large compared

with unity, it is clear that the water exerts the whole pressure cor

responding to the height a. This pressure we call a. But, then, unity
is vanishingly small compared with n2 and the quantity to which the

pressure is proportional has the value . . . . If the quantity -

c >c

corresponds to the pressure a, the pressure corresponding to the quantity
n2_ i n2_ i

a-- will be a--
, which is independent of c, Q.E.D.

"

2n2c JIT

There is no need to quote further from among the demonstrations

which D. Bernoulli developed in a similar way. They are remarkable

for their ingenuity and all start from the single hypothesis which we have
19
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recorded. We notice that in the same treatise D. Bernoulli enunciated

the theorem with which hisname is still associated, and which appears, in a

different form, in all the classical treatises on hydrodynamics. D. Bernoulli

also treated the impact of a fluid stream on a plane in a way which
was superior to that used hy Mariotte. He showed that this problem
was distinct from the one which concerns the effect of a fluid current on a

completely immersed solid. Together with the theoretical solutions

of the problems which he treated, D. Bernoulli recorded much experi
mental material in support of his demonstrations.

We also remark, without being able to devote a discussion to it,

the fact that MacLaurin (in his Treatise on Fluxions) and Jean Bernoulli

(in his Nouvette hydraulique) had sought to dispense with the assumption
of the conservation of living forces which D. Bernoulli had made.

But, in the words of Lagrange,
" MacLaurin's theory is not very

rigorous and seems to be contrived in advance to agree with the results

that he wished to obtain.
" As for that of Jean Bernoulli, it leaves

much to be desired in clarity and accuracy and, in d'Alembert's opinion,
"

its general principle is deduced so easily from that of the conservation
of living forces that it appears to be nothing else than that same prin

ciple presented in another form ; and again, Jean Bernoulli seeks to

confirm his method by means of indirect solutions supported by the

laws of the conservation of living forces.
"

3. D'ALEMBERT AND THE MOTION OF FLUIDS.

D'Alembert's contribution to the theory of fluids was both extensive
and important. In the confines of this history we must restrict our
selves to the indication of the principles of this work, and to the citation

of some typical examples.

Generally speaking d'Alembert remained faithful, in his treatment
of the mechanics of fluids, to the Discours Preliminaire of his Traite
de Dynamique. Nevertheless he did not carry into this field the convic
tion that science could be of a purely rational origin.

He wrote,
" The mechanics of solid bodies depends only on meta

physical principles which are independent of experiment. Those

principles which must be used as the foundation for others can be
determined exactly. The foundation of the theory of fluids, on the
other hand, must be experiment, from which we receive only a very
little enlightenment.

"

After having devoted long and laborious efforts to an attempt
at elucidating the motion and resistance of fluids, d'Alembert remained
optimistic about the future of this theory.

" When I speak of the



HYDRODYNAMICS 291

limitations by which the theory must be prescribed,
" he wrote,

"
I

only contemplate the theory with such assistance as it can now obtain,

and not the theory as it may be in the future, aided by what is yet
to be discovered. For, in whatever subject one might be, one should

not be too ready to erect a wall of separation between nature and the

human mind. " 1

However, d'Alembert did not conceal the great difficulties that arose

in the translation of such complicated phenomena as those of the

motion and the resistance of fluids into a rational language. In this

period of enlightenment, when all men, including d'Alembert, were

willing to trust perhaps too readily in the universal validity of

science, he made the reservation " not to exalt the algebraic formulae

into physical truths or propositions too readily. . . . Perhaps the spirit

of calculation which has displaced the spirit of system rules, in its

turn, a little too strongly. For in each century there is a dominant

style of philosophy. This style almost always entails some prejudice,
and the best philosophy is the one which has least of this consequence.

" 2

In 1744, one year after the publication of his Traite de Dynamique,
d'Alembert wrote a Traite de FEquilibre et du Mouvement des Fluides.

In it he refused to start from the principle of the conservation of living

forces, as Daniel Bernoulli had done in his Hydrodynamica. For this

principle, as we know from the discussion in the Discours Preliminaire,

d'Alembert regarded as not being sufficiently well-established to be

used at the basis of hydrodynamics.
" One of the greatest advantages

that follow from our theory is that of being able to show that the well-

known law of mechanics called the conservation of living forces is as

appropriate in the motion of fluids as in that of solid bodies.
"

D'Alembert, a keen critic of his predecessors, reproached Daniel

Bernoulli for not having brought forward, in Volume II of the Memoires

de Petersbourg (1727),
" other evidence for the conservation of living

forces in the fluids than that a fluid could be regarded as aggregate
of fluid particles which press on each other, and that the conservation

of living forces is generally accepted to be applicable to the impact
of a system of bodies of this kind. . , . Therefore it seemed to me
that it is necessary to prove, more clearly and exactly, the question of

whether the principle is applicable to fluids. I had tried to demonstrate

this, in a few words at the end of my Traite de Dynamique.* Here will

be found a more detailed and more extended proof.
" 4

1 Essai d'une nouvelle thforie de la resistance des fluides (David, Paris, 1752),

p. xxxiv.
2
Ibid., p. xlj.

3 Traite de Dynamique (1758 ed.), p. 269.
4 Trait^ de VEquilibre et du Mouvement des Fluides (1744), Preface.
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At the beginning of the Traite des Fluides d'AIembert explicitly
stated the hypothesis of flow by parallel slices of fluid, whose parallelism
was conserved throughout the motion. Moreover, he assumed that

all the points of the same slice had the same velocity. Necessarily
this hypothesis restricted the generality of his analysis.

Given these hypotheses, d'AIembert extended to fluids the principle
that he had used as a basis for his dynamics.

" In general, let the velocities of the different slices of the fluid,

at the same instant, be represented by the variable v. Imagine that

dv is the increment of the velocity in the next instant, the quantities dv

being different for the different slices, positive for some and negative
for others. Or, briefly, imagine that v + dv expresses the velocity
of each layer when it takes the place of that which is immediately
below. I say that if each layer is supposed to tend to move with

an infinitely small velocity + dv, the fluid will remain in equilibrium.
" For since v = v + dv + dv, and the velocity of each slice is

supposed not to change in direction, each layer can be regarded, at

the instant that v changes to v +. dv, as if it had both the velocity
v + dv and the velocity + dv. Now, since it only retains the first

of these velocities, it follows that the velocity + dv must be such

that it does not affect the first and is reduced to nothing. Therefore

if each slice were actuated by the velocity + dv the fluid would remain
at rest.

" 1

D'AIembert accompanied this theorem with the following
observation.

" If it is supposed that the particles of the fluid are subject to an

accelerating force 9?, different for each slice if so desired, then it is

clear that at the end of the instant dt the velocity v will be v + cpdt

if the slices do not interact in any way. Therefore, if at the end of

the instant dt the velocity v becomes v If dv because of the interaction

of the slices, it would be necessary to suppose that

v + cpdt
= v + dv + (pdt + dv

and it is clear that the fluid would remain in equilibrium if only the
slice were actuated with the velocity <pdt + dv.

" 2

Starting from this principle, d'AIembert went back to the problems
which had been studied by Daniel Bernoulli and treated them anew.
We shall pause on a single example, the first and the most simple
which d'AIembert treated.

The question is that of the flow in parallel slices of a fluid which

1 Traite de rEquilibre et du Mouvement des Fluides (1744), p.70.
2
Ibid., p. 71.
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is supposed incompressible in a vessel of any shape. The licpiid is

homogeneous, has no weight, and is set in motion by an unspecified

means ; for example, by the impulsion of a piston.

Let u be the velocity of the layer GH. That of the layer CD will

,
uGH

beW
Ify is the width, and x the side, of one of the slices, then it is possible

to write ydx = constant.

B

b

Fig. 99

Between the instant t and the instant t + dt the fluid moves from

the position CDLP to the position cdlp. If v is the variable which

represents the velocity of a slice in the position CDLP and if v dv is

(algebraically) the value of the same variable at cdlp? the fluid will

remain in equilibrium if each slice tends to move with the velocity dv.

D'Alembert expresses this by

J dvdx =
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or f ydx dv n

uGH
But v = . Therefore

y
f ydx*vdv _
J ~H~ = *

Now " GH is constant as well as , with respect to the variables

v and dv " and ydx is constant. It follows therefore that

f yfa.V* = fydx-v*.

Here V is the velocity of each slice in the instant which follows that

at which its velocity is v.

"
Therefore it is seen that the principle of conservation of living forces

also applies to fluids.
"

To (TAlembert however, this principle was a corollary which had

to be verified in each instance. And indeed, he was not surprised
to retrieve, by means of his principle, the solutions of the problems
which had been treated by D. Bernoulli. In this connection, d'Alembert

makes the following observation in the preface to his Traite des Fluides.
" And indeed I am forced to confess that the results of my solutions

always agree with those of M. Daniel Bernoulli. Nevertheless it is

necessary to except a small number of these problems. These are

problems in which that skilful geometer used the principle of the conser

vation of living forces to determine the motion of a fluid in which

there is a portion whose velocity increases suddenly by a finite quantity.

Such, for example, is the problem in which the question is to find the

velocity of a fluid leaving a vessel which is kept filled to the same

height. It is supposed that the small sheet of fluid which is added
at each instant receives its motion from the fluid below, by which it

is drawn along. It is clear that in a similar hypothesis this sheet

of fluid, which had no velocity at the instant that is was added to

the surface, in the next instant receives a finite velocity equal to that

of the surface which draws it along. Now, without wishing to ask

whether or not this hypothesis is in conformity with nature, it is certain

that the principle of living forces should not be used to investigate
the motion of any system when it is supposed that there is some body
in this system whose velocity varies in an instant by a finite quantity.

"

The Traite des Fluides also contains an attempt to investigate
the resistance of fluids. D'Alembert used rather a flimsy mechanical

model, analogous to that which he had reproached Daniel Bernoulli

for using, in order to substantiate the conservation of living forces.
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" First I determined the motion that a solid body must communicate

to an infinity of small balls with which it was supposed to be covered.

Then I showed that the motion lost by this body in a given time was
the same whether it collided with a certain number of balls at once,

or whether it merely collided with them in succession. Further,

I showed that the resistance would be the same when the corpuscles
had some other shape than the spherical one, and when they were

arranged in any manner that might be desired, provided that the total

mass of these small bodies which was contained in a given space remained

the same. By this means I arrived at the general formulae for the

resistance, in which there only appeared the relationships of the den

sities of the fluid and the body moving in it.
" x

Finally, d'Alembert devoted a chapter to "
fluids that move in

vortices and to the motion of bodies which are immersed in them. "

He did not make this study to bolster up
" a cause as desperate as that

of Descartes' vortices,
" but because the subject seemed in itself to

be " rather curious, independently of any application to the case of

planets that one might desire to make. "

4. D'ALEMBERT AND THE RESISTANCE or FLUIDS His PARADOX.

The Essai d'une nouvelle theorie de la resistance des fluides (Paris,

David, 1752) has its origin in d'Alembert's participation in the competi
tion held by the Academy of Berlin in 1750. The subject chosen

concerned the theory of the resistance of fluids. The prize was not

awarded, the Academy having required the authors to give proof
of the agreement of their calculations with experiment by means of

a supplement to their work.

D'Alembert, who had competed, seems to have become rather

bitter at this decision, for the observations available at that time

were often contradictory and the theory was sufficiently difficult

to require a worker's undivided attention. His Essai is, apart from

some details, his contribution to the Berlin competition.
In his Essai d'Alembert obtains, at least for plane motions, the

general equations of the motion of fluids.2 However, his analysis

is so long and tortuous that we cannot attempt to summarise it. In

this achievement d'Alembert preceded Euler by some years but

he did not succeed in presenting the equations of hydrodynamics in

the " direct and luminous " 3 way that Euler was able to discover.

1 Traite de Vquilibre et du Mouvement des Fluides, Preface.
2 See also Opuscules mathematiques by d'ALEMBERT, especially Vol. VI, p. 379

(1778 ed.).
8 LAGRANGE, Mecanique analytique. Part II, Section X.
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Faithful to his principles, cPAlembert reduced the search for the resis

tance to the laws of equilibrium between the fluid and the body. The

resistance was given by the momentum lost by the fluid.

Rather than attempt to analyse the difficult Essai sur la resistance

des fluides? we consider it more valuable to reproduce a portion of the

work in which d'Alembert, guided, it seems, by his logical insight

alone, discovers the hydrodynamical paradox with which his name
is still associated.

" Paradoxe propose aux geometres sur la resistance des fluides.
1

66

Suppose that a body is composed of four equal and similar parts

and placed in an indefinite fluid contained in a rectilinear vessel.

"
Imagine that the body is fixed and immoveable, and that the

parts of the fluid all receive an equal impulsion parallel to the sides

of the vessel and the axis of the body. It is clear that the parts of

the fluid at the front of the body must be deflected and must slide

along the body, thus describing curves which are more like straight

lines as they are further from the body ; this up to a certain distance,

which will be at least that of the boundary walls of the vessel, where

the parts of the fluid will move in straight lines.

" If the solid is not terminated in a very sharp point, in such a

dy
way that the derivative -f- may be either finite or infinite at the

dx

origin, there will be or there may be a small portion of the liquid which

is stagnant at the front of the body.
2 But in order to avoid this diffi-

1
Opuscules mathematiques. Vol. V, p. 132.

2 We reproduce here the diagram used by d'ALEM-
BERT. The "

stagnant part,
"
which, in d'ALEMBERx's

opinion, -will exist in general, is referred to in the Essai
sur la resistance des fluides, in the following terms

" All moving bodies which change direction only do
so by imperceptible degrees. The particles which move
along TF do not travel as far as A because of the right

angle TA& they leave TF at F, for example. There
fore, in front of and behind the solid, there are spaces
in which the fluid is necessarily stagnant.

"

Fig. 100
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c?v

culty, I suppose that
-j-
= at the origin, so that the point of the body

u/x

is infinitely sharp. Then there will no longer be stagnant fluid, and
the fluid will run along the forward surface as far as the point at which

dy again becomes parallel to the axis.
44 With regard to the backward part, it seems at first sight that

the motion must be different from that at the forward part. For at

the forward part the fluid is not free to follow its original direction,

while it is so free at the backward part. However, for the moment

suppose that the particles of the fluid do have the same motion at

this backward part as at the front. It is easily discovered, by our theory
of the motion of fluids, that under this supposition the laws of the

equilibrium and the incompressibility of the fluid will be fully satisfied.

For since the back is similar to the front (hyp.), it is easy to see that

the same values of p and q
I that will yield the equilibrium and the

incompressibility of the forward part will yield the same results for

the backward part. Therefore there is nothing but justification for

the supposition concerned. Therefore the fluid can move in this

way at the back. Now if it can, it must. For there is only one possible

way in which the fluid can be moved by the body.
" In this condition, the fluid will exert a pressure on the body,

though this pressure will not have the effect of separating the body
from its position because the body is immoveable and fixed at rest

in the middle of the fluid (hyp.). Let u be the velocity imparted
to the fluid. The pressure, if it exists at the first instant, will be

exerted on the front of the body and will be &u, where k is a quantity
which depends on the shape of the body.

44 Let uq be the velocity of the fluid parallel to the axis and let up
be the velocity of the fluid perpendicular to the axis. Since it is

supposed that, at the first instant, with velocity u parallel to the axis

and that it changes this velocity into the velocities uq and wp, the

fluid will exert a pressure on the body which will be the same as if

the fluid were at rest and the body were moved with velocities u uq
and uup. Now because of the velocity w, the pressure exerted will

be, by the principles of hydrostatics, equal to Mu and in the opposite
direction to u, if M is the mass of the body. And because of the

velocities uq and up, the pressure exerted will be in a direction

opposite to that of Mu and will be equal to 4u / dy J ds \/(p* + g
2
)-

It is easy to see this by supposing that / ds *\/(p
2 + q

2
)

and

J dy J ds \/(p* + q
2
)
= at the point at which dy = and which

1
Quantities proportional to the components of the velocity in d'ALBMBERT's

theory.
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is not the summit of the body that is, at the point at which the tangent
is parallel to the axis. For it is clear that, since dy = (hyp.) for

x = and the body is composed of four equal and similar parts, there

must be a point on each side of the axis, and in the centre of the axis,

where dy = 0. Therefore, if it is supposed that
J" dy J ds \/(p

2
-f- g

2
)= J?, in its totality, then k = 4R M.

" In the following instants parts of the fluid evidently retain the

velocities uq and up, from which it is easy to see, by means of our

theory on the resistance, that the pressure of the fluid on the body
will be absolutely nothing. For the pressure on the forward surface

is equal and opposite to the pressure on the backward surface.
*4 And if it were supposed that a force y, constant or variable from

one instant to another but always the same for all parts of the fluid

at the same instant, acted on all these parts, they would nevertheless

continue to describe the same lines with a velocity that would be

increased in the ratio of ydz to u. And from this it would only result

that a new pressure equal to ky was exerted on the surface of the body.
"
Suppose now that the fluid is at rest and the body is moved

along in it with the velocity v, of which it only retains a part u. Give
the whole system fluid and body a motion u in the opposite direction.

The body will be at rest in fixed space. In front there will be the force

M (v u), while the fluid will exert a pressure ku on the body. The
latter will nullify the former.

" Therefore

7 / \ n/r Mv Mv
ku = (v u) M u =

k + M 4B

" Now suppose that the body continues to move in the fluid with
a velocity which decreases by an amount ydt at each instant so that
du = ydt. Also suppose that the system of body and fluid moves
on the opposite direction with this decreasing velocity. It is apparent
that the body will be at rest and that the pressure at each instant

will be ky, or kdu, which must counterbalance Mdu. Therefore

Mdu = du (4H M) or Mdu == 2Rdu.

" Therefore either du == or 2R = M.
" If du = 0, the body will move uniformly and it will be true

Mv
that u = .

" If 2R = M, then u = - and the quantity du remains indeter

minate. It could be supposed to be zero, and even must be supposed to
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be zero, since there is no other equation to determine it than Mdu= 2Rdu.
" Thus the greatest alteration that could occur in the original mo

tion of the body is that the velocity v which is supposed to have been

impressed on it should be changed to - in the first instant, and after

this the body will move without suffering any resistance due to the fluid._
" If the shape of the body is such that J dy J ds \/(p* + q*)

= R=
then u = v. Whence Mdu= du (4J? M) = and therefore the body
will not lose any velocity in the first instant. This seems also borne

out by experiment.
46 I do not ask whether the quantities p and q which are obtained

by the theory are such that 4>R = M for any shape of the body it

appears rather doubtful that this should be so. Neither do I ask

whether 4J? could be greater than M for some shapes and less than M
for others. These conditions would imply u < v (contrary to exper

iment) and u > v (contrary to common sense). Therefore we will

have du = and, from our theory, it will follow that the body, supposed
to be of four equal and similar parts, will suffer no resistance from

the fluid.

" And whatever relation there is supposed to be between 4.R and M,
it is apparent that the velocity v will, at the most, only experience
an alteration in the first instant, and that it will then remain uniform.

This would be much worse if 4sR < M for then the initial velocity
would first increase and afterwards remain uniform.

" I must therefore confess that I do not know how the resistance of

fluids can be explained by the theory in a satisfactory way. On
the contrary, it seems to me that this theory, handled with all possible

rigour, yields a resistance which is absolutely nothing in at least several

situations. I bequeath this strange paradox to the geometers, that

they may explain it.
"

5. EULER AND THE EQUILIBRIUM OF FLUIDS.

In a paper given to the Academy of Berlin in 1755,
1 Euler directed

his attention to the equilibrium of fluids.

He considered a fluid, either compressible or not, which was subjected
to any given forces.

" The generality that I include ," he declared,
" instead of dazzling us, will rather discover the true laws of Nature

1
Principes gneraux de Fetat tfequilibre des fluides, Memoires de VAcademic de

Berlin, 1755, p. 217.
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in all their splendour, and there will be found yet stronger reasons

for wondering at their beauty and simplicity.
"

The general problem which Euler poses is the following one.
" The forces which act on all the elements of the fluid being given,

together with the relation which exists at each point between the density
and the elasticity of the fluid, to find the pressures that there must be, at all

points of the fluid mass, in order that it may remain in equilibrium.
"

In the fluid mass Euler considers an elementary rectangular parallel-

ipiped with one corner at the point Z, of coordinates x, y, z and with
sides dx, dy and dz.

The components of the " accelerative force
"
applied to each element

are called P, Q and R, and q is the density of fluid at Z.

Then the element of volume dxdydz is subject to the " motive
force

" whose components are

Pqdxdydz Qqdxdydz Rqdxdydz.

If p is the unknown pressure at the point Z, then

dp = Ldx + Mdy + Ndz.

By a very simple geometrical argument which has become class

ical Euler deduces the general conditions of equilibrium

L = Pq M = Qp N = Rq.

If L, M and N are the partial derivatives of a function p (x, y, z),

equilibrium requires the conditions

d (Pq) = d (Qq) d_(Qq^^d^q) d (Rq) = d (Pq)

dy dx dz dy dx dz

Ifp is a given function of q at each point of the fluid, the relation

dp = q (Pdx + Qdy + Rdz)

shows that Pdx + Qdy + Rdz is the total differential of the func-

. dp
tion .

q
This differential represents the "

effort
"

or the "
efficacy

" of
the given force this was a notion which Euler used in the case of
central forces.

In a second paper, which will be discussed in the next , Euler
deduced a general conclusion from the equation of equilibrium

^ = Pdx + Qdy + Rdz.
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** The forces P, (), R must be such that the differential form Pdx -f

Qdy + Rdz either becomes integrable when the density q is constant

or uniquely dependent on the elasticity p, or becomes integrable when

multiplied by some function.
"

Euler did not refer to Clairaut in this connection. Although he
had the merit of introducing the pressure and relating it to the acceler-

ative force at each point it must be observed, with Lagrange, that

Euler's achievement was that of applying, by generalising it, the

principle of Clairaut.

6. EULER AND THE GENERAL EQUATIONS OF HYDRODYNAMICS.

We now come to a fundamental paper of Euler on the equations
of hydrodynamics.

1 So perfect is this paper that not a line has aged.
In assuming this difficult task, Euler declared,

" I hope to emerge
successful at the end, so that if difficulties remain they will not be
in the field of mechanics, but entirely in the field of analysis.

"

Euler considers a fluid which is compressible or incompressible,

homogeneous or inhomogeneous. Its original state that is, the arrange
ment of the particles and their velocities is supposed known at a given
instant, as are the external forces acting on the fluid.

It is necessary to determine, at all times, the pressure at each

point of the fluid together with the density and the velocity of the

element passing through that point.
In order to study the present state of the fluid, Euler uses the com

ponents of the accelerative force, P, Q, R which are known functions

of #, y, z and Z.
2

The density q, the pressure p, and the components u, v
9 w of the

velocity of the element of the fluid which is at the point Z at the time *

are unknown.

During the time dt the element of fluid at Z will be carried to the

point Z', whose coordinates will be

x + udt y + vdt z

The element of fluid at 2, of coordinates

x + dx y + dy z + dz

1
Principes g$n$raux du mouvement des fluides, Memoires de VAcademie de Berlin,

1755, p. 274.
2 EULER also refers to a variable r, the

" heat at the point Z, or that other property
which, apart from the density, affects the elasticity.

"
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has a velocity whose components are

.
du , du _ du ,

u + dx + dy + -5-
dz

dx dy dz

v+ ...

w +
and, during the time df, is carried to the point z'. In order to perform
the calculation, Eider first considers a segment Zz which is parallel
to the axis of x. During the time dt this segment will turn through
an infinitely small angle, and its length will become

to the second order.

In a latin paper, Principia motus fluidorum, Euler elucidates the

problem then entirely novel of the kinematics of continuous media.
He calculates the form which the elementary parallelipiped, whose

origin is Z and sides are dx, dy and dz, will assume at the time t + dt

because of the motion of the fluid. He finds that the volume becomes

7 , , /,
,

, du
, T dv

,
, dw\

dxayaz 1 1 + at -
\- dt - h dt -r-

\ dx dy dz/

Similarly the density, g, of the fluid at Z becomes, at Zr

,

.

ot dx dy dz

At this point Euler expresse the conservation ofthe mass in the course
of the motion. " As the density is reciprocally proportional to the

volume, the quantity q' will be related to q as dxdydz is related to

j j j /i i 7 du . - dv
,

. dw\
dxdydz 1 + dt + dt + dt ;

\ ox dy dzj

whence, by carrying out the division, the very remarkable condition
which results from the continuity of the fluid,

dq , dq dq dq du
,

dv dw
s-t
+ u

d-x + v
^ + wr2 + x̂ +^ +^ = '

This may be written more simply as
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and, for an incompressible fluid, it reduces to

aufoSw;
dx~^ dy~^ dz

Euler then calculates the acceleration of the element of fluid which

is at Z at the instant t. He first writes the components of the velocity

at the point Z', to which the point Z is carried at the end of the time

dz, in the following form

. 7 du
, 7 du

,u + at -
\- udt - k

dt dx

v + ...

du
, 7 du

-
\- wdt

dy dz

whence the acceleration or the increment of the velocity

du
,

Su
, ,

^ r w -^~

dy
^

dz

3v

St

dw

The pressure exerts the " accelerative force,
" whose components

are

1 dp

q dx

1 dp

q dy

I dp

q dz

on the elementary mass of the parallelipiped. Thus the equations
of motion of the fluid, to be joined to the equation of continuity,
are

du
,

du^ 1 dp du
,

du
p -- ^- = ---

\- u--- -

q dx dt
'

dx
'

dy
^r-
dz

Euler was too aware to misunderstand the difficulty of the study of

these equations of motion. Thus he wrote
" If it does not allow us to penetrate to a complete knowledge

of the motion of fluids, the reason for this must not be attributed

to mechanics and the inadequacy of the known principles, for analysis
itself deserts us here. ..."

Lagrange, in this connection, wrote



304 THE PRINCIPLES OF CLASSICAL MECHANICS

"
By the discovery of Euler the whole mechanics of fluids was

reduced to a matter of analysis alone, and if the equations which

contain it were integrable, in all cases the circumstances of the motion

and behaviour of a fluid moved by any forces could be determined.

Unfortunately, they are so difficult that, up to the present, it has only
been possible to succeed in very special cases.

"

Without concerning ourselves with the particular problems which

he treats, we remark that Euler indicated the simplicity that results if

udx + vdy + wdz

is a complete differential. Much later this was distinguished as the

case in which a velocity potential existed, or the case of irrotational

motion.

In a third paper on the motion of fluids l Eider draws attention

to a plane irrotational motion of an incompressible fluid, which is

characterised by the two conditions

du dv __ n
dv

___
du

dx dy dx By

In this connection, Euler acknowledges a debt to d'Alembert for

having conceived the device of considering u iv as a function of

x + iy? and u + iv as a function of x iy.
2

(This was before Cauchy
had systematised the notion of analytic function, and long before

the modern school of hydrodynamics existed.)

Eider also writes, with some hint of sarcasm,
" However sublime

may be the investigations on fluids for which we are indebted to MM.
Bernoulli, Clairaut and d'Alembert, they stem so naturally from our

two general formulae that one cannot but admire this agreement of

their profound meditations with the simplicity of the principles from
which I have deduced my two equations, and to which I was directly
led by the first axioms of mechanics.

"

Just because of the analytical difficulties of the general problem,
Euler did not misunderstand the importance of the part-experimental,

part-theoretical considerations that were used in hydraulics. On the

contrary, in that he was personally concerned with the Segner water

wheel, had analysed the working of turbines and had himself designed
a reaction turbine, he was a pioneer of modern technics.

1 Continuation des recherches sur la theorie du mouvement des fluides, Memoires de
VAcademic de Berlin, 1755, p. 316.

2 This device is used by d'ALEMBERT in Lis Essai sur la resistance des fluides.
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7. BORDA AND THE LOSSES OF KINETIC ENERGY IN FLUIDS.

In this paragraph we shall follow a work of Chevalier de Borda

(1733-1799) called Memoire sur Vecoulement des fluides par les orifices

des vases. 1

Borda's analysis is based on hoth Daniel Bernoulli's hydrodynamics
and the mechanics of fluids which d'Alembert had related to his own

principle. At first Borda discusses problems of flow, and on each

occasion his analysis owes something to Bernoulli and d'Alenxbert.

Notable among these problems is the determination of the contracted

section in this connection he considers a re-entrant nozzle, where the

contracted section can be calculated and turns out to be equal to half

of that of the orifice.

But the essential interest ofBorda's study is that he drew attention to
"
hydrodynamical questions in which a loss oflivingforce must be assumed"

Such losses appear in a tube which is abruptly enlarged or contracted.

With a bold insight, Borda compared the phenomenon which occurs

in the fluid to an impact in which a loss of kinetic energy was involved

that is, in the language of the time, to an impact of hard bodies.

First Borda establishes the following Lemma, and thus anticipates
Carnot's theorem in a special case.

" Lemma. Let there be a hard body a, whose velocity is u, which
hits another hard body A whose velocity is V. It is required to find

the loss of living force which occurs in the impact. 2 i A r^z
44 Before the impact the sum of the living forces was .

After the impact this sum has the value ^

a + A (an + A

2g \ a + A

whence, by difference,

aA (u F) 2-~-
Borda considers (see figure) the immersion of a cylindrical vessel

into an indefinite fluid OPQR, and seeks the motion which the fluid

will have on entering the vessel. He starts from the following con

sideration.
" The motion of the water in the vessel can be regarded as that

of a system of hard bodies that interact in some way. Now we know
that the principle of living forces only applies to the motion of such

1 Memoires de VAcademie des Sciences, 1766, p. 579.

20
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todies when they act on each other by imperceptible degrees, and
that there is necessarily a loss of living force as soon as one of the bodies

collides with another.
"

Fig. 102

In the example with which we are concerned,
" the slice mopn

which enters the vessel at one instant, occupies the position rsqy at

the next instant. It is clear that before it occupies this position
the small slice will have lost a part of its motion against the fluid

above, as if it had been an isolated mass which had been hit by another
isolated mass. But in the case of these two isolated masses there
would have been a loss of living force. Therefore there will also be
such a loss in the case that we are discussing.

"

And here is Borda's solution, which follows Daniel Bernoulli's

method. Suppose that the fluid has travelled to EF, and that in

the next instant it travel to CD. Put AE = x, Ag = a and AB = b.

Let u be the velocity of the fluid at E. Assume that the living force

of the fluid in the indefinite vessel ROPQ remains zero. Under these

conditions, the living force of the fluid in the inner vessel can be written

u^bx
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if the living force of the slice which enters the vessel is neglected.
" Thus the difference of the living force of all the fluid contained

in the vessel will be

u2bdx -j- Zbxudu

Now while the fluid acquires this increment of living force the slice

DCFE, or bdx, is supposed to descend from the height GjB, or a x.

Therefore, if the principle of living forces applied without restriction,

it would he true that

,
. , 7 u2bdx -4- 2bxudu

(a X) bdx =---
" But there is a loss of living force in the whole of the fluid, which

arises from the action of the small slice rsqy on the fluid rCDs which
is above it. It is easy to see, by the lemma, that if the velocity of

the slice opmn is denoted by F, then this loss of living force is

badx (V - u)
2 _ (F~ u)

2

_____ octx

a + dx 2g 2g

"
Therefore, adding this quantity to the second term of the equation

above, the correct solution of the problem is obtained

u*bdx + 2bxudu + bdx (V u)
2 = 2g (a x) bdx.

u It only remains to determine V. For this purpose it is sufficient

to observe that the stream of fluid which enters the vessel contracts

in the same way as if it left the vessel by the same orifice and entered

free space. This must be since, in both cases, the fluid which arrives

at the orifice is travelling in the same directions. Now the loss of

living force must be distributed from the slice that has the greatest

velocity that is, from that which is at the point of greatest contraction.
" Therefore suppose that this point is at o and that m is the ratio

of EF to op. Then V = mu, whence

u?dx -j- 2xudu + u2dx (m I)
2 = 2g (a x) dx.

This equation is integrated by supposing that x e and u = o at

the beginning of the motion. "

Borda then repeats his argument and, this time, follows d'Alembert's

method.
" What we have just said of the principle of conservation of living

forces is also applicable to M. d'Alembert's principle. Not that the
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latter principle is always true, for there are some instances in which
the way it is applied to the motion of fluids must be somewhat modified.

Indeed, we have seen that the slice rsxy only acts on the fluid above
in the way that an isolated mass would lose a part of its motion to

another mass with which it collided. Whence it follows that in the

equation of equilibrium, the accelerating force must not be multiplied

by the volume - mt which the slice occupies at the middle to the
Zi

time interval, but by the volume ot which it occupies at the end of this

interval. For the volume ot represents the mass of the small slice

and rC represents that of the fluid rCDs. " No purpose would be served

by reproducing the calculation which follows, which leads to the same
result as the analysis reproduced above.

However bold it may have been, Borda's hypothesis is discovered
to be in satisfactory agreement with experiment.

" A tube 18 lines in diameter and one foot long was made of very
uniform tinplate whose edges were tapered. Then, closing the upper
orifice with the hand, the tube was plunged into a vessel filled with
water. It was assured that the air contained in the tube did not
allow the water to enter to the same extent as if both openings had
been free. Then the upper orifice of the tube was opened and the
water mounted inside the tube to a height greater than its level outside.

The experiment was repeated several times and the water rose to

its peak which was 4 pouces above the outside level. According to

the calculation of M. Bernoulli, it should have risen to 8 pouces.
" x

The ascent calculated by Borda was 49 % lines. He observed
an ascent of 47% lines and attributed the difference to the friction

of the fluid on the walls.

1 Mmoire$ de I*Academic des Sciences, 1766, p. 147.



CHAPTER NINE

EXPERIMENTS ON THE RESISTANCE OF FLUIDS

(BORDA, BOSSUT, DU BUAT)
COULOMB AND THE LAWS OF FRICTION

1. BORDA'S EXPERIMENTS AND NEWTONIAN THEORIES.

During the same time that the principles of dynamics were being

organised and the foundations of hydrodynamics were being developed,
there grew up a complete experimental approach that was determined

by requirements of an essentially practical kind. To pause on this

remarkable movement is not to move away from the principles of

mechanics, for here it can be seen how experiment is dominant in

fields where the theory is impotent before the very complexity of

even the most tangible phenomena.
We shall only deal with some examples of this experimental work

in mechanics during the XVIIIth Century. Besides being charac

teristic, these examples are ones in which the origins of modern research

should be sought, and in which the modest methods deployed (for

example, the motive agencies were invariably provided by falling

weights) were no obstacle to the application of a rigorous experimental
method.

But before coming to these examples, it is necessary that we should

describe some essays of the theoreticians, who had, indeed, preceded
the experimentalists by several years.

Newton had developed a schematic theory of fluids, which he

considered to be formed of an aggregate of elastic particles which

repelled each other, were arranged at equal distances from each other,

and were free. If the density of this aggregate was very small, Newton
assumed that if a solid moved in the fluid then the parts of the fluid

which were driven along by the solid were displaced freely, and did not

communicate the motion which they received to neighbouring parts.
In this framework, Newton calculated the resistance of a fluid

to the translation of a cylinder. He found that this resistance was
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equal to the weight of a cylinder of fluid of the same base as the solid,

and whose height was twice that from which a heavy body would

have to fall in order to acquire the velocity with which the solid moved.

The resistance offered to the translation of a sphere, according
to the same newtonian theory, is half the resistance which the cylinder

encounters under the same conditions.

Jean Bernoulli adopted these laws in the discussion of the commun
ication of motion which he gave in connection with the controversy
on living forces.

Newton also formulated a second theory on the resistance of fluids,

and applied this to water, oil and mercury. His first theory was

only applied to the resistance of air.1

In this second theory, particles of the fluid are contiguous. Newton

compares the resistance to the effect of the impact of a stream of

fluid on a circular surface, the stream being imagined to leave a cylin

drical vessel through a horizontal orifice. He passes to the limit

by infinitely increasing the capacity of the vessel, and also the dimensions

of the orifice, in order to simulate the conditions of an indefinite fluid.

He then substitutes the motion of the circular surface for that of the

fluid in the first model of impact.
Given this, Newton calculates the resistance offered to the trans

lation of a cylinder and finds that the resistance is equal to the weight
of a cylinder of fluid whose base is the same as that of the solid and

whose height is half that from which a heavy body would have to fall

in order to acquire the velocity with which the solid moves in the

fluid. This resistance is four times smaller than that provided by
the first theory.

Further, in the second theory the length of the moving cylinder
does not affect the result, for only its base is exposed to the impact
of the fluid. Under these circumstances the resistance offered to the

translation of a sphere is equal to that which would be offered to the

translation of a cylinder circumscribed about the sphere. This result

is half that provided by the first theory.
The second newtonian theory is applicable to the oblique impact

of a stream of fluid on a plane wall. Under these conditions, it leads

to a resistance which is proportional to both the square of the velocity
and the square of the sine of the angle of incidence. These were the

proportions which the experimenters tried to verify.
We also add that Daniel Bernoulli, although he did not offer an

alternative theory, had already remarked on considerable differences

1 In fact this theory goes back to HUYGHENS (1669), MARIOTTE (1684) and PARTIES

(1671).
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between the newtonian laws and experiment.
1

Moreover, he legitim

ately emphasised that it was necessary to distinguish between the

impact of a fluid on a wall and the impact of a fluid on a completely

immersed plane.
2

Finally, we recall that d'Alembert, in his early

work on the resistance of fluids, also calculated the impact of a moveable

surface on an infinity of small elastic balls which represented a fluid.3

With this in mind, we come to the experiments of Chevalier de Borda.

In the first place, Borda studied the resistance of air.4 By means

of a driving weight he made a flywheel rotate and attached plane
surfaces of different shapes to the circumference. He took care to

correct the results for the friction of the flywheel and to confine the

observations to a period of uniform motion, when a steady state had
been established.

These are Borda's conclusions.

1) The total resistance of the air cannot be calculated as the sum
of the partial resistances of each of its elements. For example, the

resistance of a circle is not the sum of the resistances of two semicircles.

This conclusion is very important it shoes that the resistance is a

phenomenon which behaves integrally, and also makes it clear that

the resistance cannot be obtained by an integration which depends
on a simple elementary law.

2) The aggregate resistance is proportional to the square of the

velocity and the sine of the angle of incidence (not to the square of

this sine).

Fig. 103

As far as the resistance of water is concerned, Borda confines him

self, in this first paper, to the verification of the proportionality to

the square of the velocity.

1 Mtmoires de Petersburg, Vol. II, 1727.
2
Ibid., Vol. VIII, 1741.

3 See above, p. 295.
4 Memoires de VAcademic des Sciences, 1763, p. 358.



312 THE PRINCIPLES OF CLASSICAL MECHANICS

Borda returned to tlxe resistance of fluids in a paper dated 1767. 1

He worked with a circular vessel 12 feet in diameter. By means
of driving weights varying from 4 ounces to 8 pounds, he made a

sphere of 59 lines diameter move through the water. The sphere
was made of two equal parts, which could be joined together or separ
ated as desired.

When working with one hemisphere, Borda allowed it to present
either the section of a great circle or the convex part, to the fluid.

Borda took care to allow for " the friction and the impact of the
air on the flywheel

"
by making the apparatus rotate freely without

the sphere.
He verified that the resistance was very accurately proportional

to the square of the velocity. In addition, he established that the

resistance of the hemisphere was nearly independent of the surface

that was presented to the fluid. From this he concluded that "
at

these small velocities., the forward part of the body is the only one ichich

has resistance.
"

Borda next turned his attention to the absolute magnitude of the

resistance, and compared the values observed with those calculated

from what we have called the second newtonian theory (Principia,
Book II, Proposition XXXVIII). He found that the resistance of the

hemisphere when it offered a section of a great circle to the fluid was

2% times as great as the resistance of the whole sphere, itself accur

ately equal to the resistance of the hemisphere when this offered its

convex side to the fluid. Now, according to the newtonian theory, the
first resistance is twice the second. The disagreement is evident.

Similarly, Borda determined the oblique resistance. He established,

exactly as in his experiments in air, that the law of the square of the
sine was not true, and even declared "that when the angles of incidence
are small the resistance does not decrease as much as the simple sine.

"

Borda also studied the influence of the depth on the resistance
in water. He established that the resistance decreased with the

depth, and that, at the surface, it increased more rapidly than the

square of the velocity. In this connection, he attempted an explan
ation which was only half convincing, by falling back on his own
theory of the losses of living force in fluids.2

" It is clear that when the sphere is only 6 pouces below the surface
it does not impart such great velocities to the neighbouring parts
as when it moves in the surface of the water. For in the first case
the fluid is free to run round the whole circumference of the sphere

1 Memoires de VAcademie des Sciences, 1767, p. 495
2 See above, p. 305.
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while in the second, it cannot escape along the upper part of the sphere.
From which it follows that in the first instance the fluid neither gains
nor loses as great a quantity of living forces as in the second.

"

Borda then worked with a model ABCD
in whichAH = HD = 6 pouces and J3C =
4 pouces.

The difference between the resistance

when the side A (angle BAC), and then

the side D (two arcs of circles, BD and

DC, with centres on J3C), were offered to Pig. 104

the fluid was negligible the newtonian

theory predicted a ratio of 28 to 15 for these resistances.

Borda's general conclusion was that the newtonian theory could

not account for the resistances of fluids.
" The ordinary theory of

the impact of fluids only gives relationships which are absolutely
false and, consequently, it would be useless and even dangerous to

wish to apply this theory to the craft of the construction of ships.
"

2. THE ABBE BOSSUT'S EXPERIMENTS.

In 1775 Turgot asked the Academie des Sciences " to examine

means of improving navigation in the Realm. " A committee consisting
of d'Alembert, Condorcet and the Abbe Bossut (as secretary) immediat

ely took up the investigation and, between July and September, 1775,

conducted numerous experiments
" on a large stretch of water in the

grounds of the Military College.
"

They secured the cooperation of

the mathematicians attached to that College, including Legendre and

Monge.
The committee reported to the Academie des Sciences on April

17th, 1776, and this report, Nouvelles experiences sur la resistance des

fluides was published at Paris (Jombert) in 1777, under the names
of the three members of the committee.

The experimental method is referred to in the following terms.
" To ask questions of nature by doing experiments is a very delicate

matter. In vain do you assemble the facts if these have no relation

to each other ; if they appear in an equivocal form ; if, when they
are produced by different causes, you are unable to assign and distin

guish the particular effects of these causes with a certain precision. . . .

Do not heed the limited experimenter, the one who lacks principles ;

guided by an unreasoning method, he often shows us the same fact

in different guises of necessity, and perhaps without recognising
this himself; or he gathers at random several facts whose differences



314 THE PRINCIPLES OF CLASSICAL MECHANICS

he is unable to explain. A science without reasoning does not exist or,
what comes to the same thing, a science without theory does not exist.

" *

Bossut explicitly distinguished between the resistance of fluids

that were indefinitely extended (a ship on the sea or on wide and

deep rivers) and the resistance in narrow channels (shallow or narrow
rivers and canals).

Borda's experiments were conducted in fluids that were, for practical

purposes, indefinitely extended. On the other hand, in order to study
the effect of the depth of immersion, Franklin had worked on a small
scale with a canal and a model of a ship which was 6 pouces long, and

2% pouces wide.2

The basin at the Military College was 100 feet long and 53 feet

wide at the centre, its maximum depth being 6% feet. A weight hung
over a pulley assured the traction of the model, which was equiped
with a rudder in order that its motion might be determinate.

Bossut's Model No. 1.

Fig. 105

Bossut used twelve different models of ships and carried out a
total of about 300 trials, of which about 200 were in an effectively
indefinite fluid and the remainder in an artificially constructed channel
whose depth and width were variable at will.

When he compared the experimental results with the second new-
tonian theory, Bossut came to the following conclusions.

1) On a given surface, and at different velocities, the resistance
is

"
approximately in the square ratio, just as much for oblique impacts

as for direct impacts. More accurately, the resistance increases in
a greater ratio than the square.

" He gives the following explanation
of this fact. " The fluid has greater difficulty in deflecting itself

when the velocity increases it piles up in front of the prow and is

lowered near the stern.
" 3

2)
" For surfaces which are equally immersed in the fluid and

only different in respect of their width, the resistance sensibly follows

1 Nouvelles experiences sur la resistance des fluides, p. 5.
2 CEuvres completes de Franklin, Vol. II, p. 237.
3
BOSSUT, op. cu., p. 147.
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the ratio of the surfaces. . . . More precisely, it increases in a ratio

which is a little greater than that of the extent of the surfaces.
" 1

" The resistance of bodies which are entirely submerged is a little

less than that of bodies which are only partly submerged.
" 2

3)
" The law of the square of the sine is less justified when the angles

are very small.
" 3 In order to express the results of these experiments,

the Abbe Bossut chose a provisional law of the form

sin"

where i is the angle of incidence. He found that the exponent n varied

from 0.66 to 1.79, according to the model studied. This led him
to conclude

" The resistances which occur in oblique impacts cannot be explained

by the theory of resistances by introducing, instead of the square,
some other power of the sine of the angle of incidence in the expression
for the resistance.

" 4

In order to determine the magnitude of the resistance of water,

Bossut made two corrections. The first depended on the friction

of the pulley which supported the cable and the motive weight he

measured this friction by varying the motive weight. The second

correction arose because of " the impact of the air
" on the model.

Indeed, to the author, resistance was an impact phenomenon. He was

guided throughout by the second newtonian theory. In order to eli

minate the impact of the air, Bossut measured the surface of the model

which was offered to the impact of air, and assumed that the impacts of

the water and the air on the model were respectively "in compound
proportion to the impacted surfaces and the densities of the two fluids."

Having made these two corrections, Bossut concluded
" The resistance perpendicular to a plane surface in an indefinite

fluid is equal to the weight of a column of fluid having the impacted
surface as its base and whose height is that which corresponds to the

velocity with which the percussion occurs.
" 5

Bossut tried to analyse further the phenomenon of resistance ; he

sought to emphasize the part played by the
"
tenacity

"
of the fluid and

the "
friction caused along the length of the boat by the water.

" From
this somewhat arbitrary decomposition, he felt justified in drawing the

following conclusions :

" We have observed that as soon as the friction is overcome, the

1 BOSSUT, op. cit., p. 152.
2
Ibid., p. 157.

8
Ibid., p. 163.

4
Ibid., p. 164.

5
Ibid., p. 173.
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slightest force sets the hoat in motion. From which we have concluded
that the tenacity of the water is extremely small and that this resistance

must be considered absolutely nil in comparison with that caused by
inertia. The same applies to the friction of the water along the sides

and bottom of the boat. This friction is very slight and its effect cannot
be distinguished from that of the pulleys or of the resistance of the air.

" x

Again Bossut noted the resistance in a narrow canal, superior to the

resistance in an unlimited fluid, and he underlined the influence of the

transversal dimensions and of the form of the vessel used for comparison.
For the construction itself of the canals, his paper is limited to cautious

generalities : the canal should be as large and as deep as possible,"
without nevertheless going to superfluous expense

"
; subterranean

canals should be avoided unless local circumstances make their use

indispensable. Indeed, concludes this sagacious rapporteur,
"
a canal

is an object of utility and not an instrument for ostentation.
"

3. Du BUAT (1734-1809). HYDRAULICS AND THE RESISTANCE OF FLUIDS.

Du Buat began by directing the construction of fortifications and on
this occasion was the promotor of *

geometric cotee '. He later devoted
himself to hydraulics, as

"
Captain of the infantry, engineer to the King."

The Principes tfhydraulique, the first edition of which is dated 1779,
deals with "

the motion of water in rivers, canals and conduits ; the

origin of rivers and the formation of their beds ; the effect of locks,

bridges and reservoirs 2
; of the impact of water ; and of navigation on

rivers as well as on narrow canals.
"

Du Buat wrote,
" there is no argument which can be used to apply

the formulae for flow through orifices to the uniform flow of a river,
which can only owe the velocity with which it moves to the slope
of its bed, taken at the surface of the current.

"

Gravity is, on both cases, certainly the cause of the motion. "
I

therefore set out to consider whether, if water was perfectly fluid and
ran in the part of a bed which provided no resistance, it would accelerate
its motion like bodies which slide on an inclined plane. . . . Since
it is not so, there exists some obstacle which prevents the accelerating
force from imparting fresh degrees of velocity to it. Now, of what
can this obstacle consist, except the friction of the water against the
walls of the bed and the viscosity of the fluid ?

"

And Du Buat stated this principle
" When water runs uniformly

in some bed, the force which is necessary to make it run is equal to

1
BOSSUT, op. cit., p. 173.

2 Read "
weirs.

"
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the sum of the resistances to which it is subject, whether they are due

to its own viscosity or to the friction of the hed. "

In the 1786 edition of his Traite, Du Buat amends this statement

and no longer speaks of the viscosity, but only of the resistance of

the bed or the containing walls. The viscosity only enters indirectly,
44 in order to communicate the retardation due to the walls, step by
step, to those parts of the fluid which are not in contact with them. "

This effect only influences " the relation between the mean velocity
and that which is possessed by the fluid against the walls.

"

In canals of circular or rectangular section, Du Buat introduced

the notion of mean radius (the ratio of the area of the cross-section

to the length of the perimeter in contact with the fluid) and evaluated

the resistance of the walls to unit length of the current by the product
of this radius and the friction on unit surface. He assumed that the

resistance of the bottom was proportional to the square of the velocity
of the current, and likened it to the impact of the water on the irre

gularities on the bottom.

Du Buat did not confine himself to this theoretical outline but,

like the Abbe Bossut, he sought experimental confirmation. The
second edition of his Traite is concerned with these experiments.

Du Buat verified that the friction of fluids was independent of

their pressure. This he did by making water oscillate in two siphons
of very different depth. He investigated the friction of fluids on different

materials (glass, lead and tin) and, having observed that this friction

was always the same, he assumed that the water "
itself prepares the

surface on wliich it runs
"
by wetting the pores and cavities as a varnish

does. He went further, and even held that the resistance of the walls

did not depend on their roughness a conclusion that was very far

from being correct.

In order to obtain the resistance of the walls, Du Buat worked

with an artificial canal of oak planks, whose section could be varied

in shape and size. He also worked with pipes of tinplate or glass

of very different diameters. He discovered that the resistance of

the walls was in a smaller ratio than the square of the velocity
x and

1 DE PHONY advocated a formula for the resistance which had the form av -f bv 2
.

Much later, after having observed the oscillations of a circular plate in a fluid medium,
COULOMB was to say,

" There must be two kinds of resistance. One, due to the coher

ence of the molecules which are separated from each other in a given time, is propor
tional to the number of these molecules and, consequently, to the velocity. The other,

due to the inertia of the molecules which are stopped by the roughnesses with which

they collide, is proportional to both their number and their velocity and, consequently,
to the square of their velocity.

" COULOMB was, before STOKES, the first to hold that

the velocity of a viscous fluid relative to a solid was nothing at the surface of contact,

and that it then varied continuously in the fluid.
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gave an empirical formula for this resistance which was only surpassed
in accuracy by those of Darcy (1857) and Bazin (1869).

Du Buat then turned to the empirical relationships between the

mean velocity, the velocity at the centre of the surface and the velocity

at the centre of the bed. To account for the resistance due to bends,

Du Buat assumed a series of impacts on the banks, and expressed

the resistance as a number proportional to the square of the mean

velocity, the square of the sine of the angle of incidence and the number

of " ricochets.
" He applied his empirical formula to the eddies and

local variations of level which are found upstream from barrages and

narrows by considering small consecutive lengths of the current.

Du Buat also treated the decrease of the slope, and the increase

of the depth, from the source of a river to its mouth. He took account

of tributaries, temporary and periodic floods, changes of course, the

retarding effect of the wind and even the influence of the weeds which

grew in the bottom.

In order to ascertain the resistance of fluids to the translation of a

solid,, Du Buat exposed a tinplate box to the current. The box was either

cylindrical or in the form of a parallelipiped whose edges were parallel

to the flow lines. The boxes were provided with holes which could

be opened or closed at will. A float allowed the difference of the

levels, outside and inside the box, to be measured, and thus the pressures
at different points of the surface of the box to be estimated. In this

way Du Buat showed the existence of an over-pressure at the front

(with respect to the previously existing state, in which the level was

uniform) and a "
non-pressure,

"
or suction " at the back acting in

the same direction as the over-pressure.
"

The total observable resistance corresponds to the sum of these

two effects. Du Buat measured them separately, and showed that the

over-pressure was approximately the same for a thin plate, for a cube

and for a parallelipiped. On the other hand, the "
non-pressure

"

decreased rapidly when the solid became relatively longer.
Du Buat found that the resisting force of a fluid mass to a solid in

translation was less than the resistance of the solid at rest to the moving
fluid, if the relative velocity was the same in both cases. This is ex

plained by the fact that he worked on a limited fluid mass. Du Buat
then set out to measure the amount of the fluid which accompanied
a solid in its motion through a practically indefinite fluid. He made
a solid oscillate, like a pendulum in the fluid, and studied the variation

of the amplitude of small oscillations a consequence of the decrease

of the weight of the solid body due to the upthrust of the fluid, and
the increase of its mass due to the mass a fluid carried along. If p
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is the weight of the oscillating body (weighed in the fluid), P the weight
of fluid displaced, nP the sum of the weights of the fluid displaced
and the fluid carried along, / the length of the pendulum and a the length
of an isochronous pendulum in the vacuum, then

I
T_ P I a 1\whence n = 4r ( II-

a p+nP
" P U

Indeed, in the fluid

P + nP pg
*L

J

-, _ n ^T , = -2_
y = ,-~n

g
r p+nP

and also

Du Buat estabKshed, by working in water with metallic bodies

and in air with distended balloons, that the amount of fluid carried

along by solids was approximately proportional to the resistance

obtained by other methods. Further, he suggested extending the

measurement of oscillations in order to determine the resistance of fluids,

by working with pendulums consisting of long columns, so that the

curvature of the trajectory might be a minimum.
From all these investigations, which place Du Buat among the

greatest experimenters of his time, the author concludes that he has
" not done much more than destroy the old theoretical structure,

"

and he appealed for more experiments, in the hope that a more correct

theory might emerge from them.

4. COULOMB'S WORK ON FRICTION.

Coulomb was not the first to make experiments on the friction

of sliding and the stiffness of ropes.

Amontons, in 1699 1
, had stated that the friction was proportional

to the mutual pressure of the parts in contact. Muschenbroek intro

duced the amount of the area of contact. De Camus, in a Traite des

forces mouvantes, and D^saguillers in a Cours de physique, remarked that

the friction at rest was much greater than the friction in motion.

In connection with the stiffness of ropes, Amontons showed that

the force necessary to bend a rope round a cylinder was inversely

proportional to the radius of the cylinder and directly proportional
to the tension and the diameter of the rope.

1 Memoires de PAcademie des Sciences, 1699.
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In 1781 the Academie des Sciences chose the subject of the laws

of friction and the stiffness of ropes for a competition, asking for a

return " to new experiments, made on a large scale and applicable

to machines valuable to the Navy, such as the pulley, the capstan

and the inclined plane.
"

Coulomb, who was then senior captain of the Royal Corps of En

gineers, won the prize with his Theorie des machines simples en ayant

egard au frottement et a la roideur des cordages.
1

In the frontispiece of his paper, Coulomb quotes this saying of

Montaigne
" Reason has so many forms that we do not know which

to choose Experiment has no fewer
"

(Essais, Book III, Chapter

XIII). In fact Coulomb's work is a model of experimental analysis,

carried out with precision and exemplary detail, and from which he

obtained a theory applicable to machines.

The parameters which Coulomb used in his study of friction were

the following the nature of the surfaces in contact and of their

coatings ; the pressure to which the surfaces are subject ; the extent

of the surfaces ; the time that has passed since the surfaces were placed

in contact ; the greater or lesser velocity of the planes in contact ;

and, incidentally, the humid or dry condition of the atmosphere.
He described his apparatus in great detail and, for example, mention

ed " a plank of oak, finished with a trying-plane and polished with

seal-skin.
" He studied the friction of oak on oak,

"
seasoned, along

the grain of the wood, with as high a degree of polish as skill could

achieve.
"

All the result obtained were recorded, experiment by

experiment, with the rigor of an official report.

He first studied the friction of sliding between two pieces of seasoned

wood (oak on oak, oak on fir, fir on fir, elm on elm). He then studied

the friction between wood and metals, between metals with or without

coatings, etc. . . .

By way of an example, here is a summary of some of his conclusions.
"

1. The friction of wood sliding, in the dry state, on wood opposes
a resistance proportional to the pressures after a sufficient period
of rest; in the first moments of rest this resistance increases appreciably,
but after some minutes it usually reaches its maximum and its limit.

" 2. When wood slides, in the dry state, on wood, with any velocity,

the friction is once more proportional to the pressures but its intensity

is much less that which is discovered on detaching the surfaces after

some moments of rest.
"

3. The friction of metals sliding on metals, without coatings,

1 Memoires des Savants etrangers, Vol. X.
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is similarly proportional to the pressures but its intensity is the same
whether the surfaces are detached after some moments of rest, or

whether they are forced into some uniform velocity.
" 4. Heterogeneous surfaces, such as wood or metals, sliding upon

each other without coatings, provide, in their friction, very different

results from the preceding ones. For the intensity of their friction,

relatively to a time of rest, increases slowly and only reaches its limit

after four or five days, or even more. , . . Here the friction increases

very appreciably as the velocities are increased, so that the friction

increases approximately in an arithmetic progression when the velo

cities increase according to a geometric progression.
"

The most debatable part of Coulomb's paper is that in which he

attemps to construct a model of the production of friction.
46 The friction can only arise from the engaging of the projections

from the two surfaces, and coherence can only affect it a little. . . .

The fibres of wood engage in each other as the hairs of two brushes

do ; they bend until they are touching without, however, disengaging ;

in this position the fibres which are touching each other cannot bed

themselves down further, and the angle of their inclination, depending
on the thickness of the fibres, will be the same under all degrees of

pressure. Therefore a force proportional to the pressure will be necess

ary for the fibres to be able to disengage.
"

At first Coulomb used the same arrangement as Amontons for the

investigation of the stiffness of ropes. Later he developed a new
one which allowed him to work with more industrial cables, namely,
"
ropes of three untarred strands.

" He summarised the effect of

the stiffness of ropes by means of the formula

A + BT
R

where A = hrq
, B = h'r** where R is the radius of the pulley, r the

radius and T the tension of the rope. The exponents q and ^ are

approximately equal.
The mechanics of friction was still a very skeletal one in Coulomb's

paper. Coulomb assumes that, in order to draw a weight P along
a horizontal plane, it is necessary to deploy a force

T= A +
P

In this formula, A is a small constant depending on the " coherence "

of the surfaces and
JJL

is a coefficient (the reciprocal of the coefficient
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of friction which is now commonly used) depending on the nature of

the surfaces.

Turning his attention to the observations made of the launching
of ships at the port of Rochefort in 1779, Coulomb calculated the

Fig. 106

force necessary to hold a body on an inclined plane. He obtained

the result that

__ AJLL + P (cos 7i + ju,
sin n)

H cos m + sin m

where n is the inclination of the plane and m the angle between the force

T and the plane BC. From this he easily deduced that T is a minimum
cos m

lor u = .

sin m
The mechanics of friction was born of some experiments in physics

in the XVIIth Century and then, for an essentially practical purpose,
was systematised by Coulomb. But, at the time, it remained linked

to the common practice of engineering, while rational mechanics

developed, without regard to friction, in the mathematical field.



CHAPTER TEN

LAZARE CARNOTS MECHANICS

1 . CARNOT AND THE EXPERIMENTAL CHARACTER OF MECHANICS.

In 1783 Lazare Carnot (1753-1823) published an Essai sur les

machines en general. He later extended this under the title of Principes

generaux de Fequilibre et du mouvement (1803). In this interval La-

grange published the first edition of his Mecanique analytique (1788).

But Carnot's ideas varied so little from, the Essai to the Principes
that it can be maintained that Lagrange had no influence on Carnot.

Further, it is natural to think of Carnot as a predecessor of Lagrange,
in spite of details of simple chronology.

1

In the field of principles, we are indebted to Carnot because he

was the first to assert the experimental character of mechanics

universally accepted now. This is cpiite in contrast with the ideas

professed by Euler, and more often, by d'Alembert. The declarations

which follow are taken from the Principes and are to be contrasted,

in particular, with the introduction to d'Alembert's treatise.

" The Ancients established the axiom that all our ideas come
from our senses ; and this great truth is, today, no longer a subject
of controversy. . . . [Here Carnot is invoking Locke's Essay on Human

Understanding.]
"
However, all the sciences do not draw on the same experimental

foundation. Pure mathematics requires less than all the others ;

next come the physico-mathematical sciences ; then the physical
sciences. . . .

"
Certainly it would be satisfactory to be able to indicate exactly

1 CARNOT himself wrote, in the preface to the Principes,
" Since the first edition

of this work in 1783, under the title of Essai sur les machines, there have appeared, in

all branches of mechanics, works of such beauty and of such scope that there hardly
remains room for some remembrance of mine. However, as it contained some ideas

that were new at the time it appeared, and as it is always valuable to contemplate the

fundamental truths of science from the various points of view that can be chosen, a

new edition has been asked of me. ..."
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the point at which, each science ceased to be experimental and became

entirely rational [read, in order to develop rationally, starting from

principles obtained from experiment] ; that is, to be able to reduce

to the smallest number the truths that it is necessary to infer from

experiment and which, once established, suffice to embrace all the

ramifications of the science, being combined by reason alone. But
this seems to be very difficult. In the desire to penetrate more deeply

by reason alone, it is tempting to give obscure definitions, vague and
inaccurate demonstrations. It is less inconvenient to take more in

formation from experiment than would strictly be necessary. The

development may seem less elegant. But it will be more complete
and more secure. . . .

" It is therefore from observation that men derived the first

concepts of mechanics. However, the fundamental laws of equilibrium
and motion which serve as its foundation offer themselves so naturally
to reason on the one hand, and on the other, show themselves so clearly
in the most common facts, that it is difficult to say whether it is from
the one rather than from the other that we derive our perfect conviction

of these laws ; and whether this conviction would exist without the con

currence of these laws with the first. These facts seem too familiar for us

to be able to know at what point, without them, reason alone would
be able to establish definitions. And, on the other hand, if reason

is unable to connect these facts by analogy, they appear too isolated

for us to be able to weld them into principles.
" l

2. THE CONCEPTS AND POSTULATES OF CARNOT'S MECHANICS.

Carnot had certainly studied Euler and d'Alembert, and thus

knew of the theory of forces and also of that of motions (in the purely
kinematic sense). He reproaches the first for "

being founded on a

metaphysical and obscure notion of forces.
"

If, on the contrary,
the word force is understood to be the momentum impressed on a

system, the first theory reduces to the second and requires an appeal
to experiment.

At least in principle, Carnot adopts the second attitude and seeks

to reduce mechanics to the study of the communication of motion. He
applies the laws ofmechanics to the reasoned observation of problems of

impact. He then reduces the action of a continuous force to that

of a series of infinitely small impacts.
"
Weight and all forces of the same kind act in imperceptible

degrees and produce no sudden changes. However, it seems rather

1
Principes generaux de Vequilibre et du Tnouvement, p. 2.
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natural to consider them as dealing infinitely small blows, at infinitely

short intervals, to the bodies which they actuate.
"

Thus the fundamental law of Carnot's mechanics is written, apart
from notation, in the form

Fdt = d(mv).

But Carnot accompanied this fundamental law with the following

commentary.
u At first I shall repeat that the question here is not that of the

original causes which create motion in bodies, but only that of the motion

already produced and inherent in each of them. The quantity of

motion already produced in a body is called its force or its power.
Thus the forces which are considered in mechanics are not metaphysical
or abstract entities. Each of them resides in a determinate mass.

The force is the product of this mass and the velocity which the body takes

if it is not obstructed by the motions of other bodies which are incompatible
with its own. Such incompatibility makes some bodies lose a part
of their quantity of motion ;

it makes others add to it, and creates

it in those which had none. Each body assumes a kind of combined

velocity, in between the one which it must have already had and those

which are newly impressed on all its parts. Now it is this compound
velocity that it is necessary to determine, at each instant and for

each point of the system, when the shapes of the different parts which

compose it, their masses and the velocities which they are supposed
to have received previously whether by earlier impacts or by external

agencies of any kind are known. Thus, in a word, we do not seek

the laws of motion in general, but rather the laws of the communication

of motion between the different material parts of a single system.
" l

In fact, Carnot did not rigorously dispense with the concept of

force. It may even be said that he multiplied the names for it, as

we shall see. Moreover, this conforms with his general attitude

his mechanics did not depend on a closed set of axioms.

Carnot variously called the product of a body's mass and the

accelerating force [read
"
acceleration"] its motive force, force of pressure

or dead force. Thus gravity or heaviness is an accelerating force and

weight, a motive force.

By moving force Carnot understood " the motive force applied to

a machine in order to overcome the resistances, or to produce any
motion at all.

"
If the living force is expressed by the product Trav

2
,

the latent living force is expressed by the product PH of a weight and

1
Principes gGneraux de Fequilibre et du mouvement, p. 47.
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a height. The elementary work of a force is called, hy Camot, the

moment of activity achieved by a motive force.

As for the moment of absolute activity of a moving body, this can be

expressed in modern language by the product

mv (v + dv)

where v + dv is the velocity of the body at the time t + dt (if the motion

is continuous) . In impact, the same moment of activity would be written

TTii; (v -f- Av)

where Av is a finite increment.

Carnot next introduces the force of inertia by means of the following

definition
" The resistance offered by a body to a change of state

"

or the " reactions opposed to a system of bodies which make it pass

from rest to motion.
" For example, in an impact (the external

actions being supposed negligable) the force of inertia of a body of mass

m whose velocity changes from tT to t^ would be, in Carnot's sense,

m (TQ JTJ. Here the force of inertia coincides with the quantity

of motion lost. But, in general, the quantity of motion lost is the "re

sultant of the quantity of motion produced by the motive force and

the quantity of motion produced by the force of inertia.
"

Finally,

Carnot understands the force exerted on a body of the system to be the

resultant of the motive force and the force of inertia.

In passing, we note a curious discussion on this subject. In his

Sixty-Sixth Letter to a German Princess, Euler had criticised the ex

pression
** force of inertia

"
as uniting the concept of force

(capable of changing the state of a body) and the word inertia (express

ing the property of a body that tends to preserve it in its state).

Carnot objected that " the inertia is merely a property which

may not be introduced in the calculations, while the force of inertia

is a real measurable property ; it is the quantity of motion, which

this body imparts to any other body, that displaces it from its state.
" *

Carnot assumed the following postulates as a foundation for his

mechanics.

1) The principle of inertia.

2) A system in equilibrium remains in equilibrium under the

application of forces which are in equilibrium among themselves.

3) In a system of forces in equilibrium, each force is equal and

opposed to the geometric sum of all the others.

4)
" The quantities of motion of motive forces which, in a system

of bodies, destroy each other at all times, can always be decomposed
1
Principes g$neraux de requilibre et du mouvement, p. 73.



LAZARE CARNOT 327

into other forces which are, taken in pairs, equal and directly opposed

along the direction of the straight line which connects the two bodies

to which they belong. And, in each of these bodies, each force can

be regarded as nullified by the action of the other.
"

5) The action of one body on another by impact, traction or pressure,

only depends on the relative velocity of the bodies.

6)
" The quantities of motion or the dead forces which the bodies

impress on each other through threads or rods are directed along these

threads or rods ; and those which they impress on each other by impact
or pressure are directed along the perpendicular erected at their common
surface at the point of contact.

"

7) Hypotheses expressing the laws of inelastic, elastic and partially-

elastic impact.
Given these definitions, Carnot introduced the concept of geo

metrical motion into mechanics in the following way.
"
Every motion which is imparted to a system of bodies and which

does not alter the intensity of the action which they exert or could

exert on each other when any other motions whatever are imparted
to them, will be called a geometrical motion. Then the velocity which

each body assumes will be called its geometrical velocity.
" l

Carnot has the following comment to make about this concept.
" This denomination of geometrical motion is based on the fact

that the motions concerned have no effect on the action which can

be exerted between the bodies of the system, and that they are inde

pendent of the rules of dynamics. . . , They only depend on the con

ditions of constraint between the parts of the system and, consequently,
can be determined by geometry alone.

46 The theory of geometrical motions is, in a sense, a science inter

mediate between geometry and mechanics. It is the theory of the

motions that a system of bodies can assume without the bodies hinder

ing each other, or exerting any action or reaction on each other.
" 2

In modern language, Carnot's geometrical motions are virtual dis

placements (finite or infinitely small) compatible with the constraints

between the bodies of the system.

3. CARNOT'S THEOREM.

In the second part of his Principes fondamentaux Carnot studied

the motion of systems, taking as his basis the problems of impact
between " hard bodies

" that is, bodies devoid of elasticity.

1
Principes generaux de requilibre et du mouvement, p. 108.

2
Ibid., p. 106.
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Carnot first shows that "
if a system of hard bodies suffers an

impact or any instantaneous action, either directly or by means of
some mechanism without elasticity, the motion taken by the system
is necessarily a geometrical one.

"

Indeed, if the bodies contiguous with the system by which the
action is propagated are considered in pairs, after the impact they
have no relative velocity in the line of their reciprocal action. Their
real motions after the impact cannot therefore produce any action

between them. It follows that the motion of the system after the

impact is necessarily a geometrical one. Moreover, it is easy to see

that every geometrical motion which is imparted to any system is

received by the system without alteration.

Turning to the consideration of a system of hard bodies which
sustains an impact, Carnot decomposes (after the manner of d'Alembert)
the motion of the system before the impact into two others. The
first of these is that which remains after the impact and the second

is, consequently, necessarily destroyed by the impact.
If only the first motion is imparted to the system, it will necess

arily be received without alteration.

Under the influence of the second motion, also considered in isolation,
the system remains in equilibrium.

Carnot writes,
" This is what constitutes d'Alembert's famous

principle. But it must be recalled that it is only applicable to perfectly
hard bodies and to mechanisms without elasticity this, I think,
has not been observed explicitly before. If the bodies were elastic,
the motion before the impact would decompose into two in the same
way as for hard bodies. One of these motions would be the motion
that remains after the impact and the other would be destroyed. But
the independence of these motions would not subsist ; for if the first

alone were suppressed, there would not be equilibrium. This inde

pendence of the two motions is based on the fact that the motion
after the impact is geometrical ; that is, it does not tend to increase
or decrease the intensity of the impact, and it is only such because
the bodies, being hard, etc. ..."

Let U denote the velocity lost by a particle M during the impact
and let V be its velocity after the impact.

By induction, starting from TorricellVs principle, Carnot states
the law

(1) $MUVcos(vTU) = Q.

Here indeed, Carnot makes appeal to continuous motions by starting
from the axiom that " when the centre of gravity is lowest, the system



IAZARE CARNOT 329

is in equilibrium.
"

If p is the accelerating force, Carnot writes the

condition for the equilibrium of a system, in continuous motion under

the influence of the forces p, in the form

SpMFcos (pTV) = 0.

From this he deduces the law (1) by applying this principle to percussions.
Carnot verifies the law (1) for the particular impact of two hard

bodies, using an analysis that is, this time, direct. He then extends

the law to the impact of any number of hard bodies.

From these results, Carnot easily deduced the following theorem,
with which his name is still associated.

" In the impact of hard bodies, the sum of the living forces before

the impact is always equal to the sum of the living forces after the impact

together with the sum of the living forces that each of these bodies would

have if it moved freely with only the velocity which it lost in the impact.
" *

Indeed, it was sufficient for him to write

SMTF2 = SMF2 + SMU2 + 2 $MVU cos (VTU]

where W is the velocity before the impact and law (1) is applied.

Using d'Alembert's procedures throughout, Carnot treated problems
of elastic impact as corollaries of problems of impact between " hard "

bodies. The elasticity doubles the momentum lost without changing
its direction. Thus, to Carnot, the conservation of living forces in

the impact of perfectly elastic bodies is justified by his theorem on

the impact of hard bodies.

From the general equation (1) Carnot also deduced the remarkable

result that the sum of the living forces due to the velocities lost is

a minimum in the impact of a system of hard bodies.
"
Among the motions to which a system of perfectly hard bodies is

susceptible, when the bodies act on each other by a direct impact or by

any mechanism without elasticity, so that there results a sudden change
in the state of the system, the one that actually remains after the action

is the geometrical motion which is such that the sum of the products of
each of the masses by the square of the velocity that it loses is a minimum ;

that is, less than the sum of the products of the masses and the square

of the velocity that it would have lost if the system had acquired any other

geometrical motion.
"

Carnot himself remarked that this result was directly connected

with Maupertuis
9

application of the principle of least action to the

impact of bodies.

1
Principes genfraux de Fequilibre et du mouvement^ p. 145.
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In this connection, Carnot emerges as an opponent of the doctrine

of final causes. Indeed, he declares that his demonstration of this

minimum law "
is more general [than that of Maupertuis] because

it includes bodies which have various degrees of elasticity. But it

also demonstrates how insecure are those which are based on final

causes, since it shows that the principle is not general, but restricted

to systems of bodies which have the same degree of elasticity.
"

Without carrying this analysis of Carnot's mechanics further,
we shall indicate how he passed from the study of these problems
of impact to problems in which continuous forces intervene.

" When a system of hard bodies, free or acted upon by any mechanism
without elasticity, and actuated by any moving forces, changes its motion

by imperceptible degrees then if, it any instant of the motion, each one

of the particles is catted m ; its velocity V ; its motive force P x
; the velocity

that it would take if the actual motion were suddenly suppressed and

replaced by another geometrical one, u ; the element of time, dt ; then

there will obtain

Smud [V cos (u^V)] SmuPdt cos (u^P] = 0.
"

This theorem is deduced from the general formula (1) by observing
that

Pdt cos (TP) d[V cos (uTP)]

is the projection, on the direction of u, of the velocity lost by the mass

m, due to the action of the other elements of the system.
Carnot also develops some very interesting considerations on

the work of the internal forces in animal systems.
" An animal, like the inanimate bodies, is subject to the law of

inertia. That is, the general system of parts which compose it cannot

produce by itself any progressive motion in any direction. ... In
the whole system of the animal, the principle of the equality of the

action and the reaction is applicable, as in inert matter. So that it

is only by the friction of its feet on the ground that it can carry itself

forward, thereby impressing on the earth on which it walks a quantity
of motion equal and opposite to that which it assumes, but which
is imperceptible to us.

" It therefore seems, as far as its physique is concerned, that the
animal may be considered as an assembly of particles separated by
springs which are more or less compressed and which, by this fact,

1 Here it is necessary to read "
accelerating force.

"
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store a certain quantity of living forces ; and that these springs, by
extending, may be considered to convert this latent living force into

real living force. . . .

" When a similar agency imparts living force to its own mass, al

though the quantity of motion which results in any direction may be

zero, the living force is not zero. And if this agency is applied to

a machine, its acquired living force will be, by means of this machine,
transmitted to the resisting forces without loss always with the

reservation that there should be no impacts ; for what will be consumed
will be wholly absorbed and will be precisely what we call the effect

produced.
" 1

The general conclusion of Carnot's mechanics is the following
one.

" For any system of bodies, animated by any motive forces, in

which several external agents such as men or animals either by
themselves or by machines are used to move the system in different

ways, whatever may be the change produced in the system, the

moment of activity consumed by the external powers in any time

will always be equal to half the amount by which the sum of the living
forces in the system of bodies to which they are applied will be increased

during this time, less half the amount by which this same sum of living

forces would be increased if each of the bodies had moved freely on

the curve which it described supposing that it had experienced the

same motive force, at each point of this curve, as that which it actually

experienced ; and provided always that the motion changes by imper

ceptible degrees, so that, if machines with springs are used, these

springs are left in the same state of tension as at the beginning.
"

Certainly Carnot's language did not approach the clarity of the

great authors of the Century, But the foundation of his work is

of an undisputed originality, at once physical and philosophical.

In fact, Lazare Carnot was to inspire Laplace, Barre de Saint-Venant

and probably Coriolis as well.

1
Principes ggneraux de Vequilibre et du mouvement, p. 246.



CHAPTER ELEVEN

THE " MECANIQUE ANALYTIQUE " OF LAGRANGE

1. THE CONTENT AND PURPOSE OF LAGRANGE'S " MECANIQUE
ANALYTIQUE.

"

We now come to a piece of work which, united and crowned all the

efforts which were made in the XVIIIth Century to develop a rationally

organised mechanics.

Coming from a Touraine family, Louis de Lagrange (1736-1813)
started his career at Turin, where he had been born. After having
come under the influence of Euler at the Academy of Berlin, he finally

went to Paris in 1787 where, in particular, he inaugurated the teaching
of analysis at the cole polytechnique. Thus, by his descent and for

an important part of his scientific career, Lagrange belonged to France.

The first edition of the Mecanique analytique appeared in 1788, 1 In

it Lagrange accomplished the project, which had been conceived

and partially executed by Euler, of a single treatise of rational science

(analytice exposita) covering all branches of mechanics, statics and

hydrostatics, dynamics and hydrodynamics.

Lagrange's reading covered everything. Apart from the works of

his contemporaries, he had studied, with a remarkable objectivity,
those of all the ancient and modern writers that were known in his

time. This is witnessed by the historical references with which he

enriched his treatise.

Lagrange eliminated the contradictions and the inarticulateness

which abounded in the work of his predecessors. He adopted the

concepts and the postulates of the great creators of the previous century

(Galileo, Huyghens, Newton). He surpassed Euler and d'Alembert.

And he became preoccupied with the organisation of mechanics, the

1 The last edition to be published in LAGRANGE'S lifetime appeared in 1811. In the

present book we have made use of the edition of 1853-1855, which was amended by
Joseph BERTRAND and used certain manuscripts which had not been published during
LAGRANGE'S life.
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foundation of its principles, the perfection of its mathematical language
and the isolation of a general analytical method for solving its problems.
His clarity of mind, his mathematical insight, served him so well that

he arrived at an almost perfect codification of mechanics in the class

ical field. In a detailed way, Lagrange made the following statement

of his aims in an Avertissement.
" To reduce the theory of mechanics, and the art of solving the

associated problems, to general formulae, whose simple development

provides all the equations necessary for the solution of each problem.
" To unite, and present from one point of view, the different prin

ciples which have, so far, been found to assist in the solution of problems
in mechanics ; by showing their mutual dependence and making a

judgement of their validity and scope possible.
"

As for the purely mathematical point of view which was Lagrange's

principal interest, he made the following declaration.
" No diagrams will be found in this work. The methods that I

explain in it require neither constructions nor geometrical or mechanical

arguments, but only the algebraic operations inherent to a regular
and uniform process. Those who love Analysis will, with joy, see

mechanics become a new branch of it and will be grateful to me for

thus having extended its field.
"

2. LAGRANGE'S STATICS.

In the historical part of his work Lagrange makes special mention

of Archimedes, Stevin, Galileo and Huyghens. In his view, the equi
librium of a straight and horizontal lever whose ends are loaded with

equal weights and whose point of support is at the centre is
" a truth

that is evident on its own. " On the other hand, the principle of the

superposition of equilibria, as fruitful as the principle of the super

position of figures in geometry, is essential for a treatment of the

angular lever. This leads to the principle of moments, in which connec

tion Lagrange cites Guido Ubaldo.

Lagrange refers to Stevin and to Galileo's mechanics in connection

with the inclined plane. In the matter of the decomposition of a

force into its components, he places Roberval before Stevin.

To Lagrange, Descartes' principle and that of Torricelli were put
forward without proof by their authors.

Lagrange mentions Aristotle, Archimedes, Nicomedes and, among
the moderns, Descartes, Wallis and Roberval, as having used the

composition of motions. It was Galileo who had made first use of

this concept in dynamics, in connection with the motion of projectiles.
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But, with good reason, Lagrange attributes the composition of forces,
in the proper sense of the term, to Newton, Varignon and Lamy. An
immediate connection, which Varignon saw and demonstrated by the

theory of moments, exists between the principle of the lever and that

of the composition of forces.

Lagrange gives the following opinion on the justification of the

rule of the parallelogram which had been given by Daniel Bernoulli.
"
By separating, in this way, the principle of the composition of forces

from the principle of the composition of motion, the principal advantages
of clarity and simplicity were lost, and the principle was reduced to

being merely the result of geometrical constructions and analysis.
"

Lagrange then comes to the principle of virtual work, which he states

in the following way.
" Powers are in equilibrium when they are inversely proportional

to their virtual velocities taken in their own directions."

Lagrange mentions Guido Ubaldo as having been concerned in

the formation of this principle. He refers to the concept of momento
as used in Galileo's statics, recalls the part played by Descartes and
Torricelli and honours Jean Bernoulli for having been the first to

formulate the principle in all its generality.
The justification of the principle of virtual work occupies a great

deal of Lagrange's attention.1

" As for the nature of the principle of virtual velocities, it must
be agreed that it is not sufficiently clear in itself to be formed into a
first principle. But it can be regarded as the general expression of

the laws of equilibrium, deduced from two principles [of the lever

and of the composition of forces]. Further, in the demonstrations
of this principle which have been given, it has always been made to

depend on these by means which are more or less direct. But there

is another general principle in statics which is independent of the

principle of the lever and the principle of the composition of forces

which, although it is customarily related to the others in mechanics,

appears to be the natural foundation of the principle of virtual velocities

it can be called the principle of pulleys.
" If several pulleys are mounted together on a single frame this

assembly is called a polispaste or pulley-block. The combination of
two pulley-blocks one fixed and the other moveable which is wound
with a single string, one end of which is permanently attached and the

other, acted upon by a power, forms a machine in which the power
is to the weight carried by the moveable pulley-block as unity is to
the number of strands which converge on this pulley-block ; this,

1
Mecanique analytigue, Vol. I, p. 21.
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if the strands are all supposed to be parallel and the friction and the

stiffness of the strings is neglected.
" By increasing the numbers of fixed and moveable pulley-

blocks, and winding them all with the same string by means of

various fixed and reversing pulleys, the same power, when it is

applied to the moveable end, will be able to support as many
weights as there are moveable pulley-blocks. Then, each weight will

be to the power as the number of strands of the pulley-block support

ing it is to unity.
" For greater simplicity, make the last strand pass over a fixed

pulley and let it support a weight instead of the power. We shall

assume this weight to be unity. Also imagine that the different

moveable pulley-blocks, instead of supporting weights, are attached

to bodies regarded as points and arranged among each other so

that they form any given system. In this way, by means of the string
which is wound round all the pulley-blocks, the same weight will

produce various powers, which act on the different parts of the system
in the direction of the strings which converge on the pulley-blocks
attached to these points. The powers will be to the weight as the

number of strands is to unity. So that the powers themselves will

be represented by the number of strands which come together and,

by their tension, produce them.
" Now it is clear that in order that the system drawn by these

different powers may remain in equilibrium, it is necessary that the

weight should be unable to descent by any infinitely small displacement

ofthe points ofthe system. For since the weight always tends to descend,

if there is any infinitely small displacement of the system which allows

it to descend, it will necessarily do so and will produce this displa
cement of the system.

" Denote the infinitely small distances which this displacement
would make the different points of the system travel by a, /?, y, . . .

in the direction of the power which pulls them. Also denote the

number of strands of the pulley-blocks applied at these points, to

produce these powers, by P, $, JZ, . . . It can be seen that the

distances a, /?, y, . . . will also be those by which the moveable

pulley-blocks approach the associated fixed pulley-blocks. Further,

it can be seen that these movements will decrease the length of the string

which is wound round all the pulley-blocks by the quantities Pa,

()/9, fty, ... So that, because of the fixed length of the string, the

weight will descend throughout the distance

P + QB + Ry + . . .
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"
Therefore, in order that the powers represented by the numbers

P, $, JR, . . . may be in equilibrium, it will be necessary that the equation

Pa + Q$ + Ry + . . . =

should obtain. This is the analytic expression of the general principle

of virtual velocities.
"

We remark here, with Jouguet,
l that Lagrange's demonstration

is based on physical facts on certain simple properties of pulleys

and strings. Lagrange also assumes the truth of the principle in a

very particular case, which reduces to the hypothesis of Huyghens
and Torricelli.

We owe to Lagrange the elegant method called that of multipliers.

The object of this was to express, in a general way, the problems of

statics by means of mathematical equations.
2

Lagrange expressed the constraints of the system by equations

of the type

L = M= N = ...

where L, M, N are finite functions of the coordinates of the points

of the system.

Differentiating these conditions, Lagrange writes

dL = AM = dN = . . .

(He does not exclude equations of constraint between differentials

that are not " exact differences
" these are the constraints that are

now called non-holonomic.)

Lagrange declares,
" These equations should only be used to elim

inate a similar number of differentials in the general formula of equi

librium, after which the coefficients of the remaining differentials

all become equal to zero. It is not difficult to show, by the theory

of the elimination of linear equations, that the same result will obtain

if the* various equations of condition

dL = 0, dM = 0, dN = 0, . . .

are each multiplied by an indeterminate coefficient and simply added

to the equation concerned ; if then, the sum of all the terms which

are multiplied by the same differential are equated to zero, which will

give as many particular equations as there are differentials ; and if,

finally, the indeterminate coefficients by which the equations of con-

1 L. M., Vol. II, p. 179.
2
Mecanique analytique. Vol. I, p. 69 et seq.
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dition have been multiplied are eliminated from the last set of equation.
"

Whence the rule stated by Lagrange for finding the conditions

of equilibrium of any system
" The sum of the moments [that is, apart from sign, the virtual

works] of all the powers which are in equilibrium will be taken, and the

differential functions which become zero because of the conditions

of the problem will be added to it, after each of these functions has

been multiplied by an indeterminate coefficient ; then the whole will

be equated to zero. Thus will be obtained a differential equation
which will be treated as an ordinary equation of maximis et minimis.

From this will be deduced as many equations as there are variables.

These equations, being then rid of the indeterminate coefficients by
elimination, will provide all the conditions necessary for equilibrium.

" The differential equation concerned will therefore be of the form

Pdp + Qdq + Rdr + ... + UL + pdM + vdN + . . . =

in which A, /*, v are the indeterminate quantities. In the sequel we
shall call this the general equation of the equilibrium.

"
Corresponding to each coordinate of each body of the system,

such as x, this equation will give an equation of the form

P 3? , n 39 , P dr _L . i
9L

t

BM
.

dN
L nPf- + Q^ + R^~ + ... + A---h/*-a--h V +...= 0.

dx ox dx dx ^ dx ox

Therefore the number of these equations will be equal to the number
of all the coordinates of all the bodies. We shall call these the particular

equations of the equilibrium.
"

It only remains to eliminate the multipliers A, u, v. Taking account

of the equations of constraint, the problem of the determination of

the coordinates of the different elements of the system is thus solved.

Lagrange did not confine himself to this abstract analysis, but

gave it a physical interpretation. The terms AdL, /idM, vdN " must
be regarded as representing the moments [of virtual works] of certain

forces applied to a system.
"

Thus dL is written in the form

dL (*', /, *', *", /', *"...) = dL' + *L"+ ...

In this equation (x, y\ *'), (#", y", 2"), etc. . . . represent the coor

dinates of each particle, and dl/, dL'\ etc. . . . only depend on (x\y\ z
r

),

(x", y", z"), etc. . . . respectively. Lagrange then verifies that the

term hdL is equivalent to the effect of different forces
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applied, respectively, at the points (#', y', z'), (#", y", z"), etc. . . .

and normal to the different surfaces defined by the equation dL = 0.

In this equation the variation is first performed with respect to (#', y', 2'),

then with respect to (#", y", 2"), etc. . . .

Lagrange concludes,
" It follows from this that each equation

of condition is equivalent to one or more forces applied to the system
in given directions. So that the state of equilibrium of the system
will be the same whether the consideration of forces is used, or whether

the equations of condition themselves are used.
"
Conversely, these forces must take the place of the equations

of condition resulting from the nature of the given system, so that

by making use of these equations it will be possible to regard the

bodies as entirely free and without any restraint. And from this is

seen the metaphysical reason why the introduction of the terms Ad -f

judM + ... in the general equation of equilibrium ensures that this

equation can then be treated as if all the bodies were entirely free. . . .

"
Strictly speaking, the forces in equation take the place of the

resistances that the bodies would suffer because of their mutual con

straint or because of obstacles which, by the nature of the system,
could oppose their motion ; or rather, these forces are merely the same
forces as the resitances, which are equal and directly opposite to the

pressures exerted by the bodies. As is seen, our method provides
a means of determining these forces and resistances. . . .

"

The considerable progress achieved by Lagrange in the analytical

application of the principle of virtual work is very evident.

Lagrange does not become inordinately eloquent on the concept
of force itself. He confines himself to saying,

"
By force or power

is understood, in general, the cause which imparts, or tends to impart,
motion to the bodies to which it is supposed to be applied ; further,
it is by the quantity of motion imparted, or which may be imparted,
that the force must be represented. In the state of equilibrium the

force does not have actual effect ; it only provides a tendency to motion.

But it can always be measured by the effect that it would produce
if it were not arrested.

" l

1 M&anique analytique^ Vol. I, p. 1.
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3. LAGRANGE AND THE HISTORY OF DYNAMICS.

In Lagrange's view, dynamics is
" the science of accelerating or

retarding forces and the varying motions which they must produce.
This science we owe entirely to the moderns, and Galileo is the one
who laid its first foundations. . . . Huyghens, who seems to have been
destined to perfect and complete most of Galileo's discoveries, sup

plemented the theory of heavy bodies by the theories of the motion
of pendulums and centrifugal forces, and thus prepared the way for

the great discovery of universal gravitation. Mechanics became a
new science in the hands of Newton, and his Principia, which appeared
in 1687, was the occasion of this revolution.

" I
Thus, neglecting

all the vicissitudes of Aristotelian mechanics and the few inspirations
of the Schoolmen, Lagrange acknowledged a century of evolution in the

subject that he was to codify.

Lagrange ascribes the two principles of the force of inertia (that

is, inertia) and the composition of motions to Galileo. He analyses the

method followed by Huyghens in his work on the centrifugal force

in the following way.
" For the estimation of forces, it suffices to consider the motion

produced in any time, finite or infinite, provided that the force

may be regarded as constant during this time. Consequently, whatever
the motion of the body and the law of acceleration may be, since, by
the properties of the differential calculus the action of every accele

rating force may be regarded as constant during an infinitely small

time, it will always be possible to find the value of the force which
acts on the body at each instant. This is done by comparing the

velocity produced in this instant with the duration of the same instant ;

or by comparing the distance which the body travels with the square
of the duration of the same instant. It is not necessary, even, that

the distance should be actually travelled by the body, it is sufficient

that it may be supposed to have been travelled by a compound motion,
since the effect of the force is the same in one case as in the other.

" 2

In a careful analysis of the use of mathematics, Lagrange remarks
that " Newton made constant use of the geometric method as simplified

by the consideration of the first and last ratios.
"

Euler's Mechanica

(1736) is, to Lagrange, the first great work in which Analysis was

applied to the science of motion. As for MacLaurin's Treatise on

Fluxions (1742), this was the first work which systematically used

1
Mfaanique analytique, Vol. I, p. 207.

2
Ibid., p. 210.



340 THE PRINCIPLES OF CLASSICAL MECHANICS

the rectangular components of the force instead of their tangential
and normal components.

Lagrange then comes to a principle which allows the determination

of theforce on bodies in motion, having regard to their mass and velocity.
66 This principle consists in that, in order to impart to a given mass
a certain velocity in some direction, whether the mass be at rest or
in motion, the necessary force is proportional to the product of the mass
and the velocity and its direction is the same as that of the velocity.

" l

Here Lagrange cites Descartes as having first realised the existence
of this principle, but as having deduced from it incorrect rules about
the impact of bodies. On the other hand, Wallis made successful

use of the principle to discover the laws of the transfer of motion in

the impact of hard or elastic bodies. And Lagrange continues,
"
Just

as the product of the mass and the velocity represents the finite force

of a body in motion, so the product of the mass and the accelerating
force which we have seen to be represented by the element of velocity
divided by the element of time will represent the elementary or nascent
force. Ajid this quantity, if it is considered as the measure of the effect

that the body can exert because of the velocity which it has assumed,
or which it tends to assume, constitutes what is called pressure ; but
if it is regarded as a measure of the force or power necessary to impart
this same velocity, it is then what is called motive force.

"

In modern language, the finite force of a body in motion is represent
ed by the product mv, and the "

elementary or nascent force
"

u *
bym 5T

Lagrange does not openly take sides between Euler's thesis

based on the law Fdt = mdv (where F is the static force) and d'Alem-
bert's thesis. This matter of principle interested him less than the
formal organisation of dynamics, which was the primary object of
his own treatise. Because of the work of his predecessors, the mechanics
of a particle had no mystery for him. Primarily, he sought to provide
statics, and then the dynamics of systems, with the general method
that they still lacked.

In turn, Lagrange analyses the four principles of dynamics the
conservation of living forces ; the conservation of the motion of the
centre of gravity ; the conservation of moments or the principle of areas

;

and the principle of the least quantity of action.

Lagrange says, legitimately, that the first of these principles goes
back to Huyghens

" in a form a little different from that in which it

1
Mfaanique analytique, Vol. I, p. 213.
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is presented now. "
Jean Bernoulli, following Leibniz, fashioned it

into the principle of the conservation of living forces. Daniel Bernoulli,

after applying it to fluids, extended it (in the Memoires of Berlin for

1748) to a system of bodies attracting each other, or tending towards

fixed centres, according to any law which is a function of distance.

The second principle is due to Newton and was revived by d'Alem-

bert.

The third principle, discovered by Euler,
1 Daniel Bernoulli,

2

and d'Arcy,
3 is only the generalisation of a theorem of Newton

concerning several particles attracted by the same centre.

D'Arcy went further and sought to make the principle of areas

into a principle of the conservation of action. Lagrange protests,
66 As if this vague and arbitrary nomenclature were the essence of the

laws of nature and could, by some secret property, elevate the simple
results of the known laws of mechanics into final causes.

" 4

The criticism which Lagrange directs against Maupertuis' principle
merits quotation.

"
Finally I come to the fourth principle, which I call that of least

action by analogy with that which Maupertuis gave under the same

name, and which the writings of many illustrious authors have since

made so well-known. This principle, looked at analytically, consists

in that, in the motion of bodies which act upon each other, the sum
of the products of the masses with the velocities and with the distances

travelled is a minimum. The author deduced from it the laws of

the reflection and refraction of light, as well as those of the impact
of bodies.

" But these applications are too particular to be used for esta

blishing the truth of a general principle. Besides, they have a somewhat

vague and arbitrary character, which can only render the conclusions

that might have been deduced from the true correctness of the principle
unsure. Further, it seems to me that it would be wrong to place
this principle, presented in this way, among those which we have

just given. But there is another way in which it may be regarded,
more general, more rigorous, and which itself merits the attention

of the geometers. Euler gave the first hint of this at the end of his

Traite des isoperimetres, printed at Lausanne in 1744. He demon

strated, in the trajectories described under the action of central forces,

that the integral of the velocity multiplied by the element of the curve

1
Opuscules, Vol. I, 1746.

2 Memoires de Berlin, 1746.
3 Memoires de FAcademie des Sciences, 1747.
4
Mecanique analytigue, Vol. I, p. 228.
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is always a maximum or a minimum. By means of the conservation

of living forces I have extended this property, which Euler discovered

in the motion of isolated bodies and which seemed confined to these

bodies, to the motion of any system of bodies which interact in any

way. From this has come a new general principle, that the sum of

the products of the masses with the integrals of the velocities, each

of which is multiplied by the element of distance travelled, is invariably
a maximum or a minimum.

" This is the principle which I now give, however improperly,
the name of least action. I regard it not as a metaphysical principle,

but as a simple and general result of the laws of mechanics.
" x

4. LAGRANGE's EQUATIONS,

Lagrange was able to put the equations of dynamics into a very

general and valuable form which has now become classical.

For each element, of mass m, of a system, Lagrange defines " the

forces parallel to the axes of coordinates which are used, directly,

to move it,
"

to be

d*x d*y d*z
~

He regards each element of the system as acted upon by similar

forces, and concludes that the sum of the moments 2 of these forces

must always be equal to the sum of the given accelerating forces which

act on each element. Thus he writes

Rdr + ...)
=

the given forces P, (), JR, . . . being supposed to act on each element

along the lines p, , r, . . .

Lagrange transforms the first sum by using the identity

d*xdx + d*ydy + dzzdz = d (dxdx + dydy + dzdz) -6 (dx* + dy* + dz*}.

By a change of variables in which each differential dx, dy, dz, . . .

is expressed as a linear function of the differentials d, dip? d<p, . . . ,

1
Mecanique analytigue, Vol. I, pp. 229, 230.

2 In the sense already encountered in LAGRANGE'S statics.
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Lagrange establishes that if is the transform of the quantity

i
(da* + dy* + dz*)

then the following equation is identically true.

Lagrange confines himself to forces P, Q, R, . . . for which the

quantity

Pdp + Qdq + Rdr +
is integrable, which, he declares,

"
is probably true in nature.

" This

enables him to suppose that

Sm (Pdq + Qdq + Rdr +...) = d SroZT(f, y9 (p. .
.).

The general equations of dynamics are then written in the form

sdf + y% + . . . - o

by putting
~,3T dT dV

with
* d* dzz

Having arrived at these results, Lagrange examines the particularly

interesting circumstance in which the variables f, yj, . . . are exactly
sufficient to characterise the motion of the system after all the equations
of constraint have been eliminated.

66
If, in the choice of the new variables , ^, . . . , regard has been

paid to the equations of condition provided by the nature of the proposed

system, so that the variations are now completely independent of

each other and that, consequently, their variations <5, <5y>,
. . . , remain

absolutely indeterminate, then the particular equations

will serve to determine the motion of the system, since these equations
are equal in number to the variables , ^, . . . on which the position
of the system at each instant depends.

" 1

1
Mecanique analytique, Vol. I, p. 291.
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Lagrange connects this analysis with the method of multipliers
which he introduced in statics. If the variables f, ip, . . . are greater
in number than the degrees of freedom of the system, they will be
related by the equations

L = M= N= ...

Then Lagrange's general formula becomes

Sdg + Wdy + ... + 16L + pdM + vdN + . . . =
whence the equations of motion

^ dL dM dN

aL BM
t -J- A. ~r -p U -r

oip oyj

which must be associated with the equations of constraint.

The method of multipliers, which Lagrange himself only applied
here to the systems of constraints which are now called holonomic,
is easily extended to non-holonomic constraints that is, to constraints
which cannot be expressed finitely as functions of f, ip, . . .

5. THE CONSERVATION OF LIVING FORCES AS A COROLLARY OF LAGRANGE *S

EQUATIONS.

Better than d'Alembert had been able to do, Lagrange established
that the conservation of living forces is a consequence of the equations of

dynamics, as long as the constraints are without friction and independent
of time.

For this purpose, Lagrange considers the true motion of the system
between the time t and the time t + dt ; that is, he substitutes dx,
Ay, dz, .. . and dp, dq, dr, . . . for dx, 6y, 6z, . . . and dp, dq, dr, . . . in
the general formula. This enables him to write

Q fdxd
2x H

U77I

If the quantity

Pdp + Qdq + Rdr + ...

is integrable, then
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" This equation includes the principle known by the name of the

conservation of living forces. Indeed, since dx* + dy
2 + && is the

square of the distance which the body travels in the time eft, then

x
-. ! will be the square of the velocity and m ~

dt2 dtr

will be its living force. Therefore

c fdx* + dy2 +
3?

771

will be the living force of the whole system, and it is seen, by means

of the equation concerned, that this living force is equal to the cpian-

tity 2H 2 Slim, which only depends on the accelerating forces

which act on the bodies and not on their mutual constraints. So

that the living force is always the same as that which the bodies

would have acquired if they had moved freely, each along the line

that it described, under the influence of the same powers.
" z

Thus Lagrange discovers the same principle as that formulated

by Huyghens to be a simple corollary of his general equations.

6. THE PRINCIPLE OF LEAST ACTION AS A COROLLARY OF LAGRANGE's

EQUATIONS.

Lagrange starts from the equation of living forces

d#2 + dy
2 + A

and differentiates it to obtain

STTI (udu + dll)
=

or

Sm (Pdp + Qdq + Rdr +...) = Smudu.

Substitution in the general formula leads to

or

Sm 7^; u2 -j- udu =

Mecanique analytique, Vol. I, p. 268.
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or again

[

*(***
dt

and finally

oC f 7 c fdx . dy dz \
oom uds = om I -=- ox + -=r- or 4- -=- oz .

J \<ft
{

dt
J

dt /

If it is supposed that the variations <5#, <5y, dz are zero at the ends of

the ranges of integration, then

<5S
J

muds = 0,

Lagrange concludes,
" In the general motion of any system of bodies,

actuated by mutual forces of attraction, or by attractions towards
fixed centres which are proportional to any function of the distance,

the curves described by the different bodies, and their velocities, are

necessarily such that the sum of the products of each mass by the

integral of the product of the velocity and the element of the curve

is necessarily a maximum or a minimum
; provided that the first and

last points of each curve are regarded as fixed, so that the velocities

of the corresponding coordinates at those points are zero.
" l

Maupertuis' principle is thus found to be valid, in a more general
form than that which Euler gave it. Moreover, this principle expresses
the extremal character of the living force between two known confi

gurations of the system. This Lagrange establishes in the following

way.
" Since ds udt, the formula

Sm uds

which is either a maximum or a minimum, can be put in the form

Sm u2dt or eftSmu2
.

Here Smw2
represents the living force of the whole system at any

time. Thus the principle reduces to the sum of the instantaneous

living forces of all the bodies, from the moment that they start from

given points to that when they arrive at other given points, is a maxi
mum or a minimum. It could be called, with more justice, the prin
ciple of the greatest or least living force, and this way of regarding it

would have the advantage of being general, since the living force of
a system is always greatest or least in the equilibrium condition.

" 2

1
Mtcanique analytique, Vol. I, p. 276.

2
Ibid., p. 281.
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7. ON SOME PROBLEMS TREATED IN THE " MECANIQTJE ANALYTIQUE."

Mecanique analytique includes a study of a great number of pro

blems which we are not able to treat in this book.

We note, however, that Lagrange initiated a general method of

approximation in dynamical problems which was based on the variation

of arbitrary constants ; that he developed the theory of small motions ;

that he studied the stabilty of equilibrium, and stated that equilibrium

is necessarily stable when the potential of the given forces is a minimum.

This demonstration was to be perfected by Lejeune-Dirichlet.

Lagrange also studied in detail the motion of a heavy solid of

revolution which was suspended from a point on its axis, and expressed

the solution in terms of elliptic integrals.

8. LAGRANGE'S HYDRODYNAMICS,

After describing the historical development of hydrodynamics,

Lagrange made a very important contribution to the subject.

As a supplement to Euler's variables, Lagrange introduced the

variable with which his name is still associated into the kinematics

of continuous media. The actual coordinates of an element of the

medium are considered as functions of the time and of the initial

coordinates a, 6, c, of the same element.

Lagrange established a fundamental theorem on the permanence

of the irrotational property in fluid motion.

If the fluid is first supposed to be incompressible and homogeneous,

and its density is taken equal to unity, Lagrange
1 also assumed that

the accelerating forces X, Y, Z which act on the elements of the fluid are

such that Xdx+ Ydy+ Zd* is an exact differential dV. Lagrange writes

fdu du du
,

du

dv
,

dv

s-x
+v ^

Sw
,

dw

The right-hand side of this equation, like the left hand side, must

be an exact differential Now the right-hand side can be written as

1 Mfaanique analytique, Vol. II, p. 268.
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Lagrange remarks that this quantity will be an exact differential

whenever udx + vdy + wdz is such,
" but as this is only a special

supposition, it is necessary to inquire in what cases it can and must
be appropriate.

"

Lagrange then verifies that when u, v, w are expanded as functions
of the time, in the form

V = . . . W =

it is necessary that, whenever udx + v'dy + w'dz is an exact differential,
that u"dx + v"dy + w"<fc, u'"dx + v'"dy + w'"dx, etc should
also be exact differentials.

He concludes,
" From this it follows that if the quantity udx +

vdy + wdz is a total exact differential when t = 0, it must also be
a total exact differential when t has any other value. Therefore,
in general, since the origin of t is arbitrary, and since t can either be
taken positive or negative, it follows that if the quantity udx + vdy +
wdz is a total exact differential at any time, it must be such at all other
times.

"
Accordingly, if there is a single instant at which it is not a total

exact differential, it can never become such throughout the motion.
For if it were a total exact differential at any instant, it would also

be such at the first.
"

This theorem of Lagrange is a fine example of discovery achieved

by a procedure which appears to be purely mathematical.
In sympathy with the spirit of the time, which readily assumed

that nature conformed to simple laws, Lagrange declared " that it

is possible to ask whether there are motions for which udx + vdy +
wdz is not a total exact differential.

"

To answer this question, he shows that in the motion

u = gy v = gx w =

the condition that udx + vdy + wdz should be a complete differential

is not satisfied, although it is possible to write

p = V- (*
2 + y2

) + funct. t.

2t

Now "
it is clear that these values of u, v, w represent the motion

of a fluid which rotates with a constant angular velocity equal to g
about the fixed axis of coordinates z. And it is known that such a
motion can always take place in a fluid. From this it can be concluded
that in the oscillations of the sea due to the attraction of the Sun and
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the Moon, it cannot be supposed that the cpiantity udx + vdy -j-

is integrable, since it is not so when the fluid is at rest with respect
to the Earth and only has the same rotational motion as the Earth. "

Lagrange extended his theorem to compressible fluids by intro

ducing an "
elasticity

"
that was a function of density alone, so that

is the differential of some function E(Q).
e
We also mention Lagrange's study of the motion of a fluid in an

almost horizontal shallow canal. This motion is governed by an

equation similar to the equation of the propagation of sound. The
wave velocity turns out to be proportional to the s<juare root of the

depth of the fluid if the canal has a uniform breadth.
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FOREWORD

It would seem that the valuable function of history is that analysing
the paths which scientific thought has travelled in the creation, in a

limited field like that of classical mechanics, of a rationally organised
structure.

The material for this study thus consist of the vicissitudes en

countered on these paths, the interaction between currents of thought
which were in principle divergent, or even opposed. It is difficult

material, sometimes deceptive, but always revealing of the profound
difficulties of research and for this reason instructive.

After Lagrange, after the efforts of the students of the XVIIIth

Century, mechanics had attained this rational structure. It lasted

until the impact of the needs of relativistic and quantum physics.
The intervening period was a didactic one, which we are reluctant

to deal with for fear of duplicating the books that have, rightly, become
classical.

That is why, in the following pages, we shall confine ourselves

to some characteristic features of the evolution of classical mechanics

after Lagrange. We shall be concerned with discussions of the prin

ciples themselves, and with certain isolated facts to which it seems

natural to attach a historical significance because of their influence

on the later development of mechanics.

23



CHAPTER ONE

LAPLACE'S MECHANICS (1799)

1. LAPLACE AND THE PRINCIPLES OF DYNAMICS.

We shall discuss here only that part of Laplace's work which is

directly concerned with the principles of dynamics.

Laplace referred the motion of bodies to " an infinite space, at

rest and penetrable to matter.
" x

The concept of force evoked the following comment.
" The mechanism of that remarkable agency, force, by which a

body is moved from one place to another, is and always will be unknown.
It is only possible to determine the laws which govern its behaviour.
A force acting on a particle will necessarily set it in motion, if there
is nothing to prevent this. The direction of the force is that of the

straight line which the particle is made to describe.
" 2

Laplace defined inertia as the tendency of matter to remain in

its state of rest or motion. That the direction of motion was constant

appeared obvious to him ; with respect to its uniformity, he pointed
out that the law of inertia was the simplest conceivable law, and that
it was justified by astronomical and terrestrial observations.

The Laplace endeavoured to prove that " force
"

is proportional
to the velocity. He is concerned here, of course, with the force of
a moving body.

Let v be the velocity of the Earth, common to all bodies on its

surface, and / be the force which a particle M experiences because

of this motion. The ration- is an unknown function of /, say <p(f).

The form of this function has to be found by a method which has
recourse to experimental observation.

Suppose that M is also acted upon by another force, /', which

1
Mecanique celeste, Part I, Book I, p. 3 (1799).

2
Ibid., p. 4.



LAPIACE 355

combines with f to form a resultant F according to the parallelogram
rule. Under these conditions the particle will acquire a certain velocity
U.

Laplace now argued that /' could be considered as "
infinitely

small
"
compared with /.

" The greatest forces that we are able to

impress on bodies on the surface of the earth are much smaller than

those that it experiences because of the motion of the earth.
"

Accordingly, the relation

yields

J

if /'
2 is neglected in comparison with /. It follows that

g> (F) = <p (/) + f
-f <p'(f) with ?'(/)

=&
J dt

The relative velocity of M with respect to the Earth, U v,

equal to

F,p(F)-f<p(f)

which can easily be shown to lead to the equation

is

From this it follows, in the general case in which the directions of f
andf are not the same, that this relative velocity must have a compo
nent perpendicular to that of the impressed force/' unless <p'(f) vanishes.

(It is assumed that the scalar product / /' is not zero.)

At this point Laplace appeals to experiment.
"
Thus, imagine that a sphere at rest on a smooth horizontal plane

is hit by the base of a right cylinder, moving along the direction of

its axis which is supposed to be horizontal. The apparent relative

motion of the sphere should not be parallel to this axis, for all positions

of the axis with respect to the horizon. Here is a simple means of

finding out by experiment whether <p'(f) has an appreciable value

on the Earth. But the most accurate experiments do not demonstrate

any deviation of the apparent motion of the sphere from the direction

of the impressed force. From which it follows that on the Earth

<p'(f) is very nearly equal to zero. Its value, however inappreciable
it might be, would make itself apparent in the length of the oscillations
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of a pendulum, which would vary according to the position of the

plane of its motion with respect to the direction of the Earth's motion.

The most accurate observations do not reveal any such difference.

We must then conclude that <p'(f) is inappreciable, and can be supposed
to be zero, on the Earth.

" If the equation q>'(f)
= was obtained whatever the force/might

be, <p(f) would be constant and the velocity would be proportional
to the force. It would also be proportional to the force if the

function <p(f) were only composed of a single term, since otherwise

V'(f) would never be zero. Therefore, if the velocity were not propor
tional to the force, it would be necessary to suppose that in nature

the function of the velocity which represents the force consists of

several terms, which is unlikely. It would also be necessary to suppose
that the velocity of the Earth is exactly that which the equation <p'(f)

requires, which is against all probability. Moreover, the velocity
of the Earth varies in the different seasons of the year it is about a

thirtieth greater in winter than in summer. This variation is still

more considerable if, as everything seems to show, the solar system
is in motion through space for whether this progressive motion

combines with that of the Earth or whether it is opposed to it, during
the course of the year there must result large variations in the absolute

motion of the Earth. This would modify the equation concerned

and thus the relation of the impressed force to the absolute velocity,
if this equation and this velocity were not independent of the motion
of the Earth. However, observation has not revealed any appreciable
variation.

" 1

Laplace concludes,
" Here then are two laws of motion ; namely,

the law of inertia and that according to which the force is proportional
to the velocity, and these are provided by observation. They are

the simplest and most natural that could be imagined and undoubtedly

they derive from the nature of matter itself. But since this nature

is unknown they are merely, for us, observed facts ; moreover, the

only ones which mechanics borrows from observation.
" 2

Laplace next gave his attention to " forces which appear to act

in a continuous manner, like gravity.
"

Here, like Carnot, Laplace
considers that gravity acts in successive impulses at infinitely small

intervals of time. " We suppose that the interval of time which

separates two actions of some force is equal to the element of time dt.

It is clear [that the instantaneous action of the force] must be supposed
to be proportional to the intensity and to the element of time in which

1
Mecanique celeste, Part I, Book I, p. 17.

2
Ibid., p. 18.
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it is supposed to act. Thus, representing the intensity by P, it must

be supposed, at the beginning of each instant A, that the particle

is actuated by a force Pdt and that it is moved uniformly during that

instant.
" l

2. THE GENERAL MECHANICS COMPATIBLE WITH AN ARBITRARY RELATION

BETWEEN THE " FORCE " AND THE VELOCITY.

In the last we have seen Laplace emphasise the communication
of motion without seeking to elucidate the original causes of the motion.

He thus belongs to the tradition of d'Alembert and Carnot. In parti

cular, like Carnot, he asserted the experimental character of the laws

of mechanics. His analysis this time entirely original of the notion

of the force of a body in motion led him, by an innate propensity to

purely mathematical generalisation, to an extension of dynamics
which encompassed the ideas that the physicists were to use, a century
later, in special relativity.

This extension was the subject of Chapter VI of the first part
of Book I of the Mecanique celeste. The chapter is called " On the

laws of motion of a system of bodies associated with all possible mathemat

ical relationships between the force and the velocity.
"

Laplace remarks (as we have mentioned in the preceding paragraph)
that there is an infinite number of self-consistent ways of expressing
the " force

"
in terms of the velocity. This infinity corresponds to

all possible forms of the relation between the force and the velocity.

F=<p(v)

The general equation of the dynamics of systems is

and is valid when the " force
"

is proportional to the velocity. In

order to obtain the generalisation which is sought, it is sufficient to

assume that the body of mass m is actuated by a " force
" whose

components parallel to the axes are

doc dy dz
*w 2s

* (v] Ts * (v] ds-

In the instant following this force becomes

. . dx
,

* / , . dx\
9(t))

_ + d ^ (v) ._j
etc.

1
Mtcanique celeste. Part I, Book I, p. 19.
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, . dx

f^dTS +

Then the general equation of the dynamics of systems takes the

form

*)-"*)}-*
Here , -j- and - appear as products with the function , which

at at at v

reduces to unity
" for that natural law according to which the force

is proportional to the velocity.
"

Laplace remarked that this difference makes the solution of the

problems of mechanics very difficult.

But the principle of the conservation of living forces, the principle

of areas and the principles of the centre of gravity and of least action,

can be extended to this case.

The extension of the principle of living forces is obtained by sub

stituting dx9 dy and dz for 6x, dy and dz in the general equation. Thus,
if U is the function of the forces,

J
mvdv-(p'(v) =U + h with <p'(v)

=

" The principle of the conservation of living forces therefore obtains

for all the possible mathematical relationships between the force and
the velocity, provided that the living force of a body is understood

as the product of its mass and twice the integral of the product of

its velocity and the differential of the function of velocity which

represents the force.
"

In the same way, Laplace extended the theorem of quantities
of motion to an isolated system. He generalised the principle of areas

to the form

fxdy ydx\ cp (v)m J J
. TJU. constant.

\ dt ) v

Finally, he wrote the generalised principle of least action as

Thus, as early as 1799, Laplace was able to formulate the general
mechanics of which the dynamics of special relativity, in a given
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reference system, is only a particular case. However, there is a slight

difference of meaning between Laplace's purely mathematical concep
tion and that of the modern physicists. To Laplace, the mass m of

a particle remained constant and it was the momentum which was

no longer proportional to the velocity. In the physical theory of

relativity, on the other hand, the mass M becomes a function of the

velocity while the momentum remains in the form Mv.
In order to pass from one of these systems to the other, it is suffi

cient to put
cp(v)M = m
v

3. LAPLACE AND THE SIGNIFICANCE OF THE LAW OF UNIVERSAL

GRAVITATION.

In his Exposition du Systeme du Monde Laplace recalls that when
Newton formulated the principle of universal gravitation, Descartes

had precisely managed to " substitute the intelligible ideas of motion,

impulse and centrifugal force for the occult quantities of the Aris

totelians.
" 1 His system of vortices met with the approval of the

philosophers,
" who rejected the obscure and meaningless doctrines

of the Schoolmen, and who believed that they saw those occult features,

that French philosophy had so legitimately banned, reborn in the

attractions.
" 2

Laplace opined that Newton would have deserved this reproach if

he had been content to attribute the elliptic motion of the planets
and comets, the inequalities of the motion of the Moon, of the terres

trial degrees of latitude and gravity, to the universal attraction without

showing the connection between this principle and these phenomena.
But the geometers, rectifying and generalising Newton's demon

strations, had been able to verify the perfect agreement between the

observations and the results of the analysis.

Laplace regarded
"

this analytical connection of particular facts

with a general fact
"

as a properly constituted theory. And he flattered

himself with having obtained one in the deduction on the effects of

capillarity from a short range interaction between molecules ;
a true

theory, one which expresses the rigorous agreement of the calculation

and the phenomena.
Here we see portrayed the dogma of universal attraction. However
and this is essential it is deprived of the a priori character of the

1 P. 377.
2 P. S78.
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assertion of a quality in the sense that the Schoolmen used. Although
it must certainly have passed through his mind, Laplace did not use

the term dogma in this connection. For his attitude, supported at

many points by experiment, was not necessarily of a dogmatic character.

Laplace assumed, moreover, that the following question could be

asked "
Is the principle of universal gravity a primordial law of

nature, or is it merely the general effect of an unknown cause ?
" l

Laplace also asked whether the propagation of the attraction

was instantaneous. An attempt to explain the secular acceleration

of the Moon's motion had led him to assume that, if the velocity of

propagation was finite, it must be seven million times greater than

that of light. . . . Thus he declared for an instantaneous propagation.

Further, he wrote,
" Doubtless the simplicity of the laws of nature

must not necessarily be judged by the ease with which we appreciate
them. But since those that seem most simple to us agree perfectly
with all the phenomena, we are well justified in regarding them as

being rigorous.
"

We see that Laplace's attitude was a moderate one, and that,

to him, the certainty of a natural law depended on a kind of passage
to the limit in the mathematical sense of the term.

1 P. 384.



CHAPTER TWO

FOURIER AND THE PRINCIPLE OF VIRTUAL WORKS (1798)

We owe to Fourier a demonstration of the principle of virtual

works which is based on the equilibrium of the lever, and which has

been used as the basis of the presentations of the principle that are

now classical. 1

Fourier borrowed the notion of virtual velocity from Jean Bernoulli.2

On the other hand, he called the moment of a force the product (change
of sign) of this force with the virtual velocity of the point to which

it is applied.
If a point is in equilibrium under the action of n forces, Fourier

first verifies that the total moment of these forces is zero for an arbi

trary displacement of the point.

He then seeks the total moment of two equal and opposed forces
"
applied at the ends of a straight inflexible line

" and acting in the

direction of this line.

"
If, at first, the two points at which these forces act are regarded

as entirely free, and if each of the points is taken as the fixed centre

of the force which acts on the other, it will be easy to see that, since

the distance apart of the points is a function of their coordinates,

the virtual velocity of the first will be equal to differential of the distance

when the variation is made with respect to the coordinates of this

point alone. It will be the same for the second point. So that the

total moment, which is proportional to the sum of the virtual velocities,

will also be proportional to the sum of the partial differentials which

represent these velocities that is, proportional to the complete dif

ferential of the distance between the two points.

Thus the total moment of the two forces is zero if the distance

between the two points is constant.

If the two forces are repulsive, the total moment is negative when

1 Memoire sur la Statique, contenant la demonstration du principe des vitesses vir-

tuelles et la theorie des moments, Journal de VBcole poly-technique, 5th cakier, 1798.
2 See above, p. 232.



362 THE EVOLUTION OF CLASSICAL

the distance between the two points increases and positive when this

distance decreases. Converse results are obtained when the forces

are attractive.

Fourier then considers " two inflexible (and perfectly smooth)
surfaces which resist each other

" and studies the total moment of

their mutual reactions in any disturbance of the system. He considers

two points on the common normal to the surfaces at the point of con

tact and such that one lies inside each surface. These two points

cannot be closer together than they are in the equilibrium position.

So that either their distance apart increases or it does not change when

the system is disturbed.
" The first distance is the smallest of all those which occur when

the position of the two surfaces is varied in such a way that they remain

in contact with each other. Since the law of continuity is obeyed,
it is necessary that the differential should be zero.

"
Since the total

moment of the reactions is proportional to the variation of the distance

of the two points at which they act, it therefore remains zero, as long

as the surfaces remain in contact, whatever the displacement may be.

In order to generalise these results Fourier observes that the mo
ments combine and decompose like forces (if a solid body is concerned).

If a solid body is considered to be in equilibrium under the action

of n forces it is established that the total moment of the n forces is

necessarily zero. The converse is also true.

Fourier then imagines a system of bodies to be connected by in-

extensible threads and acted upon by any forces which are such that

there would be equilibrium independently of any external resistance.

The forces which act on each body cancel each other out. Apart
from the forces directly applied to the body, these forces comprise
the tension of the threads between points of this body and points
of neighbouring bodies.

" That is why, in considering simultaneously all the forces which

act on all the bodies, their total moment can be said to be zero for

all conceivable disturbances even for those which the presence of

the threads does not allow. It is now necessary to select, from among
these disturbances, those which satisfy the equations of condition ;

and, for these particular disturbances, to discover the value of the

total moment of those forces which are due to the tensions alone.
"

This value is zero. For each of the threads is acted upon by two

equal and opposed forces, and the distance between the extremities

is constant. From this it follows that the total moment of the applied
forces alone is also zero.

If the distance between the ends of the threads does not remain
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constant, it can only become smaller. Since the forces of tension

tend to decrease this distance, the total moment of the forces of tension

is negative. Therefore, the sum of the moments of the applied forces

alone can only be positive for disturbances of this kind.

Fourier next considers an " undefined assembly of hard bodies
"

whose shapes and dimensions are arbitrary and which are supported

upon each other. Each body is in equilibrium under the action of

the forces which are applied to it and the resistances of neighbouring
bodies. If two neighbouring bodies always remain in contact during
the disturbance of the system, albeit at different points, the moment
of their reactions is zero. It is negative if the bodies happen to separate.

** In considering the combination of all the forces which act on all

the bodies, it is certain that some of the moments must be zero for

all the disturbances which can be imagined even for those which

may be prevented by the mutual impenetrability of the solids. Now,
for displacements compatible with the latter condition, the moment
of all the forces of pressure is either zero or negative. Therefore,

for all the possible disturbances, the sum of the moments of the applied
forces alone is either zero or positive

l it is zero when the equations
which express the condition that contact must take place are satisfied,

and positive whenever two bodies which touch each other, or act

upon each other, become entirely separated. There is no possible
disturbance for which the sum of the moments can be negative."

Fourier treats incompressible fluids by considering that their

different points are subject to an interaction which opposes every
variation of the distances between the points.

He then proceeds to the logical reduction of the theorem of virtual

work to the principle of the lever. For this purpose he replaces the

system by
" a simpler body which can nevertheless be disturbed in

the same way.
"

Let p, j, r, s, . . . be the points of the given system to which the

forces P, (), jR, S, . . . are applied. The displacement which gives

the points p, g, r, s, . * . the initial virtual velocities dp, dq, dr, ds, . . .

in the directions of the lines p', q\ r', s', . . . is considered. The body
substituted for the system will also pass through the points p, g, r, s, . . .

Similarly, its elements will have virtual velocities dp, dg, dr, ds, . . .

along p', 9', r', s', . . .

Fourier draws a plane perpendicular to the line p', and passing

through the point p ; also a plane perpendicular to q
f

through the point

1 Since FOURIER'S moment is, apart from a change of sign, the modern virtual work,
this conclusion is the one which is usually expressed in the form,

" The virtual work of

given forces is zero or negative for every displacement compatible with the constraints.
"
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q. These two planes intersect in the straight line d. A perpendicular,

ft, is dropped from p to d. At the intersection of h and d, and in the

plane perpendicular to q' passing through 5, the line h r

is drawn per

pendicular to d. From q the line h" is drawn perpendicular to ft'.

The straight lines ft and h' are considered as the arms on an angular

lever with axis d. The straight line h" is considered as a straight

lever with axis d (in the plane perpendicular to q' drawn through q).

Ifp is displaced along p' (by dp) the end of the arm h' is correspond

ingly displaced, and the axis d can evidently be chosen in such a way
that the displacement of q (required by the straight lever) is exactly

equal to dq. An assembly on analogous levers can be imagined bet

ween the point q and the point r, between the point r and the point s, . . .

so that the system of levers thus constructed is susceptible of the

same displacements as those attributed to the original system, and

of this displacement alone.

Fig. 107

Suppose that the forces P, (), .R, S, . . . have a total moment
which is zero for the displacement dp, dg, dr, ds, . . . Because of the

principle of the lever and the principle of the composition of forces,

the forces P, (), jR, S, . . . will necessarily produce equilibrium in the

system of levers constructed in the way that has been described.

We shall show, by reductio ad absurdum, that these same forces

will leave the original system in equilibrium. Indeed, if the points

p, g, r, s, . . . assume the velocities dp, dg, dr, ds, and if it is assumed



FOURIER 365

that the point p of the system of levers is connected with the point p
of the given system, the assembly of levers will be carried along in

the displacement of the given system, and the points q and g, r and r, . . .

of the two systems will not separate.
Therefore it can be supposed that there are connected not only

the pointsp and p, but also the pairs of points q and <jf,
r and r, s and 5, ...

in the two systems. Accordingly the forces P, (), U, S, . . . will produce
the motion of the two systems connected at the points p, g, r, s, . . .

Now the same forces cancel each other out when applied to the system
of levers alone. The reunion of the two systems could not perturb
this equilibrium. Whence it is impossible that the forces P, Q9 jR, S, . . .

should produce the movement of the given system. This is true

for any other displacement for which the total moment of the forces

is zero. " And from this can be deduced the following particular

conclusion, which includes the principle of virtual velocities. If,

of all the possible displacements, there is none which corresponds
to a zero moment, there must be equilibrium.

"

Moreover it suffices that the sum ofthe moments should not be negative.

Indeed,
"

it is easily proved, by the theory of the lever alone, that

these forces applied [to the levers alone] cannot produce a displacement
for which the total moment is positive. And since it is supposed
that the presence of obstacles makes all other displacements impossible,
it is necessary that when the forces act on the levers, they maintain

them in equilibrium. This will still be true if the first system is applied
to the second. Therefore these forces cannot separately produce
the displacement in question in the first system. For this displacement
would also accur if the second system were applied to the first, and

we have just seen that it is then impossible.
"

Conversely, if some powers maintain any material system in

equilibrium, there can be no displacement of the system possible

for which the sum of the moments can be negative. This is proved
in the following way. If it is assumed that the system can move
into such a position that the moment of the forces is negative, it must

be concluded that equilibrium does not exist. For the equilibrium
would not cease to exist if this displacement became the only possible

one. It is easy to represent this last effect by imagining assemblies

of levers, similar to those which have been described above, between

all the points p, 5, r, s, ... of the system, and capable of the virtual

velocities which correspond to the displacement concerned. It is

unnecessary to show that the equilibrium will not be disturbed by the

addition of these levers. Now it is impossible that there should not

be motion, because the forces will find themselves applied to an as-
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sembly of levers which could not fail to be displaced if the sum of the

moments of the forces were negative, just as it follows from the theory
of the lever. Therefore it is necessary that the sum of the moments

of the forces should never be negative.
"

Finally Fourier introduced the distinction between bilateral and

unilateral constraints.
" Whenever the displacements of which the body is capable are

determined by the equations of condition which they must satisfy,

the total moment of the forces cannot be positive when the forces

are in equilibrium. For if this moment were positive, the moment

corresponding to the contrary displacement would be negative. Now
as this latter displacement is equally possible, since it satisfies the

equations of condition, the forces could not cancel each other out. . . .

That is why it is necessary, in this case, that the sum of the moments

of the forces must be zero in order that there should be equilibrium.

This is the true meaning of the principle of virtual velocities. But

if the displacements are not prohibited by the equations of condition

which often happens the equilibrium can subsist without the

moment of the forces being zero, provided that it is not negative.
"

In connection with this demonstration, Jouguet has remarked

that Fourier thus established the principle of the equivalence of cons

traints, which may be stated in the following way.
" Let there be a system of points acted upon by forces F and bound

by constraints (L). Replace the constraints (L) by the constraints

(I/) which preserve the same elementary mobility as the constraints

(L). In order that the system should be in equilibrium, it is sufficient

and it is necessary that the forces F should be in equilibrium under

the constraints (L
7

).

" 1

Fourier's analysis breaks down if the constraints (L) and (I/)

introduce resistances to motion, even if (I/) and (L') assure the same

kinematic mobility of the system. "It is not only the kinematic

mobility which must be preserved but also, as it were, the dynamical

mobility.
" 2

1 L. AT., Vol. II, p. 171.
2
Ibid., p. 172.



CHAPTER THREE

THE PRINCIPLE OF LEAST CONSTRAINT (1829)

The principle of least constraint was stated by Gauss in a paper
called Vber ein neues Grundgesetz der Mechanik in Volume IV of the

Journal de Crelle (1829).
1

He wrote,
" It is known that the principle of virtual velocities

makes the whole of statics a matter of analysis, and that d'Alembert's

principle, in its turn, reduces dynamics to statics. In the nature

of things, there can exist no new principle in the science of equilibrium
and motion which is not included in the two preceding principles,
or which cannot be deduced from them.

44
However, such a principle may not be without value. It is

always interesting and instructive to regard the laws of nature

from a new and advantageous point of view, so as to solve

this or that problem more simply, or to obtain a more precise pre
sentation.

44 The great geometer [Lagrange] who succeeded so brilliantly

in constructing mechanics from the principle of virtual velocities,

had no disdain to generalise and to develop the principle of least action

in Maupertuis' sense, but rather, he used it to great advantage.
'*

To Gauss, the principle of virtual velocities was the prototype
of the principles of mechanics. But this principle was not intuitive,

and demanded a special treatment in order that it might be extended

from statics to dynamics. That is why Gauss believed it useful to

state, in the following form, a new principle.
" The motion of a system of particles connected together in any

way, and whose motions are subject to arbitrary external restrictions,

always takes place in the most complete agreement possible with

the free motion (in moglich grosster ffbereinstimmung mil der freien

Bewegung) or under the weakest possible constraint (unter moglich
kleinstem Zwange). The measure of the constraint applied to the

1 The complete Works of Gauss (french edition), Vol. V, p. 25.
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system at each elementary interval of time is the sum of the products
of the mass of each particle with the square of its departure from
the free motion. "

Let m, m', m" . . .

be the masses of the points of the system and

a7 a , a ...

be their positions at the time t. Let

6, b\ b" ...

be the positions which they would assume at the time t -j- dt under the

action of the forces which are applied to them, and because of their

velocities at the time J, if it were supposed that they were completely
free of all constraint. The actual positions, c, c', c", ... of the different

points will be such that, while being compatible with the constraints,

they minimise the sum

The equilibrium is evidently a special case of the general law according
to which

m(a&)
2 + ro'(a'&')

2 + 'V 6")
2 + -

is a minimum.
Gauss wrote,

" This is how our principle can be deduced from

principles already known. The force which is exerted on the particle m
is evidently composed of two ; first, the force that, taking account
of the velocity at the time J, brings the particle from a to c in the time
dt ; secondly, the force which, in the same time, would bring the same
element from c to 6, if it were supposed to be free and to start from
rest. [This is the same decomposition as that which d'Alembert used.]

Similarly for all particles.
"
By d'Alembert's principle the points m, m\ m" must be in equi

librium, because of the constraints of the system, under the sole action

of the second forces acting along c6, c'6', c"6", . . . According to

the principle of virtual velocities this equilibrium requires that [the
sum of the virtual works] should be zero for every virtual displacement
which is compatible with the restraints. Or, more accurately, this

sum should never be positive.
" Then let y, y', y", ... be different positions of c, c', c", . . . which

are compatible with the constraints. Let 0, 0', 6", ... be the angles
that cy, c'y', c"y", . . . make with c6, c'b', c"6", . . . Then

mc& cy cos

will be zero or negative.
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" Since

yb* = cb2 -f- cy
2 2ci -

cy cos 6

it is clear that

y>^6 2 = Vm7&2 + m~^> 2 mc6 -
cy - cos 0.

Therefore

will always be positive. Therefore, finally,

will always be a miniraum. Q. E. D. "

In conclusion, Gauss emphasised the fact that free motions, when
they are incompatible with the constraints, are modified in Nature
in the same way that experimental data are modified, by the method
of least squares, so as to be compatible with a necessary relation bet
ween the measured quantities.

24



CHAPTER FOUR

RELATIVE MOTION
RETURN TO A PRINCIPLE OF CLAIRAUT

CORIOLIS' THEOREMS
FOUCAULT'S EXPERIMENTS

1. RETURN TO A PRINCIPLE OF CLAIRAUT (1742).

The first outline of a theory of relative motion appeared, as we

have seen, in Huyghens' De vi centrifugal

Though he did not resolve all the difficulties of relative motion,

Clairaut had the indisputable merit of generalising Huyghens' concep

tions. This he did in a paper called Sur quelques principes qui donnent

la solution d*un grand nombre de problemes
2 which could not have

escaped the attention of Coriolis.

Clairaut set out to find " what happens to any system of bodies,

actuated by gravity or other accelerating forces, when this system
is attached by some part to a plane and is carried with this plane

in some curvilinear motion. " He introduced " the general principle

for finding the motions of systems of bodies carried along by the planes

on which they are placed
"

in the following way.
"
Imagine that the rectangle FGHI is placed between two curves

AB and CD and that, when the corner G is moved at will on the curve

AB^ the corner I follows the curve CD.
"
Suppose now that one of the bodies M of the system given,

accelerated by gravity or by any other forces, describes the curve

MJU, because of the properties of the system.
" We seek the accelerating or retarding force that the motion of

the plane FGHI gives the body M. We shall start by tracing the curve

PQ that the point M would describe, during the motion of FGHI9

if it were fixed in the plane FGHI. We shall then determine the velo-

1 See above, Part II, p. 194.
2 Memoires de VAcademic des Sciences, 1742, p. 1.



RELATIVE MOTION 371

city with which it would move along this line, which will only depend

on the given velocity of G and the curves AB and CD. This done,

we shall seek the accelerating forces which it is necessary to suppose

distributed in the space AB, CD in order that the body M, left to

itself with the velocity that it has at M on Mm, might travel the line

PQ Let MS, for example, represent what this force would be at M.

I say that by producing MS and taking MT = MS, the straight

line MT represents the force by which the motion of the plane FGHI

alters the velocity of M on

H

f"

" To prove this, I start by distinguishing the particle M from the

fixed point of FGHI which corresponds to it, and I call this fixed point

M'. I then remark that if, at the instant that the bodyM has travelled

along M/* and the body M' has traveUed along M'm, the curves AB

and CD were suddenly removed and the plane FGHI were allowed

to move uniformly with the velocity of M' along M'm, the system

which is on the plane FGHI would necessarily move in the same way

as if this plane were fixed. I add to this remark that the reason why

the motion along the arc Mm is altered in the curvilinear motion

of the plane FGHI is that, in order to produce the curvilinear motion,

it is necessary to imagine that the body M' receives an impulse MS at

the instant that it has traveUed along M'm, and that the body M does
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not receive this impulse. For if the body M received this impulse,
the motion of the system would be exactly the same as if the plane
FGHI were fixed. Given this, I say that it is the same whether M'
receives an impulse and M does not, or whether M receives it in the

opposite direction and M' does not.
" Therefore the plane FGHI can be regarded as fixed and it can

be supposed that the body experiences the action of the given forces

as well as the action of the forces MT. "

In short, in this way Clairaut arrives at an estimate of the quantity

my r in the relative motion. This estimate is Fa mye, where ye

is the dragging acceleration.

We know that this principle is incomplete. However, it led Clairaut

to correct results when he confined himself to applying the principle

of kinetic energy to relative motion. For it is known that Coriolis'

complementary force of inertia does no work.

Incomplete though it may be, Clairaut's argument has a synthetic

value and, for this reason, it is of some use to complete it. This,

in fact was accomplished by Joseph Bertrand in 1848.1

We shall not follow Bertrand's analysis here, but shall present
an alternative method by which the argument may be completed.

With respect to a fixed reference system in which the law mya
= Fa

is valid, the particle M describes the curve MMX between the times t

and t + dt.

Under the same conditions its coincident point M' is connected

to a moving reference system (S) which has any arbitrary continuous

motion relative to an absolute reference system. It then describes

the curve M'M{ between the times t and t -f- dt. If the particle M
had retained the absolute velocity va which it had at the time ,

it

would have travelled to M2 in the time dt, where MM2
= vadt. Simi

larly, if M' had retained its absolute velocity t?e , it would have travelled

1 Journal de VScole polytechnique, Vol. 32, p. 148, 1848.

In this connection, J. BERTRAND brings grist to the mill of history.
" Too often,

after having studied analytical mechanics, a man helieves it is useless to seek to com
plete this study by the reading of the scattered works with which the predecessors of

LAGRANGE enriched the academic collections of the XVIIIth Century. I believe that

this tendency, unfortunately very common, is such as to destroy the progress of me
chanics, and that it has already produced unfortunate results. The too common custom
of deducing formulae has, to some extent, led to the loss of a proper respect for the

truths of mechanics considered in themselves.
"

In BERTRAND'S opinion,
" M. Coriolis, without knowing it, has done the same as

the illustrious Clairaut.
"

That is his opinion. It is true that CORIOLIS does not refer to CLAIRAUT. It is

also true that he went further than him. But it seems unlikely to us that CLAIRAUT'S

paper could have been omitted from CORIOLIS' reading.
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to MS, where M'M^ = vedt. Follow on let ~vr be the relative velocity

of M in the system (S) at the time t. In the triangle MM2M^ using

the composition of velocities (va
= ve + vr),

it is seen that M^M2
= vrdt.

Now give the reference system (S) and the particle M the same

absolute motion defined in the following way first, a translation

jVf'Mg = _ -
ye<fr

2 which annuls the deviation M%M( of the point M';

secondly, the rotation wdt at Mg, to annul the effect of the absolute

rotation of the system (S), considered as a solid, between the times t

and t + dt. Thus, taking account of the motion which it originally

possessed, the system (S) will have experienced a rectilinear translation

M'Mg of velocity ve .

M2

Mjft+ctr)

Fig. 109

Correspondingly, the particleM experiences the translation
^

and, to the third order, a displacement

vdt A MiM2
- (S A vr)dt*.

These two displacements of the particle M in absolute space can

be fictitiously imputed (as Clairaut realised) to forces mye and

2m (co A ^r) respectively.

Therefore, between t and t + dt, the fundamental law of can be

written in the system (S), corrected in its motion in this way (that is,

in rectilinear and uniform translation with velocity vc),
in the form

myr
== Fa (mye + 2m (CD A vr)}.

This completes and rectifies Clairaut's principle.
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2. CORIOLIS' FIRST THEOREM.

CoriohV name has remained associated with the law of the com

position of accelerations. This law belongs to the domain of pure

kinematics that is the way it is taught at present, before its dynamical

consecpiences are explored.

Historically, Coriolis was concerned with the theory of water-

wheels when he embarked on his study of relative motion. This

theory had already been studied by Jean Bernoulli, Euler, Borda,

Navier and Ampere. To progress beyond the earlier work, it was

necessary to study the following general problem.
" To find the motion of any machine in which certain parts are moved

in a given way.
"

Here we shall follow Coriolis' first paper, which was read to the

Academie des Sciences on June 6th, 1831, and was printed in the Journal

de rcole polytechnique.
1

Coriolis considers two reference frames. One, Ox^y^z^ is fixed

absolute. The other, OXYZ, is movable relative. Let f, 77,

be the absolute coordinates of the origin of the movable frame and

(a, a', a"), (ft, b\ V'}, (c, c', c") be the direction cosines of the mov

able axes with the fixed axes.

The constraints which exist during the motion are supposed to

be perfect and expressible in finite terms in the relative coordinates.

Let be the force of constraint applied at a point of the system.

Using the method of Lagrange multipliers, Coriolis writes the projections

of the force on the movable axes as

dL m
'

dx
^ dx

2 ' iL m

Returning to the fixed axes, Coriolis calculates the total force

the given force and the force of constraint acting on one point of

the system. Briefly, this may be written

(A) mya
= P +

Coriolis sums the equations (A) after multiplying them by the

relative displacement dsr . Under these conditions the forces due to

1 21st caHer, 1832, p. 268.
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the constraints vanish. But in order to perform a particular calculation,

it is necessary to express the absolute accelerations ya as functions

of the relative coordinates and velocities as well as the dragging motion.

For this purpose Coriolis distinguishes total differentials of the

true motion, indicated by the symbol d, from the differentials obtained

by varying only the quantities (a, 6, ... c
ff

). This differentiation

is indicated by the symbol d^ and corresponds to a variation of the

orientation of the movable system in which the quantities x, j, s,

$, 77, C remain constant.
46 If the points are not displaced relatively to the moving axes,

they only have the dragging motion l
corresponding to these axes,

whose origin is supposed immovable and which only have a rotational

motion about this origin.
"

Thus,
"
by omitting to write the denominators dt2 under the dif

ferentials," Coriolis writes the components of the absolute acceleration

in the form

+ cd*z + 2dxda + 2dydb + 2dzdc

(B) d*yi = ...

Terms of the equation (A) such as

m

then appear to him as "
the components, with respect to the fixed axes,

of the forces Fe which would produce the motion which each point would

take if it remained in the same place with respect to the moving axes.
"

We have quoted from the paper of Coriolis in order to illustrate the

development of his thought, how he did not pause on the kinematic

aspect of the problem, but went directly to the cause that would be

able to produce the dragging motion (in the modern sense now).
Then Coriolis returns to the moving axes by first substituting

the equations (B) in the equations (A), then by projecting on the

moving axes. He obtains the relation

- 2mdy(adb + o!dV + a"db") + 2mdz(adc + a'dc' +
_ .

dL
.

dM

+ ...

1 This definition does not coincide with that which is now common.
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By summing for all the points of the system, after multiplying

by the relative displacements dx, dy, dz, he arrives at

Ydy + Zdz).

The cross-terms in dx, dy, dz, vanish in the summation because of the

relations between the direction cosines.

If VT is the relative velocity of any point of the system with respect

to the moving axes, and Pe the force which is e<jual and opposite

to Fe, P the given force, Coriolis writes

or, by integration,

" Thus the principle of living forces is still true for motion relative

to moving axes, provided that there are added to the quantities of action

[that is, of work] J Pdsr cos (P-dsr)
calculated from the given forces

and the arcs dsr described in the relative motion, other quantities of action

which are due to the forces Pe. These forces are supposed equal and

opposite to those which it would be necessary to apply to each moving

point in order to make it take the motion that it would have had if it were

in invariably connected to the moving axes.
"

This is Coriolis' first theorem, which essentially belongs to the

dynamics of relative motion. Coriolis applied it to the "
quantity

of action
" transmitted to the machine which carried the movable

axes. We shall not follow him in this application, where he made
simultaneous use of the theorem of kinetic energy in the absolute

motion and the relative motion.

Coriolis remarked that when the question was that of the equilibrium
of a fluid contained in a vessel turning about an axis,

"
it is immediately

seen that it is necessary to introduce actions equal to the centrifugal
forces. But it is not the same for the principle of living forces applied
to the relative motion. It would be mistaken to regard this proposition
as evident ; to proceed in this way for any other equation than that

of the living forces would be to arrive at false results.
"

In conclusion, Coriolis declared,
" Such are the principal results of

this paper. It seems that the principle from which they stem may
find many applications in the theory of machines, provided that it is

supplemented by a number of propositions from rational mechanics.
"



RELATIVE MOTION 377

3. CORIOLIS* SECOND THEOREM.

Coriolis expectation was more than fulfilled. For his first paper

already contained the germ of the fundamental theorem with which

his name is now associated. This vital point is his equation (C), which

Coriolis did not himself analyse thoroughly, anxious as he was to cal

culate the quantity of action transmitted to his water-wheels.

In a second paper, Sur les equations du mouvement relatifdes systemes
de corps,

1 Coriolis wrote
" In this paper I give the following general proposition that to

establish an equation of the relative motion of a system of bodies

or of any machine, it suffices to add to the existing forces two kinds

of supplementary forces. The first are always those to which it is

necessary to have regard for the equation of living forces ; that is,

which are the forces opposed to those which are able to keep the part
icles constantly connected with movable planes. The second are

directed perpendicularly to the relative velocities and to the axes

of rotation of the movable planes ; they are equal to twice the product
of the angular velocity of the movable planes and the relative quantity
of motion on a plane perpendicular to this axis.

" The latter forces are most closely analogous to ordinary centrifugal
forces. To display this analogy it suffices to remark that the centri

fugal force is equal to the quantity of motion multiplied by the angular

velocity of the tangent to the curve described ; that it is directed

perpendicularly to the velocity and in the osculatory plane, this is,

perpendicularly to the axis of rotation of the tangent. Thus in order

to pass from ordinary centrifugal forces to the second forces which

occur, multiplied by two, in the preceding statement, it is only necessary
to replace the angular velocity of the tangent by that of the movable

planes, and to substitute for the direction of the axis of rotation of

this tangent, the direction of the axis of rotation of the same movable

planes. In other words, it suffices to substitute everything which

is related in magnitude and direction to the rotation of the tangent

by what is related to the rotation of the movable planes, and to

multiply the forces thus obtained by two.
" It is because of this analogy that I concluded that these forces

must be named compound centrifugal forces. Indeed, they have

some of the characteristics of the relative motion because of the quantity
of motion and some of the characteristics of the motion of the movable

planes through the use of their axes of rotation and angular velocity.

1 Journal de rcole polytechnique, 24th cahier, 1835, p. 142,
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" Therefore it will be said that, for an equation of relative motion
which is not that of the living forces, it is necessary to introduce twice

the compound centrifugal force.
" The theorem which I presented at the Academic des Sciences

in 1831 consists of the disappearance of the compound centrifugal forces

from the equation of the living forces. It now becomes a particular
case of the more general statement on the introduction of these com

pound centrifugal forces.
"

Coriolis
9 demonstration depends directly on the equation (C) al

ready written above. Indeed, ifp, q, r are the " three angular velocities

of the movable planes about their axes,
"

(C) can be written in the

form

dzx I d dz\ 9L dM

(C)

" The terms in p, q, r, dx, dy and dz in the above equation are

twice the components, along the moving axes, of a force directed

perpendicularly to the plane of the axis of rotation and the relative

velocity. The magnitude of this force will be the product of the

angular velocity Y^ p2 + g
2 + r2 with the projection, on a plane

perpendicular to the axis of rotation, of the quantity of motion
due to the relative velocity of the particle. The sense in which
this force will be carried, with respect to a motion which carries

the axis of rotation towards the relative velocity, will be the

same as that of the axis of rotation with respect to the velocity of

rotation.
"

" The expressions for the forces which must be added to the given
forces in order to obtain the expressions for the forces in the relative motions
are first, those which are opposed to the forces able to produce, for each

particle, the motion which it would have if it were connected to movable

planes ; secondly, twice the compound centrifugal forces.
"

This is valid for a particle of the system. Coriolis then considers

the virtual velocities the displacements dx, dy, dz in the relative mo
tion compatible with the relative constraints

L = M == etc.

These relative constraints, supposed to be perfect, will disappear
on combining the equations (C), giving



RELATIVE MOTION 379

.dyds
-

dzdy\

If ds is the actual virtual displacement and ds the virtual relative

displacement ; if a, ft and y are the direction cosines of the instanta

neous rotation oj(p, q, r) with respect to the moving axes and A, u, v

are the direction cosines ofthe normal to the plane (ds, <5s), the Coriolis'

complementary term becomes

2o>Vm (5s sin (rfs, ds) (od + $" + yv).

Therefore,
" In order to obtain an equation of the relative motion

it is necessary to add to the terms ordinarily existing for absolute motion

first, those which arise from the forces which are able to force the particles
to remain connected to the movable planes ; and, in addition, a term

which is equal to twice the velocity of rotation multiplied by the algebraic
sum of the projections, on a plane perpendicular to the axis of rotation

of these planes, of all the areas of the parallelograms defined by the effective

quantities of motion and the virtual velocities.
"

For the equation of the kinetic energy, each area is zero. For

the virtual velocity coincides with the effective velocity (or rather,

with the true displacement). Thus Coriolis' two theorems are linked

together.
We have said enough to illustrate the development of Coriolis'

thought. In fact, he complicated his task by isolating the law of

the composition of the accelerations singularly hidden from the

already difficult problem of the dynamics of systems. It is rather

interesting to remark in passing that Coriolis composed two acceler

ations by summing

, , _
at* dp '

Very fortunately, however, this procedure entailed no risk because

it reduced to connecting together two terms of the unique dragging
acceleration ye (in the modern sense).

We stress the fact that Coriolis did not deal, in fact, with kinematics.

He argued exclusively from a dynamical point of view, using forces,
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and only endowed products such as mye with a physical significance.

His aim was to find an equation of the relative motion which might
be independent of the constraints, supposed to be holonomic and

perfect. It is for this reason that he first encountered the theorem

of the kinetic energy, in which the compound centrifugal force

vanished. Then he was able to give a more general equation in which

the complementary term appeared. All this only makes his discovery

more remarkable.

4. THE EXPERIMENTS OF FoucAULT (1819-1868).

In the strict sense, mechanics which is referred to terrestrial axes

should take account of CoriohV compound centrifugal force. Never

theless, we have already had occasion to remark l that the deviation

of heavy bodies towards the East can be predicted by a very simple

intuitive argument. Moreover, as early as 1833, Reich studied free

fall in a mine-shaft at Freiberg (Saxony). The depth of the mine

was 188 m., and he observed an average deviation of 28 millimetres

in 106 separate observations.

In 1851 Foucault published a paper called Demonstration physique
du mouvement de rotation de la Terre au moyen du pendule.

2

This demonstration made no appeal to Coriolis' work only after

the event did occur a mathematical literature. Foucault, who had been

a mediocre pupil at school, was a natural physicist and an incomparable

experimenter. However, he started work as the scientific member
of the staff of the Journal des Debats.

He set out to experiment on the direction of the plane of oscillation

of a pendulum. If the observer is at first supposed at the pole (North
or South) and the pendulum is reduced to a homogeneous spherical

mass suspended from an absolutely fixed point, then if this point is

exactly on the axis of rotation of the Earth, the plane of oscillation

remains fixed in space.
" The motion of the Earth, which forever

rotates from west to east, will become appreciable in contrast with

the fixity of the plane of oscillation, whose trace on the ground will

seem to be actuated by a motion conforming to the apparent motion

of the celestial sphere. And if the oscillations can continue for twenty-
four hours, in this time the plane will execute a whole revolution about

the vertical through the point of suspension.
"

But Foucault also remarked that in reality it is necessary to " take

support on moving earth ; the rigid pieces to which the thread of the

1 See above, Part I, p. 63.
2
Comptes rendus de I''Academic des Sciences, Vol. 32, p. 135 (February 3rd, 1851).
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pendulum is attached cannot be isolated from the diurnal motion.

It should be borne in mind that this motion, communicated to the

thread and the mass of the pendulum, might alter the direction of

the plane of oscillation.
"

Nevertheless, experiment shows that

"provided that the thread is round and homogeneous, it can be made to

turn rather rapidly on itself, in one sense or another, without appreciably

affecting the plane of oscillation. So that, at the pole, the experiment
must succeed in all its purity.

" 1

" But when our latitudes are approached, the phenomenon becomes

complicated in a way that is rather difficult to appreciate. To the

extent that the Equator is approached, the plane of the horizon has

a more and more oblique direction with respect to the Earth. The

vertical, instead of turning on itself as at the pole, describes a cone

which is more and more obtuse.
" From this results a slowing down in the relative motion of the

plane of oscillation. This becomes zero at the Equator and changes
its sense in the other hemisphere.

"

Without explicitly justifying the fact in his paper, Foucault assumed
that the angular displacement of the plane of oscillation must be equal
to the product of the angular motion of the Earth in the same time

with the sine of the latitude. If the correspondence published in the

collection of his works is studied in this connection, it is apparent
that Foucault arrived at this relation semi-intuitively, before it had
been obtained by calculations in mechanics.

At first Foucault worked on a relatively modest scale by suspending
a sphere of 5 kg. from a steel wire two metres long. The point of

support was a strong piece of casting fixed to the top of the roof of

a cellar. He took the precautions of ridding the wire of torsion and

ensuring that there was no torsional oscillation of the sphere. He
" encircled the sphere with a loop of organic thread whose end is attached

to a point fixed on the wall, and chosen so that the oscillation of the

pendulum might be 15 to 20. " He then burnt the organic thread.

This is what he observed.
" The pendulum, subject to the force of gravity alone, sets off

and provides a long sequence of oscillations whose plane is not slow

to demonstrate an appreciable displacement. At the end of half an

hour the displacement is such that it is immediately obvious. But it

1 In another place FOUCAULT reassured himself, more objectively, that " whether
or not the Earth, turning, draws along the point of attachment with the monument
[where the experiment was performed], the thread experiences no torsion. This

implies that the hob of the pendulum submits to this motion without dragging the

plane of oscillation.
"
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is more interesting to follow the phenomenon closely, so as to be assured
of the continuity of the effect. For this purpose a vertical point, con

sisting of a kind of style mounted on a support placed on the earth

is fixed so that the appendicular projection of the pendulum, in its

to and fro motion, grazes the fixed point when it comes to its extremitv.
In less than a minute, the exact coincidence of the two points ceases.

The oscillating point is continuously displaced towards the observer's

left, which indicates that the deviation of the plane of oscillation takes

place in the same sense as the apparent motion of the celestial sphere. . . .

In our latitudes the horizontal trace of the plane of oscillation does

not complete a whole circuit in twenty-four hours.
"

The liveliness and the accuracy of this account will be admired.

As we have indicated, Foucault had started his work in a cellar. Thanks
to Arago, who put at his disposal the meridian room at the Observatoire

(Paris), he was later able to repeat his experiment with a pendulum
11 m. long. This provided a slower and more extensive oscillation.

Finally, Foucault worked at the Pantheon (Paris) with a pendulum
weighing 28 kg. suspended on a steel wire 67 m, long.

As Foucault remarked and this is an example of his remarkable

intuition " the pendulum has the advantage of accumulating the effects
*

and carrying them from the field of theory into that of observation. "

At this point Foucault referred to a paper of Poisson,
2 in which

the latter has studied the deviation of projectiles.
In the world of learning Foucault's experiment had the immediate

success that it deserved. Notes accumulated in the Comptes rendus

on the subject of the pendulum which had been revived in this way ;

they included contributions from Binet, Sturm, Poncelet, Plana,

Bravais, Quet, Dumas, etc. . . .

Nevertheless, however brilliant it may have been, Foucault's expe
riment remained rather mysterious to the general public, since it depend
ed on the displacement of a plane of oscillation. Moreover, Foucault
wished to give a still more tangible proof of the rotation of the Earth.

The gyroscope provided him with a means of doing this. He used
a pendulum suspended by its centre of gravity and executing what
is called in mechanics a motion a la Poinsot.

Foucault's gyroscope was a bronze fly-wheel mounted inside a

metallic circle whose diameter contained a steel axis supporting the

wheel. The gyroscope turned about one of its central axes of inertia,

which remained fixed in space.

1 Without this accumulation FOUCAULT would not have been able to detect a force
that was only the 55,000th part of the weight of the Pantheon pendulum.

2
Comptes rendus de VAcad^mie des Sciences, November 13th, 1837.



RELATIVE MOTION 383

Foucault wrote 1 "The body can no longer participate in the diurnal

motion which actuates our sphere.
2

Indeed, although because of its

short length, its axis appears to preserve its original direction relatively

to terrestrial objects, the use of a microscope is sufficient to establish

an apparent and continuous motion which follows the motion of the

celestial sphere exactly. . . . As the original direction of this axis

is disposed arbitrarily in all azimuths about the vertical, the observed

deviations can be, at will, given all the values contained between that

of the total deviation and that of this total deviation as reduced by
the sine of the latitude.

"

Foucault concludes, in a somewhat journalistic style that was

probably natural to the reporter of the Debats
" In one fell swoop, with a deviation in the desired direction, a

new proof of the rotation of the Earth is obtained; this with an
instrument reduced to small dimensions, easily transportable, and
which mirrors the continuous motion of the Earth itself. ... In your

possession are pieces of material which are truly subject to the dragging
of the diurnal motion.

"

Thus Fourier achieved one of Poinsot's aims.

The compound centrifugal force in the sense of Coriolis, and
Foucault's pendulum, are two essential achievements in mechanics ; the

one has an origin which is purely mathematical, the other was the

product of a physicist's brilliant intuition. Though they are united

in the same rational exposition in the books that are now classical, they
were born separately it was not the reading of Coriolis that inspired
Foucault's experiment.

1
Comptes rendus de VAcademie des Sciences, Vol. 35, p. 421 (September 27th,

1852).
2 More correctly, it is easy to give the gyroscope a very rapid proper rotation about

its own axis, say o>, which is very large compared with the absolute rotation of the

Earth., say Q.

If Q is the absolute rotation of the gyroscope,

Q = co + Q

and the axis remains directed towards the fixed stars (U co co) as long as Q is negligible

compared with co.



CHAPTER FIVE

POISSON'S THEOREM (1809)

1. POISSON'S THEOREM AND BRACKETS.

Poisson's theorem appeared among the investigations made im

mediately after the appearance of two papers by Lagrange. One of

these papers appeared in 1808 and the other in 1809, and they
were incorporated in the 1811 edition of the Mecanique analytique.
Stimulated by the needs of the theory of perturbations in classical

mechanics, they were concerned with the variation of arbitrary cons

tants.

Here we shall follow a paper of Poisson which was read at the

Institut de France on October 16th, 1809.1

Poisson starts from Lagrange's equations

Putting R = T V, where V depends only on the ql and not on

the y , he obtains

dR dT
5-7
=

5-7
= ut

dqi dq l

whence
du

1 _dRW
dt
~
d^

66 In this way the equations of motion are reduced to the simplest
form that they can be given.

"

1 Journal de MZcole polytechnique, cahier XV, 1809, p. 266.

While following the development of POISSON'S analysis rigorously, we have taken the

liberty of condensing its form by using the convention of the summation of dummy
suffixes. This is commonly used in the absolute differential calculus and allows the
direct consideration of a system of k degrees of freedom (rather than three, as POISSON

did). Further, we have introduced the distinction between the symbols of partial and
total derivatives.
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The new variables ut are functions of the
q,,

and the gj. Con

versely, the
q'i

can be regarded as functions of the q l and the u t
.

Considering R as a function of the qt and the u t, Poisson denotes

the partial derivatives of jR when the independent variables are q l
and

8R
Ui by -

; and the derivatives of J? when the independent variables
vqi ,

df?\
are q^ and q't by ( ).

Thus equation (1) becomes

dut _ /dR

~dt"~ \dq

However

( '

dqt dq

so that

dui BR

Tke partial derivatives of R may be written

Finally, by calculating
-- in two different ways, it is found that
OUj, OUj

2

= Uk
^

|

w
dUiduj dul

92
q'k

,
Bqi----

J

--=-
.

From this is obtained the relation

which will be used in the sequel.
Given this, Poisson considers a first integral of the equations of

motion containing a single arbitrary constant a. This integral equation,
if solved for a, would lead to

a = funct (qi ... q^ Ui . . . u&, t).

25
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Hence
. 3a

,

da , . da ,=
ar

da da
,

da fdR _ dq'r \

k̂
qk+ ^k \dqk~~

Ur
3qJ

'

Differentiating with respect to q^

rt n _ L i^\ + ^ ^ + -^W
dt \~dqj

"*"

Sqk dqt

"*"
8uk

If another first integral of the equations of motion, containing
an arbitrary constant 6, had been considered, then

m o - A ffl 4- 1* ^ + ^- f
82jR -

l/ j
<ft \a g /

"^
a9& dq>

^
duk

T

By multiplying equation (6) by and equation (7) by , sum-
OUt OUi

ming over the dummy suffixes and adding the two equations,

- (] (} 4-^( }
^ '

""
dui dt \dqi/ dut dt \dqi/ dqi \dqk dui dqk duj'

Differentiating the equation from which (6) was obtained with

respect to ut, instead of q^ there is obtained

_ ur
dt \3tti / dqk 3ut duk \dqkdui dqkdqi/ duk dqk

The third term vanishes because of (4). There remains

(tt\ t\
d 1 3^\ ^a

dqic da dqi

dt \duj dqk dui duk dqk
'

Also, for the other first integral,

dt \diii/ dqk dui duk dqk

Multiplying (6") by and (7") by , summing over the

dummy suffixes and adding the two equations,

.---- -
dt \du dqi dqi dt \du

dqL idb_
9a _ db_

9a \ dqi idb_ da_ _ jtt da_
\

dui \dqk dqi dqi dqj dqk \duk dqi dqi duk/
'
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The third term of this equation is zero because of the relation (5).

If the suffixes i and k are interchanged in the fourth term, by adding

(8) to (8') it follows that

y d
(da\

da
d^

fdb\
da^ d_

/db\
__ db_ d_

ida\ _
~i di (dqj ~"faidt \dq~J

+
dq'i

dt \duj dqi dt \duj
~~db d

du

or

d [ db da da db
\ A_ _ _ = u

dt

or finally
db da db da--- = constant
dui dqi dqt dut

or

(fe9 a)
= constant

where (i, a) is an expression which has become known as a " Poisson

bracket.
"

It is evident that

(6, a)
=

(a, b) and that (a, a)
= 0.

Poisson concludes,
" The analysis that we have just performed

therefore leads us to this remarkable result that if the values of

the arbitrary constants on the integrals of the equations of motion

of a system of bodies are expressed as functions of the independent

variables (q,) and the quantities (ut),
the combination of the partial

differentials of these functions that is represented by (a, b) will always

be a constant quantity.
"

This proposition, which has become classical, evidently exhibits

considerable aesthetic value. Its practical content is more limited.

Indeed, Poisson's theorem seems to indicate that it is sufficient to

know two first integrals of the equations of motion in order to be

able to deduce a third from them ; by combining this with one of the

first two, a fourth would be obtained, etc---- But if the bracket

(a, b) is identically constant, or if it is a function of the integrals already

known, this process contains nothing new.

2. THE LAGRANGE-POISSON SQUARE BRACKETS.

Poisson supposes that, to the right hand side of the Lagrange equa

tions

dt \Sq'
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is added a term depending on the function of the perturbing forces,

Q. This yields

Since the variables u are always defined by , Lagrange's equa-

tions take the form

The expression I

)

must always be interpreted as a derivative

in which the qi and the q[ are chosen as the independent variables.

This distinction does not apply to derivatives of ?, which is supposed
to be independent of the g.

If the equations (1) are integrated completely, so that the solution

contains 2k arbitrary constants a,, it is desired to satisfy the equations

(2) by varying the arbitrary constants. Since the number of these

is twice the number of the equations (2), the 2k quantities as can be

restricted by any k conditions that may be chosen.

Poisson supposed,
" as in the theory of the Planets

"
that the dif

ferentials of the variables g f kept the same form independently of

whether the as were constants or not.

He goes on to express this condition by the k relations

tA\ *
d^ i A (

= 1, 2 . .. k)
(4) dqt

= ^- das
=

} /3 das (s from 1 to 2k).

On the other hand ^
dt + *.

But when the a, are constants, the first two terms are equal because
of (1). Accordingly, if only the as vary

(5) du^^-dt.
oqi

T,
j|
The 2k equations (4) and (5), which are linear and of the first order

in the quantities da,, determine the differentials of the arbitrary cons
tants.

Let ar = funct
(t, 31, ... qk, MI, ... uk)

be a first integral of the equations (1). Then put

, da r dQ _

dar = - - dt .
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Now X*_ = ?R.fa.
dqj das dqj

Therefore
, dar das dQ _

/j from 1 to k \

^ *
T

duj dqj das \s from 1 to 2k'

But in

the derivatives are necessarily zero. Therefore
3Uj

= = ^i
duj 3as duj

or, by slimming the equations (7) after multiplying them by -,

dqj

(8) Q==
3Qda.dar
das duj dqj'

By subtracting (8) from (6)

7 dQ . (da r da s da s da r\

and, using the definition of the Poisson brackets,

, SQ . . . fr = 1, 2 . . . 2Jfc\

Jar
== - dt (ar, as)

( I .

das \s from 1 to 2k I

The brackets (ar, as)
are functions only of the arbitrary constants

a-L,
. . . .

,
a2fc.

" It follows that, in the equations of mechanics, the

first differentials of the arbitrary constants can be expressed by means
of the partial differences of the function Q, taken with respect to these

quantities and multiplied by functions of these same quantities, which

do not contain the time explicitly. This is the beautiful theorem

that Mr. Lagrange and Mr. Laplace first discovered in connection

with the differences of elliptic elements, and which Mr. Lagrange then

extended to a system of any bodies subject to forces directed towards

fixed or movable centres and whose intensities are functions of the

distances of the bodies from these centres.
"

Lagrange had arrived at the formulae

-dt= [ar , aj das

da r

in which the square-bracket expression had the value

!- ^i_?2i^_M^
Lar' asJ ~aar das Bas dOr'



CHAPTER SIX

ANALYTICAL DYNAMICS
IN THE SENSE OF HAMILTON AND JACOBI

1. HAMILTON OPTICS. ITS DOUBLE INTERPRETATION IN TERMS OF

EMISSION AND WAVE PROPAGATION.

Hamilton's ideas on dynamics cannot be divorced from his ideas

on optics. For this reason it is essential that we should, for a few

moments, concern ourselves with the latter.

We shall follow the edition of Hamilton's works that has been

published by the Royal Academy of Ireland. Apart from the papers
which have been known and classical for some time, this edition,

very fortunately, contains extracts from the numerous note-books

which Hamilton kept and which had not been published before. No
doubt the author, considering them minor works, had not wished to

make them public but they throw the work of this inspired Irishman
into a new and very interesting light.

1

In the first place we shall cite an article which appeared in the

Dublin University Review 2 for October, 1833, called On a general
method of expressing the paths of light, and of the planets, by the coeffi

cients of a characteristic function.
At the time that Hamilton started his investigations in optics,

neither the theory of waves nor the emission theory were generally

accepted. Hamilton's geometric optics, which was essentially a new
method of formalising the coUection of results that had already been

obtained, was capable of being interpreted in terms of wave propagation
(in Huyghens* sense) and corpuscles (in the sense of the dynamical
principle of least action). This was the essential merit of his theory,

1 The Mathematical Papers of Sir William Rowan Hamilton. Vol. I, Geometrical

Optics edited for the Royal Irish Academy by A. W. CONWAY and J. L. SYNGE (1931) ;

Vol. II, Dynamics edited for the R. I. A. by A. W. CONWAY and J. McCoNNEL (1940).
Cambridge University Press.

2
Pp. 795-826.
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which, can only seem more meritorious to our modern age in which

a similar dualism has been established in theoretical physics.
A great admirer of Lagrange, Hamilton declared, in the article

referred to above, that he was " struck by the imperfection of deductive

mathematical optics.
" He wished to give to optics, on the plane of

formal theory, the same "
beauty, power and harmony

" with which

Lagrange had been able to endow mechanics.

I repeat that it was certainly the formalism which concerned him.
" Whether we adopt the Newtonian or the Huyghenian, or any other

physical theory, for the explanation of the laws that regulate the

lines of luminous or visual communication, we may regard these laws

themselves, and the properties and relations of these linear paths
of light, as an important separate study, and as constituting a separate

science, called often mathematical optics.
" l

Hamilton recalled the development which we have already studied,

Fermat, Maupertuis, Eider, Lagrange.
w But although the law of least

action has thus attained a rank among the highest theorems of physics,

yet its pretensions to a cosmological necessity, on the ground of economy
in the universe, are now generally rejected. And the rejection appears

just, for this, among other reasons, that the quantity pretended to be

economised is in fact often lavishly expended.
"

This, for instance, is

what is shown in the commonplace case of reflexion on a spherical

mirror, where obviously if one of the rays issuing from a point is

minimal, the other corresponds in fact to a maximal. We can therefore

speak reasonably only of a stationary property of the action (or an

extremal one, as understood in the calculus of variations).
" We cannot, therefore, suppose the economy of this quantity to

have been designed in the divine idea of the universe : though a simplic

ity of some high kind may be believed to be included in that idea **.

Such are the rational motives which led Hamilton, at the same time

as he retained the consecrated term action, to speak, in optics as in

dynamics, of stationary or varying action, according to whether the

extremities of the rays or trajectories are fixed by hypothesis or not.

I shall pass over the remarkable statement of the principles of the

calculus of variations contained in the paper we are analysing, and come

1
Incidentally HAMILTON did not hesitate to state his doctrine of scientific philo

sophy. Thus he distinguished a stage in which the facts are raised to laws by induction

and analysis, and another in which the laws are used to obtain consequences by deduction

and synthesis. This was formulated in the following remarkable passage.
** We must gather and group appearances, until the scientific imagination discerns

their hidden laws, and unity arises from variety ; and then from unity we must rede-

duce variety, and force the discovered law to utter its revelations of the future.
"

Better than a fine formula, this thesis is the expression of the method of work that

HAMILTON always followed.
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to the exact statement of the Hamiltonian principle of stationary action

in optics :

" The optical quantity called action, for any luminous path having i

points of sudden bending by reflexion or refraction, and having therefore

i + 1 separate branches, is the sum of i + 1 separate integrals,

ACTION = V = vjrfl/i
= Fi + F2 + . . . + Vl+l

of ichich each is determined by an equation of the form

the coefficient vt of the element of the path, in the i
th
medium, depending,

in the most general case, on the optical properties of that medium, and
on the position, direction and colour of the element, according to rules

discovered by experience. (For example, if the i
th medium is an ordinary

medium, v t is its refractive index.) This quantity V is stationary
in the propagation of the light.

"

The law of varying action is a generalisation of the stationary law
in which the ends of an optical (luminous) path are allowed to vary.
The conditions at the limits thus make necessary the intervention

of finite difference equations of the type A V = Xu = on each surface

u = of reflection or refraction. In passing, Hamilton indicated

that the remarkable permanence of what he called the components

of normal slowness (inversely proportional to those of the velocity
of wave propagation in Huyghens' sense) had been suggested to him

by the observation that the characteristic function V is such that
the wave surfaces satisfy the equation

V = Constant.

The components of normal slowness are nothing else than the partial

, . . dV dV dV
derivatives , * -5-- Thus is rediscovered the theorem then

ox oy oz

disputed of Huyghens according to which the rays of every homo
geneous system, starting from a single point or normal to a surface,
remain normal to a family of surfaces after they have been subjected
to any number of reflections or refractions.

We learn a little more about Hamilton's procedures in optics by
following the Third Supplement to an Essay on the Theory of Systems
of Rays.

First, calling the initial and final coordinates of a ray (x',y
r

, z
f

)
and

(x, y, z), Hamilton writes

<A) *-+ + -*--
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(where a, /?, y and a', /?', y' are the direction cosines of the ray at its

end and beginning respectively) or

On the other hand, the conditions for an extremum require that

w E*-*E-- E*-'S <*

The function t; is homogeneous in a, /? and 7 and also depends on the

frequency of the light. Hamilton expresses the latter fact by the

introduction of a chromatic index %.

Thus he arrives at the following two equations in the first partial
derivatives

SV 3V .

/-SV dV -SV(C)

The similarity of the form of these equations with that of the

equations of dynamics is evident V corresponds to the action integral

(in the Euler-Lagrange sense) ; the equation (C) corresponds to the

equation of kinetic energy and % to a certain function of the total

energy. Moreover, Hamilton's optical equations can be easily written

in the canonical form that he himself gave to the equations of dynamics.
It is sufficient to denote the components ofnormal slowness (or the partial

derivatives of V) by cy, r and v to write

dx
___ 9flj

da __ dQ
7 Tjr ~^ 1 ~7~T> ^ etC.
dV do* dV dx

As we have already indicated, Hamilton interpreted the action

F, in the language of the wave theory, as the time necessary for a

wave of frequency % which starts from the point (x'', y', 2') to travel

to the point (#, y, z).

If the wave velocity (ondulatory velocity) of propagation along

the corresponding radius is called u, the relation

(D) u - 1
v / v

or, more generally,
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allows V to be written as

F=
J"

V"

u (g g

*
y , y

Since the rays are identical in the two theories, to the extrema

dV= dfvds
=

of the ^mission theory there corresponds the extremal

which is Fermat's principle.

There is, here, the germ of the transcription which Schrodinger

was to turn to good use in dynamics, in generalising equation (D) by
the introduction of a group velocity (in Rayleigh's sense) identified

with v.

2. THE DYNAMICAL LAW OP VARYING ACTION IN HAMILTON'S SENSE.

Historically, Hamilton's first work in dynamics is contained in

a manuscript dated 1833 and called The Problem of Three Bodies by

my Characteristic Function. 3- He treated the problem of the Sun,

Jupiter and Saturn and introduced, from the beginning, the charac

teristic function.

V= f 2Tdt.
Jo

(The living force accumulated from the origin of time to the time

t.) Hamilton showed that this function must satisfy two equations in

the partial derivatives of the first order. He then compared an approx
imate solution of this problem with that obtained by Laplace, studied

the perturbations, determined the characteristic function of elliptical

motion and established the equation

3V
=zz t (A, constant of living forces) .

He then proved that the two equations connecting the partial derivatives

of V have a common solution, and directed his attention to the deter

mination of this solution by successive approximations.
Therefore this paper already contained essential results. We

shall not, however, further discuss it, for Hamilton undertook the

codification of these investigations in two fundamental papers which
were published in 1834. We propose to analyse these.

1 Note-book 29.
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In his statement of the intentions of his First Essay on a General

Method in Dynamics
l Hamilton recalled that the determination

of the motion of a system of free particles, subject only to their

mutual attraction or repulsion, depended on the integration of a system
of 3 (n 1) ordinary differential e<juations of the second order or,

by a transformation due to Lagrange, on a system of 6(n 1) ordinary
differential equations of the first order.

Hamilton reduced this problem to the " search and differentiation

of a single function
" which satisfied two equations of the first order

in the partial derivatives.

From this transference of the difficulties, even if it is thought
that no practical advantage results,

" an intellectual pleasure may
result from the reduction of the most complex and, probably, of all

researches respecting the forces and motions of bodies, to the study
of one characteristic function, the unfolding of one central relation. ..."

And Hamilton adds,
" this dynamical principle is only another form

of that idea which has already been applied to optics in the Theory

of systems of rays. . . .

"

Starting from the classical equation

(1) m (*"<5* + y% + ****)
= <5U" with 17 = mm'/(r),

in which U is the function of forces, Hamilton denotes the living force

of the system by 2T = E (*'
2 + /2 + *'2)> and writes the law

of living forces in the form

T = U + H.

The quantity H which it has become customary to call the Hamil-

tonian of the system is independent of the time in a given motion

of the system. But when the initial conditions are varied, H varies

correspondingly according to the equation

dT = SU + 6H.

On multiplying by df, integrating from to f, using equation (1)

and the equation that defines the kinetic energy, Hamilton obtains

J^ 2 m (dxM + dydy' + <W) = J"o
m (dx'dx+ dy'dy+ dz'dz) +

Then, by means of the calculus of variations

(A) 6V= m (x'dx + y'dy + z'dz) m (a'da + b'db + c'8c) + tdH

1 Phil Trans. Roy. Soc. (1834), II, p. 247.
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where (#, y, z) and (a, &, c) are the final and initial coordinates of the

points of the system, and V is the function

(
B

) v =
Jo S m (

x '

dx + y'Jy + ~'d2
)
=

Jo
2Tdt -

By considering the characteristic function V as a function of the
initial and final coordinates and of the quantity jff, and by starting
from the fundamental equation (A), the following system of equations
is obtained.

(C)

sv

3V

dV

dV_

d_V_

BV

j-
= mnxn

SV
W = m"yn

sv

= mnan

~
dV = mncn

(E)
BH

t.

The elimination of H aUows 3n relations to be obtained between
the 3n variable coordinates, the time and the 6rc initial conditions.
Thus the problem is reduced to the determination and the differentiation
of a single function V.

The fundamental equation (A) expresses the law of varying action.
Hamilton remarked that Lagrange has already obtained an extremal

law, called that of least action, which was equivalent to (A) ; but that
Lagrange only used it to form the ordinary equations of the second
order, which can be obtained by other means. Further, Lagrange,
Laplace and Poisson had, for this reason, considered the principleof least action as being of only small practical importance in dynamics.The equation of living forces, combined with the systems (C) and
(D), takes the form

V '

(F)

(final coordinates)
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(initial coordinates).
These two equations must be satisfied identically by V.

Hamilton verifies that, by differentiating equations (C) and taking
account of (F), there are retrieved the ordinary equations of motion

.^au
1 * dxl

If the rectangular coordinates are replaced by the Lagrange variables

defined in the following way,

{??!,

r\^ . . . instead ofthe final coordinates

CD e2 ,
. . . instead of the initial coordinates

the fundamental equation (A) takes the form

V1 BT \H dT
dV=L^ dv

whence

From this it is easy to deduce Lagrange's equations

d_
/dT\ _dT ==

dU
dt \drji! By,. By*'

Hamilton then generalised equation (A) to the case of motion

described by 3n -f- k Lagrange variables which are connected by fe

finite equations. Then he determined the function V for binary systems
with U = m1m2/(r) and turned his attention to the extension of this

analysis to systems of more than two particles by decomposing V
into a principal part and a perturbing part.

At the very end of his first Essay Hamilton introduced the function

S that he was later to call the principal function. This was defined

in terms of the characteristic function by the equation

V= tH+ S.

This function,

leads, by the calculs of variations, to

dS = 2 m (x'dx + y'dy + z'dz a'da b'db c'dc) Hdt

which constitutes another form of the law of varying action.



398 THE EVOLUTION OF CLASSICAL

From this definition follows the system of equations

as
,

as
~ = m^x, etc .... = =

/raja, etc ....
ox

l

x dai

as well as the equations in the first order partial differentials, which S
must satisfy identically,

95 l
(
dS

\*\ TJ=u
(final coordinates)

95
, V JL [W

aF
+ AJ 2m IW

(initial coordinates).

In the Second Essay on a General Method in Dynamics,
1 Hamilton

systematically developed the use of the principal function S and also

established the canonical equations of motion.

Using Lagrange coordinates, he first wrote the living force equation
in the form

This supposes that the Hamiltonian H does not depend on the time.

From this the variation of the living force is obtained in the form

By considering T as a function of the quantities

dT
0)1

"atf

together with the variables rj^ the equations of Lagrange may be
written in the form

Alternatively, by the introduction of the Hamiltonian H which is

considered as a function of (o>i9 ?;,), the equations of dynamics may be
written in their canonical form

1 PhU. Trans. Roy. Soc., 1835, Part I, p. 95.
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__
dt

~~

drji

d^i^ _3H
dt

~~~

daii

This is a system of 671 equations of the first order, if n particles

are concerned, and the initial conditions are (e^ />;).

These equations are integrated by a knowledge of the principal
function written in the new form

whose variation reduces to the especially simple form

<5S =

in which p and e are the initial values of co and 77.
From this variation,

the system
_ 9S 9S
Ct> = pi =

dfy
*

oel

follows.

The variation of the integral S enjoys the double property of giving
the equations of motion (in the form of the Lagrange equations) when
the limits are fixed, and of giving the integrals of the canonical equations
when the limits are variable.

Hamilton then turned his attention to the approximate evaluation

of the function S. This was done by separating it into a principal

part and a perturbing part, according to S = Sl -f- S2 .

3. THE SIGNIFICANCE OF THE HAMILTONIAN DYNAMICS.

In a paper published by the British Association in 1834 and called

On the application to dynamics of a general mathematical method prev

iously applied to optics Hamilton explained the essential characteristics

of his dynamical work. We quote the following passage as being

particularly characteristic it is written in the impersonal form that

was sometimes demanded by custom.
" Professor Hamilton's solution of this long celebrated problem

contains, indeed, one unknown function, namely, the principalfunction S,

to the search and the study of which he has reduced mathematical

dynamics. This function must not be confounded with that so beauti

fully conceived by Lagrange for the more simple and elegant expression
of the known differential equations. Lagrange's function states,
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Mr. Hamilton^ function would solve the problem. ... To assist in

pursuing this new track and in discovering the form of this new function,

Mr. Hamilton remarks that it must satisfy the following partial dif

ferential equation of the first order and second degree, . . . which may
be transformed

Sx being any arbitrary function of the quantities *, m, #, y, z, a, 6, c,

supposed only to vanish (like S) at the origin of time. If this arbitrary

function Sx be so chosen as to be an approximate value of the sought
function S (and it is always easy so to choose it), then the two definite

integrals in the formula above are small, but the second is in general
much smaller than the first

;
it may, therefore, be neglected in passing

to a second approximation, and in calculating the first definite integral

the following approximate equations may be used,

BS-,
,

3S-, ,, dS-L ,

-=^ = m^a -r^ = mj) -^ = m^c .

da do oc

" In this manner a first approximation may be successively and

indefinitely corrected. ..."

Beginning in 1836, Hamilton developed a method of successive

approximations for the calculation of 5. This he called the calculus

of principal relations.

In short, jealous of the formal perfection which Lagrange had
been able to give to dynamics, and which optics lacked, Hamilton
undertook the rationalisation of geometrical optics. He did this

by developing a formal theory which was free of all metaphysics and

which, moreover, succeeded in accounting for all the experimental
facts. Nevertheless, it did not decide the debate between the prota

gonists of the corpuscular and the wave hypotheses.
Then, returning to dynamics, Hamilton presented the law of varying

action in a form very like that which he had discovered in optics.
Thus he reduced the general problem of dynamics (for conservative

systems) to the solution of two simultaneous equations in partial
derivatives, or to the determination of a single function satisfying
these two equations.

Hamilton's principal function " would solve
"

the problems of

dynamics. But, as a general rule, it could only be hoped to find
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this function by successive approximations. It is for this reason

that Hamilton devoted so much effort to that task.

Hamilton's guiding idea is continuous from his optical work to

his work in dynamics in this fact lies his greatness and his power.
Here was a synthesis that Louis de Broglie was to rediscover and turn
to his own account

;
a synthesis that was, it appears, to be Schrodinger's

direct inspiration. Thus the furrow that Hamilton ploughed was
to bear fruit outside the domain of classical mechanics. This power
of extension of a formalism which, in the classical field, was equivalent
to d'Alembert's principle deserves emphasis never have the formal
tools of analytical mechanics been more used by physicists than since

the time when the classical structure was shaken by the intervention
of quanta.

4. JAGOBI'S CRITICISM.

In Volume XVII of the Journal de Crelle, Jacobi showed that

every complete integral in Lagrange's sense of Hamilton's equation
in the partial derivatives, is sufficient to determine the trajectories
and the law of motion even when the Hamiltonian depends explicitly
on the time. Jacobi simplified and also extended Hamilton's theory
in a form that has become classical.

Jacobi declared " Hamilton has thrown his fine discovery into

a false light
"

(in ein falsches Licht) and " limited and artificially com
plicated the question." Indeed, he did not, at first, rigorously prove that

the function V (or S) simultaneously satisfied the two equations in the

partial derivatives that he wrote. . . . The introduction ofthe initial and
final coordinates led to the complication of the problem of integration.

Finally, it is easy to extend Hamilton's analysis to include forces

which depend on the time.

We shall follow here the well-known Vorlesungen uber Dynamik
which Jacobi gave between 1842 and 1843 at Koenigsberg.

1

First, Jacobi showed that the second equation in the partial deri

vatives which Hamilton obtained (that which contains the initial

conditions) is quite superfluous (vollkommen iiberflussig).
He wrote the other Hamiltonian equation (involving the actual

coordinates) in the form

(1) <^+ p=0 .2

In this way Jacobi arrived at the following theorem.

1 These lectures were edited by CLEBSCH and published in 1866 (Berlin, Reimer).
2 This is concerned with the principal function, HAMILTON'S S.

26
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" Let there be a system of n ordinary differential equations between
the n+1 variables t, x^ *2, . . . xn ; let *J, x%, . . . xl be the initial

values of the variables x19 #2, . . . xn at the time. Finally, let

f*l=/lfcT,*2,*8,...SJJ)
(A) * .....

be a solution of this system. By interchanging the variables Z, #19 #2 ,

. . . # and T, ^J9 #, . . . # a second solution is obtained in the form

flj\ / *? = fl (* *, #1, ^2, ... *n)

\ * = /n (T, f, rci, ^2 , ... A;n)

which dispenses "with all processes of elimination.
" 1

What happens to the function V in this interchange ? Since
the equations of the dynamical problem depend on the supposition
that equation (1) is integrable in the form

* al 2. ' - -
2n) Pi = COl (*, OC19 Oa,... <X2n)

then, at the initial instant, it is possible to write

9?
= X*fa <*v 2 - a2n) pj = ^(T, al9 a2 , . . . a

2/l)

where f runs from 1 to n. Now

where q> is a function of the variables *, ?1, Ja, . . . ?B , Pl, Pa, . . . pn .

Therefore

(2) F=
(*, al9 a2, . . . a2J (T, al9 a2, . . . a2n)

.

The function F will be a complete integral of the equation (1) when
the 2/i constants a are eliminated by means of the 2n equations which
express the $ and 3 in terms of them. But these 2n equations are
reduced to n by the exchange of the variables

(*, g,) and (T, g?). There
fore each of the constants a, considered as a function of the g and j?,must remain invariant in this exchange. Therefore, by (2), the ex
change transforms V into V.

To return to the only case treated by Hamilton, suppose that
y does not contain the time explicitly. This is tantamount to assuming

1 For the demonstration, see Vorlesungen uber Dynamik, p. 153.
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that the function of the forces, 17, does not depend on the time nor

the Hamiltonian H = y = T 17.

In the canonical system corresponding to the given problem,

_ _ dpn

dpl 3pn dq-L 3qn

t is immediately eliminated. Then, after integration, all the variables

are expressed as functions of t by

= or t-r=
dip

Finally, all the variables of the problem (<fc)
are expressed as func

tions of the variable

In the exchange of t, q^ g2, . . . qn for T, gj, g, . . . g, F transforms

9F
into F, into ;

- does not change. Moreover,
ov

50*"~"aT~" "dr*

Therefore the equation

9K _ dV _

transforms into

JQ -ryo- gf-rvo--

Consequently, Hamilton's second equation is deduced from the

first by the interchange of t, ql9 J2, . . . gre and r, gj, g, . . . g, which

establishes its superfluous character. Q. E. D.

5. JACOBI'S FUNDAMENTAL THEOREM.

"Let
8V

,

6e an arbitrary equation in the partial derivatives of the first order which

does not contain V explicitly, so that y is any function of the variables
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*, qv q^ ... qn, pl9 p2, . . . pn (where Pi = }. If a complete integral V
\ d&J

of equation (1) is known that is, if an integral which, apart from the

arbitrary constant which can be incorporated in V, depends on the n

arbitrary constants a
l9

a
2 , . . . an and if the relations

are assumed, where the ft are new arbitrary constants, then these equations,

together with the equalities

,ov
dV dV dV

(3)
= p _ = p . . =

qn
%i 3?a 9?

solve the following system of differential equations.

To prove this theorem, Jacobi shows that when a complete integral
which is supposed to be known is substituted for V in equation (1),

the first term becomes a function of t, q^ q2, . . . qn , oc
l9

oc
2, . , . an, which

vanishes identically. Conseqpiently its partial derivatives vanish.

In order to retrieve the first half of the equations (4) by starting
from the equations (2), Jacobi differentiates the latter with respect
to the time and obtains

If this system, which is linear in the quantities , is supposed to be
3

solved, the solution must be identified with the derivatives in order

to retrieve the first of the equations (4). For this purpose, Jacobi
differentiates equation (1) with respect to the oc (which are, evidently,
only contained in the p^) and obtains

or again

1
Vorlesungen iiber Dynamik, p. 157.
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The identity of the two systems (5) and (7), and consequently of the

derivatives -^ and -^- is established.
at op l

In order to establish the second half of the set of equations (4),

Jacobi appeals to equations (3),

dv

and differentiates them with respect to the time to obtain

dpf== _^F _9^d?i 52F dqn

dt dqidt
+

dqldq1
dt
+ ' ' ' +

dqJ5qn dt

or

.

dt
~

Bqfr dq> dt
' ' '

d ~S

Or again, by using the equalities already obtained,

dq t _ dip~~
n

d^ d^
+ +

a^T fa
(l
= lf 2

'
' ' ' n) '

Now, by differentiating the equation (1) with respect to g the

system of equations

is obtained.

Comparing equations (8) and (9), it is seen that

dpi _ dip

~dt

~"

Sgi"

which are the second half of the set of equations (4).

But, strictly speaking, the system which is linear in the derivatives

dqi~ should have one and only one solution. Therefore the determinant

da-
of the coefficients of ^ in the system (5),

at

tW 8V\ id_V dV\
J-J

\ ^
-

9 * ^ /
-*^

\ ^ 9 ^ /

_ \8ai dcU __ Va^! dqj~
D

~
D a '
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must be different from zero. Otherwise, there would exist a relation

not containing the o^ But this is not possible if V is truly a complete

integral depending effectively on n arbitrary constants. The theorem
is therefore established.

6. THE CANONICAL EQUATIONS AND jACOBl's MULTIPLIER.

Jacobi wrote the equations of motion in the canonical form

ffjp^ar dpf__f^, n
dt BPi dt

~~

dq t

+ V*

with

These equations are more general than those of Hamilton, for

they do not necessarily presume the existence of a function of the forces.
These equations can also be put in the form

=-11= =^ = dPi -. _ dP
i ST ar dT """"

Jacobi's multiplier M (a generaKsation of the integrating factor in
Euler's sense) is defined by the relation

... y. ..

* V * V
If the forces only depend on the coordinates, and not on the velo

cities, then

identically.

Then

d log M ^ y,
/ d*T 32T \

__
dt

" L
\dpk dqk

~
SijrfjJ

=
"

Therefore

M = const.
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Evidently M can be chosen equal to unity, so that the multiplier

has the same value as if the system were completely free.1

With the reservation that the forces do not depend on the velocities,

hut without it being necessary that there should exist a function of

forces, unity is therefore, in Jacobi's sense, the multiplier of the canonical

equations of the general problem of dynamics.

7. GEOMETRISATION OF THE PRINCIPLE OF LEAST ACTION.

Euler, Lagrange and Hamilton gave the principle of least action

a precise mathematical significance in the field of the dynamics of a

particle and of systems. The task of geometrising the principle re

mained, and was carried out by Jacobi.

The action integral is

The energy equation is

iV #? =

and may be written in the form

Whence, by the elimination of the time

2(U+h)

Jacobi obtained the expression

[
nwJsi =

f

for the action integral.

Whence the expression of the principle of least action becomes

Jacobi declared that " in this true form "
it is difficult

" to

assign a metaphysical cause to this principle.
"

Strictly speaking,
Hamilton and, before him, Lagrange had rid the principle of least

1
Vorlesungen uber Dynamik, p. 141.

2
Ibid., p. 44.
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action of all metaphysics. But they had not geometrised it. This

geometrisation, which is obtained by considering trajectories which

correspond to the same total energy, and which explains the part played

by this principle in many physical theories, was to be the concern,
after Jacobi, of Liouville (1856), Lipschitz (1871), Thomson and Tait

(1879), Levi-Civita (1896) and Darboux. The last-named devoted two

chapters of his Leqons sur la theorie generals des surfaces to this topic.



CHAPTER SEVEN

NAVIEITS EQUATIONS

1. THE MOLECULAR HYPOTHESIS.

In this chapter we shall follow a paper by Navier (1785-1836)
which was read to the Academie des Sciences on March 18th, 1822.x

In view of " the considerable or total disagreements that appear, in

certain cases, between the natural effects and the results of known
theories

" that is, the disagreements between experiment and the

theory of perfect fluids Navier believed it necessary to apply different

ideas, notably those of " certain molecular actions which principally

appear in the phenomena of motion. "

Navier confined his analysis to incompressible fluids.

To him, a fluid was " an assembly of molecules placed at a very
small distance from each other, and able to alter their positions with

respect to each other almost freely.
" The mechanism is then the fol

lowing one. " A pressure is exerted on the surface of the fluid and

penetrates into the interior of the body. It tends to bring neighbouring

parts together, and these resist this action by means of the repulsive

forces which exist between neighbouring molecules. If the fluid is

at rest, each molecule is in equilibrium because of the repulsive forces

and the external forces, such as gravity, which are applied to it. ...
" If the fluid is in motion, which in general presumes that the

neighbouring molecules approach or separate from each other, it seems

to us natural to assume that the repulsive forces . . . are modified

by this circumstance. Indeed, we imagine that, in a state in which

the fluid is at rest, the neighbouring molecules are placed at distances

from each other which are determined by the mutual annihilation

of the forces of repulsion and compression. It is this which has deter

mined the size of the volume occupied by the body, due to the temper
ature and the external pressure to which it is subjected. Now all

1 Memoires de rAcademic royale des Sciences de VInstitut de France, 1823, p. 389.
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the phenomena indicate that the actions exerted from molecule to

molecule, in the interior of bodies, vary with the separation of the

molecules. ... A licjuid resists an effort which tends to take neigh

bouring parts away from each other much less than a solid does, but

experiment has shown that the resistance to separation is not zero.

In accordance with these considerations, we shall assume that, in a

fluid in motion, two molecules which approach each other will repel
each other, and two molecules which are separated from each other

repel each other less strongly, than they would have done if their

actual resistance had not varied. We shall take it to be a principle,
in the following investigations, that by the effect of the motion of a

fluid, the repulsive actions of the molecules are increased or diminished

by an amountproportional to the velocity with which the molecules approach,
or separate from, one another.

"

2. EQUILIBRIUM OF FLUIDS.

Navier considers two molecules, M and M', which are infinitely
close together and have coordinates (#, y, z) and (x + a, y + /?, z + y)

respectively. The repulsive force between M and M' depends on the

distance r = -y/ a
2 + /?

2 + y
2

. It is of the form /(r) and decreases

very rapidly as r increases. Each molecule M is thus influenced by
all the molecules M' which surround it. Moreover, it is subjected
to a force of components P, (), R which has the dimensions of a weight
per unit volume.

If an elementary displacement is imparted to the fluid so that
the components of the displacement of M are dx, dy and dz, M! will

be displaced by

,

ddz
,

ddz .
,

ddz
z +^ a +a^+a7

Whence, by an easy calculation,
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The product f(r) dr represents the moment of the mutual actions

of M and M'. It is necessary to integrate this moment over all the

fluid. We shall omit the details of the calculation -whereby Navier

obtains, for the mutual actions of M and of all the milecules M! of the

fluid, the moment

By summing for all the molecules M of the fluid, and dividing by
two in order to count the moment of the mutual actions of the different

molecules once only, Navier obtains the equations of equilibrium

0=JJ J
dxdydz

|p(|-

where

2n f

P = T& J o

is a function of #, y and z.

An integration by parts gives the equilibrium ecpiations

.

dx dy dz

In this way Navier rediscovers Clairaut's equations, making them
"
depend more directly on the physical notions that can be formed

on the nature of these bodies.
"

3. THE MOLECULAR FORCES IN THE MOTION OF A FLUID.

Therefore the introduction of molecular forces in Navier's sense

does not result in any modification of the general equations of equi
librium of fluids. It is not the same for the equations of motion.

Indeed, in order to proceed from Clairaut's hydrostatic equations
to Euler's hydrodynamical equations

_ dp (du ,

du 3u du\p -f = p(^-+u + v +w\, etc
dx *

\dt dx dy dz/

it is necessary that the repulsive forces, in the sense that Navier used

them, should not be modified. But according to the principle expressed

in 1,
"

it is necessary to assume the existence of new molecular forces

which are produced by the state of motion.
"
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^Always considering two neighbouring molecules M(x9 j, z) and
M' (x + a, y+ /?, z + y), Navier writes that the relative velocity of M'
with respect to M, projected on MM', has a value

0/30 ,3t; 9i; \ y/fcc 3 ^ \

7l^
He represents the force which exists between the molecules M and

M'by/(r)F.
At this point Navier supposes that the fluid in motion is given46 an impulsion hy the effect of which the velocities u, v, w have varied

by an amount 6u> dv, dw respectively.
"

Under these conditions the alteration of V is

and the qpiantity

f(r)V.6V

represents the total " moment "
of the force acting on M because

of M', and of the opposite force acting on M' because of M.
Now

fluid.

At this point it is necessary to integrate this " moment "
for all the

By a calculation whose details we shall omit, Navier obtains, for
the sum of the moments of the mutual actions ofM and all the moleculesM oj the fluid, the expression

_
dv

\fo ty
du

-
,

.

dy\dy}
+

dz
d

\dz)
+

d
d

(te)
+ ^ d (,
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By summing for all the molecules M of the fluid and dividing by
two in order to count the mutual actions of different molecules once

only, Navier obtains the equation

-m

[*-!-(+-++)]*}

with

An integration by parts transforms the second term of the equation
into

f f f

] ] ]

_ _ _ _

fa

In this expression the terms obtained from the limits are omitted,
and only these which occur in the indefinite equations of motion are

included.

Taking account of the condition of incompressibility

du )dv ,

dw _ r,

a^
+

a^
+

aJ
=

and of the conditions which are obtained by differentiating this one,

Navier obtains the indefinite equations with which his name is associated.

These are

du
,

du
,

du
, du\ /d2u

,
3% 82u



414 THE EVOLUTION OF CLASSICAL

To Be accurate, Navier also gave liis attention to the conditions

at the limits and studied at length
*' the actions exerted between

the molecules of the fluid and those of the solid walls.
"

In this way
he succeeded in introducing, as well as the coefficient , a coefficient E
which was directly related to the sliding of the layer of liquid on the

boundary wall.

This hypothesis of sliding has now heen given up. It has heen

so since the work of Stokes and the experiments of Poiseuille (1846)
on the flow of viscous liquids in capillary tubes. Navier used it,

for his part, to show that his theory was in agreement with the empir
ical formulae of Girard, and even added " It would be misleading
to think that the preceding formulae might be accepted if E were

supposed zero.
" 1

4. REMARK ON THE ORIGIN OF THE GENERAL EQUATIONS OF ELASTICITY.

Without pretending to write the history of elasticity, which goes
outside the compass of this book, we think it of some value to give
some indication of the origin of the general equations of elasticity.
We have seen that Navier's work had already established a connection

between these and the equations of fluid motion.

In fact, if the XlXth Century had not had to discover the theory
of the elasticity of bodies in one or two dimensions, it had to create

the general equations of elastic media in three dimensions which have
become classical.

Navier was concerned with elasticity even before he formulated
his equations of hydrodynamics. His paper on the Lois de Vequilibre
et du mouvement des corps solides elastiques was read to the Academic des

Sciences on May 14th, 1821. It was therefore about a year earlier

than his work on the equilibrium and the motion of fluids.

Navier's starting point was, here again, a molecular hypothesis,
which he formulated very precisely.

" A solid body is regarded as an assembly of material molecules

placed at extremely small distances. These molecules exert on each
other two opposed forces namely, a proper force of attraction and
a force of repulsion due, in principle, to heat. Between a molecule^ M
and any other of the neighbouring molecules, say Af , there exists

an action, P, which is the difference between these two forces. In the
natural state of all bodies the actions P are zero, or nullify each other,
since the molecule is at rest. When the shape of the body has been
altered, the action P assumes a different value 77 and there is equilibrium

1 NAVIER, loc. cit., p. 435.
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between all the forces II and the forces which were applied to the body
to produce the change of shape. The forces H can be imagined to be
divided into two parts, n and n\ by supposing that the first part, JT,

is such that there would be equilibrium between all the forces P in

the natural state of the body if they existed alone. Since therefore

the forces n nullify each other, it will be necessary that equilibrium
exists between the resisting forces nr and the forces applied to the

body. Given this, we shall take as a principle that these latter forces,

n' 9
which are produced between any two molecules M and M' by

the alteration of the shape of the body and which must, alone, be in

equilibrium with the forces applied to the body are respectively

proportional to the amount by which the alteration (supposed very
small) of the body's shape has altered the distance MM' between the

two molecules. The force 7t
f

is an attraction if the distance MM'
has increased, and a repulsion if the distance MM' has decreased.

Moreover, we regard the molecular actions concerned as only existing
between molecules which are close together and as having values

which decrease very rapidly, according to an unknown law, for molecules

which are further and further away from each other.
"

Navier carried out an analysis analogous to that whose basic method
we have described in 3 of the present Chapter. Calling s the quantity

where r denotes the distance of the molecule M (xyz) from an arbitrary
molecule M', he arrived at the general equations

x = e ~ + + + 2

Z = ...

In these equations X, Y, Z are the components of the force applied to

the molecule M, whose initial coordinates are a, 6, c and whose coor

dinates after the displacement are a + #? & + J? c + z.

Navier had to sustain an extremely lively criticism from Poisson,
and his quarrel with the latter was conducted in the columns of the

Annales de Chimie et de Physique for 1828 and 1829. Poisson showed
a determined obstinacy in not recognising Navier's priority however
incontestable it may have been in this matter L

and, in the circum

stances, does not seem to have played the better part.

1 In order to illustrate the tone of this polemic, we shall quote from NAVIEH.
44 It seems to us that justice demands that the geometers who now concern them

selves with these developments and who use neither new principles nor different differ-
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As editor of the Annales, Arago had to settle this dispute. He
absolved Navier from the accusation, which Poisson had made, of

having heedlessly omitted to define the natural state of an elastic body.
But he emphasised that Navier's text the passage that we have

quoted was the one concerned contained some obscurity. It might
be thought, as Poisson had done, that only the resultant of the actions

P was zero in the natural state. Navier, at the end of the quarrel,
was forced to clarify his ideas in the following way.

44
1. In the natural state of a body the attractions and repulsions

between any two molecules nullify each other. . . .

"2. In the deformed state, when the original distance, r, between
two molecules has become r', between these two molecules there is

an action proportional to r' r which, moreover, decreases very
rapidly to the extent that r is greater. So that this action is expressed
by (r

f

r)/(r), where the function /(r) has the property of becoming
very small as soon as r itself assumes a value which is not small. In
this way there is no difficulty in visualising the natural state of a body.
It is seen that its present shape exists and maintains itself as a system
in a stable equilibrium state, where the forces which nullify each other
cease to do so if the positions of its parts are changed in relation to

each other.
" 1

Poisson thought to improve Navier's solution by introducing an

explicit form of the function /(r), of the form
/ r\7n

/(r)
= ab~(^)

and by replacing Navier's integration in the coordinate r by a sum
of discrete terms. But Lame justly remarked that this improvement
was illusory. For if Poisson eschewed the integration in r, he carried
out an integration for the other two polar coordinates in space. Now
Lame saw a contradiction in the assumption of the continuity of matter

(whatever coordinate might be concerned) together with a molecular

hypothesis, to which Poisson was as firmly attached as Navier.

ential equations, will not cast our work into oblivion. Usually some appreciationhas been accorded to our efforts, which have resulted in the establishment of the prin
ciples and the analytic forms by means of which a particular class of phenomena was
made amenable to calculation for the first time.

"
(Annales de Chimie et de Physique,

Vol. 38, 1828, p. 304.)
*

Or again,
" M. Poisson's equations, having come seven years too late, might be

said to be of the same form as the equations that had appeared first In order to
rob me of the merit of having given the differential eolations concerned, it would be
necessary to show that my principles are contradictory in themselves or with the natural
tacts. It is not sufficient to say that the same equations have been found in another
way and to claim, without proof, that this way is better than mine. "

1 Annales de Chimie et de Physique, Vol. 40, 1829, p. 103.
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Evidently it was desirable, as Cauchy and Lame had done, to refrain

from explicitly formulating this or that molecular hypothesis as the

basis for the general equations of elasticity. It was preferable to

"
approach the problems connected with molecular mechanics by

leaving indeterminate the reciprocal influence between the different

kinds of matter, without the direct intervention of attractions or

repulsions that follow certain hypothetical laws. If the problems

are formulated as equations in this way, the nature of the influence

concerned, the forces which express it and their exact laws, will be

deduced as consequences. In this way will be reproduced the develop

ment of theoretical Astronomy, in which the universal attraction,

rather than being put forward as the starting-point, is presented as a

necessary consequence of the laws of motion.
" *

In this passage we recognise Lame's classical formulation of the

equations of the theory of elasticity. Navier's molecular hypothesis

did not endure, and his elasticity and hydrodynamics did not hold

the interest of other students of the subject. Nonetheless, this hypo

thesis was the keystone of Navier's analysis, which is, certainly, a

milestone in the history of general mechanics.

1 LAME, Legons sur la theorie mathematique de VElasticity des corps solides, 1852, p. 37.

27



CHAPTER EIGHT

CAUCHY
AND THE FINITE DEFORMATION

OF CONTINUOUS MEDIA

We have already remarked in the preceding part of this book,
in connection with the hydrodynamics of perfect fluids, that Euler,'
and later Lagrange, had obtained essential results in the kinematics
of continuous media.

Cauchy had the merit of elucidating the problem of the finite
deformation of a continuous medium, and of calling attention to the
* 6 mean rotation

"
which accompanied such a deformation. In an

infinitely small deformation this mean rotation merges with what is
now called the "

vortex.
"

As the kinematics of continuous media is the language of the
mechanics of fluids and of elasticity, Cauchy's work is of considerable
importance.

Cauchy returned to this kinematics on several occasions during
twenty or more years from 1822. At first he concerned himself, like
his predecessors, with the dilatations and the condensations (contrac
tions), and only later did he discover the mean rotation.

We shall not occupy ourselves with the earlier papers, but foUow
a paper called Sur Us dilatations, les condensations et les rotations pro-
duites par un changement de forme dans un systeme de points materiels^

In an "
original state "that is, before deformation let x9 y, z be

the coordinates of a molecule "
p. Let x + Ax, y + Ay, z + Az be

those of a second molecule m. Let r be the radius vector drawn from
/* to m, and a, fe, c the direction cosines of this radius. Cauchy writes

(!) r2 = Ax* + Ay2 + Az*

(2} Ax Ay A
\*} a = 6 = -^ c =

r r r

1 CEuvres completes de Cauchy, Vol. XII, 2nd series, p. 343.
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In a " second state
"

that is, after finite deformation and dis

placement the coordinates of
fj.

become # + f, y -f- 37,
* + C and

those of m become x + Ax + + A, etc. . . . The radius vector in

this state becomes r -f- @ and has for components Ax + A^ etc. . . .

and its direction cosines a, /?, y. Whence the three equations

(4) (r + #)
2 = (Ax + J|)

2 + (Ay + Ay)
2 + (Az + A)*

(5) a = *
ft
=

r + g^
7 =

r + g

(6) a2 + /S
2 + y

2 =l.

Cauchy calls the quantity

(7)
=

f

the " linear dilatation
"

or "
condensation,

"
according to whether it

is positive or negative.
Fom this definition and equations (1) to (6) it follows that

(9) a = _

In the deformation from the original to the second state the molecule

fi goes from to 0'. If OA is the axis carrying the radius r, and

O'A' that carrying the radius r + , the angle <5 between O'A' and 0./4

can be introduced, together with its projections y, #, y on the coordinate

planes. These are the three angles contained between the projections

of r + an(l those of r. Now

cos <J = ooc + 6)8 + cy

or

(10) sin2 d = 1 cos2 (5 = (a
2 + 62 + c2

) (a
2 + /3

2 + y
2
)

c/3)
2 + (ca ay)

2 + (aft 6a)
2

-

(11)

On the other hand

Z_ 5
8 b by c/3 ca ay a/S ftoc--
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Moreover, because of (9)

Make m tend towards p in such a way that r, A$, Ar), A tend to

zero. That is, consider two infinitely close molecules which are both

subject to the same finite deformation of the medium. The quantities

, ?/, C may be written as functions / of x, y, z

and consequently

as) Km 41= f(*
'

= Drf= aDxf+ bDyf+ cDsf.

Therefore we shall put

*)

for

(14)

Hm =

Km =

lim -2 =

+

+

+

+ cD,

+ cDt
-r]

\ ux-'aig

Returning to equations (8), (9), (12), it follows that

(15)

[aDxrj + 6(1 + Dyrj)

1 f

(16)

a =

(aDx + bDy + cDz) (if en) etc. . . .(17) by c8=~
1 + s

from which 6, 9?, #, ^ may be obtained by the use of (10) and (11).

To^clarify this, Cauchy considers the particular case where the

axis OA of the radius vector r is parallel to the plane ofyz in the original
state. That is

a = b = cos r c = sin r .
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In these circumstances, by equation (11)

(18) ft, =1 ' Sf

or

= (
cos iVy + sin

1 -f- (cos rDy -f- sin rDs) (by + cf)

"

The rotation
<p of OA about Ox depends on r. Its mean value is

(20) cpdr

and represents the mean rotation in Cauchy's sense.

The angle cp is

Further, by (16),

~Vc\ C
The angle cp is the difference tan I

-
)

tan
(
-

I. Here - = tan T.

PJ W b

cos r + sn r

a xri tf + c
rj

cos T + ^ + sin

We shall therefore put

(22) %(y + T)
=^

V ^ * V9^ ^

and obtain tan (^ + T) and tan
(ip + r) by a cychc permutation.

From these expressions the mean rotations
9?, #, ^, can be obtained.

We shall not discuss the geometrical interpretations which Cauchy
gave of the expressions (1 + e)'

1

, (1 + e), [(1 + e) sin (5]"
1

, tan
9?,

tan ^ and tan y, but shall return to the simple case of infinitely small

deformations.

From equation (15)

s = (aDx + bDy + cDf) (af + by + cf)
.

On the other hand, by approximating tan <p by 9?, to the second
order

cp
=

(cos rDy + sm tD*) (f cos r
97
sin r)

sin2 rD sin T cos

cos 2r D JD^ sin 2r .

If it sought to calculate the mean rotation
|<p|,

it is sufficient to

observe that

I2n
p2st

cos 2rdr = sin 2rdr = .

JO
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Therefore

<p

V

2

1

1

2

Cauchy declared,
" These are the mean rotations which will be

executed by the system of points about the three semi-axes drawn
through fi parallel to the three semi-axes of positive coordinates. "



CHAPTER NINE

HUGONIOT
AND THE PROPAGATION OF MOTION

IN CONTINUOUS MEDIA

1. NATURE OF THE PROBLEM.

As an example of a profoundly original investigation, and in the

spirit of the introduction to this Part,
1 we have chosen Hugoniot's

studies on the propagation of motion in continuous media.2

These studies are a continuation ofthe work of d'Alembert, Lagrange,
Laplace, Poisson, Cauchy, Riemann, Poncelet, Philips, Saint Venant,
etc. . . . More recently, the mathematical apparatus of Hugoniot's work
has been codified and perfected, and other investigations of a physical
nature have followed. Nevertheless, these studies mark an epoch
in the history of the mechanics of continuous media.

Hugoniot's paper starts with a mathematical introduction on
the characteristics (in Monge's sense) of equations containing partial
derivatives. He then comes to the theory of the propagation of motion

in a continuous medium, and starts with the consideration of very
simple examples.

Consider an elastic and homogeneous rod whose motion is governed
by the equation

The rod is initially a rest and an uniformly accelerated motion is imposed
at its end x = X. For all t ^ 0, the conditions at the end are therefore

otf
2

(2) u = for x = and u = for x = X.
2*

1 See above, p. 353.
2 MSmoire sur la propagation du mouvement dans les corps et specialentent dans les

gaz parfaits, Journal de V Ecole polytechnique, cahier 57, 1887, p. 3 and cahier 58, 1889,

p. 1. This paper, published posthumously, had been deposited by the author with the

Secretary of the Institut on October 26th, 1885.
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The behaviour of the rod is governed by the solution u = at

the part near the origin of x, and by the solution

(3) u== JL {x + at-W
which clearly satisfies the equation of motion and the condition imposed
at x = A, in the upper part of the rod. This solution advances towards
the origin with the velocity a. It joins the other solution u at

the point
x = A at

and thus continually extends itself at the expense of the solution u = 0,

which represents the fact that the lower part of the rod is at rest.

When the solution (3) arrives at the origin at the time the condi-
a

tion (2) intervenes. Then there originates a new solution

/A\
(4) u=

which is completely determined by (3) and the condition u = (forx= 0).

Once more the rod is divided into two parts. That nearer the

origin has the motion (4) and the other retains the motion (3). These
two parts meet at the point x = at A. The solution (4) propagates

91
itself with velocity a and reaches the end x = A at the time t .

a
A new integral originates at this end, namely

(5)
=
^(* + oi-A) + ^(*-A) + ^(ai-*-*)

j2
which is determined by (4) and the condition u = for x = L This

2
processes continues.

Hugoniot concludes,
" It is seen how the solutions can be born

at the ends of the body. When the motion of the prism is represented
by a determinate solution and the condition imposed at the end is not

compatible with the motion defined by this solution, another solution

originates at the end and develops at the expense of the first, pro
pagating itself with a velocity which (for elastic prisms) is always
equal to a. The new solution, it is clear, can only depend on the original
solution and the condition imposed at the end.

"

But solutions can originate in the interior of the body. In order
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to be convinced of this, it is sufficient to consider the same rod, initially

at rest, and to impose the following conditions at the ends

u = -
fit* for x = and u = - at2 for x = h whenever t > 0.

2 2

Between t = and t = , the motion of the rod is represented
2a

by three solutions

u =JL
2 (at X)*,u=0 and u =^ (at + x A)

2
.

Between t and t = -, these three solutions become
2a a

and u = -^-z (at + x A)
2

.

JLOr

It is seen that only the central solution is modified.

A 3A
Between t - and t = , the central solution remains and the

a 2a

two solutions at the ends are modified, etc. . . .

Thus at the time t = ,
at the central point of the rod the initial

2<z

rest gives way to a motion represented by a solution which is the

sum of two primitive solutions. (This is a particular case.) The

new solution originates because the two extreme solutions cannot

coexist. It propagates itself, on one side and on the other of the central

point, with the velocity a and to the detriment of the other two solutions.

It arrives at the ends at the time -. Then is born a solution at each
a

end, then a new solution at the centre of the rod, etc. . . .

2. COMPATIBILITY OF TWO SOLUTIONS. VELOCITY OF PROPAGATION

OF ONE SOLUTION IN ANOTHER. HuGONIOT's THEOREM.

Hugoniot made clear what should be understood by propagation

of one solution in another. Let f(t)
be the abcissa of the point which

separates the two solutions. If the motion continues to be represented

by the same two solutions at the time t + dt, these will be said to be

compatible. The point f is displaced by dg in a determinate direction,

I*
~ti

these solutions in the other.

and will be, by definition, the velocity of propagation of one of
dt
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If the two solutions are incompatible, there will be born a new
solution which is necessarily compatible with the first two.

How is this condition of compatibility to be presented ?

The motion is supposed to be governed by the linear equation of
the second order,

3 2
Here L, #, ff, M are functions of*, t, u,

"
%. Let there be two

ot ox
solutions ux and u2 which represent the motion of the two parts of the
body at the time t, and which meet at the point (*).(3 A \

absence of discontinuity in u, and | is
dx dtj

therefore expressed by

ui u
2
=

j (! 2)
=

for all values of t and at the point (t). The second and third of
these equations may be differentiated by regarding as a function
ot t denned by MI w2

= 0, which gives

"* vxoi at

On the other hand, by the equation of motion

T d2
, , . ___ 32 a.

Whence it is concluded that if the three second derivatives are not
always equal to each other at the point (in which case the solutions

,and w
a would not be

distinct), then

(C)

Knowing ,, the
corresponding values of L, K, H are taken. Thenthe preceding equation gives f(t). From this the solution u

z is obtained,
using the condition



THE PROPAGATION OF MOTION 427

in which x is replaced by
The equation (C) is that of the characteristics of the equation of

motion. Therefore the two solutions have a common characteristic.

The velocity of propagation, , is given by the condition (C).

In general it has two values at each point and at all times and, in general,
it depends on the solution considered.

If u = is a solution of the equation of motion, the velocity of

propagation compatible with the body at rest is known a priori. More

generally, if a solution, u, of the equation of motion is known, the

velocity of propagation of the solutions compatible with u is known,
and these solutions represent all the motions which can propagate
themselves in the first without the introduction of discontinuity*

Thus a sequence of problems had to be treated in a determined

order, step by step. This sequence of problems reduces to the following
one

" To determine the ensemble of integral surfaces which correspond
to a given solution along a given characteristic.

"

Hugoniot observes,
" This problem is basically equivalent to that

of the integration of the equation in the partial derivatives which

represents the motion, which does not appear to have been even partially
solved. But it must be remarked that it is possible to find particular

solutions, each one of which represents a case of propagation in another

and which, accordingly, constitutes another step in the study of the

natural phenomena.
"

In the simple case of the motion of an elastic rod, whose equation
of motion is

d*u_ 2
d*u

a*2
~ a

a*2

the general solution is known to be

u =
<p (x -f- at) + ip (x at) .

The condition of compatibility is easily interpreted with the help
of the arbitrary functions <p and ^.

Two compatible solutions, u and M2, have a common characteristic.

Accordingly one of the quantities x + at and x at remains constant.

For example suppose that x at K represents the equation of

the line of intersection. This can be expressed by

q>i (x + at) Vl (K) = 9?2 (* + at) ^ (K)
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or
q>i(x + at) <p2 (x + at)

= y2 (K) + Vl (K) .

Therefore the difference y^ cp2 reduces to a constant, which
can be supposed to be zero (with a suitable adjustment of y2 or

ip if

this is necessary). Thus when two solutions fit together along a charac
teristic x at = K.> the two corresponding functions

cp are equal.
An analogous conclusion follows for the functions tp of two solutions
which fit together along a characteristic x -\- at = K'.

When a solution is compatible with two others, it borrows the
function <p from one and the function ip from the other and is completely
known apart from a constant which can be determined from the con
dition that the values of u should be the same at the common points.

As an application of this, Hugoniot solved the following problem,
which had been attempted by Poncelet, in finite terms. To find the
motion of an elastic rod which is originally in equilibrium under the
action of its own weight, and from which a weight, regarded as an

unchanging solid, is suspended.

Hugoniot then turned his attention to the velocity of propagation
of motion in fluids.

The equation of motion of a perfect gas, in adiabatic motion in a

cylindrical container, may be written as

if the external forces are neglected.
The velocity of propagation follows from this

If the gas is at rest, u = is a solution for which = There-
dx

fore, in a gas at rest,

/#\
2

ypo
\Tt)

=
-^

Hugoniot wrote, "An expression which has been known since
Laplace, but which has never been rigorously demonstrated. "

In order to treat a gas in motion, Hugoniot starts by modifyingthe definition of the velocity of propagation. In the time dt the
point which is common to both solutions moves from the interval
whose initial abcissa is g to the interval whose initial abcissa is $ + d$.
But at the time t these intervals occupy the positions g + u and



THE PROPAGATION OF MOTION 429

f + d 4~ u + ^- Therefore the distance actually travelled in the
dx /

g
\

fluid by the common point is d I 1 -\
--

)

.

V XJ
Given this, Hugoniot states the following theorem, with which

his name is still associated.

When one motion propagates itself in another, the velocity of propa

gation in gases is always equal to i / ^-, where p is the pressure and Q
v Q

the density at the point which separates the two motions (with the reserv

ation that there should not be discontinuities at the point common
to both solutions).

An immediate transformation, which makes apparent the velocity

of propagation corresponding to the actual state of the gas, gives

\

But

+ I and o =

Therefore

Q

whence follows the theorem.

The same law is applicable to the motion of a gas in spherical layers.

It can also be generalised to the adiabatic motion of a homogeneous
fluid if no external forces, friction or viscosity are present whose

law of motion is

B^u tdu\ d^u

We cannot deal with the numerous problems which Hugoniot

studied, and we shall confine ourselves to the principle of his studies

of discontinuities.

3. DISCONTINUITIES IN THE PROPAGATION OF MOTION.

Hugoniot distinguished three kinds of discontinuities which can

occur in the propagation of motion.

1) Those which pre-exist in the initial state.

2) Those which arise from the conditions at the limits (for example,

from external impact).
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3) Those which, can arise in the course of the motion itself, apart
from any discontintiity of the first two kinds.

In this connection Hugoniot developed the following interesting
observations.

" It may be asked whether the discontinuities encountered in the

theory of the propagation are merely an analytic fiction, or whether

they correspond to physical reality. This is a question which it is

rather difficult to answer in the present state of science.
" If only the discontinuities at the ends were concerned, the answer

would not be uncertain. The discontinuous analytic form that is

given to these conditions does not correspond to the facts. Thus,
in the example of the impact of a body on the end of an elastic rod,
the action of the body on this end starts before contact is established,
because of the action which the material particles at the end exert

at a distance. This action at first negligeable, increases very rapidly
when the distance between the body and the rod becomes extremely
small, and the end of the rod only attains the velocity V [assumed by
the consideration of instantaneous impact] after having passed through
all the intermediate velocities. For a very rapid variation of this

velocity whose law is unknown the hypothesis of a sudden variation

is substituted for simplification.
" It is much more difficult to decide, if the conditions at the end

and in the initial state are continuous, when a sudden appearance
of a discontinuity of the motion is seen. At first sight it even seems
that the discontinuity must be, in reality, produced. Nevertheless,
it must be observed that while the partial differential equations which
are used in the study of the motion are based on hypotheses which
are very close to the truth, if they were replaced by the true laws

they would lead to very different equations. For example, in order
to establish the equations of motion of a gas it has been supposed
that the conductivity of the fluid was accurately equal to zero. Now
it is well known that while this conductivity is very small, it never
theless has a measurable value. Therefore the equation in the partial
derivatives which has been used is only an approximation." However it may be, discontinuities force themselves upon us
in the problems of mathematical physics. Whether they are regarded
as having a real existence or are accepted as being merely an
approximation, it is necessary to investigate the influence which they
have on the phenomena of the propagation of motion. "

Hugoniot considered two bodies A and A' which are actuated
by motions in layers which are parallel to Ox and bound to remain
in contact along a plane B. The motion of each of these bodies is
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represented by a solution of a certain equation in the partial derivatives

of the second order. At the time t considered the velocity and the

pressure are not the same in the two layers in contact. For A, let v

be the velocity, z = the dilatation, p the pressure of the layerox

in contact with A', and let t/, z
r and p

r be the analogous quantities
for A 1

.

The condition of the two layers dx and dx r

will be modified by
mutual reaction. At the end of the time dt the layer dx of A wiU
have taken the velocity 19 the dilatation zI and the pressure p1 ; the

analogous quantities for the layer dx
f

in A' will be v^ z[ and p{. Thus

the problem contains eight unknowns v
l9 v^ zv &[, pl9 p' and .

at dt

With the hypothesis that A and A' must always remain in contact,

differences of velocity and pressure cannot exist across B.

Therefore

(1) ^ = v{

(2) ft=Pi-

Applying the principle of the conservation of momentum to each

layer dx and dx',

(3)

(4)

-
v)
- = p- ?1

The increase of the length of the layer dx during the time dt is

(vx v)dt. Its original length dx(I -f- z) becomes dx(l + %)

Therefore

\ / V 1 / -7* 1
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and similarly

(6) (J - *') J = v
' -

v[.

Thus there are six equations which are independent of the nature of

the bodies A and A f

. The problem is determinate if there is, in each

medium, a relation between p and z that is, p = <p(z), and p' = y(z
f

).

In particular, if the two bodies A and A' are identical then
(p
=

^y,

s^
=

s.[
because of (2), and =

Q$. Moreover, suppose that one of

the velocities of propagation ( )

vanishes.

\dtj
Using the preceding relations, an elementary calculation gives

(C) fio('-)* =[?(*)-?(*')] (*'-*)

and, incidentally, vl
= v and z = z

1

.

Then two cases are to be distinguished.

1) The condition (C) is not satisfied. The two layers dx and dx
',

which have assumed equal velocities and pressures, are moved in the

same way. The body is divided into three parts one, to the left

of CD, is represented by a certain solution of the partial differential

equation which, moreover, is known in advance. It is the same for

the part to the right of C'D'. Between these two is an infinitely small

part, of length dx + dx\ in which the velocity is v and the dilatation z.

The original discontinuity at B has given rise to two other disconti

nuities. , ,

2) The condition (C) is satisfied. One of the velocities
(
here -^ )

is

\ dt J
zero. The intermediate portion CDC'D' disappears. The original

discontinuity has only altered its position and the motion of the body
is still represented by two unique solutions which allow a discontinuity
in the velocities and dilatations to exist at the common point. This

point is displaced by a distance dx one of the solutions has propa-
dx

gated itself in the other with velocity , without giving rise to any

new phenomenon. Hugoniot would say that the two solutions are

compatible. The section at which the solutions meet is defined by
the identity of the displacements by

u = a'.

The condition (C) can also be written as

/d*\ - s' -'
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The curve on which the two solutions fit together is no longer
a characteristic it depends on both solutions.

Nevertheless, if the coefficients of the derivatives of the second

order in the partial differential equation do not depend on z or v, or

that is, if p = Afa , u), it is discovered that
at

Thus the velocity of propagation is the same for both solutions. There
fore the velocity of propagation is the same whether or not there may
be a discontinuity. Therefore the integral surfaces fit together along
a characteristic.

We return to the case of condition (C) not being satisfied. There
is a solution which governs the motion of the layer dx + dx'. On
the other hand

<p(z)
- yfo)

Therefore this solution is compatible with both the original solutions

and propagates itself in these without giving rise to new phenomena.
Hugoniot then turns to the more general case of a relation between

the pressure and the dilatation of a layer which depends on the trans

formations which this has undergone. The conditions of compatibility
are then of number two

If two incompatible motions A and B are present, a new one develops
in each of the layers in contact. The two new motions, A' and J3',

propagate themselves in opposite directions at the expense of the

original motions. The layer common to the motions A' and B' remains

the same. The velocities of the two motions are equal there, as are

the pressures, but this does not apply to the dilatations.

We cannot follow Hugoniot in these developments, or in the several

problems to which he applied his theory. We believe that we have

said enough to illustrate the nature and the originality of this paper,
in which, starting from a given motion, the author studies the accidents

that can happen to it by iterating a process of propagation, or of creation

of different motion. However remarkable this analysis may be, it

is always subordinate to the physical sense which guided its author's

thought.
28



CHAPTER TEN

HELMHOLTZ AND THE ENERGETIC THESIS
DISCUSSION OF THE NEWTONIAN PRINCIPLES

(SAINT-VENANT, REECH, KIRCHHOFF, MACH, HERTZ,
POINCARE, PAINLEVE, DUHEM)

1. HELMHOLTZ AND THE ENERGETIC THESIS.

Before coining to the discussion of the newtonian principles which
distinguished the second half of the XlXth Century and the beginning
of this Century (hefore relativity) it seems valuable to devote a little

time to the so-called energetic thesis. This certainly lies outside the

scope of rational mechanics, founded as it was on the contemporary
thermodynamics, electricity and magnetism. But it also aimed not
without illusion at replacing the classical exposition of the con
cepts and axioms of dynamics. In this connection Poincare made a

very apt criticism, to which we shall return. For the moment, we
confine ourselves to summarising the essential content of the energetic
thesis in the field of mechanics alone.

In 1847 Helmholtz published at Berlin a paper On the Conservation
of Force* From the philosophical, not to say from the metaphysical,
point of view Helmholtz assigned to the theoretical sciences the task
of inquiring into the " constant causes

"
of phenomena. Even if

nature provides evidence of free will, science must seek the regularities
susceptible of being reduced to the effects of fixed causes.

In some ways Helmholtz appears as a Cartesian. Having endowed
matter with extension, and with quantity or mass, he was of the opinion
that matter can only recognise changes of position in space that
is, movement. But matter shows activity in movement. Therefore
the energetic thesis is concerned with the properties of "

active matter.
"

Helmholtz confined himself to the study of conservative systems,whose elements are only subject to their interactions (functions of

1 We have used the French translation by PERARD, Masson, 1869.
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their distances apart alone) or to forces emanating from fixed centres

(and functions only of their distances from these centres). The kinetic

energy of such a system does not depend on the positions of the elements

in space (relative positions of different elements and distances of the

elements from the fixed centres).

Calling 9? the intensity of a force acting in the direction of a vector r,

and reckoning it positive when attractive and negative when repulsive,
Helmholtz called the integral

the quantity of tensions action between the limits r and R. He wrote,
" The increase of the kinetic energy of a particle in its motion under
the influence of a central force is equal to the quantity of tensions

which corresponds to the relative variation from the centre of action.
"

He called the quantity of disposable tension the potential energy
after Rankine ; the kinetic energy became the actual energy.

Thus, for a particle subject to a central force (a function of the

distance) emanating from a fixed centre, the sum of these two energies
remains constant.

This result extends to "
all cases of the motion of free particles

under the influence of their attractive and repulsive forces, whose
intensities only depend on the distances,

"
in the sense that " the

decrease of the potential energy is always equal to the increase of the

kinetic energy
" and conversely.

Helmholtz recalled that the principle of the conservation of kinetic

energy had been applied to all motions due to the influence of universal

gravitation, and in the transmission of motion by means of incom

pressible bodies (solids or liquids) when friction and impact with

inelastic bodies were not involved.

He congratulated himself with having thus put mechanics " into

the form of an almost popular rule in all motion transmitted and
modified by mechanical powers, there is a loss of force proportional
to the velocity gained.

" *

Helmholtz's conservation principle also extends to solid bodies

and perfectly elastic liquids. The principle has been used for a con

siderable time in application to solid bodies. In fluids (liquid or

gaseous) the propagation of motion is accomplished in the form of

waves of velocity

f2m, ,\u = a cos < (x at) > .

1 Loc. ciz., p. 82. The intention is clear, but no purpose is served by emphasising
the extent to which, the terminology is not accurate.
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In a wave motion the kinetic energy of a particle Am is - Am a2

and therefore, is proportional to the intensity a2
.

If two waves of intensities a2 and 62 do not interfere, they communi
cate the intensity a2 + 62 to all the points they encounter. If they

interfere, the maxima (a + 6)
2 and the minima (a b)

2 are greater

or less than a2 + 62
by the same quantity 2ab. The kinetic energy

is not destroyed, but distributed differently.

Kinetic energy is only lost in the absorption of waves. But then

there is friction, or impact with inelastic bodies, and release of heat.

Helmholtz then went on to the equivalence of " force
" and heat,

invoking Joule, Henry, Davy, Clapeyron, etc. . . ; then to the mechanical

equivalent of electrical, magnetic and electro-magnetic phenomena.
But it is as well to remember his intention " To reduce all natural

phenomena to invariable forces, attractive or repulsive, whose intensity

only depends on the distance from centres.
"

There is some illusion in the pursuit of such an ideal and this, to

Helmholtz himself, had, at least in part, the character of a wish. If

this wish could have been fulfilled, he would have arrived at " the

necessary form of the conception of nature, which can be called objective

truth.
"

2. BARRE DE SAINT-VENANT,

We return to our task of outlining the discussion of the newtonian

principles which appears in the systematic or critical works of several

authors.

Barre de Saint-Venant's attitude was related to that of Lazare
Carnot. Indeed forces were to him " kinds of agencies of an occult

or metaphysical nature " which did not appear either in the data or

the results of a problem of terrestrial or celestial mechanics.1

Observation shows that in order that a body should assume an
acceleration (and therefore a velocity) it is necessary that other bodies

change their situation with respect to it. It is the same if the body
is already actuated with some velocity. The acceleration arising

1
Principes de Mecanique fondes sur la Cinematique (1851).

More clearly still, in an article on Du BUAT published at Lille in 1866, SAINT-
VENANT wrote,

"
It is very possible that forces these problematical beings or rather

substantived adjectives, which are neither matter nor spirit but blind and unthinking
beings that must nevertheless be endowed with the wonderful faculty of estimating
distances and of exactly proportioning their intensities accordingly may be more and
more expelled and separated from the mathematical sciences. They would take the
place of laws not only geometrical but also physical, etc. ..."
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from such a change is independent of the velocity possessed. In the

impact of two identical bodies the velocity gained by one is always

equal to the velocity supposed gained by the other. If the two bodies

differ in matter or volume, the velocities gained in the impact are

unequal but in a constant ratio.

Barre de Saint-Venant expressed these experimental facts in the

following general law.
" Bodies move as systems of points which have, at each instant,

in space, accelerations whose geometrical components which are

directed along the lines which join the points, and are variable with
the lengths of these lines but not with the velocities of the points are

always equal and opposed for the two points between which each
line is a measure of the distance.

"

Barre de Saint-Venant then introduced the concepts of mass and
force based on this general law.

" Masses are those numbers which are proportional to the numbers
of the elementary points that it is necessary to suppose in the bodies,

comparing one with another, to explain their various motions by
means of the statement of the general law.

" Attractive or repulsive forces of bodies, considered two by two,
are the lines proportional to the resultants of the reciprocal accelerations

of their elementary points according to the same law. Generally it

is supposed, for simplicity, that the constant and arbitrary relationship
of the forces with the resultants is the same as the constant relationship
of the masses with the number of points.

"

Then Barre de Saint-Venant arrives at the following definitions.
" Masses. The mass of a body is the ratio of two numbers ex

pressing how many times this body and another body, chosen arbi

trarily and always the same, contain parts which, being separated
and colliding with each other two by two, communicate opposite

equal velocities to each other.
" Forces. The force, or the attractive or repulsive attraction,

of a body on another is a line whose length is the product of the mass
of the second body and the mean acceleration of its points towards

those of the first ; its direction is that of the acceleration.
"

In order that these definitions may be appreciated, it must be

emphasised, as Jouguet has done,
1 that Barre de Saint-Venant was a

" convinced atomist.
" From his

"
entirely practical

"
point of view,

he explicitly refused to discuss whether the masses were in any way
related to the quantities of matter of different heterogeneous bodies, and

whether the forces were in anyway related to the efficient causes ofmotion.

1 L. M., Vol. II, p. 81.
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3. REECH AND THE " SCHOOL OF THE THREAD, "

In contrast, Reech adopted Euler's point of view. That is, lie

took the concept of force as his starting-point. We shall follow here

his Cours de Mecanique d^apres la nature generalement flexible et elastique

des corps (1852).
To Reech, the word force did not denote a cause of motion, but

" that effect of any cause that is called pressure or traction and which
we appreciate with such a high degree of clarity in a stretched thread,

supposed to be deprived of its material quality or mass. "

Reech pictured a particle attached to a thread. By causing an

elongation of the thread, force is produced and the motion of the

particle is modified.

The particle opposes a force of inertia (in Euler's sense) to the thread.

The force of the thread is directly measurable by the elongation
of the thread. The force of inertia of the particle, mf (where m is its

mass), is deduced from

(1) F=mf.

As Huyghens did in De vi Centrifuga, Reech supposes that the

thread is suddenly cut. The acceleration of the particle suffers a

discontinuity

(2) f=y-?
and the experiment yields the value of y'.

1

Reech intended to verify the identity of /in the two formulae (1)

and (2). It appeared evident to him that Fis proportional to the mass.

As for the identity ofthe direction of F and/, he substantiated this by
the fact that the lateral motion of the particle in a direction perpen
dicular to the thread could not change. Briefly

where tp can depend, a priori, on the time, position and velocity of
the point.

Reech excluded any dependence on the position of the particle" the properties of matter must be thought of as being the same every
where. "

Observation of a plumb-line and the arbitrary character
of the system of reference exclude the time and the velocity of the par
ticle. Therefore

1 For the sake of brevity, we have taken liberties with REECH'S notation.
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The principle of the independence of the partial effects of several

simultaneous forces makes it impossible that ^ should be anything
else than a constant, which can be taken equal to unity by a suitable

choice of the mass.

Finally the law of motion

JF=m(y /)
is obtained.

Very properly, Reech makes use here of u the physical and experi
mental sense of things.

"
This law "

will not be one of the elementary
truths that may be assumed at the beginning of the science, in the

guise of an axiom. Neither will it be a purely abstract, or purely

experimental truth. In it will be found much of one and much of

the other, and the subsequent applications of the science which will

depend on it will prove its perfect legitimacy.
"

If the force jP vanishes, according to Reech's law it follows that

Y = Y'

for the motion of a particle which is completely free.

With axes fixed on the earth, experiment shows that

Accordingly, trajectories are parabolic.
At this point Reech observed that he had no need to invoke " that

well-known law of inertia concerning the state of uniform and recti

linear motion of a particle which is not acted upon by any force.
"

This statement follows from the fact that Reech went back to

the source of things by only applying the word " force
"
to the traction

of a thread, and by accepting every trajectory that experiment could

assign to an apparently free particle as a natural state of motion.

Thus, in terrestrial mechanics, this trajectory would be a parabola.
66 If it were only the action of gravity that could show itself, impalpably,
to our senses, there is no doubt that we would not think of modifying
this point of view in any way. For we could regard the parabolic
state of the motion of bodies at the surface of the Earth as being the

natural state of all kinds of matter in the absence of obstacles, and

from this point of view there would be nothing more to seek.
"

But experiment shows that there are also causes which are electrical,

magnetic, etc. . . . and " which set bodies in motion quite as impalpably
and mysteriously as gravity does.

"

To include these, Reech was led to decompose the acceleration

y
r

in the form

Y'

' = fo + %
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and to write the law of motion

F = m (y }>o 7o)

or, alternatively,

F+mri = m(y' ri).

The left-hand side of the last equation is identified as the total

force, comprising the effective force F and the "
mysteriously acting

"

force myo* In order that this may not be a " vain complication,
"

Reech chooses, by convention, the rectilinear and uniform motion

in the case of a free particle a particle which is not subject to any
total force. This reduces to the annullment of y$ and yields the law

F -f- my^ = 7717
= FQ = total force .

To what extent does Reech's convention permit independence of

the notion of absolute motion (or, what is more accurate here, of

the notion of privileged frames of reference in space) ?

Andrade has remarked l and this is, moreover, a classical pro

position in kinematics that as long as the velocities do not suffer

any discontinuity, the difference y y' is independent of the chosen

reference frame, while both y and y\ taken separately, do depend

upon it.

Therefore Reech's fundamental law

F = m(fy')
is independent of the chosen reference system. More accurately,
this law is the same for two reference systems in continuous (and

arbitrary) motion relative to each other.

Andrade goes further and seeks the effect of a modification of the

time on Reech's law. Let j and y be the initial accelerations with

respect to two clocks, a and a, which record times t and 6 respectively.
Let j' and y' be the final accelerations with respect to the same clocks.

If u denotes the velocity with respect to the clock a, by simple differen

tiation

Whence

Legons de MScanique physique, 1898.
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Andrade concludes,
"

If, for example, experiment shows that a

knowTi static force F produces variations y' y of the acceleration

in the natural motion of a single particle, at different experimental

epochs 6 ;
and if it were true that F = H(6) (y

r

y) where if is a

positive coefficient which depends on 6 [alone] a time t could always

be defined such that

F = A (j
r

j). (A = const)

Then it would be sufficient to define the progress of the clock a, with

respect to the clock a, by the relation

, = *

and t could be called the " absolute time.
"

But, as Jouguet has remarked,1 the existence of privileged reference

frames is not eliminated from mechanics in this way. It reappears

with the principle of the equality of action and reaction. It is necessary

to suppose that there exists a reference frame in which all the particles

exert upon each other forces which are equal in pairs.

4. KlRCHHOFF AND THE LOGISTIC STRUCTURE OF MECHANICS.

Kirchhoff made an attempt to develop a logistic structure of me
chanics. 2

The question is that of constructing mechanics with the notions

of space, time and matter, and using, if necessary, concepts like force

and mass which are derived from these three.

The motion of a particle may be described with the help of its

coordinates, as functions of the time.

It can also be described with the help of the components of its

velocity, as functions of the time, at every instant by starting from

a knowledge of its coordinates at a given instant.

The motion of a particle can also be determined with the help

of the components of its acceleration at every instant, starting from

a knowledge of the position and velocity of the particle at a given

instant.

Evidently this procedure could be carried out with the help of

derivatives of the third, or a higher, order.
" But experiment shows

that natural motions are such that simplicity would not be gained,

1 L. M., Vol. II, p. 151.
2 Mechanik (Teubner, Leipzig), 1876.
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but that, on the contrary, it would be lost, by this introduction. This
is the result of the fact that in all natural motion, as experiment has
shown, the second derivatives of the coordinates are functions of the
coordinates which do not contain the initial values of the coordinates
and components of velocity.

"

Kirchhoff writes the ecjuations of motion

and considers the right-hand side of each of these equations as beingone of the components of an accelerating force acting on a particle of
unit mass. A particle is said to be subject to a system of forces if
its motion is effected in accordance with the system

A system offerees acting on a point is always equivalent to a unique
force, which is the resultant of the system

X = X
l + Xt +... Y=Y1 + Y2 +... Z=Z1 + Zi +...

When the system consists of only two forces, these equationsare the analytical expression of the theorem of the parallelogram of
forces.

J

At this point Kirchhoff makes the following important observ
ation- all the forces (X Y

15 ZJ, (X2, Y2, Z2) . . . except one can be chosen
arbitranly, and the remaining non-arbitrary force is then chosen in
such a way that the resultant is equal to the acceleration. Mechanics
is unable to give a complete definition of the concept of force. However
experiment shows that, in natural motions, there can always be found

systems whose separate forces are given more easily than their resul
tant. At this point Kirchhoff cites the conservative motion of n
particles under the action of their mutual forces, in accordance with
INewton s law.

Kirchhoff then turns to the expression of the bound motion of a
particle. The constraint is written as

V(x,y, z, t)
= c

and the equation of motion becomes
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The convenience of this choice justifies itself by the fact that the

equations preserve their form in any system of rectangular axes if

the given force (Jt, Y, Z) does not depend on the coordinate system.
Kirchhoff then generalised this result to motion taking place with

friction and to a system of particles subject to constraints expressible
in finite terms.

Whatever the worth of his synthesis may have been, KirchhofFs

purely logical exposition of mechanics only crowned a structure that

was already complete.

5. MACH.

Although the first edition of his Mechanics was only published
in 1883, Mach explicitly announced that he owed nothing to Kirchhoff.

And as his personality was a very independent one, he must be readily
believed.

Mach also announced that his book was " a work of critical expla
nation animated by an anti-metaphysical spirit.

"

He was categorical on the experimental character of the axioms of

mechanics.
" The principles of mechanics cannot be in any way considered

as mathematically demonstrated truths ; rather, they must be con

sidered as propositions which not only assume but also demand the

continual control of experiment.
" 1

Mach made a close criticism of the principle of ecpiality of action

and reaction, as well as the concept of mass.

He refused to appeal to the notion of "
quantity of matter,

"

just as much as to the atomistic hypothesis.

Making use of the principle of symmetry, Mach assumed that

two identical bodies communicate to each other equal and opposite

accelerations, directed along the straight line which joins them. Given

this, he called " bodies of the same mass, two bodies which communicate

to each other equal and directly opposite accelerations when they interact.
" 2

If the bodies A and B communicate to each other accelerations

<p and + <p' when they interact, it will be said that the body B

Has as much mass as A. Alternatively, choosing the mass of

<P'

the body A as unity, it will be said that a body is of mass m if this body,
when it acts on the body A, communicates to the latter an acceler

ation equal to m times that which it itself receives by the action of A.

1 M., p. 230.
2 I6iU, p. 211.
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Mach adds,
" In this conception of mass there is no theory. The

4

quantity of matter' (in Newton's sense) is quite useless. It consists of

nothing else than the fixation, the designation and the naming, ofa fact."1

We draw attention, here, to the fact that even if Mach was one

of the most lucid critics of mechanics, he did not succeed in banning
all metaphysics from his thought, as his programme would have had

him do. Science appeared to him, indeed, to he entirely inspired

by a principle of economy which applied not to the ways of nature

themselves, but to those of the mind. " All science sets out to replace

and economise experiments by means of the reproduction and re

presentation of the facts in the mind. This representation is more

easily handled than experiment itself and can be substituted for it

in most connection.
" 2

Even more explicitly, Mach wrote,
"
According to us all science

has the mission of replacing experiment. Consequently it must remain

partly in the domain of experiment and must partly go beyond this,

always awaiting corroboration or denial from the latter. Where it

is impossible to corroborate or deny, science has nothing to do. It

always moves in the domain of incomplete experiment. . . . The agree
ment between theory and experiment can always be improved by the

perfection of observational techniques.
46 Isolated experiments, without the thoughts that accompany it

would always remain unknown to us. The most scientific thoughts
are those which remain valid in the most extensive domains and which

supplement and enrich experiment most. In research we proceed by
the principle of continuity? for only this can provide a useful and eco

nomical conception of experiment.
" 3

Mach felt himself able to assert that the recognition of this economic

function, pervading the whole being of science, would expel
* 4

all

mysticism
" from the field of science. Here there is some self-deception.

In the terminology of modern philosophy Mach, reducing science to

a well-formed language, would be called a pan-mathematician.

6. HERTZ.

Under the title of Die Prinzipien der Mechanik in neuem Zusam-

menhang dargestellt^ Hertz constructed a mechanics from the three

fundamental concepts of time, space and mass.

1
Af., p. 212.*
m., p. 212.

2
Ibid., p. 449.

3 Ibid. 9 p. 457.
4
Leipzig, 1894.
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Hertz declared that with the help of external objects and with
the object of predicting the future by means of the past we construct
" certain images or internal symbols

"
in such a way that the necessary

logical consequences of these images might be in agreement with the

reality they represent.
The requisite properties of these images are the absence of logical

contradiction (Zulassigkeit) , agreement with experiment (RichtigkeitJ
and finally, convenience (Zweckmassigkeit) .

According to Hertz, the commonly accepted presentation of mechan
ics proceeds from four concepts (space, mass, force and motion) which
are connected by Newton's laws and d'Alembert's principle.

To Hertz, this sytem does not appear free from contradiction.

The circular motion of a stone at the end of a cord requires a force

according to Newton's second law of motion. Newton's third law

requires a reaction equal to the force exerted by the hand on the stone

(through the agency of the cord). This reaction is called the force

of inertia or the centrifugal force. But does it differ from the inertia

of the stone ? Is the latter not counted twice, first as mass and a second
time as force ? If, on the other hand, force is a cause of motion,

existing before motion, is it possible to speak of a force which may
be a consequence of motion ? In fact,

" the designation of the force

of inertia as a force is improper. Like that of living force, its name
is a historical legacy, and reasons of convenience excuse its use more
than they justify it. But what becomes of the requirements of the third

law, which demands a force exerted by the inanimate hand on the

stone, and which is only satisfied by a real force, not by a simple name ?
"

Hertz does not go as far as to deny the Zulassigkeit of the classical

system. The logical imprecisions of that system
"
merely depend on

arbitrary incidental features added by us to the essential content

provided by nature.
"

He does not criticise the Richtigkeit of the classical system with

regard to contemporary experiment. But every reservation must be
made for experiment to come " What arises from experiment may
be overturned by it. We must not allow ourselves to be misled by
the fact that the experimental elements in our principles are hidden
in and fused with the unchanging and logically necessary elements.

"

Finally, as far as the Zweckmassigkeit of the classical field is con

cerned, Hertz remarks that mechanics does not embrace all the pro

perties of natural motion. The classical field could be both too narrow
and too wide ; just as the concept of force is too wide, since we know
that all forces must be subject to the conservation of energy. On
the other hand, mechanics introduces many parasitical representations.



446 THE EVOLUTION OF CLASSICAL

" The forces which our mechanics uses to treat all the problems of

physics often resemhle wheels turning in the vacuum. Thus, in celes

tial mechanics, direct observation of the forces of gravitation is never

carried out ; only the positions of the stars are susceptible to it. Forces

only appear as auxiliary quantities in the process of relating future

experiments to past experiment, and disappear in the sequel.
"

Moreover, Hertz dismisses all expositions of an energetic tendency,
in which the concept of energy is substituted for that of force. Only
retaining the three fundamental representations constituted by space,
time and mass, he approaches an acceptance of Kirchhoff's ideas.

But an addition appears necessary to him to account for the diversity
of experiments possible with the help of these fundamental concepts
alone.

46 If we seek to understand the motion of the bodies around us,

and to reduce them to simple and clear rules, but only consider what
is directly under our eyes, our research will, in general, prove abortive. . . .

If we wish to obtain a picture of the world which is closed on itself,

referred to laws, we must conjecture other invisible beings behind the

things we see, and seek the hidden actors behind the barriers ofour senses.
"

To Hertz, the concepts of force and energy in the classical presentation
would be idealisations of this kind.

"But another path is open to us. We can assume that some
hidden thing acts, and nevertheless deny that this something belongs
to a particular category. We are free to assume that what is hidden
is nothing else than motion and mass, not differing from the visible

masses and motions but merely having other relations with us and our
usual method of perception.

"

By this addition to the visible masses of the universe, of hidden
masses subject to the same laws, Hertz declares that the universe
becomes understandable and governed by laws. " What we are

accustomed to denote by the names of force and energy then reduces
to an action of mass and of motion. But it is not necessary that
this should always be the action of a mass or a motion which is per
ceptible by our gross senses.

"

It would seem that this reduction of the concepts of mechanics
was a reflection of the cartesian doctrine in Hertz's thought ; on the
other hand, it made appeal to hypothetical elements.

" The masses of the hidden bodies can only be defined by hypothesis.
"

For an isolated system composed of any number of material elements,
Hertz posed the fundamental law of mechanics, a priori, in the following
form.

" The system travels along a trajectory of least curvature with a constant
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velocity that is, it travels along a trajectory whose curvature at a point
is less than that of every tangential trajectory.

"

Curvature must be understood as the quantity

extended to all the points of the system. Thus Hertz's fundamental
law may be written

6{Sm(x"* + y"* + z"*)}
=

where the variation 6 is taken without allowing the variation of the
coordinates or the velocities. This law reduces rather easily to the
known laws of mechanics, especially to Gauss's principle of least con
straint.1

Hertz considered a non-isolated system to be part of an isolated

system. Any observable system is part of an isolated system, of
which another part can remain hidden. The forces which act on the
observable system result from the masses and the motions of the
hidden part through the agency of the constraints (in Lagrange's
sense).

Gauss himself, in formulating the principle of least constraint,
had emphasised the impossibility of discovering, in the classical field,

a principle that was basically distinct from that of d'Alembert. While

greeting Hertz's conceptions as an " essential progress,
" Mach crit

icised him for having reduced the physical content of mechanics
even more than Lagrange had done to the extent of making it, on

the surface, barely perceptible. In short, Mach complained of the
abstract character of Hertz's mechanics. It seems that it was the

arbitrary character of the hidden masses that caused his reluctance
to adopt it, in spite of the attractive reduction in the number of funda
mental concepts that it achieved.

Moreover, Hertz, above all, cared for logical and formal perfection
in this matter, and willingly acknowledged that the classical presentation
had a greater practical value than his own system.

7. POINCARE CRITICISM OF THE PRINCIPLES AND DISCUSSION OF THE
NOTION OF ABSOLUTE MOTION.

In the pages of his rightly famous interpretative works, Henri
Poincare carried out a penetrating discussion of the principles of

classical mechanics.

1
Cf. JOUGUET, L. AT., Vol. II, p. 275.
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In Science et Hypothese Poincare remarked that " the English
teach mechanics as an experimental science

"
while " on the Continent,

it is always presented more or less as a deductive and a priori science.
"

His intention was to distinguish, in this branch of physics,
" what

is experiment, what is mathematical argument, what is convention
and what hypothesis.

"

Mechanics contains serious difficulties, for although it can only
conceive of relative motions, it locates them in an absolute space.
Absolute time, on the other hand, is nothing but a convention simul

taneity at two different localities is not an intuitive notion. Finally,
it would seem permissible to resort to a non-euclidean space to describe

motions, for the euclidean geometry itself is only a kind of con
vention.

The principle of inertia does not impose itself a priori (otherwise
the Greeks would not have misunderstood it). No more is it an ex

perimental fact, for it is never possible to experiment on bodies which
are removed from the action of all force.

It is therefore necessary to pose as a principle, verified by its con

sequences, the fact that the motions of all material molecules of the
Universe depend on differential equations of the second order.

Force, considered as a cause of motion, belongs only to metaphysics.
In order that the concept may become useable, it is necessary to define
a measure. As it is impossible, in order to estimate the equality
of two forces, to detach a force that is applied to a body and attach
it to another,

" as a locomotive is uncoupled and coupled to another
train,

"
force appeals to the principle ofthe equality of action and reaction

which has the character of a definition and not that of an experimental
law.

Given this, if two bodies A and B interact, the acceleration of A
multiplied by the mass ofA is equal to the action ofBon A. Conversely,
the product of the acceleration of B and the mass of B is equal to the
reaction ofA on B. Since the action is equal to the reaction by definition,
the masses ofA and B are inversely proportional to their accelerations.
Since

^this
is the definition of the ratio of two masses, it is the task of

experiment to verify whether this ratio is constant.
This would only be possible ifA and B were the only masses present," and were removed from the action of the rest of the world.

"
There

fore it is necessary to be able to decompose the acceleration of A in
order to recognise the component arising from the action of J5, with
the exclusion of those of C, D, E This becomes possible if
the hypothesis of central forces is assumed that is, if the mutual
attraction of two masses m and m f

is assumed to be given by the law
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(where r is the distance between the two masses).
But nothing ensures that one day experiment will not invalidate

this law. And if it must be given up, we no longer have a means
of recognising the respective actions of jB, C, D, E ... on A. The
rule for the measurement of mass becomes inapplicable.

Then we fall back on the single law of rectilinear and uniform motion

of the centre of gravity of an isolated system. But this law itself is only

rigorous if it is applied to the whole Universe. Since it is clearly

impossible to observe the motion of the centre of gravity of the Universe,

we end in a " confession of impotence.
" Masses no longer appear

except as u coefficients which it is convenient to introduce in the

calculations.
"

After having thus robbed us of all our illusions, Poincare consoles

us in the following way. Force is equal to the product of mass and
acceleration by definition. Similarly, action is equal to reaction by

definition. These principles are unverifiable, for there are no perfectly
isolated systems in nature. But there do exist systems that are approx

imately isolated, and to these the newtonian principles apply approx
imately.

" Thus it is explained how experiment can serve as the

foundation of the principles of mechanics and yet will never be able

to contradict them. "

Then Poincare discusses KirchhofFs thesis,
" which [seems to

have only] complied with the general tendency of mathematician's

towards nominalism. " He asserts that the notion of force is a pri

mitive, irreducible and indefinable notion, the direct intuition of which

is the notion of effort.

At this point Poincare attacks the " School of the thread,
"

or

the mechanics of Reech and Andrade. He declares,
" We have

defined the force to which the thread is subject by the deformation

experienced by the thread, which is very reasonable. Next we have

assumed that if a body is attached to the thread, the effort which

is transmitted to it by the thread is equal to the action which the

body exerts on the thread. Thus we have made use of the principle

of the equality of action and reaction, and have considered it not

as an experimental truth, but as the very definition of force.
"

According to Poincare, this definition appears just as conventional

as that of Kirchhoff and has the disadvantage of being much less

general. For example, if it were assumed that the Earth were attached

to the Sun by some invisible thread, it would clearly be impossible
to measure the extension of this thread.

29



450 THE EVOLUTION OF CLASSICAL

However, Poincare concedes that the Reech-Andrade mechanics
has the advantage of being more understandable. " The reflections

that it suggests to us show how the human mind has risen from a

naive anthropomorphism to the present conceptions of science.
"

From all this discussion, Poincare concludes that the law of accel

eration and the rule of the parallelogram of forces are only conventions.

But these conventions are not arbitrary. They are the products ofimper
fect experiments which, nevertheless, suffice to justify them. Further, the

experimental origin of these conventions must not be forgotten.
In the following chapter of Science et Hypothese Poincare goes

on to discuss relative and absolute motion. He understands the

principle of relative motion to be the conservation of the laws of

mechanics, whether they are referred to fixed axes or to axes required
to move uniformly and rectilinearly. This principle is corroborated

by the most everyday experiment.
It follows that the acceleration must not depend on the absolute

velocity. Or, if it is prefered, the accelerations of the different bodies
of an isolated system only depend on the differences of their velocities

and the differences of their coordinates.

Thus the principle of relative motion appears as a kind of general
isation of the principle of inertia it allows of the same discussion

and therefore does not have the status of an a priori decision or that
of a direct result of experiment.

Why is this principle only true when the motion of the movable
axes is rectilinear and uniform ? In particular, why is it no longer
applicable when the motion of the axes reduces to a rotation, even
a uniform one ?

" If the sky were always covered with clouds, if we had no means
of observing the stars, we would nonetheless conclude that the earth
rotates. We would be informed by its flattening, or better still, by
Foucault's pendulum experiment.

" And yet, in this case, would it be meaningful to say that the
earth rotates ? If absolute space does not exist, is it possible to rotate
without rotating with respect to something, and on the other hand,
how could we accept Newton's conclusion and believe in absolute

space ? . . .

" Return to our picture. Thick clouds hide the stars from men, who
cannot observe them and are unaware of their existence. How will
men know that the earth rotates ? Even more than our ancestors,
they will regard the ground that supports them as fixed and immovable ;

they will wait much longer for the coming of a Copernicus. But finally
this Copernicus would arrive. How could he come ?

"
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Poincare explains that, in mechanics, the centrifugal force and the

compound centrifugal force could be attributed a real existence without

contradicting the principle of generalised inertia.

But if an effectively isolated system were ever achieved, the centre

of gravity would have a curvilinear trajectory. If centrifugal force

were then invoked and were attributed to the mutual actions of bodies,
to the extent that the isolation of the system was perfected, this force

would seem to increase indefinitely with the distance, not to vanish.

Clearly an ether exerting a repulsive action on bodies could be

imagined. But the laws of motion would never be symmetrical they
would distinguish between left and right.

From complexity upon complexity there would spring
"
something

which would not be more extraordinary than Ptolemy's spheres of

glass
"

until the Copernicus came to say
" It is much more simple

to assume that the Earth rotates.
" More simple ; because the laws

of mechanics would then be expressed in a much more convenient

language.
This does not confer objective existence on absolute space. Ex

perimentally speaking, the statement " the earth rotates
"

has no

meaning. Or, more accurately, it only has the following meaning
"

It is more convenient to suppose that the earth rotates.
"

8. POINCARE AND THE ENERGETIC THESIS.

In Chapter VII of Science et Hypothese Poincare discussed the

energetic thesis. We have outlined Helmholtz's conception of this

above.

In Poincare's opinion, the energetic thesis offered two distinct

advantages.

1) It is less incomplete, in that it excludes certain motions which

(according to Helmholtz) do not occur in nature, and which would
be incompatible with the classical theory.

2) It dispenses with the hypothesis of atoms (in the classical field,

which is the only one that concerns us here) which is almost unavoidable
in the customary presentation.

But, in compensation, it is hardly easier to define the two energies,

potential and kinetic, than it is to define force and mass in the usual

presentation.
In conservative systems U (potential energy), which only depends

on positions, and T (kinetic energy), which only depends on velocities,

can easily be distinguished. But if the forces depend on the velocities,

the distinction between U and T becomes artificial.
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Moreover, in the conservation of energy it is necessary to take

account of all forms of energy. Together with T and 17, it is necessary
to introduce a factor Q which represents the molecular internal energy

present in thermal, chemical and electrical forms, and, in general,
to write

<p(T + U + Q) = const.

Now the electrostatic energy depends on the positions, and the

electrodynamic energy on the positions and the velocities.
" We do not have any way of sorting out the terms which must

become T, U and Q and of separating the three parts of the energy.
"

In short, we are left with this statement of the energy prin

ciple there is something that remains constant. In this form it is outside

the reach of experiment and is a kind of tautology. It is clear that
if the world is governed by laws there will be quantities that will remain
constant. Like Newton's principles, and for an analogous reason,
the principle of energy, founded on experiment could no more be
invalidated by it.

"

On the whole, in passing from the classical system to the energetic

system some progress is achieved. But this progress is not
sufficient.

In passing, Poincare stresses that the very statement of the prin
ciple of least action has some quality which offends the mind.

" In order to move from one point to another a material molecule
which is removed from the action of all force, but bound to move
on a surface, will take the geodesic line that is the shortest path." This molecule appears to know the point to which it is wished
to bring it, appears to know the time it will take to reach there by
following this or that path, and then appears to choose the most suit
able path. In a sense, this statement holds the molecule up to us as
a living and free being.

"

Poincare desired a less offensive statement " in which final causes
would not seem to substitute themselves for efficient causes.

"

This criticism also applies to Maupertuis' thesis of least action.

But, before Maupertuis, Fermat had been subjected to a similar reproach
from the Cartesians. He had replied, we recall, that he did not attempt
to penetrate the hidden and obscure ways of Nature, and that he only
offered her " a small geometrical assistance,

"
supposing that she

had need of it. Lagrange and Hamilton had taken care to eliminate
the metaphysical content of Maupertuis' thesis. As a corollary of
the laws of dynamics, the principle of least action is not in itself of
a finalist essence.
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9. PAINLEVE AND THE PRINCIPLE OF CAUSALITY IN MECHANICS.

We owe to Painleve a profound discussion of the principles of me
chanics, not only in the classical field, but also in that of relativity. In
the next Part of this book we shall have occasion to return to Painleve's

conceptions. For the moment we shall confine ourselves to showing
the application of the principle of causality that he made to classical

dynamics.
1

To Painleve, the principle of causality and the notion of absolute

motion has led to the discovery of all the axioms of mechanics. If

it is now possible to separate these axioms from all
"
metaphysical

motives,
"

it was necessary for the creators of mechanics to assume,
a priori, certain properties of absolute motion.

Absolute motion distinguishes itself from all apparent motion

by the fact that it alone corresponds to the principle of causality.
How did the Schools understand this ?

A) The Copernicans (Kepler,
2 Galileo and Newton) assumed

1) that the absolute motion of the particles which compose the

universe is the same after the time t and after the time fl9 if, at both
these times, the particles occupy the same absolute positions and
have the same absolute velocities ;

2) that if at two times t and t the same conditions, apart from
a transport through space, are realised, the absolute motion of the

particles which compose the universe is the same after the time t and
after the time f

1? apart from the same transport through space ;

3) that the absolute motion of a particle is not modified if the

positions and the velocities of particles infinitely removed from the

particle considered are, alone, modified.

It follows that a particle which is infinitely separated from all

others is actuated by a rectilinear absolute motion. Moreover, it is

postulated that this rectilinear motion is uniform. From these prin

ciples the Copernicans deduced that the Earth cannot be absolutely
fixed and that it turns about an axis whose direction is fixed.

B) The Scholastics (those who adhere to aristotelian dynamics)
assumed explicitly or not the same principles, but with the essential

difference that position alone suffices to determine the subsequent
motion of a moving body.

Every particle which is infinitely removed from all other elements

1 Les Axiomes de la Mecanique et le principe de causalite, Bulletin de la Soctitg

frangaise de philosophic. Vol. V, 1905. Les Axiomes de la Mecanique, Gauthier Villars,
1922.

2 A reservation must be made \vith regard to KEPLER, for, in dynamics, he remained
faithful to the scholastic discipline.



454 THE EVOLUTION OF CLASSICAL

of the universe must remain at absolute rest. If it is placed near

the other elements it immediately acquires a certain velocity.

Of all the frames of reference that may be adopted, there is one

with respect to which the motions of the Universe palpably enjoy
the properties of absolute motion in the copernican sense (Galileo,

Newton). This frame is actuated by a certain motion of rectilinear

and uniform motion with respect to axes passing very nearly through
the Sun, and having fixed directions with respect to the stars.

In Painleve's opinion, the experimental confirmations (motion of

planets, flattening of the Earth, variation of g with latitude, Foucault's

pendulum, etc. . .
.)

tend to ** confirm the objective value of the notion

of absolute motion in the copernican sense.
"

In order to appreciate Painleve's thought it is necessary to repeat
" the common form of the principle of causality which we apply, more
or less unconsciously, all the time.

"

"
If, at two times, the same conditions are realised, only transported

in space and time, the same phenomena will reproduce themselves, only

transported in space and time.
"

Painleve contrasts this form with that usually assumed by the

philosophers
ct

If the conditions of a phenomenon are determined at a given instant

and in a given position, the phenomenon is determined.
"

The first principle implies the second, but the converse is not true.

The second principle does not require as the first does that space
and time cannot be efficient causes.

Painleve himself recognises that he is translating the ideas of

Copernicus and his successors into modern language. However, he

gives them a form which the Copernicans were never able to give
them for Copernicus and Galileo did not know of the differential

calculus.

Painleve states the axioms of mechanics,
" in a purely positive

form,
"

in the following way.
1

" Axiom of inertia. A material element infinitely removed from
all others describes a straight line with a constant velocity.

" Axiom of action and reaction. [Painleve states this axiom in

terms of acceleration. If M and Mx are the only elements present,
the acceleration y of M (caused by MJ and the acceleration yx of

M! (caused by M) are directly opposed. The accelerations y and yx
are determined in magnitude and direction when, at the time t, the
distance r between the two points M and M

x and their relative velocity

1 Les Axiomes de la Mfaanique, p. 65 et sec.
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are known. The ratio , called the relative mass of Ml with respect
J/1

to M, only depends on the position and velocity of M relative to Mr
For three arbitrary elements M

1?
M2 , and M3 , the relative mass

of M2 with respect to M is the ratio of the relative mass of M2 with

respect to M3 and the relative mass of Ml with respect to M3 .]

" Axiom of the independence of the effects of material elements.

The acceleration of a material element M in the presence of a medium
formed of the elements M^ JVf2, . . . Mn is the geometrical sum of the

accelerations produced by Jkfl9 M"
2 , . . . Mn respectively.

"

If there exists a reference frame in which these axioms are satisfied,

there will exist an infinity of others.

Indeed, all the axioms depend exclusively on the accelerations

(including the axiom of inertia, which expresses the absence of accel

eration for an isolated material element) and the accelerations are

not altered by a rectilinear and uniform translation of the reference

frame.

The absolute mass (or more simply, the mass) is denned by means
of the relative mass by choosing, once and for all, an invariable element

M .

The absolute force, which is here a derived notion, is by definition

the product of the mass and the absolute acceleration.

We return to the significance of the principle ofcausality in mechanics.

To many physicists the word causality has the restricted meaning
of determination of future events. On the contrary, Painleve insists

on the necessity of not confusing causality and the hypothesis of

determinism. To him the principle of causality in mechanics resides

in the possibility of a certain transference of motion in space and time ;

neither space nor time can be an efficient cause.

The term "
causality

"
has also acquired the right to be cited

in mathematics, thanks to Mr. Bouligand
1 a demonstration is said

to be causal if it succeeds in escaping all parasitical hypotheses of

the kind that necessarily involve the use of certain algorithms. Mo
reover, to every group there corresponds a domain of causality, the

hypotheses invariant under the transformations of the group entailing

conclusions which are invariant under the same conditions.

The domain of causality of classical mechanics is determined by
what is now called the galilean group (the group of transformations

which conserve the absolute reference systems) while, for example,
the Lorentz group defines the domain of causality of special relativity.

1 La causalite des theories math$matiques, Hermann, Paris, 1934.
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10. DUHEM AND THE EVOLUTION OF MECHANICS.

We shall conclude this review of the dicussion of the newtonian

principles by extracting some of Duhem's interpretations of the various

theories of mechanics from his Look Evolution de la Mecanique.
1

Descartes tried to ban the scholastic notion of quality from the

science and to construct a universal mathematics in which quantity
was the dominant entity. But according to Duhem, cartesian matter is

incapable of motion and Cartesian motion is insufficient to be fashioned

into a true mechanics. The relativity of all motion would be an
illusion the form of mechanics changes with the reference system.

Newtonian mechanics encountered the criticism of the Cartesians

and the Atomists, who had no wish to hear talk of quality and, therefore,
of attraction. But if Leibniz considered attraction as an "

incorporeal
and inexplicable property,

" he saw the necessity of the notion of

force irreducible to extension and motion to which he unfortunately
gave the essentially metaphysical character of "

substantial form. "

This was to be harmful to the notion of force in the mind of many
a physicist until the modern epoch.

Duhem contrasts the analytical mechanics of Lagrange with the

physical mechanics of Poisson. While the first assumes both actions

at a distance and forces of constraint, the second is based exclusively
on molecular actions between free points. Following Poisson, de Saint-

Venant remained a convinced atomist to him, pressure was not a force

of constraint in the sense of Lagrange, but the mean repulsion of fluid

molecules. For himself, Duhem is a Lagrangian, to the extent that he
does not consider mechanics as a science which is incomplete in itself.

First, after Lame, he refers to the contradiction in Poisson 's work of

treating a continuous body by the use of integrals and not discrete

summations. Then he remarks on the difficulty, already seen by
Boscovitch, of obtaining equilibrium in assemblies of attractive inter
action without the fusion of the constitutive particles. To remove this

difficulty, Poisson and Navier assumed the eclipse of the mutual actions
in the natural state of a body. Further, the demarcation between an
isotropic elastic solid and an incompressible fluid is not apparent in this

theory. Was not Poisson obliged to fall back on secondary actions
which restrict the mobility of the molecules in order to rediscover

Lagrange's constraints in an indirect way ?

Lagrange's mechanics must assume, apart from shape and motion,
the notion of mass and the notion of force. But it only studies " rever-

1 Published by Joanin, Paris, 1903.
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sible
" motions. It must be supplemented by passive resistances in

volving an essentially negative work.

Duhem is severe in his criticism of KirchhofPs system.
" The source

of its rigour is also the source of its sterility, for it only writes identities.
"

It lacks the fecundity of intuition.

Finally Duhem comes to Hertz's endeavour, in comparison with

W. Thomson's adynamic and gyrostatic ether, and reduces it to the

following principle "At each instant the forces of inertia applied to

an independent system are such that, in every virtual displacement of

the system, they do no work. "

To Duhem, this theory lacked complete application to the solution

of concrete problems, and a determination of the hidden masses and
motions that took the place of all force. Hertz's mechanics is less a

doctrine than the programme of a doctrine. " This programme itself

reduces, in the last analysis, to this statement All forces introduced

into the equations of dynamics can be regarded as the forces of constraint

due to certain hypothetical bodies, or as the forces of constraint due to

certain supposed motions.
"

Without leaving the confines of this work we could not follow Duhem
in the chapters in which he seeks to define a general mechanics based

on thermodynamics, and which comprises both " a reaction against the

atomistic and cartesian ideas
" and " a very unexpected return to those

which have contributed to this general mechanics to the most profound
principles of the aristotelian doctrines ".

Duhem judges the classical theses in relation to this general me
chanics, assessing the chance that each of them might lead to the solu

tion of physical problems. Besides, with his accustomed candour, he

adds,
" I do not pride myself on impartiality.

"

Duhem, writing in 1903, concludes with a remarkable prophecy
" All that it is possible to say is that there is no reason in logic that

allows the theories that have so far been outlined to be regarded as the

only possible theories. In particular, the study of the various radia

tions, while presenting the experimenters with discovery upon discovery,
has revealed to them such strange effects, so difficult to submit to the

laws of our thermodynamics, that it would not be surprising to see a new
branch of the science arise out of this study.

"

11. CONCLUSION OF THIS CHAPTER.

The controversies on the value of the newtonian principles and con

cepts which arose during the second hah of the XlXth Century and the

beginning of the present Century are of considerable interest. They
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show clearly that the classical structure which appeared to have been

completed i>y the work of Lagrange, could not be regarded as perfect.

They proclaimed the necessity of a revision in the light of new experi
mental data.

This revision has taken place in the XXth Century, in the form of the

modern physical theories of mechanics whose principles we are about
to study. To be accurate, most of the students of classical mechanics
had not seen the necessity of this revision ; for this, it would be necessary
to use reasons taken from optics, electromagnetism and the laws of

radiation. Moreover, certain of these put up a determined opposition
to this revision they were deeply convinced of the value of mechanics
in their own traditional field. But the revision was made possible by
their own dissensions, which had shown the fallacy of attaching to the

axioms of mechanics any other significance than that of contingent
truths.



PART FIVE

THE PRINCIPLES

OF THE MODERN PHYSICAL THEORIES

OF MECHANICS





FOREWORD

In the preceding parts of this book we have treated the history of

classical mechanics. We are about to attempt to carry this study into

the field of the modern physical theories of mechanics.

There is no lack of objection to such an attempt. In the first place
the shifting-sands of recent history may be feared. That is, it may be

said that the freshly acquired facts are too unstable, and that there is

no perspective from which to assess them.

Then it may be held that these new theories are confined to borrow

ing from classical dynamics certain elements of its symbolism, in order

to construct models for an exclusively physical purpose, and that they
have the ephemeral and brittle character of theories of this kind. Class

ical mechanics, firmly based on its principles, would have nothing to

do with these variations.

The first objection is easy to rebutt. First, Michelson's experiment,
and the first attempts to account for it, already lie a half-century behind

us. The wave of incomprehension and pseudo-paradoxes stirred up by
the special theory of relativity is now almost gone. And if wave and

quantum mechanics is still developing technique, the associated axioms

have already acquired a certain stable character. It is therefore not

too soon to consign to history one of the most rapid and profound of

the motions which shook the classical structure.

As for the second objection, it suffices to recall that classical me
chanics often profited from close contact with physical theories. To

cite only three names, Huyghens, Newton and Hamilton, who were

physicists as well as students of mechanics, did not erect an artificial

frontier between these two sciences.

It is true that in certain fields, like the dynamics of fluids or the

dynamics of gases, the addition of physical or thermodynamical elements

was indispensable and did not disturb the newtonian structure, while

relativity and quanta cannot be accepted without a profound revision

of the classical postulates. But we know, from history itself, that class

ical science was not born with that codified character that is now given

it in its didactic presentation. It has known many vicissitudes. Its
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axioms are neither obvious nor of logical necessity. It was experiment,
and experiment alone, that enabled the classical science to escape from

the scholastic doctrines. Now, by its nature, experiment is always

subject to revision.

If then it is agreed to dismiss these preliminary questions, the task

of the historian and the critic can be undertaken. So as not to make
this dull, we shall suppose that the material of classical mechanics is

known, even when this has not been referred to in the earlier pages of

this book. Modern theoretical physics makes constant and systematic
use of this material. Nor shall we attempt to validate the absolute

differential calculus and the algebra of matrices. These eliminations

are justified by the fact, on which Painleve has remarked, that it is

misleading to tackle the modern mechanics without a serious foundation

of classical culture and without a certain mathematical equipment.

Again, we shall not insist on the technical developments, sometimes

considerable, which are often demanded in the treatment of concrete

problems, even when these seem, at first sight, the simplest that could

be posed.
We shall confine ourselves, then, to an attempt to follow the evolu

tion of the modern physical theories of mechanics in the field of essential

principles. For this purpose it will suffice to analyse and compare cer

tain fundamental texts, taken from the original papers themselves.

As for the criticism, we shall most often find it in the writings of those
of a classical tendency, like Painleve, who were concerned with these

questions, and in the attempts at interpretation that are due to the

creators of the new mechanics themselves.

Conceived in this way, our task will not be a useless repetition of the

didactic books, or of those whose object is to popularise and which, for

practical reasons, often depart from the historical accuracy to which
it is our only ambition to remain faithful.



CHAPTER ONE

SPECIAL RELATIVITY

A. PRESENTATION

1. IMMEDIATE ANTECEDENTS OF THE SPECIAL THEORY OF RELATIVITY.

The special theory of relativity was born of the difficulties of the

optics of bodies in motion. In Fresnel's conception, waves of light
were carried by the ether, an immaterial medium distributed through
the vacuum and passing through material bodies. To Maxwell, optics

lay within the compass of electromagnetic phenomena a light wave
is characterised by the vibration of two vectors E and H representing
the electric and magnetic fields. The ether continues to exist in Max
well's theory in the sense that the velocity of light with respect to the

ether keeps a constant meaning. But it is no longer necessary to regard
the ether as anything else than a reference system to which an absolute

motion may be referred.

The state of motion of a system, in contrast with the state of absolute

rest with respect to the ether, must involve optical effects accessible to

experiment. In this way the theory accounts satisfactorily for effects

of the first order ; that is, effects whose results depend on the ratio -,
c

where v is a velocity of translation with respect to the ether, and c is

the velocity of light in the vacuum. Such are, for example, the pheno
menon of aberration (Bradley, Airy) ; the Doppler-Fizeau effect ;

Fizeau's experiment on the transmission of light in a moving fluid ; the

experiments of Wilson, Wien, Rowland, Roentgen and Eichenwald,
and Sagnac and Harress.

But the theory was unable to deal with effects of the second order,

v*
that is, of the order of , as soon as there were experiments accurate

enough to allow these effects to be tackled. The special theory of

relativity arose from this impasse.
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2. MICHELSON'S EXPERIMENT AND LORENTZ'S HYPOTHESIS OF CON
TRACTION.

Consider a system of reference S in which the ether is at absolute

rest. Let S' be a system of reference actuated by a rectilinear and
uniform translation, of velocity v 9 with respect to S.

Consider two points A and B which are connected to the system S'

and separated by a distance AB = I. Suppose that the direction of

AB makes an angle 6 with the direction of v(0 < 9 < ri). Let c be
the velocity of light in the vacuum.

According to the wave theory, the velocity of propagation of light
between A and B will be

I

t = -3
-

s (v cos 6 + \/c* v2 sin2 6}.
C2 VZ \ v /

Clearly the time taken for the propagation of light from B to A
is deduced from this by the substitution of n 6 for 0.

Therefore the time taken for the propagation of light from A to B
and then back from B to A will be

2l
1

...J.

97 2

This time therefore differs from by a cruantitv of the order of .

c 2c

This second order effect had been announced by Maxwell. It is much
too small to lend itself to direct measurement if, for example, the

velocity v is that of the instantaneous translation of the Earth in its

orbit, the effect is of the order of 10" 8
.

But the effect is perfectly measurable by interference methods.
The experiment was performed by Michelson in 1881 and repeated, with
the coUaboration of Morley, in 1887.1 Two rays were made to interfere
after having, separately, travelled forward and backward paths in the

directions = - and B = (and n). The difference of the times of
JL

propagation for these two paths was

L ^
c c 2

1
MICHELSON, American Journal of Science, Vol. 22, 1881, p. 120 and MICHELSON

and MORLEY, American Journal of Science, Vol. 34, 1887, p. 333.



SPECIAL RELATIVITY 465

The result of the Michelson-Morley experiment was entirely negative,
without the accidental errors of measurement having been impli
cated.

To assume, as Michelson did, that this result was due to a dragging
of the ether would be to give up the explanation of the phenomenon
of astronomical aberration provided by the wave theory.

Lorentz then put forward the following hypothesis.
" Assume that the arm of Michelson's apparatus lying in the direction

fv*\
of the Earth's motion contracts by an amount Z I 1 and that, at the

same time, the effect of the translation conforms with Fresnel's theory.
The result of Michelson's experiment is then completely explained.

"

The field of hypotheses of this kind is, moreover, very wide. " For

example, it can be supposed that the dimensions of a solid change
in the ratio ofltol + <5in the direction of motion, while the dimensions
in the direction perpendicular to the direction of motion change in

the ratio 1 to 1 + e. It must then be that

which allows the choice of, for example, one of the following solutions

C T~9 U A 9 *

4er 4c2

Lorentz himself agrees that this hypothesis of contraction is most

paradoxical at first sight. On the practical plane, he first remarks
that this contraction is very small (6.5 cm. for the diameter of the

Earth, or l/200th of a micron per metre). Theoretically, he suggested
that molecular actions, like electromagnetic forces, can be transmitted

by the ether. If this is true, a translation will probably modify the

reciprocal actions of two molecules or atoms in the same way as the

separation or bringing-together of two charged particles. Since, in

the last analysis, the shape and the dimensions of a solid body are

conditioned by the intensity of molecular actions, the possibility of

an alteration of the dimensions due to a translation is in no way excluded.

Lorentz then refers to a law of electrostatic interaction which he

30
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has discovered.1 By extending this law to two systems of molecules

Sx and i$2, t'ie second of which is at rest with respect to the ether and
the first moving with velocity v in the direction of the axis of x, the

following result is obtained. In both systems the components of the

forces in the directions of the axis of x are the same, while the com

ponents in the directions of y and z are, in the moving system, multi-

^2

plied by the coefficient V/ 1 -. Now it is clear that the forces must

be in equilibrium in Sx just as they are in S
2 . The translation would

therefore have the effect of reducing the dimensions of the molecules

in the direction of the axis of x in the ratio of Z to \/ 1 -- . This

leads to the choice of the solution

from among the hypotheses to which Michelson's experiment leads.

To Lorentz himself we owe the information that Professor Fitzgerald,
in his lectures, had already formulated the hypothesis on an analogous
contraction. This same hypothesis had been considered by Lodge
in 1893 in a study of aberration (Phil. Trans. Roy. Soc., Vol. 184, p. 727).

3. THE LORENTZ TRANSFORMATION.

We now take up the study of a fundamental paper of Lorentz
called Electromagnetic phenomena in a system moving with any velocity
less than that oflight (Proc. Acad Sc., Amsterdam, Vol. 6, 1904, p. 809).

Lorentz starts from the equations of the theory of electrons

(E)

div E = Q div H =
1 /dE -

t -^ 1 3H
curl E = ----

c dt

These equations refer to a reference system S (O^y^) which is

fixed with respect to the ether. Consider a reference system S'(0xyz)
moving with respect to S with a uniform translation of velocity v
directed along the axis of x

1 We shall encounter this law on p. 469.
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The velocity u^ of an electron then transforms into u -f- v and the

operator into v . This transformation of variables leads to
ot ot ox

the equations

div E = Q div If =
1HS dHy _Hd d

3z

dH

dHs

~fo

dHx

l/d
';\d~t

l/d

1 r5 i/ 3 9 \ rfcurlE = -- --- v Iff.
c \dt dxl

For the variables (#, y, 9 ), which, we note in passing, would corres

pond to an ordinary galilean transformation in classical mechanics,
Lorentz substitutes the variables

x' = fa = pi (Xl vt
)

y' ly
=

lyl

z' = Zz = Z^

t' =-t Bl^ = lB(t -

with S2 =(T)

Here Z is a function of v such that 1(0)
= 1, and which differs 'from

v2

unity by a quantity of the order of --.
c2

The variable t' is what Lorentz calls the local time (Ortszeit). It

only coincides with t for v = 0.

With the intention of rediscovering the form of the equations (E)

with the variables (x! y' z' t
f

)
Lorentz defines the quantities ', if',

a' by means of their components along the axes Oxyz, namely

E' ...

H' ...

u' ...

and the new density Q' by
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Thus Lorentz succeeds in putting the equations (E) into the form

div'
' =

(l ~] p' div' H' =
\ r i

^

(E')

where the symbols div' and curl' denote that the corresponding oper
ations are effected with the help of the variables (#', y\ z', t').

In passing we remark that the transformation (T) had been encoun
tered by Voigt in 1887,

1 in a paper on the Doppler-Fizeau effect, from
which it arose in the conservation of the wave equation

3V , 3V.3V 1 3V A

Historically this transformation, which is associated with the name
of Lorentz, should be called the Voigt-Lorentz transformation. This
all the more so as the conservation of the wave equation is one of
the most remarkable of properties and is, moreover, directly related
to the invariance of the quantity x2 + y2

-j- z2 c2 t
2

.

Lorentz himself acknowledged that the equations (E') only imper
fectly achieved the end that he had set himself, and which Einstein
was to accomplish in fact there remains, in the equations (E'), a

term ~ which Lorentz did not succeed in removing.

The equations (E') entail the consequence that E and H separately

depend on a scalar potential <p' and a vector potential A' which satisfy
the equations

in such a way that

E' = 1 M-

J?' = curl A'.

Without exhausting the consequences of these equations, we confine
ourselves here to a consideration of an electrostatic system whose

1
Gottinger Nachrichten, 1887, p. 41.
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only motion is a simple translation of velocity v. Then we can write

u' = A'=Q H'=Q JE? = gradg/ A^<p' = Q
f

The force F exerted by unit charge on the element of volume of
an electron has, as a general rule, the value

F = E -\ (u1 /\ H) where u = u -f- iT.
c

When they are expressed in terms of the accented quantities (E\
fT, u'), the components of this force along the axes of Oxyz reduce,
for the particular system , to

Lorentz then associates with the system a system
'

which is

at rest in the space x' y' z\ and whose dimensions are obtained by multi

plying the corresponding dimensions of in the directions parallel
to Ox, Oy, Oz by

respectively.
The deformation '

can be referred to as
(/?/, /, Z). Moreover,

a density >' = can be attributed to
'

so that the charges of
pi

corresponding elements of volume of the electrons of and '

remain

equal. The forces -F(J]) applied to the electrons of are then deduced

from the force E f

applied to the electrons of
'

by means of the law

Lorentz then introduces the hypothesis
" that the electrons^ which

have the shape of a sphere in the state of rest, suffer^ under the effect

of the translation^ the deformation (
, ~, -

),
each element of volume con-

\pl I 1 1

serving its charge.
"

The deformation - S' or
(y5Z, I, I) then restores the spherical

shape of the electrons. The relationships of the forces are determined

by the law (F).

Lorentz postulates that these relationships also govern the forces
between the elementary particles of every heavy body. These forces

must be in e<|mEbrium with each other, from which it follows that
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a solid body suffers the deformation
(

, -, -
)
under the effect of the

\P l l JJ
application of a translation of velocity v.

Applied to the accelerations y(j) and 7(1]') the transformation (T)
leads to the law

Comparing this with the law (F), the following relation for the
masses is obtained.

(M)

Lorentz considers the electromagnetic momentum

A H)dr

where dr is the element of volume of the space #,y, z. For an electro

static system, and by the use of the inverted forms of e equations (C),
this quantity reduces to

= ?JW 'S) dr'

where dr' is the element of volume of the space #', y', z'.

If, in particular, reduces to a single electron whose charge e is

supposed to be uniformly distributed (at rest) over a sphere of radius
-R, then

Of* 2 f*
^ ^7

# + E;w=4 lE'w = 4-l S =
;J R r2 6nR'

Therefore

Now, G has the direction of v because of the symmetry of the system.
Therefore

This formula is only valid for a uniform translation of velocity tT.

Lorentz assumes that it is still applicable to all times when the ac
celerations are

sufficiently small. All osculation in the motions entails
the existence of a force

.

dt



SPECIAL RELATIVITY 471

Now, if it observed that

it is reasonable to assign to the electron a longitudinal mass (in the

direction of the motion)

_ dtfh) e*

dv
'

6nRc*

and a transverse mass (in a direction perpendicular to that of the motion)

Both these masses are of an electromagnetic nature. Lorentz assumes

that the electron does not possess any other " real
"

or " material
"

mass. In the state of rest

mi = mt
=

In short, in this particular case

Comparing this with the law (M) already obtained for every system
, namely

(M)
^

there is obtained

dv

Now, by the definition of

identically. Therefore

?-dv

and, since /(O)
= 1, I = 1.

Lorentz is therefore led to assume that the influence of a translation

of velocity v on the dimensions of a single electron (and, by extension,

of a heavy body) reduces to a relative contraction /? parallel to the direction

of motion.

We have already seen that this influence explains the result of

Michelson's experiment. It also explains the negative result of the
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experiment attempted by Trouton and Noble in 1903,
1 intended

v2

to demonstrate the existence of the couple, of the order of
, which

c2

would tend to orientate the plates of a charged condenser in the

direction of the Earth's motion.

Finally the law of the variation of the mass of the electron introduced

by Lorentz is in agreement with the experiments, carried out by Kauf-

mann,2 on the deflection of /? rays in an electric or magnetic field,

although the accuracy of these experiments does not allow the rejection
ofthe values predicted by Abraham.

3 More accurate experiments which
confirmed Lorentz's were made much later, by Guye and Lavanchy.

4

4. INTRODUCTION TO EINSTEIN'S ELECTRODYNAMICS.

In the statement of his intentions which appears in his paper Zur

Elektrodynamik bewegter Korper? Einstein indicated the asymetries
which result from the application of Maxwell's theory to bodies in

motion. Thus the mutual actions of a magnet and a current do not

depend exclusively on their relative motion, but differ according to

whether the magnet is at rest and the body in motion or whether
the converse situation obtains.

These difficulties, together with the acknowledged impossibility of

demonstrating the instantaneous translation of the Earth with respect
to the medium in which light waves are propagated, lead to the belief

that, just as much in electrodynamics as in ordinary mechanics, no

directly observable phenomenon can be connected with the notion
of absolute rest.

Einstein therefore intends to construct a new electrodynamics of

bodies in motion which might be free of contradiction, as simple as

possible, and compatible with the laws formulated by Maxwell for

bodies at rest. In such a theory the consideration of an ether the
medium or the support of the vibrations of light becomes superfluous
(uberfliissig), for no special property arises to characterise a reference

system which would be at absolute rest with respect to such a medium.
Einstein's paper, which we are about to analyse, contains a first

kinematic part (definition of simultaneity, relativity oflengths and times,
transformations of the coordinates of space and time, composition

1 Proc. Roy. Soc., Vol. 72, 1903, p. 165.
2
Phys. Zeitschr., Vol. 4, 1902, p. 55.

3 Ann. der Physik, Vol. 10, 1903, p. 105.
4 Arch, de Geneve, Vol. 41, 19l6, p. 286.
5 Ann. der Physik, Vol. 17, 1905, p. 891.
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of velocities) ; then a part devoted to electrodynamics (the conservation

of Maxwell's equations) ; and finally, a part devoted to the dynamics
of a slowly accelerated electron.

5. DEFINITION OF SIMULTANEITY.

Einstein founds his kinematics on the following definition of simul

taneity.
Consider a system of reference, to be called the "fixed system"

in which the laws of newtonian mechanics are valid.

If there is a clock at the point A in space, an observer at A can

observe the time at which an event occurs in the immediate neigh
bourhood of A. Further, if there is an identical clock at the point
JB, an observer at B can observe the time at which an event occurs

in his own immediate neighbourhood.
We thus provide for a "

local time ofA " and a " local time ofB"
but without a special convention we cannot compare the observations

at A and B.

We assume by definition that the " time " taken for light to go
from A to B is equal to the " time " taken for light to go from B to A.
If a light-ray starts from A at the instant tA (local time ofA) and arrives

at B at the instant ts (local time of B), and is there reflected to return

to A at the instant t^ (local time of A\ the clocks A and B will be said

to be synchronous if

In addition, we suppose that

if the clock B is synchronous with the clock A, the converse is

true ;

if the clock A is synchronous with the clocks B and C, then B and

C are also synchronous.
The preceding

"
experiment of thought

"
involves a definition of

simultaneity and a definition of time. The instant at which an event

occurs is that which is measured, in the immediate neighbourhood
of the point of space at which the event occurs, by a stationary clock

which is synchronous with another stationary clock, chosen once and

for aU.

We regard it as established by the experiment that the velocity
of light in the vacuum,

2AB __
/

^

is a universal constant.

The " time "
thus defined relates to the " fixed system.

"
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6* RELATIVITY OF LENGTHS AND TIMES.

Einstein starts from the following two principles.

a) Principle of relativity. The laws which govern the physical

phenomena are the same in two systems of reference actuated, one with

respect to the other, by a rectilinear and uniform translation.

b) Constancy of the velocity of light. The " time "
being defined

as above, light is propagated in the
" fixed system

"
with a velocity c

which is independent of the motion of the source.

Consider, in the fixed system, a measuring-rod which is at rest

and whose length I is measured with a standard, also at rest.

When the same measuring-rod is moved with a rectilinear and

uniform velocity v, what does its length become ?

In this connection, the following two experiments can be conceived of.

a) The observer, carrying his standard, is displaced with the rod.

The measurement is therefore carried out at relative rest in a moving

system of reference, actuated by a rectilinear and uniform velocity v

with respect to the fixed system.

b) The observer determines, by means of synchronous clocks at

rest in the fixed system, the points of this system at which the ends

A and JB of the moving rod are found at a given instant. He then

measures the distance between these two points by means of a standard

which is at rest in this system.
It follows directly from the principle of relativity that the first

measurement must give the result /.

As for the second measurement, which is concerned with the length
TAB of the moving rod as observed from the fixed system, we shall prove
that it does not provide the result L

On the contrary, classical mechanics implicitly assumes that the

two measurements give the same result.

Now, imagine two clocks which are synchronous with the clocks of the

fixed system and which are placed at the ends, A and B, of the moving
rod. The readings of these two clocks correspond to the time in the

fixed system in the positions that they occupy at a given instant.

In addition, suppose that one observer accompanies each clock and

applies the criterion of simultaneity to these. If rAB is the length of the

moving rod as measured in the fixed system, the two observers will find,

because of the principle of the constancy of the velocity of light, that

1 In these equations tA, for example, is the reading of the moving clock when it

occupies the position A. Therefore it is, by hypothesis, the time of the fixed system.
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The two observers will conclude from this that the two clocks

are not synchronous, while observers in the fixed system will pro

nounce them synchronous. Therefore simultaneity does not have an

absolute meaning, and two events which are simultaneous in a given

system are no longer so in a system in uniform translation with respect

to the first.

7. TRANSFORMATION OF THE COORDINATES OF SPACE AND TIME.

Let there be a " fixed
"
system of reference S(0xyz) and a movable

system of reference S'(OVyY) moving, with respect to the first,

with a rectilinear and uniform velocity v directed along the axis Ox.

In each system there is arranged a standard of length and, by graduation

against synchronous clocks, a measure of time (t
and

t').
The latter

is accomplished separately for S and S' by the procedure of the ex

change of light signals.

An event in S is characterised by a system of values (#, y, z, t) and

in S' by a system of values (#', y', z\ t').

Einstein assumes that because of the homogeneity of space and

time, the relations between the quantities (#, y, z, ,)
and (#', y', z\ t')

are linear. If f = x vt, to a set of values (f, y, z) corresponds a point

at relative rest in S'. We seek the

relation which defines t' as a function

of (, y, *, t).

A light ray leaves the origin 0'

of the system S' at the time ^ and

travels in the direction of the axis

Oxx f

. When it comes to the point

(, 0, 0) at the time *, this ray is

reflected and returns to 0' at the

We must writetime

z 1

Fig. Ill

Whence, in accordance with the principle of the constancy of light

in the fixed system, this equation may be written

+
C V
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If | is considered to be infinitely small

1 3? ( 1
,

1 \ dt' 1 ft'

2 dt \c v
"*"

c + vj dg
^

c v ft

Whence
K

,

* *'_ Q~ U *

Taking account of the fact that in a given direction O'y' or 0V
in S', perpendicular to the translation, light emitted from 0' appears,
when it is observed from the fixed system, to propagate itself with
velocity V c2 v2

,
an analogous calculation can be performed and

yields the result

_
By

~~
~di~

It then remains that

'-[- 7^.}
The principle of relativity combined with the principle of the

constancy of the velocity of light in the fixed system, requires that
the velocity of light measured in the moving system should be equalto c. Thus, for a ray travelling along the axis O'x' and starting at
time t = t' = 0, it will be true that

But by observing this propagation in the fixed system, it is possible
to write r

c v

Therefore

*' = c2
a(t>)

_-L
c ~

Similarly, considering a ray of light emitted from 0' in the direction
ol Oy, it turns out that

y' = ct' = cavt - v

=
V c v
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/ V2

Collecting all these results, putting /?
= I/I and replacing

by its value x vt> it turns out that

' =
<p(v)fi(x vt)

' =
<p(v)y

' =
<p(v)z(T)

This transformation is identical with Lorentz's transformation (T). Fur

ther, Einstein verifies that a spherical light wave emitted at the time

t = t' = from the common origin of the systems S and S', will be
observed in S as

(1) x* + y* + z* = cV.

Then, by the application of the transformation (T), it follows that

(2) *'2
t+ y'

2 + *'2 = c2*'2 .

Thus an identical form is obtained in S'. He observes that the trans

formation (T) would be obtained more simply by starting from the

condition that equation (1) should imply equation (2).

Einstein then considers another system S" whose origin coincides

with those of S' and S at the time t = 0, and which may be moving
with a rectilinear and uniform translation of velocity v directed along
O'x'. A second application of the preceding analysis yields

of = y( v)p (x' + vt')
=

(p(v)(p( v)x

j" = 9 ( v)y' =-9(v)q> ( v)y

v)x T(-v)T(v)

It is clear that this double transformation is equivalent to the

identity transformation. Therefore q>(v)<p( v) = 1.

Einstein observes at this point if a segment of length Z (measured
in S') on the axis O'y' is subjected to the transformation (T), the length

of the same segment, measured in S, is found to be 7-7. By reasons
Qprm

of symmetry, this result is independent of the sense of v and only

depends on the magnitude of the velocity. Therefore

- = or finally w(v) = <p( v) 1.

<p (v) (p ( v)
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The transformation of the coordinates of space and time therefore

takes the reduced form

y' =

8. CONTRACTION OF LENGTHS AND CORRELATIVE DILATION OF TIMES.

1) A sphere whose equation is

x'* + /2 + 3/2 = R 2

is at relative rest in the system S'. In the system S it appears as an

ellipsoid of the equation

The dimensions of a sphere which is motionless in S' that is,

moving with velocity v with respect to 5 are therefore unaltered

in a direction perpendicular to v but seem, viewedfrom S, to be contracted

/ v*
in the ratio of 1 to W 1 in the direction of v. [It follows that

v C

a velocity v > c has no physical meaning.] The converse is true? when
a sphere which is at rest in S is observed from S'.

2) A clock placed at 0' and at relative rest in S r

keeps the time t'.

Seen from S, what time does this clock keep ? Here we have x = vt.

Therefore t' = - or t' = t
(
1 -

)
t. Therefore, seen from S, this

P \ PJ

clock runs slow by f 1 -
|
seconds per second. The reciprocal is true

when a clock, at rest in S9 is observed from S'.

9. COMPOSITION OF VELOCITIES.

Consider a particle moving in the direction of the axis O'x' with
a velocity v' relative to the system S7

, and starting from the origin
0' at the time t' = 0. "What is the velocity of the particle relative

to the system 5 ?

Here we have x' = v't'. Therefore, returning to the variables

(x, t) by means of the transformation (T),
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(V)

The velocity c thus assumes the character of a ceiling which cannot
be surpassed. Indeed, if two velocities v and t/, which are both less

than c, are compounded in this way the resultant velocity is less than
c ; if the velocity c is compounded with a velocity v< c, the result is c.

10. TRANSFORMATION OF MAXWELL'S EQUATIONS IN THE VACUUM.
ELECTRODYNAMIC RELATIVITY.

Einstein starts from Maxwell's equations, written, in the " fixed

system
" S in the form

curl H = - -

c ot

curljB= .

c dt

The transformation (T), applied to the variables (#, y, z9 *), implies
that

Then'in the system S' Maxwell's equations take the form

i r?'curlH = -
-x-7-'

___

E,
C

if En H'Xi etc. . . . are given by
'

E's = Ex

(C)
Ey'
=

{S I Ey -- fl*
C

i' = Hx

H>

yl
= p(Hy

That is, the fields transform among themselves in the manner
advocated by Lorentz.
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In Einstein's interpretation, theseformulae imply a complete symmetry
between the systems S and S' that is, an electrodynamic relativity. The

electrodynamic and magnetomotive forces become simple effects of

the choice of reference system a purely electric field in S becomes,
in S', an electromagnetic field defined by the equations (C).

11. TRANSFORMATION OF MAXWELL'S EQUATIONS INCLUDING
CONVECTION CURRENTS.

Einstein starts from Maxwell's equations including a convection

current of velocity 3, of the form

. ft 1 /BE
,

^
curl H = -

\- pu
c \ot ,

1 Z?
19#

curlE = .

c ot

These equations also embody the results of Lorentz's electron theory.
If these equations are transformed under the transformation (T),

so that they may be appropriate for the system S', the form of the

equations is preserved as

, socurlE =--w
if, at the same time, the transformation (C) is applied to the field
and if it is supposed that

and

ux v
u> =

-, uxv
y -

l ~~^
Thus Einstein arrives at a perfect symmetry between the systems

S and S'. The formulae giving the components of u' along the axes
of S' are

^obtained by composition (in the sense of 9) of the velocities
u and v 9 where the velocity u can have any orientation with respect
to the axes Oxyz. It was due to this composition that Einstein was
able to demonstrate the complete conservation of the equations, which
had been lacking in Lorentz's paper.
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12. DYNAMICS OF THE SLOWLY ACCELERATED ELECTRON.

Einstein considers an electron which is a relative rest in the system
S' at the time t

r

. When the motion of the electron is accelerated,
the system of reference which accompanies it (Lorentz's proper system)
changes at each instant. At times close to t

r = 0, at which the system
S' is a proper system for the electron considered, Einstein postulates
that the ordinary equations of classical mechanics are valid in S' ;

that is, that

mn

dt'
z

n= e j

= e

where m is the mass of the electron. These equations obtain as long
as the velocity of the electron, measured in S', remains small. Now
the coordinates of the fixed system S, with respect to which the electron

moves with a velocity which is only a little different from 5, are intro

duced. It turns out that

For, as Lorentz remarked, the accelerations transform according to

This relation is deduced from the transformation (T). Further, apply

ing the transformation (C), the charge remaining constant, it turns

out that

31
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These equations lead to the suggestion that the electron be assigned
a longitudinal mass m^3 and a transverse mass mQj3.

1

Einstein observes that this variation of the mass with the velocity
extends to heavy particles.

"
For, by the addition of an arbitrarily small electric charge, a

panicle endowed with mass can be compared to an electron (in the

sense that we attach to the term).
"

Finally, Einstein calculates the kinetic energy of an electron,

initially at rest at the origin 0, which is displaced along the axis Ox
under the action of an electrostatic force eEx . The energy taken
from the electrostatic field is therefore feExdx. Since the electron

is
"
slowly accelerated,

" no energy is lost by radiation and, consequently,
the energy of the field is entirely transformed into kinetic energy T
of the electron. Under these conditions

T =
\
eE*dx = ^m^vdv = m c2 [ = l] = mQc*(8 1).

Jo Jo L /, V*
\

13. SPACE-TIME IN THE SENSE OF MINKOWSKI.

Minkowski 2 uses the term world to denote the space-time continuum
in the four dimensions x9 y, z, t. A world-point represents an event

occurring at the time t and the point #, y, z. For each particle the
coordinates #, y, z are functions of the time t, whence the existence
of a world-line.

Minkowski introduces the hypersurface

which consists of two sheets separated by t = 0. Consider the sheet
situated in the region t> and seek the linear homogeneous trans
formation of *, y, z

9 t into *', y
;

, z', t' which leaves this sheet invariant.

1 To be accurate, in his paper of 1905 EINSTEIN suggests that the components of

the force in the fixed system be defined as \eEx, efi (Ey -Hz\ ep (E, + -Hy\\ .

This leads to the mass m (^, p\ p), while LORENTZ'S suggestion is m (8\&8).At the suggestion of PLANCK, it is the second of these that is now accepted, and which

arises naturally by writing F = -
(mv) instead ofF= my.

2 MINKOWSKI'S paper was first given at a conference at Cologne on the 21st Sep
tember, 1908, and then reproduced in a volume, including papers by LOKENTZ and
EINSTEIN, called Das Relativitdtsprinzip (Leipzig-Berlin, Teubner ; 4th ed., 1922)
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Suppose that the coordinatesy and z are unaffected in the transformation
and, further, put u = ct. Then the intersection of the sheet of the

hypersurface with the plane (*, u) reduces to a branch of the rectangular
hyperbola

u2 x2 = 1 with u > 0.

Let OA' be a vector through the origin which intersects the hyper
bola and let A'B' be the tangent limited to the asymptote on the side
which corresponds to x > 0.

Construct the parallelogram A'R'C'Q^ whose side B'C' meets Ox
at D'.

If the hyperbola is considered as being referred to the axes OC', OA',
and if OC' is supposed equal to unity, then the equation is still

u'2 */a = 1 with u' > 0.

Thus the transformation (*, y9 z, t)
-

(x'9 y' 9 ', t') fulfills the require

ments imposed. Putting tan y = -, where the angle uOu
1

(or the angle
^^^_^^ c

x'Ox) is equal to
y>, then it can be easily verified that this transform

ation is identical with a Lorentz transformation of parameter v.

These transformations form a group Gc, the suffix c referring to

the velocity of light in the vacuum. " If it is not wished to use the

word 6

space
' and the word 4

vacuum,
'

c can be defined as being
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the ratio of the electromagnetic and electrostatic units of quantity
of electricity.

" Minkowski then states the following principle.

The expression ofthe laws ofphysics is not modified by a transformation

of the group Gc .

The world-line of a particle at rest in the system (#, u) is a straight
line parallel to the axis of u. At a point on the world-line on any
particular the tangent is parallel to a radius vector like OA'. If OA'
is taken as the axis of u', the particle will appear at rest in the system

(x\ a'). In order that this may be possible, it is necessary that

cW dx* dy
2 dz* > or v < c.

" The essential reason for taking the group Gc into consideration

lies in the fact, recognised by Voigt, that this group leaves invariant

the equation of the propagation of light waves in free space. On
the other hand, the concept of solid body only has meaning in classical

mechanics (group G& ).
The simultaneous consideration of the group

Gc (for optics) and the group G& (for mechanics) would define a

privileged direction for time and, under these conditions, optical ex

periments performed with rigid instruments would necessarily be able

to demonstrate the influence of the orientation with respect to the

terrestrial translation. In particular, Michelson's experiment would
have a positive result. . . . Lorentz's hypothesis seems 6 dusserst phan-
tastisch,

*
for the contraction is not caused by the ether but is a pure

gift from the gods. . . . This hypothesis is equivalent to our new
conception of space and time, which makes the contraction much
more comprehensible.

*'

In fact the ends P
l and P2 of a segment which is parallel to Ox

and at rest in S(rt, u) describe world-lines which are parallel to Ou'.

Suppose that the length of the segment P-JP& measured in S, is equal
to l(P^P2 = Z-OC). Similarly, suppose that the length of the segment
QiQ'w measured in S' 9 is equal to l(Q[Q'^

=
l-OC). From the figure

it is seen that Q Q2
= Z-OD'. But an elementary calculation yields

OD' = OC 1/1 - where - = tan w. Therefore
V c^ c

T

The length Q^Q2, or the measure in S of a moving segment, of length
7, which is at rest in S', is therefore subject to the Lorentz contraction.
The reciprocal proposition is also true, for
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i -oc' = oc =
Z.OD OB*
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Minkowski remarks,
" Neither Lorentz nor Einstein grappled with

the notion of space. Undoubtedly this was because the reduced trans

formation in which the plane (#', t'} covers the plane (#, t) can be inter

preted by keeping the same direction in space for the axis of x. To
meddle with the concept of space in the face of such an agreement

may be regarded as a distortion of the mathematical attitude. Yet

this step is indispensable for an appreciation of the true significance

of the group Gc .

"

Minkowski considers the term "
postulate of relativity,

" used to

state an invariance with respect to the group Gc, to be very inadequate

(sehr matt) . The meaning of this postulate is that it is only possible
to contemplate a space-time world whose space and time sections allow of

a certain amount of freedom. Accordingly Minkowski suggests the

term postulate of the absolute ivorld or, briefly, world-postulate (Welt-

postulat) .

Let be the origin of space time. Then, by means of the equation

w2 x2
y* z2 = 0,

Minkowski defines a backward cone (on one side of 0), in which t < 0,

and a forward cone (on the other side of 0), in which t > 0. The first

region consists of world-points that "send light to 0" while the second

consists of world points that " receive light from ".

The sheet of the hypersurface

(N) 0)
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which, has been considered above, belongs to the second region. A
branch of a hyperbola, as (H) for example, whose centre is is contained

between the two cones. It may be the world-line of a particle whose

velocity tends to c as t tends to + oo.

A vector such as OP, which is drawn from the origin to the point

(#, y, 2, t), has four components x, y, z^ t.

A time-like vector is said to be a vector drawn from the origin

towards the sheet (N). A space-like vector is a vector drawn from

towards the surface

(-N) *2 + y
2 + z* - u* = 1.

A world-point in the intermediate region contained between the

backward and forward cones can be represented as an event which
is earlier than, simultaneous with, or later than by a suitable choice

of axes.

Two vectors V and V^ are said to be orthogonal if

zz = 0.

For a space-like vector the units are defined by the distance from
O to the sheet

( N) ; for a time-like vector, by the distance from
to the sheet (N). The quantity J<5r, where dr is denned by

cdr = ^du* dx* dy* dz*

is called the proper time of the world-line (or of the particle describing
this world-line).

Let the presence of a dot above a letter, as in u for example, denote
the operation of differentiation with respect to the proper time.

~* dP
If P is the vector from to P, the velocity , of components

dt

(x, y, z, u), is a time-like vector which is tangent to the world line. For

On the contrary the acceleration- , of components (x, y9 z, u),

is a space-like vector orthogonal to the velocity. For

u u xx yy zz = 0.

The momentum vector (Impulsvektor) has components (m #, m y,

m z, m u), where m is the rest mass. Similarly, the components of

the force are identified with those of the vector (m i, m y, m i, m a).
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The kinetic energy is identified as the product of c and the u-component
of the momentum (Impulsvektor) ,

or

in the case of the reduced transformation.

B. ANALYSIS AND INTERPRETATION

2a.1 ON MICHELSON'S EXPERIMENT.

Apart from the form of its presentation the calculation of 2 is

found in all the books on relativity. It must be remembered that

the calculation supposes that the wave theory is accepted or, more

accurately, that it is assumed that the velocity ofthe propagation of light

in the sidereal vacuum is independent of the motion of the source.

If, on the contrary, the emission theory is taken as the starting-point,

it is immediately concluded that the experiment must give a negative
result.2

We have already remarked that the hypothesis of a dragging of

the ether which would explain the result of Michelson's experiment
would make it impossible to account satisfactorily for the phenomenon
of aberration in terms of the wave theory. As a curiosity we draw

attention to the interpretation of the phenomenon of aberration that

was suggested by P. Lenard.3 This author introduces two ethers,

namely
the basic ether (Urdther), filling all space and at absolute rest as a

whole. This medium is totally independent of matter and is that

in which electromagnetic waves are propagated with velocity c;

the ether (Ather),
"
pertaining to all matter yet distinct from it,

"

contiguous with every material atom and whose distribution accords

-with that of matter. In the neighbourhood of the terrestrial sphere

for example, the ether as a whole is at relative rest with respect to

this and accompanies it in its motion.

1
Throughout the present Part we shall use the same numeral to denote a paragraph

in the presentation and the corresponding paragraph of analysis or interpretation, by

allowing this numeral to be followed by letters a, fc, c. . . .

2 C/ PAINLEVE, Les Axiomes de la Mecanique (Gauthier-Villars), 1922, pp. 81 to 96.

3 LENARJD, Vber Ather und Urdther (Hirzel), Leipzig, 1921.
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In this scheme the aberration is explained in classical terms. The

light from the stars comes to us through the Urdther ; the ether asso

ciated with the earth does not disturb this propagation any more
than the air, or any other fluid, that the light may have to pass through
before it arrives at the observing telescope. Lenard explains Michelson's

experiment without appeal to a Lorentz contraction for this ex

periment is performed entirely in the ether associated with the earth,

and which accompanies the earth in its instantaneous translation. . . .

26,

Following up an idea of Poincare,
1

J. Le Roux remarked that

Michelson's experiment, depending not on a simple light path but on a

forward and backward path, only substantiated the waves of interference.

The progressive waves can be ellipsoids ofrevolution in which the moving
source is at one of the foci. In other words,

" the isotropy of the wave
of interference does not imply the isotropy of the progressive wave. " 2

J. Le Roux's analysis, based on a systematic study of waves emitted

by a moving source, is mathematically incontestable. But it would
lead to much more complicated physical hypotheses than Einstein's

theory and, here, the author gives us no assistance. " The ellipsoidal
form of the progressive wave no longer allows it to be supposed that

the propagated field may be isotropic in the restricted domain in which

experiments are carried out. Therefore, in this domain, the Earth

may have an influence on the field and, consequently, on the propa
gation of light. As for the form and nature of this influence, the choice
of hypotheses is very wide. We shall formulate none. " 3

3a. DYNAMICS OF THE ELECTRON IN POINCARE'S SENSE.

Poincare 4 devoted a paper which appeared in 1906 to the study
of Lorentz's calculations. As Einstein had done, he corrected the law
of the transformation of the density of electric charge. Moreover,
he simplified Lorentz's analysis by remarking that the function l(v)
which figures in the transformation of the coordinates of space and
time and which is, a priori, arbitrary, must necessarily reduce to unity
when the condition that these transformations form a group is imposed.

1
POINCARE, Science et m&hode, p. 99. La Mecanique nouvelle (Conference held at

Lille in 1909), p. IX.
2 LE Roux, Relativite restreinte et systemes ondulatoires. Journal de Math Vol I

1922, p. 205.
"' " '

3
Ibid., p. 231.

4 Rendiconti di Palermo, Vol. 21, 1906, p. 129.
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Poincare declared that Lorentz's hypothesis is
"
the only one com

patible with the impossibility of making absolute motion evident.
"

We must therefore
"
fall back on the theory of Lorentz, but if we wish

to retain it and avoid intolerable contradictions, a special force must be

introduced which will explain both the contraction and the constancy
of two of the axes. I have found that this force can be assimilated to a

constant external pressure acting on the deformable and compressible
electron and whose work is proportional to the variations in volume of

this electron.
"

So it was only grudgingly that Poincare adopted Lorentz's theory
and he considered it was necessary to complete it by introducing a sup

plementary potential proportional to the volume of the electron. He

again expressed his scepticism and his hope of seeing the theory trans

formed by the following formula :

" How do we constitute our measure

ments ? By applying the objects considered as invariable solids on

one another, it will be answered at first. But that is not true if we
admit the Lorentzian contraction. In this theory, two equal lengths

are, by definition, two lengths that light takes the same time to traverse.

It would suffice perhaps to abandon this definition for the theory of

Lorentz to be as completely upset as was Ptolemy's system by the

intervention of Copernicus.
"

36. FROM LORENTZ TO EINSTEIN.

Lorentz's theory already embodies the essential results of special

relativity, namely the transformation (T) of the coordinates of space
and time, the law (C) of the transformation of electrical and magnetic

fields, the law (M) of the variation of the mass with the velocity. To

these results, Einstein's first paper was to add only the law (V) of the

composition of the velocities and the formula relating the mass to the

energy.

But, in the passage of Lorentz's theory to that of Einstein, what is

essential is the novelty of the Einsteinian point of view. Lorentz's

theory is not relativistic, in this sense that a system at absolute rest in

relation to the ether continues to enjoy special properties there. The

Lorentzian contraction, which possesses material significance, results

from the application itself of an instantaneous translation of velocity 'v.

The same applies to the laws (C) and (M).

On the contrary, there is perfect symmetry between two systems

of reference, like S and S', in Einstein's theory. From this follows

a complete relativity of mechanical and electromagnetic phenomena.
For the mechanical phenomena, whose relativity in the classical field
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had been recognised for a considerable time, Minkowski made clear

that it is only necessary to substitute the group Gc for the group GM ,

and to carry out the correlative modification of the kinematics (that

is, to introduce the law
(V)).

In these circumstances the Lorentz

contraction is no more than a simple consequence of the choice of

reference system. For electromagnetic phenomena the relativity,

connected with the group Gc , is entirely novel and removes all the

asymmetries of the classical theories, making both the electromagnetic

force and the "
magnetomotrice

"
force simple consequences of the

choice of reference system.

4a. THE ETHER MADE SUPERFLUOUS.

In this presentation it has been already necessary to speak of the

ether on several occasions. It might be said that the physics of the

XlXth Century was completely bathed in it. That the ether may
have ceased, after Fresnel and Maxwell, to play the part of a medium
and have taken the more abstract one of a system of reference suited

to the definition of absolute rest, does not imply that it ceased to

function as the substratum of thought in physics.
The reasons which led Einstein to declare the ether superfluous

are well founded in logic ; but such a declaration made on the threshold

of his theory could only alienate him from the physicists imbued with

the classical representation. The example of Lenard which we have

quoted above (2a) is typical rather than accept the disappearance
of the ether, Lenard prefers to create a new one. And with two ethers

he explains the phenomena. Rather than give up a myth, he preferred
to multiply it.

5a. DIFFICULTIES OF EINSTEIN'S NOTION OF SIMULTANEITY.

The definition of simultaneity which Einstein placed at the found
ation of his theory has the merit of demonstrating the universal part
played by the exchange of signals of velocity between different observers.

But nevertheless the definition remains a matter of some delicacy.
As it appears in its popular presentations, it has given rise to numerous

misunderstandings, or has been an obstacle to the understanding of
the theory by many people. We shall not go as far as to complain,
as certain critics do, that Einstein made use of magical clocks and
enchanted measuring-rods in order to return, in the last analysis,
to Lorentz's transformation (T). But there is no doubt that these
ideal clocks and rods can only be used in idealised experiments. Further,
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we remark that when, in general, the clocks of the system S f

keep
the time ', Einstein does not hesitate to arrange for the system S r

to be accompanied by clocks which, at each point in space, keep the

local time t of the system S ; this in order to demonstrate the fact

that the simultaneity he introduces only has a relative meaning.

6a. FIELD OF VALIDITY OF THE PRINCIPLE OF SPECIAL RELATIVITY
" GALILEAN " SYSTEMS OF REFERENCE.

Much more important, from the theoretical point of view, is the

exact definition of the field of validity of the principle of special rela

tivity. Several authors, basing themselves on the statement of the

principle as it is formulated by Einstein
( 6, p. 474), have written

that any two systems 5 and S' which are in uniform and rectilinear

translation with respect to each other are equivalent with regard

to the principle. Numerous popularisers have lightly taken this step.

Certainly Einstein, before stating his principle, is explicit that the
" laws of newtonian mechanics must be valid

"
in the system S which

is considered as " fixed
"

;
but this essential point of view needs to

be most clear.

P. Frank seems to have been the first author to concern himself

with this question.
1 Einstein himself returned to it in an interpretative

work 2 which we are going to follow.

A system of reference in which the principle of inertia is valid

where the motion of an isolated particle is rectilinear and uniform

is called "
galilean.

" 3 The principle of relativity in classical mechanics

shows that if S is a galilean system of reference, so also is any system

of reference S' which is actuated by a rectilinear and uniform trans

lation with respect to S. But this relativity of classical mechanics

does not extend to the class of optical and electrodynamic phenomena.

Clearly there can be no question of giving up the classical form

of relativity mechanics, which, with high accuracy, accounts for all

the astronomical motions. If, on the other hand, this relativity

breaks down in electromagnetism, it is more or less necessary to assume

that there exists a privileged system S in which the laws of nature

are the most simple. For this reason this system could be said to

1 P. FRANK, Die Stellung des Relativitdtsprinzips im System der Mechanik und

Electrodynamik, Wiener Sitzungsber., Vol. 118, 1909, p. 337.

2 EINSTEIN, Vber die spezielle und die allgemeine Relativitatstheone (tremem-

verstandlich), Vieweg, Braunschweig, 1916.
3 This term, to which too precise a historical significance must not be attached,

has now become part of the every day language of higher teaching. The meaning

which EINSTEIN attached to it is moreover, perfectly definite.
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be at absolute rest, all other systems being in motion. In these circum

stances the direction of motion would assume a particular significance.

But it has always been impossible to demonstrate such a defect of

isotropy of the physical space in the neighbourhood of the Earth,

in spite of the care lavished on the relevant experiments. This failure

is a strong argument in favour of the adoption of a new principle of

relativity.

Einstein concludes,
" We assume that there exists a galilean reference

system S in which the principle of inertia is valid [or where the velocity

of light is the same in all directions, and is independent of the motion

of the source]. Referred to 5, the laws of nature must be as simple

as possible.
1 But systems of reference like S', which are actuated

by a rectilinear and uniform translation with respect to 5, must be

equivalent to S as far as the expression of the laws of nature is concerned.

All these systems are regarded as 6

galilean
'

systems, and the principle of

relativity in its restricted sense (spezielles Relativitdtsprinzip) only

applies to such systems.
"

Painleve 2 has a penetrating discussion of the same question in

a remark on the propagation of light.
" The theory of relativity rests

on the same fundamental postulate as classical mechanics and Fresnel's

optics ; namely
" The Kepler-Fresnel Postulate. It is possible to define, once

and for all and for the whole universe, a measure of time, a measure

of length and a frame of reference such that
"

1) The motion of every particle which is very distant from all others is

rectilinear and uniform (Principle of inertia).
"

2) Far from all matter the propagation of light is rectilinear and

uniform and has the same velocity in all directions (Fresnel's Principle).
"
According to the classical doctrine this frame of reference will

be the one adopted by the group of observers on a star A^ which is very
distant from all others and without rotation with respect to the fixed

stars, if the absolute velocity of this star is zero. But the relativists add
the following essential complement

"
Postulate of relativity. // the Kepler-Fresnel postulate is true

for the observers of the star A (choosing this star as reference body), it

is also true for the observers of a star B [also very distant from all others

and without rotation with respect to the fixed stars, but possibly

moving rectilinearly and uniformly with respect to A] choosing this

star as reference body.
"

1 We shall return to this matter later.
2
PAINLEVE, Les Axiomes de la Mecanique, Gauthier-Villars, 1922, p. 98.
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After explaining the transformation (T) of the group Gc which

makes it possible to go from a relativistic system of reference S to

another relativistic system of reference S', Painleve concludes

" Such is the principle of special relativity. It is seen that this

theory, contrary to what is affirmed or implied by a very large number

of expositions, supposes the existence of privileged axes. In the special

theory of relativity as in the classical theory, there exists at least

a measure of time and a measure of length, and a frame of reference

such that Kepler's principle and FresneFs principle are true in the

sidereal vacuum. But in the classical theory this frame of reference

is unique ; in the theory of relativity there exists an infinite number

of such frames whose axes of reference (carrying their observers) are

actuated by a rectilinear and uniform translation with respect to each

other, and the formulae for the passage from one system to the other

are [Lorentz's formulae (T)]. These privileged frames coincide with

those that classical mechanics describes as absolute axes. Alternatively,

in the present state of our measurements, these axes are the axes of

Copernicus (axes of reference fixed with respect to the distant stars

and whose origin is at the centre of gravity of the solar system) or the

axes of Galileo, which are actuated by a rectilinear and uniform trans

lation with respect to the first.
"

The field of validity of the special principle of relativity being

thus defined, what significance can be attached to it? Einstein, speaking

of the " heuristic value
"
of the principle of relativity, made the following

declaration.
"
Every law of nature must be so formulated that it is expressed

in the same formal terms when, by means of a Lorentz transformation,

the variables (x9 y, z, t)
of a system S are replaced by the variables

(#', /, *', *')
of a system S'. In short, the laws of nature are covariant

under Lorentz transformations.
" This is the precise mathematical condition that the theory of rela

tivity imposes on a natural law (einem Naturgesetz vorschreibt). It can

therefore be used heuristically in the investigation of the laws of nature.

If there were found a general law of nature which did not agree with

the above condition, at least one of the foundations of the theory

would be contradicted.
" l

Even the form of such a declaration would have offended a theorist

of mechanics like Ernest Mach. It is better to confine oneself to estab

lishing that the novelty introduced by Lorentz and Einstein in classical

mechanics permits the successful inclusion of mechanics, optics and

1 Vber die spezielle und die allgemeine Relativitdtstheorie, p. 29.
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electromagnetism in one single synthesis agreeing with the experimental
facts than to regard it as a necessary criterion for the selection of every
natural law.

7a. ON DIFFERENT MATHEMATICAL WAYS OF OBTAINING THE LoRENTZ
TRANSFORMATION.

In the presentation we have seen that Lorentz introduces the trans

formation (T) in an attempt to preserve the form of the equations
of his theory of electrons. On the other hand, Einstein obtains the

same transformation by starting from his definition of simultaneity.

1) It is also possible to return to the original idea of Voigt, as

von Laue has done, and to seek the transformations which are linear

and homogeneous, in x, y, z, z, and which leave invariant the equation

D <p=

where n is the operator

2) The invariance of the expression x2 + y
2 + z2 c%2 may be

taken as the starting-point, and the question treated analytically.

3) We recall here that, in a geometrical way, Minkowski takes
the invariance of the expression x* u*(u = ct) as the basis of his

interpretation.

4) Further, putting Z = ict, the question can be reduced to the
invariance of x2 + y

2 + z2 + /
2

; that is, to the consideration of

imaginary rotations. We shall confine ourselves to the reduced

transformation in which y and z remain unchanged. Putting a = -
c

and tan <p
= ia, it follows that cos

cp
=

(1 oc
2
)~* and sin <p

=
ioc(l a2

)""^.
The Lorentz transformation then reduces to the imaginary rotation

f x f = x cos
<p + I sin <p

\ I' = x sin
(p + I cos

<p

the composition of such rotations yields directly the law of addition
of velocities parallel to the axis of x. For example, if

(p
= ^ + q>29

or t, =
,
1

"1
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5) As J. Le Roux has remarked (in the paper cited on. page 487

above), the Lorentz transformation is a transformation in homo

geneous coordinates and which leaves invariant the fixed sphere

of unit radius, * whose equation is u2 x? y2 z2 = 0. The

centre of this sphere corresponds to a frame of reference. If P is a

point inside and the vector OP = t>, the passage from the frame

of reference S to the frame of reference defined by P will be characterised

by the argument

v = tanh or 6 = -
log

?-^ = 1 Iog (M, M', 0, P)
2 1 v 2

where M and M' are the two points at which the line OP cuts the sphere
Y. 1 More generally, the argument which characterises the passage
from the frame of reference S1(P3L)

to the frame of reference S2(P2)

will be -i

U = i
log (M, AT, PL P2)

Z

where M and M' are the two points at which the line PXP2 cuts the

sphere . This argument is therefore directly connected with the

Cayley distance and plays the part of the absolute.

8a. PSEUDO-PARADOXES IN SPECIAL RELATIVITY.

Our subject does not include the numerous paradoxes which it

has been found possible to infer from the principle of special relativity.

Fortunately these paradoxes are, in general, outside the field of validity

of the principles a field which is, as we have seen in 6a, very narrowly

determined. Such is, for example, the paradox described as that

of the interstellar traveller. Supposed being launched in a bullet with

a speed inferior by a twenty thousandth part to the speed c, he comes

back to the Earth growing older only by one year in going and one year

in returning, while the inhabitants of the Earth are older by hundred

years. Some authors, like Eddington, have clearly seen the error of

such a paradox and believed to elude it, saying :

"
if the traveller finds

the mean of returning to Earth,
" In fact, the traveller is bound in

going to a galilean frame of reference S' (when the normal speed has

been attained) and equally in his return journey to another galilean

frame of reference S". But what to say about the start, the curl and

the landing ? Neither of these three phases of the motion are submitted

to the principle of special relativity. This paradox is so a pseudo-

paradox : it is not in the field of validity of the Lorentz-Einstein theory.

1 The bracket refers to the anharmonic ratio in this formula.
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If, apart of this simple reason, one wishes to be absolutely in peace
about this subject, one can assume, with Mr. Chazy, that during these

three phases the traveller became older by 98 years in the whole.

Such is the paradox of the revolving disc, though one may perhaps
oppose that Einstein discussed it. We shall come back to this paradox
in general relativity, showing that Einstein argues about it only to

conclude negatively on the immediate physical meaning of coordinates

of time and space in this respect.
The only a priori paradoxical effect which lies really in the field of

the principle is that of contraction of lengths and correlative dilatation

of times.

But this effect is reciprocical, as shown in the following equations

x' = (}(x vt)

X X
1) x = for t =

P

2) t = $i' for x' =

+ vt')

t Alt' 4-
VX

f P (
t + -^

I') x'= - for t' =

2') t' = fit for x =
That is, in detail,

1) A length in S', materialised by a measuring-rod O'x of length
x\ which is observed from S at the time t = appears, there, to be

contracted in the ratio -.
P

V) A length in S, materialised by a measuring-rod Ox of length x 9

which is observed from S' at the time t' = appears, there, to be

contracted in the ratio -.
P

2) A clock fixed in S', at x' = 0, which keeps the time t' appears,
from S, to keep the time t which is dilated with respect to t' in the ratio

/?.

2') A clock fixed in S, at x = 0, which keeps the time t appears,
from S', to keep the time t' which is dilated with respect to t in the
ratio ft

It seems natural to take the view that, because of this reciprocity
between S and S', the double paradox disappears by symmetry.

1 On
l The opinion which we express is diametrically opposed to that of EDDINGTONwho regards a pseudo-paradox like that of the traveller as an illustration of the theoWand who discovers, on the contrary, difficulties in the reciprocity of S and S' in thematter of the LORENTZ contraction. It is the reciprocity of these happenings eachone of the bodies in motion fancies that it is the other which suffers a contractionwhich is so difficult to understand." Or where the Lilliputians would have seemed

pygmies to Gulliver and Gulhver have seemed a pygmy to the Lilliputians
"
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the contrary, the paradoxes of which we have spoken above are

characterised by obvious asymmetries which are outside the scope of

special relativity, whose very principle is that of the indistinguishabil-

ity of two galilean frames of reference with respect to any mechanical

or electrodynamical phenomenon.

9a. COMPOSITION OF VELOCITIES AND FIZEAU'S EXPERIMENT.

By means of a theory involving both matter and the ether which

permeates it, Fresnel arrived at the formula

w -

Here w is the velocity, with respect to the surface of the earth, of the

propagation of light in a fluid current. The index of refraction of

the fluid is n and its velocity (relative to the surface of the earth)

is v. In the classical interpretation the phenomenon occurs as if

the ether was partially carried along by the current. According

to Einstein's formula, the composition of the velocities and v leads

directly to the result

cv

c
, (l

l
\00 h tfll o

71 \ 7I/V

in perfect agreement with Fizeau's experiment.

12a. RETURN TO THE DYNAMICS OF VARIABLE MASS IN PAINLEVE'S

SENSE.

As early as 1890, in his lectures at Lille, Painleve suggested a

generalisation of the dynamics of a particle which, in particular, in

cluded the dynamics of special relativity in a given system of reference.

Painleve generalises the principle of the equality of action and reaction.

Starting from the classical kinematic equations

dv _ H! _

he writes the'equations of motion of a particle P in the form

m f(<v\ = cos -
y(v) = sul 0-

OJV ;
dt Q

32
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Let there be two particles P and Px which are isolated from all

others. The force acting on P, say 0, acts in the direction PP^ and

makes an angle 6 with v. This force can depend on the coordinates

of the points P and Px as well as their velocities v and vv In accordance

with the principle of the equality of action and reaction, Px is subject

to the force 0. Each of the particles P and Px has a longitudinal

mass and a transverse mass which are, separately, arbitrary.

The mechanics constructed in this way by Painleve, thanks to

a purely mathematical generalisation and " when there was still no

question in physics of a longitudinal or transverse mass, which coincides

with ordinary mechanics for f(v) ==
ip (v) = 1, is compatible with the

copernican axiom of causality, with its corollary, the axiom of symmetry,
and finally, with the axiom of the composition of forces.

" 1

In the interest of the physical applications it is necessary to modify

slightly the equations which Painleve obtains. First, we shall write

the equation of motion of a particle in the form

^ (mv) =

where m is an arbitrary function of v that is, we consider the vectorial

derivative of the generalised momentum and equate it to the force.

Projecting on the tangent, then on the principal normal to the trajectory,
and having regard to the Serret-Frenet formulae, it turns out that

d . dv dm ,

^ - /.- = sin d.

e

Therefore the function m(v) is identified as the transverse mass.
It follows that the transverse mass and the longitudinal mass are

necessarily connected by
/-

,
v dmt\

mi = m, (1 H--- .

\ mt dv I

Another innovation of Painleve's mechanics must be considered
if a retarded potential is used in such a case the principle of the equality
of action and reaction is no longer valid.

Finally the form of the dynamics of variable mass can be modified

by considering the mass as a function of the quantity T, which imme
diately generalises the classical kinetic energy. Thus we write

l We know (see above, Part IV, Chapter one) that LAPLACE had already contem
plated such a generalisation as early as 1799.
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T = mv2 J2 + const (T = for t; = 0)

with
d
- = mv.
dv

The function (which can be called the generalised Lagrange

function) is that which occurs, in the dynamics of variable mass, in

the Lagrange equations

dt \dqiJ

which preserve their usual form. The function J2 also occurs in

the statement of Hamilton's principle

+ U)dt = 0.

On the other hand, the kinetic energy T occurs in the statement

of the energy principle

T = U + W
where W is the total energy. The necessary and sufficient condition

that T ==
J2, or, in words, that the same function should appear in Hamil

ton's principle and in the energy principle, is that the mass should be

constant.

Thanks to the fact that T has been considered, m(T) or m(U + W]
can be substituted in the expression for the mass, m=m <p(v). Thus

the generalisation of Jacobi's equation is obtained directly in the

space ds2 =
gikdxidxj, Jacobi's equation for the particle of mass m(T)

is

-g*yt ~={m(U+W)d(U+W) = J(U+W).
2 oxi dxk J

Similarly, the principle of least action is written

Ixidxk = 0.

We shall not concern ourselves with the objection (which could

be called the objection of the mathematician) which consists in saying

that it is mathematically useless to speak of variable mass when it

is always possible to return to ordinary mechanics (m
= m

) by modi

fying the expression for the force and by making the latter a suitable

function of the velocity. This is perfectly accurate. But, from the

physical point of view, it is not a matter of indifference whether it

is the law of force or the law of mass which is made more complicated.
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All this shows that the dynamics of variable mass had been conceived

and may be developed apart from the special theory of relativity.

The dynamics of special relativity in a given system of reference is

contained in the more general class of the various systems of dynamics of

variable mass ; but this dynamics imposes itself physically, by means
of the kinematics of special relativity, by the transformation (C) of the

electromagnetic field and by the validity of ordinary mechanics in

the proper system of the particle at time t. Moreover, referring to the

expression for the kinetic energy T in the general case in which the

mass in an arbitrary function of the velocity, it is seen that the rela-

tivistic law m = m 1 1 1

a
is the most simple that could be con

sidered, for it is linear in T. Indeed, in the relativistic case

\ i

tr^-a

c

T = mv2 J2 + const = m c2 ( 1 ^ )

2

+ const

As T = for v = 0, it follows that

whence

. T
,

U + Wm = ro + -- = m H -^
.

The simplicity of Lorentz's equations (M) is apparent from the
last form m = m (T).

This consists of the first term of the development of the mass in

powers of the generalised kinetic energy.
Jacobi's equation in special relativity is then quadratic in U + IF",

since here

J(U + W) = .

13a. ON THE MEANING OF SPACE-TIME.

In the first words of the paper of Minkowski which we have analysed
in 13, he further develops the meaning that he attaches to space-
time. " The considerations on space and time that I develop have
their roots in experimental physics. That is their strength. Their

tendency is radical space in itself, and time in itself, must from this
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moment fall into the background ; only a kind of association of these

two concepts keeps a proper individuality.
" In short, Minkowski

was of the opinion that space-time is indissoluble. Undoubtedly there

is matter for discussion in this interpretation. Certainly the variables

of space and time appear independent in the transformation which

allows the passage from a galilean system of reference S to another

galilean system of reference S'. But, as L. de Broglie has very legi

timately remarked, each observer still
"

cuts up his space and time
"

in the relativistic continuum. In another form, Eddington writes

that the universe does not have 4 dimensions, but rather, 3 + 1

dimensions ; this referes to the form of the interval c%2 #2 y2 z*.

Finally, in 1916, Einstein declared that in special relativity, just as

in classical mechanics, the coordinates of space and of time have a

direct physical meaning.
Therefore it seems that Minkowski, carried away by a very natural

enthusiasm for the remarkable geometrical synthesis that he had

discovered, had to some extent gone beyond the relativistic doctrine,

which does not in any way forbid that an observer should reason

and calculate, as in daily life, in terms of space and time.

In an analogous matter, it seems very unlikely that Minkowski

was misled by the "mystical aspect" of the ecpiation

3. 105 km <\J 1 second

which he obtained by introducing the imaginary time -\/ It. This

result has led some popularisers to misleading statements like " over

space-time rules the imaginary
"

clearly this is an abuse of words.

Freed of all its superfluous commentary, it remains that Minkowski's

presentation contains a remarkable geometrical synthesis of the mathe

matical aspects of special relativity.



CHAPTER TWO

GENERALISED RELATIVITY

A. PRESENTATION

1. STATEMENT OF THE PRINCIPLE OF GENERALISED RELATIVITY.

Einstein was led to the theory of generalised relativity by the

analysis of some simple questions, notably the following one. Consider

a galilean frame of reference S in which, by definition, the principle

of inertia is valid, and a system S' which is actuated by a uniformly
accelerated motion, of acceleration relative to S.

In S' every particle has an accelerated motion of acceleration

Yr = ?
Can an observer connected to S f

conclude that he is placed in a

truly accelerated system ? The reply to this question is negative,
for the motion of every isolated particle in S' can be explained just
as well, in the following way the system of reference is not accelerated,

but there is effective in the corresponding space a field of uniform

gravitational acceleration ye .

Therefore a uniformly accelerated system such as S, where no
field of gravitation is effective, and a non-accelerated system, where
a field of uniform gravitation is effective, can be considered as physically

equivalent. A simple change of system of reference can therefore
** create

"
a field of gravitation, which suggests the search for a general

isation of the principle of special relativity intended to contain the

theory of gravitation. In this generalisation it is also natural to see

the principle of the constancy of the velocity of light in the vacuum

undergo a modification. This is a problem which had already occupied
Newton's attention.1

We shall no treat the first attempts that Einstein 2 made, but

1
Indeed, in his Opticks, NEWTON wrote,

**
Might not bodies act at a distance on

light ? Does not this action deviate the rays of light and is it not, other things being
equal besides, all the more stronger as the distance is less ?

"
2 Jahrbuch fur Radioaktivitat und Elektronik, Vol. 4, 1907. Annalen der Pfivsik*

Vol. 35, 1911.



GENERALISED RELATIVITY 503

shall follow a fundamental paper Die Grundlage der allgemeinen Rela-

tivitdtstheorie.
1

In this paper Einstein puts forward the following postulate, which

he calls the principle of generalised relativity.
" The laws of nature must be such that they are valid in an arbitrary

system of reference.
"

He first recalls the fact that in special relativity, just as in classical

mechanics, the coordinates of space and time have a direct physical

meaning. This circumstance does not apply to more general cases,

as the following example shows.
" In a region free from all gravitational field consider a galilean

system of reference S(x9 y, *, t).
Let S'(x' 9 /, /, *')

be a system of

reference in uniform rotation relative to S.

" The origins and 0' of the two systems, as well as their axes

of 2, permanently coincide. We wish to show that, in the system S',

the coordinates of space and time cannot have direct physical signific

ance. By reasons of symmetry it is clear that a circle of centre 0,

situated in the plane xy of the system S, must also be considered as

a circle in the system S'. Given this, imagine that the circumference

and the diameter of the circle are measured with an elementary mea

suring-rod which is very small compared with the diameter, and that

the quotient of the two measurements obtained is formed. If the

experiment is made with a measuring rod at rest relative to S the result

is a. With a rod at rest in S', the result will be a number greater

than n. This fact is verified by observing the method of carrying

out the latter experiment from the system S the rod placed at the

periphery experiences the Lorentz contraction while, on the diameter,

it experiences no contraction. Euclidean geometry is therefore not

valid in the system S
1

. Therefore the direct interpretation of the space

coordinates, which presupposes the validity of euclidean geometry,

breaks down in the system S'.

" It is also impossible to define a time which has a direct physical

significance that could be measured by means of identical clocks

at rest in S'. To verify this, imagine that two clocks have been placed

at the origin and at the periphery of the circle respectively, when

these two clocks are observed from the system S. A known result

of special relativity shows that the peripheral clock is slow compared

with the central clock, for the first is in motion and the second not.

An observer placed at and who will be able to observe, using light

for transmission, the two clocks at the same time, will therefore see

1 Annalen der Physik, Vol. 49, 1916.
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the peripheral clock become slow compared with the central clock.

As he will not be able to resolve to make the velocity of light along
the path considered depend explicitly on the time, he will interpret
his experiment by saying that the first clock actually retards in compar
ison with the central clock. He will therefore be reduced to defining
the time in such a way that the speed with which a clock beats time

depends upon its position.
" We therefore arrive at the following result In the theory of

generalised relativity the magnitudes of space and time cannot be

defined is such a way that differences of coordinates are directly measurable

by means ofan unit measuring-rod, and so that differences oftime are direct

ly measurable by means of a standard clock,
"

Einstein remarks that every measurement is expressed by the

coincidence of two localised events (Punktereignissen) in space and
time. The introduction of a system of coordinates has no other purpose
than the facilitation of the description of such coincidences. The

multiplicity of the four space-time variables #
19

#2, #3 , x is arranged
so that a set of values of these variables corresponds to each event.

A coincidence is then characterised by the identity of two sets of values
of the coordinates. If the arbitrary single-valued functions x[ 9 x& #3 ,

#4 of the xt are introduced instead of the variables x^ #2, #3 , #4 , a given
coincidence can still be expressed by the identity of two sets of values
of the x'i* There is therefore no reason to choose one system of reference
rather than the other. This leads to the statement of the principle
of generalised relativity in the form of universal covariance

" The laws of nature must be expressed in such a way that they are

equivalent for all systems of reference ; that is, that they are covariant
under any substitution of coordinates.

"

Einstein then proceeds by induction, not concerning himself with

making the theory of generalised relativity dependent on the smallest
number of indispensable axioms.

First he assumes that the special theory of relativity must be valid

for every infinitely small region of the four dimensional world, provided
that a suitable system of reference is chosen.

Then let f^ f2 , 3 , be the space coordinates and |4 the time coordinate
in this system.

In a system of units in which the velocity c reduces to unity, Min-
kowski's interval

ds* = dSi
-

dft
-

dfl
- df

is an intrinsic quantity which can be obtained by means of measurements
of space and time. To the linear element ds, as well as to every event
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localised in the infinitely small domain considered, there correspond,

in an arbitrarily chosen system of reference x^ xz, x& x the differentials

dxi, and in this system.

or
ds* = gafafak (, k = 1, 2, 3, 4).

This is the expression of the invariant ds2 in an arbitrary system

of reference. This invariant is a quadratic form in the dxi9 whose

coefficients glk characterise the gravitational field associated with

the chosen system. l|

When it is possible to choose a system of reference in a finite region

of space-time so that the gik have the values

-1, 0, 0,

0, 1, 0,

0, 0,
-

1,

0, 0, 0, + 1

the conditions of the special theory of relativity are satisfied.

(E)

2. REMARK ON THE MATHEMATICAL TOOLS OF GENERALISED RELATIVITY.

Einstein had the good fortune of being able to make use of a mathe

matical tool which was suited to the formulation of the theory of

generalised relativity. This was the absolute differential calculus,

which was developed by Ricci and Levi-Civita in a paper dated 1899

which appeared in the Mathematische Annalen (Vol. 54). The authors

described the origin of this calculus in the following terms.

" The algorithm of the absolute differential calculus lies entirely

in a remark due to Christoffel.
2 But the methods themselves and the

advantages of the calculus have their justification and origins in the

intimate relationship which connects them with the notion of variety

in n dimensions, which we owe to Gauss and to Riemann. . . . A

variety Vn remains invariant under every transformation of coordinates.

The absolute differential calculus, by operating on covariant or con-

travariant forms to the ds* of Vn to derive others of the same kind,

is itself, in the calculations and the results, independent of the choice

of independent variables. Being in the nature of things essentially

1
Tliroughout this presentation we adopt the usual convention of the summation

2 Vb
n
'dte' Transformation der homogen Differentialausdrucke zweiten Grades,

Journal de Crelle, Vol. 70, 1869.
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associated with VM it is the natural instrument of all investigations
which have such a variety as their subject, or in which a positive
definite quadratic form of the differentials of n variables, or their

derivatives, appears as a characteristic feature.
"

The scope of this book does not allow us to develop systematically
the technique of the absolute differential calculus. The reader can
refer to Einstein's paper itself, to Eddington's book (Space, Time and

Gravitation) or to a text-book. We shall confine ourselves to an

explanation of the essentials as we need them.

3. THE EQUATIONS OF MOTION OF A FREE PARTICLE IN A GRAVITATIONAL
FIELD.

In special relativity a free particle moves uniformly along straight
lines. In generalised relativity it is the same in every region in which
a frame of reference S can be chosen so that the gik have the particular
values (E).

Observe this motion from an arbitrary system of reference S.

In S the trajectory is a geodesic. As the definition of such a line

does not depend on the coordinates, the equations of this line will

also define the motion in S.

Now from

d$2 =
a classical variation calculation depending on the extremal

djds
=

(where the limits are fixed) leads to the equations

f, y

fdf ('-=1,2,3,4).

The symbol on the right-hand side of this equation has the meaning

{r}-
where g is the fundamental contravariant tensor associated with the
form ds2 x and where, moreover,

r>n = i

L a J 2
_

\Bxv
~^

3Xfl dxj'
1 Let g be the determinant of the gf*v . The fundamental contravariant tensoru equal to the minor the element g^ of the determinant divided by ir. Alter-

Uve1
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Einstein then makes the hypothesis that the equations (L) also represent

the motion of a free particle in a gravitational field, even when it is im

possible to find a frame of reference S in which the special theory

of relativity is valid in a finite region ;

" if the \ ^ > vanish, the part

icle moves uniformly along a straight line. Therefore these quantities

characterise the difference between the true motion and a uniform

motion they are the components of the gravitational field.
"

4. EQUATIONS OF THE GRAVITATIONAL FIELD IN THE ABSENCE OF MATTER.

Before taking up this question, we make an indispensable mathema

tical digression.
The covariant differential of a covariant vector A t is said to be

the quantity

dAi -I} Ardx,

and, similarly, the covariant differential of a contravariant vector A*

is said to be the quantity

dA i + A*dxs .

It is said that a vector A t (or A1

)
suffers a parallel displacement

if its covariant derivative remains zero.
^

In particular, consider two elementary displacements dx* and dx*

(contravariant vectors) from the point P. It is possible to consider

the paraUel displacement of the vector dxi

along dxl and the parallel

displacement of the vector dxl

along dx\ Now

= _
|

5

[ J

Therefore we shall define an elementary parallelogram such that

(dd
-

dd) * = 0.

ft

Fig. 114
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Now consider an arbitrary covariant vector AI and seek the difference

AAi between the components of this vector according to whether
the point Pn has been reached by the operation dd or by the operation
dd. Here

=

= di ^ \ A rdxs +
|

\

Taking the difference, the last terms on the right-hand sides are

eliminated and it remains that

t
- ddAi = ^ | ^

1 AJxfrc; +
{ ^ } {

7
}

The quantity in scfuare brackets is the mixed tensor of the 4th
rank which is called the Riemann-Christoffel tensor ; it is referred
to by the symbol

Bijs .

In an euclidean space this tensor is zero and, conversely, the vanishing
of this tensor implies the euclidean character of the space.

The operation called that of contraction in the indices r and 5 yields
the contracted Riemann-Christoffel tensor

Given this, we return to Einstein's theory of gravitation.
Einstein distinguishes the gravitational field from the "matter,"

by which term he understands not only matter in the ordinary sense
of the word, but also the electromagnetic field. To obtain the express
ion of the gravitational field in the absence of "

matter,
"
he proceeds

by an induction analogous to that which led him to the equations
of motion of a free particle.

1 It may be remarked here that the contracted three-index symbol /
is

\ reduces
1

sa dgs d log V1^ * 5 *

2 g "ST
r t0-

a^
-

* where g is the Determinant of the g50t . This simplifies

the form of tLe tensor JBy
- in a system of coordinates in which V^g"= 1.

to-
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"
In. the particular case of special relativity the gy

- have constant

values. If this circumstance is confirmed throughout a finite domain
in a system of reference S , the components of the Riemann-Christoffel

tensor will vanish in S and, consequently, in every other system
of reference.

" The equations of the gravitational field which are sought must
therefore be verified in all the Br

lJS
vanish. But this condition takes

us too far. For it is clear that the gravitational field created by a

particle, for example, cannot disappear for any choice of the coordinates.

Therefore it occurs to one to substitute the nullity of the contracted

tensor B^ for that of the B^. This leads to 10 equations in the ten

quantities gy-. This choice offers a minimum of arbitrariness (ein
Minimum von Willkur). For, apart from JBy-, there exists no other

tensor of the second rank, formed from the g j
* and their derivatives,

which is linear and does not contain derivatives of higher order than

the second, except the tensor B
l}

-

-\- Agy (g^ B^).
"

This hypothesis, together with the equations of the motion of a

free particle, makes it possible for the newtonian law of attraction

to be retrieved in the first approximation. The second approximation

yields the displacement of the perihelion of Mercury, demonstrated

by Le Verrier. To Einstein, these facts vouch for the physical value

of the theory of generalised relativity.

5. GENERAL FORM OF THE EQUATIONS OF GRAVITATION.

In order to pass from the law of gravitation in the absence of
"
matter,

"

(G ) B,,
=

to the general case, Einstein introduces the energy tensor

d^^y1 Qo
ds ds;

Here is the proper density of the matter.

With this contravariant tensor can be associated the mixed tensor

T{, the covariant tensor T^ and the invariant T.

By analogy with the conservation of energy in the classical field,

it is natural to assign a zero divergence to the mixed tensor T{ ; that

is, to write

T{j=0.

On the other hand the energy tensor must belong to the category

of tensors that can be deduced from the fundamental form of the
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gjfc
. Now, if the mixed tensor JB^

and the invariant B are associated

with the contracted Riemann-Christoffel tensor jB
j-,

it is verified that

the expression

J5{ - - dtB
2

has a divergence equal to zero.

It is therefore natural to identify this expression (apart from a

constant factor) with the mixed tensor
T{.

This gives

B{ - d{B = -
2

or, alternatively,

(G) B4=-

This is the form which Einstein gives the equations of gravitation
in the general case.

6. REVERSION TO NEWTON'S THEORY IN THE FIRST APPROXIMATION.

To revert to the Newtonian mechanics in the first approximation,
Einstein supposes

a) that the gik only differ from the euclidean values (E) by quantities
of the first order, and then neglects quantities of the second and higher
order

;

b) that a suitable choice of coordinates allows the glk to be assigned
the values (E) at infinity;

c) that the velocity of a particle is very small compared with
the velocity of light in the vacuum, so that

ds ds ~ds

are of the first order and that

is equal to unity (to the second order). Therefore the units are chosen
so that c = 1.

Under these conditions the symbols
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are of the first order (at least) and the equations of a geodesic reduce to

dt*
"

d^ finally is it supposed that the gravitational field is quasi-static^

or that the particles which create the field only have velocities which

are small compared with c = 1. Therefore the derivatives with

respect to the time that appear in the square brackets are negligible
in comparison with the derivatives with respect to the space coordinates.

Then it follows that

d**i _ i dgu ___

~d
~ ~

2 "fa
(i
- 1, 2, 3).

These equations can be compared with the newtonian equations

of the motion of a particle by making -^M play the part ofthe potential.

Einstein then refers to the equations (G). To the chosen approx
imation the tensor Ty

- reduces to its term

and, by neglecting the partial derivatives in the time, it turns out

that

or gu = Q.

The gravitational potential V deduced from this is

fc fedrV
--frt] r

Whence, by comparison with its classical expression and by taking

account of the unit of time chosen,

K
K ~~"?"

where K is the ordinary gravitational constant. This yields the value

8nK*-
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7. THE CONDUCT OF MEASUREMENTS OF SPACE AND TIME IN A STATIC

GRAVITATIONAL FIELD. DEVIATION OF LIGHT RAYS. DISPLACEMENT

OF THE PERIHELION OF THE PLANETS.

Merely the fact of reducing the expression of the gravitational

field to the single component g^ in the first approximation implies

that, if the condition -\/ g = 1 is respected, the other components
of the gik must be different from unity.

To define the field of a single mass m Einstein uses, at this point,

the solution

^ = dik a ^^ where (f,
k = 1, 2, 3) and <5& = <

j ^ \^

with r = -\/ #| + x\ + # a = -r .

This takes account of the spherical symmetry about the origin and

satisfies the gravitational equations in the first approximation.
To explain the influence of the field of the mass m on the

measurements of space and time, it is suitable to compare the dxt with

the measurements of length and time carried out in a tangent euclidean

universe.

For example, the measurement of an unit length along the axis of x

ds2 = 1 dx2
= dx% = dx^ =0 xl

= r

implies the relation

Whence

Therefore the standard length placed radially appears contracted

in the system of coordinates (x^.
On the contrary, if the coordinates of a standard length placed

tangentially are measured,

ds* = 1 dx-L
= dx% = dx = ^ = r x2 x^

and it is found that

1 =
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The effect of the gravitational field on the standard placed tangen-

tially is nothing.

Again, consider a clock at rest in a static field. Then

ds = 1 dx- = dx = dx% =

Therefore a clock runs slower when it is placed in a gravitational

field. It follows from this that the spectral lines emmitted by the

stars must appear to us to be displaced towards the red.

Finally, in a given direction in space for which the proportions

dxl : dx2 : dx

are known, the equation

ds2 = frdxdbj = (i, j = 1, 2, 3, 4)

enables the velocity of light to be calculated

V \dxj \dxj \dxi,

in the sense of euclidean geometry. For example, for a light ray

parallel to the axis of #2,
it follows that

At the distance A from a mass m, the deviation of a light ray is

thus given by
2oc 1km

In the neighbourhood of the Sun this deviation is about 1-7", and

in the neighbourhood of Jupiter, about
- 02". Thus Newton's question

on "
gravitating light

"
is answered in the affirmative, the effect being

double that which follows from the classical theory.

In order to calculate the displacement of the perihelion of the

planets it is necessary, as Schwartzschild has done,
1 to take the cal

culation to a higher approximation. The quantity ds2 was calculated

for a test particle placed in the field of a single finite mass. The peri

helion of the trajectory of the test particle experiences a displacement of

24 w8
-

T2c2 (l -e2
)

1
Sitzungsberichte der Preussichen Akademie der Wissenschaften, 1916, p. 189.

33



514 THE PRINCIPLES OF THE MODERN MECHANICS

where a is the semi-major axis, e the eccentricity, T the period in

seconds and c the velocity of light in the normal system of units.

For Mercury the effects amounts to 43" a century, which agrees

with the result established by Le Verrier.

8. THE SPATIALLY CLOSED UNIVERSE.

Einstein l starts by indicating the difficulties that follow from

the classical theory. Consider a point of the universe round which

the gravitational field, taken as a whole, has spherical symmetry.
Poisson's equation,

(1) A<p =

shows that the mean density of matter must tend to zero more rapidly

than if 9? tends to a finite limit as r increases indefinitely. From

this point of view Newton's universe appears finite even if its total

mass can be infinitely great. Under these conditions the radiation

emitted by the celestial bodies can, in part, escape beyond the limits

of the newtonian universe. Is it possible that celestial bodies can

entirely disappear in this way ? It is almost impossible to reply

negatively to this question. Indeed, if q> tends to a finite limit as r

increases indefinitely, a celestial body endowed with a finite force

can move away to infinity, without hope of return, by overcoming
the newtonian attractions.

It is impossible to escape this difficulty by giving the potential
considerable value at infinity. For this would be in contradiction

with observation and, in particular, with the data that are available

on the velocity of the distant stars. Instead of Poisson's equation,
Einstein proposes writing the equation

(2) Ay kp =
where A is a universal constant. If g is the density of a UNIFORM
distribution of mass, then

is a solution of (2) which corresponds to a true distribution of the
fixed stars which would be homogeneous and of density . If, in

fact, the distribution of matter contains local irregularities, a supple-

1
Kosmologische Betrachtungen zur allgemeinen Relativitatstkeorie, Sitzungsberichte

der Preussichen Akademie der Wissenschaften^ 1917.
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mentary <p is added to the solution (p
. In the neighbourhood of the

discrete masses this can be more nearly approximated to by the new-

tonian law (1) as 2, is small compared with 4ettKQ.

Returning to the theory of relativity, Einstein contemplates two

possibilities
for the conditions to be imposed on the law of gravitation

at the limits

a) either it is assumed that at infinity the gik reduce to their

euclidean values for a suitable choice of coordinates ;

b) or, as de Sitter suggests, the a priori imposition of any condition

on the glk at infinity is not attempted.
Einstein declares that he is unable to reconcile himself to the attitude

fej,
which would have the character of a renunciation. On the other

hand, hypothesis a) encounters many objections. In the first place,

the fact that it resorts to a determined system of reference is contrary

to the very spirit of the principle of relativity. Moreover, in a coherent

theory of relativity inertia (Trdgheit) in itself,
" with respect to space,

"

does not exist, but only an interaction between masses. If, for ex

ample, a mass is sufficiently separated from all the bodies of the universe,

its Trdgheit must vanish. The inertia of a particle of proper mass m

depends explicitly on the gik
l

; but these differ so little from their

values at infinity that, under these conditions, the inertia would be

influenced but not conditioned by the matter situated at a finite distance.

Finally, the same objections of statistical mechanics are encountered as

in the newtonian case.

This is why, after all these detours, Einstein is led to postulate

the existence of a spatially closed universe (rdumlich geschlossene Welt)

of such a kind that there is no need to suppose conditions at the limits.

The notion of such a continuum is compatible both with the principle

of generalised relativity and with the experimental fact of the small-

ness of the velocities of the stars. It requires a modification of the

equations of gravitation.

It is supposed that there exists a system of reference in which

matter might be considered to be permanently at rest. The con

travariant energy tensor T* then reduces to a scalar

T44 = T = Q.

The mean density of distribution of matter, Q 9 is a priori a function

of position. Suppose that this function reduces to a constant.

1 Indeed, the momentum-energy vector of a particle of proper mass m has com

ponents , dxa.mV gSM--
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The equations ofmotion of a free particle in a gravitational field are

uv 1 doCfj. dxv

i l~ds~~ds~^ds*

If the field is static it follows that, in the hypothesis of rest, g^ does

not depend on the coordinates.

Therefore we can put

*<.= !

The curvature of space must be constant because of the supposed

homogeneity of the distribution of masses. Moreover, as in any
static field,

4i = (i
=

al, 2, 3).

The closed continuum that we seek is therefore a space which
is spherical in xv #2, #3 .

To define such a space we resort to an euclidean space of 4 dimensions

do* = dSl + d + d% + d$l

and, in that space, consider the hypersphere

The points of this hypersphere form a spherical continuum of

radius jR. The euclidean space of four dimensions (&) is only used
here as a means of defining the hypersphere. Eliminating 4 and

taking fx, 2, 3 as independent variables, it turns out that

with.

C I

yik
=

Oifc -|-
R* -

Here i, k = 1, 2, 3 and
erg
=

f + ff + fJ.
Therefore the ds2 of the universe, in the case of the spherical space,

is defined by the following quantities g*

44 = 1 #4i
=

glje
=

(5^-1-.
l
. (i, K = 1, ^, 3).

I ri IV I /%2 _,, j._ /%-2\ I

L \ 1 I 2 i 3/ i

The equations (G) of 5 are not satisfied by these values of the

gtk and T44 = ^ = const. For this reason, it is necessary to modify
these equations in the same way as that suggested by Einstein for
Poisson's e<|uation, and to write
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(G')
B

As all the points of the continuum are equivalent, taking the hypo
theses which have been made into account, it is sufficient to carry-

out the calculation for

At this point it is found that

2 J

'

dx* I
3

The equations (G) are satisfied for

~~

JR2

~~ ~
2

Whence

Thus the constant A determines the mean density Q and the radius

of the spherical universe, R.

As the volume of this space has the value 2^r2J?3, the mass of the

universe is also known to be

RMi O **
t\t

frr*>-*n f

9.|&RAVITATION AND ELECTRICITY.

We owe to H. Weyl a remarkable mathematical synthesis of rela

tivity, which is developed in his famous book Raum., Zeit, Materie.

Here we shall confine ourselves to an analysis of the original article,

published in 1918 in the Berliner Sitzungsberichte. In this, for the

first time, the author lays the foundations of a unitary theory of gravit

ation and electricity.

Weyl draws his inspiration directly from the ideas of riemannian

geometry, by taking a fundamental quadratic form

(1)
dsz

the basis of the metric. But " in accordance with the spirit which

animates the modern physics of contact actions," he constructs a

geometry of neighbourhoods (Nahegeometrie). In this only the possi-
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bility of the transport of a vector from a point P to an infinitely close

point P' arises, and it is not necessary to have regard to the integra-

bility of the length of a vector in such a transport.
Parallel displacement in Levi-Civita's sense plays a fundamental

part in this geometry. To a contravariant vector f* at the point P
is made to correspond, by parallel displacement to the infinitely close

point P', a vector f + dt? whose components are linear in the S
r
.

That is

(2) dP = -
dyfr.

The quantities dy
l

r are themselves linear in the dx say

(3) dtf = /*<&..

The consideration of an elementary
"
parallelogram

"
(already con

sidered in 4) implies the condition of symmetry

(4) r;5
= ri.

In this geometry the scalar product

of two contravariant vectors at P is only defined apartfrom an arbitrary

(positive) constant. In the parallel displacement of each of the two
vectors from P to P' the scalar product becomes

(5) (ga + dgik) (p + d0 fo* + drf)
= g*ftf (1 + dq>).

That is

(
5/

) dg* (dyik + dylk)
=

(where the y& correspond to y
r
k through the operation g^yl)*

It follows that d<p is a differential form

(6) d<p
=

(frdxi

whence the form of the functions J7
is implied by the relation

To the consideration of the fundamental quadratic form (1) is

thus added the consideration of the linear form (6). If the gik are

multiplied by a function A, which is arbitrary at each point, without

changing the system of coordinates (# ),
the dy{ do not change, the

dyik are multiplied by A, and equation (5) then shows that

(8) d<p + Q =
dcp + d log I.
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That is, the differential form dcp increases by a total differential. The

antisymmetrical tensor

tg\ F gffi 3<pk

\s] -^ ij& i ^^ ! dxk dxt

thus acquires an absolute significance that is, its components are

not affected by a change of gauge which transforms the g& into lg&.
It is the same for the bilinear form

(10) Fikdxidxk = - FutAxik
JL

constructed from two arbitrary infinitesimal displacements at the

point P, which define an element of surface of components

(11) Axik dxtdxk dxkdxi.

In the particular case of glk which can be chosen in such a way
that the <pi

vanish identically, a unit length denned arbitrarily at the

point P can be transported by parallel displacement along a finite

path and the result is independent of this path (integrability).

In these circumstances the quantities J reduce to the Christoffel

three-index symbols of ordinary riemannian geometry. The necessary

and sufficient condition that this should occur is that the tensor F&
vanishes identically.

Weyl then proposes to interpret the cpi as the four components of the

electromagnetic potential, the vanishing of the electromagnetic field

leading back to Einstein's theory, in which only gravitation occurs.

In these circumstances the electromagnetic quantities, in a given

system of reference, appear independent of an arbitrary change of

gauge which, on the contrary, has an effect on the gik .

At this point Weyl introduces the i?.otion of weight in application

to a tensor. For example, let there be an invariant (with respect

to every transformation of coordinates)

(12)
aik dxi dxk.

If the glk are transformed to %gik, the a^ become AX&- The exponent

e is called the weight of the tensor alk . Every absolutely invariant

tensor (in the sense defined above for .Fa) necessarily has zero weight.

We have already seen that the tensor Flk, which satisfies the first

system of Maxwell's equations

dFik dFu SFii^Q
dxi dxi dxk

is of this kind.
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In Weyl's geometry it is possible always using the notion of parallel

displacement to obtain the equation of a "
geodesic,

"
which, it

might be said in passing, loses all intuitive significance in this scheme.
More generally, it is possible to develop the complete absolute differential

calculus. For example, the covariant derivative of a tensor ft (of
rank 1 and weight 0),

is a tensor ofrank 2 and weight 0. This result is obtained by considering
the infinitesimal parallel displacement of the invariant f^

1

.

To construct the analogue of the Riemann-Christoffel tensor the

following procedure is adopted. At a point P00 the elementary"
parallelogram

"
(there is a diagram on page 507) formed of the

points PQQ, P01, P10 ,
Pu is considered. The difference between the

components of a vector l

, according to whether the point Pn is reached
from the point P^ by the path dd or by the path <3df, is

(13) A? = ARj&.

The coefficient ARj is independent of the vector f

considered
and depends linearly on the two elementary displacements d and

(5.

For

i
1

t

The tensor
J?/w is antisymmetric in k and Z. The associated tensor

R
lJ1d

is of rank 4 and weight 1. The tensor R can be decomposed
into two terms in the following invariant manner

1
j jki

2
j

The first term is antisymmetric in r, j as well as in fe, Z.

The vanishing of the second term expresses the absence of electro

magnetic field. The vanishing of the first term entails the absence
of gravitational field. The simultaneous vanishing of both terms
characterises euclidean space-time, containing neither gravitation nor
electromagnetic field and in which parallel displacement alters neither
the length nor the direction of a vector.

Consider again the invariant

L = } FikF*.
4
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Since the tensor F& has weight zero, it is clear (by the definition

of the gut itself) that the invariant L has weight 2. The element

of volume

dco = V g dx

where g is the determinant of the gik and dx represents the product

dx-L dx% . . . dxn,

n is the number of dimensions of the space, has the weight -.
2i

Now it is well known that it must Le possible to deduce Maxwell's

equations from a principle of least action. In Weyl's geometry it

must be possible to identify the electromagnetic action with the integral

It is clear that WeyPs geometry can be extended to a space of

any number of dimensions. But if it is desired to attach an absolute

significance to the integral above, it is necessary that its weight should

be zero ; that is, that

2 + - = where n = 4.

2

In Weyl's conception the possibility of Maxwell's theory is thus

found to be connected with the fact that the universe has four dimensions.

We shall not pursue further the development of this conception in

the purely electromagnetic domain.

B. ANALYSIS AND INTERPRETATION

la to 5a. GENERAL OBSERVATIONS.

The observation already made in 60, page 493, on the " heuristic

value "
attributed to the special principle by Einstein is also applicable

to the two statements which he gave of the generalised principle.

Moreover we shall see in 7c (page 531) that Painleve formulated

an analogous criticism on this same subject.

The example of the rotating disc has been much discussed and,

it seems, is still discussed today. We do not believe it useful to describe

these discussions for, in Einstein's original paper, this example only

arose to end in a completely negative result namely, the impossibility

of directly expressing the intervals dxi in physically measurable terms

of space and time. This impossibility is a fundamental characteristic

of the generalised theory, to which Painleve does not seem to have

attached all the importance that it deserves. It is this circumstance,

together with the necessity of embodying the special theory of relativity,
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that makes it necessary, as soon as concrete measurements are concerned,
to appeal to the tangent euclidean universe at a point in the space
of the #;.

We have seen that the logical field of application of the special

principle is very narrowly defined but that, in compensation, all the

variables are directly measurable. The generalised principle on the

contrary is a very wide framework in which the difficulty is rather

that of treating a concrete problem explicitly.

Although, in the preceding presentation, we have striven to make
clear the successive postulates encountered by Einstein in the construc

tion of his generalised theory, it may not be superfluous to summarise
these postulates once more

a) principle of covariance of the laws of physics under every sub

stitution of the generalised coordinates #; ;

b) validity of special relativity in an infinitely small region about
each point-event of the generalised theory;

c) representation of the motion of a free particle in a gravitational
field by means of the equations of the geodesies of ds2

;

d) choice of the relation B.y
=

(or, more generally, B^ Agy=
0) to express the law of gravitation ;

e) the introduction of a tensor T
j , satisfying the conservation law

to represent matter.

These postulates are, in the order in which they are stated, those
which suggested themselves, in turn, to the author.

We recall that he, replying to the critics in advance, explicitly
affirmed that he had not sought to found his theory on the smallest
number of necessary axioms. But, for an understanding of the origins
of the theory, the statement of these successive phases would seem
more important than a rigorous axiomatic from the a posteriori point
of view. It may be that Einstein, having proceeded in this way by
successive inductions some of which might appear, at least at first

sight, rather daring appreciated the necessity of retrieving the new-
tonian equations in the first approximation.

6a. ON THE GEOMETRISATION OF CLASSICAL MECHANICS.

It has often been said that Einstein "
geometrised

"
the problem

of gravitation by means of his generalised theory, just as it has been
said that d'Alembert was able to reduce dynamics to statics. These
statements are partially true, but the matter is too complicated for
as brief a judgement to be tenable.
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Without detracting in any way from the originality of the theory
of generalised relativity, it must be recognised that this was not the
first attempt at the geometrisation of dynamics. It was only and
this amply suffices to justify its at least theoretical interest the first

attempt at geometrisation in space-time which, moreover, assumed
as the tangent universe that of special relativity characterised by the

group Gc .

In fact the classical workers, in their own field, had already geo-
metrised the general problem of dynamics by giving the principle
of least action an appropriate form.

Inspired by the work of Jacobi, Thomson and Tait, Liouville and

Lipschitz, Darboux devoted to this subject Chapters VI and VIII
of the second Volume of his Lemons sur la theorie generate des surfaces.
The geometrisation of the general problem of dynamics is obtained

by considering, from among all the motions compatible with a given
force-function fJ, those which correspond to the same value of the

constant of the ecfuation of kinetic energy &5 or, if so desired, to the

same total energy. This energetic classification has the virtue that

the problem is susceptible to geometrisation, the investigation of the

trajectories being reduced to the determination of the geodesies corre

sponding to a certain ds2 .

Let 2 Tdt* = aikdqidqk (q^ generalised variables of Lagrange) where

T is the kinetic energy, be taken as the fundamental form. By
introducing the momenta pt

=
a^-qj

the equation

2T= aik
pipk

is obtained. Jacobi's partial differential ecfuation is then written

as

a^dS^z
dqi dqk

^ l

Let 6 be a complete integral of this equation and 9V 2 . . . n _i
the (n 1) distinct integrals of the equation

which is linear in F.

Then, after Lipschitz (Journal de Crelle, Vol. 74, 1871),

2(U + h) aikdqidqk == <W

whence it follows that, for the true motion (d0x == . . . dOn_i = 0),

h)aikdqidqk = 0.
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This equation is an expression of the principle of least action. The

determination of the trajectories is then reduced to the search for the

geodesies of the d$2 given by

ds* = 2 (U + h) alkdqidqk .

"We mention here that, in an analogous stream of thought, Ricci

and Levi-Civita, in their paper on the absolute differential calculus

that has been quoted above, applied this calculus to the study of

first integrals of the equations of dynamics. They started from the

fundamental form a^dq^qk and wrote Lagrange's equations in the form

7a. EXPRESSION AND INTERPRETATION OF SCHWARTZSCHILD'S " d$2 .

"

We have already remarked that, in order to calculate the planetary

orbits, Schwartzschild found it necessary to carry the solution to a

higher approximation than that of Einstein's original solution.

Without reproducing all the calculation that leads to Schwartz-

schild's expression of " ds2
", we shall enumerate the hypotheses which,

together with the law of gravitation in the absence of masses

B,/
=

determine this calculation

1) The field is supposed static. That is, the variable t only occurs

in the expression ds2 as the square of the differential, as dt2 .

2) The mass generating the field is supposed spherical or of spherical

symmetry, immovable and without rotation relative to the stars.

3) The ds2 must reduce to the euclidean form
on the one hand, at a great distance from the mass generating

the field;

on the other hand, when the density of this mass tends to zero.

Given this ds2, whose form is, a priori,

ds2 = -
A(r)dr

2 -
B(r)[d6

2 + sin2 6dcp
2
] + C(r)dt\

assumes the form

ds* = -=-^1 - r2 (d8* + sin2 d<f)
l-

T

when the law of gravitation is taken into account. Here the unit
of time is chosen in such a way that c = 1 and ^ is a constant related
to the mass generating the field.
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The interpretation that must be assigned to this eZs
2

is conveniently
found by considering the measurements that can be carried out in a tan

gent euclidean universe. Here we shall follow M. Chazy's presentation.
1

Space. In Schwartzschild's space (dt
=

0), 6 and cp can retain

their usual significance of euclidean polar coordinates. Moreover,
for dr = the ds2 takes the form of the sqpiare of the linear element

of a sphere, namely
9 / 7/59 I

* 9/1 7 9\

r^(d0
2 + sinW<jr).

Therefore, at each point M of Schwartzschild's space, the variable r

can be interpreted as the length of the circumferences which pass

through M and have centre O, divided by 2n.

But the distance dD between two spheres of centre in Schwartz

schild's space, corresponding to the values r and r + rfr, differs from

the quantity dr.

In fact, along the radius dd = dcp
= 0,

dr2

Therefore in the gravitational field considered there is contraction

of a standard of length placed radially.

The section of Schwartzschild's space by a meridian plane (dcp
=

0)

has the same element,

as a surface of revolution generated in euclidean space by the parabola

Z2 = 8^ (x 2p)

rotating about its directrix Oz.2

Mt

Fig. 115

1 La thforie de la relativite et la mecanique cGleste (Gauthier-Villars), 1928-1930.
2 The same remark is found in WEYL'S Raum, Zeit, Materie.
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Therefore, outside the mass generating the field, the radial distance D
may be regarded as the parabolic arcMQM of projection r r (Fig. 115) .

As an indication of the order of magnitude, the parameter of the parabola
in the case of the Sun is about 6 km.

Time. The time t is said to be the cosmic time of the gravitational

field considered. It corresponds to the absolute time of classical

mechanics. But here, on the contrary to what is assumed in the

classical domain, this time does not coincide with the proper time

recorded by a clock at rest in the gravitational field. The interval

ds of proper time at a given point of Schwartzschild's space is less

than the corresponding interval of cosmic time, being related to the

latter by

ds =

Thus a clock appears to be retarded in a gravitational field. These

interpretations are quite analogous to those we have already encountered

in 7, pp. 512, 513.1

76. GENERALISED RELATIVITY IN COMPARISON WITH EXPERIMENT.

Three groups of experiments have been made in order to test the

generalised theory of relativity.

1) In the first place, it has been sought to demonstrate the dis

placement towards the red of spectral lines in a gravitational field. Ac

cording to the theory, the frequency of radiation emitted by an atom
on the surface of a celestial body must be slightly less than the frequency
emitted by the same atom in empty space (or on the surface of a less

massive body). It must therefore be possible to establish the dis

placement towards the red of lines emitted at the surface of stars in

comparison with the lines emitted at the surface of the earth. This

displacement should be given by the relation

v - v _ KM

For solar light the expected displacement is very small (about
two millionths of a wave-length). Grebe, Bachem, Evershed and
Schwartzschild concluded that this displacement exists while Saint-

fr m SCHWARTZSCHILD'S original paper already referred to on p. 513,
see DE SITTER, Monthly Notices, R. A. S., Vol. 77, 1916, p. 712 ; DROSTE, Verslag,
Amsterdam, Vol. 25, 1916, p. 166 ; HILBERT, Goztt. Nachrichten, 1917, p. 70 ; DARMOIS,
Annales de Physique, 1924, p. 77. For the determination of ds2 in the interior of a
spherical fluid mass, we mention the names of SCHWARTZSCHILD, SCHRODINGER,
BAUER, WEYL, BRHXOUIN, DE DONDER, HAAG, NITYENS, DAHMOIS.
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John, working with 17 cyanogen lines, measured a mean displacement
that was accurately zero. In France Perot obtained a positive result
after taking a great number of precautions, including the elimination
of the influence of pressure by utilising a terrestrial vacuum.

2) Next, it has been sought to measure the deviation of luminous

rays in the vicinity of the Sun. The experiment was first made during
the eclipse of 29 May 1919, by taking advantage of the transit of the
Sun in the constellation of the Bull, across a part of the Hyades.
A first expedition (Crommelin, Davidson) worked at Sobral (Brazil),
while a second (Cottingham, Eddington) observed on Prince Island

(Guinea). The two expeditions obtained the following results :

Sobral : 1-98" 0-12"

Prince I. : 1.61" 0-30"

while Einstein's theory predicted 1 87" and Newton's * 87". However,
several astronomers discussed these experiments and gave contradictory
interpretations of them. In the same way, the measurements made by
Campbell and Trumpler during the eclipse of 21 September 1922 were
not considered unanimously conclusive.

3) Lastly, if it is accepted, with a great many astronomers, that it

is advisable, in the motion of a planet in relation to the Sun, to replace
the inverse square law of the distances by the law deduced from
Schwartzschild's ds2

, and to add the correction thus obtained to the pertur
bations of the classical theory, we arrive, according to Chazy, at the

following discussion.

Le Verrier (1856) had estimated the secular advance of the perihelia
of Mercury as 527", 38" of which were unexplained by the theory of

perturbations. Newcomb (1895), taking into account the corrected

values of the masses, calculated the secular advance of the perihelia of

Mercury as 530-46" and as 41-24" the divergence not explained by
perturbations. Moreover, Newcomb estimated the divergence be
tween theory and experiment for the secular advance of the perihelia of

Mars as 8-03" and the similar divergence for the secular advance of the

node of Venus as 10 14".

On the other hand, the consideration of Schwartzschild's ds2 intro

duces a secular advance of 42-09" of the perihelia for Mercury, and of

1-35" for Mars. The concordance is therefore perfect for Mercury ; for

Mars it is of the same nature, but of the order of one-sixth only of the

value given by Newcomb. Lastly, the theory of relativity does not

imply any perceptible secular inequality of the nodes of the planetary
orbits and leaves unexplained the third divergence noticed by Newcomb
with the classical theory.
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Such, briefly summarised, is the experimental balance-sheet of

the generalised theory of relativity.

There still, in fact, controversial matters. However, it does not

seem that these discussions could destroy the theoretical interest

of the synthesis built up by Einstein.

7c. PAINLEVE'S CRITICISM THE SEMI-EINSTEINIEN THEORY OF

GRAVITATION.

Painleve adopted a critical attitude towards the generalised theory
of relativity.

1 It is of some value to devote a little attention to this,

if only to clarify the divergences and the common points between
this theory and the newtonian theory of gravitation.

Painleve first recalls the fundamental principles of newtonian
mechanics ; namely

The postulate of initial conditions.

The axiom of causality, which is stated in the following way If,

in an isolated material system in which each element remains identical

to itself, the initial conditions (positions and velocities) reproduce
themselves apart from a transport in space and time, the motion of

the system will be reproduced, apart from the same transport in space
and time.

The corollaries of the preceding axiom
The axiom of symmetry, expressing the persistence, during the

motion, of all the symmetry of the initial conditions.

Kepler's principle, or the principle of inertia.

Painleve then considers the problem of a test body P placed in the field

of a mass S, which has spherical symmetry about a centre 0. He
refers the motion to axes Oxyz whose directions relative to the distant
stars are fixed. The coordinates r, 0, 9? are the ordinary polar coordinates
with centre and the time t is that of an observer on S. Painleve
enumerates the following converging postulates of the two theories,
classical and relativistic.

1) Principle of inertia.

2) Plane trajectory ; equations of motion of the form

(1) r"= G(r,r',0') ff> ^H(r,r',6')

not containing either 6 or t explicitly.

/-o

*
Lamecanique et la theorie de la relativite, Comptes rendus de VAcademic des Sciences

(Paris), Vol. 173, 1921, p. 677. La gravitation dans la mecanique de Newton et dans celle
d Einstein, Comptes rendus de rAcademic des Sciences (Paris), Vol. 173, 1921, p. 873
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3) Conservation of the equations of motion under the transform
ation of t into t (reversibility).

4) The validity of the law of motion whatever the element P
may be.

5) Propagation of light in the sidereal vacuum with a constant

velocity for a given direction.

On the other hand, Painleve presents the diverging postulates
in the form of the following diptych.

Classical theory

1) If, without changing the

time, any curvilinear coordinates

u, v, w are introduced the traject
ories of the motion are the geode
sies of a

da* = (U + h)da\.

Here daf is a quadratic form in

c?u, dv, dw, and whose coefficients

satisfy the invariant conditions

(second order partial differential

equations) which express the fact

that da\ is euclidean. Also U
(u, t;, w), outside the sphere S,

satisfies Laplace's equation in

curvilinear coordinates a linear

and homogeneous second order

equation in which U does not

appear explicitly.

2) In the wave theory the

velocity of light far from all

material bodies is only the same
in all directions if S is absolutely

fixed, and not in translational

motion relative to the ether.

In the emission theory the

velocity of light is the same in

every direction if the source of

light is absolutely fixed relative

to the axes Oxyz.
34

Einstein's theory

The motions of P are defined

by a ds2 in four dimensions,
whose coefficients must satisfy
certain conditions invariant under

any change of the space-time
variables. These equations are

of the second order in the partial

derivatives, and allow the problem
a certain degree of indeterminacy
which experiment appears to cor

roborate.

The velocity of light, far from

all material bodies, is the same
in all directions and the geodesies
for which rfs

2 is zero define the

trajectories and the motion of the

light.
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Painleve next summarises the conclusions of all the postulates.

In classical mechanics

(A) do* = /

and in relativity

(B) ds2

sn

Here p is a constant and/(r) is an arbitrary function of r whose derivative

/'(r) is always positive and tends to unity when - tends to zero. The

units are so chosen that c = 1.

The expression (B) is more general than Schwartzschild's ds2 because

it includes the arbitrary function /(r). In compensation, Painleve

assumes and it is for this reason that his analysis may be called the

semi-Einsteinien theory of gravitation that all three variables r, 0, (p

preserve their euclidean significance (and consequently their direct

physical significance). This in spite of the fact, which we have seen

that in the general theory of relativity as it is strictly interpreted,

the abstract variable r differs from the euclidean distance and must

be interpreted (cf. la above) in the tangent euclidean universe. This

interpretation gives a different result according to whether tangential

or radial measurements are considered. Thus Painleve dispenses with

one of the essential characteristics of the generalised theory of relativity

which must, it seems, be numbered among the postulates assumed

by Einstein.

Painleve then discusses the consequences of the expression of ds2

in the light of astronomical observations. He puts

where e -* with -. Thus he easily succeeds in accounting for the

advance of the perihelion of Mercury. But, in another connection, he

can particularise the function f(r) in such a way that the contractions

of standards of length in a gravitational field, or the deviation of light

rays at the limb of the Sun, are no longer discovered, and thus diverge

from Einstein's theory.
It would seem rather difficult to follow Painleve in all his conclusions.

The fact of preserving the euclidean significance of the variable r
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appears as a hypothesis which is a priori admissible but which does

not impose itself logically. It would seem better to assume that Pain-

leve, rejecting certain consequences of Einstein's theory, wished to

construct a dynamics which might be intermediate between that

theory and newtonian mechanics, and yet compatible with the data

of the orbit of Mercury. Indeed the hope
" that of the relativistic

doctrines there will remain a body of formulae which, without con

tradicting it, will be founded in the classical science ; but that there

will not remain those philosophico-scientific principles or conclusions

that have been, according to individual opinion, the scandal or the

miracle of relativity.
"

Without going as far as to share this opinion, certain of Painleve

observations merit thought. For example,
"
[Einstein's followers state]

the principle of invariance All positive consequences of science can

be given a form which is invariant under an arbitrary transformation

of the four variables which define space-time.
" This principle cannot be contested if it is clarified for my part

I shall state it in the following way.
" It is possible to deduce from the laws of Nature consequences that

are invariant under any transformation of the space-time frame

of reference and which define these laws, apart from such a transfor

mation.
" But precisely because this principle is an incontestable truism

it can, itself alone, yield nothing. Whatever may be the laws of

nature that it may please us to imagine, they can be made to con

form to it.

" Einstein's attempt recalls that of Lagrange. Lagrange gave

the equations of mechanics a form invariant under all spatial trans

formations that do not affect the time, but this form is merely another

way of writing them. The followers of Einstein, for their part, touch up

these equations in order to extend the invariance to the space-time

transformations .

" Referred to axes Oxyz of fixed directions relative to the stars,

the motion of P will therefore be planar and, in polar coordinates r,

and 0, its equations will be of the form (1) [p. 528] ; that is, will

not depend explicitly on or t. In order to make progress classical

mechanics assumes Galileo's principle (namely, that the acceleration

of P at the time t only depends on the position of P) and thus arrives

at the expression (A). Einstein's mechanics assumes that the equations

of motion must be contained in the very extensive, but nevertheless

exceptional, class of systems of equations of the second order which

define the geodesies of a ds2 in four dimensions.
"
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8a. REMARK ON THE UNIVERSES OP EINSTEIN AND DE SITTER.

By way of a complement to the summary of 8, we note here that

the e?s
2 on Einstein's spatially closed universe can be put in the form

Sm dt*

(Einstein, Sitzungsber., Berlin, 1917, p. 150). It is also possible to

write it in the form

with

xl
= R cos 6 x2

= R sin 6 cos cp
/ = ^

x3 R sin sin
9?

cos co x = R sin sin 99 sin co \ n <c <c 9 /

In particular, this representation allows the easy calculation of

the volume of the spherical space. For

dV= R3 sin sin cpdddcpdco

whence

In Einstein's universe, if the space is finite the time is infinite and,

moreover, the time is an absolute time (in the classical sense). This
has resulted in the description of Einstein's universe as "

cylindrical.
"

The ds2 of de Sitter's universe is given by

ds* = - R2
[J9

2 + sin2 6 (d<p* + sin2 yda?)} + cos 2 6dt*

(de Sitter, Proceedings Amsterdam, Vol. 20, 1917, p. 230),
The space term is the same as the ds2

pertaining to Einstein's

universe, but the term in the time contains the factor cos2 0. It can
also be written in the form

with

x
l
= iRsiaQ cos

cp
x2
= iR sin 6 sin

cp cos co #3
= iR sin 6 sin 9? sin o>

t
#4 iR cos ch Xr = R cos sh

R R

^
De Sitter's space is called hyperbolic, for it is situated on an

imaginary hypersphere ofradius iR, itself contained in an euclidean space
of five dimensions and because it is possible to write, in real variables

X2 + X/2 + X"2 Y2 Z2 = R2
.
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GENERALISED RELATIVITY AND RIEMANN SPACES.

In the interpretative work that we have already cited (Cber die

spezielle und die allgemeine Relativitatstheorie), Einstein referred to

Gauss' theory of surfaces in connection with his introduction of the

mathematical tools of generalised relativity. Strictly speaking, in

Gauss' work these surfaces were concrete entities in an euclidean

space of three dimensions. A further step in the abstract direction

was therefore necessary. This was taken by Riemann, and consists

of the construction of spaces defined, a priori, by means of a ds2 in n

dimensions. Schlaefli's theorem ensures the possibility of immersing

a sp ace of n dimensions in an euclidean space of - dimensions.
2t

However, as this theorem is only concerned with a local realisation,

it is preferable to consider a Riemann space as given in itself.

The notion of tangent euclidean space at a point in a given Riemann

space plays, as we have seen, a fundamental part in the theory of

generalised relativity. With E, Cartan it may be said " that the ds2

of the Riemann space turns the neighbourhood of each point into a

small portion of euclidean space, and that parallel displacement in

the sense of Levi-Civita allows two infinitely close small portions to

be linked together, so as to be integrated into one euclidean space.
"

E. Cartan, moreover, contemplated other laws of transport than that

of Levi-Civita, restricting them by the only condition that they should

preserve the length of a vector. In this way he defined spaces of

euclidean connection. The theory of generalised relativity, by drawing
the attention of geometers to the study of Riemann spaces, therefore

stimulated profound studies with which we are unable to deal here.

E. Cartan, in agreement with Painleve on this matter, deems that

the principle of covariance "
is insufficient in itself to allow the deduction

of any physical law. In reality, the axioms which lie at the foundation

of generalised relativity are the following
"
a) Space-time is a Riemann space of four dimensions and of

indefinite ds2
.

"
b) Space-time is not an arbitrary Riemann space ;

it is included

in a particular class of Riemann spaces.
"

c) Together with a Riemann space, this class includes all others

which are obtained from it by a simple transformation of coordinates.

64
It is in this last axiom that the principle of generalised relativity

resides. The analytical definition of the class of Riemann spaces

which is sought constitutes the equations of gravitation in the vacuum. "

The choice JBV
- = 0, made by Einstein, is one of an infinity of possible
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solutions within the compass of the axioms a, 6, c. In generalised

relativity it is also possible to consider the space of 14 dimensions

with the coordinates %i and g^, and to define there a class of four-

dimensional varieties which contains, together with one particular

variety, all those that are deduced from it by the operations of the

infinite group of point transformations in #x, x& x& #4 .



CHAPTER THREE

THE DYNAMICS OF QUANTA IN BOHR'S SENSE

A. PRESENTATION

1. BOHR'S FIRST DYNAMICAL MODEL.

In a quite different stream of thought, we return to the year 1913.

At this time, in the Philosophical Magazine, there appeared a paper

of Niels Bohr, called On the constitution of Atoms and Molecules,
1- which

opened up a whole field of research into dynamics on the atomic scale.

Before the appearance of Bohr's paper, J. J. Thomson 2 and Ruther

ford 3 had already suggested models intended to account for the stability

of atomic structures. In Rutherford's conception, a positively charged

nucleus was surrounded hy a system of electrons held by the attraction

of the nucleus. In Thomson's model there was introduced a positively

and uniformly electrified sphere, in the interior of which the electrons

described circular orbits.

The inability of classical electrodynamics to account for the

behaviour of systems on the atomic scale was universally recognised

by physicists. It remained to introduce effectually into this study

an element which was completely foreign to the classical conceptions

the quantum of action in the sense of Planck.

Here is a summary of Bohr's paper, provided by the author himself.

" In the present paper we shall attempt to develop a theory of

the constitutions of atoms on the basis of the ideas introducedby Planck,

with the intention of accounting for the black-body radiation, and

the theory of the structure of atoms suggested by Rutherford to explain

the dispersion of a-particles by matter.
"

This statement is followed by Bohr's hypotheses and conclusions.

"
1) The energy of radiation is not emitted (or absorbed) continu

ously, as the classical electrodynamic theory assumes, but only during

1 Phil. Mag., Vol. 26, 1913, pp. 1 and 476.

2
Ibid., Vol. 7, 1904, p. 237.

8
Ibid., Vol. 21, 1911, p. 669.
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the passage of an atomic system from one stationary state to another

stationary state.
"

2) The dynamical equilibrium of a system in its stationary states

is governed by the ordinary laws of mechanics, but these laws are not

valid in the passage from one stationary state to another stationary
state.

"
3) The radiation emitted during the transition of the system

from one stationary state to another stationary state is monochromatic.

The relation between its frequency v and the total energy emitted

is given by the relation

W = hv (h
= Planck's constant).

"
4) The different stationary states of a system constituted of an

electron rotating about a positively charged nucleus are determined

by the following condition the ratio of the total energy needed to

realise a given configuration of the system to the mechanical frequency
a> of the rotational motion of the electron is an integral multiple of

h

2'
r W h

, .
- = 71-

(TI, integer).
CO 4j

" If it is assumed that the orbit of the electron is circular, this con
dition is equivalent to the following the angular momentum of the

electron is an integral multiple of ,

"
5) The *

permanent
'

state of every atomic system, or the one
which corresponds to the maximum energy emitted, is determined

by the condition that the angular momentum of each electron about

the centre of its orbit is equal to .

"

We shall explain Bohr's calculation.

Let e be the charge of the electron, m its mass, a the radius of

its circular orbit, co the rotational frequency of the electron and E
the nuclear charge. Ordinary dynamics, for any stationary state

(hypothesis 2), yields the relation

eE = (2jrco)
2ma.

a2

The energy W, the potential energy U and the kinetic energy T
have the values

2 a
~~

~a
~~

2 ~a

respectively.
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Hypothesis 4 leads to the statement that the angular momentum
of the electron,

p = 2ncomd*

can only take the discrete values defined by the relation

nh
/ . v

P ==
9~ (

ni integer).

It follows that the energy of the system, the radius of the orbit

and the mechanical frequency co can only take discrete values, given by

- W =

Among the possible electronic trajectories, the only ones that

subsist are the discrete trajectories whose radii are proportional to

the square of the quantum numbers n. When an electron jumps from

one stationary trajectory to another, characterised by the numbers

n-L
and ra2 respectively, the energy changes by

_ 2:rc
2me2E2 /

1_ __ JT

By hypothesis 3, the energy thus liberated (by contraction of the

orbit) or absorbed (by expansion of the orbit) passes into space, or

comes from it, in the form of a monochromatic radiation of frequency

"-
A
~ J

The quantity R is a universal constant called Rydberg's constant.

In his first paper Bohr applied these results to the hydrogen atom

(E = e).
He remarks on the perfect agreement of the frequency

relation thus obtained with the series empirically discovered by Balmer

as early as 1885, and which corresponds to n2
= 2. The series cor

responding to 7i2
= 1, of which all the lines lie in the ultra-violet, had

been observed by Lyman,
1
though only nine lines were known to Bohr.

The series corresponding to n2
= 3, of which only three lines had been

indicated by Paschen,
2 was observed by Brackett,

3
together with

the series corresponding to n2
= 4. The other series lie in the far

infra-red.

1 Nature, Vol. 93, 1914, p. 314.
2 Ann. der Physik, Vol. 27, 1908, p. 565.
8
Nature, Vol. 109, 1922, p. 209.
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The spectrum of hydrogen can be compared with that of ionised

helium (E = 2e), which also contains no more than a single electron,

and for which the frequency relation is

yij nli

The series 7i2
= 1 lies in the far ultra-violet. Some lines of the

series n2
= 2 were observed by Lyman.

1 The series 7i2
= 3 was

observed by Fowler, Evans and Paschen between 1912 and 1916, and

splits into two according to whether n^ is even or odd. The series

n% 4t also splits up and gives, on the one hand, the Balmer series,

and on the other, a series which Pickering
2 discovered in the spectrum

of the star f of the Stern as early as 1896. For further details, the

reader is referred to specialised works.

Motion of the nucleus. The first model supposes the nucleus to

be at rest or, alternatively, neglects the ratio : of the mass of the

electron to that of the nucleus. In order to take account of the motion
of the nucleus it suffices to consider the motion of the system of the
electron and the nucleus about its centre of gravity. As Bohr himself

showed,
3 this leads simply to the multiplication of the Rydberg constant

by the factor

M
m + M*

Thus it is possible to determine, as Fowler and Paschen did by
comparing the spectra of helium and hydrogen (MHe = 4MH),

the ratio

in the case of hydrogen. The result is about 1/1840, in perfect

agreement with Millikan's direct determination.

2. GENERALISATION OF THE FIRST MODEL THE " QUANTUM CON
DITIONS " FOR A STSTEM OF SEVERAL DEGREES OF FREEDOM.

Bohr's first model does not immediately lend itself to an extension
to more complicated mechanical systems. Nevertheless, in his first

paper, Bohr had incidentally established the following theorem. " In
every system composed of electrons and nuclei in which the nuclei
are fixed and the electrons describe circular orbits (with velocities

1
Nature, Vol. 104, 1919, p. 314.

2
Astrophysical Journal, Vol. 4, 1896, p. 369.

3 Phil. Mag., Vol. 27, 1914, p. 509.
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small compared with c), the kinetic energy is equal, apart from sign,
to half the potential energy.

"

This leads to the imposition, for each electron, of the condition

2T = nh.
CO

Directly inspired by this result, W. Wilson established the quantum
conditions for a conservative system of n degrees of freedom. The

paper concerned is entitled The quantum theory of radiation and line

spectra}-

Let ji be the Lagrange coordinates and T, the kinetic energy,

given by

Wilson assumes that, if necessary, by means of a suitable transformation

of the g ,
this equation reduces to the form

1 1

Thus, for every degree of freedom,

It is then supposed that in each stationary state, for which ordinary

dynamics remains valid, the system allows of a well determined period

for each degree of freedom.
Ctik

Given this, Wilson considers the integral

2$Lkdt= $picdqk

for each degree of freedom, where in integration is taken over the

corresponding period He then supposes that this integral is
r G

cojk

necessarily equal to an integral multiple of Planck's constant ; that is,

he supposes n quantum conditions of the form 2

pkdqk = nkh (n-fc, integer ; k = 1, 2 . . . orn).

1 Phil. Mag., Vol. 29, 1915, p. 795.
2 The sign f, currently adopted after in BOHR'S theory, expresses the fact that the

integral is taken over the period corresponding to the variable qk .

W
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It was not long before Bohr's theory attracted the general attention
of physicists, and its development rapidly became a collective task.

Starting from the point of view of the atomicity of energy which he
had held earlier, Planck himself studied the structure of phase-space
(Pkasenraum), or the space of the variables q^ p^

1 It is necessary
to cite Epstein,

2 Schwartzschild 3 and Sommerfeld.4 To the last named
we owe, as well his personal contributions, the best known didactic
work on the dynamics of quanta in Bohr's sense.5

We shall first consider the problem of the linear oscillator. Let m
be the mass, v the frequency and a the amplitude of the oscillator,
so that

/j\ | q = a sin 2nvt

\ p = 2 nvam cos 2 nvt.

In the phase plane of coordinates (p, q) the representative point
of the oscillator describes the ellipse

2 2

(
2

)
j|a
+

1^
- 1 = with b = 2nvam.

Both the potential energy of the oscillator and q become zero at
t = 0. Therefore the total energy may be written immediately as

"

(3) r
-f[L-

As W varies a family of ellipses is obtained, all these are similar,

for - = 27ivm.
a

If it is decided to consider, of this family, only a discrete series

corresponding to Planck's condition of atomicity the relation

w Wn = ne nhv
(71, integer)

is obtained.

The area contained between two consecutive ellipses of this series

is equal to n+1 ~ "^
or, by (3), to Planck's constant h.

The area of the nth

trajectory is equal to nh, or

JJdprfg- fpdq = nh

p 385^
physikalische Struktur * Phasenraumes, Ann. der Physik, Vol. 50, 1916,

ik, Vol. 50, 1916, p. 489, and Vol. 51, 1916, p. 184
1916 > p - 548 - <This

4 Ann der Physik, Vol. 51, 1916, pp. 1 and 125.
Atombau und Spektrallinien.
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Thus Wilson's condition is retrieved the phase integral (calculated
over a period) is an integral multiple of Planck's constant. Sommerfeld

writes,
" This necessary condition has the effect of distinguishing from

the continuous ensemble ofpossible mechanical motions, a discrete infinity

of motions that are possible in the quantum sense.
"

Fig. 116

We return to Bohr's initial problem that of the plane oscillator.

Take as the coordinate q the azimuth of the particle on the circular

trajectory of radius a. The momentum

p = ma*q'

is constant with the angular velocity of rotation q
r
.

The trajectory of the representative point of the oscillator in the

phase-plane (#, p) is therefore a straight line or, more accurately, a

segment parallel to the axis of q and bounded at the points of the

abcissa q = + ft.

Then, from the continuous series of segments p = const., a discrete

series pn is chosen such that the area contained between the segments

pn and pn +i is equal to Planck's constant, or

.i'-P)=fc.

Whence

2npn = nh (ra, integer).

f This leads us back to the condition stated by Bohr ( 1, number 4).

The corresponding energy has the value

nha>

where co denotes the frequency of the rotation of the plane oscillator,

again in agreement with Bohr's hypothesis. It is apparent that

Planck's energetic hypothesis is not directly applicable to the plane

oscillator because of the presence of the factor -.
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The investigation of systems of several degrees of freedom was
carried out by Epstein and Sehwartzschild x for every classical dynamical
problem for which Jacobi's partial differential equation is amenable
to solution by separation of the variables ; that is, for which each

partial derivative of the action can be expressed in the form

93

Then, for every degree of freedom the phase integral

Jk =

can be formed. The symbol indicates that the variable qk ranges
over the whole domain of its variation. If qk is a polar coordinate
contained between the two limits rmin and rmax, which are consecutive
roots of the equation (pk (qk)

= 0, the variation extends from rmin
to rmax and returns to rmin . If qk is a cyclic coordinate (like the azimuth
of the plane oscillator), it is allowed to vary from n to + n.

We owe to Sehwartzschild, who introduced the methods of celestial

mechanics into this subject, a particularly simple formulation in terms
of "

angular coordinates.
"

We confine ourselves to a system whose hamiltonian, in classical

dynamics, does not depend explicitly on the time. The phase integrals
Jk are functions of the energy W and of the n 1 non-additive primary
constants contained in a complete integral S of Jacobi's partial
differential equation. Let this solution be

S = S(qi 9 J2, ... n, TP
9 01, 02, ... On l).

Conversely, such a complete integral can be written in the form

S(qi 9 ?2, ... }, Jl, J2 , ... Jn-l).

Whence

r) Si /) Sf

68 =
Hqi

dqk +
3Jfc

dJk = Pk8qic + WkdJk 2

if

as
Wk = tt

Therefore it is possible to pass from the variables (q,p) to the variables

(w, J) by a contact transformation. The angular variables wk and the

1 Loc. cf., p. 540.
2 With summation over the dummy suffix k.
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phase integrals Jk (which are the conjugate momenta in Hamilton's
sense) therefore satisfy the canonical equations

dH = const '

= - =
dt dwk

Every angular coordinate is therefore a linear function of the time
of the form

Moreover, when the initial variable qk alone ranges over the whole
domain of its variation (in the sense explained above) the corresponding
angular variable wk increases by one unit. Indeed, under these
conditions the action increases by the corresponding phase integral,
so that

AS = Jk .

Whence

A A 8S
iAwk = A 5-7-

= 1 .

OJk

Therefore the vk are identified as the mechanical frequencies
of the system for the different degrees of freedom and the qk are periodic

functions of unit period in the angular coordinates wk .

Inasmuch as the mechanical frequencies wk are not commensurable

among themselves the qk are, in general, non-periodic functions of the

time. The system is then called u
quasi-periodic.

"

Thus the qk can be developed as Fourier series in n variables TX,

T2, . . . rn, in the form

+ 00

= V^ rk 2m^iTl + w *r* + '" ""^
/ i

TI TJ' T

GO

or

+ 00

V^ k 2ni
(VITX + v,Ta + . . . r T= 7 UT r , e

/ i
ri Ts> Tn

The sign indicates that the quantities T must take all values between

oo and + oo.

The system is said, in Schwartzschild's sense, to be degenerate if

there exist one or more linear and homogeneous relations, with integral
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coefficients, between the mechanical frequencies vk . In cases of

degeneracy there are, simultaneously, several systems of variables qk

which allow the decomposition of Jacobi's equation into n particular

equations in each variable. Such is the Kepler problem of a test body
(a non-relativistic electron describing an elliptical trajectory about

a fixed nucleus).
The polar and parabolic coordinates used by Epstein both allow

the decomposition of Jacobi's equation for the keplerian problem.

They do not give the same trajectories but lead to the same values

of the quantised energy. The degeneracy disappears if the Coulomb

field of the nucleus is supplemented by an external electric field (this

corresponds to the Stark effect studied by Epstein) or if the variation

of the mass with the velocity is taken into account (this is the problem
of the relativistic electron studied by Sommerfeld).

For a quasi-periodic non-degenerate system the variables qk which

are necessary to achieve the separation of Jacobi's equation satisfy a

simple geometrical criterion formulated by Epstein. The ensemble

of possible trajectories can be represented in a space En of n dimensions

by means of the variables vv v%, . . . vn . Each trajectory passes as

near as may be desired to all the points of a region of En defined by
hyperspheres of n 1 dimensions. If the trajectory is varied by
varying the constants of integration, it continues to be contained in

a region defined by hyperspheres of n 1 dimensions. The hyper-

spheres defining the different trajectories form n families which can
be represented, in a suitably chosen system of curvilinear coordinates,

by g
= constant (i

= 1, 2, ... n). These are the variables qt which
allow the separation of Jacobi's equation.

From the purely mathematical point of view the property which
characterises the phase integrals is that of adiabatic invariance if the

parameters which specify the strength of an external force- field applied
to the system vary by an infinitesimal amount, the corresponding
first order Variation of a phase integral is zero. This invariance,
which explains the part played by the phase integrals in the formulation
of the quantum conditions, was investigated by Ehrenfest1 and Burgers.

2

3. EXAMPLE OF APPLICATION THEORY OF FINE STRUCTURE.

By way of an example of the preceding generalities, we shall turn
our attention to the relativistic model of the hydrogen atom, or more
generally, of an atom of a single electron rotating about a fixed nucleus.

1 Ann. der Physik, Vol. 51, 1916, p. 327, and Phil. Mag., Vol. 33, 1917, p. 504.
2
Ibid., Vol. 52, 1917, p. 195.
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As early as 1915 Bohr concerned himself with the relativistic treat

ment of the atomic model that he had put forward, and suggested
that the doublets of the hydrogen spectrum be considered as an effect

u2
of the order of

-g.
1 But he confined himself to elliptical trajectories

c

of very small eccentricity. The systematic development of this theory
is due to Sommerfeld. 2

In order not to delay ourselves with the formulation of this problem,
\ve shall make use of the generalisation of Jacobi's classical equation
which has been encountered above (p. 499) in the form

Let m be the rest-mass of the electron. Since the nucleus is fixed

eE
at the origin and the potential energy is , Jacobi's equation, in the

polar coordinates r, 0, becomes

feE
'SS\

2
,

:

c2

and separates immediately.
The angular integral is written

ds
pQ = = const. = p

whence is obtained the azimuthal quantum condition

Je = %7ip
= nh (ra, integer).

There remains

^asv , .
B c
r

"""
r2

with

^ = 2m TF+ -5-

cft
"

1 Phil. Mag., Vol. 29, 1915, p. 332.
2 Ann. der Physik, Vol. 51, 1916, pp. 1 and 125.

35
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The phase integral

dS
Jr = < dr =n'h

J dr
(n'i integer)

may be calculated, in the complex plane, by the method of residues.

The quantised energy is obtained, given by

1 +
a

e

Sommerfeld develops the right hand side of this equation in powers
of the constant a, called the fine-structure constant and, going over

to frequencies by means of Planck's relation, arrives at

v = (n, n')
-

(fc, fc')-

Whence

The constant R is Rydberg's constant ; the unspecified terms,

containing powers of a greater than two, are negligeable for light
atoms (hydrogen, ionised helium).

The relativistic correction consists of two parts. The first,

4 n')*

is common to circular and elliptical orbits. For the first term of the

Balmer series of hydrogen (E e, n + n' = 2) this correction represents
a fraction of about 3-10"

6
of the corresponding term of the classical

n

keplerian problem namely
--

7-^.
(n -f- n j

The second part of the relativistic correction,

n

depends on n and n' separately, and varies with the eccentricity of
the orbit. It is this second correction which determines the fine structure

of lines. The ratio of this corrective term to the term of the ordinary
keplerian problem for the ellipse n = 1 and n' = 1 is, in the Balmer
series of hydrogen, 1.3-10" 5

.
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Sommerfeld's book, which we have already cited, Atombau und

Spektrallinien, develops the theory of fine structure (doublets, triplets,

quartets, quintets in the spectra) and discusses the experimental
corroboration at great length. We confine ourselves here to the

reproduction of the table relevant to the doublet separation constant

of the term
^

of the Baimer series.

Av calculated 0.365 (e
= 4.77. 10

- 10
, h = 6.55 -H)- 27

)

Av observed Ha 0.32 (Michelson)- Hp 0.33 (Michelson)- Ha 0.306 (Fabry and Buisson)- Ha 0.288 (Meissner and Paschen)-- Ha 0.272 (Gehrke and Lau)- Hp 0.283 (Gehrke and Lau)-- jjy 0.271 (Gehrke and Lau)

The experiments are rather difficult for the spectrum of hydrogen
because of the lack of completeness of the lines. Paschen, by an indirect

method applied to ionised helium, gave Av (hydrogen) as 0.3645, in

perfect agreement with the theory.

4. BOHR'S CORRESPONDENCE PRINCIPLE.

The dynamics of Bohr's atomic models is a manifest departure
from classical dynamics, where every acceleration produces radiation.

This departure consists of the fact that Bohr's electron does not radiate

as long as it describes a stationary trajectory, but only when it jumps
from one stationary trajectory to another. As early as 1914, in a

paper called On the effect of electric and magnetic fields on spectral lines ^

Bohr attempted to establish " a certain connection between this

dynamics and ordinary electromagnetic theory.
" He was able to

achieve such an agreement, in the limit, for transitions from states

characterised by large quantum numbers that is, in the region of

slow vibrations. In the later development Bohr's correspondence

principle was to assume a quite special importance. Thus, as well

as being the means by which polarisation and intensity were introduced

into quantum theory, it was also to be made the foundation of Heisen-

berg's work in 1925 the work from which the mechanics called

"
quantum

" mechanics has sprung.
We shall not delay ourselves here with the first form of the cor

respondence principle which Bohr gave,
1 or with his work, and that

* Phil. Mag., Vol. 27, 1914, p. 506.
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of Kramers, on the intensity and the polarisation of spectral lines.

We shall follow a paper published by Bohr in 1923 under the title

Vler die Anwendung der Quantentheorie auf dem Atombau*

Consider a quasi-periodic system of r degrees of freedom. For

each degree of freedom the systempias the mechanical frequency

dH

Consequently the system has the combined mechanical frequency

TrVr

where TX, T2, . . . rr are arbitrary integers that can be chosen in such

a way that

rk = ni - ni (*
= 1, 2, . . . r).

In the classical electromagnetic theory the mechanical frequencies

and the combined frequency are all optical frequencies of the system.

In Bohr's theory, on the contrary, the frequency of radiation emitted

in the transition from the stationary state defined by the quantum
numbers n'k to the stationary state defined by the quantum numbers

Tifc has the value

v =

lf^ ,-=
^jlyjfc.

If the quantum number TI^ and nl are large compared with their

differences n'k 7i, it is possible to make the approximation, in the

preceding integral, that the mechanical frequencies remain constant.

Then it follows that

r
jt ftf

SJk Jk
vk 7

i
n

That is, the optical frequency in Bohr's interpretation agrees, in the

limit, with the combined frequency (mechanical or optical) in the sense

of the classical theory. It is in this asymptotic agreement that the

principle of correspondence resides.

1 Zeitschr. fur Physik, Vol. 13, 1923, p. 117.
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B. ANALYSIS AND INTERPRETATION

la. RETURN TO PLANCK'S FREQUENCY RELATION.

In the preceding presentation we have regarded Planck's frequency

relation as a basic datum of the dynamics of quanta in Bohr's sense.

It is however of some value to recall, briefly, the origin of this relation.

Kirchhoff showed that the structure of black-body radiation the

radiation emitted inside a sealed enclosure whose temperature is uni

form_is independent of the nature of the bodies which constitute

the enclosure, the nature of the bodies which are contained in it and

the form and the dimensions of the enclosure. Therefore there must

be a universal relation between temperature and wave-length.

Making use of the concept of linear oscillator due to Hertz, Planck

arrived at a relation between the energy of a resonator of specified

period and that of the corresponding radiation spectrum in the steady

state.

Starting from the spectral distribution of energy which had been

given by Wien in 1896, Planck transformed it into a relation between

the entropy S and the energy W of a resonator the reciprocal R of

/72Q

the second derivative -=^ is proportional to the energy. That is,

(JL rr

R = - bW.

But if this relation is satisfactorily confirmed in the region of short

wave-lengths, the experiments of Lummer and Pringsheim and, later,

those of Rubens and Kurlbaum (1900) showed that the quantity R
was proportional to the square of the energy in the region of large

wave-lengths.
Planck was then inspired to represent all the experimental results

by the single formula

1 10 C|

Recalling that - = -^ and that, by the definition of entropy,

dW == TdS (where T is the absolute temperature), an elementary

integration leads to the relation

w- bc -w -
b

--

e'
? - 1

between temperature and energy.
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In accordance with Boltzmann's ideas, Planck interpreted the

entropy as a measure of the probability and undertook the calculation

of the spectral distribution of the energy of a system composed of a

large number of resonators.1 This calculation led to an expression

of the entropy identical with that required by the spectral distribution

ofradiation ; it was necessary, however, to assume in obvious departure

from the classical ideas that there was an atomicity of energy. The

energy of a resonator of frequency v is necessarily a multiple of the

quantum e = /w>, where A is a universal constant having the dimensions

of action and the numerical value of

6.55- 10- 27
erg. sec.

Planck wrote,
" this quantum represented something quite novel

unsuspected until that time which seemed destined to overturn

a physical philosophy founded on the very notion of continuity inherent

in all causal relationships since the discovery of the infinitesimal

calculus be Leibnitz and Newton. "

Outside the domain in which it was exploited by Bohr, this quantum

hypothesis made it possible to explain the photo-electric effect. This

is the phenomenon of the detachment of electrons from the surface

of metals by radiation of high frequency. The velocity v of the electrons

depends only on the frequency v of the radiation and, above a threshold

?> , is given by an equation due to Einstein,
2

mv2 = h (v 7> ).
z>

Experimented by Lenard (1902), Pohl and Pringsheim (1912) and by
Milhkan (1913), this effect enables the value of Planck's constant h to

be found again. Einstein linked up this effect with the existence of

quanta of light or photons, the only quantic form of radiant energy.
We shall recall the experiments made by Franz and Hertz on the

losses of energy in the impact of electrons and atoms, in which the

constant h comes into play on account of the determination of the

critical velocity an electron must possess in order to provoke the emis

sion of a quantum of light ; the photo-electric effect of X-rays and

y-rays studied by Maurice de Broglie and Ellis (1921), the measurements

of the specific heats at low temperature made by Nernst in 1911 and

interpreted, with the help of Planck's law, by Debye in 1912. All these

phenomena lead to perfectly convergent determinations of the constant h.

1 Verh. der Deutsch. Physik. Gesellschaft, December 1900, p. 237, also Ann. der

Physik, Vol. 4, 1901, p. 556.
2 ^TiTi. der Physik, Vol. 17, 1905, p. 132 ; Vol. 20, 1906, p. 199 ; Vol. 22, 1907, p. 180.



THE DYNAMICS OF QUANTA 551

Ife. CRITICISM OF BOHR'S MODELS.

The clarity and precision of the postulates taken from the beginning

by Bohr as the foundation of his new dynamics must not conceal from

us the difficulties and even the paradoxes behind his mechanical models.

Bohr himself has explained them with perfect frankness in his works of

interpretation.
In the first place, from the very nature of the postulates accepted

by Bohr,
"
certain features of the mechanical images, such as the periods

of revolution and the forms of the orbits are inaccessible to direct obser

vation. In particular, an atom in normal state does not radiate,

although, from the mechanical images, its electrons are in motion ; it

would be difficult to imagine a more marked contrast with the

demands of the electro-magnetic theory, to underline the symbolic
nature of these images ". 1

Moreover, in atoms possessing several

electrons, the interactions of these latter are systematically neglected,
without experiment contradicting this derogation from the laws of

dynamics.
Besides,

"
the problem of the motion of the atomic particles is open

to singular solutions which must be excluded from the multiplicity of

the stationary states ". 2 This constitutes an artificial restriction of the

rules of quantisation.

Lastly,
"
the concept of a stationary state implies the exclusion of

any interaction with individuals not belonging to a system.
" Bohr was

led to endow these states with a
"
hyper-mechanical stability.

" The
atom is always in a well-determined stationary state before or after any
external action.

When an atom is thus compared to an isolated system, it is in
"
making abstraction of the radiation which, even in the absence of

external actions, puts an end to the average life of stationary states.

If it is permissible to neglect this radiation in many applications, it is

because the coupling between the atom and radiation field, calculated

according to classical electro-dynamics, is generally weak compared
with the coupling between the particles and the atom. " 3

So it is the author himself of the theory writing, it is true, in the

light of the subsequent developments of quantum mechanics who
warns us against an unreserved acceptation of his models.

1 BOHR, La thtiorie atomique ct la description des phtnomdncs, Gauthier-Villars,

1932, p. 33.
2

J&idf., p. 41. The problem here is that of the hydrogen atom in crossed electrical

and magnetic fields.
8
Ibid., p. 78.
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2a. REMARKS ON BOHR'S THEOREM.

We have quoted Bohr's theorem which directly inspired Wilson in

his enunciation of the conditions of the quanta for systems with several

degrees of freedom.

This theorem applies to a system composed of fixed nuclei and

electrons of constant mass describing circular orbits. The potential

energy U is homogeneous and of degree 1 with respect to the coordi

nates, and is written

,= U.

If the trajectory of each electron is elliptical and their masses

remain constant, it is possible to write, on the average,

i
= U.

If the mass of each electron varies with its generalised kinetic

<&

energy according to the relativistic relationship rm = m0l + "Y anc*

trajectories remain circular, then

!
|

l

2

If, finally, the system is composed of relativistic electrons actuated

only by a quasi-periodic motion, it is possible to write on the average,

for the duration of an approximate period,

2?= 17.

26. ANTINOMY BETWEEN PLANCK'S FREQUENCY RELATION AND CLASS

ICAL DYNAMICS (POINCARE).

From the infinity of trajectories possible in the classical sense,

Bohr's theory makes a selection which is based on the atomicity of
action. The quantum conditions therefore appear to act by simple

superposition, without causing any other modification of classical

mechanics.

In truth, there is more than this there is a true antinomy between

Planck's frequency relation, which expresses the quantum conditions,

and ordinary mechanics. Poincare is credited with having called
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attention to this antinomy., in a paper to which we shall have occasion

to return. 1

Hamilton's canonical equations assume, in classical mechanics,
that the last multiplier in Jacobi's sense is unity. According to Poin

care, this last multiplier may be interpreted as a probability-density

in the phase-space (gfc , pk).

Ordinary dynamics implies, because of the one fact that the last

multiplier is unity, a complete homogeneity of the possibilities of the

localisation of the representative point of the system in phase-space.
This is the reason why every theory which supposes that the equations
of dynamics are of the Hamilton-Jacobi form necessarily leads to the

law of equipartition of the energy between the frequencies.
In accordance with the classical axiom of initial conditions, Poincare

retains the definition of the state of a mechanical system as a point
of the phase space (q^ pk) or, tantamount to this, by a point of the

energy-phase space (qk9 <pk).

To retrieve Planck's relation Poincare forms a last multiplier,

W, which is uniform but essentially discontinuous indeed, W is formed

of factor like iv
(r]k) which remain zero if the energy r]k differs from a

multiple of the quantum , so that the integral

is equal to the number of multiples of e contained between its limits.

1 Journal de Physique, Vol. II, January 1912, p, 1.



CHAPTER FOUR

WAVE MECHANICS IN THE SENSE
OF LOUIS DE BROGLIE AND SCHRODINGER

A. PRESENTATION

1. THE PHASE WAVE.

Wave mechanics, to which we now turn our attention, was created

in 1923. The roots of this theory are contained in three notes published
by Louis de Broglie in the Comptes rendus.1 We shall follow the first

systematic presentation of this mechanics ; namely, the thesis put
forward by Louis de Broglie before the Faculte des Sciences de Paris
in 1924.2

Basing his argument both on special relativity and Planck's relation,
L. de Broglie associates with every "fragment of energy

" of proper
mass m in the proper system of reference to which it is connected,
a frequency 7> satisfying the quantum relation

hvQ = m c2 .

The proper system, connected to the particle, is actuated with

velocity v with respect to a fixed system of reference. In the latter

system the periodic phenomenon appears to be retarded, and its

frequency becomes

^= l

Similarly, in the fixed system the energy becomes m c
2
/3, and the

quantum relation associates with it a frequency

1
Comptes rendus de VAcademie des Sciences (Paris), Vol. 177, 1923, pp. 507, 548

and 630.
2 Recherches sur la theorie des quanta, inserted in Annales de Physique, Series 10,

Vol. Ill, 1925, p. 22.
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which is essentially distinct from v. " There is here,
"

declares L. de

Broglie,
" a difficulty which intrigued me for a considerable time.

I have been able to remove it by demonstrating the following theorem,
which I call the theorem of the harmony of the phases.

" The periodic phenomenon associated with the particle, and whose
1 \ 2

-
)

-~ to a fixed observer, appears to the latter

'

to be constantly in phase with a wave offrequency (

-
I m c2/? which propa-W

m C2

gates in the same direction as the particle with velocity V = .

"

v

In fact, in the proper system the periodic phenomenon studied

is represented by a sinusoidal function of ?> Z , where is the proper
time of the particle. Now, because of the Lorentz transformation

-.=4-5).
this phenomenon is represented in the fixed system, by the same
sinusoidal function of

that is, by a wave of frequency vQ(i propagating itself with velocity
c2

in the same direction as the particle.
v

The group velocity of the phase waves is equal to the velocity of the

particle. For, according to Lord Rayleigh's principle, the group

velocity of the phase waves considered is defined by

-.

~U~"dv\V/'

An elementary calculation, effected by expressing v and V as functions

of v, then gives

2. RECAPITULATION OF THE PRINCIPLES OF HAMILTON AND MAXJPERTUIS.

In Hamilton's sense, the principle of stationary action is written

as

<5 [''(+ !/)&=

where J2 is the Lagrange function and 17 the potential energy (force-
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function) which is supposed to he independent of the time. The

energy integral is written as

T= U+ W
where 2Tis the kinetic energy and W, the total energy. The relation

exists between the kinetic energy and the Lagrange function, where

qi are Lagrange's generalised coordinates and summation over the

dummy suffix i for each degree of freedom of the system. If only
varied trajectories corresponding to a fixed value of the energy are

considered, Hamilton's principle reduces to that of Maupertuis ; namely,
to

JBA p4qi
=

which refers to two given configurations A and B of the system.

3. APPLICATION OF THE PRINCIPLE OF LEAST ACTION TO THE DYNAMICS
OF THE ELECTRON.

Louis de Broglie applied these two principles of Hamilton and

Maupertuis to the dynamics of the electron, understanding by this

term every particle of mass mQ carrying an electric charge e. The

electromagnetic field is defined by the vector potential A and the

scalar potential (p. In the system of coordinates

v v >y v v ? f* rt
A/I

-v
*>2 j *'3

** &> vt^

the energy-momentum vector (Impulsvektor) has the covariant com

ponents

Jt
= . m fivx eA z

= px

m Rn 4 -n
2 "''Or y ^-**-y jfy

,

e W
H <p

= .

c c

The principle of stationary action in Hamilton's sense is here
written

with summation from 1 to 4 in the dummy suffix i, and where P and Q
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are two given points of the continuum (x, y, 2, ct). Or again, explicitly,

p|

If the potentials do not depend on the time, the principle of least

action can be written, because of the constancy of J4 , in the MaupertiuV
form

Here the summation is carried out, in the dummy suffix fc, from 1 to

3, and A and B are the two points of the space (#,y, z) which correspond
to the points P and Q of the continuum.

The components of the vector p differ from those of the momentum
fo if a magnetic field exists.

4. THE VECTOR " WORLD WAVE, "

L. de Broglie defines, in the continuum (#, y, z, ct), a vector world

ivave by the relation

d<p
= ZjtOtdx,, = 2nv (dt L

Here Z is the direction of propagation of the wave 99, whose frequency
is v and velocity of propagation, V. The Of

are given by

O
l
= cos (*, 1) 2

= -cos (y, Z) 3
= - cos

Thus OJL, 2, 8 are the components of a space vector n of length
v 1
~_. = -.

(if X is the wave-length) which is carried by the ray.

The principle of least action defining the world-ray is written

in the hamiltonian form

where P and Q are two given points of the continuum. If the com

ponent 4 and therefore the frequency of the wave is constant,

the principle of least action reduces to Maupertuis' form

d
f

B
Okdxk =

j
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(where the summation is carried out over the index fc, from 1 to 3)
and then defines the ray of the wave. Taking account of the values
of

19 2, 3, this form of Maupertuis' reduces to Fermat's principle ;

namely,

5. EXTENSION OF THE QUANTUM RELATION.

Given these principles, in order to determine the phase wave as

sociated with a particle moving in an electromagnetic field, Louis de

Broglie introduces an extension of the quantum relation

W=hv.

By means of the vectors J and 0, this relation is written as

J4
- A04 .

L. de Broglie generalises this by supposing that

Thus to Fermat's principle corresponds MauperttuV principle,
written in the form

(J5 |M3
o Jkdxk = o Vkdqk = 0.
jA. JA

In short,
" Fermafs principle applied to the wave is identical with

Maupertuis* principle applied to the particle the dynamically possible

trajectories of the particle are identical with the possible rays of the wave.
"

Examples.

1) Rectilinear and uniform motion of a free particle.
Here

W = hv = m c2
/S
= me2

2 , hvdl
;

= mv*at = mvdl = -^=r- .

Therefore

hv

mv mv

which is a result which has already been obtained.

2) Motion of an electron in an electrostatic field (the Bohr atom).



Here

Therefore
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7= hv = me2 + e <

r
fc
= mvdl =

559

V *

/W> me2

mv mv

3) Motion of an electron in an electromagnetic field.

Here
W = Av = me2 + 9?

Therefore

__ hv

= mvdl -f-

mc2 + iff ^
mv

Thus the medium is no longer isotropic the velocity V varies

with the direction considered. The velocity v has a direction different

from the normal to the wave, n(p = hn). The equality between the

velocity of the particle and the group velocity of the waves remains. In

fact, if the axis of x is chosen to have the same direction as that of v

at the point considered, then, in the first place,

and then, by Hamilton's first canonical equation,

dt dpx

6. RETURN TO THE BOHR-SOMMERFELD QUANTUM CONDITIONS.

Here Louis de Broglie starts from the form which, in 1917, Einstein

gave to the Bohr-Sommerfeld quantum conditions.1 This form is

invariant under transformations of the coordinates and, for a closed

trajectory, is written

//>,<*#
= nh

i Verh. der Deutsch. Physik. Ges., Vol. 19, 1917, p. 77.
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where the integral is taken over the closed trajectory, the index i

is summed from 1 to 3 and n denotes an arbitrary integer. This

integral is nothing else than Maupertuis' action integral.

It is evident that the variation of the phase, after a complete circuit

of a closed trajectory, must be an integral multiple of 2jt in order that

the association of the waves and the particle may remain coherent.

For the path dl of the point on the trajectory, the phase varies by

, 9
dl

dqp = 2nv .^ V

By integrating along a closed trajectory, it must therefore be that

r vdl

JT
= 71

or, by the relation between the vectors and J,

nr = nh.

An argument which is a little more complicated, presented by
L. deBroglie in his thesis (referred to above), makes it possible to derive

from the preceding condition, the relations

j> pidqi
= nth (for each index i)

which are applicable to quasi-periodic motions. These relations

are the Bohr-Sommerfeld quantum conditions, related in this way
to the resonance of the phase wave.

7. DIFFRACTION OF ELECTRONS BY MATTER.

It was natural to attempt to verify experimentally the existence

of the wave associated with a material corpuscle by causing the diffrac

tion of electrons by crystals.
For an electron, the wave-length of the associated wave has the

value

h

This quantity can be represented by- if the velocitv v is not too* J

close to c. This wave-length is of the order of 10~ 8 to 10~ 9 for electrons

of ordinary velocity. Therefore it is comparable with that of X-rays.
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Von Lane's theory makes it possible to calculate the distance d between

the reticular planes as a function of the angle of incidence and the

wave-length X of the incident rays. Conversely, the knowledge of d

for a given grating makes it possible to determine A. Davisson and

Germer,
1
working at the Bell Telephone Laboratories (New York) in

1927, succeeded in obtaining a characteristic diffraction phenomenon

by allowing a beam of monokinetic electrons to fall on a crystal of

nickel, and collecting the diffracted beams in an ionisation chamber.

Thus L. de Broglie's daring hypothesis was vividly confirmed. Quan
titatively, the agreement between the observed and the calculated

values of A were confirmed to within 2 %.
The experiment was repeated by G. P. Thomson,2 at the University

of Aberdeen, using a method analogous to that of Debye and Scher-

rer that is, by making a monokinetic beam of electrons traverse a crys

talline powder. The result expresses itself as the creation of diffraction

rings whose diameters are functions of the reticular distance of the

crystals and of the wave-length of the incident beam. The experiment
was continued by Rupp,

3 Kichuchi 4 Ponte 5 and by Dauvillier and

Trillat. i

In particular, Rupp demonstrated the existence of a factor -5
in the

wave-length of fast electrons.

8. SCHRODINGER'S WAVE EQUATION.

Erwin Schrddinger, directly inspired by the thesis of L. de Broglie,

undertook the search for a general relationship between the dynamics
of conservative systems in the classical sense and the phenomenon
of wave propagation. Here we shall follow a paper called Quantisation

and Eigenvalues.
Q

For the most general conservative system of classical dynamics,
the Hamilton-Jacobi partial differential equation may be written as

Here V is the action, 2T the kinetic energy, U the potential energy
and the qk are the generalised Lagrange coordinates. Hamilton's

equation may be replaced by the system of two equations

1
Physical Review, Vol. 30, 1927, p. 705.

2 Proc, Roy. Soc., Vol. 117, 1928, p. 600.
3 Ann. der Physik, Vol. 85, 1928, p. 981.

Jap. Phys. Journal, Vol. 5, 1928, p. 83.
5 Annales de Physique, Vol. 13, 1929, p. 395.

Ann. der Physik, Vol. 79, 1926, p. 489.

36
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SchrSdinger distinguishes between the kinetic energy expressed
dV

in terms of the coordinates qk and the momenta pk = - which he
oqk

denotes by 2T, and the kinetic energy expressed in terms of the qk and

their derivatives, qk, with respect to the time, which he denotes by 2 T.

By means of the second quantity there may be defined, in the space
of the qk or configuration space, a non-euclidean metric of fundamental

quadratic form

d$2 = 22W =
It follows that

tZT^gaqti
\ 2T=g*Fipk

In the following argument the vectorial operations such as grad,
div, div grad = /4 2, are understood with respect to the non-euclidean

metric denned above.

Thus the equation of the kinetic energy (the second of the two

equations obtained by the separation of the Hamilton-Jacobi equation)
becomes

or

| grad V |

= V 2 (U + W) .

At the time t the surfaces V = constant may be drawn. This
can be accomplished by starting from one of them which, with the
associated value of K, is chosen arbitrarily. To pass from the surface
V to the surface V + dVQ it suffices to move each point along the
normal to VQ through a distance

The surface corresponding to the value VQ at the time t will corre

spond to the surface F Wdt at the time t + dt. It may be imagined
that the surfaces V travel through the configuration space by trans-
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porting a determinate value of V. For this purpose it suffices to

assign to each surface a normal velocity

_ds__ W
U ~~

dt~~

Indeed, under these conditions

Ot OS

The ensemble of surfaces of equal action may thus be compared
to an ensemble of wave surfaces whose velocity at each point is equal
to u.

In this optical analogy the refractive index would have the value

; Hamilton's partial differential equation would express Huyghens
9

principle. By writing Fermat's principle in the form

Maupertuis' principle is retrieved (the variation being made at constant

total energy).
The representative point of the mechanical system considered

moves in configuration space with the velocity

which varies reciprocally with u. It cannot remain in contact with

the same surface V.

Schrfldinger insists on the fact that the analogy only exists between

geometrical optics and mechanics. The analogy only retains the phase
of the waves, and their amplitude, their wave-length and their frequency
do not appear.

At this point Schrddinger introduces the hypothesis whose

arbitrary nature he emphasised that the waves contemplated must
be sinusoidal. The argument of the sine is a linear function of V.

2n
It is assumed that the coefficient of V is of the form -=-, where h is a

h

universal constant which is independent of W and of the nature of

the mechanical system considered. Therefore an argument of the

form

sin V+ c = sin [_ Wt + S(qk)
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is chosen. Whence the frequency of the waves is

V "~
h

"

In classical mechanics the energy W is only determined up to

an arbitrary constant. On the other hand, the wave length /I is inde

pendent of this constant, for

h

The law of the dispersion of the waves may be written

hv
u =

The group velocity of the waves,

dv

here reduces to v and consequently coincides with the velocity of the

representative point of the mechanical system considered. This

result confirms that which L. de Broglie established by making appeal
to the theory of relativity for the phase wave of an electron.

Schrodinger sets out to construct a wave packet, all of whose di

mensions are very small, which may be capable of replacing the repre
sentative point. This is only possible if the wave-lengths are small

compared with the dimensions of the trajectory and, in particular,

with the curvature of the trajectory. Indeed, if it is desired that

the wave packet should be approximately monochromatic which

is essential in order that it may move as a whole with a well defined

group velocity, and that it may be able to correspond to a mechanical

system having a well determined energy it must extend over a domain

containing a great number of wave-lengths.

Schrodinger arrives at the conclusion that the motion of the point

of concordance of phase for certain infinitesimal ensembles of waves

of n parameters proceeds according to the same laws as the motion of the

representative point of the corresponding mechanical system.
Without representing Schrodinger's analysis, we shall confine

ourselves to the following brief verification of his result.

Jacobi's classical method for the solution of Hamilton's equation
is based on the knowledge of a complete integral of this equation.
Such a complete integral depends on n primary constants a;, of which
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none is additive if n is the number of degrees of freedom of the system
that is, the number of dimensions of configuration space. Once given
this complete integral, say

V(q g2,
. . . ?n, o19 a2 . . . an , t)

Jacobi writes the known relations

(J)

ar/an
oa^ xdfl-j/Q

dan

Here, since the system is conservative, it may be supposed that

a^ = IF, thus making the total energy play the part of a primary
constant. Then only the first of the equations (J) contains the time.

At each instant the equations (J) define the representative point
of the mechanical system considered. This point P, by the form

of the equations (J), is the point of concordance of phase of an infinit

esimal ensemble with n parameters of the system of waves obtained

by making the a ; vary in a continuous way.
To develop the wave conception of mechanics, Schrodinger takes

as his starting point a wave equation in configuration space. The

only datum which can be utilised is the expression of the wave velocity

u in terms of the energy or the frequency.
It is also supposed that this equation is of the second order, so

that it must be written as

div grad ip ^ ~^\
==:

This equation is only valid for phenomena which depend on the time

by means of a factor e
2 "'

; that is, for which

Whence, taking account of the value of

This is Schrddinger^s wave equation, which already embodies the

quantum conditions. " This equation automatically sorts out the

frequencies and energy levels and distinguishes those which can actually
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appear in stationary phenomena, without other supplementary hypo
thesis than the following condition which every physical quantity

must almost naturally satisfy the function must be unique, finite and

continuous throughout the whole configuration space.
"

The quantum levels are all determined at the same time as the

eigenvalues of the wave equation which in itself contains its appropriate

conditions at the limits.

Example. The linear oscillator.

We confine ourselves to the most simple of the examples treated

by Schrodinger in his paper that of the linear oscillator.
9

TflCO Q
The potential energy is here U = and Schrodinger's equa-

Zt

tion takes the form

We put
hco

q=Q\/ and W= - w ;3 V 2nma> 4jr

so that the equation becomes

This equation is of the known form

It only has regular solutions which vanish at infinity if

Jl = 2n -+- 1
(ra, integer).

These solutions are written as

1*

y = e" Hn (x)

where Hn is a Hermite polynomial.
Therefore it must be supposed that

w = 2n + 1

or

IT- p. + !).
Schrodinger's quantisation here introduces "

half-integer
"
numbers,

in contrast with Bohr's theory but in full accord with the result already
obtained by Heisenberg and to which we shall return in the next chapter.
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Now the observation of the band spectra of diatomic molecules had

revealed the necessity of considering such numbers.

Treating more complicated problems, such as the Stark effect

and the normal Zeeman effect, Schrodinger also arrived at results

in agreement with experiment.

B. ANALYSIS AND INTERPRETATION

la. ON THE GUIDING IDEAS AND THE ORIGIN OF WAVE MECHANICS.

Louis de Broglie himself has explained the origin of wave mechanics.1

All the earlier work on black-body radiation had assumed its wave-
like character. Louis de Broglie was inspired to adopt the cor

puscular point of view by comparing this radiation to a "
gas ofphotons."

It was necessary to combine Boltzmann statistics with relativistic

dynamics, for the velocity of the photons attained or approached
that of light. This led, not to Planck's law, but to that of Wien.

To obtain Planck's law it was necessary as Bose was to verify later

to modify Boltzmann's analysis and to adopt the statistics that has

become classical under the names of Bose and Einstein.

But it is fitting to let the author speak.
" The study of black-body radiation had strengthened my conviction

that, to arrive at a more complete theory of light and the radiations,

it was necessary to seek to unite the idea of corpuscles with the idea

of waves. But, in reflecting on the matter, I suddenly had the intuition

that such a union of waves and corpuscles was also necessary in the

theory of matter. This is how I came to this conclusion. In the

corpuscular conception of radiation the fundamental formula is Ein

stein's formula of 6

light quanta,
'
or W = hv. This relation connecting

the energy of the corpuscle of radiation to the frequency of the cor

responding wave establishes a kind of bridge between the conception
of waves and that of corpuscles ;

it creates a kind of correspondence
between the two pictures. It follows that the constant h is in some

way a feature of the union between the waves and the corpuscles.
" But if we turn to the theory of matter and, in particular, to

that of atomic systems, what do we see ? We see the elementary

particles of matter, in particular the electrons, describing quantised
motions whose specification introduces the constant h and the integers.

Now the intervention of the whole numbers suggests the phenomena
of interference and resonance that is, essentially wave-like phenomena.

1 Notice sur les travaux scientifiques de M. Louis de Broglie, Paris (Hermann), 193L
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"
May it not be thought, then, that there are grounds for uniting

the waves with the corpuscles, the correspondence between the one

and the other being defined by formulae in which Planck's constant will

play an essential part ? And when this correspondence between

waves and corpuscles is established for matter, perhaps it will reveal

itself as identical with that which must be accepted between waves

and corpuscles for light. Then a very beautiful conclusion will have

been reached ;
a general doctrine will have been formed which will

establish the same correlation between waves and corpuscles both

in the field of light and in that of matter.
" To bring this endeavour to a successful conclusion, I was guided

by the formal analogy, which had been indicated for a considerable

time, between the equations of analytical mechanics and those of

geometrical optics in particular, by the formal analogy between

Maupertuis' principle of least action and Fermat's principle of the

minimum time. I succeeded in establishing the correspondence that

I had in mind by associating with every corpuscle of matter or of

light, of energy W and momentum p, the propagation, according
to the laws of geometrical optics, of a wave of frequency v and wave

length A, related to the quantities W and p by the relations

W
,

h
v = T x = -.

h p
" Thanks to this correspondence between the mechanical and the

wave-like properties, Maupertuis' principle for the corpuscle becomes

equivalent to that of Fermat for the wave, and the possible trajectories
of the corpuscles become identical with the rays in the optical sense.

Applied to light, this correspondence requires the coexistence of photons
and light-waves, the energy of a photon being determined by the fre

quency of the wave according to Einstein's relation. Applied to matter,
the same correspondence requires that every corpuscle of matter,

every electron for example, is always associated with a wave which

accompanies and controls its motion. At that moment I had the idea

that it must be possible to obtain interference or diffraction* phenomena
with electrons. In this direction must be found the crucial experiment
which would produce the direct demonstration of the existence of

a wave associated with each electron. . . .

"
Encouraged by the logical coherence of the result obtained,

I continued my investigations by showing how the existence of a

wave associated with the electron explains why the motion of an
electron is quantised. The equation which expresses that the motion
of an electron is quantised has, in effect, the following significance
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Maupertuis' integral J mvds taken along the closed trajectory is

equal to an integral multiple of the constant h. But according to

the correspondence that I had established between the momentum
of the corpuscle and the wave-length that it is necessary to associate

with it, the value, divided by /z, of Maupertuis' integral along the tra-

j ectory is equal to the total variation of the phase of this wave along the

trajectory, taking 2n as the unit.
" To write that the integral in question is a whole multiple of h

amounts to the same as to write that the phase of the wave is a 6 uni

form '
function along the trajectory, that is to say that the wave is

stationary. This latter word throws light on the deep meaning of the

quantisation of electronic motions. An electronic motion is quantised,
that is to say stable, when the corresponding wave is stationary. This

fine explanation of quantisation finally convinced me that I was on the

right road.
"

Louis de Broglie states again, in another form
" The theory of light was suffering from a stange illness, which took

the form of an antagonistic dualism between the waves of Fresnel and

Maxwell, on the one hand, and photons, on the other. Well ! in order

to better the state of affairs a drastic remedy could be tried by seeking
to communicate the same illness to the theory of matter, which up to

then had been immune. In reality, there was a serious reason for so

doing ; namely, that the theory of matter, too, had been showing dis

quieting symptoms for several years. The need for quantising the

motions of particles of matter which had first manifested itself in the

theory of black radiation and had won a triumphant success in that of

Bohr's atom, indicated that the quantum of action did not allow, in the

atomic field, the conceptions and equations of classical Mechanics to be

maintained. The presence of whole numbers in the formulae of quanta

gave these latter a certain resemblance with the formulae of interference

of the wave theory, and the analogy of the principle of least action, the

key-stone of classical Mechanics, with Fermat's principle, the key-stone
of geometrical optics, suggested that classical mechanics might very
well be an approximate form of a more general wave-Mechanics,

playing in relation to the latter the part played by geometrical Optics
in relation to wave-Optics. Thus appeared the idea of extending
to matter the corpuscles-waves duality which was essential for light."

1

Such a revolutionary thesis as that of Louis de Broglie might have

been greeted with some scepticism. But it came at the right time,

1 Voies ancicnnes et perspectives nouvelles en thtorie de la lumi^re^ Revue de M&a-
physique et de Morale, Vol. XLI, 1934, p. 448.
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for the development of theoretical physics had then arrived at the

necessity of a synthesis of the notions of wave and particle.

Moreover, the success was immediate and resounding. Einstein

drew the attention of the scientific world to this thesis, and E. Schr6d-

inger deduced from it, as early as 1926, a direct correlation between
the dynamics of the most general conservative system and that of

waves*

8a, ON SCHRODINGER'S EQUATION.

In the initial form which Louis de Broglie had given it, wave mechan
ics may have seemed to be linked with Einstein's special theory of

relativity. Indeed, the Lorentz transformation appeared to determine,
for example, the conditions assumed for the definition of the frequencies
in a fixed system.

In Schrodinger's work, on the contrary, the question was that
of a wave treatment of a problem of ordinary mechanics.

While Louis de Broglie had started from the principles of Fermat
and Maupertuis, Schrodinger referred directly to Hamilton's optics
which was, as we have seen, capable of a double interpretation in

terms of emission and wave propagation.
1

Thus thought in physics continually turned about Fermat's optics
and the dynamics of Maupertuis, Euler and Lagrange ; about the

dynamics and the optics of Hamilton, who formulated the first formal

theory which admitted of both a corpuscular and a wave interpretation ;

about the dynamics and optics of Hamilton in another aspect, for

return to these created the essential mathematical tools of analytical
mechanics. And we see these wanderings end in a true fusion of the
two extremum principles of optics and dynamics.

1 See Part IV, Chapter VI, p. 390. In connection with this return to HAMILTON,
SCHRODINGER deplored the fact that, in most of the modern presentations, analytical
mechanics and optics

" found itself robbed of the magnificent intuitive dress that
Hamilton had given it.

"



CHAPTER FIVE

QUANTUM MECHANICS
IN THE SENSE OF HEISENBERG AND DIRAC

A. PRESENTATION

1. QUANTUM ANALOGUE OF CLASSICAL MECHANICS (HEISENBERG).

We return to the year 1925, to analyse W. Heisenberg's paper
called Vber quantentheoretische Umdeutung kinematischer und mecha-

nischer Beziehungen^ In this paper the author laid the foundations

of "
quantum

"
mechanics. Heisenberg's guiding idea was that of

constructing, by analogy with classical mechanics, a mechanics con

forming with the theory of quanta in which only observable quantities

(frequencies or energy levels) would occur, to the exclusion of the

coordinates and velocities of electrons.

Heisenberg confined himself to mechanical problems of one degree
of freedom. Adopting at first the kinematic point of view, he sought
the quantum analogue of a classical quantity typified by x(i).

In the classical field the mechanical frequency of a system of one

degree of freedom is

- _~~
dJ

~~
h dn

'

Here J is the phase integral, which may be supposed equal to nh.

Therefore it is possible to write

/1X ,
, a dW

(1) *(n,a) = d^^^W'
The quantum analogue of formula (1) is written

(2) v(n,i-a) = J{lF(
B)-IF(ii-a)}

so that the frequency is associated with two energy levels.

1 Zeitschr. fur Physik, Vol. 33, 1925, p. 879,
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In the classical field equation (1) implies the relation

v(n, a) + v(n9 ft)
= v(n, a + ft).

According to (2) the quantum analogue of this will be written as

v (n, 7i a) + v(n a, n ft)
= v(n, n a ft)

or

v(n /?,
n a

ft) + v(n, n
ft)
= v(n, n a ft).

It is possible to develop a classical variable x(n, t)
in a Fourier

series (which may be an integral) of the form

+ 00

To constitute the quantum analogue of x(t), the terms of the pre

ceding sum will be replaced by terms like

A(n, n a)e
to

(
n *- a)'

associated with two energy levels.

To represent x2 in the classical field use is made of the multiplic
ation of Fourier series ; thus x2 has the form of a series

with

+ 00

The quantum analogue of x2 will be constructed by means of a
series of terms

+ 00

Without the need for further explanation it can be understood
that the procedure can be repeated so as to reach xn and, consequently,
any function f(t) which can be expanded as a power series in x.

At this point Heisenberg remarks that jx(t) is represented by factors
like A andy(*) by factors like B, the quantum product which is formed
by analogy with the classical product given by

+ 00
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+ 00

will be C(n, n
ft)
= Y\A(n, n <x)B(n a, n j
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In general this will not be commutative; that is, that x(t)y(t) will in

general differ from y (t) x (t) in the quantum field.

Given these kinematic preliminaries, Heisenberg sets out to deter

mine the quantum magnitudes A, v, W in the quantum analogue of

a problem of classical dynamics corresponding to

(3) *"+/(*) = <>.

In the dynamics of quanta in Bohr's sense, the calculation proceeds

by two stages ; namely,

a) the integration of the equation of motion (3)

b) the selection of the solutions by the condition

(4) cjl
pdq = mxdz = J = nh.

Heisenberg retains the equation of motion (3) of the classical pro

blem and substitutes the quantum analogue, in the sense defined above,

for the Fourier solution of the classical problem. He recognises that

this procedure leads to a system of an infinite number of equations,

with an infinite number of unknowns, which can only be reduced

easily when a recurrence relationship can be distinguished.

The solution of the classical problem will be expressed in terms

of the Fourier series (or integral)

whence
+ 00

Then, by a classical calculation
+ 00

mx'dx = mx'*dt = 2nm ^ a<z(n)a-*(n)a?con .

-CO

The reality of x requires that

where the quantity conjugate to a is denoted by a*. Whence

(5 ) jf
*!*'! =
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In the dynamics of quanta in Bohr's sense, this integral is equated

to a multiple of ft by a whole number, say nh. " Not only does this

condition arise in a quite artificial way in the classical dynamical problem,

but it also appears arbitrary if the point of view of Bohr's correspondence

principle is chosen. In effect, the phase integral J is only defined as an

integral multiple of h apart from an arbitrary constant.
"

This suggests that instead of the equation

J = nh

(equation (4)) the equation

should be used to express the correspondence principle. Therefore

in the problem which concerns us we shall write, in the sense of the

old dynamics of quanta and starting from equation (5), the condition

+ 00

(5') h = 27tm \ a -=- (acon |

aa
|

2
)

.

Whence, by quantum analogy, Heisenberg infers the new quantum
condition

+ 00

(6) A =
4jrm^]{|o(7i,7i+ a)|

2
co(7i,n+ a) |a(n, ft a) 1

2
co (ra, rc a)}.

o

()

This condition had already been encountered by Kuhn 1 and Thomas.2

Heisenberg also introduces the hypothesis of a normal state without

any radiation, which is characterised by the number ra ; that is, by

a(n ,

rn a)
= if a > 0.

Heisenberg applied these considerations to the anharmonic oscillator

and to the harmonic oscillator. For the linear harmonic oscillator

he demonstrated the existence of semi-quanta which it had been necessary
to assume for the explanation of certain peculiarities of the structure

of spectra (Katzer) ; thus he established the formula

n

1 Zeitschr. fur Physik, Vol. 33, 1925, p. 408.
2
Naturw., Vol. 13, 1925.
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which Schrodinger was to obtain, for his part, with the help of wave
mechanics.1

Heisenberg then treated the case of the " rotator
"

(a particle
of mass m describing a circle of radius a with constant angular velocity

CD). Here the condition (4') is written in the " classical
"

field (this

in the sense of Bohr's dynamics) in the form

h = 2nm (a
2
co)an ^ '

and the quantum analogue is

h = 2nm
{
a2co(n + 1, ri)

a2
co(n, n 1)} .

Whence
, , x h(n 4- const)

a>(n, n 1)
= -A_J-

51 2n ma*

or, by the introduction of the normal state n ,

/ i\ hn
o>7i, n 1

Here the energy has the value

and the frequency condition takes the form

/ 2 + n +
1\

Again there appear the semi-quanta, whose existence it had been

necessary to assume in order to account for certain peculiarities of

the structure of spectra.

2. INTRODUCTION OF " MATRICES "
(BORN, JORDAN).

We have retraced the inductive method by which Heisenberg,

proceeding by analogy, attempted to construct a new mechanics of

quanta based on a correspondence with the classical field. At this

point there intervened a fruitful cooperation of the physicist with

two mathematicians. Born and Jordan remarked that the mathe

matical tools which Heisenberg introduced were "
matrices,

" which

have a non-commutative law of multiplication. Further, these matrices

were " hermitian
"

matrices.2

1 See above, p. 566.
2 Zeitschr. fur Physik, Vol. 34, 1925, p. 858.
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A matrix is denoted by the symbol a = a(n, m) and represents

tbe infinite array

a (0,0) a (0,1) a (0,2) ...'

a(2,0) a (2,1) a (2,2) ...

Addition is defined by

a = b + c where a(ra, m) = 6(n, m) + c(n, m)

and multiplication by
00

a = be where a(n, m) = V 6
(re, fe) c(fc, m).

fc=

The second rule is described by the epithet
" Zeilen mal Kolonnen.

"

Since this multiplication is associative, distributive with respect

to addition, but not commutative, in general ab differs from ba. If

ab = 6a, the matrices a and 6 are said to be commutative (vertauschbar) .

The unit matrix is defined by 1 = dBfm with dn , m = if n ^ m,

and by <5n , n
= 1.

This matrix commutes with all others, oral = la=a.
The matrices introduced in dynamics to represent the coordinates

of position q and the Poisson-Hamilton momenta p are written

q
=

p = (q(n,m)e
zmv

(-*).

These matrices must be hermitian, so that

q(n, m)q(m, n)
=

[q(n, m)]
2

v(n, m) = 7>(m, n).

In general a matrix g, a function ofp and g, will have a derivative

with respect to the time equal to

g'
=

2m(v(n, m)g(n, m)).

If v (m, n) ^ for n ^ m, it is seen that the condition g'
= requires

that g(n, m) = dn^ ng(n^ ri),
or that g must be diagonal.

We shall not delay ourselves further with the justification of the

matrix calculus, but shall immediately present the framework which

Heisenberg, with the collaboration of Born and Jordan, achieved,

By comparison with the original presentation (above, 1) the simplicity
of this will be apparent.
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3. FORMULATION OF MATRIX MECHANICS BY HEISENBERG, BORN AND

JORDAN.1

Heisenberg starts from Bohr's fundamental postulate The energy

of a mechanical system can only take discrete values Wm, Wn, . . .

which are related to the frequency of the radiation emitted by the

system by Planck's relation

(a)
hvm, n

= Wm Wn .

Each frequency is thus associated to two energy levels. Bohr's

postulate is evidently in agreement with Ritz's purely experimental

combination principle, expressed by the relation

Vm, p + Vp,n
= Vm,n>

At this point Heisenberg recalls the development of the quasi-

periodic systems of classical dynamics in Fourier series,
2 of the form

E n fc 2ni (v^i -1- j> ar, + . . . + vnrn}iD*Tv ...m
e

where
dH dwk

<
b

) ^a/r-*-
We recall that Jk is a phase integral and wk the angular variable con

jugate to J^
Heisenberg assumes that the equation (a) is the quantum analogue

of the classical relation (b).
3

Therefore if it is required to introduce the optical frequencies *>m, n

in the development of the quantum coordinates in the same way as

the mechanical frequencies vk are introduced in the classical theory,

one may write

?*
= Dk

m, n

Thus each coordinate is represented by a hermitian matrix. We
remark that the rules of this matrix calculus are in accord with Ritz's

combination principle.

Differentiating the matrix qk with respect to the time and taking

account of Bohr's postulate, it follows that

dqk __

dt
~

n
q
k

JOT, i

1
Cf. Zur Quantenmcchanik, II, by BORN, HEISENBERG and JORDAN, Zeitschr. ftir

P/tysifc, Vol. 35, 1926, p. 557.
2 See above, Chapter III, p. 543.
3 At least for those systems, which are the only ones considered here by HEISEN

BERG, for which the Hamiltonian H does riot depend explicitly on the time.

37
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But, by means of the discrete values of the energy the diagonal

matrix
fr jn, n :=:= rr mOm, n

can be constructed, so that the quantum equations of motion take the

form

on introducing the product of the matrices W and qk .

4. DlRAC's FORMULATION.

We return to the year 1925. The reading of Heisenberg's original

paper, which we have analysed in 1, inspired Dirac l with the idea

that the equations of classical analytical mechanics were in no way
deficient, but that only the mathematical operations that were used

in the attempt to deduce physical consequences from them required

modifications. Thus inverting the problem, Dirac sought to what

algorithm might correspond, in the classical field, a quantity like

xyyx
in Heisenberg's sense.

We shall confine ourselves here to giving an outline of Dirac's paper,

the reader can refer to the original for the details of the calculations.

In quantum algebra, Dirac adopted the same rides as Heisenberg,

namely
{
x + y }(nm) = x(nm) + y(nm)

xy(nm) = x(nk)y(km)

which generally brings about the non-commutativity of the multipli

cation.

He granted that the quantic derivation satisfies the two rules

> 5 < + - +

the order of x andy being safeguarded in rule (II).

The first rule (linearity) implies the possibility of the development

dx \^
(nm) } a(mn; n'm')x(n'm').

n'm'

1 The Fundamental Equations of Quantum Mechanics , Proc. Roy. Soc., A, 1925,
Vol. 109, p. 642.
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Dirac exhausts the algebraical consequences of the substitution of the

above development in the two numbers of the equation (II) and arrives

at the formula
dx = oca ax
dv

in which the products are to be taken in the sense of Heisenberg.

Dirac then seeks the classical analogy of the quantum expression

xyyx
by considering the case of the great quantum numbers, or more exactly,

the case of quantum variables such as x (ra,
n a) in which TI is very

large compared with a, that is to say in the borderline case of the corre

spondence of Bohr. He arrives at the remarkable conclusion that the

difference xy yx corresponds to the product by (where h is

Planck's constant) of the Poisson brackets of the functions x and y as

understood in classical mechanics,
* and he thus writes

xy -yX = l

(x,y].*

In the synthetic statement which he was to give later of quantum

mechanics, Dirac omits the intermediaries ; he starts from the canon

ical equations of classical dynamics

^ = _
dt

~~

dpr dt dq/

By means of the Poisson brackets he writes them in the form

More generally, for any variable f which does not depend explicitly

on the time, he obtains

_ -

dt
~~
Zj \dqr

*

dt
^~

apr

*

dt ) Lj \dqr dp r dpr dq

The rules

[fi + fell = [fifl] + ffa^l

(a) [fi^^] = fi[^^ + [fi^]f2

(b) [f, q^J = [f ^il ^2 + *h [f flJ

1 See above, Book IV, p. 385.
2 We have respected here the notation [ ] used hy DIBAC, Instead of POISSON s

notation ( ).



580 THE PRINCIPLES OF THE MODERN MECHANICS

are valid in the classical field and in this field the order in which the

factors |19 |2 an(i *7i *7a appear is evidently irrelevant. But it can

be agreed to write the formulae (a) and (b) without ever inverting this

order. Thus, using either (a) + (b) or (b) + (a) to calculate the

expression

[flf2%%]

and identifying the two results obtained, it is found that

[fu *?i] (fa % % 2)
==

(fi %. % fi) [?a> i7sJ
-

Since the quantities fx, f2, ^ % are arbitrary ones it appears that

in a general way, for any two variables, the ratio

has the properties of a universal constant. Dirac supposes this constant

* ih ,

equal to , so that

(1) &] ?7f
=

[I? ^]

Thus the symbol [, rj\
can be defined without the agency of a system

of canonical variables.

In classical mechanics

[qr, qs]
= [pr, pa]

==
[qr, ps]

= Sr3 .

Dirac assumes that these relations are still valid in quantum mechan
ics. With the definition of "

quantum brackets
"

this leads to the

quantum conditions

qrqs q*qr =

(2) {-**-

These conditions, with which it is appropriate to associate the

equations of motion for each variable which does not depend explicitly
on the time, and which are written as

thus take on a purely algebraic character.

The equations (2) and (3) were obtained by Dirac as early as 1925,
in the original paper whose principal features we have analysed at the
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beginning of this paragraph. In this connection the author wrote,
" The

correspondence between the quantum and classical theories does not

so must rest on their asymptotic agreement when h -* as on the

fact that the mathematical operations, in the two theories, usually

obey the same rules.
"

Therefore Dirac's point of view was essentially

formal.

We can only emphasise the remarkable achievement of such an

abstract intuition and the part played in unifying an aptly chosen

symbolism.

B. ANALYSIS AND INTERPRETATION

la. ON THE ORIGIN OF QUANTUM MECHANICS IN HJEISENBERG's SENSE.

The evolution with which we are concerned was extraordinarily

rapid. Heisenberg's first paper (summarised in 1) is dated 1925.

It is placed between Louis de Broglie's thesis (1924) and Schrodinger's
first papers on wave mechanics (1926). Finally, Dirac's name appeared
in the Proceedings of the Royal Society as early as 1925, before the

paper of Heisenberg, Born and Jordan which has been referred to in 3.

Louis de Broglie's wave mechanics evidently sprang from an inde

pendent body of thought. Heisenberg's quantum mechanics, wholly

inspired by what the author himself called the "
Kopenhagener Geist

der Quantentheorie
"

the teaching of Bohr was at first completely

independent of wave mechanics.

That it should be possible that these two streams of thought
concerned with corpuscles and with quanta could be fused into

a single doctrine was a fact that Schrodinger recognised in 1926. This

fact, to which we shall have occasion to return, in no way prevented
the wave and quantum disciplines from being, at their creation, com

pletely distinct.

The reader will now appreciate why we have devoted a considerable

time to Bohr's theory which is now called " the old quantum theory.
"

Not only does this theory have an unquestionable historical value,

but it was the source of the stream of quantum mechanics which

Heisenberg inaugurated.
Bohr's correspondence principle was a connection of an asymptotic

kind, for large quantum numbers, between his quantised theory and

classical electromagnetic theory. Heisenberg's goal, and his achieve

ment, was a true parallelism between the classical and quantum
domains a systematisation of Bohr's correspondence.
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Moreover, as Louis de Broglie has remarked, Heisenberg adopted
a "

phenomenological
"
attitude in the philosophical sense of the term ;

that is, he tried to dispense with elements that were not strictly 06-

servable, such as the position and the velocity or the trajectory of a

Bohr electron, and to confine himself to directly accessible elements,
such as frequencies and energy levels.

In this lies the profound originality of his thesis. It must be

acknowledged, however, that the appearence of matrices representing
the coordinates and momenta is, superficially, a departure from such

a programme. And again, in this respect it would seem that as long
as theoretical physics starts from experiment and returns to it, it

should not be forbidden, in the interval, the use in the calculation

of elements which are not themselves observable.

2a. COOPERATION OF PHYSICISTS AND MATHEMATICIANS.

Throughout the development of the modern physical theories

ofmechanics the'fruitfulness of a cooperation of physicists with mathema
ticians is apparent. It is true that, in the formation of generalised

relativity, Einstein had at his disposal, from the beginning, the ab
solute differential calculus and the geometry of Riemann spaces. But
Schwartzschild profitably introduced the mathematical technique of

celestial mechanics in the theory of generalised relativity, and also

in Bohr's theory.

Heisenberg's work provides a still more striking example at

the beginning he performed matrix calculations without being aware
of it. It is sufficient to compare the analyses of 1 and 3 of the

present chapter to appreciate the extent to which cooperation may
be valuable, and even necessary, in the formulation of the physicist's

thought.



CHAPTER SIX

DEVELOPMENT OF THE PRINCIPLES
OF QUANTUM MECHANICS

A. PRESENTATION

1. MATHEMATICAL IDENTITY OF WAVE MECHANICS AND QUANTUM
MECHANICS.

Wave mechanics, in the sense of Louis de Broglie and Schrodinger,
and quantum mechanics, in the sense of Heisenberg, are mathematically

equivalent. This essential fact was recognised by Schrodinger in a

paper included in Volume 79 of the Annalen der Physik (1926).

Schrodinger observes that the rules of calculation of Heisenberg's

quantum mechanics, applicable to functions of qk and pfc, are identical

with the rules of ordinary analysis applied to linear differential

operators which only depend on the q^,

To establish this correspondence, Schrodinger associated with every
function J? of the />& and

jfc
an operator which he wrote as

E*
1

..].

This is obtained by replacing each p^ in. F by the operator

To avoid all ambiguity it is supposed that the function jF is well

ordered and that it can be developed as a power series in p&
Starting in this way from the function jF, a matrix F^ will be

associated with it by considering a complete set of orthogonal and

normalised functions in configuration space ; that is, a set

U1 (X) U2 (X) Ug (*)...

such that

Jut (x) Uk (x) dx = due

where x denotes the ensemble of the variables qk .
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This matrix will have the form

F* = Jui(x)[F9 uk (x)]dx.

Schrodinger verifies that the addition and multiplication of well

ordered functions F or of their functions are expressed by the rules

of the matrix calculus for the Flk
.

Moreover, the operation

a a

applied to an arbitrary function merely reproduces this function.

Therefore the operation

prqr qrpr

reduces to multiplication by a constant K and the corresponding
matrix is

Kdlk .

To retrieve the commutation rules of quantum mechanics it is

therefore sufficient to put

x-A-tv. ;2m

Schrftdinger next shows, by a method that we shall not describe,
that the operators associated with the derivatives of every function
F reduce to

These operations may be represented by matrix operations once
the complete orthogonal and normalised set of functions ux, M2, . . . un,

... is chosen.

Consider a specific mechanical system which is defined by its

hamiltonian H(pk, qk), supposed suitably
"
symmetrised

"
in such a

way as to avoid all ambiguity in the order of the factors. In quantum
mechanics the equations of motion of this system are written in the
matrix form

dt ! \dpr!

dprV
k

__ _ idHVk

dt)
~~

\9Z/
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Here the differentiation with respect to the time has the significance

given by

To satisfy these equations by means of the operator calculus,

Schrodinger specifies the basic set of functions u t (#).

For this purpose he chooses as the basic set u^x) the eigenfunctions
of the normal boundary value problem associated with the partial
differential equation

(1) [H,y] + WV = Q.

Here ip is the unknown function and W, the parameter of the eigenvalues.

By the definition of the eigenfunctions and eigenvalues,

For the hamiltonian the matrix

Hik

=JJ M>(*) [H9 [uk (x)dx]
= Wkfui(x)uh (x)dx = Wk . dik

is deduced. Therefore Hlk
is a diagonal matrix such that

Hkk = Wk .

By matrix multiplication

Therefore

To return to the first of the quantum equation of motion it is now
sufficient to write

Wk - hvik

for all k.

The second of the quantum equations of motion would be retrieved

in the same way.
As the partial differential equation (1) is nothing else than SchrSdin-

ger's wave equation, the identity of wave mechanics and quantum
mechanics is established.
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Briefly, Schrodinger writes
"

If, in a specific mechanical problem, the system of algebraic

squations that relates the matrices of the coordinates and the momenta
,o the hamiltonian H is considered, then the solution of this system
that is, the equations of motion in the sense of quantum mechan-

cs is obtained by means of the choice of a specific orthogonal system ;

lamely, the system of eigenfunctions associated with the partial

lifferential equation which is the basis of wave mechanics. The
solution of the normal boundary value problem for this partial differen

tial equation is absolutely equivalent to the solution of Heisenberg's

dgebraic problem.
"

2, PROBABILITY INTERPRETATION OF SCHRODINGER'S WAVE FUNCTION.

Theprobability interpretation of Schrodinger's wave function appeared
In a paper of Max Born in 1926. This paper was devoted to the treat

ment of problems of impact in quantum mechanics.1

The author recalls that according to Heisenberg any accurate

description of phenomena in space and time would appear to be im

possible. According to Schrodinger, on the contrary, the waves of

Louis de Broglie, which serve as a vehicle for atomic processes, would
have some kind of physical meaning.

For his part, Born suggests a new interpretation which arises out

of a remark of Einstein on the relation between photons and wave
fields. Einstein said that waves only served to indicate the path
to the particle and, in this connection, spoke of a virtual or "

phantom
"

field (Gespensterfeld). This field determines the probability that a

photon, carrying energy and momentum, should take a certain path ;

but it does not, itself, have energy or momentum. To Born the part

played by the waves of quantum mechanics would, in an analogous
way, be that of a pilot (Fiihrungsfeld) .

This wave, represented by a scalar function ip of the coordinates

of the particles of the system and of the time, is propagated according
to Schrodinger's partial differential equation. But this wave only
determines the respective probabilities of the different possible tra

jectories for a single particle.
Born summarises this in the following statement, in which he him

self appears to see some evidence of paradox.
" Die Bewegung der

Partikeln folgt Wahrscheinlichkeitsgesetzen, die Wahrscheinlichkeit selbst

iber breitet sich im Einklang mil dem Kausalgesetz aus "
or, in other

1
Quantenmechanik der Stossvorgange, Zeitschr. fur Physik, Vol. 38, 1926, p. 803.
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words, the motion of the particles is in accordance with the laws of

probability, but the probability itself is propagated in accordance

with the principle of causality. This is the sense in which Born uses

the term probability waves (Wahrscheinlichkeitswellen).
Without going in to the technical details of the paper from which

we have taken the above interpretation, we shall give the principle
of Born's analysis.

The eigenfunctions yn , ^m, ... of the Schrodinger wave equation

are normalised by the relations

It is possible to develop every wave function in a series of the eigen
functions n 9 and this wiU have the form

The integral relation

leads to the consideration of the squares of the moduli of the coefficients

cn as the respective weights of each eigenstate ipn in the arbitrary state y>.

The evolution of the last state is governed by Schro'dinger's equation.

3. HEISENBERG'S " UNCERTAINTY RELATIONSHIPS. "

We now come to a paper of Heisenberg which has played an extrem

ely important part in the interpretation of quantum mechanics.1

Heisenberg believes that an intuitive understanding of a physical

theory has been achieved when it is posssible, in all simple cases, to

picture the consequences qualitatively and when it has been recognised
that this theory contains no contradictions.

" The intuitive meaning of quantum theory is still full of internal

contradictions ; notions borrowed from continuity and discontinuity
waves and corpuscles are opposed to each other. It would seem

that these contradictions cannot be avoided by means of the ordinary
mechanical and kinematic concepts.

"

It was for this reason that Heisenberg did his best to break away
from these concepts, to consider only numerical relationships between

measurable quantities. When this was accomplished, the mathe-

1 Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,
Zeitschr. fur Physik, Vol. 43, 1927.
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matical framework of quantum mechanics could be regarded as valid.
" But the necessity of a revision of the ordinary kinematical and

dynamical concept appears as an immediate consequence of the fund

amental equations of quantum mechanics. When we consider a

specific mass m we immediately associate with it, in a classical way,
a position and a velocity. But in quantum mechanics we have the

relationship

between mass, position and velocity. Therefore there are good reasons

to prevent us form using the terms 4

position
' and '

velocity
*

carelessly. ..."

Heisenberg gives the following simple example. If, in place of a

continuous trajectory possessing a tangent which defines the velocity,
we have a discrete series of points defining the positions, it is meaning
less to speak of velocity at a given place. For the velocity can only
be defined in terms of two successive discrete positions ; or, conversely,
to a given position there correspond two different velocities.

" Then arises the question of knowing whether, by a more thorough
analysis of the kinematical and dynamical concepts, it is possible
to resolve the contradictions indicated above and to arrive at an intuitive

understanding of the relationships of quantum mechanics. . . .

" If it is sought to define clearly what must be understood by
*

position of an object
'

(for example, an electron) it is necessary to

picture an experiment which enables this quantity to be measured. . . .

" For example, the electron will be illuminated and observed with
a microscope. The precision of this measurement is determined by
the wave-length of the light used. If a y-ray is used, it must be possible
to obtain all the precision desired. But the picture is not clear the

Compton effect. Every observation of the light scattered by the
electron involves a photoelectric effect. At the moment that its

position is determined, or at the moment that the photon collides

with the electron, the latter suffers a discontinuity of momentum.
This discontinuity is greater as the wave-length of the light used is

smaller ; that is, as the determination of the position is more accurate.
Therefore the more precisely the position is known, the less accurately
the momentum is known. The converse is also true. Here we see
the direct interpretation of the relation

(1) pg-jp-.JL.
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" If ql is the lack of the precision with which the position q is known
and Pi the lack of the precision with which the momentum p is known,
the elementary theory of the Compton effect provides the relation

(2) PiJi~A.
"

The determination of the position of the electron by a process
of impact with particles which are necessarily very fast would
lead to the same result.

We come to the concept of "
trajectory

"
of an electron.

" The

commonly used expression [in the old quantum theory] of trajectory
Sl

of the electron in the hydrogen atom is meaningless to us. To
measure this trajectory it would be necessary to illuminate this trajec

tory with light of wave-length less than 10~8 cm. But a single quantum
of light of this kind would suffice to throw the electron out of its tra

jectory. Therefore it is only possible to observe a single point of the

trajectory, . . . However, this experiment can be repeated with a

great number of atoms in the state S^ since, thanks to the experiment
of Stern and Gerlach, these atoms can be, in principle, isolated. Thus
would be obtained a probability distribution of the position of the

electron. According to Born this probability is yj*yj* if ip is the Schrod-

inger wave function in the state Sx .

"

Thus quantum mechanics, unlike the classical theory, has a statist

ical appearance. In a determinate state of the atom the phases are

essentially indeterminate. This is proved by the relation

T r
h

JW Wj =-.2m
in which J is an action variable and w an angular variable.

" When motions in the absence of forces are concerned, the word
4

velocity
' can be defined by an experiment. For example, the

object can be illuminated with red light and its velocity determined

by the Doppler-Fizeau effect apparent in the light scattered by the

object. The precision of the velocity will be greater as the wave-length
of the light used is greater. And consequently the position of the

object will be less precisely known, in agreement with the relation (2).
"

Heisenberg also discusses the measurement of the energy. This

is connected with the time by the relation

Et~tE = ~.2m
The imprecision of the energy, say El9

is correlated with the impre
cision of the time by the relation

Eco h.
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Heisenberg summarises all these discussions in the following state

ment
"
All the concepts used in the classical theory to describe a mechanical

system may still be defined in similar fashion in the atomic field. But
the experiments that use these definitions imply an uncertainty (Un-
bestimmtheit) when we wish to deduce from them the simultaneous values
of two quantities canonically conjugated. The degree of this uncer

tainty (whatever the couple of conjugate quantities considered may be)
is given by the relation (2).

"

Heisenberg thus interprets this result : all the experiments used to

define the words "
position,"

"
velocity," ... in the quantum theory

necessarily include the uncertainty characterised by (2) even when they
allow an exact definition of the separate quantities p, g, . . . If experi
ments existed which made possible a more accurate simultaneous deter

mination of p and q than that which the relation (2) allows of, the

quantum theory would be invalidated. The uncertainty established by
the relation (2) gives place to the verification of the relations of ex

change (1), without the physical significance of the quantities p and q
being modified. Basing himself on the Dirac-Jordan formulation,

Heisenberg demonstrates that there exists a logical connexion between

(1) and (2) [loc. cit., p. 180].
And Heisenberg concludes :

" We have not admitted that the quantum theory, unlike the classical

theory, is a real statistical theory in the sense that, from exact data, it

can arrive only at statistical conclusions. . . . Moreover, in all cases
where the quantities are simultaneously measurable, the classical

relations subsist wholly. But in the 4

strong
'

formulation (scharfe
Formulierung) of the law of causality,

ft The exact knowledge of the

present allows the future to be calculated ', it is not the conclusion but
the hypothesis that is false. We cannot in principle know the present
in all its details.

That is why any experiment or any perception (Wahrnehmen) consti
tutes a choice from a number of possibilities and a limitation of what
remains possible in the future. From the fact that the statistical char
acter of quantum theory is intimately connected with the imprecision
of all perception, it is possible to ask whether there is still concealed,
behind the statistical universe of perception (hinter der wahrgenommenen
statistischen Welt), a true

*
universe (wirJdiche Welt) in which the law

of causality would be valid. But such speculation seems to us to be
valueless and meaningless, for physics must confine itself to the descrip
tion of the relationships between perceptions. Further, the true

problem is characterised in this way since all experiments obey the
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quantum laws and, consequently the relations (1), the incorrectness of

the law of causality [in the sense explained above] is a permanently
established consequence of quantum mechanics itself.

"

4. EHRENFEST'S THEOREM.

Ehrenfest posed the question of how it might be possible, starting
from quantum mechanics, to return to the newtonian law of motion. 1

He replies to this question by starting from the Schrddinger's

equation
A2 3V , TTf \ -L ^-.-Z +U (*)v =-*$

for one degree of freedom, and the conjugate equation

fc
2 9V

, rr/ x * -LV
2 ft?

+ff<*)**-*-

If the mean value of the coordinate x is denoted by Q (t), so~that

f + oo

Q(t)
= xy*yjdx

J 00

and the derivative ~~ is calculated by taking account of the wave
at

equation and the boundary conditions, then the equation

TQ ih
f

+co
fy*-~ = y-~dx

at m J _ oo ox

is obtained after an integration by parts.
In the same way, another derivation yields

Ehrenfest expresses this result in the following way.
" Whenever

the dimension of the 6 wave packet of probability
'

y*^ is sufficiently

small compared with the macroscopic distances, the derivative of the

momentum of the centre of gravity of the wave packet, in the sense of

newtonian mechanics, is equal to the value of the force at the point
at which this wave packet is localised.

"

The discussion of the spreading-out of the wave packet of probability
in the course of time is a difficult question which was studied by,

among others, Kennard and Darwin.

1
Bemerkung uber die angentiherte Gultigkeit der klassischen Mechanik innerhalb

der Quantenmechanik, Zeitschr.fur Physik, Vol. 45, 1927, p. 455.
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5. DlRAC AND THE GENERAL THEORY OF OBSERVATION.

In this paragraph we shall follow the general theory of observation

with which Dirac introduced his Principles of Quantum Mechanics

(1929).

Dirac's fundamental concepts are those of state, observation and

observable.

The definition of state, because of its extension, is a tricky matter.

To say that a system is in a given state, after it has been suitable

prepared., is to give all the data concerning its structure, its position

in space-time and its internal motions. It is necessary to speak
of space-time and not of space alone because a state is relative to the

situation of a system during an unspecified interval of time the

evolution of a system which is free of perturbation is to be understood

as one state. The classical analogue would be the motion of a system
which is subject to given forces and starts from given initial conditions.

Therefore, if perturbation is excluded, the state continues to

exist indefinitely. The notion of perturbation is itself relative, for

the perturbing cause can be incorporated in the system. But it is

assumed that the perturbation which consists of preparing a system
in order to bring it into a given state has an absolute character or rather,

an intrinsic significance, as has the perturbation necessarily caused,

in general, by every observation made on a system in a given state.

Finally, it is assumed that it must be possible to consider any state

as the result of the superposition of two or more different states.

In this superposition both the "
weight

" and the "
phases

"
of the

component states appear.
We now come to the concept of observation. In general every

measurement performed on a system, which is previously prepared in

a suitable way, modifies the initial state of the system. The result

of an observation is, in general, incompletely determinate and the

repetition of an observation under identical initial conditions does

not produce a unique result. It is only possible, by means of a large
number of identical experiments, to infer the probability of obtaining
a given result. This relative indeterminacy is related to the principle
of superposition of states.

In general it is necessary to specify the interval of time which

passes between the preparation of the system and the performance
of the measurement (since one state is relative to space-time and does

not exclude a determinate evolution which is able to modify the result

of the measurement). Nevertheless, for certain states that are defined

as stationary, this interval of time is irrelevant.
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There is one case where the observation does not perturb the system;
that is, for which there exists a certainty, not a probability, of obtaining
a given result by means of this observation. Dirac assumes that

this is also true of the immediate repetition (after the perturbation

produced by a first measurement) of an observation which has given
a first result the second result is then identical with the first.

To appreciate the significance of the postulate of repeatability,
it is necessary to bear in mind that the second observation is not situated

on the same plane as the first to produce the same observation under
identical conditions it would be necessary to prepare the system anew
so as to eliminate the perturbation caused by the measurement. Then,
as a general rule, no more than a probability of obtaining a given result

would remain.

Two observations are said to be compatible when the probability
of obtaining a given result by means of the second observation is

not modified by the perturbation due to the first (that is, it is equal
to the probability of obtaining the given result at the beginning of

the experiment, before the first result is known). This property is

reciprocal.

The most important case is that of two or more compatible
observations which are carried out simultaneously ; n compatible
observations can be considered as one and the same observation.

If all of the greatest number of independent and compatible observations

which is allowed by the system are performed simultaneously, the final

state will be defined by this maximal observation independently of the

initial state. By repeating this maximal observation immediately
a complete and perfectly determined result is obtained with certainty,

according to the postulate of repeatability.
The analogue of a classical dynamical variable is a quantum

mechanical variable and it must be possible to consider it in an un

specified interval of time. The analogue of the instantaneous value

of a classical dynamical variable is called an observable. Every ob

servation, as in the classical theory, has the effect of providing number

corresponding to the value of each observable.

Given these principles, Dirac develops what he calls
" the symbolic

algebra of states and observables.
"

A state is represented by the symbol ip accompanied by an index

(%' Va9 * Vn) characterising this state.

The postulate of superposition of states is written

where the ct
- are real or complex numbers.

38
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The axioms of ordinary addition are valid for the symbolic addition

of different states. But y^ + ^ must be regarded as equal to yx (the

superposition of a state on itself reproduces the same state). More

generally cyx must be regarded as identical with y^ whatever the number
c (different from zero) may be and whether or not it is real or complex.

With the symbols y are associated the symbols y*, said to be the
"
imaginary conjugate

"
of the y, and given by

(c,* is the complex conjugate of ct).

A if and a y* of the same index represent the same state. The
addition of a y and a y* has no meaning. Only a product like y*y
has a meaning.

It is further supposed that ya*yr is the imaginary conjugate of

%*% and that %*yr is essentially positive. When yr*yr
=

1? it is said

that the ip are normalised.

The physical interpretation of the algebra of states is obtained

in the following way. Apply the maximal observation of the state yr
*

to the state ys . It is no longer certain that the result of this maximal
observation will be obtained on y)s . The probability of agreement of the

two states, or the probability of obtaining, with y,, the result of the

maximum observation which defines yr*, is

if yr
* and ys are normalised.

An observable is represented by a symbol a. The product a^
(or y*a) has the properties of a y (or a y*). It therefore represents
a state. Further

oc(cy)
=

c(ay) (c, number).

The addition of two observables is defined by

and is commutative and associative.

Multiplication is defined by

with the property of being associative and distributive. In general
this multiplication is not commutative.

The y*a follow the same rules. Moreover
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The quantities aa + a
2 , ax a2, and, in general, ip (a), Lave the properties

of observables.

The observable a can be defined by the knowledge of atp for every y.

If there is available a complete set of independent ipr such that every y>

may be a linear function of the yr, the OL% are sufficient to define a.

The connection between the algebra of states and that of observables

is obtained by putting

This describes the fact that if the system is in a definite state yv, the

measurement of the observable a in that state certainly gives the

(numerical) result a. This equation describes a pure state.

If a has the value a in the state yv, it is assumed that /(a) has the

value f(a).

The number

conjugates an observable with two distinct states.

The number

yv* oc^v

only represents the mean value of a for a given state. In order to

have the exact value of an observable it is in general necessary to

conjugate it with two distinct states. It is assumed that yr*ocyv is on

the average identical with the mean of the results obtained by making
a large number of measurements of a in the state y)r where the system
is of course reprepared on each occasion in order to get rid of the perturb
ation produced by the observation.

We now confine ourselves to real observables. The equation

defines an eigenstate ip
of the observable a and an eigenvalue a of this

observable.

The eigenvalues are the possible results of a measurement carried

out on one observable. Because of the postulate of repeatability,

the equation above is satisfied when, in place of y, the symbol of the

state immediately after the observation is introduced, the observation

having given the result a for this state.

Two states yx and y2 are sa^ to ^e orthogonal if %*% == ^2*^1 == ^

(zero probability of agreement). It is shown that the eigenstates

corresponding to different eigenvalues of the same observable are

orthogonal a result which is required by physical considerations.
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The symbols representing eigenstates belonging to different eigen

values of the same observable are independent. It is assumed (postulate

of series development) that every symbol ^ can be developed in a series

of the eigensymbols of an arbitrary observable.

A state y) can be a simultaneous eigenstate for two observables a

and {3 ; that is

ay>
=

ay} and /fy> by)

whence

(a/9 j8a)y
= (ab ba)y>

= 0.

The existence of y) when a and /3 themselves do not commute is

exceptional. On the other hand, if a/? /?a
= 0, the simultaneous

eigenstates of a and ft may be used to develop an arbitrary y; in a series.

Conversely, if this happens, a and ft commute.

With the help of these properties it is natural to consider an arbitrary
function of commuting observables as a unique observable. This is

expressed by

/(a, /?, y, ...J^a.j.c ... =/(a, 6, c, . ..), ft, c...

Then for each set of eigenvalues of the maximum number of inde

pendent and commutative observables there is only one simultaneous

eigenstate. Each state is then determined by the set of eigenvalues
of the complete set to which it belongs.

The physical significance of the symbolic algebra is also expressed

by general theorems concerning probabilities.
To seek the probability of obtaining a given result by the meas

urement of an observable a in any state, the mean value

of /(a) for that state is taken as the starting point.

By developing

in terms of the eigenstates of oc corresponding to the eigenvalues a,

the relation

mean value of /(a) = 2/()^a*^
a

is obtained.

According to the usual definition, if P (a) is the probability of finding
the result a, the mean value of /(a) will be

Therefore

P(a) =
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Clearly the relation

may be verified.

If, on the other hand, yj is an eigenstate corresponding to the value

a, the probability that a should have the value a is equal to unity

(pure state).

Dirac then turns to the representation of the preceding symbols
in terms of ordinary numbers.

If y)p is the general member of a complete set of independent states,

then every state y may be represented uniquely by

The ipp are said to be the fundamental states of the system. Each
state y is thus represented by a series of numbers ap .

To represent an observable a, the symbol <xipq
is developed as a

series (ipq being one of the fundamental states) in the form

p

Thus each observable is represented by a matrix of two indices. The
observable a + ft is represented by a

pg + a
/>2 ; the observable coc by

cOpg and finally, by definition,

Now

(a/?) Vq = a(/%) = a
pr

Thus Heisenberg's rule is retrieved.

An ordinary number c is represented by

Whence cpp
= c and c

pg
=

; say cp^
= c<5

pg (diagonal matrix).
The law of multiplication of the representations of an observable

and a state is obtained by writing

(development of

= a 2] apyjp (development of ip)

p

Therefore

fe
g
= S agpp

p
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Similarly the relation ay = ay is written as

%ctpq aq
=aap .

3

Every relation between abstract elements of the symbolic algebra

can thus be expressed by a relation between the representative numbers

of these elements.

The y* are treated in the same way by means of the relations

v* = S <WP
* and %>*a = 2 ap**

P *

If it is desired that the fundamental tp and y>* (which are not in

general imaginary conjugates) should give the same representation,

it is necessary that <z
pq
=

cc^.
Then

In order that this should be true for all a it is necessary that

%>*% = %>*%> = l say VP*V*= <W

A. representation in which the y* and the ip provide the same repre

sentative numbers and are, if of the same index, imaginary conjugates,

is said to be an orthogonal representation. If a is a real observable, then

(t/>p*OCyr)*
= ^r*a*% = (<Xrp)*

(ocrj,)*
= y.pr .

The matrices in an orthogonal representation are therefore hermitian

(this is the case of Heisenberg's matrices).

The preceding analysis shows that the number offundamental ip is at

most infinitely denumerable. But the total number of independent
states may be non-denumerable. In such a case each fundamental ip

must be characterised by a continuous index p ; and for any state

y)
=

J apypdp (instead of apipp).
p

To represent a fundamental state in these circumstances, Dirac

makes use of the " 6 function,
" which he defines by

oo

6(x)dx= 1

GO

d(x)
= if x ^ or xd(x) = 0.

This function has the properties

p+oo

f(x)d(x-a)ds=f(a)
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p+oo

I
- 00

r+oo

f(x)
y (

x a)dx = f (a) .

I -oo

Thus the fundamental state yq
will be given by

1 +00

% :

r
am<

-rJ - c

and, more generally,

a^g
== $VPdp<Zpq (representation of an observable)

(0M = IQWMr (product of matrices)

Cjp9
=

cfl(jp q) (representation of an ordinary number)

yfyp d(p q) (relation between fundamental states).

Dirac generalises these representations to include situations in

which the continuous index p must be replaced by several indices

Pi> P& - P which can take all possible values in a certain domain

in a space of n dimensions.

He next considers representations where each fundamental y is a

simultaneous eigenstate of a set of real commutative observables

{ , ^2,
... f If this set of observables is supposed complete, the

fundamental y are orthogonal. Each observable ft is represented by

a diagonal matrix (continuous if necessary) whose non-zero elements

are the eigenvalues of this observable. Each fundamental y is itself

determined apart from a phase factor of unit modulus.

If two representations are considered, one based on the eigenstates

of and the other on the eigenstates of the other variables ??,
it is

natural to ask how it is possible to pass from one representation to the

other for an arbitrary y-

This is accomplished by the consideration of the transformation

functions (? \
7?')

or (vf ')

The square of the modulus of these functions is a probability am

plitude (Jordan) and the relation

!(rh')l
2 = l(rh')(^'U')l

= l(Vli')l
2

expresses the fact that " the probability that the f should have the

values I' when it is known that the 17
have the values ??'

is equal to

the probability that the Jj
should have the values rf when it is known

that the | have the values f .

" This applies when the | and the
77

have discrete values. When the | or the
-r\
have continuous values, the

interpretation requires more care. Thus
j (' 1 17') [

2 df is a measure of
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the probability that the | should be contained between f
' and '+ d '

when it is known that the
77
have the values rf'. If the

77 themselves

take continuous values, the preceding probability can only be relative.

6. WAVE FORMULATION OF THE GENERAL THEORY OF QUANTISATION

(Louis DE BROGLIE).

In the last paragraph we have presented the essentials of Dirac's

formulation without dealing with its applications ; this formalism can

captivate or repel according to the reader's bent.

If the effort of abstraction which it demands is accepted, the logical

vigour with which it unfolds cannot fail to be admired. If they are

reflected upon, the premises on the subject of observation appear
more natural even though appreciably more complicated than the

classical ideas based on the independence between the observer and
the system observed.

The mathematical tool itself has been specified by several authors

(von Neumann, Weyl). In this connection it has been remarked
that Dirac had worked with Hilbert spaces without knowing it, which

may be considered as additional evidence of his originality.
It may however be useful, as Louis de Broglie has done, to approach

this same general theory of quantisation by starting from the more
intuitive point of view provided by wave mechanics, and by making
use of the operational method that Schrodinger used, as we have seen,
to establish the identity of wave mechanics and quantum mechanics.

Here we shall follow Louis de Broglie's Theorie de la Quantification
dans la nouvelle Mecanique.

1 We consider complex functions f(x, j, . .
.)

in any number of variables *, y, . . . and suppose that they are defined
in a certain domain D of these variables. The functions are supposed
square summable in such a way that their norms, of the form

can be defined.

If N(f) = 1, / is said to be normalised (or standardised).
The scalar product of two functions f and g is written as

and satisfies an inequality of the Schwarz type, of the form

\(f,g)\*^N(f)N(g).
The functions / and g are said to be orthogonal if

1 Paris (Hermann), 1932.
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Every function /can be represented in the following way as a vector

in Hilbert space.
Let 9^, <p<i,

. . .
9?n , . . . be an infinity of orthogonal and normalised

functions of the variables #, y, . . . defined in the domain D. Let y>

be a function of the same variables defined in the same domain. The

quantities

are called " the components of ip in the system whose basis is formed

by the <pt
."

If the system of the
<pi is complete, y can be developed as a series

in the g?l9 to give

Whence

which supposes the convergence of the series on the right-hand side.

The matrices are introduced in this theory by means of operators.

Let A be an operator (linear) which is expressed algebraically as a

function of the coordinates and the derivatives with respect to these

coordinates and let <p t be a complete basic system of orthogonal and

normalised functions. If the operator A is applied to one of the basic

functions g? t, the result, A((p^ is a function which can be developed
as a series in the < l9 so that

=
J]

aki(pk

with

The CM are the elements of a complex matrix corresponding to the

operator A.

More generally, if ip is a function of the Hilbert space, then A(y)
is another function of the Hilbert space. In the basic system <>> the

relations

are written so that the components of A(^) are

The operation ^t(^) has an intrinsic significance in the Hilbert

space, but the matrix aki which represents this operation depends
on the basic system chosen.
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The operator A is said to be hermitian if the corresponding matrix

is hermitian in all basic systems. Wave mechanics is only concerned

with hermitian operators.
The equation

A(<p)
=

acp

in <p only in general admits finite, uniform and continuous solutions which

vanish at the boundaries ofD for certain real values of the real constant a.

These solutions are said to be the eigenfunctions of the operator A.

However, if D is infinite it may happen that there is a continuous

sequence of eigenvalues a forming a " continuous spectrum.
" The

corresponding eigenfunction must strictly speaking be written as a
64

proper differential
"

in the interval Aa of the continuous spectrum

(Weyl, Fues), of the form

LMa
)
rfa -

Nevertheless it is possible to use the artifice of the Dirac <5-function

for the study of continuous spectra.
Given these principles, wave mechanics can be reduced to the

following two principles

1) Principle of quantisation.
" To every mechanical quantity

there corresponds an operator ;
if the value of this mechanical quantity

is accurately measured, this value can only be one of the eigenvalues
of the corresponding operator.

"

2) Principle ofspectral decomposition.
" Let there be a mechanical

quantity and a corresponding operator A. If the eigenvalues and the

eigenfunctions of this operator are denoted by af and 9^ and if the

wave function (normalised) developed in terms of the <p is of the form

v ^ S CI<P

the probability that an observation should attribute a value a
;

to

the quantity considered is

r r .* _ r I 2
Git* - Ci

I

.

" If the development of yj is of the form

V Jc(a)9?(a)Ja,

the probability that an observation should attribute a value contained
in the interval a, a + Aa to the quantity considered is

The second statement completes the first. The principle of quant
isation indicates the possible values of a mechanical quantity the

principle of spectral decomposition gives the probabilities of the different

possible values.
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7. THE RELATIVISTIC AND QUANTISED ELECTRON IN DlRAC'S SENSE.

The relativistic treatment of quantum mechanical problems has

proved to be very difficult. The only problem that will concern us

here is that of an electromagnetic field. We shall follow Dirac's

presentation.
1

The author starts from a representation in which the cartesian

coordinates x^ y( , zt of the particle at the time t are diagonal. The

representative of a state is then a function (xt, yt9 zt
\ )

of three variables

depending on the time or, alternatively, is a function (x9 y,z9 1\)
of the

four space-time variables. It is certainly possible to differentiate such a

function so as to define operators like ; but if this operation is applied
ox

to a wave function the result is a function which does not, in general,

satisfy the wave equation. Consequently this operator cannot be

regarded as an observable. Nevertheless Dirac introduces the operators

__ ^ 3 __ ife 3
___
~ ^ ^

tpr_ ih d
px ~~2^Tdx Py

~~~2^~lty
p* =

~lhtfa zftdl

and applies the algebraic rules of the calculus of observables to them.

But quantities like y*P*V* and ip*Wip are no longer numbers.

In the absence of field the ordinary relativistic hamiltonian is written

H= W=c(m c* + Pl + p*+p*r*.

If the p and PFare considered as operators, the preceding equation

implies the wave equation

On the other hand SchrSdinger's equation, obtained by means of

the generalised Jacobi equation, is written

/I \ I f> 9 9 9 \

(b) T "V2
pi p$ p2

, v =

The last equation, quadratic in W, is invariant from the relativistic

point of view. But it is not satisfactory from the quantum point of

view, which requires linearity with respect to the operator . The
ut

equation (b) allows of all the solutions of (a), But only those solutions

of (b) which correspond to positive values of the energy satisfy (a).

1
Principles of Quantum Mechanics, Chapter XIII. For tlxe original, see Proc,

Roy. Soc., Vol. 117, 1928, p. 610, and Vol. 118, 1928, p. 351.
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Dirac looks for an equation similar to (a) and (b) which may be

linear in the operator like the first and invariant under a Lorentzr
dt

transformation like the second. With this in view he writes the

equation
( W }

(c) < + oc*p* + ctypy + a*p, + ft
> y = 0.

This equation is linear in W and the operators p and contains four

coefficients a*, ay, KS and /? which commute with Wand with the operators

p and which obey the rules of the calculus of observables.

By multiplying on the left by

-- a*JP* KyPy a*P* /?

and taking account of the commutability conditions which have been

supposed, it is found that

C

Putting /?
= oc m c, a sufficient condition that (d) should be identical

with (b) is that

cx.^ + oc/oci
=

2dji with i, j = x, y, z or .

Like equation (b), the equation (c) allows of negative energy solutions

although W., which is here purely kinetic, is necessarily positive. We
shall neglect them for the moment. Putting

a* = ^cr* <x.y
=

QiCFy cts = $& a =
g2,

the equation becomes

w - -* i

T + ^^' **) + ^2^0^ > V = 0,
c

J

where a is the spin of the electron and (a, p) a scalar product.
In the presence of an electromagnetic field, Dirac assumes that

the wave equation can be obtained, in accordance with the accepted
rule, by

7
- w

-,-*, W * A e -
replacmg and p by --1-

- A and p + - A respectively. The

quantities A and A are the scalar and vector potentials of the field.

Thus in the presence of a field Dirac writes

\

--h-^o + 0i(tf,P +-^) + 2moC U= 0.
(

C C \ C J J
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The preceding equation is invariant under a Lorentz transformation.

In the presence of a field the Schrodinger equation (b) becomes

W
(b,)

It is natural to try to obtain equation (bx) by multiplying (ex) on

the left by
W e - - e

By means of the algebra of observables and Maxwell's equations,
Dirac obtains the equation

(f)
- + o-p+ H c-,H)-,)

where H and E denote the magnetic and electric fields.

The equations (f) and (b^, unlike the corresponding equations for

a free particle, are no longer equivalent. In the first approximation
this result can be interpreted by saying that the electron has a magnetic

hea , , / * . \moment-- and an electric moment (purely imaginary)vr J & Jf

Returning to the negative energy solutions, Dirac observes that

in ordinary relativity, without quantisation, the continuity of the

values of the dynamical variables implies that if W + <^o is initially

positive (then it is equal to m c2 at least) it can never later become

negative without a sudden change of at least 2m c2 . In quantum
mechanics on the contrary nothing excludes such a transition, so that

the interpretation of the negative solutions is necessary.

In a suitably chosen representation of the a (a*, ay, aa real and oc

purely imaginary) every wave function which is the complex conjugate
of a solution of the equation

(ej
c c

satisfies the equation

(g) 1
---h -4 + E *

\
P* +- A*\ aoo c U* = 0.

(
c c

xys \ c j i W e

If a solution of (e^ corresponds to a negative value of -| A ,

the complex conjugate solution of (g) corresponds to a positive value

W e
Of --- ^ . But (g) is deduced from (e) by simply replacing e by e.
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Therefore the complex conjugate of a negative energy solution of (e)

itself must be interpreted as representing the motion of a particle of

charge + & ha the same electromagnetic field.

"
Therefore the undesirable solutions of (e-J are connected with the

motion of an electron of charge + e.
"

Thus Dirac was led to conclude that " the negative energy solutions

of the wave equation (ex) are related to the motion ofprotons or hydrogen
nuclei, although there still remains the difficulty ofthe large mass difference"
He made the hypothesis that almost all the negative energy states

were occupied, an electron in each state, in accordance with the Pauli

exclusion principle.

Only a vacancy would he detectable in this homogeneous distribution

( e, W) and would appear with the properties (+ e, + W). In the

contemporary state of experimental knowledge, Dirac thought that this

vacancy would be a proton. A perfect vacuum would then be a region
where all positive energy states were unoccupied and all the negative

energy states, occupied.
Dirac added,

" the exclusion principle will come into play by pre

venting a positive energy electron from jumping into a negative energy
state [occupied]. It will still be possible, however, for such an electron

to fall into an unoccupied negative energy state. In this case an electron

and a proton would disappear simultaneously, their energy being
emitted in the form of radiation. Very probably such processes actually
occur in nature.

"

8. THE DIRAC ELECTRON AND EXPERIMENT.

We have seen that Dirac's theory introduces a magnetic moment
associated with the electron. Here, in a new way, is confirmation
of earlier hypotheses whose origins we must recall.

Experiments had revealed that the fine structure of optical and X-

ray spectra was much more complicated that that calculated by Sommer-
feld by means of the relativistic treatment of Bohr's theory. In order
to account for the multiplicity of the lines observed it was necessary to
make use of an "

internal
"
quantum number of an empirical kind.

Bohr's theory also failed to account for the anomalous Zeeman
effects and the gyromagnetic anomalies. This theory, considering
the electron as a point charge, attributes to it a proper angular mo

mentum due to its orbital rotation. To this corresponds, apart from
Tip

sign, a magnetic moment"- (called the Bohr magneton).
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In 1925 Uhlenbeck and Goudsmit suggested attributing to the

electron, likened to a small charged sphere, a rotational velocity of

its own and consequently an intrinsic angular momentum (spin) having

the value + . To this corresponded a magnetic moment whose

absolute value was that of the Bohr magneton.
By means of this hypothesis Thomas and Frenkel succeeded in

resolving, in terms of the old quantum theory, many of the difficulties

thrown up by the experiments on fine structure and the anomalous
Zeeman effects.

The application of Dirac's analysis also allowed the theory of fine

structure to be put in order. But it is in the interpretation of negative

energy states that this analysis most strikingly anticipated experiment.
As early as 1932 Anderson demonstrated, by means of a Wilson

cloud chamber, the existence of high energy positively charged particles
in cosmic rays. Blackett and Occhialini, using Geiger counters to

control the expansion in the cloud chamber, succeeded in obtaining
several photographs of the trajectories of charged particles in cosmic

radiation.

In 1933 Anderson, comparing the density of ionised drops along
the trajectories of positive and negative particles of the cosmic radiation,

came to the conclusion that the charge of the positive particles was

equal, to within 10%, to + e and that, within 20%, their proper mass
was that of the ordinary electron. At the same time (February, 1933)
Blackett and Anderson decided on the existence of the positive electron,

which is often called the "
positron

"
or "

positon.
"

Shortly afterwards F. Joliot and I. Curie achieved the creation

of positive electrons, which appeared in pairs with ordinary electrons

during the bombardment of heavy atoms (lead for example) with

very penetrating y-rays of energy greater than 2m c2 . The process
is the following one

y-ray on heavy atom = electron + positron + 2m c2

2.6 X 106
e. v. 1.6 X 106 e. v. 1 X 106 e. v.

(electron volts) (kinetic energy)
^

, *
\

The kinetic energy is unequally shared between the electron and the

positron, the latter taking the greater part because of the repulsion
of the nucleus of the heavy atom, which naturally increases with the

atomic number. On the other hand, the energy of the incident

radiation cannot be less than 2m c2, which is predicted by Dirac's

theory.
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If, after the positive electron has been created, it encounters matter,
which contains a total of 3 X 1023

negative electrons per gram whatever
the substance may be, there is every chance that it will dematerialise

by encountering a negative electron. For this reason the mean life

of the positive electron is 10~9 sees in water and 10~6 sees in air. There
fore the positive electron is only stable in a vacuum which explains

why it was first discovered in cosmic rays.
If it does not have an appreciable kinetic energy the pair of electrons

represents an energy of 2m c2 . It creates two photons having equal
and opposite momenta and energies of m c2 according to the process
of dematerialisation

F. Joliot and I. Curie also observed positive electrons oftransmutation,
which were not associated with negative electrons, in the interaction

of a-particles (helium nuclei) from polonium and light atoms. Neutrons
and protons were also produced. Here the process is

aluminium oc-particle silicon proton neutron positron
nucleus atom

The indices which appear above the atomic symbols are the mass num
bers M and the indices below are the atomic numbers Z.

B. ANALYSIS AND INTERPRETATION

la. ON THE IDENTITY OF WAVE MECHANICS AND QUANTUM MECHANICS.

It is of some interest to reproduce here Schrodinger's commentary on
the demonstration that we have made the subject of 1.

" If one reflects on the extraordinary diversity of the starting
points and of the conceptions that characterise Heisenberg's theory
on the one hand and the theory which we have called 6 wave '

or
*

physical
'

mechanics on the other, one must confess that it is very
strange to record that these two new quantum theories lead, at least for
the particular cases so far known, to the same results, even when these
results differ from those that the old quantum theory gives. In writing
this, I think especially of the intervention of half-integer quantum num
bers in the problems of the oscillator and the rotator. This is, indeed,

very remarkable because everything starting point, conception,
method, mathematical apparatus used appears radically different.
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" It seems that these two theories depart from classical mechanics
in diametrically opposed directions. In Heisenberg's mechanics the

continuous classical variables are replaced by systems of discrete

numbers depending on two integral indices (matrices) and which
are determined by algebraic equation. The authors themselves call

their thesis 6 the true theory of the discontinuous.
*

" On the contrary, wave mechanics shows progress with respect
to classical mechanics in exactly the opposite direction that is, towards
a theory of the continuous.

" This theory replaces the mechanical phenomenon which is

described classically by a finite number of functions satisfying a finite

number of ordinary differential equations by a continuous field of

phenomena in configuration space, governed by one partial differential

equation which arises from a variation principle. This variation

principle, or this partial differential equation, replace the ensemble
of equations of motion and quantum conditions of the old *

theory
of classical quanta.

'

"... I have indicated the intimate, extremely close, connections

which exist between Heisenberg's quantum mechanics and my own.

Formally, from a purely mathematical point of view, these two theories

are identical.
"

3a. RECIPROCAL LIMITATIONS OF THE VALIDITY OF THE CORPUSCULAR
AND WAVE-LIKE REPRESENTATION (HEISENBERG).

The fact of taking the wave-like representation to be entirely
correct provides us with the limitations of the corpuscular repre
sentation.

The particle is then represented by a packet of plane waves of

approximately equal wave-lengths. In order to construct this packet
of plane waves use is made of the property according to which the plane
waves may destroy each other by interference outside a field Aq as small

as is desired if there exist any having n + 1 wave length in this field,

Aq
n being appreciably equal to -~, in which lm is the average wave lengthAm
of the packet.

The oscillation ZU of the wave length in Aq corresponds therefore to
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We have then approximately

or AqAA > ..

; 2 = A -

Am

Now, from L. de Broglie's relation

h
p = mv =

A

Therefore

. hAh ,

Ap -y-gT
an<*

Am

Q.E.D.

Inversely, the fact of taking as correct the corpuscular represen
tation provides us with the limits of undulatory representation.

Let us see, with Heisenberg,
1 what knowledge we can have, in

these conditions of the amplitude of a wave, of the intensity of an
electric or magnetic field, for example.

We consider in space a small element of volume dv = (<5Z)
3

. In dv

we have for the energy IF and the quantity of motion P of the electro

magnetic field the values

-

on

p = dv ^- E A H.

Since a priori, in the hypothesis we have taken, there is no lowest

limit for <5Z, and in consequence for (5i>, it would seem that W and P may
be made as small as possible.

But we know, from the corpuscular theory, that the energy and the

quantity of motion are necessarily sums of discrete, finite quantities
hv

having the respective values, hv and . On the other hand any wave
c

length smaller than 61 will escape observation ; therefore the frequence
observable will have as a limit

hv<^ by Ji>dl and A = -.
ol v

1
Physikalische Prinzipien der Quantentheorie.
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From this it follows that the uncertainties of the values of the com

ponents of the electric and magnetic fields, namely AEX, AEy, AES

and AHX, AHy, AHS are given by

^ he he

^dTdv^ (dl)
1

^ he

AE,AHX^^-

la. ON THE DlRAC ELECTRON RELATIVITY AND QUANTA.

In a paper called Quelques remarques sur la theorie de ^electron

magnetique de JDirac,
1 Louis de Broglie illuminated the difficulties

which are presented, from the relativistic point of view, by Dirac's

mechanics.

In the first place the mean value density for a quantity A is given

by

(fe=l,2,3,4).

This same density cannot have a great deal of physical significance.
In fact, it is merely the quantity which must be integrated over space
to obtain the mean values in the strict sense, namely

(1) J = J J J D yk*Aykdxdydz .

k

Now in Dirac's theory only the mean value density has the tensorial

properties of the quanties of classical relativity.
" Thus we are in

agreement with the theory of relativity, but only for quantities which

have the significance of mean values and which, from the purely

quantum point of view, do not seem to have physical meaning. , . .

The point of view of pure quantum mechanics, which only has regard
for eigenvalues, completely ignores the classical geometrical repre
sentation by means of vectors or tensors in space or space-time. Only
when [the densities of mean values] are considered are the transform

ations of the tensorial type retrieved. Here we see the profound

opposition that exists between quantum physics and classical physics

and, at the same time, we see the possibilities of their statistical

agreement.
"

1 Archives des Sciences physiques et naturelles, Geneva, Vol. 15, 1933, p. 465.
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There is more than this. In the Dirac theory, just as much as in

simple wave mechanics, the time variable plays a part which is quite

different from that of the space variables. The determination of eigen

values is set in the domain of space ; the mean values A themselves

are obtained by an integration in space.
"

Clearly such definitions

are not relativistic. It would be necessary to make use of space-time
domains for the definition of eigenvalues, and to make use of integrations

in space-time for the definition of mean values.
"

Mathematically
this is possible. Thus the mean value of A would be

A = J JJ J y*A<ydxdydzat .

But in this way there would obtained " an entirely static physics
in which all evolution in time would be forbidden. The quantum
theory needs an evolutionary parameter playing a part quite different

from that of the configuration variables to which the operators corre

spond. At present quantum theory takes the time to be the evolutionary

parameter and thus breaks up the relativistic symmetry between

space and time.
"

Louis de Broglie adds, it is true, that even in the theory of relativity

in its classical form, the variables of space and time are far from being

equivalent. The time variable always varies in the same sense and
the world lines of all material units are inclined towards the direction

of the time. In other words, space-time has an essential "
polarity.

"

In short, if relativity and quanta are one day reconciled, it does

not seem that this will be accomplished in terms of an indissoluble

space-time in Minkowski's sense.

Elsewhere x Louis de Broglie calls our attention to another aspect
of the asymmetry between space and time in wave mechanics.

The symmetry between space and time requires that the uncertainty
relations

Apx Aqx ^.h etc...

be supplemented by

for W is the time-component of the four vector " world momentum "

whose space components axepx,py,pz . But the time must be considered

as a parameter having a value which is specified without uncertainty.
Moreover, W corresponds to the hamiltonian operator and not to

ih d

1 ^electron magnetique de Dirac, Paris (Hermann), 1934, p. 303.
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To give a meaning to this fourth uncertainty relation, it is remarked

that if the passage of a wave over a fixed point of space is considered

during a time At> it is only possible to say that the wave has a frequency
v with the uncertainty

*T-At
Therefore for a wave % recalling that W = hv,

.

At

The relation AW-At^Lh therefore expresses the fact that an ex

periment or an observation made at a fixed point during an interval

of time At cannot disclose the energy of a corpuscle with an uncertainty

less than . This fourth uncertainty relationship therefore has a
z\t

meaning which is quite different from that of the first three.



CHAPTER SEVEN

DISCUSSION OF THE PRINCIPLES
OF QUANTUM MECHANICS

1. COMPLEMENTARITY IN THE SENSE OF BOHR.

For Bohr,
1 what characterizes the quantum theory is that it brings

an essential limitation to the concepts of atomic phenomena.
Despite this limitation, we cannot dispense with these concepts,

*'
these forms of intuition which in the last analysis constitute the

framework of all our experiment and colours all our language.
" 2

The quantum postulate imparts to any atomic process a character of

discontinuity, or rather individuality, completely foreign to the classical

theories and which is characterized by Planck's quantum of action.

This postulate, Bohr declares, obliges us to abandon a description
at once causal and spatio-temporal of atomic phenomenal

Indeed, any observation of atomic phenomena implies a finite inter

action with the instrument of observation ; consequently it is impossible
to attribute to the phenomena, or to the instrument of observation, an
autonomous physical reality in the ordinary sense of the word.

In order to define the state of a physical system in the classical

manner, abstraction must be made of all external actions. But then,
in the atomic field, all possibility of observation is at once excluded.
This means that the concepts of time and space lose their immediate

meaning.
If, on the contrary, to make observation possible, we accept the

possibility of interactions with the instruments of measure not belonging
to a system, it is the univocal definition of the system that becomes

impossible,
" and there can no longer be any question of causality in the

ordinary sense of the word. " 4

1 La theorie atomique etla description desphenomenes, flenched. Gauthier-Villars, 1932.
2
Ibid,, p. 5.

3
Ibid., p. 50.

4
Ibid., p. 51.
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" We must then,
" Bohr writes,

"
contemplate a radical modification

of the relation between the spatio-temporal description and the principle

of causality . . . the union of which characterized the classical theories :

by the very essence of the quantum theory we must indeed conceive

them as complementary but mutually exclusive aspects ofour representation

of experimental facts. . . . In order to take the quantum postulate into

account in the description of atomic phenomena, we must develop a

theory of complementarity, whose non-contradiction can only be judged
by confronting the possibilities of definition and the possibilities of

observation.
" 1

As early as in the fundamental equations which constitute the com
mon origin of Einstein's theory of photons and the wave theory of

matter as understood by L. de Brogue

the two conceptions of light and matter are opposed. The couple

p) relates to a corpuscular image and the couple (y, A) to an undulatory

image, or more exactly to a train of harmonic plane waves illimited in

space and time.

By the interference of a group of elementary harmonic waves, a

field ofwaves limited in time and in space can be obtained. The velocity
of translation of the

"
individuals

"
associated with the waves is given

by the velocity of the group of these latter.
" The use of groups of

waves implies an uncertainty in the definition of the period and length
of the wave, and consequently in that of the energy and the impulsion
which correspond to these relations (1).

" 2

Heisenberg's relations

(2) AtAW= Ax Apx = Ay Apy = AzAps h

express the minimum uncertainties which affect the definition ofthe energy
and the momentum of the individuals associated with the wave field.

" These relations can be considered as a very simple symbolic

expression of the complementary nature of the spatio-temporal de

scription and of the principle of causality. Their general form enables

the use of the theorem of energy-momentum to be combined, to a

certain extent, with the spatio-temporal representation of observation.

Instead of the coincidence of two well defined events at a point of space-

time, that of individuals defined with a certain limited accuracy in

finite spatio-temporal domains may be considered.
" 3

1 La thorie atomique et la description des ph^nom^nes^ p. 51.
2
Ibid., p. 56.

3
Ibid., p. 57.
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Bohr's thesis can be summarised in the following way As long
as we retain the classical concepts (wave, particle) we shall find ourselves,

just as much in the domain of light as in that of matter (since the

experiment of Davisson and Germer), faced with a " dilemma which

must nevertheless be considered as the accurate expression of the ex

perimental data. In reality we are not concerned with contradictions

but, rather, with complementary conceptions, of which only the ensemble

can form a natural generalisation ofthe classical method of description."
1

The quantised universe is, in a sense, too rich to be amenable to

a single method of intuitive description. While rational mechanics

only needs the corpuscular representation and physical optics, in a great

many cases, is satisfied with the wave, quantum mechanics is obliged to

have recourse to both of these two representations, neither of which

rigourously suffices, and expresses their reciprocal limitation.

We must make clear that, to Bohr's mind, radiation in a vacuum,

just as much as free material particles, are only abstractions or, to use

his own expression,
"
idealisations

"
since, from the quantum postulate,

their properties can only be defined or observed by their interaction with

other systems. However,
"
these abstractions are indispensable in

order to reduce the expression of the experimental results to our ordi

nary forms of intuition." 2

2. CLASSICAL " LEGALITY " AND THE "
SEMI-LEGALITY " OF QUANTUM

MECHANICS.

I beg the reader's pardon for raising a question of terminology here.

We have seen 3 the meaning Painleve attached to the "principle of
causality

"
in classical mechanics. We have also seen what might be

understood by the
" domain of causality

"
of ordinary mechanics or the

mechanics of special relativity.
On the other hand, L. de Broglie gives us the following advice

" The
physicist has not to contemplate determinism in its general and meta
physical aspect : he has to seek a precise definition of it within the
framework of the facts he is studying."

4

I shall not, then, speak here of "
causality,

"
or of

"
determinism. "

Adopting Meyerson's terminology, I shall use the word "
legality,

" but
in a sense that I shall make clear.

To enounce certain previsions starting from an initial observation is

1 La theorie atomique et la description des phenomdnes. p. 53.
2
Ibid., p. 54.

3 Book IV, p. 453.
4 Continu et discontinu en physique moderne, p. 59.
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the object of all mechanics. The nature itself of these previsions cer

titude or probability characterizes a given mechanics.

We shall call (after Dirac) a maximal observation one that it is necess

ary and sufficient to perform in order to specify the state of a mechan
ical system at a given time. This state will serve as a basis for the

predictions made. It is the observation that occurs in the statement

of the axiom of initial conditions.

In classical mechanics the simultaneous measurement of different

quantities (or observables) connected with a system is unrestricted.

That the state of a system is considered to be specified by the deter

mination of the positions and the velocities at a given instant is a

choice which is dictated by macroscopic experiment.
In quantum mechanics the maximal observation is the simultaneous

measurement of the greatest possible number of observables connected

with the system. Now two observables are only simultaneously
measurable if they commute with each other. This condition cannot

be satisfied by a coordinate x and the momentum p which is conjugate
to it. The maximal observation in quantum mechanics is therefore

incomplete in the classical sense.

For a system of one degree of freedom the maximal observation

in quantum mechanics will be the measurement of x, or of p, or of

a single function F(x, p), the function F being otherwise arbitrary.

In all cases the uncertainties in x and p are connected by the relation

From the maximal observation specifying the stateXQ of the system
at the time t

Q it must be possible in all theories of mechanics to

make predictions about the system at the time t. These predictions
will be denoted by X(t).

According to M. J. L. Destouches,
1 the condition is expressed

by the formula

(1) X(t) = U(t)X

where U is an operator applied to X . In addition, the following

hypotheses are made

a) homogeneity of the time in the absence of external actions

depending on the time ;

b) property of the U of forming a group.
The condition (1) is to us of the nature of a postulate, which may

be called the postulate of predictability. It expresses the knowledge

1 Bulletin de VAcadtmie Royale de Belgique, Vol. 22, 1926, p. 525.
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of a single observer. If different observers can agree on the same

law, there will be a principle of relativity expressing the invariance

of the operators U for the ensemble of corresponding reference frames.

In every theory of mechanics endowed with physical significance
the small errors of measurement represented by a trivial uncertainty
in X must imply only small variations of X(t).

The necessity of this condition or postulate of stability was advocated

by Duhem.1 It has been mathematically defined by M. Bouligand
2

and generalised to the case which concerns us by M. J. L. Destouches.3

The existence of neighbourhoods in the ensemble of the XQ or of

the X in virtue of (1) makes this ensemble an abstract space (<%?).

Then X must be stable in (<f) with respect to XQ.
M. J. L. Destouches, by supposing that U(t) is differentiate with

respect to f, arrives at the following equations

Here e?*is a new operator which is defined in a domain including
the ensemble of the X.

By invoking only the two postulates above (predictability and stab

ility) there are discovered, summarised in (2), Jacobi's equation ofclassical

mechanics, Schrodinger's equation of wave mechanics and that which

corresponds to them in the abstract point mechanics of the space (S&).
In the old mechanics the possibility of predicting with certainty,

from XQ., the value of the different observables connected with the

system at every time corresponds to what I shall call legality.
In quantum mechanics the observer has the free choice of measuring

at the initial instant either x or p or an arbitrary quantity F(x, p).
One of these determinations suffices to define a motion of the system ;

the different motions constructed in this way cannot simultaneously
have experimental significance. This circumstance is connected with
the incomplete character (in the classical sense) of the maximal observ
ation in quantum mechanics.

In addition, apart from the case of first integrals, X(t) will almost
never be an eigenfunction of the observable a which is the subject
of the initial measurement and whose eigenfunction is Jt .

The development of X(t) as a series in the eigenfunctions of a
will only make it possible to predict at every time the probabilities
of the different possible values of a.

1 La Theorie physique, Paris, 1906, p. 231.
2
Comptes rendus cte VAcademie des Sciences, Paris, Vol. 200, 1935, p. 1500.

3 Bulletin de VAcademie Royale de Belgique, 1935, p. 780.
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We say that from an initial measurement of the observable a,

there is only semi-legality for this observable. This is in contrast

with the legality which, because of (2), regulates the evolution of the

system.
We now take up the case of first integrals that was excluded from

the preceding discussion. According to Dirac, the necessary and suffi

cient condition that a quantity A(x, p, t)
should be a first integral

of the system, conservative or not, that is characterised by the hamilton-

ian .fT, is written direcly as

(3)

U

This is obtained by analogy with the corresponding condition in ordinary

mechanics by substituting the quantum square-bracket quantity

for the Poisson bracket.

L. deBroglie
1 has stated a condition equivalent to (3) in the following

form. Let
h dw TT

be the wave equation for the system. Call ^ (* )
tne orthogonal

and normalised eigenfunctions of the hamiltonian at the time t == 0.

Consider the solution 5>i(*, *)_of (4) that reduces to G>,(*, 0) for t == 0.

At the time t the functions co form a complete orthogonal normalised

set which is, in general, different from the set of the eigenfunctions

of H.

The quantity A(x, p, t) is a first integral when the elements of the

matrix that represents it in the basis o> (x, t) are independent of the time.

By means of this new definition it is shown that (if A is a complete

operator)

1) the proper values of A are independent of the time ;

2) the respective probabilities | d\
2 of the different eigenvalues of A 9

which are fixed at the origin of time by means of the development

yQ
= Zcw of the initial state in terms of the eigenfunctions of A,

is not modified when the state V = E7y of tne system evolves according

to (4).

In particular

If the initial state ^ is an eigenstate of A corresponding to the eigen

value a, the state V = UyQ of the system at the time t is also an eigen

state of A corresponding to the same value a. There is legality for the

1 Thtoric de la quantification dans la nouvelle mtcanique, Paris (Hermann), 1932,

p. 227.
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quantity A (first integral) throughout the motion and this legality is ex

pressed by an invariance.

The semi-legality of observables, which is the general case, and the

legality of first integrals are connected by a theorem of Fermi concerning
the prediction, from a suitable measurement, of an isolated certainty

for any observable.

Consider, as L. de Broglie
x has done, the equation

(5) ^(M = ^[ v.<*.o).

This expresses the fact that the matrix representing the first integral A
at the time t in the basic set a>

t (#, t)
defined above has the same elements

as the matrix representing A at the origin of time in the basic

set a>
t(#, 0) of the initial eigenfunctions of the hamiltonian.

Since co^tf, t)
is the solution of (4) which reduces to co (#, 0) for

t = 0, then

(6) a>*(x9 t)
= Uy>i(x9 0).

Whence, by a change of basis,

(7) Afr(*>
<>= U-iAffaV U

or, by (5),

The last equation makes it possible to form the first integral which

reduces, at t = 0, to a quantity A = F(x, p) which may be chosen

arbitrarily.

More generally, if F(x, p) is an arbitrary function defined at the
time tu there exists a first integral A [F(x9 p), t, tj reducing to F(x,p)
for t = tv

Suppose that at the time f , earlier than t
l9 we measure the first

integral and find the value a. Because of the legality of the first

integral and its invariance, we are able to announce with certainty
that the quantity F (#, p) will have the value a at the time tv In
other words

If any physical quantity F (x, p) is given, it is always possible to

know the value it will have at any time t > t by means of a suitable

measurement carried out at the time t .

Fermi has given a direct demonstration of this theorem.2

I must insist on the fact that the certainty that it is possible to

acquire in this way, with respect to any quantity, is an isolated certainty.

1
Comptes rendus de I''Academic des Sciences, Paris, Vol. 194, 1932, p. 693.

2 Nuovo Cimento, 1930.
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If this were not true, there would be a departure from the semi-legality
which is the general rule.

We shall illustrate this by means of the example given by Fermi.

Let a free particle be constrained to move along the axis of x.

The momentum p and the hamiltonian

-

2m 2m \2ni dx*

are first integrals. In compensation x cannot be such (it does not

commute with if).

As in ordinary mechanics, the operator

A P/ \ ,A _ **_ F (f_ * \ ~ I

SL-t - X I I til - X -\v

_
i - ----

;m v 2mm ax

is a first integral and reduces to x for t = tv If therefore we measure

A at the time t = and find the result a
l9 we are able to predict

with certainty that x will have the same value for t = t.

Similarly,

is a first integral. If we measure A 2 at the time t = and find the

result a2, we are able to predict with certainty that x will have the same

value for t = 2 .

But it is essential that the simultaneous measurement of A and

A 2 is impossible. Indeed, it is easily verified that

or that A l and A% do not commute for any value of t. The observer

will have the free choice of measuring either A l or A 29
but he will only

acquire an isolated certainty of one of these operators and, consequently,

of the value of x at a later chosen instant. It is clear that this ensures

the semi-legality of x.

In short, quantum mechanics forces us to give up the classical

axiom of initial conditions. We recall that, as Painleve said, there

is nothing in logic which imposes the "
copernican

"
choice. As a

particular instance, when we measure x with certainty we rediscover the

scholastic axiom of initial conditions. The quantum axiom allows

the initial state to be specified in an infinite number of ways corre

sponding to the choice of the arbitrary function F(x, p).
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The modifications of the classical legality of observables are situated

on another plane. Certain interpretations see in them the " failure

of determinism.
" This is certainly an exaggeration. In the general

analysis presented above, the appeal to a postulate of predictability

is opposed to a circumstance in which the legality may be completely

suspended. On the contrary, the conditions of stability, together
with the first postulate, imply a complete legality in the evolution

of the state of the system (apart from perturbation). If now the state

itself is not considered, but rather the different observables connected

with the system, the legality in the classical manner only subsists for

first integrals alone. For any arbitrarily chosen observables quantum
mechanics in general offers no more than a semi-legality (prediction
at every instant of the distribution of the probabilities of the different

possible values). Nevertheless, by means of a suitable measurement,
it is possible to predict the measurement of any observable at an

isolated later time which is arbitrarily chosen.

The preceding argument is true in detail. In addition, classical

legality can reappear, through a statistical compensation, for an

assembly of individuals x and p whose uncertainties are connected

by Heisenberg's relation (Ehrenfest's theorem).

Moreover, the properties of stability and, should this be necessary,
of relativity, are preserved in quantum mechanics. The former must
be understood as the stability of a probability distribution in all cases

of semi-legality.

3. THE " PROBABILITIES OF PRESENCE " IN CLASSICAL MECHANICS, IN

THE OLD QUANTUM THEORY, IN WAVE MECHANICS AND IN DlRAC'S

MECHANICS.

We return to the paper of Poincare which was cited at the end
of Chapter 3.1 Let there be a system of first order differential equations

(1)
-j
= Xk fo, x2 . . ., xn) (k

= 1, 2, ... n).

Let Wdr be the probability of presence of the representative point
of the state of the system in an elementary volume dr of the space (xk).

In a volume V of the same space the probability of presence of

this point will be

Poincare writes "
By such a probability I understand the ratio

1 Journal de Physique, Vol. II, January 1912, p. 1.
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,
where T is a very long interval of time from the instant 6 to the

instant + T and t is the time for which, between these same two

instants, the representative point is found in the volume V considered.

Provided [that [tt

is very large,* this probability [has
no meaning] if ^

cannot be considered as independent of 6 and of T. If this condition

is fulfilled and if W can be defined, it will necessarily satisfy the partial

differential equation

(2) %i~d^r ==Q '

Therefore W will be a last multiplier of the equation (1).
"

For the canonical equations of classical mechanics

the identity
f\ /) J^-T\ /? /AI-T^

dqk \dpk/ dpk \dqkj

immediately provides

(4)
W=l.

The fact that unity is a last multiplier, in Jacobi's sense,^of the

canonical equations of classical mechanics represents the complete

homogeneity of the possibilities of localisation of the representative point

of the state of the system in the phase space (qk, pk).

The result (4) expresses at the same time the legality, the continuity

and the homogeneity of the solutions which characterise classical

dynamics in the space of (yfc, pk).

Seeking to form a last multiplier or, rather, a probability of presence

which leads to Planck's law and not, as the last multiplier W == 1

does, to the Rayleigh-Jeans law of equipartition, Poincare obtains

an essentially discontinuous function W containing factors w(rjk) which

are zero if the energy i)h differs from a multiple of the quantum e.

These discontinuities are inevitable if it is desired that the radiation

should be finite.

" You know why the old theories lead us forcibly to the law of

equipartition, which implies an infinite total of radiation and which

is absolutely contradicted by experiment ; it is because they suppose

that all the equations of mechanics are of Hamilton's form and, con

sequently, they assume unity as a last multiplier in Jacobi's sense.
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It must then be supposed that the laws of impact between a free electron

and a resonator are not of the same form, and that the equations

which govern them admit a last multiplier other than unity. It is cer

tainly necessary that they should have a uniform last multiplier, for

otherwise the second principle of thermodynamics would not be true,

but it is not necessary that this last multiplier should be unity."
1

In another form, interpreting Planck's ideas, Poincare writes

44 The probability of the continuous variable is obtained by con

sidering independent elementary domains of equal probability. In

classical dynamics, to find the elementary domains use is made of

the theorem that two physical states which are such that one is the

necessary effect of the other are equally probable. In a physical

system, if one of the generalised coordinates is represented by q and

the corresponding momentum by p, then according to Liouville's

theorem the domain JJ dpdq at any instant is an invariant with respect

to the time as long as q and p vary in accordance with Hamilton's

equations. On the other hand, q and p can, at a given instant, take

all possible values independently of each other. Whence it follows

that the domain of probability is infinitely small and of magnitude

dpdq. . . .

44 The hypothesis [of Planck] must serve the purpose of restricting

the variability ofp and q in such a way that these variables only vary
in jumps or that they should be regarded as, in part, connected to each

other.2 Thus a reduction in the number of the elementary domains

of probability is achieved, so that the extension of each of them is

increased. The hypothesis of quanta of action consists of the supposition
that these domains, all equal to each other, are no longer infinitely

small but finite, and that for each of them

= h

where A is a constant.
" 3

In quantum mechanics (simple wave mechanics) and because of

the very definition of the state of a system by a function ip which

is a solution of the wave equation, it is only in an element da of the

configuration space (qk) that the probability of presence of the repre
sentative point of the system is amenable to definition.

This probability is written ip*i/) in accordance with Born's principle.
The integral

J . . . J y*i

1 Dernieres Pensees, Paris (Flammarion), p. 213.
2 Note here that this could be called a sort of prediction of HEISENBERG'S uncer

tainties.
3
Ibid., p. 183.
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over all the configuration space is, because of the wave equation and

the conditions imposed on the function y, invariant with respect to

the time. The equation

which expresses this invariance shows that y*y> is a last multiplier,

in Jacobins sense of the system

dak ,

(6)
=^1,...M

relevant to a system of N particles of mass mt
.

The preceding analysis makes it possible to compare the probability

interpretations of classical mechanics and simple wave mechanics.

We remark that the system (6) is true in detail In quantum

mechanics this system plays the part of the canonical equations in

classical mechanics. It implies

(7)

mean v.iM.vy ,
-

,

dt dt

ih f { ( 9^* ty #\ j

4<n mi J SN J \ dqk fyk /

A second differentiation, taking account of the wave equation,

would give Ehrenfest's theorem expressing the statistical agreement

of the classical equation in their usual from

(8)v '

In Dirac's mechanics the probability density is written

Vk*yk

(with summation of the dummy suffix k form 1 to 4).

The integral

over all the configuration space (?1, ?2, J8) is invariant with respect

to the time.

The equation

(9) Jj (**w
-^ (

40
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which expresses this invariance shows that y*^ is a last multiplier,

in Jacobi's sense, of the system

no) = ~~
dqi ==

~~
dq* =

~

This system of equations implies the equation

(11) JJJ WV da = = - c JJJ^
which, again, gives the motion of the centre of gravity of the probability.

But, in contrast with simple wave mechanics, Ehrenfest's theorem

breaks down here. In particular, in the absence of field the principle

of inertia is not obtained as a statistical consequence. Instead of

being actuated by a rectilinear and uniform motion, the centre of gravity
oscillates about such a motion in virtue of the "

Schrodinger vibration,"
1

a direct consequence of equation (11).

Thus for the probability density ^*^ f simple wave mechanics

we establish a singularity (breakdown of the classical law W 1)

and a regularity (existence of a uniform last multiplier) in accordance

with Poincare's views but with the following essential distinctions

a) the classical axiom of initial conditions is overthrown ;

b) the last multiplier ^*^, the corresponding system of differential

equations and the state of a system are no longer studied in phase

space but in configuration space.
In the quantisation, in Schrodinger's sense, of a system placed in

a static field, the amplitude a of the wave is supposed continuous,

uniform, finite and zero at the boundaries of the domain of configuration

space considered. Because a*a = ^*^, these regularities extend to the

probability density which represents the last multiplier. Correlative

discontinuities are introduced in the spectrum of the energy eigenvalues.
It is the quantum mechanical definition of the state of a system which
makes possible the regularisation of the last multiplier, while the

classical definition of the state of a system forced Poincare, in his

attempt to preserve Planck's law, to adopt a probability density and,

consequently, a last multiplier which are essentially discontinuous.

The statistical agreement with the old mechanics is obtained directly

by means of the system of differential equations for which ip*ip is the

last multiplier. In passing we have indicated how this statistical

agreement subsists, apart from the "
Schrodinger vibrations,

"
in

Dirac's mechanics.

1 Annales de Flnstitul Henri Poincare, Vol. II, p. 269.
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4. ON THE " REALITY "
OF QUANTUM MECHANICS.

Classical mechanics, in order to explain phenomena, appealed either

to a unique picture (wave or particle) or to a model (mechanism, for

example). In a general way the possibility of experimenting on a

system without disturbing it was assumed. This set of circumstances

let rather naturally to the conception of an objective reality independent
of the observer.

In quantum mechanics, on the contrary, the dualism of the wave
and the particle no longer permits of a concrete picture which might
be supposed to represent an aspect of reality ; the simultaneous meas

urement of certain quantities becomes impossible. The result of this

is to throw the problem of the relationship between the physical theory
and "

reality
"

into a new light.

This problem has been the concern of many people. In the first

place, I shall analyse the thesis formulated by Einstein and two of

his collaborators.1

A physical theory must be both correct and complete. Einstein

does not concern himself with the correctness of quantum mechanics

that is, its agreement with experiment. By a "
complete theory

"

he understands a theory in which each element of physical reality

has its counterpart.
In the matter of reality, and without regarding this as anything

but a sufficient condition, Einstein puts forward the following criterion.

"
I/, without disturbing a system in any way^ it is possible to predict

with certainty (that is, with a probability equal to unity) the value of a

physical quantity, then there exists an element of physical reality corre

sponding to this physical quantity.
"

We shall refer to this criterion by (R).

Einstein considers a free particle having only one degree of freedom,

and which is in an eigenstate of the momentum (which can then be

measured exactly). He establishes that the coordinate of this particle

is, under these conditions, completely indeterminate. The converse

is clearly true because of the symmetry of Heisenberg's uncertainty

relationships.

From this, applying the criterion (R), Einstein concludes that

when the momentum of a particle is known, its position has no physical

reality. More generally, two quantities such that the corresponding

operators do not commute cannot be simultaneously real in the sense of

(R).

1 Can the quantum mechanical description of reality be considered complete ?

A. EINSTEIN, B. PODOLSKY and N. ROSEN, Physical Review, Vol. 47, 1935, p. 777.
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Einstein indicates another conclusion that which consists of the

assumption that the description of reality offered by the wave equation
is incomplete in the sense made clear above.

Indeed, Einstein considers two systems, I and II, originally in

interaction for a finite time and whose interaction has ceased. He
considers the total wave function of the system I + II after interaction.

This function describes perturbation apart the later evolution of

the total system.
To specify the wave function or, alternatively, the state of

each of the systems after the interaction it is necessary to carry out

further observations.

Suppose that each of the systems consists of a single particle of

one degree of freedom.

Let
Jp1 and q^ be the momentum and the coordinate of the particle

which constitutes the system I and p^ y2 be the analogous quantities
for the system II.

a) Measure p. After the measurement the state of the system I

reduces to an eigenstate of the quantitypx . The state of the system II

is also specified.

b) Measure ql instead of measuring pr After this measurement
the state of the system I reduces to an eigenstate of the quantity

g1
. The state of the system II is also specified by this measurement.

Accordingly two different measurements carried out on the system I

enable the assignment of two different states to the same reality (the

system II) which, since all interaction has ceased, could not have been
influenced by this measurement.

In the particular case studied by Einstein the two wave functions

thus assigned to the same reality (system II) can be eigenfunctions of

two magnitudes whose operations do not commute (namely Jp2 an<ig2).

There is a contradiction with the absence of simultaneous reality
considered above for two magnitudes of this nature : quantity of motion
and coordinate of a same particle.

To obviate this contradiction, Einstein aknowledges that the de

scription of reality offered by quantum mechanics is incomplete.
Einstein justifies this conclusion as follows "It could be objected

to this conclusion that our criterion of reality is not sufficiently restric

tive. It is true that this conclusion would not be arrived at if it were

granted that two magnitudes must be considered as simultaneous
elements of reality only on condition that they can be measured (or

calculated) simultaneously. From this point of view, as soon as one
or the other but not the two simultaneously of the magnitudes p 9

and 92 can be measured (or calculated), these magnitudes are not simul-
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taneously real. Reality would thus be made to depend on the

magnitudes p 2 and g2, belonging to the system II, of the observations

carried out on the system I, and which could in no way disturb the

system II. No reasonable definition of reality can admit such a

circumstance."

Einstein's theory calls for a thorough discussion.

In the first place, the criterion (R) seems to link physical reality

with the observable or magnitude endowed with physical meaning, in

stead of following the usual path of deducing the observable, which is

already an abstract element, from reality.

The criterion (R) attaches significance only to the measurements
effected ivithout perturbation. It thus restricts the application of the

quantum theory to pure cases alone.

Now these are exceptional : either they are encountered thanks to a

suitable conjugation of the state of the system and of the observable to

be measured (state suitable for observation), or they are obtained, on

condition that we grant that any measurement is repeatable, by con

firming immediately a first measurement without eliminating the per
turbation that results in general from this latter and without leaving
the observable the time to evolve.

In the example of interaction which Einstein develops, the wave
function of the total system I+II appears as the integral of the product
of the eigenfunctions of either

q-^
and q2 or ^ Pi an<l Pa-

Thanks to this circumstance, the measurement of q (or ofp )
makes

possible the assignment of an exact value to
<jf2 (

or to ^2)- Onty meas

urements without perturbation are encountered and certainties can

be stated.

In the general case this is not true. Thus W. H. Furry
1
puts

the following question
"
If an arbitrary quantity A of the system I has been measured after

the interaction of the systems I and II and the result a has been obtained,

what can be said about an arbitrary quantity B belonging to the

system II ?
"

The following answer is obtained. In general it will only be possible

to calculate the probability that the quantity B should have one of

its possible values.

Accordingly, from a certainty about A it is only possible to state

a probability for B. If the criterion (R) only takes results which

are certain into consideration, the experiment carried out on the

system I will not give information about the "
reality

"
II.

1
Physical Review, Vol. 49, 1936, p. 393.
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In order that a certainty of A should provide a certainty of 5,

it is necessary that a certain connection should exist between the

quantities A and B. This is realised in the particular example con

sidered by Einstein but is not true in general.

Moreover, it seems that Einstein's argument provokes a more

serious objection.
Given the symmetry of the total system I + II of two free particles

which Einstein considers, the paradox in respect of the "
reality

"
II

must be reflected in a similar paradox in respect of the "
reality

"
I.

Einstein supposes that experiments are made on the system I.

Faced with the impossibility of measuring the conjugate quantities

p and q simultaneously, the observer exercises a free choice he

measures p or gr
The paradox which arises in respect of the system II follows exclu

sively from the particular properties attributed to the "
reality

"

of this system.
All paradox in respect of I is ruled out by the impossibility of the

simultaneous determination of the pair of observables px and g1 . The

paradox associated with II similarly disappears if the attribution of

a special character to the "
reality

"
of this system, apart from any

measurement, is forgone.

Further, from the physical point of view it seems rather unnatural

to attribute more "
reality

"
to a system on which no observation

is made than to one on which experiments are performed, and this

merely because, in the absence of measurement, all alteration of the
"
reality

"
is excluded.

Finally we observe that in the example given by Einstein and
in analogous examples which could be constructed the paradox
appears when the interaction has ceased. But, because of the non-

localisation of the particles, it is doubtful whether it may be said that

the interaction has ceased.

We shall leave the question of interaction which has so far been
our concern. More simply, we consider a system in any state y and
an arbitrary quantity having the possible values a, 6, ... to which

correspond the eigenfunctions ^a , ip^. . . .

Quantum mechanics only discloses to us the probabilities ofagreement
of the states ip and ipa , ip and ipb , etc. ... To the question

"
// the

system is in the state
y>,

what will be the value of the quantity considered ?
"

it is not possible, in general, to reply with certainty. A large number
of measurements made by returning the system to the state y; after each
measurement (by eliminating the perturbation due to this measurement)
will only yield the weights of the different possible results a, 6. ...
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In other words, as a general rule if the system is in any state, an

arbitrary quantity cannot have reality in the sense of (R). Here

again the lack of generality of Einstein's criterion is apparent.

Opposed to Einstein's point of view connecting the notion of
"

reality
"

with the occurrence of certainty is the pure probability
thesis developed, for example, by Henry Margenau.

1

This author rejects the postulate according to which it is possible,

by means of a single measurement, to state a certainty. He likens the
state of a system in quantum mechanics to a set of numbers which
are associated with a certain operator A and which determine the prob
abilities of the different possible values of this operator (which itself

represents a quantity endowed with physical meaning)." A quantum state,
"

writes Margenau,
"

is synonymous with a

probability distribution. The latter cannot be determined by a single

measurement, but requires a large number of observations.
"

Thus quantum mechanics would resemble a game of chance. " In

throwing a die, the distribution of probabilities is the set of numbers

Vg,
1
/6 ,

. . .
1
/6 , for the possible result 1, 2, ... 6. If the die falls on the

face 5, this provides a piece of evidence, but it does not fix the distri

bution of the probabilities of the different throws. A large number of

throws is required for that : the knowledge of one isolated throw
does not change the distribution of the whole of the initial proba
bilities.

"

There is a part of truth in this over-simple comparison. But in

order to assimilate quantum mechanics to a game of dice, abstraction

would have to be made of the pure cases. In such a case, the die is

indeed guided in such a way as to fall on the same face always.
The pure cases, exactly satisfying the postulate that H. Margenau

proposes to rule out, deserve on the contrary to be considered as privi

leged ones if only for the reason which may have guided Einstein in

the enunciation of the criterion (R) that they constitute the only con

verging point of the classical and quantum doctrines in the consideration

of physical measures.

As a matter of fact, it is necessary to distinguish between the certi

tude directly offered for a pure case and the certitude that may result,

in a general way, from the immediate confirmation of any given measure.

The first is a certitude of the classical type. The second, on the

contrary, is extracted from a superposition of states (generally infinite

in number). From this infinity a state is chosen, but this choice does

not influence the system and, without changing the course of the facts,

1
Physical Review, Vol. 49, 1936, p. 240.
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modifies, according to Heisenberg,
l
only our knowledge of these latter.

The distinction may appear subtle ; however, it seems essential,

although obviously a pure case may be considered mathematically as

the limit of a mixture of states.

Thus then, apart from pure cases, the entity state of a system is

distinct from the knowledge we can acquire of it, unless we make a

great number of measurements which provide us with a distribution of

the possibilities. That is what makes W. H. Furry say :

" A mixture

[of states] is essentially different from any pure state whatever.
"

Thus we arrive at a compromise between the pure probability concep
tion and that of Einstein, which is confined to the consideration of pure
states alone where the certainty obtains directly. Quantum mechanical
"
reality

" would be a complex participating in both these conceptions.

We also note that a passage to the limit produces a statistical

relation between the entity state and the mathematical fact knowledge

of a state.

For his part, Bohr 2
rejects Einstein's criterion of reality. He

insists on the fact that after the interaction of the systems I and II

we have thefree choice of measuring one or the other of the two quantities

Pi and q19 which does not interfere directly with the second particle

constituting the system II. This free choice corresponds to the dis

crimination between different experimental methods which allow the

use, without ambiguity, of complementary classical concepts (coordinate
or momentum).

And Bohr concludes,
" Einstein's argument does not authorise

us to conclude that the description of reality offered by quantum
mechanics may be incomplete. On the contrary, this description

emerges as the rational utilisation of the possibilities of interpretation

compatible with the finite and controllable interaction between objects
and the instruments of measurement. In fact it is only the mutual
exclusion of two experimental processes (permitting the unambiguous
definition of complementary physical quantities) which leaves room for

the new laws whose simultaneous existence might, at first sight, seem
irreconcilable with the very foundations of science.

"

To conclude, we shall broach the epistemological interpretation of

the above discussion.

For Einstein, there is a rupture between physical theory and reality :

"
Any serious consideration of a physical theory must take into

account the distinction between objective reality, which is independent

1
Physikalische Prinzipien der Quantentheorie.

2
Physical Review, VoL 48, 1935, p. 696.



DISCUSSIONS OF THE PRINCIPLES 633

of any theory, and the concepts used by this theory. These concepts

are created in order to correspond to objective reality and with their

help we represent reality.
"

However categorical it may be, this declaration is not, in the au

thor's eyes, directed against the whole quantum domain. Indeed,

Einstein grants
"
reality

"
only to the observations without perturba

tion. On the other hand, the wave corpuscle duality seems to be

opposed to a description other than symbolic of
"
reality.

"

The quantum physicists are in disagreement over the existence of

an objective reality, in the sense of the
"
exterior world

"
of classical

physics.
For Bohr, the finite quantity of the quantum of action does not

allow us to make, between the phenomenon and the instrument of

observation, that clear distinction demanded by the ordinary concept

of observation, and consequently by the classical ideas.

Heisenberg, it would seem, adopts this same point of view.

For Louis de Broglie, on the contrary, the fact that an experiment

can involve a perturbation does not necessarily lead to the disappearance

of the objective character of the system submitted to this experiment :

" Bohr believes that the physics of quanta makes uncertain the

distinction between the subjective and the objective. Perhaps there

is some misuse of words. In reality, the methods of observation,

the instruments of observation and even the organs of our senses

belong to the objective category and the fact that, in microscopic

physics, it is longer possible to ignore their reactions on the parts of

the external world that we wish to study can in no way abolish or even

blur the traditional distinction between objective and subjective."

Louis de Broglie concludes that quantum physics reveals the artificial

character of the classical division between system observed and instru

ment of measurement, and that it proves
" that a description of physical

reality quite independent of the means with which we choose to observe

it is strictly impossible.
" 1

Dirac, in his Principles of Quantum Mechanics, does not specify

the properties that he attributes to physical reality but, basing himself

on the wave-corpuscle duality, insists on the futility of efforts which

would lead to a description of reality as something which contains

both waves and particles interacting with each other and to an attempt

to construct a mechanics expressing the relationships between these

two concepts.

1 Les idtes nouvelles introduces par la mfaanique quantique, TEnseignement mathe-

matique, 1933.
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On this subject there remains a dispute which we are only able

to leave to the philosophers.
1 Nevertheless we emphasise that it

would be somewhat comforting to be able to continue, in spite of the

quantum mechanical modification of classical ideas, to believe in the

existence of an objective reality. To form a clear notion of it, we

must accept a compromise between Einstein's thesis and the pure

probability conception; we must also renounce to grasp simultaneously

certain complementary aspects in Bohr's sense.

5. ON THE DIFFERENCE BETWEEN ABSTRACT REASONING AND INTUITIVE

REASONING IN QUANTUM MECHANICS.

Louis de Broglie
2 reminds us that " since the time that, thanks

to the progress of mathematical analysis, the theories of physics were

able to take the form of coherent mathematical doctrines, two tendencies

have been in conflict in the construction and the renovation of these

physical theories.
"

Scientists with intuitive tendencies (lesintuitifs) have always sought
to base themselves on concrete representations taken from the objects

that surround us in every-day life. For them, the atom and even the

electron were likened to a small ball endowed with shape, mass and

durability ; the ether was a substratum necessary to the propagation of

vibrations ; thermodynamics was clarified by statistical mechanics and

the atomic hypothesis. They eschewed energetics. They hailed Bohr's

atom as a true model in which point electrons rotate about a central

nucleus, with the single addition of quantum jumps from one trajectory

to the other.

On the contrary, to scientists with abstract tendencies (les abstraits)

a physical theory reduces to a collection of mathematical relationships

uniting the observable phenomena and making possible the statement of

predictions on the basis of specified initial data. Their thermodynamics

appeals to no intuitive representation. Their electromagnetism and

their wave optics stem only from Maxwell's equations, laid down a priori.

In their eyes, models are merely the imperfect and transitory features

of a theory. This must be able to survive such representations
"
to

emerge, finally freed from anthropomorphic blemishes, as being no more

1 We recall that LEIBNITZ expressed these misgivings in the following terms
" When I was young I too was captivated by the Vacuum and by Atoms, but reason

brought me back ; the imagination was agreeable ; its researches were confined there ;

its meditation was fixed there as with a nail ; one thought that the primary elements,
a non plus ultra, had been found. We could have wished that Nature should go no
further ; that, like our mind, she should be limited.

"
2 Continu et discontinu en physique moderne, Paris (Albin Michel), 1941, p. 91 et seq.
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than an abstract form.
"

Duhem, in his Theorie physique, made himself

the champion of this tendency.
Louis de Broglie declares that, in principle, it is the " abstraits

"

who appear to be justified, at least in the atomic domain. Indeed,
to interpret the properties of matter we must make use of a scale

so small that the perceptions of our senses, corresponding to an infinitely

greater scale, no longer have any value or any possibility of application.
But in practice, models have played an extremely valuable part

in classical science.

Although it was created in an abstract form, thermodynamics
has greatly benefited from the molecular hypothesis. Fresnel's ether

preceded Maxwell's theory by forty years. In order that concrete

representations whose fallacious character is certain should be able

to render such service, it is very necessary that they contain some ele

ment of truth. In the progressive extrapolation that is necessary
to pass from the macroscopic to the microscopic domain, the pictures

formed of our perceptions are profitably used in the first stages, though
there is a danger that they might completely mislead us on the atomic

scale.

Bohr himself did not have for his own atomic model the "
illu

sions
"

of the "
intuitifs.

" The discontinuous jumps that an

electron makes from one trajectory to another are irreconciliable

with the classical representations in the framework of space and

time. Heisenberg's uncertainty relationships do not allow us to

speak of trajectory in the ordinary sense. An electron makes its

presence known throughout the extension of the atom and the distrib

ution of its
"
potential presence

"
is dictated by a wave function

whose character is completely symbolic.

Only the "
abstraits

" can declare themselves satisfied with a

game in which only the relation of observable phenomena by algo

rithms is concerned. Also, in general, they must be content with

probabilities where the classical science stated certainties.

Of the properties of the atom of Democritus and Lucretius, the

elementary particles of atomic physics only retain the one characteristic

of being
"
permanent units

"
except when their " annihilation

"

appears possible. Then, of the traditional atom, there remains only
" a simple arithmetical statement the number of particles of a specified

kind, which may be variable, is always integral.
"

Nevertheless it seems that, without the atomic hypothesis and

without Bohr's planetary model, it would never have been possible

to formulate quantum mechanics. It is even possible to put the

question whether science could still progress in a domain where all
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concrete representations had lost their validity.
" We are only able

to think with the help of pictures drawn from our sentient intuition.

Without doubt abstract reasoning enables us, by schematisation and

generalisation, to go outside this intuition, but does it allow us to

free ourselves from it completely ?
"

Louis de Broglie concludes this discussion with the opinion
" that

it is possible to justify both the '

abstraits,
' who have had strong

grounds in the dispute, and the 6

intuitifs,
' without whom progress

would often have been difficult and perhaps impossible.
"

6. CONCLUSION.

In the preceding pages we have been able to see the creation of

the modern physical theories of mechanics. Quantum mechanics,
in particular, has known and still knows, has experienced and still

experiences, a proliferation of technical work. To mention only a few

chapter headings, we have passed over in silence the quantum statistics,

second quantisation, the relativistic quantum mechanics of systems,
Louis de Broglie's theory of photons and the theories of the nucleus.

In penetrating into these fields, still in evolution, we would have
run the risk of lacking the necessary perspective. More, to be frank,
the technicalities would have found us wanting. We leave this task
to the historian of tomorrow.



SOME REMARKS
BY WAY OF A GENERAL CONCLUSION

To write history, as to teach, is before everything, to choose.

The reader who has been willing to follow us to the end of this

book will certainly be able to complain of some arbitrariness in the

choice which has been made.

Above all, we have confined ourselves to the principles, in which

it appears that the essential difficulty of mechanics lies ; we have

not been concerned with the accumulation of facts.

As long as one remains in the paths opened up by the forerunners

almost nothing is lost by this. For their efforts were directed almost

exclusively to the isolation of principles that neither pure reason, nor

their crude experiment, could inspire them to find.

On the other hand, none of the attempts of the early students has

survived in its original form and the principles of many of them,

later, have had to be forsaken. Therefore there is no risk that, in

following them, the didactic field will have been duplicated.

This danger arises more frequently as the organisation of me
chanics tends to become more developed that is, from the

XVIIIth Century onwards. We are aware of having encountered it

more than once.

Until Huyghens and Newton the mathematical tools in mechanics

were reduced to their simplest form and, in passing, the resources of

the simple rule of three can. be admired. Then the use of the differential

calculus became common in mechanics. Indeed, it was indispensable

for the expression of the effect of a force in the first instant and, in

Leibniz's hands, for the connection of the living force with the static

force. Total differentials appeared, with Clairaut, in hydrostatics

and partial differential equations, with Euler and d'Alembert,

in hydrodynamics. By the time of Lagrange the mathematical tools

were highly perfected and became an essential feature of rational

mechanics. In the modern physical theories of mechanics it has

become necessary to use more elaborate procedures, like the absolute
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differential calculus and Riemann spaces in generalised relativity and

abstract spaces in quantum mechanics.

This means that mechanics could not have evolved without having
at its disposal, at each critical period, an adequate formulation and that,

in this sense, it would appear linked to the progress of mathematics.

It also means that, with the development of the formalism, there

appears the danger of trusting in the tools of calculation and losing

sight of the network of axioms. However rational it may be said

to be, mechanics remains a branch of physics.

This branch only has a relative autonomy. Motion in a pure

state does not exist. I have not treated, as being beside the strict

purpose of this book, the relationship between mechanics and thermo

dynamics in the classical field.

In the modern physical theories of mechanics I have had to assume

as given, without going back to' their origins, the essential results of

optics and electromagnetism. However, there exists a point of view

of the student of mechanics which may be adopted without excessive

arbitrariness. On the way, we have, to preserve historical accuracy,

made some incursions into the domain of optics and electrodynamics.
To recall only a single example, it was in optics, with Fermat, that

the first minimum principle that was not trivial appeared. With

Maupertuis, it was also an optical law (incorrect this time) that lay

at the origin of the first form of the mechanical principle of least action.

We note Hamilton's return to optics previous to his dynamical principle

of stationary or varying action. With wave mechanics, with Louis

de Broglie, appears a kind of fusion of the optical and mechanical

principles of least action which, at least on the formal plane, recalls

the dualistic aspect (emission and wave-propagation) of Hamilton's

geometrical optics.

We have, in the course of this book, multiplied the quotations
of original texts, only commenting on them for clarification when

this, rightly or wrongly, appeared necessary to us. But we have

restricted the length of these extracts to passages which seemed to

us the most characteristic. The essential is that the reader, without

being tired by repetitions and developments which might occasionally
make the original papers dull without adding anything really useful

to their creative thought should be taken back into the climate

of the time and into the path, strewn with pitfalls, that the inventors

followed. I emphasise this, for in the XVIIIth Century Clairaut,

in his didactic works, was already speaking of the path that the inven-
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tors should have followed. This school of complaisance sees nothing in

history. Shall I go as far as to say that I prefer the first classics

sometimes so difficult to read for the very fact of the difficulty

they offer in the process of making contact with a new idea ? Genius

is not as simple as the philosophers of the XVIIIth Century would have
had us believe.

Also, I excuse myself from philosophising on the principles of

mechanics that lie on the margin of history. Here is a subject of study
that offers a real interest

; but it emphasises the part of the critic

at the expense of that of the players themselves. The personality
of the historian is in danger of being encumbered, his true task being
that of selection and not that of appreciation. I have not forbidden

myself some incidental appreciation which some might have preferred
that I should have omitted, but most often I have left the reader

free to form his own opinion of the extracts. The discussions which

I have retraced are, for the greater part, those of the actual creators.

They have a constructive character to the extent that they proclaim,
or even allow of, an extension of the principles. The periods in which

science confines itself to the exploitation of determinate premises
are periods of latent incomprehension. Through not continually ques

tioning the premises, one ends by falling asleep in a deceptive security.

This was the case at the time of the appearance of relativity. On the

other side, the universal attraction was not passed of as a dogma
in Newton's time.

I would detract from the lesson of history by attempting to comment
of the evolution of mechanics in bold outlines; this would only be poss

ible by schematising it. Now to schematise would, most often, distort

the actual succession of things, which, in general, exhibits no regularity.

Further, in this book I have not taken part as I have done else

where in the game of summarising, for example, the vicissitudes

of the notion of force or those of the notion of kinetic energy. It is,

indeed, a simple matter for the reader himself to indulge in this

exercise by simply collating the material that we have put at his

disposal. But he will quickly recognise that this game, however

captivating it may seem, is often artificial. For the different keys to

the problems of mechanics were not discovered independently, but

are mutually interpenetrating.
I do not pretend to convince those who, on principle, feel that

the history of science is an old-fashioned cult, and that each new

generation, without looking back, must choose as quickly as possible
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the basic starting points of its progressive sciences. But from this

to give all history of science the epithet of " old curiosity shop
" would

be too preposterous a step to take. Nothing is futile in scientific

matters, not even the contemplation of the past. For this embodies

the lesson of our vagaries, our scrupules, our illusions and our errors.

Science did not progress by that harmonious path, the illusion of which
is easily created after the event. The direct knowledge of the old

works, however they may be outstripped today, can only enrich the

perspective of the future which opens up before us.



NOTES

NOTE I

ON THE MECHANICS OF THE MlDDLE AGES

When the French edition of this work was composed, we Based our

selves mainly, as concerns the Middle Ages, on the researches carried

out by Duhem.
At a more recent date, fresh light has been thrown on medieval

scientific thought.
In an important book, Robert Grosseteste and the Origins of Experi

mental Science,
x A. C. Crombie has shown how, as early as in the

beginning of the Thirteenth Century, the Oxford School had undertaken

to elaborate a method of physical science.

Robert Grosseteste, Chancellor of the University of Oxford (1214),

later Bishop of Lincoln (1235), progressed from the Analytica posteriora

of Aristotle by distinguishing the scientific knowledge of the reason for

a fact from the simple knowledge of this fact quia differt et propter

quid scire.

Without entertaining any illusions as to the purely nominal character

of the definitions in use in the Schools, Grosseteste sought to establish

others which, while they expressed the empirical connexions observed

between the phenomena, would reveal the cause of the attributes ascer

tained in the subjects. He set out to transform Aristotle's method,

which aimed at providing demonstrative proofs, into a process of

research to be submitted to verification or falsification of the experiment,
which at the same time sifts and judges the theories.

Grosseteste based his method of verification on the principle of

uniformity and the principle of economy in nature and this enabled him

to choose between definitions leading to the same facts. Thus, by
elimination, he arrived at the following definition of comets

"
Subli

mated fire assimilated to the nature of one of the seven planets.
"

1
Oxford, Clarendon Press, 1953.
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If he dealt with physical theory in general terms, underlining the

necessity of associating geometrical beings and the physical objects to

define the physico-mathematical entities, Grosseteste seems to have
been mainly preoccupied with optics, and had the merit of being the

first to perceive a phenomenon of refraction in the rainbow. But he
was the real leader of the school that directly inspired Roger Bacon,
John Duns Scot, William of Ockham and Thomas Bradwardine.

On the other hand, the importance of the work of Thomas Brad

wardine, who followed along the road opened up by Robert Grosseteste,

and, in order the better to mathematise physics, sought to widen the

field of functional relations by the development of algebra in his Trac-

tatus proportionum (1328), has been emphasized by Anneliese Maier 1 in

her remarkable researches.

For Thomas Bradwardine, it was a question of expressing the law of

powers of Aristotle's dynamics : v being a velocity, p a power and r a

resistance ; Bradwardine contemptuously dismissed the following for

mulations

V

f
= Pz rz (Pi r

i)

*>2 Pz r2

vl Pi rl

and substituted for them a more scholarly functional relation, which
Anneliese Maier translates into modern language thus

=
log

(f
A relation which is physically incorrect, as is the law of powers that

he had set out to concretize, and which brings only a satisfaction of

principle, but which presents the great interest of widening the field of

algebraical relations, up to then limited to simple differences or propor
tions. A. Maier tells us that the age recognised in this algebra a real
innovation ; hence its infatuation for the art of calculation (William
Heytesbury, Richard Swineshead), which was to give birth, as we already
know, in Oxford itself, to the abstract kinematics of motion, and in par
ticular to the kinematics of accelerated motion. Thus becomes clear
the filiation of the veteres of which Nicole d'Oresme considered himself
the heir.

1 Die Vorlaufer Galileis in 14. Jahrhundert, Storia e Letteratura, Rome, 1949.
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Anneliese Maier has, too, enriched and made clear the history of the

doctrine of impetus, through the writings of Olivi, William of Ockham,
Francesco de Marchia, Albert of Saxony and Marsilius of Inghen, at the

same time giving us new information from the texts of Buridan and

Nicole Oresme.1

In particular, A. Maier calls attention to the fact that, for Nicole

Oresme, impetus is not something permanent, as Buridan understood it,

but lasts only a certain time (aliquandiu manet) , like heat in water.

Moreover, for Oresme, impetus increases and decreases like acceleration :

the acceleration of falling bodies is not due to natural gravity, but to
"
accidental gravity,

"
synonymous here with impetus.

A. Maier strongly insists on the fact that the doctrine of impetus is

opposed to the principle of inertia in this respect, that any violent

motion continues, according to this doctrine as in the physics of

Aristotle to require a vis movendi, which is simply transferred from the

medium to the mobile.

It would appear, however, that Buridan rendered an immense service

to mechanics in deducing from the most ordinary experience the first

energy theory (after Joannes Philiponus), a theory that gave birth

to a tradition which, often regressive in the sense that it was to

insist unlike the thought of the Paris master on the perishable

nature of impetus, was to continue up to the classical period.

NOTE II

HENRI POINCARE AND THE PRINCIPLES OF MECHANICS

The centenary of the birth of Henri Poincare has provided us with an

opportunity of defining in a more precise way than we did in this work

the attitude of Henri Poincare to the principles of mechanics, and in

particular his contribution to the theory of relativity.

Already in the introduction to his book, Blectricite et Optique,

Poincare was concerned with the following problem what is the neces

sary and sufficient reason for a physical phenomenon to become the

object of a mechanical explanation (in the classical sense) ?

Given a physical phenomenon, this latter depends upon the para

meters q (n in number) which experiment achieves directly and allows

us to measure.

1 Zwei GrundproUeme der scholastischen Naturphilosophie, Storia e Letteratura,

Rome, 1951.
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The laws of variation of tkese parameters are known by experiment :

these laws can generally he stated in the form of differential equations

connecting hetween them the parameters q and the time t.

In order that this phenomenon should be amenable to explanation,
it is necessary to find two functions U(q) and T(q, 5') the second being
a quadratic form in the q, the coefficients of which depend on the g, in

such a way that by writing, with the help of these two functions, the

principle of least action

T~Udt =

or, what amounts to the same, the corresponding equations of Lagrange,
these latter become identified with the differential equations expressing
the experimental laws of variation of the parameters q in terms of the
time.

If such an identification is possible we can, in an infinity of ways,
attribute the physical phenomenon in question to the motion of p
isolated

"
molecules.

"

Indeed, this amounts to determiningp constants m
l
and 3p unknown

functions 9^(9), y^q), O^q) that we may consider as the masses and
the coordinates of these molecules and which satisfy

U(q) = Ufa, yl9 0,)

an<^ i v r ' / 'i
2 i L J

in which

and the same for y{ and 6'. Since the number p may be taken as large
as we wish, we can always satisfy these conditions in an infinity of ways."

If therefore a phenomenon is amenable to a complete mechanical

explanation, it will embody an infinity of others which will equally well
account for all the particularities revealed by the experiment.

"

How then are we to choose from this infinity ? That is obviously
a matter of personal appreciation. But, Poincare adds,

"
there are

solutions which everybody will reject on account of their strangeness
and others which everybody will prefer on account of their simplicity."

*

This brings us back to what the philosophers, not without a shade
of scepticism, sometimes caU Poincare's

"
accomodatingness" (commo-

disme) .

1 La Science et VHypothese, p. 259.
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About 1904, a wide public, the press and even fashionable circles

became passionately interested in La Science et VHypothese^ convinced

that they would find in it, to adopt the expression of the time, something
like Latin without tears or Greek without groans. It was a source of

incomprehension and misunderstanding.
"
I am beginning to be a bit

annoyed,
"

wrote Poincare,
" with all the fuss a part of the Press is

making over a few sentences taken from one of my books, and with the

ridiculous opinions it attributes to me. " x And again,
" No experiment

can disprove this principle : there is no absolute space, all the displace
ments we can observe are relative displacements. I have sometimes

had occasion to express these considerations, quite familiar to philos

ophers : they have even brought me a publicity with which I would

willingly have dispensed ; according to all the reactionary French

newspapers I have demonstrated that the Sun turns round the Earth ;

in the famous trial between the Inquisition and Galileo, it is Galileo

who would be completely in the wrong.
" 2

Let us hear what Leon Brunschwicg has to say
"
By substituting the

idea of convenience (commodite) for the classical notion of truth, Poincare

seemed to have destroyed the objectivity of geometry and physics, and

in so doing to have returned to nominalist empiricism.
" 3 This was an

error of interpretation, which Brunschwicg himself refutes in the follow

ing way
" For Poincare, convenience is not only and solely logical

simplicity ;
it is also that which allows the intelligence to grasp the

things themselves.
" 4

We shall make this clearer with the help of the analysis developed

by Poincare in La Valeur de la Science.

We start with a law of experimental origin expressing a relation

between two objects A and B. We introduce between these two objects

two abstract intermediaries, fictitious if necessary, A' and B f

.

Thus, for the initial law we substitute

a law between A and A'

A' and B 1

B' and J5

The law relating A' and B' can be raised to the dignity of a principle.

To establish a law as a principle, as Poincare understood it, is to adopt

conventions such that this law is necessarily satisfied.
" The principle,

1 Bulletin de la Soctite franfaise d*Astronomic, May 1904-, p. 216.
2 La Mtcaniquc nouvelle (Lecture delivered at Lille in 1909).
8 Revue de Metaphysique ct de Morale, Vol. 21, No. 5, 1913, p. 597.
*
Ibid., p. 601.
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henceforth crystallized, so to speak, is no longer submitted to verification

by experiment. It is not true or false, it is convenient.
" x

Convenient here means satisfied by convention.

For such a principle to be useful, for it to be convenient in the widest

sense that Poincare generally uses this expression, it must be common to

a large number of laws, and in consequence to a large number of experi
mental facts.

There is no doubt at all that, unlike the laws which, if they are not

contingent, can at least be called in question again by a new experiment,
a principle, in Poincare's opinion, possesses a particular validity,

namely the one we have conferred on it by convention.

But in order that such a principle should continue to deserve the

qualification convenient, it must remain fertile from a practical scientific

point of view.

"We must not seek, although obviously it is always possible,
"
to

mend the damaged principles by sand-papering them. " 2 On the con

trary, we must build anew "If a principle ceases to be fertile, experi
ment, without directly contradicting it (which is rightly excluded)
will however have condemned it.

" 3

It was the
"

crisis
"

in Physics, it seems, that convinced Poincare,
about 1904, of the necessity of a revision of certain principles.

As we have already seen, it was after the fundamental paper of

Lorentz that Poincare broached what he called the
" new mechanics,

"

what, since Einstein, we call the theory of relativity.
Poincare's work, Sur la dynamique de Felectron, published in Rendi

conti del Circolo matematico di Palermo in 1906, is dated 23 July 1905.
It is therefore posterior by less than a month to the paper in which
Einstein formulated the principle of relativity (30 June 1905).

Everything tends to show that Poincare's work is independent of
Einstein's. Thus it is essential to note that Poincare proved much more
relativistic from the beginning than Lorentz

; for this latter, while he

sought to explain the negative result of Michelson's experiment which
is why he had, as early as 1895, formulated the hypothesis of contraction,

independently of Lodge and Fitzgerald , still considered, in his paper
of 1904, the contraction undergone by the electron in the direction of
its motion as the result itself of the application of a uniform translation.

On the contrary, already in the introduction to his paper of 1905,
Poincare expressed himself quite clearly

1 La Valeur de la Science, p. 239.
2
Ibid., p. 207.

3
Ibid., p. 209.
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"
It seems that the impossibility of demonstrating experimentally

the absolute motion of the Earth is a general law of Nature that is to

say a law of optical and electrical phenomena just as well as ofmechanical

phenomena ; we naturally tend to accept this law, which we shall call

the Postulate of Relativity, and to accept it without restriction.

This postulate, which up to now agrees with experiment, must be
confirmed or invalidated later by more accurate experiments ; it is

interesting in any case to see what may be the consequences of it.

Moreover, if Lorentz was undeniably the first to establish most of

the laws on which the Einsteinian doctrine was to be based, he was
mistaken on the transformation of the density of an electric charge and

on the composition of velocities.

Now these two errors were explicitly corrected by Poincare in his

paper (see 1, eq. (4) and (4bi
8
)) : he therefore shares with Einstein

the merit of having established the new law of the composition of

velocities.

Poincare notes, too, that Lorentz's transformations form a continuous

group, which he calls Lorentz* s group, and from this he deduces that a

certain parameter, introduced by Lorentz in the beginning of his

analysis, is necessarily reduced to the unit.

For his part, Poincare sought an explanation of the contraction of

the electron and found it in a sort of constant external pressure applied
to the deformable and compressible electron, the work of which would

be proportional to the variation in volume of the electron. For an

electron at rest, assimilated to a sphere superficially charged, this

pressure, discovered by Poincare, equilibrates the electrostatic repul

sions. For an electron in motion, Poincare's pressure, combined with

the electrodynamic actions, inevitably produces the flattening required

by the postulate of relativity.

Lorentz had already formulated the hypothesis that all sorts of

forces are affected by a uniform translation, in the same way as electro

magnetic forces.

Poincare examines what modifications Lorentz's hypothesis neces

sarily brings about in the laws of gravitation. This leads him to suppose

that gravitation is propagated with the velocity of light. Applying
then to the forces of gravitation Lorentz's law of transformation for

electromagnetic forces and combining it with Newton's law when the

velocities of two attracting bodies are sufficiently weak to be negligible

compared with the square of the velocity of light, Poincare shows that

the corrected attraction comprises two components, one parallel to the

vector which joins the positions of the two bodies, the other parallel to

the velocity of the attracting body.
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Incidentally, in the course of this last research, while studying the

lineary substitutions which conserve the quadratic form x2
-\-y

2 + z2 t
2

(the velocity of light being taken as the unit), Poincare was led to

consider

#, y, z and t -\/ 1

as the coordinates of a point in four-dimensional space, which makes

him declare that
"
Lorentz's transformation is only a rotation of this

space round the origin.
" l This constitutes a perfectly clear antici

pation of space-time as understood by Minkowski (1908).

In the posthumous work, to which was given the title Dernieres

Pensees, Poincare returns to this same question and interprets as follows

his calculation of 1905
"
Everything happens as if time were a fourth dimension of space ;

and as if the four-dimensional space resulting from the combination of

ordinary space with time could revolve not only round an axis of ordi

nary space, but round any axis. For the comparison to be mathemati

cally correct, purely imaginary values would have to be attributed to

this fourth coordinate of space. . . . But I shall not insist on this point ;

the essential is to notice that in the new conception, space and time are

no longer two entirely distinct entities that may be considered separately,
but two parts of the same whole, two parts that are so closely interwoven

that they cannot easily be separated.
"

We pointed out above that everything tends to prove that Poincare's

work is independent of that of Einstein in which this latter formulated

the principle of special relativity. Lorentz himself insisted, on this

point, in paying a particularly clear tribute to Poincare. 2

With absolute sincerity, Lorentz acknowledges that in 1904 that

is to say before the existence of the expression he was not a relativist.
"
I had an idea that there is an essential difference between the systems

#, y, z, t and #', y', 2', t'. In the one, use is made so I thought of the

axes of coordinates which have a fixed position in the ether and of what

may be called true time ; in the other system, on the contrary, we have
to do with simple auxiliary magnitudes, whose introduction is only a

mathematical expedient. In particular, the variable t
f

could not be

called time in the same sense as the variable t.
"

Lorentz adds that it was only by the method of trial and error that

he had arrived at his formulae of transformation, the exact invariance

of which had escaped him "
My formulae remained encumbered with

1 Sur la dynamique de I
9

electron, 9.
2 Deux me'moires cTHenri Poincare sur la physique mathgmatique, Acta mathematics

Vol. 38, 1914, p. 293, and H. A. LORENTZ, Collected Papers, Vol. VIII, p. 258.
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certain terms that should have disappeared. These terms were too

small to have a perceptible influence on the phenomena, and I was able

therefore to explain the independence of the motion of the Earth that

the observations had revealed ; but I did not establish the principle of

relativity as being rigourously and universally true.
" On the contrary, Poincare obtained a perfect invariance of the

equations of electrodynamics and he formulated the postulate of rela

tivity, an expression that he was the first to use. Indeed, adopting a

point of view that had escaped me, he found the formulae [of the com

position of velocities] and [of the transformation of the density of the

electric charge]. We may add that when he thus corrected the imper
fections of my work he never reproached me for them. "

Indeed, it must be emphasized that Einstein alone crossed the

Rubicon by making a principle of what Poincare qualified as a postulate.

It is nonetheless true, as is testified by the great physicist himself whose

work launched the relativistic movement, that Poincare participated

spontaneously in the 1905 revolution along parallel lines with Einstein.1

This has not prevented most of the authors opposed to relativity

and there still remain some after half a century from invoking
Poincare's authority against Einstein, and from quoting in this con

nexion passages from a lecture delivered at Lille, 3 August 1909, entitled

La Mecanique nouvelle.

When we re-read this text without preconceived ideas, we do not

find in it any sign of a real opposition on the part of Poincare to the

new ideas that he himself had enriched by his own work. It is true

that we find in it many proofs of his prudence and wisdom, for he knew
better than anyone all that classical mechanics explain ; but, throwing
himself into the game with complete liberty of thought and expression,

and with all that humour which is one of the aspects of his genius so full

of common-sense, Poincare exposes in all their rigour the innovations

brought to the classical ideas by the relativistic theories.
" The prin

ciple of relativity,
" he declares,

" admits of no restriction in the new

mechanics ;
it has, if I may say, an absolute value.

"

1 In his History of the Theories of Aether and Electricity,Vol. II, Nelson, 1953, Sir

Edmund Whittaker clearly attributes to Poincare and Lorentz the paternity ^of
the

theory of relativity and he sees in Einstein's intervention only a systematization
" which attracted much attention.

"

On the other hand, it is said of Einstein's theory that it had its roots in tradition :

"
its heterodoxy lay in the strictness of its orthodoxy

"
(Herbert DINGLE, Scientific

and philosophical implications of the special theory of relativity, in Albert Einstein

Philosopher-Scientist, Tudor, New York, 1949, p. 537).

With the boldness of youth, Einstein was no doubt less aware than Poincare of

the sacrifices to which the abandon of the classical point of view led.
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It is true that in his conclusion, Poincare very clearly fixes the limits

of the new science and considers that it would be premature,
"
in spite

of the great value of the arguments and facts raised against classical

science,
"

to consider this latter as being definitely condemned. He
shows that classical mechanics will remain that

"
of our practical life

and of our terrestrial technique,
" and he emphasizes the necessity of a

thorough knowledge of classical mechanics if we wish to understand the

new mechanics.

But, in his Dernieres Pensees* Poincare sums up clearly the position
of the theory of relativity

" On all the points on which it departs from Newtonian mechanics,
the mechanics of Lorentz subsists. We continue to believe that a body
in motion will never exceed the velocity of light, that the mass of a body
is not constant, but depends on its velocity and the angle this velocity
forms with the force acting on the body, that no experiment will ever

be able to decide whether a body is at rest or in motion, either in relation

to absolute space, or even in relation to the ether.
"

In the last analysis, Poincare thus gave his adhesion to the theory
of relativity.

1
Chap. VI, p. 165.
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