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In this paper a minimally interactive high-throughput system which employs a color gradient based
active contour model for rapid and accurate segmentation of multiple target objects on very large images
is presented. While geodesic active contours (GAC) have become very popular tools for image segmenta-
tion, they tend to be sensitive to model initialization. A second limitation of GAC models is that the edge
detector function typically involves use of gray scale gradients; color images usually being converted to
gray scale, prior to gradient computation. For color images, however, the gray scale gradient image
results in broken edges and weak boundaries, since the other channels are not exploited in the gradient
computation. To cope with these limitations, we present a new GAC model that is driven by an accurate
and rapid object initialization scheme; hierarchical normalized cuts (HNCut). HNCut draws its strength
from the integration of two powerful segmentation strategies—mean shift clustering and normalized
cuts. HNCut involves first defining a color swatch (typically a few pixels) from the object of interest. A
multi-scale, mean shift coupled normalized cuts algorithm then rapidly yields an initial accurate detec-
tion of all objects in the scene corresponding to the colors in the swatch. This detection result provides
the initial contour for a GAC model. The edge-detector function of the GAC model employs a local struc-
ture tensor based color gradient, obtained by calculating the local min/max variations contributed from
each color channel. We show that the color gradient based edge-detector function results in more prom-
inent boundaries compared to the classical gray scale gradient based function. By integrating the HNCut
initialization scheme with color gradient based GAC (CGAC), HNCut-CGAC embodies five unique and
novel attributes: (1) efficiency in segmenting multiple target structures; (2) the ability to segment multi-
ple objects from very large images; (3) minimal human interaction; (4) accuracy; and (5) reproducibility.
A quantitative and qualitative comparison of the HNCut-CGAC model against other state of the art active
contour schemes (including a Hybrid Active Contour model (Paragios–Deriche) and a region-based AC
model (Rousson–Deriche)), across 196 digitized prostate histopathology images, suggests that HNCut-
CGAC is able to outperform state of the art hybrid and region based AC techniques. Our results show that
HNCut-CGAC is computationally efficient and may be easily applied to a variety of different problems and
applications.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

With the recent advent and cost-effectiveness of whole-slide
digital scanners, histopathology glass slides can be easily con-
verted into digital slides and stored as high resolution digital
images (May, 2010). Pathologists can now analyze the digitized
slides, thereby making their diagnoses on the computer monitor
instead of the traditional microscope. More importantly, this
technology makes the computerized quantitative image analysis
of digitized histopathology possible (Gurcan et al., 2009). In
ll rights reserved.
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histopathology specimens, the morphological appearance of differ-
ent structures, such as as glands or nuclei, are often highly reflec-
tive of disease outcome. For example, each gland in normal
prostate histopathology is comprised of a central lumen area,
surrounding epithelial cytoplasm, and a ring of epithelial nuclei
defining the outer boundary of the gland (Doyle et al., in press).
However, in low grade prostate cancer (CaP) the central lumen
area shrinks and is almost completely absent in high grade CaP.
Additionally, gland morphology is known to progressively change
from low (less aggressive) to high grade (poor outcome) prostate
cancer (Montironi et al., 2005). Additional visual changes include
changes in the area of the epithelium or lumen, the shape, the size,
the number, and differentiation of the glands (Gleason, 1992). In
the case of several diseases, such as prostate, breast, and ovarian
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cancer, shape and morphological attributes of glands, tubules, and
nuclei on the tissue specimens correlate with disease aggressive-
ness (Venkataraman et al., 2009; Karpinska-Kaczmarczyk et al.,
2009; Farjam et al., 2007; Haba et al., 1993). Hence, an important
pre-requisite to predicting disease outcome is the ability to accu-
rately and efficiently detect the location of glands and segment
them so that important morphological features pertaining to dis-
ease outcome may be obtained. Therefore, there is a clear need
to develop high-throughput computer-assisted analytical tools
for segmenting histological structures on digital pathology slides,-
which can be as large as several thousand by several thousand
pixels.

Active contour (AC) models have emerged as popular segmenta-
tion tools for separating the objects/structures of interest from the
background via continuously deformable curves. Most AC models
deform in order to delineate the boundaries of the desired objects
in the image through minimizing an energy functional (Caselles
et al., 1997). While AC models are able to accurately capture the
shape of the object, thereby enabling extraction of higher-level
shape and morphological features, most AC models are not able
to simultaneously segment multiple structures on very large
images. This is primarily due to the fact that most boundary-based
AC models require accurate model initialization in order to be able
to handle very large images (Fatakdawala et al., 2010). Though re-
gion-based models do not require accurate initialization (as we
will discuss later), simultaneous and concurrent segmentation of
multiple structures on very large images is still a challenge for re-
gion-based models, especially in the presence of a complicated
background. For example, a prostate needle core biopsy digitized
at 40� magnification results in an image that is greater than
2 GB in size. A single prostate biopsy core could comprise several
thousand glands. If the objective is to simultaneously segment
boundaries of all glands in such an image, most AC schemes would
require careful model initialization in the proximity of each object
of interest. If the objective were to segment all glands in the image,
this could involve multiple, careful initializations of the AC model
to segment the thousands of glands that might be present on a sin-
gle prostate biopsy core image. Since most AC models are unable to
handle the simultaneous segmentation of so many structures of
interest from such large images, there is a need for rapid identifi-
cation of the objects of interests in order to initialize the AC model.
Manual initialization of thousands of objects simultaneously is
clearly not feasible. Consequently, a deformable AC model would
ideally require automated initialization of the objects of interest.
Additionally, for most boundary-based AC models, the evolution
function is dependent on the gray scale intensity gradient. Most
AC models convert color images into an equivalent gray scale rep-
resentation and hence do not exploit the color tensor information
present in these images (Caselles et al., 1997).

In this paper we present a new high-throughput segmentation
tool for accurate, efficient and automated extraction of contours
of histological structures (e.g. glands) so that the morphological
information from histological images can be employed for building
diagnostic and prognostic classifiers. We will show the application
of a new color gradient based AC model with minimal user interac-
tion for rapid, accurate model initialization in the context of gland
segmentation on digitized prostate histopathology. The scheme, as
we will show, is readily extensible to a variety of domains and
applications both within and outside digital pathology.

The rest of this paper is organized as follows: In Section 2, we
discuss previous related work. In Section 3, a brief overview of
the new color gradient based AC scheme with minimally interac-
tive object initialization, along with the novel contributions of this
work are presented. In Section 4, we present the methodological
details of our AC model. In Section 5, we describe the data sets
and experimental design. In Section 6, we present the results of
qualitative and quantitative evaluation of our AC mode. Concluding
remarks are presented in Section 7.
2. Previous related work

Based on the type of image information used to drive the model,
AC schemes may be categorized as either (a) boundary- (Caselles
et al., 1997) or (b) region-based (Chan and Vese, 2001). The
geodesic active contour (GAC) model proposed by Caselles et al.
(1997) is an important boundary-based AC model. Beginning with
a user specified initial boundary, GAC models utilize a positive-
decreasing gradient function as the stopping criterion. This attracts
the contour towards the edges of the target objects. The edge-
detector function is a positive-decreasing function, defined as
gðf ðcÞÞ ¼ 1

1þsðf ðcÞÞ, where s(f(c)) is the magnitude of the gradient at
every pixel c in the image. The minima of the function g(f(c)) is
achieved as the gradient magnitude, s(f(c)), approaches the maxi-
mal value at the object boundaries. When this happens, the curve
stops its evolution, right at the edge of the desired object. One lim-
itation of boundary-based GAC models is that they are highly
dependent on the edge-detector function. Most boundary-based
AC models (Cohen, 1991; Caselles et al., 1997; Malladi et al.,
1995) define the function g(f(c)) as the gradient of the gray scale
image. For color images, the most common approach in computing
the image gradient involves first converting the vector image to a
scalar (gray scale) image by eliminating 2 of the 3 color channels
(e.g. removing the hue and saturation channels while retaining
the luminance channel) (Sapiro, 1997). The directional gradient is
then calculated from this single channel image. However, this color
conversion procedure results in broken edges and weak boundaries
due to the loss of information from the other channels. This limita-
tion of GAC models in exploiting gray scale gradients can be appre-
ciated in Fig. 2c. Broken edges and weak boundaries adversely
affect the curves’ evolvement, such as causing it to miss the bound-
aries of objects whose gradients are not large enough (see Fig. 5e, f
and Fig. 6e, f). Consequently, there is a need for the computation of
color gradients directly from the color image.

As mentioned in Section 1, a major limitation of boundary-
based AC models is the need for explicit initialization in the vicin-
ity of the target object of interest (Cohen and Kimmel, 1997).
Recently, region-based AC (RAC) models have been proposed to ad-
dress some of the limitations of GAC models. The region-based
model essentially employs statistical information derived from dif-
ferent regions (foreground and background) to drive the AC model,
which is independent of the edge-detector function and does not
require precise initialization. One important RAC model is the
Rousson–Deriche (RD) model (Rousson and Deriche, 2002). The
RD model assumes that the image plane comprises two regions
and the intensities of pixels within each region satisfy a Gaussian
distribution. The contour evolves as a result of competition be-
tween the log probability of current pixels c belonging to the fore-
ground and background regions. However, RD and other RAC
models have their own limitations. For instance, the model may
lead to inaccurate boundaries if the boundary information is
ignored. RAC models may also require more computations for the
randomly initialized contour to converge to the boundaries of the
objects. Moreover, most of the models make a strong assumption
that the number of distinct regions in the scene is known. Further,
if the background of the image is too complicated, such as in digi-
tized histopathology, the RAC model may not be able to segment
the regions of interest (see Fig. 5i, j and Fig. 6i, j). In fact, even in
scenarios where the background is not very complicated, the RAC
model may latch onto the incorrect object boundary.

While hybrid AC models (Paragios and Deriche, 2002a,b) have
been proposed to combine the strengths of boundary-based and



Fig. 1. The flowchart of HNCut-CGAC model shown in the context of gland segmentation on prostate histopathology imagery.
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region-based models, like RAC models, they too might some-
times fail without accurate initialization. Even though the
edge-detection function is incorporated into the regularization
term, the hybrid model is actually a variant of the region-based
model. Since the region term in the hybrid model tends to dom-
inate the driving forces during curve evolution, the hybrid model
shares most of the limitations of region-based models (see
Fig. 5k, l and Fig. 6k, l). Therefore, the hybrid AC model is pla-
gued by many of the limitations that afflict region-based models.
Hybrid AC models are also constrained, like most boundary and
region-based models, in their inability to simultaneously seg-
ment multiple objects in very large images. This may explain
why, up until now, relatively few shape-based segmentation
tools have been proposed for the automated analysis of digitized
histopathology imagery (Gurcan et al., 2009). In Fatakdawala
et al. (2010), an expectation-maximization (EM) algorithm based
method was utilized for automatically detecting the centers of
lymphocytes on breast cancer histopathology images. The initial
contours for the curve evolution function were defined with
these detected centers. However, only image patches of size
200 � 200 pixels were considered in this study. In Hafiane
Fig. 2. (a) Original color image of needle core biopsy histopathology image, and corresp
color image in (a) to its gray scale representation with the MATLAB function rgb2gray
referred to the web version of this article.)
et al. (2008), the results from fuzzy c-means clustering were em-
ployed to initialize the active contour model for segmenting the
nuclei on prostate histopathology.

None of the initialization schemes proposed above, however,
are able to address the demands of on the fly, rapid and efficient
segmentation of a specific target of interest on very large images.
In Janowczyk et al. (2009), introduced hierarchical normalized
cut (HNCut), an object detection scheme that integrated the
mean-shift clustering (Comaniciu and Meer, 2002) scheme with
the normalized cuts algorithm (Shi and Malik, 2000) within a mul-
ti-resolution framework. The HNCut scheme used a hierarchically
represented data structure to bridge the mean-shift clustering
and normalized cuts algorithms. This allows HNCut to efficiently
traverse a pyramid of the input image at various color resolutions,
efficiently and accurately pre-segmenting the object class of inter-
est. By simply specifying a few pixels from the object of interest,
the HNCut scheme can be used to rapidly identify all related and
similar objects within the image. By specifying representative pix-
els from a different object, the HNCut scheme can be used to rap-
idly identify all image pixels corresponding to the target of
interest.
onding (b) color gradient and (c) gray scale gradient obtained after converting the
. (For interpretation of the references to colour in this figure legend, the reader is



Table 1
Description of notation.

Symbol Description

C 2D image scene
C 2D Cartesian grid of pixels c = (x,y)
f(c) Function that assigns intensity values to pixel c
wk,j The jth element of weight vector wk at level k
/(t,c) The level set function
C The zero level set C ¼ fc 2 X : /ðcÞ ¼ 0g
X Bounded open set in R2

H(/)
Heavside function Hð/Þ ¼ 1; /ðcÞP 0;

0; /ðcÞ < 0:

�
d(/)

Delta function dð/Þ ¼ þ1; /ðcÞ ¼ 0;
0; /ðcÞ–0:

�
Xf Foreground region Xf = {c 2X: /(c) > 0}
Xb Background region Xb = {c 2X: /(c) < 0}
Að�Þ The set of pixels contained within the boundary of the object
k � k The L2 norm

Fk (or bFk) The set of colors at level k
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3. Overview and novel contribution

Fig. 1 illustrates the flowchart showing the working of the
HNCut-CGAC model in the context of gland segmentation on pros-
tate histopathological imagery. As the flowchart shows, the model
includes two modules. In the first module, a HNCut initialization
scheme (Janowczyk et al., 2009) is employed for rapid, minimally
supervised, specification of the target object of interest. Based on
the pre-segmentation results from the first module, a level set
functional is initialized in the second module. The AC model em-
ploys a novel color gradient based function as its edge-detection
function. The color gradient is based on the local structure tensor,
which is obtained by calculating the local min/max variations con-
tributed from each color channel (e.g. R, G, B or H, S, V). This results
in significantly stronger object boundaries compared to those
obtainable via the gray scale gradient alone. By integrating the
HNCut initialization scheme with the color gradient based GAC
model, our high-throughput system has five unique and novel
attributes:

(1) Efficiency in segmenting multiple target structures. The HNCut
initialization scheme allows for rapid detection of the loca-
tions of the target structures, thereby providing an initializa-
tion for the AC model. The level set representation of color
gradient based AC model evolves the embedded level set
functional, which is able to automatically handle changes
in contour topology. The scheme can thus handle the simul-
taneous segmentation of multiple objects in parallel.

(2) The ability to handle large images. The integration of the
HNCut initialization within the GAC framework allows our
scheme to segment multiple instances of the target object
on arbitrarily large images.

(3) Minimal human interaction. The system requires minimal
human intervention during the HNCut stage. This interven-
tion is in the form of a user selected swatch that reflects
the color contained in the target object of interest. The sub-
sequent steps are completely free of any human
intervention.

(4) Accuracy. The system is able to segment structures in the
image with an accuracy comparable to that of a human
expert. This is particularly relevant in histopathology imag-
ery where a human expert may simply be unable to manu-
ally segment thousands of instances of the target object on
a very large digital slide.

(5) Reproducibility. The model comprises very few free parame-
ters and, except for the user selected swatch for the HNCut
module, requires no additional user intervention. This makes
the scheme robust and highly reproducible.

4. HNCut initialized active contour scheme

4.1. Notation

Let C ¼ ðC; fÞ (or C ¼ ðC; f Þ) define a color (or gray scale) image,
where C is a 2D Cartesian grid of pixels c = (x,y) and fðcÞ 2 R3 (or
f ðcÞ 2 R1) is a function that assigns intensity values (or an intensity
value) to pixel c 2 C. A list of commonly used notations and sym-
bols in this paper is illustrated in Table 1.
4.2. Hierarchical mean shift based normalized cuts initialization
scheme

The HNCut scheme draws its strength from the integration of
two powerful segmentation strategies—frequency weighted
mean-shift clustering and normalized cuts. The scheme is outlined
in the following three steps:

1. User selects the domain swatch. A user, via manual selection,
defines a color swatch S from the color function f such that
S1 = {f1,aja 2 {1, . . . ,N}} creates a selection of color values that
are representative of the object of interest from C.

2. Frequency weighted mean-shift clustering for generating a multi-
resolution color pyramid. The mean shift algorithm is a non-
parametric clustering technique (Comaniciu and Meer, 2002).
It can be employed to identify the local maxima of a density
function and detect modes of clusters by using a density gradi-
ent estimator. In this step, an improved version of the mean-
shift algorithm called frequency weighted mean-shift (FWMS)
algorithm is employed to generate multiple levels of a pyrami-
dal scene representation Ck ¼ ðC; fkÞ, where k 2 {1, . . . ,K} repre-
sent the kth levels of a color pyramid produced at each
iteration of the FWMS algorithm. At each level k, the unique val-
ues in the color vector Fk ¼ ffk;1; fk;2; . . . ; fk;jFk jg are determined
under the constraint that any two values are equivalent if
kfk,i � fk,jk 6 e, where e is a pre-defined similarity constraint.
As a result, the vector bFk can be constructed from Fk, wherebFk � Fk and bFk is a set of only the unique values present in Fk,
where the cardinality of set bFk is defined as
Mk ¼ jbFkj: ð1Þ
For all fk;i ¼ f̂ k;j, the element of the weight vector
wk ¼ fwk;1; . . . ;wk;Mk

g associated with bFk is computed as
wk;j ¼
XMk

i¼1

wk�1;i ð2Þ
where i, j 2 {1, . . . ,Mk}. Intuitively, wk,j in (2) is summing the weights
from the previous level into the new unique values. Additionally,
the weights satisfy the equation
XMk

i¼1

wk;i ¼ N: ð3Þ
As a result, wk,j is a count of the number of original colors that have
migrated to bFk through mean shifting (Comaniciu and Meer, 2002).
Then, based on the weight vector wk, the fixed point iteration
update becomes
fkþ1;j  
PMk

i¼1wk;i f̂ k;jGðf̂ k;j � f̂ k;iÞPMk
i¼1Gðf̂ k;j � f̂ k;iÞ

; ð4Þ
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where the Gaussian function G, with a bandwidth parameter r, is
defined as
Gðf̂ k;j � f̂ k;iÞ ¼ exp �kf̂ k;j � f̂ k;ik2

r2

 !
: ð5Þ
The function G(�) is used to estimate the kernel density at color data
point f̂k;j.
3. Normalized cuts segmentation on frequency weight mean shift

reduced color space. Normalized cuts (NCuts) is a graph parti-
tioning method (Wu and Leahy, 1993). The hierarchical pyra-
mid created by mean shift and corresponding to various levels
of color resolution serves as the initial input to the NCuts algo-
rithm. NCuts takes a connected graph with vertices and edges
and partitions the vertices into disjoint groups. By setting verti-
ces to the set of color values and having the edges represent the
similarity (or affinity) between the color values, the vertices can
be separated into distinct groups, each of which is comprised of
similar colors. By operating in the color space, as opposed to the
spatial domain (on pixels), the scheme is very fast. Normalized
Cuts (Shi and Malik, 2000) is employed on the small number of
unique values in the bottom color level bFK to remove those col-
ors that are not contained within the object specific color
swatch. Let GK = {VK,WK} be an undirected weighted graph with
vertex set VK and similarity matrix WK constructed on CK at the
lowest level of the color pyramid. VK is comprised of unique
color values in bFK . Assuming there are N unique color values
in bFK ;WK 2 RN�N is a similarity/adjacency matrix of the graph
that measures the similarity of color value among any two ver-
tices/points, whose elements are defined as (Shi and Malik,
2000)
wij ¼ exp
�kfK;i � fK;jk2

r2
1

 !
� exp �kci�cjk2

r2

� �
; if kci � cjk < h;

0; otherwise:

8<: ð6Þ
where ci, cj are in CK , and h is a pre-defined spatial radius threshold.
In (6), the first Gaussian function measures intensity similarity
between vertices ci and cj and r1 is a bandwidth parameter. The sec-
ond Gaussian function measures spatial distance between ci and cj,
and r2 controls the width of the neighborhoods. The segmentation
problem is transformed into finding a vector that can optimally
bipartition graph GK, which in turn is equivalent to solving the fol-
lowing generalized eigenvalue system (Shi and Malik, 2000):
ðDK �WKÞv ¼ kDKv; ð7Þ
where DK is called the degree matrix. The entries of diagonal matrix
DK are column (or row, since WK is symmetric) sums of WK. The
optimal bipartition of the graph is the eigenvector with the second
smallest eigenvalue (7). The NCut algorithm partitions bFK into two
color sets bFA

K and bFB
K . After the partition, bFA

K or bFB
K are matched

against the colors in swatch S1 (selected in Step 1). After subsequent
iterations, the segmentation results are obtained from one of bFA

K andbFB
K that uniquely contains all colors in color swatch S1, the other set

of colors is discarded. The resulting detection results make for an
excellent initialization for the subsequent application of the color
gradient based AC model.

4.3. Local structure tensor based color gradient

Color gradient based AC models have been proposed previously
in Sapiro (1997) and Yang et al. (2005). A major difference between
the HNCut-CGAC model and the color gradient vector flow snake in
Yang et al. (2005) (where the color gradient serves as an external
force to drive the snake) is that in HNCut-CGAC, the color gradient
serves as the edge-detector function. The color gradient function
employed in HNCut-CGAC is inspired by the Cumani operator
(Aldo, 1991), a second-order differential operator for vectorial
images. The Cumani operator is based on Di Zenzo multi-valued
geometry (Di Zenzo, 1986). For a color image C ¼ ðC; fÞ, the L2 norm
of f can be written in matrix form as

df2 ¼
dx

dy

� �T g11 g12

g21 g22

� �
dx

dy

� �
; ð8Þ

where

g11 ¼
@f
@x

� �T
@f
@x

� �
¼ @f1

@x

� �2

þ @f2

@x

� �2

þ @f3

@x

� �2

;

g12 ¼ g21 ¼
@f
@x

� �T
@f
@y

� �
¼ @f1

@x
� @f1

@y
þ @f2

@x
� @f2

@y
þ @f3

@x
� @f3

@y
; and ð9Þ

g22 ¼
@f
@y

� �T
@f
@y

� �
¼ @f1

@y

� �2

þ @f2

@y

� �2

þ @f3

@y

� �2

:

The matrix ½gij� ¼
g11 g12
g21 g22

� �
contains the coefficients of the first

fundamental form in the color space and is also referred to as the
local structure tensor. It locally sums the gradient contributions
from each image channel. Here f1, f2 and f3 are intensities of each
channel for any pixel c in C. For the matrix [gij], the maximum
and minimum eigenvalues of the matrix (k+ and k-) represent the
extreme rates of change in the direction of their corresponding
eigenvectors. k+ and k- may be formally expressed by

k� ¼ ðg11 þ g22 �
ffiffiffiffi
D
p
Þ=2; ð10Þ

where

D ¼ ðg11 � g22Þ
2 þ 4g2

12: ð11Þ

The color gradient at any c 2 C may hence be expressed as (Sapiro,
1997)

sðfðcÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ � k�

p
: ð12Þ

From Eqs. (8)–(12), it is easy to show that the gray scale gradientffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@2 fi
@x2 þ @2 fi

@y2

q
, where i 2 {1,2,3}, (widely employed for edge detection

(Caselles et al., 1997)) is a special case of the color gradient s(�). Note
that the methodology for computing the color gradient described
above could be easily applied to different vectorial color represen-
tations such as RGB, HSV, and Luv (Gonzalez and Woods, 2008).
Fig. 2 illustrates the role and importance of the color gradient func-
tion (12) in driving the curve evolution function for an AC model.
The color gradient representation (Fig. 2b) for the digitized prostate
histopathology image (Fig. 2a) results in more prominent bound-
aries compared to the corresponding gray scale gradient (Fig. 2c).
Fig. 2c was generated with the MATLAB function rgb2gray, where
the RGB color image is first transformed into HSV color space. The
hue and saturation channels are then eliminated to yield a scalar
luminance, gray scale image (Caselles et al., 1997).

4.4. Geodesic active contour model

4.4.1. Energy functional
We assume that the image plane X 2 R2 is partitioned into 2

non-overlapping regions by a curve C. The foreground region Xf,
background region Xb and the curve C have been defined in Table
1. The relationship among them are

X ¼ Xf [Xb [ C; ð13Þ

and

Xf \Xb ¼ ;; ð14Þ

where Xf and Xb represent the set of image locations corresponding
to the target regions of interest (or foreground) and the other non-



Table 2
Description of the different data sets considered in this study.

Name Number

Dataset 1 Hematoxylin and Eosin (H&E) stained prostate
needle core biopsy images

126

Dataset 2 H&E stained images of quadrant histological
sections of prostate obtained from radical
prostatectomy studies

70
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target regions (or background), respectively. The optimal partition
of the image plane X by a curve C can be obtained through mini-
mizing the energy functional

E1ð/Þ þ E2ð/Þ ¼ a
Z

C

gðfðcÞÞdc þ b
Z

Xf

gðfðcÞÞdc: ð15Þ

In Eq. (15), the first term E1(/) is the energy functional of a tradi-
tional GAC model, obtained as the integral of an edge-detector func-
tion g(f(c)), for each pixel c over the curve C. This external image
force pushes or attracts the curve C to the high gradient regions.
Minimization of this energy term is equivalent to minimizing the
weighted Euclidean length of the curve C. The second term E2(/)
which is an area minimization term is inspired by the balloon force
proposed in Cohen (1991). The inflation force, like a balloon, stops
the curve C when the object edges are strong. Alternatively, the
curve may pass through the object border if the edge is too weak
with respect to the inflation force (Cohen, 1991). Minimization of
this term is equivalent to minimizing the weighted foreground
areas enclosed by the curve C. Note that the edge-detector function
in the traditional GAC model and the balloon force are based on the
calculation of the gray level gradient of the image, such as the Can-
ny-Deriche edge in Cohen (1991). In this paper, the edge-detector
function g(f(c)) is based on the color gradient, which is defined as

gðfðcÞÞ ¼ 1
1þ sðfðcÞÞ ; ð16Þ

where s(f(c)) is the local structure tensor based color gradient, pre-
viously defined in Section 4.3.

In traditional level set methods, a re-initialization phase is re-
quired as a numerical remedy for maintaining stable curve evolu-
tion (Li et al., 2010). To overcome this drawback, an additional
energy term (Li et al., 2010) is added to remove the re-initialization
phase

E3ð/Þ ¼
Z

X

1
2
ðkr/k � 1Þ2dc: ð17Þ

The combined energy functional in this paper is hence defined as

Eð/Þ ¼ aE1ð/Þ þ bE2ð/Þ þ cE3ð/Þ;

¼ a
Z

C

gðfðcÞÞdc þ b
Z

Xf

gðfðcÞÞdc þ c
Z

X

1
2
ðkr/k � 1Þ2dc: ð18Þ

By employing the Heavside function H(/), we can unify integrals in
Eq. (18) as (Chan and Vese, 2001; Zhao et al., 1996)

Eð/Þ ¼ a
Z

X
gðfðcÞÞkrHð/Þkdc þ b

Z
X

gðfðcÞÞHð/Þdc þ c
Z

X

1
2

�ðkr/k � 1Þ2dc; ð19Þ

where c 2X. Using the fact that krH(/)k = d(/(f(c)))kr/k (Chan
and Vese, 2001; Vese and Chan, 2002), the energy functional re-
duces to

Eð/Þ ¼ a
Z

X
gðfðcÞÞdð/ðfðcÞÞÞkr/kdc þ b

Z
X

gðfðcÞÞHð/Þdc

þ c
Z

X

1
2
ðkr/k � 1Þ2dc: ð20Þ
4.4.2. Curve evolution function of GAC model
Based on the theory of the calculus of variations (Gelfand and

Fomin, 2000), the curve evolution function can be derived from
the level set framework by minimizing the energy functional in
Eq. (20). The curve evolution function is now defined by the follow-
ing partial differential equation (PDE):
@/
@t ¼ dð/Þfadiv gðfðcÞÞ r/

kr/k

h i
þ bgðfðcÞÞg þ c D/� div r/

kr/k

� �h i
;

/ð0; cÞ ¼ /0ðcÞ; 8c 2 C:

(
ð21Þ

where a, b, and c are positive constant parameters defined empiri-
cally as a = 4,b = 0.5, and c = 0.04, respectively. d(/) is the Delta
function (see Table 1), div(�) is the divergence operator, and /0(c)
is the initial evolution functional that is obtained from the HNCut
segmentation result (see Section 4.2). /0 is defined as a piecewise
linear function:

/0ðcÞ ¼
�n; c 2 Xb;

0; c 2 C;

n; c 2 Xf :

8><>: ð22Þ

where Xf ;C and Xb represent the target regions of interest, the
boundaries of the target regions, and the other non-target regions,
respectively. In Eq. (22), Xf ;C, and Xb are all obtained via the appli-
cation of the HNCut scheme. n is a positive constant and set empir-
ically to n = 4.

5. Experimental design

5.1. Datasets

We quantitatively and qualitatively compared the performance
of the HNCut-CGAC model against other AC schemes (see Table 3)
on a total of 196 images obtained from two different patient co-
horts from the Hospital at the University of Pennsylvania (UPENN).
In Table 2, the first cohort comprised 126 Hematoxylin and Eosin
(H&E) stained and digitized prostate needle core biopsy specimens.
Each of the 126 images was obtained by digitizing the correspond-
ing glass slide at 20� optical magnification using an Aperio whole-
slide digital scanner. The second data set is comprised of 70 H&E
stained images of quadrant histological sections obtained from
radical prostatectomy studies.

5.2. Ground truth generation

For all 196 images considered in this study, the objective was to
segment the boundaries of the glandular regions. Since it was
impossible to have an expert pathologist manually segment each
and every gland in each of the 196 images (to provide ground truth
for quantitative evaluation), the expert was asked to randomly pick
region of interests on the digitized image where clusters of glands
were visible. The expert then proceeded to meticulously segment
gland boundaries from within the randomly chosen ROI on each
of the 196 digitized images considered in this study. Consequently,
quantitative evaluation of the different AC models was limited to
these ROI’s across the 196 images.

5.3. Comparative strategies

Table 3 lists four AC models that we implemented, solely for the
purpose of quantitative comparison with the HNCut-CGAC model.



Table 3
The AC models considered in this work for comparison with the HNCut-CGAC model.

HNCut-CGAC Color gradient based GAC model with HNCut initialization
HNCut-GAC Gray scale gradient based GAC model with HNCut

initialization
CGAC Color gradient based GAC model with random initialization
RD Rousson and Deriche’s (RD) model with random initialization
HAC Hybrid AC model with random initialization

J. Xu et al. / Medical Image Analysis 15 (2011) 851–862 857
5.3.1. Rousson–Deriche model (Rousson and Deriche, 2002)
Most region-based AC models are inspired by the Mumford–

Shah functional (Mumford and Shah, 1989). Mumford–Shah func-
tionals approximate image intensities via a piecewise smooth (or
constant) function. In Zhu and Yuille (1996), the authors estab-
lished relations between statistical methods and the piecewise
constant model by a more general energy functional, where the
image intensities within each region are approximated by a statis-
tical distribution. The Rousson–Deriche model assumes that the
image plane X is partitioned into two regions Xf and Xb by contour
C. If we further assume that image intensities in each region are
statistically homogeneous and the intensities of each region are
approximated by a Gaussian distribution, the energy functional
can be derived as follows:

Eð/Þ ¼ �a1

Z
X
½Hð/Þ log pðfðcÞjhf Þ þ ð1� Hð/ÞÞ

� log pðfðcÞjhbÞ�dc þ b1

Z
X
jrHð/Þjdc ð23Þ

where H(/) is the Heaviside function and p(f(c)jhi) (i 2 {f,b}) are the
multivariate Gaussian distribution function with parameter
hi = {li,Ri}, where li and Ri are the mean and covariance of the
intensity in the region i(i 2 {f,b}) and are estimated by

li ¼
1
jXij

Z
Xi

fðcÞdc; ð24Þ

Ri ¼
1
jXij

Z
Xi

ðfðcÞ � liÞðfðcÞ � liÞ
T dc:

By minimizing the energy functional (23) via the variational princi-
ple, the optimal bipartitioning of the image plane X can be obtained
by evolving the curve evolution functional as follows

@/
@t ¼ a1dð/Þ½log pðfðcÞjh1Þ � log pðfðcÞjh2Þ� þ b1dð/Þdiv r/

jr/j

h i
;

/ð0; cÞ ¼ /0ðcÞ; 8c 2 C:

(
ð25Þ

where /0(c) is the initial contour, which is generated randomly.
From Eq. (25), the contour evolves as a result of competition be-
tween the log probability of current pixel c belonging to foreground
Xf and background region Xb.

5.3.2. Hybrid AC (HAC) model (Paragios and Deriche)
Since region-based AC models do not typically include bound-

ary information, Paragios and Deriche presented a hybrid AC model
in Paragios and Deriche (2002a,b) by incorporating a gradient
based edge-detection function into the regularization term of re-
gion-based model. By incorporating g(f(c)) into the second term
of Eq. (25), the RD model reduces to the HAC model as follows:

Eð/Þ ¼ �a2

Z
X
½Hð/Þ log pðfðcÞjhf Þ þ ð1� Hð/ÞÞ

� log pðfðcÞjhbÞ�dc þ b2

Z
X

gðfðcÞÞjrHð/Þjdc: ð26Þ

The major difference between (26) and the HAC model presented
in Paragios and Deriche (2002a,b) is that g(f(c)) is based on the
color gradient whereas the edge-detection function employed in
Paragios and Deriche (2002a,b) are based on the gray scale image
gradient. The corresponding curve evolution function can be de-
rived as
@/
@t ¼ a2dð/Þ½log pðfðcÞjhf Þ � log pðfðcÞjhbÞ� þ b2dð/Þdiv gðfðcÞÞ r/

jr/j

h i
;

/ð0; cÞ ¼ /0ðcÞ; 8c 2 C:

(
ð27Þ
5.4. Experiments performed

A total of five experiments were designed to showcase the dif-
ferent attributes of the HNCut-CGAC scheme. A total of five AC
models (HNCut-CGAC, HNCut-GAC, CGAC, HAC, and RD) were eval-
uated in terms of their gland segmentation ability across 196
images.

5.4.1. Experiment 1: Robustness of HNCut to choice of swatch
The aim of this experiment was to demonstrate that the HNCut-

CGAC model requires minimal human interaction and is robust to
the choice of the color swatch. In our experiments we employed six
different color swatch selection methods.

(A) In the first experiment, color swatch S0 is selected from a
single randomly chosen gland from a randomly selected
image. S0 is then employed across all of the images in the
two data sets.

(B) In the second experiment, 10 images were randomly
selected across the two data sets. For each of the 10 ran-
domly selected images, color swatches S1–S4 are randomly
selected from multiple glands. Then HNCut-CGAC model
with color swatches S1–S4 is applied to segment the gland
regions across 196 images.

(C) In the third experiment, the color swatch S5 is selected from
multiple glands from a randomly selected image in the data
sets.

5.4.2. Experiment 2: Comparison of HNCut-CGAC against CGAC model
The aim of this experiment was to show the efficiency and accu-

racy of HNCut-CGAC over the CGAC model with random initializa-
tion. Here CGAC refers to the color gradient based geodesic active
contour model. The CGAC model is randomly initialized with cir-
cles that are evenly distributed across the image. The model is then
applied for gland segmentation across all 196 images.

5.4.3. Experiment 3: Comparison of HNCut-CGAC against Rousson–
Deriche (RD) model (Rousson and Deriche, 2002)

The aim of this experiment was to compare the accuracy of the
HNCut-CGAC model with respect to a state-of-the-art region-based
AC model (RD). The RD model is a popular region-based AC model
where the model is driven by the Gaussian distributions of both
foreground and background (Rousson and Deriche, 2002). Though
region-based models have the advantage of being an initializa-
tion-free scheme, the GAC model with accurate initialization and
efficient edge-detection function is able to outperform the RD
model in segmenting glands structures from histological images.
In this experiment, the RD model is initialized via multiple random
circles evenly distributed across whole-slide images.

5.4.4. Experiment 4: Comparison of HNCut-CGAC against Hybrid Active
Contour (HAC) model (Paragios and Deriche)

The aim of this experiment was to compare the accuracy of the
HNCut-CGAC model with respect to a state-of-the-art hybrid AC
model (HAC). In this experiment, the HAC model is initialized via



Fig. 3. The histogram for segmentation accuracy evaluation of HNCut-CGAC model with color swatch S0 over 196 images are plotted. The plots reflect the number of studies
(y-axis) for which (a) Overlap, (b) Sensitivity, (c) Specificity, and (d) Positive Predictive Value (PPV) values were below certain number(x-axis). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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multiple random circles evenly distributed across the whole-slide
images.

5.4.5. Experiment 5: Evaluating GAC performance with color and gray
scale gradients

The aim of this experiment was to show the accuracy of the
HNCut-CGAC model over the HNCut-GAC model. HNCut-GAC
refers to a gray scale gradient based geodesic AC model with
HNCut initialization. Since our aim is to demonstrate the advanta-
ges in using color gradient based edge-detection function for GAC
model, we replace the color gradient with gray scale gradient in the
edge-detection function for the HNCut-CGAC model. In order to
make a fair comparison, the gray scale gradient based GAC
(HNCut-GAC) model is initialized by the HNCut scheme as well.

5.5. Performance measures

The performance of each model is evaluated based on the
boundary-based measurements and region-based overlapping
measurements:
5.5.1. Boundary-based measurement
The gland segmentation results of the HNCut-CGAC, HNCut-

GAC, CGAC, RD, and HAC models were evaluated in terms of mean
absolute distance (MAD). We define G ¼ fcvjv 2 f1; . . . ;Ngg and
S ¼ fcwjw 2 f1; . . . ;Mgg as closed boundaries of manual and auto-
mated segmentation, respectively. N and M are numbers of pixels
on the boundaries of the manual and automated segmentations,
respectively. MAD may then be defined as

MAD ¼ 1
M

XM

w¼1

fminvkcw � cvkg; 8cw 2 S; 8cv 2 G:

In this paper, the boundaries of the automated segmentation result
are defined as the contours of zero level set function of AC models
after convergence. An MAD value of 0 reflects perfect segmentation.

5.5.2. Region-based overlapping measurements
Gland segmentation results of the HNCut-CGAC, HNCut-GAC,

CGAC, RD, and HAC models were evaluated in terms of overlap
(OL), sensitivity (SN), specificity (SP) and positive predictive value



Table 4
The execution time in seconds for each component of HNCut-CGAC model as well as
the total execution time for digitized prostate histopathology images corresponding
to different image resolutions. The values in the parentheses reflect the average
computation times. All operations were performed using a 2.6 GHz Intel Core 8
processor with 72 GB of RAM. Here X and Y represent the number of pixel columns
(width) and rows (height) in the image, respectively.

Image resolution
(106 pixels)

HNCut
(s)

Color
gradient (s)

Active
contour (s)

Total time
(s)

5 6 X � Y 6 9 9–15
(12)

1–2 (1.5) 100–200
(150)

110–
217(163.5)

9 6 X � Y 6 16 15–24
(19.5)

2–3 (2.5) 200–400
(300)

217–427
(322)

16 6 X � Y 6 27 24–60
(42)

3–6 (4.5) 400–800
(600)

427–866
(646.5)
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(PPV). For each image, the set of pixels lying within the manual
delineations of the glands is denoted asAðGÞ. The set of pixels lying
within any boundary resulting from the HNCut-GAC, CGAC, RD,
and HAC models are denoted as AðSÞ. AðSÞ is comprised of those
pixels whose level set functions are positive after convergence of
AC models. j � j represents the number of pixels in a region. For
example, jCj represents the total number of pixels in the image C.
OL, SN, SP, and PPV are then defined as

(1) Overlap (OL) = jAðSÞ\AðGÞjjAðSÞ[AðGÞj,

(2) Sensitivity (SN) = jAðSÞ\AðGÞj
jAðGÞj ,

(3) Specificity (SP) = jCj�jAðSÞ[AðGÞj
jCj�jAðGÞj , and

(4) Positive Predictive Value (PPV) = jAðSÞ\AðGÞj
jAðSÞj .

An OL = SN = SP = PPV = 1 is indicative of perfect segmentation.
5.5.3. Computational time
We measure the execution time of the three major components

of the HNCut-CGAC model: the HNCut initialization scheme, local
tensor based color gradient algorithm, and active contour model
for segmentation. The software implementation for each compo-
nent was performed using MATLAB (Mathworks, Inc.). The execu-
tion time in seconds for each component of HNCut-CGAC, as well
as the total execution time for the model, for digitized prostate
Fig. 4. A histogram plot showing the distribution in the values of MAD, for the HNCut-CG
significant differences in MAD values for the two different swatches.
histopathology images with different resolutions, is reported in Ta-
ble 4. All operations were performed on a 2.6 GHz Intel Core 8 pro-
cessor with 72 GB of RAM. Note that even for images with over 25
million pixels, the total run time is only in the order of 10–12 min.
6. Results and discussion

Qualitative results of HNCut-CGAC, HNCut-GAC, CGAC, RD, and
HAC models on two different studies are illustrated in Fig. 5b–l and
Fig. 6b–l. In order to better compare the segmentation results, two
magnified regions in each whole-slide image have been shown.
The magnified regions in Fig. 5e, f and Fig. 6e, f reveal the inability
of the HNCut-GAC model in accurately segmenting the glands. The
reason is that the gray scale gradient based edge-detection func-
tion results in inaccurate and spurious boundaries. The magnified
regions in Fig. 5g–l and Fig. 6g–l illustrate that the CGAC model,
RD model, and HAC model with random initialization are unable
to accurately segment all the glands in the image. On account of
the accurate HNCut based initialization and the improved robust-
ness due to the color gradient based edge-detection function, the
HNCut-CGAC model outperforms the other 4 AC models.

Table 5 shows the results of quantitative evaluation of segmen-
tation by HNCut-CGAC, HNCut-GAC, CGAC, RD, and HAC models in
terms of MAD, OL, SN, SP and PPV across 196 whole-slide images.
For HNCut-CGAC and HNCut-GAC models, color swatch S0 is used.
The mean and standard deviation values for MAD, OL, SN, SP, and
PPV in Table 5 show that the HNCut-CGAC outperforms the
HNCut-GAC, CGAC, RD, and HAC models. While the HNCut-GAC
yielded a higher SN value compared to the HNCut-CGAC model,
the improvement came at the cost of a lower OL, SP, and PPV.
Fig. 3a–d show the distribution of the region-based performance
measures (OL, SN, SP, PPV) for the HNCut-CGAC (using swatch S0)
model across all 196 images.

The comparison of segmentation on HNCut-CGAC model with
different color swatch selection methods in Experiment 1 are
shown in Table 6. As evidenced by the results in Table 6, no signif-
icant differences in either the region or boundary based perfor-
mance measures were observed across the different color
swatches (S1–S5). There are no significant differences in segmenta-
tion results of HNCut-CGAC model over 196 images for S0 and S5 as
well. The MAD results of two color swatch selection methods S0
AC model using swatches (a) S0 and (b) S5 across 196 images. Note that there are no



Fig. 5. The gland segmentation results (boundaries in green) of HNCut-CGAC, HNCut-GAC, CGAC, RD, and HAC models for a whole-slide needle core biopsy (a). (c) and (d) are
two different patches (I) and (II) from the segmentation result (b) of the HNCut-CGAC model which have been magnified to show gland details. (e) and (f) are two magnified
patches selected from the same location (I, II) (b) and showing the segmentation result of the HNCut-GAC model. (g) and (h) show corresponding results for the CGAC model.
(i) and (j) show corresponding results for the RD model. (k) and (l) show corresponding results for the HAC model. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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and S5 in Experiment 1 are illustrated using frequency histogram
plots (see Fig. 4) which shows no significant difference in the seg-
mentation of HNCut-CGAC model for S0 and S5 across all 196
images.
7. Concluding remarks

In this paper we presented a high-throughput geodesic active
contour model with minimal human intervention for rapid and
accurate segmentation of multiple objects on very large imagery.
An accurate and efficient initialization scheme is employed for
detecting the locations of the objects, which allows a color gradient
based geodesic active contour model segment the object bound-
aries. While hybrid and region based AC models are typically ini-
tialization free, in the case of very large images and where
multiple objects have to be segmented concurrently, they may un-
der-perform since both the Rousson–Deriche and the hybrid AC
models make strong assumptions regarding a priori knowledge
about the number of target objects in the scene to be segmented.
This is evidenced by the poor performance of the Rousson–Deriche
model and the hybrid active contour model on very large digitized
prostate histological images. An additional novel aspect of our new
AC scheme is the use of a local structure tensor based color gradi-
ent in the edge-detector function for GAC model, which allows for
more prominent boundaries compared to the traditional gray scale
gradient. A quantitative and qualitative comparison between the
HNCut-CGAC, HNCut-GAC, CGAC, RD, and HAC models for the task
of gland segmentation across 196 prostate histopathology images
revealed that the HNCut-CGAC model easily outperformed other



Fig. 6. The gland segmentation results (boundaries in green) of HNCut-CGAC, HNCut-GAC, CGAC, RD, and HAC models from a whole-slide needle core biopsy (a) in study 2. (c)
and (d) are two different patches (I) and (II) from the segmentation result (b) of the HNCut-CGAC model which have been magnified to show gland details. (e) and (f) are two
magnified patches selected from the same location (I, II) (b) and showing the segmentation result of the HNCut-GAC model. (g) and (h) show corresponding results for the
CGAC model. (i) and (j) show corresponding results for the RD model. (k) and (l) show corresponding results for the HAC model. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table 5
The average and standard deviation of the MAD, OL, SN, SP and PPV for the RD, HAC,
HNCut-GAC (S0), CGAC, and HNCut-CGAC (S0) models over 196 whole-slide images.

RD HAC HNCut-GAC
(S0)

CGAC HNCut-
CGAC (S0)

MAD 5.9 ± 1.94 5.4 ± 2.0 7.2 ± 0.80 9.99 ± 5.06 2.07 ± 0.20
OL 0.25 ± 0.31 0.27 ± 0.22 0.47 ± 0.22 0.27 ± 0.51 0.69 ± 0.12
SN 0.56 ± 0.34 0.60 ± 0.22 0.98 ± 0.12 0.85 ± 0.21 0.89 ± 0.09
SP 0.81 ± 0.41 0.83 ± 0.11 0.84 ± 0.11 0.80 ± 0.11 0.96 ± 0.02
PPV 0.42 ± 0.25 0.45 ± 0.23 0.46 ± 0.24 0.44 ± 0.21 0.75 ± 0.11

Table 6
Quantitative evaluation of segmentation results for HNCut-CGAC models with
different color swatch selection methods (S1–S5). The average and standard deviation
of the MAD, OL, SN, SP and PPV values over 196 whole-slide images are reported.

Color
swatch

MAD OL SN SP PPV

S1 2.07 ± 0.22 0.69 ± 0.11 0.89 ± 0.10 0.96 ± 0.01 0.75 ± 0.11
S2 2.07 ± 0.21 0.69 ± 0.09 0.89 ± 0.09 0.96 ± 0.02 0.75 ± 0.13
S3 2.07 ± 0.20 0.69 ± 0.10 0.89 ± 0.09 0.96 ± 0.01 0.75 ± 0.11
S4 2.07 ± 0.23 0.69 ± 0.12 0.89 ± 0.08 0.96 ± 0.03 0.75 ± 0.11
S5 2.07 ± 0.21 0.69 ± 0.11 0.89 ± 0.09 0.96 ± 0.01 0.75 ± 0.12
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AC schemes. The HNCut-CGAC model presented in this paper offers
an easy, accurate, minimally interactive, reproducible and efficient
scheme for general object segmentation, especially on very large
images.
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