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We derive analytically the solution for the output rate of the ideal coin-
cidence detector. The solution is for an arbitrary number of input spike
trains with identical binomial count distributions (which includes Pois-
son statistics as a special case) and identical arbitrary pairwise cross-
correlations, from zero correlation (independent processes) to complete
correlation (identical processes).

1 Introduction

Individual neurons typically receive thousands of inputs that vary tem-
porally with respect to both mean rate and cross-correlation. Much ex-
perimental evidence underscores the importance of mean input rate and
cross-correlation as determinants of neural �ring, though the relative con-
tributions of each are not so clear (Abeles, 1982, 1991; Softky & Koch, 1992,
1993; Shadlen & Newsome, 1994; Alonso, Usrey, & Reid, 1996; Decharms
& Merzenich, 1996; König, Engel, & Singer, 1996; de Oliveira, Thiele, &
Hoffmann, 1997; Riehle, Grün, Diesmann, & Aertsen, 1997; Steinmetz et al.,
2000; Salinas & Sejnowski, 2000; Niebur, Hsiao, & Johnson, 2002; Williams
& Stuart, 2002). Given the importance of rate and cross-correlation in neural
coding, the determination of how inputs modulated with respect to both
affect neural �ring assumes signi�cance if the impact of these different neu-
ral codes is to be fully appreciated. Employing simple probabilistic and
combinatorial methods, we derive the exact analytical solution for the out-
put rate of a coincidence detector receiving an arbitrary number of inputs
modulated with respect to both mean rate and cross-correlation

2 Binomial Spike Trains with Speci�c Cross-Correlation

In this section, we introduce a systematic method for the generation of
an arbitrary number of spike trains with speci�ed pair-wise mean cross-
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correlations and �ring rates.1 Spikes are distributed according to bino-
mial counting statistics in each spike train. Mean �ring rates and cross-
correlations are the same for all spike trains (or all pairs of spike trains,
respectively), but they can be chosen independently of each other. The al-
gorithm that we describe here is as suitable for the analytical computations
in this report as for the implementation of such spike trains in numerical
simulations. We emphasize that although we use this particular algorithm
to illustrate the derivation of the output rate of the coincidence detector,
our results are of general validity since the properties of the spike trains
are entirely speci�ed by their correlation coef�cient and the statistics of
the individual spike trains. However, no higher-order effects (correlations
of order 3 and higher; see, e.g., Bohte, Spekreijse, & Roelfsema, 2000) are
included.

First, we establish some notation. Let m be the number of input spike
trains, each one having n time bins. All bins are of equal length 1t, chosen
suf�ciently small so that each contains a maximum of one spike, that is,
each bin is guaranteed to contain either one or zero spikes. The probability
that a spike is found in any given time bin is p; no spike is therefore found
with probability 1 ¡ p. Bins in any given spike train are independent, which
implies that all the following analysis can be limited to a single time bin.
Note that the physiologically important Poisson statistics are the special
case of low rates and long spike trains.

Generation of m spike trains with speci�c correlation starts by generating
m C 1 independent spike trains with the desired mean �ring rate (which is
just p=1t). Let us assume we want a correlation coef�cient q (with 0 · q ·
1) between each and any pair of the m spike trains. We designate spike
train number m C 1 as the reference spike train. In order to introduce the
correlation coef�cient q between spike trains 1; : : : ; m, we will switch, with
a probability

p
q, the state of a time bin in each of these spike trains to that

found in the reference spike train. This yields a mean correlation coef�cient
of q between any two of the spike trains 1; : : : ; m without changing the mean
�ring rate.2 No further use is made of the reference spike train.

1 The method proposed here is not the only possible way to introduce correlations
between spike trains. For instance, one could add spikes generated by a common Poisson
process to each individual spike train (Stroeve & Gielen, 2001), or start from a common
spike train and generate two different spike trains by removing spikes independently. The
method presented here has the advantage of being straightforward and ef�cient and of
generating spike trains with controlled rates and correlation coef�cients, both determined
in a direct way.

2 Since all spike trains, including the reference spike train, have the same mean �ring
rate, changing the state of any bin to the state of any bin in another spike train does not
change the probability of this bin’s containing a spike. Therefore, this manipulation does
not change the mean �ring rate of the spike train.
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3 Coincidence Detection for Vanishing Input Correlation

The coincidence detector is a computational unit that �res if the number of
input spikes received within a given time bin equals or exceeds the thresh-
old, µ . It is instructive to �rst derive a solution for independent inputs (q D 0)
with mean rate p=1t. Using the binomial distribution and elementary com-
binatorics, we �nd that the probability of obtaining exactly j coincident
input spikes from a set of m input spike trains with probability p for a spike
(to exist within each time bin) is

P.j/ D
³

m
j

´
p j.1 ¡ p/m¡j: (3.1)

Since we are interested only in cases where the coincidence detector
receives at least µ coincident input spikes, the probability for the coincidence
detector to produce an output spike is

Pout.p; m; µ I q D 0/ D
mX

jDµ

³
m
j

´
p j.1 ¡ p/m¡j: (3.2)

Dividing equation 3.2 by 1t, we obtain the mean output rate of a coinci-
dence detector in the case of vanishing input correlation:

Nout.p; m; µI q D 0/ D
1

1t

mX

jDµ

³
m
j

´
pj.1 ¡ p/m¡j: (3.3)

4 Finite Correlation

Let us continue to the case of input spikes that vary with respect to both
mean rate and cross-correlation. In the notation introduced in section 3,
we have to compute Pout.p; m; µ; q/, the probability that the coincidence
detector produces an output spike (in this time bin) when it receives m input
spike trains with cross-correlation q. Conceptually, it is helpful to start with
independent input spike trains, q D 0, and then apply the modi�cation of
the result as the procedure described in section 2 is applied to generate
input spike trains with �nite q. Thus, the generation of our correlated input
spike trains has two parts: (1) the generation of independent spike trains
and (2) the imposition of our cross-correlation procedure to introduce cross-
correlation between the input spike trains.
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Without loss of generality, we treat Pout.p; m; µ; q/ as the following joint
probability, again derived from the binomial distribution:

Pout.p; m; µ; q/ D
mX

jDµ

³
m
j

´
pj.1 ¡ p/m¡jC1. j; q/

C
µ¡1X

jD0

³
m
j

´
p j.1 ¡ p/m¡jC2.j; q/: (4.1)

In this equation, both C1.j; q/ and C2. j; q/ are conditional probabilities;
in addition to j and q, they depend on µ and m, but these arguments are
suppressed to alleviate the notation. Speci�cally, C1.j; q/ is the probability
of obtaining at least µ coincident input spikes given that initially (i.e., before
applying our cross-correlationprocedure), there were j ¸ µ coincident input
spikes. The factor C2. j; q/ is the probability of obtaining at least µ coincident
input spikes given that initially there were j < µ . From their de�nition, it is
obvious that C1. j; 0/ ´ 1 and C2. j; 0/ ´ 0, which will later be found to be
the case explicitly (see equations 4.2 and 4.4). As it must be, equation 3.2 is
thus just the special case of q D 0.

Equation 4.1 expresses the joint probabilities for a two-part experiment:
the generation of independent spike trains and the correlationprocedureap-
plied to these spike trains that is described in section 2. Let us �rst consider
C2, the conditional probability for a suprathreshold event (that is, among
the m input neurons, µ or more have a spike) occurring in the (whole) ex-
periment given that initially (after completion of only the �rst part) it was
subthreshold. This can happen only if the reference spike train has a spike
in the time bin under consideration since otherwise, a subthreshold event
can never be converted to a suprathreshold event (if the state of any neuron
will be switched, it will be switched to that of the reference spike train). This
occurs with a probability p.3

Since by assumption j < µ neurons already have a spike (and their state
will not be in�uenced even if a switch should occur since the reference
spike by assumption also has a spike), we have to compute the probabil-
ity that a suf�cient number of the remaining .m ¡ j/ neurons that do not
spike before application of the correlation procedure will be switched. Since
all switches are independent and occur with a probability

p
q, we can ex-

pect i switches among the available .m ¡ j/ neurons with a probability¡m¡j
i

¢p
qi.1 ¡ p

q/.m¡j/¡i. This gives rise to a suprathreshold event if i ¸ µ ¡ j

3 Formally, the procedure could also be viewed as a three-part experiment: (1) the
generation of spike trains, (2) the correlation procedure described in section 3 for any
reference spike train, and (3) the drawing of either a spike or a nonspike in the reference
spike train, with probabilities p and .1 ¡ p/, respectively. We have simpli�ed the analysis
somewhat by taking only those parts in equations 4.2 and 4.3 that actually contribute to
the output of the coincidence detector.
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since in this case, the total number of spikes is j C i ¸ µ . We therefore have
to sum the probabilities for all cases with i ¸ µ ¡ j and obtain C2.j; q/ in
equation 4.1 as

C2.j; q/ D
m¡jX

iDµ¡j

³
m ¡ j

i

´
p

qi
.1 ¡ p

q/m¡j¡ip: (4.2)

Now we turn to the derivation of C1.j; q/ in equation 4.1, which is the
probability that an initially (i.e., at q D 0) suprathreshold event remains
suprathreshold after cross-correlation. This is more dif�cult to compute di-
rectly, and therefore we compute its complement, that is, one minus this
probability. The latter is the probability of switching a suprathreshold event
to a subthreshold event. Assuming now j ¸ µ , this probability is found by
an argument completely analogous to that leading to equation 4.2 as

jX

iDj¡µC1

³
j
i

´
p

qi.1 ¡ p
q/j¡i.1 ¡ p/: (4.3)

It can be seen that this is the probability that i (with i > j ¡ µ) input
spikes get switched to the value in the reference spike train during the
generation of correlated spike trains. This expression also takes into account
the requirement that the bin in the reference train contains no spike (from
which the .1 ¡ p/ term results). Therefore, we have the following:

C1.j; q/ D 1 ¡
jX

iDj¡µC1

³
j
i

´
p

qi.1 ¡ p
q/ j¡i.1 ¡ p/: (4.4)

This completes the computation of equation 4.1 for Pout.q/. To compute
the mean output rate of the coincidence detector Nout.p; q; µ/ as a function
of input rate p=1t, cross-correlation q, and threshold µ , we collect terms and
multiply equation 4.1 by the inverse of the time bin width, 1t, to yield the
following:

Nout.p; m; µ; q/

D
1

1t

2

4
mX

jDµ

³
m
j

´
p j.1¡p/m¡j

0

@1¡
jX

iDj¡µC1

³
j
i

´
p

qi
.1¡p

q/j¡i.1¡p/

1

A

C
µ¡1X

jD0

³
m
j

´
pj.1 ¡ p/m¡j

m¡jX

iDµ¡j

³
m ¡ j

i

´
p

qi
.1 ¡ p

q/m¡j¡i

3

5 : (4.5)

We have thus obtained our main result: the exact analytical solution for
the output rate of a coincidence detector receiving an arbitrary number of
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inputs with identical binomial statistics and modulated with respect to both
mean rate and cross-correlation. The validity of equation 4.5 is con�rmed
by simulation (not shown).

5 Example

An illustration of equation 4.1 for a coincidence detector receiving m D 100
binomial input spike trains and with a threshold µ D 15 is shown in Fig-
ure 1a. For low values of cross-correlation, the output rate of the coincidence
detector is sigmoidal as a function of the input rate, and it rapidly saturates
as the input rate increases. For increasing cross-correlation, this behavior
approaches more and more a linear increase with input rate, which is, of
course, nothing but the solution in which each synchronous volley of in-
coming action potentials leads to exactly one output spike.

In Figure 1b, we show a cut through Figure 1a for the case of constant
probability p D 0:1, corresponding to a �ring rate of 50 Hz for 1t D 2 ms,
which is physiologically realistic in many cases. For this low probability,
the binomial distribution of input spike trains can be reasonably well ap-
proximated by a Poisson distribution. Bernander, Koch, and Usher (1994)
emphasized that increasing synchrony does not necessarily lead to an in-
creased output rate since synchronous volleys with more spikes than re-
quired to overcome the threshold are wasted. They demonstrated by way
of simulation of different neuron models that the output �ring rate as a
function of input correlation in this case takes on the shape of an inverted
U. Figure 1b shows an example of this behavior in the case of our exact
solution. While synchrony in this example always increases the ef�cacy of
the incoming �ring rates beyond that obtained for independent spike trains,
this increase reaches a maximum for small q, after which the output rate de-
creases again. For this value of p, the trivial solution in which one input vol-
ley generates exactly one output spike (i.e., output rate ´ p) is obtained for
all q »> 0:1.

Figure 1: Facing page. The plots illustrate the main equation (4.1) derived in this
article for a coincidence detector receiving m D 100 binomial input spike trains
with a threshold µ D 15. (a) The probability for a coincidence detector to �re an
action potential per unit time (see equation 4.1). (b) An iso-frequency (p = .1)
slice through the surface of a, showing the output probability of the coincidence
detector as a function of input cross-correlation. At this relatively low input
frequency (corresponding to 50 Hz for 1t D 2 ms), the input spike trains are
approximately Poisson. Note the inverted U shape of the plot, whereby higher
cross-correlated inputs result in a lower output due to inef�cient allocation of
input spikes.The horizontal dashed line shows p D 0:1.
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6 Discussion

In this article, we have derived analytically the solution for the output �r-
ing rate of an ideal coincidence detector as a function of the input rate and
correlation between input spike trains. Our derivation was based on a sim-
ple model and it is important to make explicit the key assumptions of our
model: (1) the bins in any given input spike train are independent, (2) the
coincidence detector “neuron” integrates over a very short time window,
and (3) there is no inhibition. The �rst condition means that there might
be additional effects that depend on the structure of the individual spike
trains; the second condition makes this model memoryless, which serves
to differentiate it from integrator models with long time constants; and the
last condition means that the applicability of our model to neurons that
receive strong, structured inhibitory input may be limited. All of these con-
ditions are signi�cant simpli�cations; for instance, it is well known (for a
recent example, see Tiesinga, Fellous, & Sejnowski, 2002) that neurons are
not memoryless processes (assumption 1 for incoming spike trains and as-
sumption 2 for the neural processing). We feel that these simpli�cations are
justi�ed in the interest of obtaining an analytical solution.

Others have noted that output frequency varies with the correlation of
input spike trains in a nontrivial and frequently nonmonotonic way. In par-
ticular, the existence of a maximum, as shown in Figure 1b, has been pre-
dicted by Bernander et al. (1994), based on simulations. We can compute the
location of this maximum from our solution by differentiating equation 4.5
with respect to the cross-correlation q and setting the right-hand side equal
to zero. The computation is straightforward but not particularly illuminat-
ing. Instead, we plotted iso-frequency curves through the surface given by
equation 4.5 to obtain the position of this maximum (not shown). We ob-
served that the prominence of this peak increases with increasing number
of inputs and that it is con�ned to low input rates (the Poisson regime),
disappearing altogether above a certain input rate where monotonically
decreasing iso-frequency curves are obtained. This general behavior can
be seen in Figure 1a. These observations lead us to infer that correlations
modulate �ring rate best when the number of inputs is high and the input
rates are low, which corresponds to the most neurally plausible scenario.
Thus, our results may have relevance for synchrony-based models of neural
computing.

In sum, we believe our derivation will prove useful both as a theoretical
example highlighting the power of combinatorial methods and for explain-
ing the relative contributions of rate versus synchrony in neural coding.
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