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PREFACE
This pamphlet contains an attempt to describe and analyse
the phenomena which are peculiar to resonance in an ele-

mentary manner. Although the subject is of fundamental

importance in many mechanical problems it has received

but little attention in the text books. The treatment, which

consists of an investigation of the changes which take place
in the amplitude and phase of a vibrating element under

certain types of forces, appears to be convenient both for

the mathematical development and for the interpretation

of the results.

The issue of The Rice Institute Pamphlet, Vol. xix,

No. i, in the present form, is made with the permission
of the Trustees of the Institute and the co-operation of

the Cambridge University Press, and is due to the hope
that it may prove to be useful to students and others

who may not have easy access to the publications of the

Institute. My thanks are due to Professor C. G. Darwin
for his helpful criticisms, especially in the mode of pre-
sentation of a subject in which the method of approach and

certain ofthe results appear to have some degree of novelty.

ERNEST W. BROWN

April 1932



ELEMENTS OF THE THEORY OF
RESONANCE ILLUSTRATED BY THE

MOTION OF A PENDULUM 1

INTRODUCTION

1. The original observations which gave rise to the word

"resonance" were audible sounds which are familiar to most

of us. A note is struck on a piano or other musical instru-

ment and some body a wall or another musical instrument

will take up the same note and will continue to sound it

even after the original source is stopped. The megaphone
takes up the vibrations of the air produced by the voice and

gives them out again, concentrated in a particular direction.

A vibrating body, for example, the cylinders in the engine

of an aiitomobile, will set up vibrations in other parts of the

car, certain vibrations being noticeable at certain speeds and

others at other speeds. To all these phenomena the term

resonance is applied.

But the actual nature of the phenomena is not always the

same. The megaphone and loud speaker are designed to

take up and emit any vibration within a certain range of

frequency. On the other hand, the audible vibrations of a

stretched wire are confined to a limited number of sounds

as long as we keep the tension unaltered, and these bear

definite relations to one another; to produce resonance in

such a wire, it is necessary to sound a note with a frequency

1A course of lectures, given at the Rice Institute, April 22, 23, and 24, 1931,

by Ernest William Brown, D.Sc., F.R.S., Josiah W. Gibbs Professor of Math-
ematics in Yale University
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2 Introduction

very near that of one of these modes of vibration. These illus-

trations bring up the necessity for a definition of what are

usually called the natural frequencies or periods of vibration

of any system.

2. A stretched wire when made to vibrate appears to give

out the same note, in general, however it may be struck or

when the bow of the violin is drawn across it. An ordinary

drinking glass exhibits the same phenomenon: it gives out

the same note when struck as when the finger is wetted and

run around the top edge of the glass. The periods of these

sounds are called "natural periods" of vibration: they depend

only on the construction of the mechanism and not on the

manner in which its vibrations are started.

But this last statement is not exact. Actually the note

given by a vibrating wire is not quite the same when the

sound is loud as when it is soft, although the difference is

not easily detected even by a sensitive ear. In the former

the excursions of the wire usually called the amplitude of

vibration are greater than in the latter, and the period of

vibration which gives the pitch of the note depends to some

extent on this amplitude. The "natural" period is, in fact,

a mathematical fiction since it is only present when the

vibrations have infinitely small amplitudes, which amounts

to saying that the wire is not vibrating at all. More properly

a natural frequency should be defined as the lower limit of

the frequency of that particular mode of vibration. It is

necessary to insist on this change of frequency with change

of amplitude because the existence of the phenomena of

resonance depends on the existence of this change.

3. A mechanical system which is free to move at all can,

however, usually be made to vibrate with any frequency

whatever. When any such vibration is impressed on the

system, it is called a forced vibration. It may be present
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at the same time as the "natural" vibration so that the

actual motion is compounded of the two types. It is usual

to treat the frequency of the forced vibration as unchanging
and in many problems this procedure can be justified, but

this is not always the case. If two wires be tuned so as to

give out notes with nearly the same pitch, each will force

its frequency on the other and there will be a reaction of

this effect which must sometimes be taken into account.

The procedure fails altogether when the pitches of the two

notes are sufficiently nearly the same.

4. The usual definition of resonance is the state of motion

which is present when the natural and forced frequencies are

the same, but it is evident from the remarks made above

concerning the change of frequency with change of ampli-

tude, that the definition lacks precision. It will be shown

that the state of motion in which the frequencies are the

same is fundamentally different from that in which they are

not the same. Not only is it impossible to represent the two

states by the same mathematical formula, but there is a

fundamental physical discontinuity separating them. It is

the exploitation of this discontinuity which is one of my
chief objects in these lectures, partly because it is a feature

of many mechanical problems in which resonance takes place

and partly because I believe that it has far-reaching effects

in gravitational problems and particularly in the past and

future history of the solar system.

5. To illustrate the phenomena, consider two piano wires,

one of which is being "tuned" so as to give the same note

as the other. As the pitch of the second note approaches
that of the first with the change in tension, the phenomenon
known as "beats" occurs. Apparently, the two notes have

the same pitch but the volume of sound rises and falls at

regular intervals; this interval is called the "beat" frequency.
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Actually the periods are not the same, but the ear is unable

to distinguish the difference because its function is mainly

to integrate the impulses which it receives. When the two

vibrations have the same phases, the two sets of impulses

are added together and increase the volume of sound; when

the phases are opposite, the impulses nearly cancel one an-

other and the sound is much diminished. The frequency of

the "beat" is nothing else than the difference of the fre-

quencies of the two notes.

As the tuning proceeds, the frequency of the beat becomes

smaller, that is, the interval between the maxima of the

sound becomes longer, until a stage is reached in which it

can sometimes be heard and sometimes not. According to

the theory, as developed in a later section, the audibility of

the beat will depend on the magnitudes of the impulses given

to the notes; the beat may be heard when the notes are

struck gently but not when they are struck hard. With very

slight further tuning, the beats disappear altogether, and

we have the phenomenon known as resonance in which the

two periods are exactly the same.

6. The last statement may give rise to the impression

that to produce resonance, it is necessary to adjust the tun-

ing with a degree of exactness which anyone familiar with

experimental work would say cannot be achieved. It is not

so. Resonance takes place when the two frequencies differ

by a small but measurable amount. In fact, a certain degree

of "tuning" can be made without destroying the resonance.

What has actually happened is that we have produced a

common average period of oscillation. About this common

period, however, a new oscillation has been set up, and when

we "tune" slightly, the alteration which takes place is one

not in the common period but in the amplitude of this new

oscillation. In astronomy, it is known as a physical "libra-
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tion." The frequency of this oscillation is quite unconnected

with the beat frequency; it depends mainly on the construc-

tion of and tension of the wires and on the magnitude of

the blows which are given to set them vibrating. Sometimes

it has a minimum period which is approached as the ampli-

tude dies down. It is, however, doubtful whether it could

be detected without the use of elaborate apparatus designed

for the measurement of very small differences in the inten-

sities of sounds.

7. Vibrating wires will not be used further for the illus-

tration of the phenomena of resonance, partly because the

oscillations are so rapid that observation is difficult, but

mainly because of mathematical and physical difficulties

which make the analysis very complicated.
1 We have, how-

ever, in the simple pendulum a vibrating system in which

experiment can approach a simple mathematical theory very

closely. The pendulum will be used in two ways. In later

examples, it is an oscillating system on which various types

of external forces can act. But its more important function

here is due to the fact that the equation which gives the

motion of the pendulum will be shown to be the same as

the fundamental equation which we reach when considering

resonance in a wide variety of types of mechanical systems.

If then we have a complete solution of the motion of a

pendulum, it is necessary only to reinterpret it for any case

in which the same differential equation arises.

8. The pendulum in this latter case is, however, one

which can perform complete revolutions as well as oscillate

about a horizontal axis. A more practical form of illustration

is that of a bicycle wheel loaded at one point of its rim by
a weight clamped on; it is mounted on a fixed axis, so that

it can turn freely in its bearings. Such a wheel can be made
1See section 44.
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to oscillate about its position of stable equilibrium or can

make complete revolutions in either sense according to the

manner in which it is started, and the differential equation

reduces at once to that of the pendulum, in the absence of

frictional forces. It will be shown that the two types of

motion complete revolution or oscillation correspond re-

spectively to non-resonance and resonance conditions, and

that the fundamental phenomena of the latter can be ex-

hibited without difficulty. With the results for the simple

pendulum in mind, the equations can be generalized and an

approach made to more complicated problems such as those

which are presented by the "problem of three bodies."

9. Certain mathematical features in the investigation of

resonance should be mentioned at the outset. The most

fundamental of these is due to the fact that the phenomena
cannot be investigated by linear differential equations alone.

In the ordinary theory of small oscillations, the periods are

considered as independent of the amplitudes. This is an

approximation which is usually sufficient as long as the am-

plitudes remain small. But the approximation is no longer

valid when the amplitudes increase, and this usually happens
when two of the frequencies in the system are nearly the

same.

Take, for example, the equation

(9.1) -TJ- + rfx =m sin n't.

When m = 0, this gives a harmonic oscillation with frequency

n. When m is not 0, there is, in addition, a similar oscillation

with frequency n' . As long as n, n' are unequal we have

the solution
m

(9.2) x = X sin (nt+\Q) + ---- sin n't,
n* n

where X, X are arbitrary constants.
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When, however, n=n', the solution is

(9.3) # = Xsin(V*+Xo) | r cos n't.

This contains an oscillation with a coefficient which increases

continually with t.

A common practice is the insertion of a "damping" factor

ndx/dt, on the ground that all mechanical systems are sub-

ject to friction. It is easily seen that this prevents the co-

efficient from becoming infinitely great with /, but it will be

shown below that it fails to give even an approximation to

the motion of certain mechanical systems under resonance

or near-resonance conditions. The frictional force acting on

the pendulums used for geodetic surveys, for example, is so

small that it may be neglected in comparison with certain

types of disturbance which produce resonance, and the mo-

tion in the latter case is entirely different from that which

would be produced by a frictional force. In the problem of

three bodies, this device cannot be used; in most of the

applications to the solar system, there is no evidence of any
frictional effect.

10. The real defect lies in the assumption that the forces

in a vibrating system are proportional to the displacements,

so that the equations of motion are linear. This is not true

in any mechanical system we know, although many systems

approach it very closely. As long as no two of the frequencies

in the system are very nearly the same, the assumption gives

a good approximation to the motion, mainly because the

amplitudes of the oscillations remain small. As soon, how-

ever, as the amplitude begins to become large, as it does

when two of the frequencies are nearly the same, the approxi-

mation fails. It is necessary to take into account the effect

of finite amplitude and this demands the use of non-linear

equations.
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Other cases common to many gravitational problems, are

those in which the disturbing forces depend partly on the

displacements of the system. Some examples of this will be

given in which it will be shown not only that non-linear

equations must be used, but that the methods of approxi-

mation usual in such cases fail. The nature of this failure

will be easily seen by the mathematician when it is caused

by the attempt to expand a function in positive integral

powers of a certain constant instead of expansion in powers

of the square root of this constant.

11. A feature of motion under resonance conditions already

hinted at in section 6 will be brought out in detail by the

examples given below. This feature, which cannot be too

strongly emphasized, is that resonance is not a single special

case of motion but is a group of cases extending over a finite

range of values of the constants. It is true that one of the

constants, previously arbitrary, is given a particular value;

this constant, the frequency, becomes the same as that of

the disturbing force (we shall show that another constant,

the phase, must also have a special value).

Suppose, however, we regard this case as a particular solu-

tion of the equations of motion and then proceed to find

the possible deviations from it. If the resonance motion is

stable, we find that small oscillations about the resonance

configuration are possible. In other words, we find that on

the average the resonance relation is maintained, but that

there are periodic deviations from it, and that the period

of these deviations has no direct relation to the resonance

period.

We find also that the amplitude and phase of these devia-

tions are arbitrary constants of the solution. Thus though
two arbitrary constants have been given special values when
we set up the resonance relation, two new arbitraries appear
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in the deviations from this resonance relation. The chief

period of oscillation is "locked" to that of the disturbing

force, but the locking does not prevent deviations to and

fro if the system be slightly disturbed.

The mathematical and physical characters of the motion

are quite different when there is resonance, from those when

resonance does not exist. Neither can be described in terms

of the other.

12. These differences between the two groups of cases

suggest that there must be at least a mathematical discon-

tinuity separating them. This will be shown to be the actual

fact. The differential equations for each group are the same,

but the solutions of these equations are not continuous func-

tions of the arbitrary constants. The formulae which give

the motion have to be completely changed. At one place

there will be found a solution which belongs neither to the

one case nor to the other. The place corresponds to a dis-

continuity of an analytic function.

In a certain sense, this discontinuity is physical as well

as mathematical. Suppose that we have been able to deduce

the constants in a certain type of motion from observation.

Usually small changes in the constants within the errors of

observation produce only small changes in the subsequent
calculated motion. At the point of discontinuity, however,

such small changes in the observed values are found to

change fundamentally the character of the subsequent mo-

tion. There is a certain degree of analogy between this case

and that of equilibrium at an unstable position where the

subsequent motion often depends on the nature of a minute

and perhaps not measurable disturbance.

The quantities which we ordinarily associate with motion,

namely, position, velocity, acceleration are continuous in the

sense that there are no sudden changes in their values with
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a change in the time. The discontinuity is that of indeter-

minateness. Not only is there only a small change in them

with a small change in the time, but the change may be

still small with a finite change in the time, while the particle

is passing through this particular stage. Later it may move

in a manner which is easily calculable. Thus we might be

unable to distinguish between the position at a given future

time and that at a time later by a finite interval. In other

words, we are unable to predict the position after a given

interval of time.

13. The existence of this discontinuity in most cases pre-

vents calculation of the motion of a system if it passes from

non-resonance to resonance conditions. Calculations are

made of the motions as the system approaches resonance

and also of the motion when the resonance is fully estab-

lished. For the stages in between appeal is made to some

simple physical case like that of the pendulum where experi-

ment can give a qualitative description of the probable

changes which take place. In the simple examples worked

out below there will not be much doubt that this method

of procedure gives the principal features of the motion.

For logical completeness, proofs of the existence and con-

vergence of the series used should be given. Owing partly

to limitations of space and partly to avoid the introduction

of developments which are of more interest to the mathe-

matician than to the physicist, these have been omitted. It

is necessary to know the forms which the series must take

for purposes of calculation; that these forms will give ap-

proximate numerical results is assumed on the basis of past

experience, or is capable of proof by known methods which

are not developed here.



THE SOLUTIONS OF THE EQUATION +
at

14. It has been mentioned above that the equation which

in many cases gives the resonance phenomena is the same

as that of the motion of a simple pendulum. Since this

motion is easily visualized, it will assist in the comprehension
of the phenomena if the solutions and their physical mean-

ings are carried out in detail. Certain features of the motion

of a pendulum, usually left aside, will be emphasized here

on account of their importance in the later applications.

Let us suppose that a particle be attached to one end of

a light (weightless) rod of length /, the other end being

attached to a horizontal axis about which the rod can turn

without friction in a vertical plane. If g be the acceleration

produced by gravity and x the angle which the rod makes

with a downward drawn vertical line at time t, it is well

known that the motion is given by the differential equation

(14.1) ^+/c2 sin# = 0,
at2

where K2 = g/7. According to the manner in which it is

started, the rod may make complete revolutions or it may
oscillate to and fro on each side of the vertical through any

angle up to 180.

The immediate object in view is the discovery of the dif-

ferent types of solution of (14.1), considered merely as a

differential equation. The physical illustration aids in giving

a concrete idea as to the nature of these solutions.

11



12 Simple Pendulum

The equation

at*

can be reduced to (14.1) by the substitution #+?r for x. A
more general type,

-^ +/'(*) =0,

will be discussed later.

15. On multiplication of (14.1) by 2dx/dt> we can inte-

grate and obtain

(15.1)

where C is an arbitrary constant to be determined from the

initial value of x and of the angular velocity dx/dt. The

different types of solution depend on the value of C. Since

cos x*t 1, we must have C^ 2/c
2
, in order that the veloc-

ity may be real.

There are three cases.

(i) C>2/c2
. The velocity never vanishes and as it is al-

ways finite, it must be always positive or always negative.

The rod is making complete revolutions clockwise or counter-

clockwise.

The integral of (15.1) is

(15.2) *+const.=

where the square root may have either sign. Since |2*
2
/C| < 1,

the integrand may be expanded into a series of the form

(15.3) + a,cost*,
n t_i

where, by Fourier's theorem,

(15.4)
x dx
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This last equation gives a relation between n, C; either may
be used as an arbitrary constant.

The value of x in terms of t may be deduced from (15.2),

(15.3) after integration. But it is more easily obtained by

assuming
<~oo

(15.5) x=^nt+e+Xi^nt++^ bt sin i(nt+e),
i-i

and substituting in (14.1). We have

sin x = sin(nt+) cos Xi+cos(nt+e) sin Xi

On substituting the series (15.5) for x\ and equating to zero

the coefficients of sin i(nt-\-e) 9
we obtain by continued ap-

proximation

(15.6) x = nt+e-} -sin(n+e)+ | sin2(n2+e'
n* n*

in which n, e are the arbitrary constants.

The mean angular velocity of the rod is n. The periodic

terms in (15.6) may be regarded as constituting a periodic

oscillation about the mean phase nt+t. The physical illus-

tration shows that the half amplitude of the oscillation is

always less than w y and it evidently diminishes as n increases.

16. (ii) C<2/c2
. Here dx/dt = () and changes sign when

cos #= C/2/c
2

. If we put C= 2/c
2 cos c> x evidently oscil-

lates between the values x=c. The equation (15.1) may
then be written

)
= 4fc

2
(sin

2
Jc sir

giving

(16.1) +const

The transformation

= f
dx

sn ^ =
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turns (16.1) into

(16.2) <+ const.

The integrand can be expanded by the binomial theorem

and expressed in a Fourier series with argument ^. If we

put

.I r
^ JO *(1

-~"

we have the period 2ir/p of a complete oscillation expressed

in terms of the semi-amplitude c of x. The frequency p
diminishes as c increases. It has a lower limit K corresponding

to c = 0, but this limit is never reached since c =0 corresponds

to equilibrium and we are supposing that the pendulum is

in motion.

When c is small we have approximately

(16.4) =K(1~ IV2+ ).

To obtain x in terms of t when c is small, it is simplest

to expand (15.1) in the form

(16.5) ^+K*(*~i**+
...

):= o,

and to assume as the solution

i-oo

This is substituted in (16.5) and the powers of the series

are expressed as sines of multiples of pt+c; evidently only

odd multiples will be present. The coefficients of the various

sines are then equated to zero and the resulting equations

solved by approximation. The coefficient of s

equated to zero gives
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and Ci is arbitrary. The solution is found to be

(16.7) x~c1 sm(pt+e)+-~sin3(pt+)+

The maximum value c of x is given by pt+ = 9Q. Hence

In the applications to resonance problems it will usually
be found sufficient to confine (16.7) to its first term. The

only part of the higher approximation which we shall need

is the second term of (16.6) and in this we can put c=d.
The presence of this second term is fundamental for the

development of the resonance phenomena. The maximum
value of c is evidently less than TT.

It is still possible to use e and the frequency p as the

arbitrary constants instead of e, c. But it is inconvenient,
for c is then defined approximately by the expression

4(1 p/K}* which gives complicated results when derivatives

with respect to p are needed.

17. (iii). C = 2/c
2

. This is the limiting case separating
cases (i), (ii). Here

/dx\*

\dt)
==4 'c2cos2 ~2-*>

the complete solution, containing one arbitrary constant

only, being

Kt+e log tan !(#+TT),

or

(17.1) tf+7r=4 tan* 1

exp.(/c+e).

In this case dx/dt oscillates between 2*. We have x ?r

when t > <*> and x TT when t-+ . At both limiting posi-

tions dx/dt=zQ, d2
x/dt*=zQ. If we form the higher derivatives

of x in succession from (15.1), we see that they will all be
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zero at these limiting places. From the analytical point of

view these are singularities of (17.1) and no expansions in

powers of t about these points exist. They are evidently

the singular points of (15.6) as n-*Q and of (16.7) as r >TT.

Hence infinitesimal changes in the initial values of x> dx/dt

will give different types of motion according to the nature

of these changes. If they are within the probable errors of

their determination by observation, we must therefore re-

gard the future motion as indeterminate or non-calculable.

18. Summary. In the applications of the solutions of

(15.1) to resonance problems, emphasis on the following

results will be needed.

There are two principal types of solution in one of which

the mean value of dx/dt is always positive or always nega-

tive but not zero, and in the other of which the mean value

of dx/dt is zero.

When the mean value of dx/dt is zero there is a range of

solutions in which x oscillates about the value zero, the

range being characterized by the half amplitude c which can

have any value between 0, TT.

The constant e merely gives the origin of reckoning of t.

If we suppose this to be settled and then attempt to classify

the solutions according to the mean value of dx/dt we find

a single solution for each non-zero value and an infinite

number for the zero value.

A discontinuity separates the zero from the non-zero val-

ues, such that we cannot pass from one set of solutions to

the other set by mere changes in the constants.

When the mean value of dx/dt is not zero, the solution

has the form

(18.1) x = nt++^~sm(nt+e)+ l sm2(nt+)-\n2 n*

where n, c are the arbitrary constants.
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When the mean value of dx/dt is zero, it takes the form

sin

(18.3)

and with c, e as the arbitrary constants.

In (18.1), the development proceeds according to powers

of K2 . In (18.2), it depends on the first power of K in a quite

different manner.

The maximum oscillation of dx/dt occurs at the limit

between resonance and non-resonance and its amplitude

is 2/c.



METHOD OF APPROXIMATION

19. In the majority of physical problems, defined by dif-

ferential equations, the only practicable method for obtain-

ing a solution is some process of approximation. On account

of either mathematical or physical reasoning, we suppose
that some portion of the equation or of its solution may be

neglected as a first step, when by this neglect we are able

to deduce a result by known methods. Various devices are

then available for correcting the result.

One method frequently adopted is a process of continued

approximation which will be illustrated by a simple example
which has been chosen to show how the method may some-

times fail.

Consider the equation

(19.1) ^-m sin(y-n'/),

where m is supposed to be small. If m be neglected, the

solution is y =nt+e, where n, e are arbitrary constants. The

ordinary meaning attached to this result is that it represents

approximately the result we desire to obtain.

The usual procedure is the substitution of this approxi-

mate value of y in the right-hand member of (19.1), as giving

an approximate value of this term. If we do so and solve

again, we obtain

(19.2) y

For a further approximation we substitute the more accurate

result (19.2) in the right-hand member of (19.1) and solve

again. Evidently the process may be continued indefinitely.

18



Approximation Process 19

It is not difficult to show that the mathematical implica-

tion of the process is the possibility of development of the

solution in powers of m. If, however, n n 1

is very small,

the process will evidently not be convergent. This example
was chosen because in this case the substitution y=n't-{-x

+TT, transforms the equation to

(19.3) -$+'

which is the same as the pendulum equation previously

treated if we put m = K2
. (If m be negative, the substitution

y = n't+x should be used.)

The result shows that when x is an oscillating quantity,

y oscillates about n't+e, that is, we must assume n = n f

. In

this case the solution depends on K or on m* and is not

developable in positive powers of m. This example illus-

trates the manner in which certain approximation processes

fail under resonance conditions.



THE GENERALIZED EQUATION
20. The discussion which has been carried out for the

simple pendulum may be extended to the equation

(20.1) ^L+/(*)=0.
This may be visualized as the equation of motion of a particle

in a smooth closed tube in a vertical plane, the tube having

a given shape. Since the discussion of the solutions follows

the same lines as that of the simple pendulum, the results

will be stated briefly without detailed development.

Iff(x) = (d/dx) /(#)> we have the integral

(20.2)
\ at

where C is an arbitrary constant.

We are interested chiefly in those types for which /'(#)

vanishes with x. If, further, f(x) has an upper finite limit,

there will be at least two types of solution according as C
is greater or less than the maximum value of 2f(x). In the

former case, dx/dt never vanishes and it has a mean value

about which it oscillates. In the latter case, it vanishes for

at least two values of #; if f(x) be an even function of x

these values are equal and opposite, say x=c, and then

C2/(f)=2/(-f).
In the former case the solution has the form

(20.3) # =n*++S0, sin i(nt+c),

where n
9

e are arbitrary constants and the coefficients at

are functions of n.

In the latter case, the solution is

(20.4) x = 2ct sin i(pt+e),

where p and the c< are functions of C.

20



II

SOLUTIONS OF -$+/'(*)=W<>, *).

21. This is the type of equation which arises in many
resonance problems. In general m^

r

will be small compared

with/
7

, and solutions can be obtained when m = 0. A process

for approximating to the solutionwhen m is not has been de-

scribed and illustrated in section 19; it was also pointed out

that under certain circumstances this process fails. As a

matter of fact it fails in those cases which are particularly

under investigation here, so that some other method is

required.

The method which will be developed in detail below is

known in text-books on differential equations as that of the

Variation of Arbitrary Constants a term which conceals

its essential characteristics and not infrequently leads to

erroneous interpretations. Fundamentally, it consists of a

change of variables which is carried out in such a manner

as to have the following properties.

(i) Two new variables replace the variable x.

(ii) One relation between x and the new variables is in-

dicated by the solution of a differential equation

which can be solved completely. In the present case

it will be the equation given above with m=0.

(iii) The replacement of a single variable by two others

needs a second relation in order that the change may
be definite; this second relation is furnished by the

condition that the two differential equations to be

21
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satisfied by the new variables shall each be of the

first order.

Essentially the method is the same as those known under

the names of Jacobi and Hamilton. The canonical forms

obtained by the latter are not, however, always useful for

the complete solution of a dynamical problem without con-

siderable changes. For this and other reasons, the method

will be developed ab initio, first with a simple example, and

then for the equation which constitutes the heading of this

section. Finally a method for the solution of the new equa-

tions will be developed.

22. The example referred to at the end of the preceding

paragraph is the solution of

(22.1) -^+K
2# = msinZ.

The solution of this equation when w=0, that is, of

(22.2)

may be written

(22.3) x=*A cos Kt+B sin a,

where A> B are arbitrary constants.

This suggests a change of variables from x to u
y
v in which

(22.4) x = u cos Kt-}~v sin Kt.

Since there are two new variables we need a relation con-

necting them. Let this relation be

,~* P-N du
,

dv . -

(22.5) cos Kt + sin Kt = 0.v '
dt dt

The variable x will now be replaced by u, v in equation

(22.1). Differentiating (22.4) we have

/oo <\ dx du . dv . .
,

^zz.o; _ s= cos Kt + sin Kt KU sin Kt+KV cos Kt
at at at

= KU sn Kt+ KV COS Kty

on account of (22.5).



Changes of Variables 23

The relation (22.6) is usually expressed in the form

(22 7)
-

(ZZJ)
dt dt'

which evidently means that the derivative of x with respect

to t has the same form whether we treat u 9 v as constants

or variables.

Differentiating (22.6), we obtain

d2x du . dv
, , \-- = K sm Kt~\ r-COS Kt K2
(U COS Kt+ V Sltt Kt),

or, on account of (22.4),

,_- ON d*x
, o du . dv

(22.8)
-+ K2X = K Sin Kt+ K COS Kt.

at 2- at dt

The substitution of this for the left-hand member of (22.1)

gives

du .
,

dv
(22.9) K sm Kt+K cos Kt = msmt.'

dt dt

In the place of the equation (22.1), we have the two

simultaneous equations (22.5), (22.9), each of the first order.

The values of du/dt and dv/dt are easily found from them.

They are
/ri _ du m . . dv m .

(22.10) = sin t sm Kt,
= sin t cos Kt.

at K at K

These are the required equations. It is evident that the

change of variables given by (22.4) is equivalent to the

assumption that the arbitraries A, B are variable and that

(22.5) has the effect of preventing the occurrence of d2
u/dt*,

In this simple example, the equations (22.10) are easily

integrated if the products are expressed as sums of sines and

cosines, we find
m
jsm(t Kt) ^ sm(t+Kt)\

2*1 1 K l+K
m

1 K l+K
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The value of x is obtained by substituting these in (22.4).

If the constants in u, v be denoted by A09 B we obtain

,
msint

a result which may be tested by direct substitution in (22.1).

In this case, the right-hand member of (22.1) does not

contain x. It is evident, however, that the process of chang-

ing the variables will be the same as far as (22.10) whatever

the right-hand member may be. In fact it is only when we
arrive at the point where the equations corresponding to

(22.10) have to be integrated, that further devices become

necessary.

In the general problem the partial derivatives dx/dt,

dz
x/dt

2 will be used. These are to be formed on the assump-
tion that x is expressed as a function of u, v, t. Thus (22.4)

gives

23. Transformation of the equation

(23.1)

by the use of the solution of

(23.2) ^ +/'(*) =0.

The solution of (23.2) will contain two arbitrary constants

and is supposed to have been obtained. Let us denote this

solution by

(23.3) x=t(c,,i).
Another aspect of the meaning of (23.3), indicated by the

last paragraph of section 22, will be useful. Suppose we

regard (23.3) as defining x in terms of those variables r, e, t

and that we form d 2
x/dt

2
, or, what is the same thing, d z

\f//dt
2
,
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which means that t is alone varied in forming the partial

derivatives. If this and the value of x be substituted in

(23.4) -g +/'(*),

the "solution" means that r, e will disappear whatever their

meaning and that the expression (23.4) will reduce to zero.

The equation for the transformation from x to the new

variables c, e is (23.3). Differentiating it with respect to t

we obtain

dx _d\I/ dc d\f/ de d\fs

~dt^~dc~dt ~de~di ~dt
'

or, as it is usually written,

dx
__

dx dc dx de dx
( }

^t~~d~c~di
+

~deTt
+

~dt'

The additional relation connecting c, e, t
y needed to define

the change of variables, will be taken to be

(23.6) ? +T| =
,

dc at de at

so that, in virtue of (23.5),

m 7^ - -

(23 ' 7)
dt

~
dt

Differentiate (23.7), remembering that dx/dt is a function

of c, e, t. We obtain

dc=
dt*

""

dcdt
'

dt dedt
'

dt dt*

'

Substituting the result in (23.1), and making use of the

fact that the expression (23.4) is zero, we obtain

/ro ^ d*x dc
,

d*x de // x

(23.9) + -j- =m<t>'(x,t).^ J
dcdt dt dedt dt
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Equations (23.6), (23.9) may be regarded as two simulta-

neous equations for finding dc/dt, de/dt. On solving them

as such we obtain

where

de dedt dc

When the right-hand members of (23.10) have been ex-

pressed in terms of cy e, t by the use of (23.3), these equations

become a pair of differential equations of the first order for

finding c, e in terms t. The values thus found are substituted

in (23.3) and give the value of x.

The divisor K does not contain t explicitly. This impor-

tant property is deduced from the fact that (23.4) is zero

whatever c, , may be and therefore that its partial deriva-

tives with respect to c, e are also zero. Hence

Jt^L + tfl =0 -^-4-^ ^=0
dedt2 dx

'

dc
""

'

dedt2 dx
'

de
~

'

The elimination of df/dx from these gives

dx d*x dx
__~~ "" '

Tc
"~

?

)=

and this may be written

lTt\dcdt We
""

dedt dc

or dK/dt~Q, which proves the statement.

It is evident from (23.10) that c, e become constants when

m=0, and therefore that the solution of (23.10) gives their

variations due to the presence of the term m<$> \ this point

of view, as stated before, is responsible for the term "varia-

tion of arbitrary constants."
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It is to be noticed also that the relations

. . N dx d\l/ dx
x -$(c, e,t),

= s
,

at ot dt

may be interpreted as meaning that not only x, but also

dx/dt, have the same form when expressed as functions of

<:, e, tj and whether r, c be variable or constant. This is not

true of d2
x/dt

2
.

24. Second change of variables. If the solution of d2
x/dt

2

+/'(#) =0 has either of the forms given in section 20 diffi-

culties may arise when the variable values of c
y c are sub-

stituted in the expression for x. For example, if in (20.3),

we choose the arbitraries n, c as our new variables, it may
turn out that n is a periodic function of t and we thus ap-

parently have terms of the form t multiplied by a periodic

function of t, which we know will disappear from the final

expression. The presence of such terms can be avoided by
a change of variables somewhat different from that used in

section 23.

Either of the solutions (20.3) or (20.4) may be expressed

in the form

x = function of c, /; Z = ttZ+e; n= function of c y

where c, c represent the adopted arbitrary constants.

Since t is present in x only through its presence in /, we
have

dx
__

dx dl _ dx d*x _ 2
d*x

~di ~"a7 'Tt~~
n

!Ti' W nW
Thus the equation d z

x/dt
2
+f'(x) =0 can be written

(24.1) n'-^ +/'(*) =0,

where x is now a function of c, I and not of t\ and n is the

function of c previously defined.
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The new variables will now be c, / and the additional

relation needed will be chosen to be

Since

- 4. ^ ^L
dt

""

dc
'

dt
+

dl
'

dt
'

we have

Also since n is a function of c only and dx/dl a function

of r, /, we have, from the differentiation of (24.2),

dt2 dc\ dl

Substituting this in (23.1) and making use of (24.1), we

obtain

dx\
dc^

d 2

xfdl __
N
\ ,/ v

d I/ dt dl2 \dt J

The equations (24.4), (24.5) may be regarded as simulta-

neous for the determination of dc/dt, (dl/dt) n. Their

solution gives

dc
__
m dx

,
dl

__
m dx

,

where

dx d 2x

dc dl2

The substitution for x of its value in terms of c, / and of n

in terms of c, gives us two equations of the first order for

the determination of /, c in terms of t.
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The proof that K is a function of c only can be obtained

as in section 23. Another proof is as follows:

On account of (24.1) we can write (24.7) in the forms

dx d dx\ dx .

by (24.2). But the integral of d2
x/dt*+f(x) = is

1 //7r\ 2
1

<24 '8> l(f)^w=Y C'

where C is evidently a function of c only. Thus

(24.9) A'=l ^.2n dc

25. We have supposed that $> was a function of x, t only.

There is nothing in the transformation to prevent it from

being a function of dx/dt also, since on account of the rela-

tion dx/dt = ndx/dl, this derivative can be expressed as a

function of /, c. Thus the transformation can be used when

factional forces depending on the velocity are present.

When, however, <// is a function of x, t only we can write

,, d*
(f)
=

,

dx

and the equations (24.6) can then be written

dc m d<t> dl m d<t>

a form which saves much laborious calculation, since <f> only

has to be expressed in terms of c, /, and K is usually a quite

simple function of c. It is recalled that / occurs in
<f> only

through its presence in the expression which gives x as a

function of <:, /.
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Although the canonical form of these equations will not

be used here, it may be deduced immediately by defining

new variables <TI, B, with the equations,

dci =K dc
y

dB = ndci = nKdc.

Since B is independent of /, the equations (25.1) can then

be written

dci d , , r>\ dl d ,

,

at dl at dc

Equation (24.9) shows that J?= |C and that dd = dC/2n.

26. Approximate Solution of the Equations for c, I. When
the equations (25.1) have been formed and a solution is

needed, it is important to remember that n is a function of

c, and therefore that if an approximation process be adopted,

the equation for n must be solved before that for /.

We have seen, however, that in resonance problems it

may not be possible to follow the usual processes because

developments in powers of m fail to be convergent. The

following plan will often be found effective in such cases.

Differentiate the equation for / and substitute in the re-

sult the expressions for dc/dt, dl/dt, remembering that <p

may be a function of t as well as of c, /. We obtain

frl
__ _d/ __ ra_

d<A
dc_ _ m_ __9^_

dl _ _ra _

d 2

~di?

~
'dc\""K'dcJ

'

~dt~~~K Hide
'

~dt

~~

~K ~dcdt

dc dc\K dcJ "(

In a first approximation, the terms factored by m 2 will be

neglected. The equation for d^c/df might also be formed

but it will not be needed.
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The problems to be considered are those in which, after

x has been given its value in terms of c, /, we have a term

in <t> of the form

(26.2) 0=-tf< cos(x7 n'J c'),

where a
t
is a function of c only; n f

> e' are given constants,

and i is an integer. We then have

dldc dtdc
-~

i J dldc

=
(in n

f

) r-~ sin (il n't t).
dc

This result enables us to write (26.1) (without its last line)

in the form

(26.3)

or

Finally, if we put

according as

(26.4) \

~nt = or

7 ) >0 or <0,

the equation will take the form

dn>

d?

where

(26.5)

(26.6)

or

(26.6a)

.. . /N m da,i . dn m
^(^n-n} ---*-.- a <

m d

K !Tc\in-n'
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It will be shown below that a first approximation to the

solution of (26.5) may be obtained by putting c equal to a

constant <TO ; this assumption makes n, K, a^ constants.

Thus p
2 is constant and (5) becomes the same as the charac-

teristic equation for the motion of a simple pendulum.
27. We can therefore make use of the discussion given in

sections 14-18.

If li makes complete revolutions with a mean angular

velocity in Q n f

9 that is, if

(27.1) i7 = i("oH- )+ <,

in which the arbitrary constant no has been so chosen that

inQ n f

is not 0, and dli is an oscillating function, we have the

analogue to the case in which the pendulum is making com-

plete revolutions. When the departure of / from its mean

value is small, the integration of the equation gives approxi-

mately (18.1),

(27.2) 5/,= T

This is the non-resonance case. The suffix zero denotes that

c has been put equal to c in the inclosed expression.

The resonance case is that in which /* is an oscillating

angle; it corresponds to the case in which the pendulum is

oscillating. Accordingly, we must have

(27.3) ino n'=Q, ?e = e' or e'+7r,

since we saw that the pendulum must oscillate about one

of the values or TT of the variable.

With the use of the form (26.6) and the insertion ofm =
n',

we have

(27.4) ?-*"toK ac

When the amplitude of the oscillation is small, we have (18.2)
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(27.5) i/ n't e' =/i=X sin(^>2+Xo),

where X, X are arbitrary constants. In certain physical

problems this oscillation is called a "libration."

It is to be noticed that the original arbitrary constants

<TO,
have become definite, for CQ is defined by in Q n'=0,

where n is a known function of c ,
and c W or C'+TT. They

are replaced as arbitrary constants by X, X .

Just as in the motion of the pendulum an essential singu-

larity separates the solutions for complete revolution and

for oscillation about the vertical, so a similar singularity

separates the non-resonance from the resonance case. So

long as we confine our work to this first approximation the

two problems give analogous results.

28. The solution which gives a first approximation to /

has been so carried out that we were able to neglect the

variation of c in finding it. This variation has still to be

obtained.

Equations (25.1), (26.2) give

dc m d<t> m . .

dt K dl K
Since the right-hand member has the factor m, we shall

neglect the variation of c therein. The use of (26.5) then

gives

dc_ ^_
dt

which, on integration, furnishes

/oo o\ fmia^\
(28.2) c = const. - f -p )\ Kp 2 / Q at

In this equation one of the values of / obtained in section

27 is to be used.

In the non-resonance case, the constant part of dli/dt may
be supposed to be absorbed into the arbitrary constant.
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The oscillating part is given by (27.2) and it has the factor

m. But p
z also has the factor m. Thus the oscillating term

in c has the factor m and the earlier assumption that it may
be neglected when multiplied by the factor m leads to no

contradiction.

In the resonance case, when the libration is small, the

substitution of (27.5) in (28.2) gives

(28.3) r = r - \r X cos
\ Ap /o

where CQ is the constant part of c. The insertion of the value

(27.4) gives for the coefficient of the periodic term,

(28.4)
ma* dn

A.K '

dc

This expression has the factor m* and therefore, provided

no other part of the coefficient tends to become large when

the adopted value of r is used, it will be small, and again

leads to no contradiction in our earlier assumptions.

We recall that <TO in this case is not arbitrary but is deter-

mined by solving the equation in = n'
9
where nQ is a known

function of CQ . The two arbitrary constants needed in the

solution have been already shown to be A, X .

Attention is again directed to the fact that in non-

resonance cases, the expansions proceed according to powers

of m, but that in resonance cases they start with m*, when

(28.4) does not tend to become large. If this last condition

is not satisfied the approximation may not be valid and some

other procedure for the solution of the equations will have

to be devised. An example of this will be shown below.

29. The variable / is the phase of the periodic motion

when ra=0, while c is connected with the amplitude of this

motion. We have seen that in non-resonance cases, /, c both
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receive variations which have m as a factor, so that these

variations will in general be small, although they tend to

become large as a resonance range is approached.

In resonance, the circumstances are quite different. The

oscillation of / has an arbitrary amplitude, and can appar-

ently be of any magnitude. But the analogy with the motion

of the pendulum shows that, in general, the oscillation of /

will be between TT in the limiting case between resonance

and non-resonance, or at least will be always finite and of

this order of magnitude. The rate of change of this oscilla-

tion is however always small.

On the other hand, the oscillation of c has in general a

small amplitude in both resonance and non-resonance cases

and has m* or m as a factor. By (28.2), its amplitude of

oscillation is a maximum when that of dli/dt is a maximum;

according to section 18, this latter maximum is 2pQ . The
maximum amplitude of oscillation of c is therefore

(29.1)
Kp

IJ dn
A
dc

The importance of this result lies in the fact that there is

no tendency for c to become infinite, as often assumed, at least

in the types of resonance indicated by the equations we have

used above. Thus there is no need of the damping factor

often introduced to avoid this difficulty. In fact, as we shall

see below, the presence of a damping factor may in certain

cases ensure the passage from non-resonance to resonance,

and thus actually produce the phenomena which its intro-

duction was intended to avoid.
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APPLICATION TO THE PENDULUM WITH
AN OSCILLATING SUPPORT

30. The first problem which we shall consider is the mo-

tion of an ordinary pendulum which is subjected to a type

of disturbance liable to produce resonance effects.

For simplicity, we shall suppose that the pendulum is the

ideal simple one of length b. The disturbance is communi-

cated through the point of support S which is supposed to

be movable in a horizontal direction only.

Let y be the horizontal distance of S from a fixed point

O and x the angle which the pendulum makes with the

FIG. I

vertical at time t. The equation of motion of the pendulum
is then

/<2A 1N ^ A L
d*X

(30.1) f^- cos x+b -rr = sin #.
v x ^2 J/2 6

Suppose that S is forced to oscillate with a motion defined

by

(30.2) y = -i'sin(n'H-'),
36
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where b'
9 n', e

1

are given. It is thus supposed to be unaffected

by the oscillation of the pendulum.

With this value for y, equation (30.1) becomes

b -:--\-g sin #= n'Vsin(n'z+')cos x
at2

= - n'*b'
jsin(n';4-V)sin

x \

If we put

(30.4) g/b = K2
, n^V = K2

mb, <f>
= -*2

sin(n
/

/+ ')sin AT,

equation (30.3) may be written

(30.5) te+tanx..
31. In order to solve (30.5) according to the method de-

veloped above, we first solve the equation when m=0. The

solution has already been obtained. As we shall suppose

that the pendulum is performing oscillations with not very

large amplitude, the solution is that given in section 16,

namely,

x = c sin /+ TT sin 3/+

(31.1)
. c* \ dx dx

-l6+ "V'&- w
a7

these values satisfying

(31.2) n*~+K*smx =
dr

for all values of c, I.

When m is not 0, we choose c, I as the new variables and,

according to (25.1), they satisfy the equations

dc md<t) dl

where K is given by (24.7).
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The calculation of K is quite easy if we make use of the

fact that it is independent of /. Let us put /= 90 after form-

ing the derivatives from (31.1). The first term of (24.7)

vanishes and for the second term we have, when 7 = 90,

___

dc 64

so that

(31.4) K =

Next, <t>
has to be expressed in terms of c, I. The simplest

way to do this is to calculate sin x from (31.2) with the

help of (31.1). We find

sin x
ft

2 / 3r3 \=
(jrsin/

+ sin3/ + -

).

Hence, from (30.4),

L=-|tt 2r cos(/ n'* e')+ 5W
2c cos(/+n

/

/+
/

)

(3L5)
cos (3l-n't-t

f

)

cos(3l+n't+e')-{ .

The substitution of this value of < in (31.3) gives the re-

quired equations for finding c
y I.

32. Since m is supposed to be small and since we shall

neglect m2
, the various terms in

</> may be regarded as sepa-

rate disturbances, each producing its own effect: the total

effect being the sum of the separate portions in this ap-

proximation.
1

The chief interest centers on the first term because it gives

resonance phenomena when n~n'. For this term the solu-

! The method of Delaunay, as used in celestial mechanics, avoids this as-

sumption.
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tion in sections 26-29 may be directly used. We have, in

fact,

/. = /_ n'-. '

9 i = l
y
a .^ln2

Cf

Also, from (31.1),

dn =
*KC+

Following the notation of these sections, we have n = n f

,

so that by (31.1)

(32.1; <-

approximately.

Hence a first approximation shows that an oscillation of

the pendulum with frequency n r

the same as that of the

disturbing force is possible provided the arc through which

it oscillates is given by (32.1). Evidently, it is necessary

that K>n', since this arc must be greater than zero in order

that motion shall occur.

This last condition exhibits the necessity for dealing with

the non-linear equation for the motion of the pendulum. If

we had used the linear form, the frequency nQ would have

been put equal to K, and there would have been no clue to

the value of the amplitude under resonance conditions.

The frequency p of a small oscillation about this resonance

configuration is given by (27.4). In the present case it is

approximately given by

m KC
. ij>-2/.

8
2 " C

Hence we have, from (32.1),

*
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The small oscillation of / is given by
/ = n r

+e'+X s

and that of c by (section 28)
mai

C "0
""""

""77 A
Kp

where c has the value (32.1). This last coefficient is

mK2c 2
' ^ *

K ft

The maximum amplitude of oscillation of c is given by

(29.1). This maximum is found to be

9 * U
'(

K Y2m (
7

)

K \Kn /

In order that the approximations may be valid, it is evi-

dently necessary that K.~ n
r

shall not be too small.

33. When K = n', the method adopted above fails, and in

this case it appears to be easier to return to the original

equation (30.3). This, with the notation (30.4), can be

written

(33.1) -7 +>c
2 sin #+K2

?tt cos x sinOrf+e') =0.
at2

When x is small it is possible to expand sin x, cos x in

powers of x. Let us see whether a solution with period 2ir/K

can be found; if so, only odd multiples of Kt+t will be

present. Suppose

x^A^ sin(**+')+^s sin 3(*/+e') + ,

where A\> A^ are small. We have

cos# = l-J#2+ =l-;b/i2+jMi2 cos

sin x=x i*
3+ Ai sin(^+e')+ ^3 sn

-i^! sin(ftf+e')+*V^i
3 sin 3(^+e +

Inserting these in (33.1) and equating to zero the coefficients

of sin(jrf+e')> sin 3(itf+
7

)> we obtain

.- =0,
- =0.
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The first approximation to the solution of these equations

gives

A,= 2m
l/

\ A t=TbAf=~

It is evident that the coefficient of Ai will have m i/z as a

factor, that the approximations proceed along powers of

m2/s
y and that the series converge.

Thus a solution which depends on m* exists. This, how-

ever, is a particular solution since it contains no arbitrary

constants. Let us call it X XQ, and see whether a solution

X=XQ-\-$X can be found. On inserting this value of x in

(33.1) and neglecting powers of dx beyond the first, we
obtain

?2

cos XQ K2m sn XQ sn
dl-

The principal terms in the coefficient of 5x are those deduced

by putting

cos *o = -* = -i^i cos

where ^i = 2w*. In general, the coefficient of 8x will be a

series of the form,

2< cos

where b 2 i vanishes with m and bo is not zero.

Equations of this type are well known. They give oscilla-

tory motion with an arbitrary amplitude and phase. The

principal frequency present depends on b . Thus small varia-

tions from the particular solution appear to be possible.

34. Hence when AC n' is zero, the resonance case gives

expansions in powers of w*, while we saw in the first part,

when K n f was not too small, that the expansions proceeded

along powers of m*. The theory of analytic forms suggests

that a singularity may separate these two sets of solutions.
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The method of investigation followed in section 33 might
also have been used in the earlier case where KH' was not

zero. It is difficult, however, to get a clue with this method

to the transition from non-resonance to resonance and, in

any case, it is much less adaptable to the more complicated

cases presented in other problems.

Another exercise which may be left to the student is the

investigation of the resonances arising when one of the rela-

tions 3n 7z'=0, 5n n'=0, ,
is approximately satisfied.

These resonances require the consideration of the terms with

arguments 31 n't e,
*

,
in (31.5). It can be shown that

as long as we retain only the lowest power of m present,

each can be treated as though the remaining terms did not

exist.



IV

APPLICATIONS TO THE MUTUAL INFLUENCE
OF TWO PENDULUMS

35. Let us consider the problem of two ideal pendulums,
the bobs being treated as particles of masses /x, ju

;

, and the

rods as weightless and having lengths b, b'. They are hung
from points attached to a bar of mass M capable of hori-

zontal motion only: all frictional effects are neglected.

We shall first suppose that the bar is not acted on by any
external force. If each body in the system has zero velocity

initially, the horizontal component of the momentum is zero;

also the total energy remains unchanged throughout the

FIG. 2

motion. Let x, x
f

be the angles which the rods make with

the vertical at time t and y the horizontal distance of the

center of mass of M from a fixed point at the same in-

stant. The assumed zero value of the total horizontal mo-

mentum gives

(35.1) My+jj,(y+b sin x)+n'(y+b
r

sin x') =const.

43
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The forces and accelerations resolved perpendicularly to the

rods give, after division by the masses,

/2C O v

(35.2) cos x+b = -g sm x,

(35.3) Cos*'+i'i =-g sin *'.

The substitution of (35.1) in (35.2) furnishes an equation

which may be written

tie A\ -L
d*x . . nb d2

. . .

(35.4) b - +g sm X-
,
cos (sm *)

cos x (sin x ).

If the right-hand member of (35.4) be neglected, the

equation becomes integrable on multiplication by dx/dt.

Since cos x - dx/dt=d(sin x)/dt, this integral is

dx^
-

j COS X i

or

fa^
( j =(Li+2zco$x)+t>( i - -

ft
'

. 7 cos
z x j

= -;
V a^
On differentiating this result we obtain

(35.5) ^+/'W='
and /(^) may be written in the form

(35 .6)
-,- ^+M+M' C+2,cos

Since f(x) lies between finite limits and has no singularity,

equation (35.6) is of the type considered in section 20, and

the analysis of that and of the succeeding sections may be

applied. But the calculations may be much simplified by

making approximations which can be shown to be sufficient

to investigate the resonance phenomena when the latter are

present.



Mutual Disturbance 45

36. The solutions we seek are those in which xy x' are

oscillating through angles which are never very great, and

in which p/M, p /M are small. The approximations will be

made on the assumption that powers and products of #2
,

#'2
, v/M, M''/M beyond the first can be neglected in f(x) :

this involves the neglect of products of x*y
x f *

by p/M, p /M
in /'(*).

With these limitations /(#) reduces to

.,
,

/(*)
= const.- S cos x ,

so that (35.5) becomes the equation of motion of a simple

pendulum of length b(M+n') -r- (M+M+/)- Further, in the

right-hand member of (35.4) we can put cos x \, sin x' = x'.

If then the notation

be adopted, (35.4) and the similar equation for x' may be

written

d* 2 *'

(36.1)
__ + . 8in ,._

/o/r o\ u "*

(36.2) ^
Finally, the neglect of the product mm! enables us to sub-

stitute for dz
x'/dt

2 in (36.1), its value derived from (36.2)

when the right-hand member of the latter is neglected:

equation (36.2) may be similarly treated, and we may put

sin xX) sin x'x' in the right-hand members. We then

obtain

(36.3) r-~ +K2 sin x= mK2 x' = ra/c
2

(xx')>
at1 ox
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(36.4) +*' 2 sin *' = -wY'*= -mY -
(**').

Each of these equations now has the form ready for the

application of the methods developed above.

37. When ra=ra'=0, each of the equations (36.3), (36.4)

reduces to that for the motion of a simple pendulum. The
variable x is then changed to the variables r, / as in the

previous example, and x f

to similar variables c', I'. Also, as

in the previous example, it is sufficient for a first approxi-

mation to confine the solution (36.3) when m=0 to

f c*\
(37.1) x = c sin /, U = K( 1 ), K = KC;

and the solution of (36.4) when w/=0 to

(37.2) *'=r's

If, in the general formulae, we replace m by ra/c
2
,
and by

m f

K 2 for the respective equations, we shall then have

= xx' = cc
f

sin / sin /'

(37.3)
= _i^' COs(/-/')+!fr' cos(/+/').

The resonance case corresponds to that in which dl/dt

dl'/dt is nearly zero. The first term of (37.3) is therefore

to be used and we can pass immediately to (26.3) with n

given by (37.1) and a l
= ^cc

r

. We obtain

1

The first approximation is obtained by putting C=CQ,

C'=C'Q. When there is resonance we have n = n r

o. The

equation therefore reduces to

(37.4) + c. f'. Sin (/-/') =0.
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Similarly

Mf WV 2

(37.5) ^-+^- c, c'. sin (/' -/)=0.

From these we deduce

dz r

(37.6) mY*

-

(37.7)
-

s (/-/')+-- Co C
'

sin (/-/') =0.

The last equation has the standard resonance form.

38. Since CQ, C'Q are positive by definition, equation (37.7)

shows that in resonance / /' oscillates about the value zero

and that / /'=TT is the limiting case between resonance and

non-resonance. Hence with the relation nQ
= n'o we must also

have e = e'o. Thus

The stable resonance configuration of two pendulums attached

to a massive block free to move horizontally is that in which the

rods are always approximately parallel to one another.

If a slight disturbance be given to the system, an oscilla-

tion (libration) defined by

(38.1) /-/' =X sin

will be present. The combination of (38.1) with (37.6) shows

that the librations of the two pendulums will have opposite

phases.

Suppose the pendulums had been started from opposite

sides of the vertical so that n = n'
, but / /'=TT. Evidently

M will in this case be at rest. But any small disturbance

of the system will ultimately compel / /' to pass through

nearly all values between TT and TT, with consequent oscil-

lation of M. Or else resonance, as defined here, will not be

present, but "beats" at very long intervals will occur, accord-

ing to the nature of the disturbance. Thus the motion will
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be highly sensitive to small disturbing forces and consider-

able irregularities will occur if the pendulums be used for

accurate measures of time. Near the stable case, on the

other hand, the irregularities will be small, but the pendu-
lums become in effect one unit for time measurement instead

of being two separate units, as in the non-resonance case,

each giving its own measure.

The condition no = n'Q , demands that

r 2\ / r /2

} '( 1

-r6)
=K

(
l
-i6

Since CQ, c'o were assumed to be small, this condition de-

mands that K, /, and therefore by the definitions in section

36, b y
V shall be nearly the same. It is to be noticed that

small differences from equality in b, V can be compensated
in resonance by the arcs through which the pendulums

swing. The masses may be quite different provided they

are both small compared with M.

The variation of c is given by

dc mv? d<t>

Substituting for sin (//') from (37.8) and integrating, we

obtain

c (mic*+m' K '*') dt

which, with the use of (38.1), gives

m K2 + m K Z

p\ , , x N

cos (pt+\ )

A similar expression gives the variation of c
1

'. The maximum

amplitudes of c and of c' we obtain from (29.1).



Mutual Disturbance 49

It is evident that neither c nor c' can be very small if

the approximations are to be valid. If K = K' we have f = 'o

and the difficulty disappears. If however the difference be-

tween K, K' and the starting conditions were such that CQ or

C'Q were zero it would be necessary to reconstruct the analysis,

possibly in a manner similar to that of section 33.

39. When =', M M'* it is possible to explain without

transforming the equations of motion, why the unstable case

of resonance is that in which the pendulums are started

from rest with equal angles on opposite sides of the vertical.

Here equation (35.4) and that obtained by interchanging

X, x', can be written

d2x . d2

(39.1) -ry +*
2 sin x = win2 cos x~~ (sin

.

(39.2) -7 +K'2sin#' = w/c' 2 costf' (sin #+sin x').
at 1 at2

A particular solution of these equations when jc
=

/c
1

; is

d2x

the case in which the phases are opposite.

Suppose that a small disturbance be given to the system.

The right-hand members of (39.1), (39.2) are then of the

order m times disturbance, and so extremely small. The
motion of one pendulum will affect the other very little,

and with different amplitudes, their periods will be different

and the phase difference will tend to increase until the right-

hand members become large enough to affect it.

On the other hand, with the particular solution

d2x . d2

x=x', -7 +/c
2 sin x = 2niK2 cos x (sin#),

at2 at2

the case in which they start on the same side of the vertical,

a disturbance affects both pendulums. But the difference
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between (39.1), (39.2), having the factor cos x cos x'
9 which

is of the order (x x')(x+x
f

) 9 is always very small.

The distinction between the two cases consists in the fact

that though the effect of one pendulum on the other is very

small in the unstable case, it tends to accumulate; while in

the stable case, the limit of accumulation is sooner reached

and the effect is then reversed.

40. Suppose that (35.4) and the similar equation for x
r

had been reduced to the linear form at the outset by putting

cos # = 1, cos #' = 1, sin x x, sin x' x'. They would have

become

, **
dt*

'

b ~~ 1-
dP \M+ u+ u'/ M+u+ u' dt2

When b=b', M = M'> these, by subtraction and addition,

may be written

b (*-*')+#(*-*') =0,

giving to the oscillations of x x', x-\-x' 9 the frequencies

t

M J

These show the possible existence of resonance but give

no information as to the nature of the motion under such

a condition.

41. Pendulums Mounted on a Massive Pier. Let us now

suppose that the bar M, instead of being free, is confined

in its motion by stiff springs, so that its natural free period

of oscillation is very short compared with those of the pen-
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dulums. If N be its natural frequency, the equation for the

motion of M will be

- +N*y= Tsm x+ T sin*',
at2 /

where T, T' are the tensions of the pendulum rods.

With the earlier hypotheses concerning the magnitudes
of the masses and the angles we may put jT=jug, T1 = //>

sin x=x9 sin x' =#', in this equation so that it reduces to

For oscillations of x9
x f

with periods very long compared
with 2-K/Ny we have N2

y large compared with dz
y/dt

2
. Hence,

approximately,

This equation is similar to (35.1) when the latter is reduced

by putting sin x = x, sin #'=#', and the previous develop-
ments can be utilized by proper choices of m

y
m r

.

The difference of chief importance is due to the fact that

m, m r now have signs opposite to those of the earlier prob-
lem. Hence a reference to (37.8) shows that / /' now oscil-

lates about the value TT instead of about zero.

The present problem is substantially the same as that of

two free pendulums attached to a massive pier. Such a pier

will, in general, have natural periods of oscillation very short

compared with those of the pendulums. Hence

The stable resonance case of two pendulums attached to a

massive pier capable of oscillation is that in which the phases

are opposite so that the pier does not sensibly vibrate. A small

disturbance from this configuration will produce only small

differences of phase.
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The case separating this from the earlier problem is evi-

dently that in which the period of oscillation ofM is nearly

the same as those of the pendulums. Such a case would give

rise to resonances between three vibrating systems a com-

plicated problem which I have not attempted to attack.



V

SOLUTIONS OF ~
at2

42. When w = 0, the solution is

x =c

so that the frequency K is independent of the amplitude c

and phase c. Since the existence of the standard resonance

form developed above depended on the non-vanishing of

dn/dc, that theory is not applicable to the case /'(#) =KZX.

If </>' contains a periodic term with frequency K, we have

seen in section 9 that the solution contains a term whose

amplitude increases continually with the time. Since infinite

amplitudes do not occur in actual mechanical problems,

some discussion is necessary.

In certain problems, <' contains a non-linear portion ^
r

(x),

independent of t. If this be included in /'(AT), the solution

with the remaining portion of $' neglected has no longer a

constant frequency, so that dn/dc is no longer zero. It evi-

dently contains the factor m, however, and the presence of

this factor invalidates the approximate solution given in

section 26, where terms factored by m2 were neglected. No

general theory for these cases appears to be at hand. Those

which actually arise can usually be shown to give finite

oscillations, except in quite special cases.

Another set of problems is included in the cases in which

$' contains terms of the form K2x\f/(t), where \ft(i) is a periodic

function of t. If these be included in the right-hand member,
the discussion starts with the solution of

53
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o,

a well-known type, occurring frequently in the problems of

celestial mechanics. When <' contains further terms which

have resonance relations with those in the solution of this

equation, the problems become very difficult and quite out-

side the limits of these lectures. They are mentioned here

mainly because those which have been discussed do not give

infinite amplitudes in general.

43. There are, however, certain mechanical problems
which are usually classified under the equations of section 42

but to which the preceding theory does appear to be appli-

cable. Consider, for example, the oscillations of a tightly

stretched wire, under an external force which has nearly the

same frequency as the principal natural frequency of the

wire. Our actual experience shows that the amplitudes of

the oscillations are so small that one hesitates to invoke the

change of period with change of amplitude which maintains

finite oscillations in the foregoing resonance theory. Further,

such wires are not usually stretched in the motion sufficiently

to enable us to assume a non-linear law of extensibility.

Frictional damping does not appear to be a complete ex-

planation, since it is possible to suggest experimental condi-

tions in which this could be made very small.

The answer probably lies in a change of
"
natural" period

due to another cause. Under the high tensions which are

momentarily produced when the amplitudes are near their

maxima, the framework to which the wire is attached yields

to some extent. It therefore becomes part of the oscillating

system and thus provides the change of period with change
of amplitude which the foregoing theory shows is sufficient

to prevent the development of large amplitudes. The same

explanation would seem to be applicable to the oscillations
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under resonance conditions of any member of a frame which

is under high tension when at rest.

It is known that too great rigidity of a frame is to be

avoided if the frame is to be subjected to external forces

which have the same periods as any combination of mem-
bers of the frame. If the chief reason for this avoidance is

the danger of producing additional strains due to large oscil-

lations under resonance conditions, the foregoing theory sug-

gests methods of preventing these additional strains other

than those usually adopted. What is needed is a change in

the "natural" frequency as soon as the amplitude of oscilla-

tion begins to increase. For example, if, instead of a single

wire connecting two portions of a frame, we have three wires

at different tensions and nearly in contact with one another,

any increase of amplitude of any one of them will bring it

into contact with one or both of the other two, causing a

change of period which either destroys the resonance relation

or alters the phase sufficiently rapidly so that a large ampli-

tude cannot be built up. It is necessary that they be able

to vibrate independently through very small amplitudes; if

fastened together along their lengths in any way, they be-

come equivalent to a single vibrating system with a new

period of vibration which is subject to resonance in the same

manner as a single wire. The same principle can evidently

be applied to rods or plates. Another method is a device

which shall substantially add to the mass of the vibrating

body when the amplitudes exceed a certain amount, since

this addition changes the natural period. These suggestions

involve, not the avoidance of the resonance, but the control

of the amplitude under resonance conditions.



VI

THE EFFECT OF FRICTION

44. Terrestrial mechanisms are subject to damping forces

of a frictional character some of which can be represented

approximately as functions of the velocity. Since such forces

change sign with the velocity, it is necessary to assume that

the frictional force be an odd function of the velocity when

we are dealing with vibratory motion, if we are to avoid

the mathematical difficulties caused by the presence of a

constant which may change its sign during the motion. One

example of the combined effect of friction and resonance will

be given.

Consider the equation

(44.1) ^ =- M^ -K*sin(y-n'*-e').

This may be visualized as the equation of motion of a wheel

subjected to a periodic couple and also to a frictional couple

proportional to the angular velocity dy/dt.

Suppose that the wheel is making complete revolutions

and that its angular velocity is always greater than n''. Put

(44.2) y=n't+c'+x,

so that the equation can be written

/72r / dx
(44.3) ^+'sin* ,("'+ f
According to the hypothesis just made, dx/dt never van-

ishes and consequently (44.3) may be regarded as the equa-

tion of motion of a pendulum making complete revolutions

56
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but subjected to a disturbing force represented by the right-

hand member of (44.3).

From section 18, the solution when /z
= is

K2

(44.4) # = /+ sin/+ -

,
l = nt+, n=p--n',

n*

where p is the mean angular velocity of the wheel, that is,

the mean value of dy/dt.

To obtain the solution of (44.3) when /* is not 0, we adopt

the method of changing the variable, replacing x by /, n. Ac-

cording to the results of section 24, the equations for find-

ing /, n are

dn
___

/4A ^ ~dt

=

(44.5)
dl M dxf .

=n+ n +n T

dt Kdn\ d

in which the right-hand member of (44.3) has been replaced

by n'+ ndx/dl, according to (24.2). The value of K is easily

calculated if we follow the method used in section 31, and

is found to be K~l K*/n
4+

By hypothesis dx/dt, and therefore dx/dl, is always posi-

tive. The expression for dn/dt is therefore always negative

and n is a decreasing variable. It follows that the periodic

portion of x given in (44.4) has a continually increasing

amplitude.

The effect of the friction is thus to decrease the mean

angular velocity of the wheel but to increase the amplitude

of the oscillation about this mean.

45. This motion continues until n (=p n f

) becomes so

small that the solution (44.4) is no longer valid. In accord-

ance with our earlier discussion on the motion of a pendulum,
the discontinuous case is reached. One of two events may
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happen: either x changes sign and n goes on decreasing until

we reach the periodic solution

y = periodic function of n'z-j-e',

which can satisfy (44.1). The wheel is then oscillating to

and fro under the periodic force and the friction: the energy

supplied by the force counterbalances that lost by friction.

Or else x begins to oscillate. In this case we have to

change to the variables c, /, used for the motion of an oscil-

lating pendulum. As in section 31 we have for the change

= c sn ,

16

The equation for c is therefore

dc _ (n'+cn cos /+ -)(c cos /+)--M _

The principal part of the non-periodic term in this ex-

pression is %p,Cy so that c is a variable which is oscillating

but whose mean value is decreasing. It follows that x is an

oscillating variable with a decreasing amplitude.

When the amplitude of x becomes small it is convenient

to return to (44.3). This equation has a particular solution

X=XQ where

/m'
sin #o = ~ T~ >

K2

provided /xn'</c
2

.

This solution is evidently the limiting case. The wheel

is making complete revolutions with the angular velocity n f

in resonance with the disturbing force, the energy supplied

by the force being exactly counterbalanced by that lost in

friction.
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46. In order to see how this limiting case is approached,

put X=XQ-{-XI in (44.3), neglecting squares of x\. We obtain

(46.1)
-~ +M +/c

2 cos #o #i=0.

The solution of this equation is

(46.2) x^A^+Be^,
where Xi, X 2 are the roots of

X2+ /iX+ K2 COS #o=0,

so that

(46.3) Xi, X2
= - IM (i^

2 - if cos #)*.

There are three cases:

(i) /c
2 cos # >iM2

- The square root in Xi, X 2 is imaginary

and the solution has the form

Xi = Ce
~

*M
sin (qt+C ) ,

2 = *2 cos XQ
-

fju
2n'2

.

(ii) Jju
2 >K cos x >0. Both roots are real and negative and

the solution has the form (46.2) with Xi <0, X 2 <0.

(iii) cos XQ <0. Both roots are real but one is positive and

the other negative so that in (46.2), Xi >0, X 2 <0.

In case (i), Xi approaches zero by oscillations with a de-

creasing amplitude. In case (ii) the approach to zero is con-

tinuous. Case (iii) appears to refer to the unstable solution,

namely, to that value of #0? which is numerically greater

than 7T/2 in the solution of sin XQ = p,n'/K
2

.

If jj,n' >K2
, the solution x = x , where XQ is a constant, does

not exist. There may, however, be solutions with period

27T/V which do exist. The interest in these cases is, how-

ever, mainly mathematical and they will not be further

discussed.

The principal feature of the problem is the fact that the

resonance case is necessarily reached so that the oscillations
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have their maximum amplitude. After this stage is passed

the amplitude diminishes and, dependent on the initial con-

ditions, one of the types of steady motion is the final out-

come. Theoretically these types only exist as t approaches

infinity. It should be pointed out, however, that with oscil-

lations of very small amplitude the so-called "statical" fric-

tion, which has been neglected, becomes important and

actually brings the system to rest or relative rest in a finite

time.






















