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Magnetocrystalline anisotropy and orbital polarization in ferromagnetic transition

metals
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The magnetocrystalline anisotropy energies (MAEs) of the ferromagnetic metals bcc Fe, fcc and
hcp Co, and fcc Ni have been calculated by using the ab initio tight-binding method. Disentangling
the strong correlation among the d orbitals with the Hamiltonian in the local spin-density approxi-
mation, we have investigated the orbital polarizations induced by the Hubbard U and Racah B. The
experimental MAE of fcc Ni is found with the value of U close to that determined from experiments
and used in other theories. With the optimized values of U and J , both the MAEs and the orbital
moments for Fe and Co are in close agreement with experiment.
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Obtaining the magnetocrystalline anisotropy energies
(MAEs) of Fe, Co, and Ni from ab initio calculations
within the local-spin-density approximation (LSDA) to
density functional theory is of considerable current inter-
est [1, 2, 3, 4, 5, 6]. From various high-quality LSDA cal-
culations, the best case is Fe, where the computed values
differ from experiment by a factor of about 2. The result
for hcp Co is far worse, and for Ni, the sign is not even
correct. The effect of the so called spin-other-orbit cou-
pling is far too small to bring theory and experiment into
accord [6]. The discrepancy between theory and exper-
iment, especially in the case of Ni, is usually attributed
to the LSDA.

The LSDA predicted MAEs and orbital moments can
be improved for Fe and Co [2, 7] by introducing the
Brooks’ orbital polarization (OPB) term [8] which mim-
ics Hund’s second rule. However for Ni, the predicted
easy axis is still wrong [2]. In OPB, OP is driven by the
Racah parameter B, with an energy functional related
to the orbital moment 〈L̂〉 given by ∆EOPB = − 1

2
B〈L̂〉2

[9]. It was argued that the key parameter responsible for
the exchange-correlation enhancement of the orbital mo-
ments in solids is the Hubbard U rather than the intra-
atomic Hund’s second rule coupling [10]. Recently, the
experimental MAEs of Fe and Ni have been obtained[5]
in the LDA+U method [11] with the noncollinearity of
intra-atomic magnetization included. However, the au-
thors found the MAE of fcc Ni to be a very rapidly
varying function of U (from −50 to 60 µeV/atom). A
slight change of the value of U (∼ 0.1eV) may predict
the wrong sign. Given this sensitivity, it is highly de-
sirable to disentangle the intra-atomic strong correlation
with the Hamiltonian in the LSDA and therefore to clar-
ify the effect of OP in first principles calculations. This
is the purpose of the present paper.

The basic features of the electronic structure of Fe, Co,
and Ni can be understood on the basis of their two types
of valence-electron orbitals [12]. The extended s, p (,and
f) orbitals should be well described by the LSDA. The
fairly localized d orbitals, for which the electron-electron
interaction is between the localized and itinerant limits,

are not adequately dealt with in the LSDA [11]. In order
to disentangle the strong correlation with the LSDA, we
express the Hamiltonian as Ĥ = ĤLSDA + ĤC + ĤSO.
Here ĤLSDA is the standard LSDA Hamiltonian, ĤC is
the correlation within the d orbital subspace and ĤSO

the spin-orbital interaction.
We start with the LSDA Hamiltonian in the orthogo-

nal representation of the tight-binding linear muffin-tin
orbital method in the atomic sphere approximation (TB-
LMTO-ASA) [13],

ĤLSDA = C +
√

∆Sγ(k)
√

∆, (1)

where C, ∆, and γ are the self-consistent standard po-
tential parameters. Because the electron-electron inter-
action is included in ĤC, the on-site diagonal matrix ele-

ment of the d orbital is replaced with Cd = (C↑
d +C↓

d)/2.
Sγ(k) is the structure constant matrix in the orthogo-
nal representation [13] with k running over the Brillouin

zone (BZ). ĤLSDA is block-diagonal in the spin index σ
along the magnetization direction. The spin-orbit cou-
pling matrix elements for d orbitals are calculated in the
last iteration of the self-consistent field procedure [1] and

ĤSO is treated in the usual single-site approximation [14].
Similarly to the LDA+U method [10, 11], we treat the

screened interaction among the intra-atomic d-orbitals in
the Hatree-Fock approximation (HFA),

Eee = 1

2

σσ′∑

{m}

nσ
m1m2

(Um1m3m2m4

− Um1m3m4m2
δσ,σ′)nσ′

m3m4
− Ea, (2)

where Um1m3m2m4
= 〈m1, m3|V ee|m2, m4〉 and nσ

m1m2

is the on-site d occupation matrix in the spin-orbital
space. Ea is the average interaction without spin and or-
bital polarization. Um1m3m2m4

are determined by three
Slater integrals F0, F2, and F4[15], which are linked to
three physical parameters: the on-site Coulomb repulsion
U = F0, exchange J = 1

14
(F2 + F4), and Racah param-

eter B = 1

441
(9F2 − 5F4). In terms of U and J , Ea is
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expressed as 1

2
Un2

d − U+4J
5

(nd

2
)2, where nd is the on-site

d-orbital occupation. The ratio F4/F2 is, to a good accu-
racy, a constant ∼0.625 for d electrons [11], which leads
to the estimation B ≈ 0.11J . The interaction energy
Eee, which is rotationally invariant with respect to the
basis, leads to an effective potential HC acting on the
d-orbital subspace.

The spin polarization (SP) in LSDA is generically close
to the Stoner concept with an energy related to spin mag-
netization m of ∆ELSDA

SP (m) = − 1

2
I(m)m2, where I(m)

is of the order of 1 eV[16]. In the HFA, the average spin
splitting for d electrons is driven by I = 1

5
(U + 4J), with

OP determined by Ueff = U − J [17]. In the limit B = 0,
Um1m3m2m4

only involves two spherical harmonics [15],
and U = J = I is approximately equivalent to the LSDA
[18]. Even with Ueff = 0, there is no simple relation be-

tween Eee and the orbital moment 〈L̂〉[10]. In practice,
the problem involving the OPs induced by the Hubbard
U and Racah B can be solved numerically by working di-
rectly with the site-diagonal elements of the occupation
matrix.

The MAE is calculated by taking the difference of two
total energies with different directions of magnetization
(MAE = E111 − E001 for cubic structures and MAE
= E101̄0 − E0001 for hcp structure). The total energies

are obtained via fully self-consistent solutions of Ĥ , with
the double counting corrections to the total energy in-
cluded. For the k-space integration, we use the special
point method [19] with a Gaussian broadening of 50 meV
[2]. We use 1003 sampling points in the BZ for cubic
structure and 100 × 100 × 56 points for hcp structure.
We have also included the occupation number broad-
ening correction terms to the ground-state total energy
[20]. Numerical convergence has been tested against the
number of k-points and Gaussian broadening. We first
calculate the electronic structure self-consistently using
the scalar relativistic TB-LMTO-ASA method. Then we
construct the Hamiltonian Ĥ , using the spin-orbital cou-
pling constants corresponding to the d band center [1].

Considering the fact that the spin moments are well de-
scribed by the LSDA, for a particular value of U , we have
chosen the parameter J such that the magnetic moment
maintains the theoretical value from the LSDA without
spin-orbit coupling. The calculated spin moments are
almost independent of B. Because the strong correla-
tion U and J are entangled with the LSDA potential in
the LDA+U method [11], the dependence of the mag-
netic moment on U and J is not clear. Moreover, the
energy Eee defined in the LDA+U method [10, 11] is
not zero even without any SP and OP. This may render
the interpretation of the delicate MAE dependence on U
quite difficult. In their LDA+U calculations of Fe and
Ni, Yang et al. [5] scanned the (U ,J) parameter space
and obtained the path of U and J values which hold con-
stant the theoretical magnetic moment aligned along the
(001) direction. J increases with U in their parameter
path, in contrast to the basic concept U+4J

5
≈ Id. The

SP and OP are treated on the same footing in our HFA

scheme. The calculated MAEs versus the values of U are
depicted in Fig. 1. The corresponding orbital moments
are presented in Fig. 2.
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FIG. 1: MAEs of bcc Fe, fcc Co, hcp Co, and fcc Ni as a
function of Hubbard U . Two curves in spdf basis are plotted
for each case, one with B = 0.11J , the other with B = 0. The
experimental values are indicated by the horizontal dotted
lines (1.4, 65, and −2.7 µeV/atom for bcc Fe, hcp Co and
fcc Ni[2], and 2.0 µeV/atom for fcc Co [21]). The MAEs
calculated in spd basis with B = 0.11J are also presented.

The ASA does not significantly affect the accuracy
of MAE. In fact, the differences in the MAEs and or-
bital moments calculated by the LMTO-ASA method [1]
and those calculated by the full potential (FP) LMTO
method [2] are negligible if the same partial wave expan-
sion lmax = 2 is used. In cubic structures, the difference
between the MAEs with lmax = 3 and lmax = 2 is very
small (< 0.1 µeV/atom)[3]. However for hcp Co, the
MAE changed sign when angular moment lmax increased
from 2 to 3[1]. The MAE calculated in the spdf LMTOs
is closer to the recent accurate result calculated from FP
linearized augmented plane-wave (LAPW) method [6].
Because the LMTOs in the spdf basis are more complete
than the ones in the spd basis[13], we regard the results
in spdf basis more reliable.

In the limit B = 0 and U ≈ J , our calculated MAEs
and orbital moments (the left ends of the B = 0 plots)
lie in the range of the recent high quality LSDA values
[1, 2, 3, 4, 5, 6]. In particular, the predicted signs of the
MAEs for hcp Co and fcc Ni are wrong in the spdf basis.
The calculated orbital moments are about 40% smaller
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FIG. 2: Orbital magnetic moment for bcc Fe, fcc Co, hcp Co,
and fcc Ni along the experimental easy axis as a function of
U . The plots are labelled the same as FIG. 1.

than the experimental values for Fe and Co, while for
Ni, it is very close to the experimental value. Since the
LSDA is even poorer in Ni than in Fe and Co[12], the
agreement must be accidental.

By turning on the orbital polarization induced by the
Racah B at U ≈ J , the calculated MAEs for Fe and Co
are in much better agreement with the experimental data.
This is similar to the LSDA+OPB calculations[2, 7]. Par-
ticularly, the predicted easy axis is correct for hcp Co [7].
The calculated MAE in spdf basis for hcp Co is quite
close to that of the LMTO-ASA calculation with OPB[7],
while our spd MAE is quite close to the FP-LMTO+OPB
result[2]. Interestingly, as shown in Fig. 2, the enhance-
ment of orbital moment due to OP induced by Racah
B is in excellent agreement with the OPB calculations
[2] despite the forms of Eee and ∆EOPB being quite dif-
ferent. We suggest that the widely used OPB can be
brought precisely into accord with the unrestricted HFA
with ∆EOPB replaced by Eee at U = J (nd

2
in Ea re-

placed with n↑
d and n↓

d). Only with the OP induced by
B, the predicted sign of MAE for fcc Ni is wrong.

We now study the effect of OP induced by U with
Ueff > 0. Similarly to the OP induced by B, as shown in
Fig. 2, the OP induced by U enhances the orbital mag-
netic moments. For both Fe and Co, the MAEs change
very smoothly and monotonically with increasing U . For
Ni, the MAE is about zero when U ≈ 1.3 eV. It de-

creases with increasing U , then making a flat region with
MAE≈ −1 eV from U = 1.7 to U = 2.5. After the flat
region, the MAE decreases with increasing U , reaching
the experimental value at U = 2.95 eV. The MAE pre-
dicted here changes very smoothly with increasing U and
with correct sign when U > 1.3 eV, without the strong
sensitivity observed in the LDA+U calculations [5].

TABLE I: U and J (in eV) corresponding to experimental
magnetic anisotropy energy (in spdf basis with B = 0.11J).
The calculated orbital moments lz (µB/atom) along easy axis
are compared with the experimental data [2].

bcc Fe fcc Co hcp Co fcc Ni

U 1.15 1.41 1.77 2.95

J 0.97 0.83 0.75 0.28

lz 0.087 0.123 0.150 0.064

expt. 0.08 0.14 0.05

When U > 2.5 eV, the two MAE curves of B = 0
and B = 0.11J are almost indistinguishable for fcc Ni.
Thus we conclude that it is the Hubbard U that is fully
responsible for bringing theory into accord with experi-
ment. For Fe and Co, both OPs induced by U and B are
needed to produce the experimental MAEs. As shown in
Table I, for bcc Fe and hcp Co, the optimized U and J
almost simultaneously give the experimental MAEs and
orbital moments. The predicted orbital moment for fcc
Ni is slightly higher, but quite acceptable. The optimized
values of U and J and their trend from Fe to Ni are very
similar to those determined from experiments and used
in other theories [12, 22]. The optimized values of U
for fcc Co and hcp Co are close but not the same. This
may be due to the fact that the experimental MAE of fcc
Co was extracted from measurement on supported films
[21] or that the calculated MAE of hcp Co is not fully
converged even with lmax = 3.

It was conjectured that the failure of the LSDA to pre-
dict the MAE of fcc Ni is related to the band structure
along ΓX direction [1]. As shown in Fig.3, similarly to
the LSDA bands[1], five bands cross the Fermi energy
almost at the same k point when J ≈ U = 0.9 eV and
B = 0 (The bands for B = 0.11J are quite similar). One
of the d bands is just above the Fermi level at the X
point and results in the appearance of small X2 pocket
on the Fermi surface[1, 5], which has not been found ex-
perimentally. Increasing the valence electrons and thus
pushing down the band corresponding to the X2 pocket,
Daalderop et al. [1] found the correct easy axis for fcc
Ni. We find that the X2 pocket disappears at U ≈ 1.5
eV, corresponding to the start point of the correct sign of
the MAE. With increasing U , this band is further pushed
down and when U ≈ 3 eV, it is below the Fermi energy
by about 0.2 eV. In our approach, the disappearance of
the X2 pocket is a natural result of the OP induced by
Hubbard U .

As a delicate property, the MAE is naturally expected
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FIG. 3: Band structure of fcc Ni along ∆Z = 2π/a(0, 0, l) with
the spin quantization axis in the (001) (solid lines) and the
(111) (dashed lines) directions. Here 0.4 ≤ l ≤ 1.0. l = 1.0
corresponds to the XZ point.

to depend on the delicate changes of the band structures.
We have applied the current scheme to the parametrized
TB models of Fe and Ni fitting to the APW bands in
the LSDA [23]. The trend and optimized values of U
and J are found to be very similar to the ab initio TB
calculations. This underlines the importance of how to
treat the intra-atomic strong correlation.

In summary, we have calculated the MAEs of Fe, Co,
and Ni from the ab initio tight-binding total energies.
Disentangling the strong correlation among the intra-
atomic d orbitals with the Hamiltonian in the LSDA and
therefore treating the SP and OP on the same footing,
we have solved the long-standing notorious problem of
the MAE of fcc Ni. The discussions on the OPs induced
by Hubbard U and Racah B can shed light on future first
principles and model TB calculations. How to calculate
the interaction parameter U in metallic environment di-
rectly from first principles is still an open problem.
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